WO2012069668A1 - Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas - Google Patents

Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas Download PDF

Info

Publication number
WO2012069668A1
WO2012069668A1 PCT/ES2010/070761 ES2010070761W WO2012069668A1 WO 2012069668 A1 WO2012069668 A1 WO 2012069668A1 ES 2010070761 W ES2010070761 W ES 2010070761W WO 2012069668 A1 WO2012069668 A1 WO 2012069668A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
vector
promoter
sequence
gene
Prior art date
Application number
PCT/ES2010/070761
Other languages
English (en)
French (fr)
Inventor
Laura TERRÓN GONZÁLEZ
Cristina LIMÓN MORTES
Eduardo Santero Santurino
Original Assignee
Universidad Pablo De Olavide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Pablo De Olavide filed Critical Universidad Pablo De Olavide
Priority to PCT/ES2010/070761 priority Critical patent/WO2012069668A1/es
Publication of WO2012069668A1 publication Critical patent/WO2012069668A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Definitions

  • the present invention is directed to the isolation of genes that code for functions or activities of interest.
  • the invention relates to the areas of microbial genetics and recombinant DNA technology. More specifically, the invention relates to the combination of elements of different phage and bacterial regulatory circuits to construct specialized vectors and strains for use in the functional analysis of metagenomic libraries.
  • Functional metagenomics or function-directed metagenomic analysis offers the possibility of discovering new proteins with known functions, new proteins with novel functions, known proteins with unique functions and novel natural products that have useful activities in medicine, agriculture or industry.
  • the function-based analysis begins with a comprehensive examination to identify clones that express a desired trait, followed by the characterization of the active clones by sequence and biochemical analysis. Success requires the faithful expression of the gene or genes of interest and the secretion of the gene product, if the test or test requires it to be extracellular.
  • Metagenomic libraries can be analyzed to determine novel routes and genes with sequence-based techniques or through analysis, which involve the examination of the activity, of the expression of novel phenotypic traits in surrogate hosts.
  • the advantage of such functional examination approaches is that they can detect activities that originate from genes whose functions cannot be predicted by bioinformatic analysis of DNA or protein sequences.
  • the identification of novel activities by functional examination depends on the satisfactory expression of the cloned genes.
  • the significant limitation is that many genes, perhaps most, will not be expressed in any particular host bacteria selected for cloning. Even though novel activities have been expressed using E. coli as a host, there is an obvious potential advantage of increasing the possibilities of metagenomic gene expression in bacterial hosts to detect additional expression capabilities.
  • the most common vectors used to build metagenomic libraries are based on the sexual factor F of E. coli, which can stably maintain large DNA fragments. These vectors can be fossil-like vectors, which can be packaged in lambda phage heads, or BAC (artificial bacterial chromosomes) that house and maintain even larger DNA fragments.
  • the expression of metagenomic genes in this class of libraries is based on their own capacity for expression in the bacterial host.
  • the pCCI FOS vector is one of the most common fossil type vectors, used to build metagenomic libraries (almost 300 publications used this vector in the last 5 years). It can hold approximately 40 kb of insert DNA, which is effectively packaged in lambda particles.
  • the vector houses an additional replicon that provides a larger number of copies that can be activated by growing bacteria with arabinose. This is very convenient to amplify the function or activity of interest, which facilitates its detection if the coding gene is expressed in E. coli.
  • the inventors have developed expression systems that, surprisingly, offer the possibility of identifying genes of interest that do not express themselves in the bacteria that house the metagenomic library, thus allowing the detection of the functions they encode, which otherwise they would remain silenced and undetected. This results in a greater number of metagenomic clones that present a function of particular interest to a given metagenomic library.
  • An additional advantage, provided by the gfp lacking a promoter in the vector, is that unknown regulatory systems that respond to any signal that can act in the cells of the invention can be identified using SIGEX technology (Uchiyama et al., 2005 Nat. Biotechnol. 23: 88-93). Therefore, the present invention facilitates metagenomic gene expression allowing the identification of gene functions on the one hand and the additional use of an indicator gene that allows the detection of metagenomic regulatory systems that can act in the host strain.
  • the invention relates to vector 1 for the cloning of DNA in a host cell, wherein said cloning vector is an artificial vector that replicates autonomously inside said host cell, comprising:
  • the invention relates to vector 2 for the cloning of DNA in a host cell, wherein said cloning vector is an artificial vector that replicates autonomously inside said host cell, comprising:
  • the invention relates to vector 3 for the cloning of DNA in a host cell, wherein said cloning vector is an artificial vector that replicates autonomously inside said host cell, comprising:
  • the invention relates to the host cell 1 which comprises a DNA fragment inserted in its genome wherein said fragment comprises
  • the invention relates to host cell 2 comprising: a DNA fragment inserted in its genome where said fragment comprises
  • promoter is operatively linked to sequence iii); and (b) vector 1 of the invention or vector 3 of the invention, wherein said vector further contains a metagenomic DNA at the cloning site of metagenomic DNA operably linked to the T7 promoter and wherein said cell allows DNA transcription metagenomic from the T7 promoter present in said vector.
  • the invention relates to the host cell 3 comprising a DNA fragment inserted in its genome wherein said fragment comprises
  • promoter ii) is operatively linked to sequence i
  • promoter iii) is operably linked to sequence iv) and where sequences i) and iv) are transcribed divergently.
  • the invention relates to the host cell 4 comprising:
  • promoter ii) is operatively linked to sequence i
  • promoter iii) is operably linked to sequence iv) and where sequences i) and iv) are transcribed divergently;
  • vector 2 of the invention or vector 3 of the invention wherein said vector further contains a metagenomic DNA at the site of DNA cloning metagenomically operatively linked to the psal promoter and wherein said cell allows transcription of the metagenomic DNA from the psal promoter present in said vector.
  • the invention also relates to a method for the heterologous expression of metagenomic libraries and to analyze the function of genes comprising the use of the vectors and cells of the invention.
  • the invention relates to a method of DNA cloning comprising:
  • the invention relates to a method for preparing a library of DNA clones comprising:
  • FIG. 1 Phosmides derived from pCCIFOS.
  • pMP0571 a DNA transfer origin by conjugation (oriT) and a psal promoter were added to pCClFOS-Ceul followed by the site of use of the antiterminator protein N (nut site) of the lambda phage adjacent to the left side of the cloning site of metagenomic DNA (Eco72l).
  • pMP0579 a gfp gene lacking a promoter adjacent to the right side of the Ecolll site was added to pMP0571.
  • FIG. 1 Strains derived from E. coli strain EPI300 TM -T1 R.
  • MP0553 A strain that produces T7 RNA polymerase.
  • MP0554 A strain that produces anti-terminator protein N and NahR (the activator of the psal promoter).
  • MP0555 A strain that produces the truncated antiterminator protein N and NahR.
  • Figure 3 Expression of the gfp gene in strain EPI300 TM -T1 and MP0553 (the strain that produces T7 RNA polymerase), which house the pMP0579 phosphide, without induction and adding arabinose (increases the number of copies of the fossid in these strains) .
  • the figure also shows the level of GFP expression of strain MP0553 that hosts pMPO580 (similar to pMP0579 but carries a transcriptional terminator between the T7 promoter and the gfp gene).
  • FIG. 4 Expression of the gfp gene in strain MP0554 (the strain that produces NahR and the N protein) and MP0555 (similar to MP0554 but with a displacement of the frame in the N gene), which house the pMP0579 fossil.
  • FIG. 6 The 6 different restriction patterns of the phosphides that confer carbenicillin resistance isolated from the metagenomic library.
  • the fosmids were digested with Bam I, which makes a cut in the fossid at both ends of the insert (the approximately 9.5 kb band is the fossil without insert).
  • the authors of the present invention have developed vectors and cells that allow to express the DNA of a metagenomic library. Specifically, as observed in Example 7 of the present invention, the vectors and cells of the invention allow to identify the gene function of a metagenomic library.
  • the invention relates to a vector, hereinafter vector of the invention, selected from vectors identified as vectors 1, 2 and 3 for the cloning of DNA into a host cell described below.
  • the vector of the invention is a vector 1 for the cloning of DNA in a host cell, wherein said cloning vector is an artificial vector that autonomously replicates inside said host cell, which comprises :
  • the vector of the invention is vector 2 for the cloning of DNA in a host cell, wherein said cloning vector is an artificial vector that autonomously replicates inside said host cell, comprising:
  • the vector of the invention is vector 3 for the cloning of DNA in a host cell, wherein said cloning vector is an artificial vector that autonomously replicates inside said host cell, comprising:
  • vector refers to a replicative DNA construct used to express DNA.
  • the vectors of the invention are phosphid type.
  • phosphide refers to a phagemid vector system suitable for cloning genomic inserts of approximately 40 kilobases (kb).
  • the vectors of the invention are capable of cloning inserts of 15, 20, 30 or 40 kb or even more. More particularly, the vector is capable of cloning long inserts.
  • insert refers to the DNA to be cloned.
  • long inserts refers to inserts of at least 30 kb more particularly 40, 50, 60 or 70 kb.
  • artificial vector includes any artificial construction capable of self-replication, capable of including long inserts and capable of being stably maintained in a host cell.
  • the vector of the invention contains a large number of functions and features of the pCCIFOS TM vector (EPICENTRE) among them for, parB, parC, repe, oriV, ori2.
  • autonomous replication refers to said vector not being integrated into the host cell chromosome. In particular, it is not integrated into any host cell where said vector is introduced or to which it is transferred. Said vector is capable of self replicating in the host cell, whereby the vector remains present when the bacteria grows and divides. More particularly, the vector is capable of being stably maintained in the host cell. Thus, the vector must be introduced into the host cell. and maintained in said cell during its cultivation in repeated generations (in at least 2, 3, 4, 5, 6 or 10 generations) or more generally during the growth of the host cell.
  • the vectors of the invention can be obtained by using techniques well known in the prior art [Sambrook et al., "Molecular Cloning, a Laboratory Manual", 2nd ed., Cold Spring Harbor Laboratory Press, NY, 1989 Vol 1-3].
  • the vectors may also contain one or more selectable marker sequences suitable for use in the identification of cells that have been transformed or not transfected with the vector.
  • Markers include, for example, genes that code for proteins that increase or decrease either their resistance or their sensitivity to antibiotics or other compounds (for example hygromycin, kanamycin, etc.), genes that code for enzymes whose activities can be detected by conventional assays known in the art (e.g., ⁇ -galactosidase, luciferase, etc.) and genes that visibly affect the phenotype of plaques, colonies, hosts or transformed or transfected cells such as various fluorescent proteins (by example green fluorescent protein, GFP, red fluorescent protein, dsRED).
  • the vectors of the present invention may incorporate a selection marker that is not an antibiotic, for example, genes encoding a catabolic enzyme that allows growth in a medium containing a substrate of said catabolic enzyme as a carbon source.
  • a selection marker that is not an antibiotic
  • An example of such a catabolic enzyme includes, but is not limited to enzymes encoding the uptake of lactose and beta-galactosidase.
  • Other selection markers that provide a metabolic advantage include, but are not limited to, enzymes for the use of galactose, sucrose, trehalose and xylose.
  • transfer origin refers to a DNA sequence necessary for the transfer of a bacterial plasmid from a host bacterium to a recipient during the bacterial conjugation process.
  • promoter as used in the present invention, is meant the region of DNA that controls the initiation of transcription of a DNA sequence and therefore is the binding site of RNA polymerase. Said promoter is composed of a specific DNA sequence located just where the starting point of DNA transcription is located and contains the information necessary to activate or deactivate the gene it regulates.
