WO2006051127A1 - Control de la expresión génica mediante el uso de un atenuador de la transcripción - Google Patents

Control de la expresión génica mediante el uso de un atenuador de la transcripción Download PDF

Info

Publication number
WO2006051127A1
WO2006051127A1 PCT/ES2005/000541 ES2005000541W WO2006051127A1 WO 2006051127 A1 WO2006051127 A1 WO 2006051127A1 ES 2005000541 W ES2005000541 W ES 2005000541W WO 2006051127 A1 WO2006051127 A1 WO 2006051127A1
Authority
WO
WIPO (PCT)
Prior art keywords
expression
gene
heterologous
protein
transcription
Prior art date
Application number
PCT/ES2005/000541
Other languages
English (en)
French (fr)
Inventor
Eduardo Santero Santurino
Ángel CEBOLLA RAMÍREZ
José Luis ROYO SANCHEZ-PALENCIA
Original Assignee
Universidad Pablo De Olavide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Pablo De Olavide filed Critical Universidad Pablo De Olavide
Priority to US11/667,007 priority Critical patent/US20080280355A1/en
Publication of WO2006051127A1 publication Critical patent/WO2006051127A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora

Definitions

  • the present invention falls within the field of genetic engineering. More specifically, the present invention relates to the manipulation of gene expression in heterologous expression systems in bacteria, where using a transcription attenuation system, the basal levels of the same are achieved, maintaining the original maximum transcription levels. '
  • heterologous proteins in bacteria can negatively affect the growth of the host bacteria. Therefore, the expression systems are usually kept “off” until the bacterial cultures reach the appropriate density, and that is when the production of the protein of interest is induced.
  • the problem is that the so-called simple systems, even under basic conditions, generate a certain amount of heterologous protein, which can lead to the selection of clones within the culture that do not express the protein of interest, if it is toxic to bacterial metabolism. .
  • ES 2,167,161 an expression circuit based on different regulatory elements of Pseudomonas putida is described.
  • the nahR / P fusion sa ⁇ -xylS2 is inserted into the bacterial chromosome by means of a mini-Tn5 integration system.
  • NahR activates the transcription from P sa ⁇ , expressing XylS2.
  • salicylate also activates the regulatory function of XylS2, synergistically amplifying the transcription from the Pm promoter.
  • the basic expression levels are minimal, due to the low concentration of XylS2 and its inactive state.
  • this type of cascade regulation circuit cannot avoid residual levels of initiation of transcription from the Pm terminal promoter, especially when it is in a high copy plasmid, since even in the absence of its XylS2 regulator, sporadically, bacterial RNA polymerase is capable of initiating transcription.
  • the problem is that the so-called simple systems generate a certain amount of protein even under conditions of non-induction, which can lead to the domination of the crop by clones that have lost the ability to express the protein of interest
  • the inventors have designed a system that exercises control over the elongation of the transcription, and therefore can be superimposed on the different levels of expression based on the beginning of the transcription described so far, so that the efficiency of cloning in heterologous expression systems, and the stability of the strains containing the resulting gene constructs.
  • a heterologous gene expression system which comprises a promoter sequence of transcription, an attenuating element that inhibits elongation of transcription, and at least one heterologous gene whose expression is He wants to control.
  • the attenuation system can be counteracted or canceled in a controlled manner by means of the expression of a specific anti-terminator protein, incorporated in the system, and whose activity is inducible by an effector molecule that acts directly or indirectly on said protein.
  • the system includes the gene that encodes the antiterminator protein.
  • the promoter that initiates the transcription of the heterologous genes is activated by the same molecule that activates the expression of the antiterminator protein.
  • the gene expression system comprises a transcription promoter sequence, the attenuating sequence of the nasF operon of K 1 pneumoniae, the nasR gene sequence of K. pneumoniae, a system of heterologous expression to control the expression of the nasR gene of K 1 pneumoniae and one or more heterologous genes whose expression is to be controlled.
  • the gene expression system according to that described above where the heterologous expression system that controls the expression of the nasR gene of K. pneumoniae is the nahR / P sa ⁇ -xylS2 cascade expression system.
  • the use of the expression system described above for the amplification of the expression of recombinant proteins, RNAs or apoliproteins in bacteria is provided.
  • a method to improve the capacity of expression of heterologous genes in bacteria characterized in that it comprises the following steps:
  • the use of an attenuation system is provided for the improvement of the expression capacity of an expression system by reducing the basal levels of expression of the heterologous protein.
  • the attenuation system can be antitermined by a protein whose activity is inducible by an effector molecule that either acts directly on said protein, or on the intracellular level of said protein.
  • the attenuation system contains the attenuating sequence of the nasF operon of K. pneumoniae. And much more preferred when the attenuation system also contains the sequence of the nasbs gene of Klebsiella, under the control of a heterologous expression system, to control the attenuating activity of nasbs of Klebsiella.
  • heterologous gene expression vectors that contain a transcription promoter sequence, a transcription attenuating element and a heterologous gene or genes whose expression is to be controlled.
  • the vectors also comprise a gene that encodes an antiterminating protein that can prevent the inhibition of elongation. More preferably, the vectors also comprise an expression system that induces the production of said anti-terminator protein. Particularly preferred are those vectors where the attenuating sequence is the nasF operon sequence of K pneumoniae. Even more preferred are those where the gene encoding the antiterminator protein is the nasR gene of Klebsiella. Most preferred vectors are those in which the expression system induces the production of said protein is antiterminator cascade system nahR / P ⁇ -xylS2 sa.
  • an attenuating element is located between a promoter sequence of the transcription and one or more heterologous genes whose expression is to be controlled.
  • the attenuating element is capable of prematurely interrupting the transcription from the promoter and thus reducing the basal levels of expression. In this way, the basal expression levels are reduced by more than one order of magnitude.
  • the attenuating activity of this element can be controlled by means of a protein that counteracts and allows the transcription to continue, the heterologous genes being transcribed. Upon inducing the expression of the anti-terminator protein, the attenuating effect is eliminated, allowing maximum activation of the promoter.
  • the insertion of the gene sequence or heterologous genes can be carried out by means of restriction and ligation enzymes, or by site-specific recombination.
  • the present invention also refers to bacterial strains that contain some type of vector with the characteristics described above.
  • expression vector as used herein, is applied to the DNA molecule to which the DNA molecule covalently binds to the nucleotide sequence encoding the RNA or the protein of interest, facilitating replication and Ia transcription of said sequence by the host cell, once the vector has been transferred into said cell.
  • expression vectors for experimental purposes are known to the person skilled in the art.
  • the word “comprises” and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention.
  • FIG. 1 Scheme of the constructions used. The relevant restriction sites are indicated, bja corresponds to the ⁇ -lactam antibiotic resistance gene, the double loops symbolize the nasF attenuator, the filled circles represent terminators of the transcription, while the empty circles represent the o ⁇ V.
  • FIG. 2 Diagram of the different degrees of transcription represented by the modular expression system.
  • the nasF attenuator stops the non-specific transcription (A).
  • XylS2 is activated and binds to the Pm promoter, causing a high initiation of lacZ transcription, which is mostly stopped by the attenuating element (B).
  • B the attenuating element