  • T7 promoter refers to the promoter with sequence (SEQ ID NO: 35)
  • Adjustable promoter means a promoter whose operation may be altered in the presence or absence of certain agents.
  • the psal adjustable promoter refers to the sequence promoter SEQ ID NO: 24 that responds to salicylate, and wherein said sequence comprises the NahR activator recognition site.
  • sequence coding for the nut-C site refers to the region with DNA sequence (SEQ ID NO: 25) that allows the operation of the lambda phage anti-termination system mediated by the anti-terminator protein N, encoded by the N gene (SEQ ID NO: 34), wherein the coding region is comprised between nucleotides 168 and 569.
  • cloning site refers to the region of DNA that contains unique restriction enzyme cleavage sites for the cloning of metagenomic DNA.
  • cloning or “cloning” as used herein refers to the technology that allows to isolate and propagate sequences of interest.
  • genomic DNA refers to the nucleotide sequences that form the meta-library.
  • “metagenomic library” refers to the set of clones of DNA fragments from a sample.
  • Said DNA may come from a single source or a mixture of sources, for example from a single sample or a mixture of samples.
  • the origin of this sample can be animal, vegetable, etc.
  • Preferably said sample is of environmental origin.
  • the vectors of the invention further comprise a metagenomic DNA sequence at the cloning site of operably linked metagenomic DNA.
  • operably linked means that a promoter is in a functional location and correct orientation in relation to the nucleic acid sequence to control the transcriptional start and / or expression of that sequence, that is to say under the control of said promoter.
  • the DNA transfer origin of the vectors of the invention is the oriT of plasmid RP4 (SEQ ID NO: 23).
  • the vectors of the invention further comprise a reporter gene.
  • reporter gene as used in the present invention is meant a gene whose product gives rise to a signal that can be easily measured or detected.
  • the reporter gene of the vectors of the invention is the gfp gene.
  • Said gfp sequence may also contain the Shine Dalgarno of gene-10 of phage T7 (SEQ ID NO: 26).
  • the invention relates to a host cell, hereinafter host cell of the invention selected from host cells identified as host cell 1, 2, 3 and 4.
  • the host cell of the invention is a host cell 1 comprising a DNA fragment inserted into its genome wherein said fragment comprises
  • the invention relates to a host cell 2, which comprises
  • a vector 1 or a vector 3 of the invention wherein said vector further contains a metagenomic DNA at the cloning site of metagenomic DNA operably linked to the T7 promoter and wherein said cell allows transcription of metagenomic DNA from the promoter T7 present in said vector.
  • Said host cell 1 and 2 has reduced the level of expression of the T7 RNA polymerase gene.
  • said host cell 1 and 2 lacks the transcriptional repressor Lacl.
  • cell that has reduced the expression level of the phage T7 RNA polymerase gene refers to a cell in which the expression level of the phage T7 RNA polymerase gene is decreased by at least 1.5%, at minus 2%, at least 4%, at least 8% and more preferably at least 10% or even more with respect to the expression level of the wild cell.
  • lacUV5 promoter refers to the promoter with sequence SEQ ID NO: 29.
  • sequence SEQ ID NO: 29 refers to the promoter with sequence SEQ ID NO: 29.
  • sequence SEQ ID NO: 30 refers to a nucleotide sequence that reduces the basic expression levels of a gene.
  • the expression levels of a gene are considered to be reduced when the levels of said expression with respect to baseline expression are decreased by at least 1.5%, at least 2%>, at least one 5%>, at least 10%>, at least 15%, at least 20%), at least 25%, at least 30%, at least 35%, at least 40%, at least 45% or at least 50%, at least 55%>, at least 60%, at least 65%, at least 70% or, at least 75%>, at least 80%: at least 85%>, at least 90%, at least 95% or, at least 100%, at least 1 10%, at least 120%, at least 130%, at least 140% or, at least 150% or more.
  • phage T7 gene-1 in a particular embodiment (SEQ ID NO: 31), as used in the present invention it refers to the gene encoding T7 RNA polymerase, wherein the coding region is comprised between nucleotides 24 and 2675 of said sequence.
  • the host cell is a host cell 3 comprising
  • promoter ii) is operatively linked to sequence i
  • promoter iii) is operably linked to sequence iv) and where sequences i) and iv) are transcribed divergently.
  • the host cell is a host cell 4 comprising
  • promoter ii) a sequence of the phage lambda N gene wherein promoter ii) is operatively linked to sequence i), promoter iii) is operably linked to sequence iv) and where sequences i) and iv) are transcribed divergently, and
  • a vector 2 or a vector 3 of the invention wherein said vector further contains a metagenomic DNA at the cloning site of metagenomic DNA operably linked to the promoter and wherein said cell allows transcription of the metagenomic DNA from the psal promoter present in said vector
  • nahR gene refers to the sequence gene SEQ ID NO: 32 that encodes the psal promoter activator and activates transcription from the psal promoter in the presence of the inducing salicylate.
  • phage lambda N gene refers to the sequence SEQ ID NO: 34 which codes for the antiterminator protein N so that in the presence of said protein, transcription initiated from psal can continue insensitive to the possible terminating signals that can be found in the metagenomic DNA, thanks to the antitermination mediated by the N protein.
  • the coding region of said gene is between nucleotides 168 and 569 of SEQ ID NO: 34.
  • the host cells of the invention are bacterial cells.
  • the host cells of the invention may contain multiple copies of the vectors of the invention after being cultured in the presence of arabinose, for example by adding to the culture medium of 1 mM arabinose for 6 hours. In this way, the ability to detect the functions of the genes of the metagenomic library is improved.
  • the host cells of the invention that additionally comprise the vectors of the invention it is necessary to introduce one of the vectors of the invention that comprise the metagenomic DNA.
  • introduction can be carried out by various methods, for example by triparenteral conjugation as described in Figurski and Helinski, 1979 Proc. Nati Acad. Sci. USA. 76 (4): 1648-52 using the host cells of the invention as receptors, a carrier strain of said vectors, for example EPI300 TM -T1 R and an auxiliary strain, for example DH5a carrying the auxiliary plasmid pRK2013.
  • the host cells of the invention include a wide variety of Gram negative and Gram positive bacteria.
  • Suitable gram negative bacteria comprise, among others, the genus of enteric bacteria, Escherichia sp, Salmonella sp, Klebsiella sp, Proteus sp and Yersinia and non-enteric including Azotobacter sp, Pseudomonas sp, Xanthomonas sp.
  • said bacterial cells belong to the species Escherichia coli.
  • a strain of E. coli suitable for carrying out the present invention is strain F-mcrA A (mrr-hsdRMS-mcrBC) (StrR) O80dlacZAM15 AlacX74 recAl endAl araD139 A (ara, leu) 7697 galU galK ⁇ -rpsL nupG trfA tonA dhfr].
  • the invention in another aspect relates to a method for the heterologous expression of metagenomic libraries and to analyze the function of genes comprising the use of vectors and host cells of the invention.
  • heterologous expression refers to the expression of a sequence that does not belong to the recipient organism but to a different one.
  • the invention relates to a method of DNA cloning comprising:
  • the invention relates to a method for preparing a library of DNA clones comprising:
  • the DNA extractions necessary for cloning were performed with the NucleoSpin ® Plasmid (Macherey-Nagel) plasmid DNA extraction kit following the manufacturer's instructions When the strain was EPI300-T1 to the inoculums for the extraction of the genetic material, lmM arabinose was added to increase the number of copies of the fossid and thus obtain more DNA.
  • Klenow or T4 DNA Polymerase was used (according to each case, indicated in the text, both by Roche) and following the manufacturer's instructions.
  • PCR was carried out in a final volume of 50 ⁇ , using about 3 ng of the template DNA, and final concentrations of both primers 1 ⁇ , dNTPs at 200 ⁇ and MgCl 2 at 3 mM.
  • the enzyme used was Expand High Fidelity PCR System (Roche). An initial denaturation of 5 min at 94 ° C was followed by 35 cycles of amplification (30 s at 94 ° C, 30 s at 55 ° C and 30 s at 72 ° C), and a final extension of 7 min at 72 ° C.
  • the main objective was to ensure that the meta-library genes could be expressed heterologously from the vector used to construct the meta-library. This would allow detecting functions of interest in meta-libraries much more frequently than if the product that is now being marketed, the pCCIFOS TM, was used.
  • the vector is not transmissible by conjugation and, therefore, the meta-library constructed with this vector cannot be transferred to other bacterial strains to detect activities.
  • the genes must be transcribed from their own promoters, so if a particular promoter is not expressed in E. coli, the function of the gene that is transcribed from that promoter cannot be detected.
  • a heterologous expression system has been incorporated that allows the transcription of the cloned metagenomic DNA into the vector from one end. It consists of the incorporation of an adjustable Psal promoter that includes the NahR activator recognition site (SEQ ID NO: 24), from which transcription can be induced in response to the presence of the salicylate inducer, in a suitable strain containing the regulation system of this promoter (see below).
  • an adjustable Psal promoter that includes the NahR activator recognition site (SEQ ID NO: 24), from which transcription can be induced in response to the presence of the salicylate inducer, in a suitable strain containing the regulation system of this promoter (see below).
  • a nutL site (SEQ ID NO: 25) has been cloned that allows the operation of the lambda phage anti-termination system mediated by the antiterminator protein N.
  • transcription initiated from psal can remain insensitive to the possible terminator signals that can be found in the metagenomic DNA, thanks to antitermination mediated by protein N.
  • One of the variants of the modified vector has after the cloning site of the metagenomic DNA a reporter gene encoding GFP the green fluorescent protein, which includes the Shine Dalgarno of the gene-10 of phage T7 (SEQ ID NO: 26).
  • This will allow to study the behavior of the vector to validate the improvements made.
  • it will allow to detect regulation systems that may exist in the built meta-libraries, which respond to a particular molecule. Being able to identify unknown regulatory systems present in meta-libraries and that respond to certain molecules of interest, can be very useful for developing biosensors that detect that molecule.
  • a DNA transfer origin was cloned by conjugation, in particular the oriT of plasmid RP4 (SEQ ID NO: 23), into the unique Hpal site of pCCIFOS-Ceul, generating pMP0561.
  • OriT was amplified by polymerase chain reaction (PCR) from plasmid RP4 using primers On ' THpalFw (SEQ ID NO: 1) and On ' THpalRev (SEQ ID NO: 2) by introducing a Hpal restriction site at each end of the amplified DNA fragment.
  • PCR polymerase chain reaction
  • a psal promoter (SEQ ID NO: 24) was introduced followed by the nut L site (SEQ ID NO: 25) (site of use of N to the left) of the lambda phage.
  • the sequence containing these two elements was synthesized by recursive PCR (Prodromou and Pearl, 1992 Protein Eng. 5 (8): 827-9), using primers psalnutl (SEQ ID NO: 3), psalnutl (SEQ ID NO: 4 ), psalnut3 (SEQ ID NO: 5) and psalnut4 (SEQ ID NO: 6). This fragment was first cloned into the EcoRV site of the multiple cloning site of pBluescript II SK +.
  • the fragment of interest was then obtained by digesting with Xbal plus HindIII and cloned into the unique NarI site of pMP0561, giving rise to the vector called pMP0571.
  • a transformant that had the appropriate orientation of the psal-nut L fragment in relation to the cloning site of metagenomic DNA was selected and named as pMP0571 ( Figure 1).
  • a further modification to the pMP0571 fossil consisted of the addition of a promoter-lacking gfp gene with the Shine-Dalgarno of phage T7 gene-10 (SEQ ID NO: 26) near the cloning site of metagenomic DNA. To obtain this construction several stages were necessary.
  • part of the pCCIFOS-Ceul fossid containing the chloramphenicol resistance gene and part of redF was amplified using primers HindChlFw (SEQ ID NO: 7) and BstZredFRv (SEQ ID NO: 8) (fragment flanked by HindIII and Bstl 1071 sites) and this fragment was cloned into the EcoRV site of the multiple cloning site of pBluescript II SK + (intermediate plasmid 1).
  • the coding region of the gfp gene (SEQ ID NO: 27) was obtained from plasmid pMP0634 (Tovon-Gallardo et al., 2009 Microbial Biotechnology 2 (2 SPEC. ISS.): 262-273).
  • the gfp gene has an Eco72I site (the same as the cloning site for the metagenomic DNA in the phosphide), which was mutilated at an MluI site by overlapping PCR (Ho et al., 1989 Gene 77: 51-59) without changing the amino acid sequence of the coding gene.
  • the resulting gfp gene was amplified from plasmid pMP0634 using primers KpnISDpT77GFP (SEQ ID NO: 9), GFPMluIFwsolap (SEQ ID NO: 1 1), GFPMluIRvsolap (SEQ ID NO: 10) and GFPXbal-TFB-PCRsolap (SEQ ID NO: 12).
  • the 5 'end of the KpnISDpT77GFP primer contained the Shine-Dalgarno sequence of phage T7 gene-10 such that it was located during PCR at the correct distance in the 5' direction of the coding region of amplified gfp.
  • the PCR product was digested with the restriction enzymes Kpnl and Xbal (its restriction sites are at the ends of the fragment), its ends blunt with the T4 DNA polymerase and cloned between the two HindIII sites of the intermediate plasmid 1, near the chloramphenicol resistance gene.
  • the following construct was obtained in the pBluescript II SK + vector: Shine-Dalgarno of T7, gfp without Eco72I site, chloramphenicol resistant gene and part of redF (intermediate plasmid 2)
  • the strain MP0553 is a variant of EPI300 TM -T1 R that has integrated into its genome in the trg locus a DNA fragment that carries the lacUV5 promoter (SEQ ID NO: 29), nasF (SEQ ID NO: 30) and the gene -1 of phage T7 (SEQ ID NO: 31) and expressing at low level the RNA polymerase gene of phage T7.
  • This strain lacks the LacI transcriptional repressor so that transcription from placUV5 is constitutive. However, most of the transcription initiated in placUV5 ends in the nasF attenuator and only a small fraction transcribes the T7 gene 1.
  • This strain in addition to allowing to increase the number of copies of the plasmid, like its parent, has the p7 phage RNA polymerase in addition to its polymerase RNA and, therefore, in that bacterium the metagenomic DNA can be transcribed from the T7 promoter present in the vector T7 RNA polymerase is much faster than bacterial RNA polymerase and is insensitive to many of the bacterial transcription terminators, thus allowing transcription of metagenomic DNA.
  • the placUV5 promoter (SEQ ID NO: 29) was first obtained as an EcoRI-BamHI fragment from plasmid pNK736 (Simons et al., 1983 Cell 34 (2): 673- 82) and was cloned in pBluescript II SK + digested with Notl and BamHI, to construct pMP0556.
  • the nasF attenuator (SEQ ID NO: 30) was obtained from pMP027 flanked by the EcoRI sites (Royo et al., 2005 Nucleic Acids Research 33 (19): el69) and was cloned into pMP0556 digested with EcoRI, generating from that pMP0557 mode.
  • the gene coding for kanamycin resistance was amplified from pKD4 (Datsenko and Wanner, 2000 Proc. Nati. Acad. Sci. USA.
  • the gene coding for chloramphenicol resistance from pKD3 was amplified using the Sac-Pl (SEQ ID NO: 18) and Sac-P2 (SEQ ID NO: 19) primers and cloned into pGPl-2 (Tabor and Richardson, 1985 Proc. Nati. Acad. Sci. USA. 82: 1074-1078) digested with BamHI, after gene-1 (T7 RNA polymerase) (SEQ ID NO: 31), generating pMP0559.
  • the construction of interest was created in two parts because the entire construction was too large to be amplified by the same PCR reaction.
  • the first part of the construction in pMP0558, was amplified by PCR using primers trgEc-P12 (SEQ ID NO: 13) and trgEc-BSK2 (SEQ ID NO: 14). The 5 'ends of these primers are homologous to the limits of the genomic sequence to be replaced by the amplified construct.
  • the PCR product was digested with Dpnl and electroplated into strain EPI300 TM -T1 R containing pKD46 to integrate the first part of the construction into the trg locus (Datsenko and Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA 97 (12): 6640-5).
  • the PCR product was digested with Dpnl and electroporated into EPI300 TM -T1 R strain with the first part of the construct containing pKD46 to integrate the second part of the construct after the first (replacing the kanamycin resistance gene from pKD4) (Datsenko and Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97 (12): 6640-5).
  • chloramphenicol resistant gene was removed from the genome using pCP20 (Datsenko and Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97 (12): 6640-5).
  • Figure 2 shows a scheme of genomic integration in strain MP0553, which carries the lacUV5 promoter (SEQ ID NO: 29), nasF attenuator (SEQ ID NO: 30) and phage T7 gene-1 (SEQ ID NO: 31).
  • the orientation of this construct is the opposite of the orientation of the trg gene.
  • the strain MP0554 has integrated into its genome in the trg locus a DNA fragment that carries the nahR gene (SEQ ID NO: 32) and the pnah and psal promoters (SEQ ID NO: 33) that transcribe divergently, followed by the gene Lambda phage N (SEQ ID NO: 34).
  • NahR encodes the psal promoter activator and activates transcription from the psal promoter in presence of the inducing salicylate, thus inducing the production of the antiterminating protein N.
  • NahR activates transcription from the psal promoter present in the pMP0579 fossil and the N protein prevents the termination of the transcription that runs through the nut al site.
  • strain MP0554 To construct strain MP0554, the fragment containing the nahR gene (SEQ ID NO: 32) was obtained with its pnah promoter and the psal promoter (SEQ ID NO: 33) close to it but divergently transcribed, from the pCNB4 vector -S2 (Onion, A. et al, 2001 Nucleid Acids Research Vol. 29 No.3 759-766) by restriction with Notl and BamHI and was cloned into pBluescript II KS + digested with the same restriction enzymes, thus generating pMP0563.
  • the gene coding for chloramphenicol resistance was amplified from pKD3 (Datsenko and Wanner, 2000 Proc. Nati. Acad. Sci. USA.
  • PCR product was digested with the restriction enzymes Notl and KspI (their restriction sites are at the ends of the fragment) and cloned into pMP0564 partially digested with KspI and completely digested with Notl (in this way, the vector only lost one small fragment outside the construction of interest), thereby generating pMP0565, which has the N gene in the 3 'sense of psal and in the same orientation.
  • the construction was then amplified in pMP0565 by PCR using primers trgEc-BKS (SEQ ID NO: 16) and trgEc-Pl (SEQ ID NO: 17).
  • the 5 'ends of these primers are homologous to the limits of the genomic sequence to be replaced by the amplified construct.
  • the PCR product was digested with Dpnl and introduced by electroporation into strain EPI300 TM -T1 R containing pKD46 to integrate the construction into the trg locus (Datsenko and Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97 (12): 6640-5).
  • Figure 2 shows a scheme of genomic integration in strain MP0554, which carries the nahR gene (SEQ ID NO: 32), the psal promoter near it but transcribed divergently and the N gene of the lambda phage in the 3 'sense of psal.
  • the orientation of psal-genN is the opposite of that of the trg gene.
  • the thnB-6-thnC primer (SEQ ID NO: 22) was hybridized with itself by incubating it for 5 miraios at 85 ° C plus 30 miraios at room temperature and filled in the insert hybridized with Klenow to create a 14 bp insert.
  • This insert was cloned in HMP-digested pMP0565 to generate a frame shift in codon 60 of the N gene.
  • the resulting plasmid was pMP0575.
  • strain MP0555 was very similar to that of MP0554. The only difference was that the PCR template with the trgEc-BKS (SEQ ID NO: 16) and trgEc-Pl (SEQ ID NO: 17) primers was pMP0575 instead of pMP0565.
  • FIG. 2 A scheme of genomic integration in strain MP0555 is shown in Figure 2, which is similar to that in strain MP0554 but the N gene has a frame shift that makes it useless.
  • oriT in the modified vectors should allow an efficient transfer of the vectors between different strains of E. coli by conjugation.
  • triparental conjugations were performed overnight (Figurski and Helinski, 1979 Proc. Nati. Acad. Sci. USA. 76 (4): 1648-52) using EPI300 TM -T1 R which carried vectors such as the donor strain, spontaneous mutants resistant to rifampin (Rif) or nalidixic acid (Nal 1 ) derived from EPI300 TM -T1 R as the receiving strains and DH5a carrying the auxiliary plasmid pRK2013 as the auxiliary conjugation strain.
  • the conjugation frequencies were estimated as the ratio of transconjugant clones of the recipient strain (chloramphenicol + rifampicin-resistant or chloramphenicol + nalidixic acid-resistant clones) with respect to the total clones of the recipient strain (either rifampicin-resistant or nalidixic acid, depending on the recipient strain).
  • Vectors carrying oriT were transferred very effectively to the recipient strain (conjugation frequency greater than 10 "1 ) with a frequency similar or even greater than that of the well-known mobile plasmid pBBRl MCS-3 (conjugation frequency 10 " 1 ), while the plasmid pCCIFOS-Ceul could not be transferred by conjugation (conjugation frequency of ⁇ 10 "7 ).
  • the high conjugation frequency greater than 10%, would allow millions of independent clones to be transferred to the recipient strain in a conventional triparental conjugation, thus guaranteeing the transfer of each clone of metagenomic libraries that contain some hundreds of thousands of clones to the recipient strain, when the entire metagenomic library is used as a donor culture.
  • EXAMPLE 4 Transcription from the T7 promoter and from the psal promoter through a transcription terminator.
  • Transcription levels of the heterologous promoters present in the modified vectors in the vector pMP0579, which contains the gfp gene lacking a cloned promoter were tested in the 3 'direction of the metagenomic cloning site (see Figure 1) and by both can be used as an indicator gene.
  • the fluorescence levels of the different strains that house the plasmid will indicate the magnitude of the transcription that runs through the cloning site of metagenomic DNA to the gfp gene.
  • plasmid pMPO580 was constructed. This plasmid is derived from pMP0579 and has a 2.5 kb DNA fragment that carries the transcription terminator of the thnL gene of the TFA strain of Sphingomonas macrogolitabida (López-Sánchez et al, 2009 Appl. Environ. Microbiol. 76 (1 ): 110-8) cloned into the Eco72I site.
  • strain MP0555 was constructed. This strain is isogenic with MP0554, the only difference being that MP0555 carried a frame shift in codon 60 of the N gene. Therefore, transcriptional activation by NahR should be maintained in this strain while antitermination of transcription by protein N It should disappear.
  • cultures in LB of MP0554 Rif and MP0554 NaF that carried the plasmid pMP0579 were grown and subsequently diluted in two similar cultures of LB containing 1 mM arabinose to increase the number of copies of the plasmid.