  • C the antitermination increases the expression levels of ⁇ -galactosidase even in the absence of nitrate, (C).
  • C nitrate for the activation of NasR
  • FIG. 3. Comparison between the baseline levels of ⁇ -galactosidase (measured in Miller Units, UM) produced by pMPO6ter N as R and pMPO ⁇ in a CC118 4S2 fund.
  • the gray and green bars correspond to pMPO ⁇ t er N a sR only in the absence and in the presence of nitrate respectively.
  • the black and red bars are equivalent to the previous ones but in the presence of pMPO ⁇ .
  • Blue and pink correspond to pMPO6 te rNasR in the presence of IPTG (without and with nitrate respectively).
  • Equivalent conditions with pMPO ⁇ are represented in brown and white.
  • FIG. 4 Percentage of terminating capacity (T%) of the transcription levels with respect to the original vector, following the order described above.
  • FIG. 4. Miller units (UM) produced by pMPO ⁇ ter N asR and pMPO6, on a 6-hour induction with 2 mM salicylate. The gray and green bars correspond to cultures containing pMPO ⁇ t e r Na s R induced, in the absence and presence of nitrate respectively. The black and red bars represent a similar test, but in the presence of pMPO ⁇ . Blue and pink correspond to pMPO ⁇ terNasR in the presence of IPTG (without and with nitrate). Finally, the induced levels of pMPO6 (brown and white, without and with nitrate). The data shown here correspond to the average of three independent experiments.
  • FIG. 5 Induction levels shown by CC118 4S2 pMPO6 terN asR with NasR supplied from pMPO24 (purple) or pMPO25 (blue), without nitrate (white) or with nitrate (striped). As a control, induced levels of pMPO ⁇ (brown and white, without and with nitrate) are represented. Data represent Miller units after 6 hours of induction.
  • FIG. 6 Hybrid circuit design comprising the nahR / P sa ⁇ -xylS2 regulator modules; P sa ⁇ -nasR, and its Pm-nasF target sequences.
  • P sa ⁇ -xylS2 regulator modules For induction, 2 mm of salicylate is required.
  • P sa ⁇ -nasR For the antitermination, 0.2 g / l of nitrate should be added.
  • the nasF operon attenuator element of K. pneumoniae located downstream of the Pm promoter of the cascade system, a multiple cloning site after the attenuator was used to clone the genes of interest, and the sequence encoding nasR under the control of an inducible expression system.
  • a cascade system was used such as nahR / P sa ⁇ -xylS2 that coordinates the expression of the heterologous gene promoter and the antiterminer protein. The system experienced an improvement in its regulatory capacity by decreasing the expression 12 times baseline without limiting its production capacity once induced. In this way induction ranges of more than 1,700 times were achieved
  • the LB medium contained 10 g / l of tryptone, 5 g / l of NaCl and 5g / l of yeast extract. When necessary, the LB medium was supplemented with 0.2 g / l of sodium nitrate to induce NasR-dependent antitermination. Ampicillin was used at a final concentration of 100 ⁇ g / l while gentamicin was used at 7.5 ⁇ g / l. The cultures were incubated at 37 0 C under aerobic conditions by shaking at 150 rpm, and after adding the inducer were incubated at 30 0 C.
  • K. pneumoniae also known as Klebsiella oxytoca M5a1
  • the isolation of the genomic DNA of K. pneumoniae was performed following the method previously described by Silberstein and Cohen (J Bacteriol. 1987; 169: 3131-3137) with some variations. Briefly, the 5 ml cells of a saturated Klebsiella culture were collected by centrifugation and stored frozen at -2O 0 C until later use.
  • the nasF attenuator was amplified by PCR using genomic DNA from K. pneumoniae as a template, and the following primers: TerNasF2: 5 ' - GGAATTC GAG TGA ATA AAA GGT TTT GGG CAG CGC -3 ' and TerNasR2: 5 ' - GGAATTC GCG CAA AAA AAA AGC GCC CGG CGG TGC-3 '.
  • the underlined positions correspond to the EcoRI restriction sites.
  • the PCR was performed in a final volume of 25 ⁇ l containing 25 ng of chromosomal DNA from K. pneumoniae, 10 pg of each primer and 2.5 mM MgCI.
  • the initial denaturation was performed for 5 minutes at 95 0 C, Io that followed 35 cycles of amplification (95 ° C for 30 seconds, and 72 0 C for 2 minutes), and a final extension of 5 min at 72 0 C.
  • the regulatory gene nasR was cloned using the following primers: NasRIF 5 ' -ACG GTT ATT GCT TGG CTG AAG -3 ' and NasRI R: 5'- ATGAGCTC CTA CTC CTT TGG GGT TAC G -3 ' .
  • the underlined nucleotides correspond to a Sac ⁇ restriction site.
  • the PCR contained 25 ng of chromosomal DNA from K.
  • Plasmids pMPO6 or pMPO6t er NasR were transformed alone or together with plZ1016, pMPO ⁇ , pMPO24 or pMPO25 in CC118 4S2. These cultures were allowed to grow aerobically overnight in LB ampicillin and / or gentamicin, when necessary. The inoculum was diluted 50 times and incubated at 37 0 C. When the OD 6 oo reached 0.2-0.3 values, the cultures were induced with salicylate (2 mM) or IPTG (1 mM) and incubated at 30 0 C. When necessary, the LB medium was supplemented with 0.2 g / L sodium nitrate.
  • the basal expression of the Pm promoter present in the pCAS cascade expression vector was tested.
  • the galK ' ::' lacZ fusion was used that confers the best linearity between the level of transcription and the protein provided due to the low stability of its coding RNA (Onion et al., Unpublished data) .
  • An EcoRI-H / ndIII fragment with this fusion of plC554 was inserted into the same sites of the pCAS vector, generating pMPO6 (FIG 1).
  • This plasmid contained a single EcoRI restriction site between the initiation of the transcription (+1) and the Shine-Dalgamo (SD) sequence to position the nasF attenuator.
  • the 120 bp sequence corresponding to the nasF attenuator was amplified as described above, digested and cloned into pMPO ⁇ once linearized with EcoRl and dephosphorylated.
  • the primers were designed based on the sequence described by Lin et al. (Genbank accession number AF038047).
  • the attenuator was cloned in EcoRl site located upstream of the SD of the galK ' r / lacZ gene. The correct orientation of the insertion was verified by PCR.
  • the resulting plasmid was named pMPO ⁇ ter N as R -
  • pMPO6 te rNas R was transformed into Escherichia coli CC118 4S2.
  • the NasR-dependent attenuator decreased the basal levels of ⁇ -galactosidase activity more than tenfold when compared with the original construction (FIGs. 2A and 3A).
  • nasR Genebank accession number L27824
  • pMPO7 pBluescript (pMPO7)
  • pMPO7 pBluescript
  • Sma ⁇ and Sacl The resulting fragment was subcloned into plZ1016 and digested with Sma ⁇ and Sacl.
  • the resulting plasmid, pMPO ⁇ contained the lacl q repressor and expressed NasR under the control of the Pt ac promoter - Its origin of replication compatible with the CoIEI replicon allowed the coexistence of both the expression vector and this modulating plasmid.
  • the P fac promoter allowed us to study the contribution of each parameter in the induction of lacZ.
  • the residual active NasR was insufficient to allow the potential complete expression obtained with the Pm promoter free of attenuator.
  • NasR production was increased by adding 1 mM IPTG, even without nitrate, 8.57x10 4 UM (60% of the fully induced level) was obtained.
  • nitrate, salicylate and IPTG were added, the induced levels of pMPO6 t ⁇ rNasR were completely achieved (1, 47x10 5 UM) and no differences could be detected with pMPO6 (1, 45x10 5 UM).
  • the expression of the nasR gene was coupled to the expression of the transcriptional activator by the cascade circuit. NasR expression under non-induced conditions can be minimized and co-expressed together with the other regulatory elements on induction.
  • the cascade amplification system involves two regulators: NahR and XylS2, and their target promoters P sa / and Pm respectively.
  • NasR was placed under the control of the promoter P sa /, so that the co-expression of XylS2 and the antitermination were synchronized after the addition of salicylate.
  • the Nco ⁇ -Sal ⁇ fragment containing / acl q -P fac of pMPO9 was changed and replaced by the promoter P sa ⁇ , generating pMPO24.
  • An alternative of pMPO24 was generated by changing nasR for an attenuator-nasR fusion, pMPO25, in case the baseline level of nasR expression was still significant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Un sistema de expresión de genes heterólogos que consiste en un elemento atenuador inhibidor de la elongación de la transcripción de los genes heterólogos, cuya expresión se quiere controlar, y dos módulos reguladores que controlan la expresión del elemento atenuador. Uso del sistema de expresión anterior para la amplificación de la expresión de proteinas recombinantes, ARNs o apolipoproteinas es bacterias. Vectores que contengan el sistema de expresión anterior.

Description

CONTROL DE LA EXPRESIÓN GÉNICA MEDIANTE EL USO DE UN ATENUADORDELATRANSCRIPCIÓN
CAMPODELATÉCNICA
La presente invención se engloba dentro del campo de Ia ingeniería genética. Más concretamente, Ia presente invención se relaciona con Ia manipulación de Ia expresión génica en sistemas de expresión heteróloga en bacterias, donde empleándose un sistema de atenuación de Ia transcripción se consiguen reducir los niveles básales de Ia misma, manteniéndose los niveles de transcripción máximos originales. '
ESTADO DE LA TÉCNICA ANTERIOR
En Ia producción de proteínas recombinantes por parte de bacterias modificadas genéticamente se emplean tanto promotores fuertes que sean reprimibles, como promotores débiles que pueden ser activados por un regulador transcripcional.
A menudo, Ia expresión de proteínas heterólogas en bacterias puede afectar de forma negativa al crecimiento de Ia bacteria hospedadora. Por ello, los sistemas de expresión suelen mantenerse "apagados" hasta que los cultivos bacterianos alcanzan Ia densidad adecuada, y es entonces cuando se induce Ia producción de Ia proteína de interés. El problema radica en que los sistemas denominados simples, aun en condiciones básales generan una cierta cantidad de proteína heteróloga, Io cual puede llevar a que se seleccionen clones dentro del cultivo que no expresen Ia proteína de interés, si ésta es tóxica para el metabolismo bacteriano .
La mayoría de los sistemas de expresión procariotas utilizan plásmidos multicopia que incorporan señales fuertes de iniciación de Ia transcripción reconocibles por las ARN polimerasas bacterianas, o víricas. Los sistemas de regulación naturales suelen incluir circuitos adicionales de control que regulan los niveles de expresión en el tiempo y el espacio. El uso de pasos complementarios de control en vectores de expresión puede ayudar a coordinar Ia expresión de diferentes proteínas, o mejorar el rendimiento de obtención de proteínas recombinantes heterólogas (Chen W. y cois. Gene. 1993; 130(1 ): 15-22; Cebolla A. y cois. Nucleic Acids Res. 2001 ; 29(3):759- 66). Se han descrito diversos sistemas de regulación alternativos al del control de Ia iniciación. Estos incluyen Ia regulación de Ia estabilidad del ARN (lost I. y cois. J. 1995; 14(13):3252-61; Carrier T.A. y cois. Biotechnol Prog. 1999; 15(1 ):58-64), de Ia eficiencia de Ia traducción (Hui A. y cois. EMBO J. 1984; 3(3):623-9), y de Ia propia estabilidad de las proteínas producidas (Alexander D.M. y cois. Protein Expr Purif. 1992; 3(3):204-11). Aunque estos niveles de regulación adicionales pueden proporcionar ventajas para silenciar Ia expresión de proteínas bajo condiciones de no inducción, pocos de ellos han sido utilizados en sistemas de expresión.
Con el fin de disminuir los niveles de transcripción básales de los distintos sistemas de expresión se han desarrollado distintas estrategias. Algunos autores han generado mutaciones en Ia zona del promotor con el fin de reducir su actividad. El problema de esta estrategia es que a Ia hora de activar el sistema, Ia capacidad de producción máxima queda igualmente limitada.
Como formula alternativa para reducir los niveles básales de expresión, se ha buscado reducir Ia dosis génica de los genes heterólogos expresados, utilizando vectores de expresión de bajo número de copias, o integrando dichos genes en el cromosoma bacteriano. Esta estrategias conllevan también una reducción en el rendimiento del sistema, y con frecuencia obligan a añadir pasos adicionales en los procesos de producción.
Otras estrategias se han basado en el uso de operadores en las regiones promotoras, en combinación con sus represores correspondientes. Además de represores, se pueden coexpresar distintas proteínas que por diversos mecanismos moleculares disminuyan los niveles básales.
Entre los diferentes mecanismos de control de Ia expresión génica, Ia atenuación de Ia transcripción ha sido siempre considerada como una estrategia bacteriana muy sofisticada y útil. Muchas rutas de atenuación han sido estudiadas en un amplio rango de microorganismos como son Escherichia coli, Klebsiella pneumoniae. Salmonella typhimurium o Bacillus subtilis (Rutberg B. y cois. Mol Microbiol. 1997; 23(3):413-21 ). La principal característica de los mecanismos de atenuación es que previenen Ia elongación inespecífica producidas por uniones espúreas de Ia ARN polimerasa bacteriana al promotor.
En ES 2.167.161 , se describe un circuito de expresión basado en diferentes elementos reguladores de Pseudomonas putida. En este sistema, Ia fusión nahR/Psaι-xylS2 es insertada en el cromosoma bacteriano por medio de un sistema de integración mini-Tn5. Cuando hay salicilato en el medio de cultivo, NahR activa Ia transcripción desde Psaι , expresándose XylS2. Concomitantemente, el salicilato también activa Ia función reguladora de XylS2, amplificando sinérgicamente Ia transcripción a partir del promotor Pm. En ausencia de salicilato, los niveles básales de expresión son mínimos, debido a Ia baja concentración de XylS2 y a su estado inactivo. Sin embargo, este tipo de circuito de regulación en cascada no puede evitar niveles residuales de iniciación de Ia transcripción desde el promotor terminal Pm, especialmente cuando se encuentra en un plásmido de alto número de copias, ya que aun en ausencia de su regulador XylS2, de forma esporádica Ia ARN polimerasa bacteriana es capaz de iniciar Ia transcripción.
EXPLICACIÓN DE LA INVENCIÓN
Tal y como se ha indicado anteriormente, el problema radica en que los sistemas denominados simples generan una cierta cantidad de proteína aun en condiciones de no inducción, Io cual puede acarrear Ia dominación del cultivo por parte de clones que hayan perdido Ia capacidad de expresar Ia proteína de interés. Los inventores han diseñado un sistema que ejerce su control sobre Ia elongación de Ia transcripción, y que por tanto se puede superponer a los distintos niveles de expresión basados en el inicio de Ia transcripción descritos hasta ahora, de forma que se pueda aumentar Ia eficiencia de clonación en los sistemas de expresión heterólogos, y Ia estabilidad de las cepas que contengan las construcciones génicas resultantes.
De acuerdo con un primer aspecto de Ia presente invención, se proporciona un sistema de expresión de genes heterólogos, que comprende una secuencia promotora de Ia transcripción, un elemento atenuador que inhibe Ia elongación de Ia transcripción, y al menos un gen heterólogo cuya expresión se quiere controlar. Según una realización preferida, el sistema de atenuación se puede contrarestar o anular de manera controlada mediante Ia expresión de una proteína antiterminadora específica, incorporada en el sistema, y cuya actividad es ¡nducible por una molécula efectora que actúa directamente o indirectamente sobre dicha proteína.
Según una realización más preferida, el sistema incluye al gen que codifica a Ia proteína antiterminadora. De acuerdo con una realización más preferida, el promotor que inicia Ia transcripción de los genes heterólogos es activado por Ia misma molécula que activa Ia expresión de Ia proteína antiterminadora.
En una realización particularmente preferida del primer aspecto de Ia presente invención, el sistema de expresión génica comprende una secuencia promotora de Ia transcripción, Ia secuencia atenuadora del operón nasF de K1 pneumoniae, Ia secuencia del gen nasR de K. pneumoniae, un sistema de expresión heterólogo para controlar Ia expresión del gen nasR de K1 pneumoniae y uno o varios genes heterólogos cuya expresión se quiere controlar.
Es particularmente preferido el sistema de expresión génica de acuerdo con Io descrito anteriormente, donde el sistema de expresión heterólogo que controla Ia expresión del gen nasR de K. pneumoniae es el sistema de expresión en cascada nahR/Psaι-xylS2.
Según un segundo aspecto de Ia presente invención, se proporciona el uso del sistema de expresión anteriormente descrito para Ia amplificación de Ia expresión de proteínas recombinantes, ARNs o apoliproteínas en bacterias.
De acuerdo con un tercer aspecto de Ia presente invención, se proporciona un método para mejorar Ia capacidad de expresión de genes heterólogos en bacterias, caracterizado porque comprende las siguientes etapas:
(i) reducción de los niveles básales de expresión del gen o los genes hererólogos cuya expresión se quiere controlar, mediante un sistema de atenuación de Ia transcripción; (ii) activación de un sistema de expresión heterólogo que expresa una proteína que provoca Ia antiterminación del sistema de atenuación, al tiempo que activa el promotor de Ia transcripción del gen o genes heterólogos cuya expresión se quiere controlar.
De acuerdo con un cuarto aspecto de Ia presente invención, se proporciona el uso de un sistema de atenuación para Ia mejora de Ia capacidad de expresión de un sistema de expresión mediante Ia reducción de los niveles básales de expresión de Ia proteína heteróloga.
En otra realización más preferida, el sistema de atenuación se puede antiterminar mediante una proteína cuya actividad es inducible por una molécula efectora que, bien actúa directamente sobre dicha proteína, o bien sobre el nivel intracelular de dicha proteína.
Es particularmente preferida, cuando el sistema de atenuación contiene Ia secuencia atenuadora del operón nasF de K. pneumoniae. Y mucho más preferida cuando el sistema de atenuación contiene además Ia secuencia del gen nasR de Klebsiella, bajo el control de un sistema de expresión heterólogo, para controlar Ia actividad atenuador de nasF de Klebsiella.
Según un quinto aspecto de Ia presente invención, se proporcionan vectores de expresión de genes heterólogos que contienen una secuencia promotora de Ia transcripción, un elemento atenuador de Ia transcripción y un gen o genes heterólogos cuya expresión se quiere controlar.
Según una realización preferida de este quinto aspecto de Ia invención, los vectores además comprenden un gen que codifica a una proteína antiterminadora que puede evitar Ia inhibición de Ia elongación. De modo más preferido, los vectores además comprenden un sistema de expresión que induce Ia producción de dicha proteína antiterminadora. Siendo particularmente preferidos aquellos vectores donde Ia secuencia atenuadora es Ia secuencia del operón nasF de K pneumoniae . Mucho más preferidos aún son aquellos donde el gen que codifica Ia proteína antiterminadora es el gen nasR de Klebsiella. Los vectores más preferidos son aquellos en los que el sistema de expresión que induce Ia producción de dicha proteína antiterminadora es el sistema en cascada nahR/Psaι-xylS2. En una realización práctica de Ia presente invención, se sitúa un elemento atenuador entre una secuencia promotora de Ia transcripción y uno o varios genes heterólogos cuya expresión se quiere controlar. El elemento atenuador es capaz de interrumpir prematuramente Ia transcripción desde el promotor y así reducir los niveles básales de expresión. De este modo, se logran disminuir los niveles de expresión basal en más de un orden de magnitud. Se puede controlar Ia actividad atenuadora de éste elemento por medio de una proteína que Ia contrarresta y permite que Ia transcripción continúe, transcribiéndose los genes heterólogos. Al inducirse Ia expresión de Ia proteína antiterminadora se elimina el efecto atenuador, permitiéndose Ia activación máxima del promotor.
La inserción de Ia secuencia del gen o los genes heterólogos se puede realizar por medio de enzimas de restricción y ligación, o bien mediante recombinanción específica de sitio.
La presente invención, también hace referencia a cepas bacterianas que contengan algún tipo de vector de las características descritas anteriormente.
DEFINICIONES:
Antes de Ia discusión detallada de las formas de realización de Ia invención, se proporcionan definiciones de términos específicos relacionados con los principales aspectos de Ia invención.
El término "vector de expresión" como se usa aquí, se aplica a Ia molécula de ADN a Ia cual se une de forma covalente Ia molécula de ADN con Ia secuencia nucleotídica codificadora del ARN o de Ia proteína de interés, facilitando Ia replicación y Ia transcripción de dicha secuencia por Ia célula hospedadora, una vez transferido el vector al interior de dicha célula. Son conocidos, por el experto en Ia materia, una gran variedad de vectores de expresión con fines experimentales. A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
FIG. 1. Esquema de las construcciones empleadas. Los sitios de restricción relevantes están indicados, bja corresponde al gen de resistencia a antibióticos β-lactámicos, los bucles dobles simbolizan el atenuador nasF, los círculos rellenos representan terminadores de Ia transcripción, mientras que los círculos vacíos representan el oπV.
FIG. 2. Diagrama de los diferentes grados de transcripción representados por el sistema de expresión modular. Cuando ni XylS2 ni NasR están presentes en el citoplasma, el atenuador nasF detiene Ia transcripción no específica (A). Cuando se añade salicilato al medio de cultivo, XylS2 se activa y une al promotor Pm, provocando una alta iniciación de Ia transcripción de lacZ, que es detenida en su mayor parte por el elemento atenuador (B). Cuando se induce Ia expresión de nasR es, Ia antiterminación incrementa los niveles de expresión de Ia β-galactosidasa aun en ausencia de nitrato, (C). El sistema es inducido completamente cuando IPTG y salicilato son añadidos ambos al medio de cultivo, junto con nitrato para Ia activación de NasR (D).
FIG. 3. (A) Comparación entre los niveles básales de β-galactosidasa (medidos en Unidades Miller, U. M.) producidos por pMPO6terNasR y pMPOΘ en un fondo CC118 4S2. Las barras gris y verde se corresponden al pMPOδterNasR solo en ausencia y en presencia de nitrato respectivamente. Las barras negra y roja son equivalentes a las anteriores pero en presencia de pMPOδ. Azul y rosa se corresponden con pMPO6terNasR en presencia de IPTG (sin y con nitrato respectivamente). Condiciones equivalentes con pMPOΘ son representadas en marrón y blanco. (B) Porcentaje de capacidad terminadora (T %) de los niveles de transcripción respecto al vector original, ateniendo al orden descrito arriba. FIG. 4. Unidades Miller (U. M.) producidas por pMPOΘterNasR y pMPO6, sobre una inducción de 6 horas con 2 mM salicilato. Las barras gris y verde corresponden a cultivos conteniendo pMPOΘterNasR inducido, en ausencia y presencia de nitrato respectivamente. Las barras negra y roja representan un ensayo similar, pero en presencia de pMPOδ. Azul y rosa corresponden a pMPOδterNasR en presencia de IPTG (sin y con el nitrato). Finalmente, los niveles inducidos de pMPO6 (marrón y blanca, sin y con el nitrato). Los datos mostrados aquí corresponden a Ia media de tres experimentos independientes.
FIG. 5. Niveles de inducción mostrados por CC118 4S2 pMPO6terNasR con NasR suministrado desde pMPO24 (púrpura) o pMPO25 (azul), sin nitrato (blanco) o con el nitrato (rayado). Como control, son representados los niveles inducidos de pMPOβ (marrón y blanco, sin y con nitrato). Los datos representan unidades de Miller después de 6 horas de inducción.
FIG. 6. Diseño del circuito híbrido que comprende los módulos reguladores nahR/Psaι-xylS2; Psaι-nasR , y sus secuencias objetivo Pm-nasF. Para Ia inducción, se requiere 2 mm de salicilato. Para Ia antiterminación, se deben añadir 0,2 g/l de nitrato.
Los siguientes modos de realización se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓN
Ejemplo 1. Construcción del sistema de expresión
Como ejemplo, se usó el elemento atenuador del operón nasF de K. pneumoniae, situado corriente abajo del promotor Pm del sistema en cascada, un sitio múltiple de clonación tras el atenuador para clonar los genes de interés, y Ia secuencia que codifica a nasR bajo el control de un sistema de expresión inducible. Como sistema preferente, se usó un sistema en cascada como el nahR/Psaι -xylS2 que coordina Ia expresión del promotor del gen heterólogo y de Ia proteína antiterminadora. El sistema experimentó una mejora en su capacidad de regulación al disminuir 12 veces Ia expresión basal del mismo sin limitarse su capacidad de producción una vez inducido. De esta forma se lograron rangos de inducción de más de 1.700 veces
Plásmidos y condiciones de crecimiento de las cepas
Tanto los plásmidos como las cepas empleadas se describen en Ia Tabla 1.
Tabla 1
Cepas Características Referencia