  • the mixed cultures were subjected to flow cytometry and the bacteria expressing high levels of GFP were separated and plated on LB plate with chloramphenicol for further analysis.
  • plasmid pMP0579 was used to build a metagenomic library from a coast contaminated with crude oil in Punta San Garc ⁇ a, Cádiz, Spain, due to a oil spill from a ship.
  • the DNA of the sample was isolated as described above. Bacteria were extracted by direct addition of rupture buffer (0.2 M NaCl, 50 mM Tris-HCl pH 8.0) to the sample and mixing overnight with stirring. Then, it was centrifuged at low speed (400 g for 3 minutes) and the supernatant was poured onto a solution of the Nycodenz resin (1.3 g ml-1). The centrifugation in a gradient of the Nycodenz resin (Axis-Shield) allowed to enrich the microbial biomass. Centrifugation was carried out at 10,000 g x for 40 minutes at 4 ° C. A whitish band containing bacterial cells could be seen on the contact surface between the Nycodenz resin and the aqueous phase.
  • rupture buffer 0.2 M NaCl, 50 mM Tris-HCl pH 8.0
  • This band was recovered and mixed with phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • the cells were pelleted by centrifugation at 10,000 g for 20 minutes and resuspended in TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0).
  • the DNA was extracted with the GENOME DNA kit (MP Biomedicals). Using this method, 24 ⁇ g of DNA was obtained from 160 g of soil, with an average size of approximately 40 kb.
  • pMP0579 To prepare pMP0579, it was linearized by restriction with the enzyme Pmll (New England Biolabs, isosquizomer of Eco72I), dephosphorylated with alkaline prawn phosphatase (USB) and concentrated with a centrifugal filtration device (Microcon, Millipore).
  • Pmll New England Biolabs, isosquizomer of Eco72I
  • USB alkaline prawn phosphatase
  • Microcon Millipore
  • the constructed metagenomic library comprised approximately 2 Gigabases distributed in approximately 54,000 different clones and was maintained in strain EPI300 TM - T1 R.
  • the metagenomic library was transferred by conjugation with spontaneous mutant derivatives resistant to nalidixic acid and rifampicin from the EPI300 TM -T1 R , MP0553 and MP0554 strains.
  • ⁇ -lactam antibiotics are among the most frequently prescribed antibiotics for humans and livestock, generating a powerful selection pressure for the genes that code for resistance elements in environments close to human activity. It is also predicted that ⁇ -lactamases are abundant in soils even in the absence of anthropogenic selection pressure, because the soil is rich in microorganisms that produce ⁇ -lactam antibiotics, such as penicillins and cephalosporins, and ⁇ - have already been detected Lactamases in metagenomic libraries from the human intestine and from environmental reserves.
  • Triparental conjugations were also seeded on LB plates with nalidixic acid / rifampicin to select the recipient strain, plus chloramphenicol to select the transfer of the clones, carbenicillin to select clones that conferred to the recipient strain resistance to this antibiotic and arabinose to increase the number of copies of the fossil.
  • Table 2 shows the number of carbenicillin-resistant clones (Cb 1 ) detected per million transconjugants that had received a metagenomic clone, when specialized or derived strains of the conventional EPI300 TM -T1 R strain were used as receptors that allowed heterologous expression either from the T7 promoter or from the psal promoter.
  • the six phosphides were transferred back to the EPI300 TM -T1 R Rif strain and the EPI300 TM -T1 R Nal r derivative. Cultures of these strains that harbored each of the six fossids were used as donors in triparental conjugations together with the Naf and Rif receptor strains and the auxiliary strain DH5a / pRK2013.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La presente invención se relaciona con el desarrollo de unos vectores y cepas como sistemas de expresión que ofrecen la posibilidad de identificar genes de interés que no se expresan por ellos mismos en las bacterias que albergan la biblioteca metagenómica, permitiendo así la detección de las funciones que codifican, que de lo contrario permanecerían silenciadas y sin detectar.

Description

SISTEMAS DE EXPRESIÓN HETERÓLOGA PARA EL ANÁLISIS FUNCIONAL DE BIBLIOTECAS METAGENÓMICAS
CAMPO DE LA INVENCIÓN
La presente invención va dirigida al aislamiento de genes que codifican para funciones o actividades de interés. La invención se refiere a las áreas de la genética microbiana y la tecnología de ADN recombinante. Más específicamente, la invención se refiere a la combinación de elementos de diferentes circuitos reguladores de fagos y bacterias para construir vectores y cepas especializadas para su uso en el análisis funcional de bibliotecas metagenómicas.
ANTECEDENTES DE LA INVENCIÓN La metagenómica funcional o análisis metagenómico dirigido a la función ofrece la posibilidad de descubrir nuevas proteínas con funciones conocidas, nuevas proteínas con funciones novedosas, proteínas conocidas con funciones únicas y productos naturales novedosos que tienen actividades útiles en la medicina, agricultura o industria. Sin embargo, también es un reto encontrar la célula huésped que incluya todos los genes requeridos para expresar la función de interés y que exprese dicha función. El análisis según la función comienza con un examen amplio para identificar clones que expresan un rasgo deseado, seguido por la caracterización de los clones activos mediante análisis de secuencias y bioquímico. El éxito requiere la expresión fiel del gen o genes de interés y la secreción del producto génico, si el examen o ensayo requiere que sea extracelular.
La limitación significativa es que muchos genes, quizá la mayoría, no se expresarán en cualquier bacteria huésped particular seleccionada para la clonación. De hecho, existe una contradicción inherente en este enfoque ya que los genes se clonan a partir de organismos exóticos desconocidos para descubrir nuevos motivos en biología y sin embargo se requiere que estos genes se expresen en Escherichia coli u otra bacteria domesticada con el fin de que se detecten.
Es esencial desarrollar sistemas de expresión de genes heterólogos en las bacterias que albergan la biblioteca metagenómica con el fin de maximizar las posibilidades de expresar cualquier gen presente en la biblioteca metagenómica. Esto ampliará claramente el potencial de la metagenómica funcional. La gran mayoría de los microorganismos en entornos naturales no pueden cultivarse. Por tanto, una enorme fuente de información genética sigue sin descubrirse incluso tras un examen extensivo basado en métodos de cultivo convencionales. Para explorar estas fuentes, se han desarrollado enfoques novedosos que implican el aislamiento y la clonación directos de ADN de muestras del entorno en vectores adecuados, creando así bibliotecas metagenómicas complejas.
Las bibliotecas metagenómicas pueden analizarse para determinar rutas y genes novedosos con técnicas basadas en secuencias o mediante análisis, que implican el examen de la actividad, de la expresión de rasgos fenotípicos novedosos en huéspedes sustitutos. La ventaja de tales enfoques de examen funcional es que pueden detectar actividades que se originan a partir de genes cuyas funciones no pueden predecirse mediante análisis bioinformáticos de secuencias de ADN o proteicas. Por otro lado, la identificación de actividades novedosas mediante examen funcional depende de la expresión satisfactoria de los genes clonados. La limitación significativa es que muchos genes, quizá la mayoría, no se expresarán en cualquier bacteria huésped particular seleccionada para la clonación. Incluso aunque se han expresado actividades novedosas usando E. coli como huésped, existe una ventaja potencial obvia de aumentar las posibilidades de expresión génica metagenómica en los huéspedes bacterianos para detectar capacidades de expresión adicionales.
Un enfoque para aumentar las posibilidades de expresión génica metagenómica consiste en clonar fragmentos de ADN metagenómico cortos de unas pocas kilobases de longitud en vectores de expresión que contienen un promotor cerca del sitio de clonación y cuya transcripción puede discurrir por el ADN metagenómico. Por tanto, la expresión génica se basa en la transcripción génica a partir del promotor de vector heterólogo. El principal inconveniente es que el ADN que va a expresarse no debe portar un terminador de la transcripción entre el promotor del vector y el gen de interés. Por tanto, las posibilidades de expresión génica metagenómica se correlacionan inversamente con el tamaño del ADN clonado. La reducción del tamaño de los fragmentos de ADN clonado en las bibliotecas metagenómicas implica que la probabilidad de tener un gen de interés en un clon se reduce también y, por tanto, se requieren un mayor número de clones metagenómicos para cubrir la misma longitud de ADN metagenómico total. Este enfoque ha sido satisfactorio para identificar actividades que pueden seleccionarse y dependen de la expresión de un único gen (Sommer et al., 2009 Science 28,325(5944): 1128-31) pero no parece ser adecuado para actividades que no pueden seleccionarse ya que requiere la obtención y el examen de un mayor número de clones metagenómicos. La limitación es incluso mayor cuando la actividad de interés requiere la expresión de más de un gen. Los vectores más comunes usados para construir bibliotecas metagenómicas se basan en el factor sexual F de E. coli, que pueden mantener de manera estable grandes fragmentos de ADN. Estos vectores pueden ser vectores de tipo fósmido, que pueden estar empaquetados en cabezas de fagos lambda, o BAC (cromosomas artificiales bacterianos) que albergan y mantienen fragmentos de ADN incluso mayores. La expresión de genes metagenómicos en esta clase de bibliotecas se basa en su propia capacidad de expresión en el huésped bacteriano.
El vector pCCI FOS es uno de los vectores tipo fósmido más común, usado para construir bibliotecas metagenómicas (casi 300 publicaciones usaron este vector en los últimos 5 años). Puede albergar aproximadamente 40 kb de ADN de inserto, que se empaquetan eficazmente en partículas lambda. Además del replicón F, el vector alberga un replicón adicional que proporciona un mayor número de copias que puede activarse haciendo crecer las bacterias con arabinosa. Esto es muy conveniente para amplificar la función o actividad de interés, lo que facilita su detección si el gen codificante se expresa en E. coli. Se han construido con diferentes grados de éxito varios vectores basados en F para permitir la transferencia y el mantenimiento de la biblioteca metagenómica entre diferentes bacterias huésped en un intento por aumentar las posibilidades de expresar un gen metagenómico en diferentes antecedentes bacterianos (Sosio et al., 2000 Nature Biotechnol 18: 343-345; Martínez et al., 2004 Appl. Environ. Microb. 70: 2452-2463 ; Hain et al., 2008 Microb. 74: 1892-1901 ; Aakvik et al, 2009 FEMS Microbiol Lett 296: 149-158). Sin embargo, la expresión de los genes metagenómicos todavía se basa en su propia capacidad de expresión en el huésped bacteriano.
Es esencial, por tanto, desarrollar nuevas herramientas biológicas basadas en la expresión génica heteróloga para aprovechar la metagenómica funcional potencial.
COMPENDIO DE LA INVENCIÓN
Los inventores han desarrollado unos sistemas de expresión que, sorprendentemente, ofrecen la posibilidad de identificar genes de interés que no se expresan por ellos mismos en las bacterias que albergan la biblioteca metagenómica, permitiendo así la detección de las funciones que codifican, que de lo contrario permanecerían silenciadas y sin detectar. Esto da como resultado un mayor número de clones metagenómicos que presentan una función de interés particular para una biblioteca metagenómica dada.
Una ventaja adicional, proporcionada por el gfp carente de promotor en el vector, es que los sistemas reguladores desconocidos que responden a cualquier señal que puede actuar en las células de la invención pueden identificarse usando la tecnología SIGEX (Uchiyama et al., 2005 Nat. Biotechnol. 23:88-93). Por tanto la presente invención facilita la expresión génica metagenómica permitiendo la identificación de las funciones de los genes por un lado y el uso adicional de un gen indicador que permite detectar sistemas reguladores metagenómicos que pueden actuar en la cepa huésped.