E. colϊDBSa deoR, endAl, gyrA96, recAl, suρE44. Colección del laboratorio de Lorenzo et al. Gene 1993, E. coli S171-λpir F'recA, hsdR, RP4-2 (Tc: -.Mu)(Km: :Tn7) lisogenizado con λpir phage 130:41-6 Klebsiella pneumoniae Ma51 Cepa salvaje de Klebsiella. Colección del laboratorio phoA20 thi-1 rspE rpoB argE (Am) recAl con un Km mini-7n5 conteniendo la fusión nahR/Psal- Cebolla et al. Nucleic Acids
O E. coli CCl 18 4S2 xylS2. Res 2001, 29:759-66
> Plásmidos D m pCAS ApR, Vector de expresión con rrnBTl -Pm: .-sitio de clonaje múltiple (MCS).. Active Motif
C AρR, Vector de expresión con la fusión rrnBTl Υ2-~Pm-nasF -MCS, y el origen de replicación de pCAS terNasR Este trabajo CoIEl.
Cebolla et al., Nucleic Acids pCNB4-S2 ApR, KmR, miniTn5 con la fusión nahR/Psal-xylS2 entre los sitios I y O.
C Res 2001, 29:759-66 O GmR, Vector de expression derivado de pBBR con laclq y Píac, origen de replicación de amplio rango Moreno-Ruiz et al, J Bacterial pIZ1016
O de hospedador.. 2003, 185:2026-30 pMPO6 ApR, pCAS con la fusión rrnBTl-Pm- galK':: lacZ. Este trabajo
73 m pMP06tejNasR ApR, pCAS con la fusión rrnBTl -Pm-atenuador de nasF -galK':: lacZ. Este trabajo G) pMP07 ApR, Bluescript con nasR clonado en EcoRV. Este trabajo ro pMP08 GmR, Plasmido derivado de pIZ1016 con nasR clonado bajo el control de Pωc. Este trabajo σ> ρMPO9 ApR, pCAS-con nasR bajo el control del promotor Pm. Este trabajo pMPOlO ApR, pCAS terNasReon nasR bajo el control de Pm y con el atenuador de nasF. Este trabajo pMPO24 GmR, Plasmido derivado de pMP08 con nasR clonado bajo Psα/. Este trabajo pMPO25 GmR, Plasmido derivado de ρMPO8 con la fusión ¥sarnasF - nasR. Este trabajo pUC19 ApR, vector de clonación con un origen de replicación CoIEl. New England Bíolabs
El medio LB contenía 10 g/l de triptona, 5 g/l de NaCI y 5g/l de extracto de levadura. Cuando fue necesario, el medio LB fue suplementado con 0,2 g/l de nitrato sódico para inducir Ia antiterminación dependiente de NasR. La ampicilina se usó a una concentración final de 100 μg/l mientras que Ia gentamicina se usó a 7,5 μg/l. Los cultivos se incubaron a 37 0C en condiciones aeróbicas, agitándolos a 150 rpm, y tras añadir el inductor se incubaron a 30 0C.
Aislamiento del ADN
El aislamiento del ADN genómico de K. pneumoniae, también conocida como Klebsiella oxytoca M5a1 , fue realizado siguiendo el método previamente descrito por Silberstein y Cohén (J Bacteriol. 1987; 169: 3131-3137) con algunas variaciones. Brevemente, las células de 5 mi de un cultivo saturado de Klebsiella se recogieron por centrifugación y se guardaron congeladas a - 2O0C hasta su uso posterior. Las células se descongelaron y resuspendieron en 0,4 mi tampon de lisis (Tris-HCI 50 mM pH 8, EDTA 10 mM, NaCI 100 mM, SDS 0,2%, RNAase 100 mg/L), incubándose a a 370C durante 30 minutos, tras Io cual se añadieron 20 μl de proteasa-K (20 g/L) y se incubaron a 650C durante 2 horas. La proteína de Ia muestra se extrajo con fenol para eliminar las nucleasas, y los ácidos nucleicos se precipitaron con etanol. El ADN genómico así obtenido se resuspendió en 0,5 mi de agua estéril miliQ; y Ia concentración y pureza del mismo se determinaron por calculando Ia relación
Figure imgf000013_0001
Reacción en Cadena de Ia Polimerasa (PCR)
El atenuador nasF fue amplificado por PCR usando ADN genómico de K. pneumoniae como molde, y los siguientes cebadores: TerNasF2: 5'- GGAATTC GAG TGA ATA AAA GGT TTT GGG CAG CGC -3' y TerNasR2: 5'- GGAATTC GCG CAA AAA AAA AGC GCC CGG CGG TGC-3'. Las posiciones subrayadas se corresponden con los sitios de restricción EcoRI. La PCR fue realizada en un volumen final de 25 μl conteniendo 25 ng de ADN cromosómico de K. pneumoniae, 10 pg de cada cebador y 2.5 mM MgCI. La desnaturalización inicial se llevó a cabo durante 5 minutos a 95 0C, a Io que se siguió con 35 ciclos de amplificación (95° C durante 30 segundos, y 72 0C durante 2 minutos), y una extensión final de 5 min a 72 0C. El gen regulador nasR fu clonado usando los siguientes cebadores: NasRIF 5'-ACG GTT ATT GCT TGG CTG AAG -3' y NasRI R: 5'- ATGAGCTC CTA CTC CTT TGG GGT TAC G -3'. Los nucleótidos subrayados se corresponden con un sitio de restricción Sac\. La PCR contenía 25 ng de ADN cromosómico de K. pneumoniae como plantilla, 10 pg de cada cebador y 2.5 mM MgCI. La desnaturación inicial se llevó a cabo durante 5 minutos a 95 0C, a Io que se siguió con 35 ciclos de amplificación (95° C durante 30 segundos, 62 0C durante 30 segundos y 72 0C durante 45 segundos), y una extensión final de 5 minutos a 72 0C.
Determinación enzimática de Ia actividad β-galactosidasa
Los plásmidos pMPO6 o pMPO6terNasR fueron transformados solos o juntos con plZ1016, pMPOδ, pMPO24 o pMPO25 en CC118 4S2. Se dejaron crecer aerobicamente dichos cultivos durante Ia noche en LB ampicilina y/o gentamicina, cuando fue necesario. El inoculo fue diluido 50 veces e incubado a 37 0C. Cuando Ia OD6oo alcanzó valores de 0,2-0,3, los cultivos fueron inducidos con salicilato (2 mM) o IPTG (1 mM) e incubados a 30 0C. Cuando fue necesario, el medio LB fue suplementado con 0,2 g/L de nitrato sódico. Los cultivos inducidos y no inducidos fueron incubados a 30° C y 150 rpm y las actividades de β-galactosidasa fueron ensayadas 5 horas después de Ia inducción como se describió previamente (Miller J, Experiments ¡n molecular genetics. CoId Spring Harbor Laboratory Press, N.Y. 1972).
Construcción del vector
Para evaluar el uso del atenuador transcripcional nasF como un filtro para transcripción no deseada, se probó a reducir Ia expresión basal del promotor Pm presente en el vector de expresión en cascada pCAS . Para estudiar Ia expresión de proteínas, se utilizó Ia fusión galK'::'lacZ que confiere Ia mejor linealidad entre el nivel de transcripción y Ia proteína proporcionada debido a Ia baja estabilidad de su ARN codificante (Cebolla et al., datos no publicados). Un fragmento EcoRI-H/ndIII con esta fusión de plC554 (Macián F. y cois. . 1994; 145(1): 17-24) fue insertado en los mismos sitios del vector pCAS, generando pMPO6 (FIG 1). Este plásmido contenía un único sitio de restricción EcoRI entre Ia iniciación de Ia transcripción (+1) y Ia secuencia Shine-Dalgamo (SD) para situar el atenuador nasF. La secuencia de 120 bp correspondiente al atenuador nasF fue amplificada como se describe arriba, digerida y clonada en pMPOδ una vez linearizado con EcoRl y defosforilado.
Los cebadores fueron diseñados tomando como referencia Ia secuencia descrita por Lin y colaboradores (número de acceso genbank AF038047). El atenuador fue clonado en sitio EcoRl localizado aguas arriba de Ia SD del gen galK'r/lacZ. La orientación correcta de Ia inserción fue verificada mediante PCR. El plásmido resultante se denominó pMPOΘterNasR-
Finalmente, se intentó crear un vector de expresión flexible con estas propiedades, mediante Ia inserción de un sitio de clonación múltiple aguas abajo del atenuador nasF. Para ello, el plásmido pUC19 fue digerido con EcoRl Y Hinó\\\. El fragmento de 50 bp resultante conteniendo el sitio de clonación múltiple (polylinker) fue aislado e insertado en pMPOδterNasR y digerido con Sma\ y Hind\\\. El plásmido resultante (pCASterNasR ) permitió clonar aguas abajo el atenuador Pm-nasF , como se describe en Ia FIG. 1. Con estas construcciones, continuamos caracterizando las propiedades de inducción de pMPOΘterNasR. Algunas configuraciones diferentes mostradas por el sistema híbrido son ilustradas en Ia FIG. 2. Cuando ni XylS2 activo ni NasR están presente en el citoplasma, el atenuador nasF filtró Ia transcripción inespecífica (FIG.2A).
Cuando se añade salicilato al medio de cultivo, el producto XylS2 activo se une al Pm corriente arriba de Ia secuencia objetivo e induce una alta iniciación de transcripción. Sin embargo, el atenuador mantiene el control de Ia mayor parte de las transcripciones potenciales de lacZ (FIG. 2B). Si Ia expresión de nasR es inducida, a pesar de Ia ausencia de nitrato, Ia antiterminación residual incrementa los niveles de β-galactosidasa (FIG. 2C). El sistema es totalmente inducido sólo cuando todos los inductores son añadidos al medio de cultivo. Así, Ia actividad de NasR se incrementa, permitiendo Ia antiterminación y por Io tanto alcanzando niveles máximos (FIG. 2D). Estos dos circuitos superpuestos controlan tanto Ia iniciación de Ia transcripción como Ia terminación de Ia elongación prematura, permitiendo una puesta a punto de Ia expresión génica. Influencia del atenuador nasF sobre los niveles básales