En un primer aspecto la invención se relaciona con el vector 1 para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor T7, y
(c) un sitio de clonación de ADN metagenómico.
En un segundo aspecto la invención se relaciona con el vector 2 para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor regulable psal,
(c) una secuencia que codifica para el sitio nutL, y
(d) un sitio de clonación de ADN metagenómico.
En un tercer aspecto la invención se relaciona con el vector 3 para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor regulable psal,
(c) una secuencia que codifica para el sitio nutL,
(d) un promotor T7, y
(e) un sitio de clonación de ADN metagenómico.
En un aspecto adicional la invención se relaciona con la célula hospedadora 1 que comprende un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) un promotor lacUV5,
ii) una secuencia del atenuador nasF, y
iii) una secuencia del gen-1 del fago T7 que codifica para la ARN polimerasa de T7,
y en donde el promotor está operativamente unido a la secuencia iii).
En otro aspecto adicional, la invención se relaciona con la célula hospedadora 2 que comprende: un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) un promotor lacUV5,
ii) una secuencia del atenuador nasF,
iii) una secuencia del gen-1 del fago T7 que codifica para la ARN polimerasa de T7,
en donde el promotor está operativamente unido a la secuencia iii); y (b) el vector 1 de la invención o el vector 3 de la invención, en donde dicho vector contiene además un ADN metagenómico en el sitio de clonación de ADN metagenómico operativamente unido al promotor T7 y en donde dicha célula permite la transcripción de ADN metagenómico desde el promotor T7 presente en dicho vector.
En otro aspecto adicional la invención se relaciona con la célula hospedadora 3 que comprende un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) una secuencia del gen nahR,
ii) un promotor pnah,
iii) un promotor psal, y
iv) una secuencia del gen N del fago lambda
en donde el promotor ii) está operativamente unido a la secuencia i), el promotor iii) está operativamente unido a la secuencia iv) y en donde las secuencias i) y iv) se transcriben de manera divergente.
En otro aspecto adicional la invención se relaciona con la célula hospedadora 4 que comprende:
(a) un fragmento de ADN insertado en su genoma en donde dicho fragmento
comprende
i) una secuencia del gen nahR,
ii) un promotor pnah,
iii) un promotor psal,
iv) una secuencia del gen N del fago lambda
en donde el promotor ii) está operativamente unido a la secuencia i), el promotor iii) está operativamente unido a la secuencia iv) y en donde las secuencias i) y iv) se transcriben de manera divergente; y
(b) el vector 2 de la invención o el vector 3 de la invención, en donde dicho vector contiene además un ADN metagenómico en el sitio de clonación de ADN metagenómico operativamente unido al promotor psal y en donde dicha célula permite la transcripción del ADN metagenómico desde el promotor psal presente en dicho vector.
Asimismo la invención se refiere a un método para la expresión heteróloga de bibliotecas metagenómicas y analizar la función de genes que comprende el uso de los vectores y células de la invención.
En otro aspecto adicional la invención se refiere a un método de clonaje de ADN que comprende:
(a) introducir el ADN en uno de los vectores 1 a 3 de la invención,
(b) introducir dicho vector de clonaje en una célula hospedadora inicial, preferiblemente en una bacteria,
(c) cultivar dicha célula hospedadora, y
(d) transferir dicho ADN clonado a una o más células huéspedes secundarias.
En otro aspecto adicional, la invención se refiere con un método para preparar una biblioteca de clones de ADN que comprende:
(a) introducir dicho ADN en uno de los vectores 1 a 3 de la invención,
(b) introducir dicho vector en una primera célula hospedadora,
(c) cultivar dicha célula hospedadora para preparar la primera biblioteca de clones de ADN, y
(d) transferir dicha primera biblioteca a una o más células huéspedes secundarias para preparar una o más bibliotecas secundarias.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Fósmidos derivados de pCCIFOS. Para construir pMP0571 se añadió a pCClFOS- Ceul un origen de transferencia de ADN mediante conjugación (oriT) y un promotor psal seguido por el sitio de utilización de la proteína antiterminadora N (sitio nut) del fago lambda adyacente al lado izquierdo del sitio de clonación de ADN metagenómico (Eco72l). Para construir pMP0579 se añadió a pMP0571 un gen gfp carente de promotor adyacente al lado derecho del sitio Ecolll.
Figura 2. Cepas derivadas de la cepa EPI300™-T1R de E. coli. MP0553: Cepa que produce ARN polimerasa de T7. MP0554: Cepa que produce proteína antiterminadora N y NahR (el activador del promotor psal). MP0555: Cepa que produce la proteína antiterminadora N truncada y NahR. Figura 3. Expresión del gen gfp en la cepa EPI300™-T1 y MP0553 (la cepa que produce ARN polimerasa de T7), que albergan el fósmido pMP0579, sin inducción y añadiendo arabinosa (aumenta el número de copias del fósmido en estas cepas). La figura también muestra el nivel de expresión de GFP de la cepa MP0553 que alberga pMPO580 (similar a pMP0579 pero porta un terminador transcripcional entre el promotor de T7 y el gen gfp).
Figura 4. Expresión del gen gfp en la cepa MP0554 (la cepa que produce NahR y la proteína N) y MP0555 (similar a MP0554 pero con un desplazamiento del marco en el gen N), que albergan el fósmido pMP0579.
Figura 5. Expresión del gen gfp en la cepa MP0554 (la cepa que produce NahR y proteína N) y MP0555 (similar a MP0554 pero con un desplazamiento del marco en el gen N), que albergan el fósmido pMPO580 (similar a pMP0579 pero porta un terminador transcripcional entre el gen psal y el gen gfp).
Figura 6. Los 6 patrones de restricción diferentes de los fósmidos que confieren resistencia a carbenicilina aislados de la biblioteca metagenómica. Los fósmidos se digirieron con Bam I, que realiza un corte en el fósmido a ambos extremos del inserto (la banda de aproximadamente 9,5 kb es el fósmido sin inserto).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Los autores de la presente invención han desarrollado unos vectores y células que permiten expresar el ADN de una biblioteca metagenómica. En concreto tal y como se observa en el Ejemplo 7 de la presente invención, los vectores y células de la invención permiten identificar la función de genes de una biblioteca metagenómica.
Por tanto, en un aspecto, la invención se relaciona con un vector, en adelante vector de la invención, seleccionado entre los vectores identificados como vectores 1, 2 y 3 para el clonaje de ADN en una célula hospedadora que se describen a continuación.
Así, en una realización particular, el vector de la invención es un vector 1 para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor T7, y
(c) un sitio de clonación de ADN metagenómico. En otra realización particular, el vector de la invención es el vector 2 para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor regulable psal,
(c) una secuencia que codifica para el sitio nutL, y
(d) un sitio de clonación de ADN metagenómico.
En otra realización particular el vector de la invención es el vector 3 para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor regulable psal,
(c) una secuencia que codifica para el sitio nutL,
(d) un promotor T7, y
(e) un sitio de clonación de ADN metagenómico.
El término "vector" se refiere a una construcción de ADN replicativo utilizado para expresar ADN. Los vectores de la invención son tipo fósmidos. Por "fósmido" según se emplea en la presente invención se refiere a un sistema de vector fagémido adecuado para el clonaje de insertos genómicos de aproximadamente 40 kilobases (kb). Los vectores de la invención son capaces de clonar insertos de 15, 20, 30 ó 40 kb o incluso más. Más particularmente, el vector es capaz de clonar largos insertos. Por "inserto" se refiere al ADN que se va a clonar. Por "insertos largos" según se emplea aquí se refiere a insertos de al menos 30 kb más particularmente 40, 50, 60 ó 70 kb.
Por "vector artificial" según se emplea en la presente invención incluye cualquier construcción artificial capaz de autoreplicarse, capaz de incluir insertos largos y capaz de mantenerse establemente en una célula huésped.
El vector de la invención contiene un gran número de funciones y características del vector pCCIFOS™ (EPICENTRE) entre ellos para, parB, parC, repe, oriV, ori2.
Por "replicación autónoma", según se emplea en la presente invención se refiere a que dicho vector no se integra en el cromosoma de la célula huésped. En particular no se integra en ninguna célula huésped en donde se introduce dicho vector o al que es transferido. Dicho vector es capaz de auto replicarse en la célula hospedadora, por lo que el vector permanece presente cuando la bacteria crece y se divide. Más particularmente, el vector es capaz de ser mantenido establemente en la célula hospedadora. Así, el vector debe ser introducido en la célula huésped y mantenido en dicha célula durante su cultivo en repetidas generaciones (en al menos 2, 3, 4, 5, 6 ó 10 generaciones) o más generalmente durante el crecimiento de la célula huésped.
Las vectores de la invención pueden obtenerse mediante el empleo de técnicas ampliamente conocidas en el estado de la técnica [Sambrook et al., "Molecular cloning, a Laboratory Manual", 2nd ed., Cold Spring Harbor Laboratory Press, N.Y., 1989 Vol 1-3].
Los vectores pueden contener además una o más secuencias marcadoras seleccionables adecuadas para su uso en la identificación de células que se han transformado o transfectado o no con el vector. Los marcadores incluyen, por ejemplo, genes que codifican para proteínas que aumentan o disminuyen o bien su resistencia o bien su sensibilidad a antibióticos u otros compuestos (por ejemplo higromicina, kanamicina, etc.), genes que codifican para enzimas cuyas actividades pueden detectarse mediante ensayos convencionales conocidos en la técnica (por ejemplo, β-galactosidasa, luciferasa, etc.) y genes que afectan de manera visible al fenotipo de las placas, las colonias, los huéspedes o las células transformadas o transfectadas tales como diversas proteínas fluorescentes (por ejemplo proteína fluorescente verde, GFP, proteína fluorescente roja, dsRED). Alternativamente, los vectores de la presente invención pueden incorporar un marcador de selección que no es un antibiótico, por ejemplo, genes que codifican para una enzima catabólica que permite el crecimiento en un medio que contiene un sustrato de dicha enzima catabólica como fuente de carbono. Un ejemplo de una enzima catabólica de este tipo incluye, pero no se limita a enzimas que codifican para la captación de lactosa y beta- galactosidasa. Otros marcadores de selección que proporcionan una ventaja metabólica incluyen, pero no se limitan a, enzimas para la utilización de galactosa, de sacarosa, de trehalosa y de xilosa.
Las "células hospedadoras" que pueden emplearse en la presente invención se describen más adelante.
Por "origen de transferencia" según se emplea aquí, se refiere a una secuencia de ADN necesaria para la transferencia de un plásmido bacteriano desde una bacteria huésped a una receptora durante el proceso de conjugación bacteriana.
Por "promotor" según se emplea en la presente invención, se entiende la región de ADN que controla la iniciación de la transcripción de una secuencia de ADN y por tanto es el lugar de enlace de la ARN polimerasa. Dicho promotor está compuesto por una secuencia específica de ADN localizado justo donde se encuentra el punto de inicio de la transcripción de ADN y contiene la información necesaria para activar o desactivar el gen que regula. El "promotor T7", según se emplea aquí se refiere al promotor con secuencia (SEQ ID NO: 35)
Por "promotor regulable" se entiende a aquel promotor cuyo funcionamiento puede ser alterado en presencia o en ausencia de ciertos agentes. El promotor regulable psal, según se emplea en la presente invención, se refiere al promotor de secuencia SEQ ID NO: 24 que responde a salicilato, y en donde dicha secuencia comprende el sitio de reconocimiento del activador NahR.
Por "secuencia que codifica para el sitio nut-C según se emplea en la presente invención se refiere a la región con secuencia de ADN (SEQ ID NO: 25) que permite el funcionamiento del sistema de antiterminación del fago lambda mediada por la proteína antiterminadora N, codificada por el gen N (SEQ ID NO: 34), en donde la región codificante está comprendida entre los nucleótidos 168 y 569.
Por "sitio de clonación de ADN metagenómico" según se emplea en la presente invención se refiere a la región de ADN que contiene sitios únicos de corte de enzimas de restricción para la clonación de ADN metagenómico. Por "clonación" o "clonaje" según se emplea aquí se refiere a la tecnología que permite aislar y propagar secuencias de interés.
Por "ADN metagenómico" según se emplea en la presente invención se refiere a las secuencias de nucleótidos que forman la metagenoteca.
Por "genoteca metagenómica", "biblioteca metagenómica" o "metagenoteca" se refiere al conjunto de clones de fragmentos de ADN procedentes de una muestra. Dicho ADN puede proceder de una sola fuente o de una mezcla de fuentes, por ejemplo de una única muestra o de una mezcla de muestras. El origen de dicha muestra puede ser animal, vegetal, etc. Preferiblemente dicha muestra es de origen ambiental.
En una realización particular los vectores de la invención comprenden adicionalmente una secuencia de ADN metagenómico en el sitio de clonación de ADN metagenómico operativamente unido.
Por "operativamente unido" según se emplea en la presente invención significa que un promotor está en una localización funcional y orientación correcta en relación a la secuencia de ácido nucleico para controlar el inicio transcripcional y/o expresión de esa secuencia, es decir está bajo el control de dicho promotor.
En otra realización particular el origen de transferencia de ADN de los vectores de la invención es el oriT del plásmido RP4 (SEQ ID NO: 23).
En otra realización particular los vectores de la invención comprenden adicionalmente un gen reportero.
Por "gen reportero" según se emplea en la presente invención se entiende un gen cuyo producto da lugar a una señal que puede ser fácilmente medible o detectado.
En una realización adicional el gen reportero de los vectores de la invención es el gen de gfp. Dicha secuencia gfp puede contener además la Shine Dalgarno del gen-10 del fago T7 (SEQ ID NO: 26). En otro aspecto, la invención se relaciona con una célula hospedadora, en adelante célula hospedadora de la invención seleccionada entre las células hospedadoras identificadas como célula hospedadora 1, 2, 3 y 4.
En una realización particular, la célula hospedadora de la invención es una célula hospedadora 1 que comprende un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) un promotor lacUV5,
ii) una secuencia del atenuador nasF, y
iii) una secuencia del gen-1 del fago T7 que codifica para la ARN polimerasa de T7 y en donde el promotor está operativamente unido a la secuencia iii)
En otra realización adicional la invención se relaciona con una célula hospedadora 2, que comprende
(a) un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) un promotor lacUV5,
ii) una secuencia del atenuador nasF, y
iii) una secuencia del gen-1 del fago T7 que codifica para la ARN polimerasa de T7
y en donde el promotor está operativamente unido a la secuencia iii); y
(b) un vector 1 o un vector 3 de la invención, en donde dicho vector contiene además un ADN metagenómico en el sitio de clonación de ADN metagenómico operativamente unido al promotor T7 y en donde dicha célula permite la transcripción de ADN metagenómico desde el promotor T7 presente en dicho vector.
Dicha célula hospedadora 1 y 2 tiene reducido el nivel de expresión del gen de la ARN polimerasa de T7. En una realización particular dicha célula hospedadora 1 y 2 carece del represor transcripcional Lacl.
Por "célula que tiene reducido el nivel de expresión del gen de la ARN polimerasa del fago T7" se refiere a una célula en la que el nivel de expresión del gen de ARN polimerasa del fago T7 está disminuido al menos 1 ,5%, al menos 2%, al menos 4%, al menos 8% y más preferiblemente al menos un 10 % o incluso más con respecto al nivel de expresión de la célula silvestre.
Por "promotor lacUV5" se refiere al promotor con secuencia SEQ ID NO: 29. Por "secuencia del atenuador nasF" (SEQ ID NO: 30) según se emplea aquí se refiere a una secuencia de nucleótidos que reduce los niveles básales de expresión de un gen. De acuerdo con la presente invención, se considera que los niveles de expresión de un gen están reducidos cuando los niveles de dicha expresión respecto a la expresión basal están disminuidos al menos un 1 ,5%, al menos un 2%>, al menos un 5%>, al menos un 10%>, al menos un 15%, al menos un 20%), al menos un 25%, al menos un 30%, al menos un 35%, al menos un 40%, al menos un 45%o, al menos un 50%, al menos un 55%>, al menos un 60%, al menos un 65%, al menos un 70%o, al menos un 75%>, al menos un 80%: al menos un 85%>, al menos un 90%, al menos un 95%o, al menos un 100%, al menos un 1 10%, al menos un 120%, al menos un 130%, al menos un 140%o, al menos un 150% o más.
Por "gen-1 del fago T7", en una realización particular (SEQ ID NO: 31), según se emplea en la presente invención se refiere al gen que codifica para la ARN polimerasa de T7, en donde la región codificante está comprendida entre los nucleótidos 24 y 2675 de dicha secuencia.
En otra realización particular, la célula hospedadora es una célula hospedadora 3 que comprende
(a) un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) una secuencia del gen nahR,
ii) un promotor pnah,
iii) un promotor psal, y
iv) una secuencia del gen N del fago lambda
en donde el promotor ii) está operativamente unido a la secuencia i), el promotor iii) está operativamente unido a la secuencia iv) y en donde las secuencias i) y iv) se transcriben de manera divergente.
En otra realización particular, la célula hospedadora es una célula hospedadora 4 que comprende
(a) un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) una secuencia del gen nahR,
ii) un promotor pnah,
iii) un promotor psal, y
iv) una secuencia del gen N del fago lambda en donde el promotor ii) está operativamente unido a la secuencia i), el promotor iii) está operativamente unido a la secuencia iv) y en donde las secuencias i) y iv) se transcriben de manera divergente, y
(b) un vector 2 o un vector 3 de la invención, en donde dicho vector contiene además un ADN metagenómico en el sitio de clonación de ADN metagenómico operativamente unido al promotor y en donde dicha célula permite la transcripción del ADN metagenómico desde el promotor psal presente en dicho vector
Por "gen nahR", según se emplea en la presente invención, se refiere al gen de secuencia SEQ ID NO: 32 que codifica el activador del promotor psal y activa la transcripción a partir del promotor psal en presencia del salicilato inductor.
Por "pnah" se refiere al promotor cuya secuencia está comprendida en la SEQ ID NO:
33.
Por "gen N del fago lambda", según se emplea en la presente invención, se refiere a la secuencia SEQ ID NO: 34 que codifica para la proteína antiterminadora N de manera que en presencia de dicha proteína, la transcripción iniciada desde psal puede continuar insensible a las posibles señales terminadoras que pueda encontrarse en el ADN metagenómico, gracias a la antiterminación mediada por la proteína N. La región codificante de dicho gen se encuentra entre los nucleótidos 168 y 569 de SEQ ID NO: 34.
En una realización particular las células hospedadoras de la invención son células bacterianas.
Las células hospedadoras de la invención pueden contener múltiples copias de los vectores de la invención tras ser cultivadas en presencia de arabinosa, por ejemplo mediante la adición al medio de cultivo de arabinosa 1 mM durante 6 horas. De esta manera se consigue mejorar la capacidad de detección de las funciones de los genes de la biblioteca metagenómica.
Para la obtención de las células hospedadoras de la invención que comprenden adicionalmente los vectores de la invención es necesario introducir uno de los vectores de la invención que comprenden el ADN metagenómico. Dicha introducción puede realizarse mediante diversos métodos, por ejemplo mediante conjugación triparenteral según se describe en Figurski y Helinski, 1979 Proc. Nati. Acad. Sci. USA. 76(4): 1648-52 empleando las células hospedadoras de la invención como receptoras, una cepa portadora de dichos vectores, por ejemplo EPI300™-T1R y una cepa auxiliar, por ejemplo DH5a portadora del plásmido auxiliar pRK2013.
Las células hospedadoras de la invención incluyen una gran variedad de bacterias Gram negativas y Gram positivas. Bacterias gram negativas adecuadas comprenden, entre otras, el género de bacterias entéricas, Escherichia sp, Salmonella sp, Klebsiella sp, Proteus sp y Yersinia y no entéricas incluyendo Azotobacter sp, Pseudomonas sp, Xanthomonas sp.
En una realización particular dichas células bacterianas pertenecen a la especie Escherichia coli.
Una cepa de E. coli adecuada para la realización de la presente invención es la cepa F- mcrA A(mrr-hsdRMS-mcrBC) (StrR) O80dlacZAM15 AlacX74 recAl endAl araD139 A(ara, leu)7697 galU galK λ- rpsL nupG trfA tonA dhfr].
En otro aspecto la invención se relaciona con un método para la expresión heteróloga de bibliotecas metagenómicas y analizar la función de genes que comprende el uso de los vectores y células hospedadoras de la invención.
Por "expresión heteróloga" según se emplea en la presente invención se refiere a la expresión de una secuencia que no pertenece al organismo receptor sino a uno diferente.
En otro aspecto adicional la invención se refiere a un método de clonaje de ADN que comprende:
(a) introducir el ADN en uno de los vectores 1 a 3 de la invención,
(b) introducir dicho vector de clonaj e en una célula hospedadora inicial, preferiblemente en una bacteria,
(c) cultivar dicha célula hospedadora, y
(d) transferir dicho ADN clonado a una o más células huéspedes secundarias.
En otro aspecto adicional, la invención se refiere con un método para preparar una biblioteca de clones de ADN que comprende:
(a) introducir dicho ADN en uno de los vectores 1 a 3 de la invención,
(b) introducir dicho vector en una primera célula hospedadora,
(c) cultivar dicha célula hospedadora para preparar la primera biblioteca de clones de ADN, y
(d) transferir dicha primera biblioteca a una o más células huéspedes secundarias para preparar una o más bibliotecas secundarias.
La invención se ilustra a continuación en base a los siguientes ejemplos que se proporcionan a modo ilustrativo y no limitativo del alcance de la invención.
EJEMPLOS
MATERIALES Y MÉTODOS
Construcciones de ADN
Las extracciones del ADN necesario para las clonaciones se realizaron con el kit para extracción de ADN plasmídico NucleoSpin® Plasmid (Macherey-Nagel) siguiendo las instrucciones del fabricante. Cuando la estirpe era EPI300-T1 a los inóculos para la extracción del material genético se les añadió arabinosa lmM para aumentar el número de copias del fósmido y obtener así mayor cantidad de ADN.
Para hacer los extremos de ADN romos cuando fue necesario se empleó Klenow o T4 DNA Polymerasa (según cada caso, indicado en el texto, ambas de Roche) y siguiendo las instrucciones del fabricante.
Para llevar a cabo las reacciones de ligación se utilizó la enzima T4 DNA Ligase (Roche) siguiendo las instrucciones del fabricante.