Para cuantificar el efecto del atenuador nasF sobre los niveles de transcripción básales, pMPO6terNasR fue transformado en Escherichia coli CC118 4S2. El atenuador dependiente NasR disminuyó más de diez veces los niveles básales de actividad β-galactosidasa cuando comparamos con Ia construcción original (FIGs. 2A y 3A). Las cepas que contienen pMPO6 mostraron un promedio de 1.011 + 196 unidades Miller, mientras pMPOδterNasR exhibían 84 + 14 unidades Miller (n=3). Esto quiere decir que más del 90 % de Ia expresión fugada fue filtrada por el atenuador (FIG. 3B). Para proveer el sistema con Ia proteína antiterminadora, en paralelo a Ia generación de pMPOΘterNasR. se amplificó nasR (Genebank número de acceso L27824) y un amplicon de 1 ,3 kilobases fueron reproducidos en pBluescript (pMPO7) y después se digirió con H/ndIII-hecho romo y Sac\. El fragmento resultante fue subclonado en plZ1016 y digerido con Sma\ y Sacl. El plásmido resultante, pMPOδ, contenía el represor laclq y expresaba NasR bajo el control del promotor Ptac- Su origen de replicación compatible con el replicón CoIEI permitió Ia coexistencia tanto del vector de expresión como de este plásmido modulador. El promotor Pfac nos permitió estudiar Ia contribución de cada parámetro en Ia inducción de lacZ. Cuando pMPOδ fue co-transformado junto con pMPOΘterNasR los niveles básales de Ia actividad de β-galactosidasa se incrementaron hasta 310 + 35 U. M., probablemente debido a Ia actividad antiterminadora residual controlada por Ia expresión de NasR por Pfac (FIG. 2B). Con esta configuración, Ia capacidad de filtración del sistema fue reducida desde 90% hasta 35%. Cuando los niveles enzimáticos fueron ensayados en el cultivo en LB 0,2 g/L nitrato, los niveles básales incrementaron otra vez hasta 499 + 125 U. M. ya que Ia antiterminación mostrada por NasR fue activada (FIG. 2C). Si se induce Ia expresión de nasR por adícción de IPTG 1mM al medio de cultivo, los niveles básales aumentan otra vez hasta 703 + 30 U. M. (FIG. 3A). La presencia de nitrato junto con IPTG pudo recuperar Ia actividad basal casi hasta los niveles sin terminador (897 + 34 vs 1.011 + 196 U. M.) ya que Ia antiterminación debió ocurrir con total eficacia (FIG. 2D). Observamos que el sistema de atenuación localizado en Ia expresión del vector multicopia reprodujo Ia regulación antes descrita cuando fueron generados rangos de transcripción bajos. Capacidad de control de Ia expresión obtenida usando combinaciones de Ia expresión de NasR y activación de nahR/Psgi-xylS2.
Se pretendía probar si Ia regulación de Ia expresión génica podría ser reproducida cuando los rangos máximos de transcripción eran alcanzados desde el promotor Pm.
En ausencia total de NasR (pMPO6terNasR, plZ1016), el sistema totalmente inducido presentó 2,45x104 U. M. (292 veces) (FIG. 4). Con esta configuración, el rango máximo de inducción del sistema no fue completamente alcanzado (16% del control inducido libre de atenuador) dado que Ia antiterminación no fue activada. Este resultado también indica Ia falta de una capacidad absoluta de terminación del atenuador nasF sobre Ia ARN polimerasa acompañada por Ia actividad máxima de XylS2 sobre el promotor Pm. Sin embargo, los niveles básales alcanzados fueron mínimos, por Io que este circuito puede ser útil especialmente cuando es deseable comenzar Ia ventana de expresión a un bajo nivel. Cuando pMPO8 estaba presente, los niveles básales de NasR inactivo producidos por el promotor Pfac fueron insuficientes para permitir al sistema de expresión en cascada alcanzar niveles superiores a 2,35x104 U. M. Sin embargo, cuando se activó NasR con nitrato, los niveles inducidos se doblaron (desde 2,35x104 hasta 5,11x104 U. M.). Los rangos de amplificación en estas condiciones obviamente dependió de Ia adicción de nitrato. Solamente con salicilato, los niveles de β- galactosidasa se incrementaron 76 veces, mientras que cuando se suplemento Ia inducción con nitrato junto con salicilato, los rangos de amplificación alcanzaron ¡n incremento de 164 veces .
El NasR activo residual fue insuficiente para permitir Ia potencial expresión completa obtenida con el promotor Pm libre de atenuador. Cuando Ia producción de NasR se aumentó añadiendo 1 mM de IPTG, incluso sin nitrato, se obtuvo 8,57x104 U. M. (60% del nivel totalmente inducido). Es mas, cuando se añadió nitrato, salicilato e IPTG, los niveles inducidos de pMPO6rNasR fueron completamente alcanzados (1 ,47x105 U. M.) y no pudo detectarse diferencias con pMPO6 (1 ,45x105 U.M.).
De modo que se consiguió mejorar Ia capacidad de expresión de 150 a 480 veces cuando se compara con el promotor Pm libre de terminador (FIG. 4). Cuando pMPO8 estaba presente, los niveles básales fueron reducidos ya que los cultivos eran deficientes en nitrato. Utilizando diferentes condiciones, se consiguió alcanzar un amplio rango de niveles de inducción por combinación de IPTG, salicilato y nitrato.
El escape desde el promotor Pfac generaba principalmente NasR, sin embargo evitó Ia completa actividad de terminación en ausencia de cualquier inductor. Así, dos desventajas condicionaron este circuito. Primero, el escape de promotor derivada del empleo de Ptac- Y el segundo, Ia necesidad de IPTG para Ia completa inducción del sistema, que puede no ser conveniente si Ia producción tiene que ser aumentada. Estos dos aspectos simultáneamente podrían ser solucionados si el sistema fuera diseñado incluyendo Ia expresión de NasR por uno de los promotores que conforman el circuito de amplificación en cascada.
Diseño de Ia expresión coordinada de nasR con el sistema en cascada.
En un intento de incrementar Ia capacidad de expresión del sistema regulador por el uso del atenuador nasF, se acopló Ia expresión del gen nasR a Ia expresión del activador transcripcional por el circuito en cascada. La expresión de NasR en condiciones no inducidas pueden ser minimizadas y co-expresadas junto con los otros elementos reguladores sobre Ia inducción.
El sistema de amplificación en cascada involucra a dos reguladores: NahR y XylS2, y sus promotores diana Psa/ y Pm respectivamente. Se colocó nasR bajo el control del promotor Psa/, de modo que se sincronizó Ia co-expresión de XylS2 y Ia antiterminación tras Ia adicción de salicilato. Para ello, se cambió el fragmento Nco\-Sal\ conteniendo /aclq-Pfac de pMPO9 y se sustituyó por el promotor Psaι, generando pMPO24. Una alternativa de pMPO24 se generó cambiando nasR por una fusión atenuador-nasR, pMPO25, en caso de que el nivel basal de Ia expresión de nasR fuese todavía significativo.
Transformamos tanto pMPO24 como pMPO25 junto con pMPO6terNasR en
CC1184S2 y se ensayaron los niveles básales y niveles activados. La baja actividad basal promotora de Psa! (pMPO24) condujo a niveles no inducidos en 81 + 10 U. M., indistinguibles de Ia configuración sin nasR (84 + 14 U.M.).
Como se esperaba, no se obtuvo ningún nivel basal por el uso de pMPO25, pues estos ya eran mínimos. Estas nuevas configuraciones presentaron los mayores rangos de inducción, cuando se indujeron con salicilato y nitrato, alcanzando 1 ,4x105 U. M. (FIG. 5). Por Io tanto, Ia co-expresión de nasR por Psaι llevó hasta 1.711 veces Ia inducción mostrada por un vector de expresión de alto número de copias (Tabla 2).
Tabla 2.
No inducido Inducido Rango de
CC118 4S2 pMPO6terNasR -
- NO3 + NO3 -NO3 + NO3 inducción
+ pIZ1016 84 + 14 89 ±9 24.511 +4.990 24.170 + 2.939 287 + ρMPO24 81 + 11 125 +49 108.333 ±2.387 138.641 ± 14.568 1.711 + pMPO25 75 ±2 90 ± 20 35.417 ±3253 63.616 ±973 848
oo
Por contra, este circuito parecía ser insuficiente para generar suficiente nasR para conseguir antiterminar totalmente ambos atenuadores localizados en pMPO25 y pMPOβterNasR- Esta característica permitió sin embargo un rango de inducción de 848 veces. Con estas configuraciones, se generó los niveles básales más bajos mientras se mantuvo el mayor rango de inducción. El particular perfil de expresión condicionado por pMPO24 (FIG. 6) nos permitió jugar con Ia máxima actividad de expresión equivalente al sistema de expresión libre de terminación (FIG. 5).