El producto de las ligaciones en las que el vector era el fósmido se transformó en la estirpe EPI300-T1R mediante electroporación [Sambrook et al., "Molecular cloning, a Laboratory Manual", 2nd ed., Cold Spring Harbor Laboratory Press, N.Y., 1989 Vol 1-3]. Los pasos intermedios en los que el vector fue pBluescript II SK+ se transformaron en la estirpe de E. coli DH5a competentes mediante transformación por choque térmico [Sambrook et al., "Molecular cloning, a Laboratory Manual", 2nd ed., Cold Spring Harbor Laboratory Press, N.Y., 1989 Vol 1-3].
Amplificación de la polimerasa en cadena (PCR)
La PCR se llevó a cabo en un volumen final de 50 μΐ, empleando unos 3 ng del ADN molde, y concentraciones finales de ambos cebadores 1 μΜ, dNTPs a 200 μΜ y MgCl2 a 3 mM. La enzima usada fue Expand High Fidelity PCR System (Roche). Una desnaturalización inicial de 5 min a 94 °C fue seguida de 35 ciclos de amplificación (30 s a 94 °C, 30 s a 55 °C y 30 s a 72 °C), y una extensión final de 7 min a 72°C.
EJEMPLO 1 Construcción del vector 3 de la invención
El principal objetivo era conseguir que los genes de las metagenotecas pudieran ser expresados heterólogamente desde el vector que se utiliza para construir la metagenoteca. Ello permitiría detectar funciones de interés en las metagenotecas con mucha más frecuencia que si se utilizase el producto que ahora se comercializa, el pCCIFOS™.
Las ventajas que ofrecía pCCIFOS™ eran las siguientes:
1. - La metagenoteca construida con este vector se mantiene muy establemente en E. coli, siendo el número de copias del vector en condiciones normales de 1 por cada célula.
2. - Se puede inducir el n° de copias en la estirpe EPI300™-T1R, lo que mejora la capacidad de detección de actividades al incrementar la dosis génica. 3. - Tiene un promotor dependiente de la polimerasa de T7 que puede utilizarse para transcribir heterólogamente los genes que se clonen durante la construcción de una metagenoteca.
Pero tiene dos problemas:
1. - El vector no es transmisible por conjugación y, por tanto, la metagenoteca construida con este vector no puede transferirse a otras cepas bacterianas para detectar actividades.
2. - Los genes han de transcribirse desde sus propios promotores, por ello si un promotor determinado no se expresa en E. coli, la función del gen que se transcribe desde ese promotor no puede detectarse.
Para soslayar estos dos problemas se han realizado una serie de modificaciones en el vector y se han construido dos estirpes bacterianas especializadas para usar junto con el vector modificado.
Las modificaciones que se han realizado en el vector pCCIFOS son:
1. - Se ha incorporado un origen de transferencia oriT del plásmido RP4 (SEQ ID NO: 23). Se trata de un pequeño fragmento de ADN de 314 bp. Ello permite que las metagenotecas construidas en este vector puedan ser transferidas eficazmente por conjugación entre diferentes especies de enterobacterias mediante conjugaciones triparenterales, usando una cepa convencional que alberga un plásmido auxiliar tales como pRK2013 o pRK2073 (Figurski y et al., Proc. Nati. Acad. Sci. USA. 76(4):1648-52).
2. - Se ha incorporado un sistema de expresión heteróloga que permite la transcripción del ADN metagenómico clonado en el vector desde uno de los extremos. Consiste en la incorporación de un promotor regulable Psal que incluye el sitio de reconocimiento del activador NahR (SEQ ID NO: 24), desde el que se puede inducir la transcripción en respuesta a la presencia del inductor salicilato, en una cepa adecuada que contenga el sistema de regulación de este promotor (ver más adelante).
3.- A continuación del promotor se ha clonado un sitio nutL (SEQ ID NO: 25) que permite el funcionamiento del sistema de antiterminación del fago lambda mediada por la proteína antiterminadora N. En una cepa adecuada que contenga el gen codificante de la proteína N, la transcripción iniciada desde psal puede continuar insensible a las posibles señales terminadoras que pueda encontrarse en el ADN metagenómico, gracias a la antiterminación mediada por la proteína N.
4. - Una de las variantes del vector modificado tiene tras el sitio de clonación del ADN metagenómico un gen reportero codificante de GFP la proteína verde fluorescente, que incluye la Shine Dalgarno del gen-10 del fago T7 (SEQ ID NO: 26). Esto, por una parte, va a permitir estudiar el comportamiento del vector para validar las mejoras realizadas. Por otra parte, va a permitir detectar sistemas de regulación que pueda haber en las metagenotecas construidas, que respondan a una molécula determinada. Poder identificar sistemas de regulación desconocidos presentes en las metagenotecas y que respondan a determinadas moléculas de interés, puede ser muy útil para desarrollar biosensores que detecten esa molécula.
Para la construcción del vector pMP0579, se realizó una primera construcción del vector pMP0571.
1.1. Construcción del vector pMPQ571
Se partió de una modificación previa del vector tipo fósmido pCC I FO S™ (EPICENTRE), que contenía dos sitios Ceul que flanquean el sitio de clonación para el ADN metagenómico (Eco72I). Para obtener este vector se clonó en pCCI FOS™ linealizado con Eco72I un fragmento en doble cadena (SEQ ID NO: 28) que contiene un nuevo sitio Eco72I (ya que el anterior quedaba irarilizado) y un sitio Ceul a cada lado del nuevo sitio Eco72I. La incorporación de estas dianas permitía la separación del fragmento de ADN metagenómico completo clonado en el vector del resto del vector). A continuación se modificó este fósmido introduciendo varios elementos.
En primer lugar, se clonó un origen de transferencia de ADN mediante conjugación, en concreto el oriT del plásmido RP4 (SEQ ID NO: 23), en el sitio Hpal único de pCCIFOS-Ceul, generando pMP0561. Se amplificó el oriT mediante la reacción en cadena de la polimerasa (PCR) a partir del plásmido RP4 usando los cebadores On'THpalFw (SEQ ID NO : 1 ) y On'THpalRev (SEQ ID NO: 2) introduciendo un sitio de restricción Hpal en cada extremo del fragmento de ADN amplificado.
Posteriormente, se introdujo un promotor psal (SEQ ID NO: 24) seguido por el sitio nutL (SEQ ID NO: 25) (sitio de utilización de N hacia la izquierda) del fago lambda. Se sintetizó la secuencia que contenía estos dos elementos mediante PCR recursiva (Prodromou y Pearl, 1992 Protein Eng. 5(8):827-9), usando los cebadores psalnutl (SEQ ID NO: 3), psalnutl (SEQ ID NO: 4), psalnut3(SEQ ID NO: 5) y psalnut4 (SEQ ID NO: 6). Se clonó este fragmento en primer lugar en el sitio EcoRV del sitio de clonación múltiple de pBluescript II SK+. Después se obtuvo el fragmento de interés digiriendo con Xbal más HindIII y se clonó en el sitio NarI único de pMP0561, dando lugar al vector llamado pMP0571. Un transformante que tenía la orientación apropiada del fragmento psal-nutL en relación con el sitio de clonación de ADN metagenómico, se seleccionó y se nombró como pMP0571 (Figura 1).
1.2. Construcción del vector pMPQ579
Una modificación adicional al fósmido pMP0571 consistió en la adición de un gen gfp carente de promotor con la Shine-Dalgarno del gen- 10 del fago T7 (SEQ ID NO: 26) cerca del sitio de clonación de ADN metagenómico. Para obtener esta construcción fueron necesarias varias etapas.
En primer lugar, se amplificó parte del fósmido pCCIFOS-Ceul que contenía el gen de resistencia a cloranfenicol y parte de redF, usando los cebadores HindChlFw (SEQ ID NO: 7) y BstZredFRv (SEQ ID NO: 8) (fragmento flanqueado por los sitios HindIII y Bstl 1071) y se clonó este fragmento en el sitio EcoRV del sitio de clonación múltiple de pBluescript II SK+ (plásmido intermedio 1).
A continuación, se obtuvo la región codificante del gen gfp (SEQ ID NO: 27) a partir del plásmido pMP0634 (Tomás-Gallardo et al., 2009 Microbial Biotechnology 2 (2 SPEC. ISS.): 262-273). El gen gfp tiene un sitio Eco72I (el mismo que el sitio de clonación para el ADN metagenómico en el fósmido), que se mutó en un sitio MluI mediante PCR solapante (Ho et al., 1989 Gene 77: 51-59) sin cambiar la secuencia de aminoácidos del gen codificante. Se amplificó el gen gfp resultante a partir del plásmido pMP0634 usando los cebadores KpnISDpT77GFP (SEQ ID NO: 9), GFPMluIFwsolap (SEQ ID NO: 1 1 ), GFPMluIRvsolap (SEQ ID NO: 10) y GFPXbal-TFB-PCRsolap (SEQ ID NO: 12). El extremo 5' del cebador KpnISDpT77GFP (SEQ ID NO: 9) contenía la secuencia Shine-Dalgarno del gen-10 del fago T7 de tal manera que se ubicó durante la PCR a la distancia correcta en el sentido de 5' de la región codificante de gfp amplificada. Se digirió el producto de la PCR con las enzimas de restricción Kpnl y Xbal (sus sitios de restricción están en los extremos del fragmento), se hicieron romos sus extremos con la ADN polimerasa de T4 y se clonó entre los dos sitios HindIII del plásmido intermedio 1 , cerca del gen de resistencia a cloranfenicol. Tras esta clonación se obtuvo la siguiente construcción en el vector pBluescript II SK+: Shine-Dalgarno de T7, gfp sin sitio Eco72I, gen resistente a cloranfenicol y parte de redF (plásmido intermedio 2)·
Por último, se extrajo la construcción de interés del plásmido intermedio 2 con Xhol y
Seal (Shine-Dalgarno de T7, gfp sin sitio Eco72I y parte del gen de resistencia a cloranfenicol) y se clonó en el fósmido pMP0571 en el sentido 3 ' del sitio de clonación de ADN metagenómico, entre los sitios HindIII y Seal (esta digestión doble elimina parte del gen de resistencia a cloranfenicol del fósmido), obteniendo el fósmido final pMP0579 (Figura 1), con el gen de resistencia a cloranfenicol regenerado.
EJEMPLO 2 Cepas de la invención
Para conseguir la mejora de la funcionalidad del vector pMP0579 era necesario construir cepas bacterianas que permitieran la transcripción desde el promotor de T7 (ya existente en pCCIFOS) y desde el promotor psal acoplado al sistema de antiterminación (introducido en el vector 2 y 3 de la invención). Para ello se construyeron dos cepas bacterianas que promovían la transcripción desde estos promotores heterólogos presentes en dichos vectores.
2.1. Construcción de la cepa MPQ553
La cepa MP0553 es una variante de EPI300™-T1R que ha integrado en su genoma en el locus trg un fragmento de ADN que porta el promotor lacUV5 (SEQ ID NO: 29), nasF (SEQ ID NO: 30) y el gen-1 del fago T7 (SEQ ID NO: 31) y que expresa a bajo nivel el gen de la ARN polimerasa del fago T7. Esta cepa carece del represor transcripcional LacI por lo que la transcripción a partir de placUV5 es constitutiva. Sin embargo, la mayor parte de la transcripción iniciada en placUV5 termina en el atenuador nasF y sólo una pequeña fracción transcribe el gen 1 de T7.
Esta cepa, además de permitir incrementar el número de copias del plásmido, como su parental, tiene la ARN polimerasa del fago T7 además de su ARN polimerasa y, por tanto, en esa bacteria se puede transcribir el ADN metagenómico desde el promotor T7 presente en el vector. La ARN polimerasa de T7 es mucho más rápida que la ARN polimerasa bacteriana y es insensible a muchos de los terminadores de la transcripción bacterianos, permitiendo así la transcripción del ADN metagenómico.