Claims

REIVINDICACIONES
1. Sistema de expresión de genes heterólogos, caracterizado porque comprende:
(i) una secuencia promotora de Ia transcripción;
(ii) un elemento atenuador que inhibe Ia elongación de Ia transcripción de genes heterólogos; y
(iii) al menos un gen heterólogo cuya expresión se quiere controlar.
2. Sistema de expresión según Ia reivindicación anterior, caracterizado porque el sistema de atenuación se puede contrarrestar o anular de manera controlada mediante Ia expresión de una proteína cuya actividad es inducible por una o varias moléculas efectoras.
3. Sistema de expresión según cualquiera de las reivindicaciones anteriores 1 a 2, caracterizado porque además comprende un gen que codifica a Ia proteína antiterminadora que puede evitar Ia inhibición de Ia elongación.
4. Sistema de expresión según Ia reivindicación anterior 3, caracterizado porque el promotor que inicia Ia transcripción de los genes heterólogos es activado por Ia misma molécula que activa Ia expresión de Ia proteína antiterminadora.
5. Sistema de expresión génica según cualquiera de las reivindicaciones anteriores 1 a 4, caracterizado porque comprende:
(i) una secuencia promotora de Ia transcripción;
(ii) Ia secuencia atenuadora del operón nasF de K. pneumoniae:
(iii) Ia secuencia del gen nasR de K. pneumoniae:
(iv) un sistema de expresión heterólogo para controlar Ia expresión del gen nasR de K. pneumoniae: y (v) un gen o genes heterólogos cuya expresión se quiere controlar.
6. Sistema de expresión génica según Ia reivindicación anterior 5, caracterizado porque el sistema de expresión heterólogo que controla Ia expresión del gen nasR de K. pneumoniae es el sistema de expresión en cascada nahR/Psaι-xylS2
7. Uso del sistema de expresión según cualquiera de las reivindicaciones 1 a 6, para Ia amplificación de Ia expresión de proteínas recombinantes, ARNs o apoliproteínas en bacterias.
8. Método de mejorar Ia capacidad de expresión de genes heterólogos en bacterias, caracterizado porque comprende las siguientes etapas:
(i) reducción de los niveles básales de expresión del gen o genes heterólogos, cuya expresión se quiere controlar, mediante un sistema de atenuación;
(ii) activación de un sistema de expresión heterólogo que expresa una proteína que provoca Ia antiterminación del sistema de atenuación, al tiempo que activa el promotor de Ia transcripción del gen o genes heterólogos cuya expresión se quiere controlar.
9. Uso de un sistema de atenuación para mejorar Ia capacidad de expresión de un sistema de expresión reduciendo los niveles básales de expresión de Ia proteína heteróloga.
10. El uso de acuerdo con Ia reivindicación anterior 9, caracterizado porque el sistema de atenuación se puede antiterminar mediante una proteína cuya actividad es inducible por una molécula efectora que, o bien actúa directamente sobre dicha proteína, o bien sobre el nivel intracelular de dicha proteína.
11. El uso de acuerdo con cualquiera de las reivindicaciones anteriores 9 a 10, caracterizado porque el sistema de atenuación contiene Ia secuencia atenuadora del operón nasF de K. pneumoniae.
12. El uso de acuerdo con cualquiera de las reivindicaciones anteriores 9 a 11 , caracterizado porque el sistema de atenuación contiene Ia secuencia del gen nasR de Klebsiella, bajo el control de un sistema de expresión heterólogo, para controlar Ia actividad atenuador de nasF de Klebsiella.
13. Vectores de expresión de genes heterólogos caracterizados porque contienen una secuencia promotora de Ia transcripción, un elemento atenuador de Ia transcripción y un gen o genes heterólogos cuya expresión se quiere controlar.
14. Vectores de acuerdo con Ia reivindicación anterior 13, caracterizados porque además comprenden un gen que codifica a una proteína antiterminadora que puede evitar Ia inhibición de Ia elongación.
15. Vectores de acuerdo con cualquiera de las reivindicaciones anteriores 13 a 14, caracterizados porque además comprenden un sistema de expresión que induce Ia producción de dicha proteína antiterminadora.
16. Vectores de acuerdo con cualquiera de las reivindicaciones anteriores 13 a 15, caracterizados porque Ia secuencia atenuadora es Ia secuencia del operón nasF de K. pneumoniae.
17. Vectores de acuerdo con cualquiera de las reivindicaciones anteriores 13 a 16, caracterizados porque el gen que codifica Ia proteína antiterminadora es el gen nasR de Klebsiella.
18. Vectores de acuerdo con cualquiera de las reivindicaciones anteriores 13 a 17, caracterizados porque el sistema de expresión que induce Ia producción de dicha proteína antiterminadora se induce por salicilato.
19. Vectores de acuerdo con cualquiera de las reivindicaciones anteriores 13 a 18, caracterizados porque el sistema de expresión que induce Ia producción de dicha proteína antiterminadora está compuesto por nahR o un derivado de xyIS.
PCT/ES2005/000541 2004-11-04 2005-10-11 Control de la expresión génica mediante el uso de un atenuador de la transcripción WO2006051127A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/667,007 US20080280355A1 (en) 2004-11-04 2005-10-11 Control of Gene Expression with the Use of a Transcription Attenuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200402650A ES2299284B1 (es) 2004-11-04 2004-11-04 Control de la expresion genica mediante el uso de un atenuador de la transcripcion.
ESP200402650 2004-11-04

Publications (1)

Publication Number Publication Date
WO2006051127A1 true WO2006051127A1 (es) 2006-05-18

Family

ID=36336233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000541 WO2006051127A1 (es) 2004-11-04 2005-10-11 Control de la expresión génica mediante el uso de un atenuador de la transcripción

Country Status (3)

Country Link
US (1) US20080280355A1 (es)
ES (1) ES2299284B1 (es)
WO (1) WO2006051127A1 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697398B2 (en) * 2010-03-01 2014-04-15 Dsm Ip Assets B.V. Compositions and methods for bacterial production of chondroitin
WO2012069668A1 (es) * 2010-11-22 2012-05-31 Universidad Pablo De Olavide Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas
ES2383078B1 (es) * 2010-11-22 2013-06-06 Universidad Pablo De Olavide Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas.
CN115895989B (zh) * 2022-08-05 2024-05-10 江苏寒武纪生物细胞科学有限公司 一株高产丁二酸的大肠杆菌及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0130074A1 (en) * 1983-06-27 1985-01-02 Genentech, Inc. Portable inducible control system, expression vectors containing them, microorganisms transformed with them, and their use in expressing exogenous protein
WO1997004110A1 (en) * 1995-07-14 1997-02-06 Somatogen, Inc. Methods for increasing protein expression
WO2000052179A2 (en) * 1999-03-03 2000-09-08 Genelabs Technologies, Inc. Dna binding compound-mediated molecular switch system
WO2000060103A2 (en) * 1999-04-01 2000-10-12 Monsanto Technology Llc Dna construct comprising a cyanophage of cyanobacteria promoter and its use
WO2000078976A1 (en) * 1999-06-22 2000-12-28 Consejo Superior De Investigaciones Cientificas Regulated expression of cloned genes using a cascade genetic circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7108400A (en) * 1999-09-03 2001-04-10 Salk Institute For Biological Studies, The Modulation of gene expression by modulating histone acetylation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0130074A1 (en) * 1983-06-27 1985-01-02 Genentech, Inc. Portable inducible control system, expression vectors containing them, microorganisms transformed with them, and their use in expressing exogenous protein
WO1997004110A1 (en) * 1995-07-14 1997-02-06 Somatogen, Inc. Methods for increasing protein expression
WO2000052179A2 (en) * 1999-03-03 2000-09-08 Genelabs Technologies, Inc. Dna binding compound-mediated molecular switch system
WO2000060103A2 (en) * 1999-04-01 2000-10-12 Monsanto Technology Llc Dna construct comprising a cyanophage of cyanobacteria promoter and its use
WO2000078976A1 (en) * 1999-06-22 2000-12-28 Consejo Superior De Investigaciones Cientificas Regulated expression of cloned genes using a cascade genetic circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WU QT ET AL: "NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiellaoxytoca (pneumoniae) M5al", JOURNAL OF BACTERIOLOGY, vol. 180, no. 5, March 1998 (1998-03-01), pages 1311 - 1322 *
WU SQ ET AL: "General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al", JOURNAL OF BACTERIOLOGY, vol. 18, no. 23, 1999, pages 7274 - 7284 *

Also Published As

Publication number Publication date
US20080280355A1 (en) 2008-11-13
ES2299284A1 (es) 2008-05-16
ES2299284B1 (es) 2009-04-16

Similar Documents

Publication Publication Date Title
Light et al. Post‐transcriptional control of expression of the repA gene of plasmid R1 mediated by a small RNA molecule.
US9290769B2 (en) Nitrogen fixation gene island suitable for expressing in prokaryotic and eukaryotic systems
Dunn et al. New rfp-and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ
WO1987005932A1 (en) Biological containment
US4806471A (en) Plasmids with conditional uncontrolled replication behavior
Miyazaki et al. A new large-DNA-fragment delivery system based on integrase activity from an integrative and conjugative element
Kesik-Brodacka et al. A novel system for stable, high-level expression from the T7 promoter
WO2006051127A1 (es) Control de la expresión génica mediante el uso de un atenuador de la transcripción
ES2394668T3 (es) Vector que comprende promotor de manosa y promotor de manosa
Kang et al. One step engineering of T7-expression strains for protein production: increasing the host-range of the T7-expression system
EP0109150B1 (en) Plasmids with conditional uncontrolled replication behaviour
Garcia-Echauri et al. TETX: a novel nuclear selection marker for Chlamydomonas reinhardtii transformation
US9187752B2 (en) Hybrid portable origin of replication plasmids
Zhao et al. The HipAB Toxin–Antitoxin System Stabilizes a Composite Genomic Island in Shewanella putrefaciens CN-32
WO2024088396A1 (zh) 一种fnr突变体及其在基因表达调控中的应用
ES2228541T3 (es) Expresion regulada de genes clonados usando un ciclo genetico en cascada.
CN110592080B (zh) 优化的麦芽糖启动子突变体及其应用
Bartosik et al. Convenient broad-host-range unstable vectors for studying stabilization cassettes in diverse bacteria
Luke et al. Development of antibiotic-free selection system for safer DNA vaccination
PL216037B1 (pl) Kaseta ekspresyjna, zastosowanie kasety ekspresyjnej, wektor, komórka gospodarza oraz sposób otrzymywania polipeptydu
Miura et al. Actinophage R4 integrase‐based site‐specific chromosomal integration of non‐replicative closed circular DNA
Lien et al. Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system
CN105132349A (zh) 一种重组细胞筛选系统及其构建方法
Chao et al. Coupling the T7 A1 promoter to the runaway‐replication vector as an efficient method for stringent control and high‐level expression of lacZ
WO2007031742A2 (en) Products and methods relating to the use of the endoribonuclease kid/pemk

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05802901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11667007

Country of ref document: US