Para su construcción, se ha usado la cepa EPI300™-T1R de E. coli [F- mcrA Δ (mrr- hsdRMS-mcrBC) (StrR) O80dlacZAM15 AlacX74 recAl endAl araD139 A(ara, leu)7697 galU galK λ- rpsL nupG trfA tonA dhfr] (EPICENTRE). La construcción se integró en el locus trg, reemplazando su secuencia codificante a través de una modificación del método descrito por Datsenko y Wanner, 2000 Proc. Nati. Acad. Sci. USA. 97(12):6640-5.
Para la generación del fragmento de ADN, en primer lugar se obtuvo el promotor placUV5 (SEQ ID NO: 29) como un fragmento de EcoRI-BamHI a partir del plásmido pNK736 (Simons et al., 1983 Cell 34(2):673-82) y se clonó en pBluescript II SK+ digerido con Notl y BamHI, para construir pMP0556. Se obtuvo el atenuador nasF (SEQ ID NO: 30) a partir de pMP027 flanqueado por los sitios EcoRI (Royo et al. , 2005 Nucleic Acids Research 33(19):el69) y se clonó en pMP0556 digerido con EcoRI, generando de ese modo pMP0557. Se amplificó el gen que codifica para la resistencia a kanamicina a partir de pKD4 (Datsenko y Wanner, 2000 Proc. Nati. Acad. Sci. USA. 97(12):6640-5) usando los cebadores Sac-Pl (SEQ ID NO : 18) y Sac-P2 (SEQ ID NO : 19) y se clonó en pMP0557 digerido con EcoRV, generando así pMP0558. Para construir la segunda parte de la construcción, se amplificó el gen que codifica para la resistencia a cloranfenicol a partir de pKD3 usando los cebadores Sac-Pl (SEQ ID NO: 18) y Sac-P2 (SEQ ID NO: 19) y se clonó en pGPl-2 (Tabor y Richardson, 1985 Proc. Nati. Acad. Sci. USA. 82: 1074-1078) digerido con BamHI, tras el gen-1 (ARN polimerasa de T7) (SEQ ID NO: 31), generando pMP0559.
Se creó la construcción de interés en dos partes porque la construcción completa era demasiado grande para amplificase mediante la misma reacción de PCR.
La primera parte de la construcción, en pMP0558, se amplificó mediante PCR usando los cebadores trgEc-P12 (SEQ ID NO: 13) y trgEc-BSK2 (SEQ ID NO: 14). Los extremos 5' de estos cebadores son homólogos a los límites de la secuencia genómica que va a reemplazarse por la construcción amplificada. Se digirió el producto de PCR con Dpnl y se introdujo mediante electrop oración en la cepa EPI300™-T1R que contenía pKD46 para integrar la primera parte de la construcción en el locus trg (Datsenko y Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97(12):6640-5).
La segunda parte de la construcción, en pMP0559, se amplificó mediante PCR usando los cebadores trgEc-P12 (SEQ ID NO: 13) y terSacP2-Gl (SEQ ID NO: 15). Los extremos 5' de estos cebadores son homólogos a los límites de la secuencia genómica que va a reemplazarse por la construcción amplificada. Se digirió el producto de PCR con Dpnl y se introdujo mediante electroporación en la cepa EPI300™-T1R con la primera parte de la construcción que contenía pKD46 para integrar la segunda parte de la construcción tras la primera (reemplazando el gen de resistencia a kanamicina de pKD4) (Datsenko y Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97(12):6640-5).
Finalmente, se eliminó el gen resistente a cloranfenicol del genoma usando pCP20 (Datsenko y Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97(12):6640-5).
En la figura 2 se muestra un esquema de la integración genómica en la cepa MP0553, que porta el promotor lacUV5 (SEQ ID NO: 29), el atenuador nasF (SEQ ID NO: 30) y el gen-1 del fago T7 (SEQ ID NO: 31). La orientación de esta construcción es la opuesta a la orientación del gen trg. 2.2. Construcción de las cepas MPQ554 y MPQ555
La cepa MP0554 ha integrado en su genoma en el locus trg un fragmento de ADN que porta el gen nahR (SEQ ID NO: 32) y los promotores pnah y psal (SEQ ID NO: 33) que transcriben de manera divergente, seguido del gen N del fago lambda (SEQ ID NO: 34). NahR codifica el activador del promotor psal y activa la transcripción a partir del promotor psal en presencia del salicilato inductor, induciendo así la producción de la proteína antiterminadora N. A su vez, NahR activa la transcripción a partir del promotor psal presente en el fósmido pMP0579 y la proteína N impide la terminación de la transcripción que discurre por el sitio nut al ADN metagenómico.
Para la construcción de las cepas MP0554 y MP0555, se utilizó la cepa EPI300™-T1R de E. coli [F- mcrA A(mrr-hsdRMS-mcrBC) (StrR) O80dlacZAM15 AlacX74 recAl endAl araD139 A(ara, leu)7697 galU galK λ- rpsL nupG trfA tonA dhfr] (EPICENTRE)
Para construir la cepa MP0554 se obtuvo el fragmento que contenía el gen nahR (SEQ ID NO: 32) con su promotor pnah y el promotor psal (SEQ ID NO: 33) cercano al mismo pero transcritos de manera divergente, a partir del vector pCNB4-S2 (Cebolla, A. et al, 2001 Nucleid Acids Research Vol. 29 No.3 759-766) mediante restricción con Notl y BamHI y se clonó en pBluescript II KS+ digerido con las mismas enzimas de restricción, generando así pMP0563. Se amplificó el gen que codifica para la resistencia a cloranfenicol a partir de pKD3 (Datsenko y Wanner, 2000 Proc. Nati. Acad. Sci. USA. 97(12): 6640-5) usando los cebadores Sac-Pl (SEQ ID NO: 18) y Sac-P2 (SEQ ID NO : 19) y se clonó en pMP0563 digerido con EcoRV, seleccionando la misma orientación que el gen nahR (SEQ ID NO: 32), generando pMP0564. Entonces, se amplificó el gen N a partir de ADN de lambda usando los cebadores NotN (SEQ ID NO: 20) y KspN (SEQ ID NO: 21 ). Se digirió el producto de PCR con las enzimas de restricción Notl y KspI (sus sitios de restricción están en los extremos del fragmento) y se clonó en pMP0564 parcialmente digerido con KspI y completamente digerido con Notl (de esta manera, el vector sólo perdía un pequeño fragmento fuera de la construcción de interés), generando de este modo pMP0565, que tiene el gen N en el sentido de 3' de psal y en la misma orientación.
A continuación se amplificó la construcción en pMP0565 mediante PCR usando los cebadores trgEc-BKS (SEQ ID NO: 16) y trgEc-Pl (SEQ ID NO: 17). Los extremos 5' de estos cebadores son homólogos a los límites de la secuencia genómica que va a reemplazarse por la construcción amplificada. Se digirió el producto de PCR con Dpnl y se introdujo mediante electroporación en la cepa EPI300™-T1R que contenía pKD46 para integrar la construcción en el locus trg (Datsenko y Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97(12):6640-5).
Finalmente, se eliminó el gen de resistencia a cloranfenicol del genoma usando pCP20
(Datsenko y Wanner, 2000 2000 Proc. Nati. Acad. Sci. USA. 97(12):6640-5).
En la Figura 2 se muestra un esquema de la integración genómica en la cepa MP0554, que porta el gen nahR (SEQ ID NO: 32), el promotor psal cerca del mismo pero transcrito de manera divergente y el gen N del fago lambda en el sentido de 3 ' de psal. La orientación de psal-genN es la opuesta a la del gen trg. Como control para la validación de los ensayos empleando el vector y las cepas de la invención, se generó la cepa MP0555, a partir de la misma cepa EPI300™-T1R de E. coli que en casos anteriores. Para la generación del fragmento de ADN que iba a ser introducido, se hibridó el cebador thnB-6-thnC (SEQ ID NO: 22) consigo mismo incubándolo durante 5 miraíos a 85°C más 30 miraíos a temperatura ambiente y se rellenó en el inserto hibridado con Klenow para crear un inserto de 14 pb. Se clonó este inserto en pMP0565 digerido con Hpal para generar un desplazamiento del marco en el codón 60 del gen N. El plásmido resultante era pMP0575.
La construcción de la cepa MP0555 era muy similar a la de MP0554. La única diferencia era que el molde para la PCR con los cebadores trgEc-BKS (SEQ ID NO: 16) y trgEc-Pl (SEQ ID NO: 17) era pMP0575 en lugar de pMP0565.
En la Figura 2 se muestra un esquema de la integración genómica en la cepa MP0555, que es similar a la de en la cepa MP0554 pero el gen N tiene un desplazamiento del marco que lo hace inútil.
EJEMPLO 3 Transferencia de vectores mediante conjugación
La presencia de oriT en los vectores modificados debe permitir una transferencia eficaz de los vectores entre diferentes cepas de E. coli mediante conjugación. Con el fin de someter a prueba la eficacia de conjugación, se realizaron conjugaciones triparentales durante la noche (Figurski y Helinski, 1979 Proc. Nati. Acad. Sci. USA. 76(4): 1648-52) usando EPI300™-T1R que portaba los vectores como la cepa donadora, mutantes espontáneos resistentes a rifampicina (Rif) o ácido nalidíxico (Nal1) derivados de EPI300™-T1R como las cepas receptoras y DH5a que portaba el plásmido auxiliar pRK2013 como la cepa auxiliar de conjugación.
Se estimaron las frecuencias de conjugación como la razón de clones transconjugantes de la cepa receptora (clones resistentes a cloranfenicol+rifampicina o resistentes a cloranfenicol+ácido nalidíxico) con respecto a los clones totales de la cepa receptora (o bien resistentes a rifampicina o bien a ácido nalidíxico, dependiendo de la cepa receptora). Los vectores que portaban oriT se transfirieron de manera muy eficaz a la cepa receptora (frecuencia de conjugación superior a 10"1) con una frecuencia similar o incluso mayor que la del plásmido móvil bien conocido pBBRl MCS-3 (frecuencia de conjugación de 10"1), mientras que el plásmido pCCIFOS-Ceul no pudo transferirse mediante conjugación (frecuencia de conjugación de <10"7).
La alta frecuencia de conjugación, superior al 10%, permitiría transferir millones de clones independientes a la cepa receptora en un conjugación triparental convencional, garantizando así la transferencia de cada clon de bibliotecas metagenómicas que contienen algunos cientos de miles de clones a la cepa receptora, cuando se usa toda la biblioteca metagenómica como cultivo donador. EJEMPLO 4 Transcripción a partir del promotor de T7 y a partir del promotor psal a través de un terminador de transcripción.
Se sometieron a prueba los niveles de transcripción de los promotores heterólogos presentes en los vectores modificados en el vector pMP0579, que contiene el gen gfp carente de promotor clonado en el sentido de 3' del sitio de clonación metagenómico (véase la Figura 1) y por tanto puede usarse como gen indicador. Los niveles de fluorescencia de las diferentes cepas que albergan el plásmido indicarán la magnitud de la transcripción que discurre por el sitio de clonación de ADN metagenómico al gen gfp.
Con el fin de someter a prueba si la transcripción iniciada en los promotores heterólogos podría realizarse a través de terminadores de transcripción, se construyó el plásmido pMPO580. Este plásmido se deriva de pMP0579 y tiene un fragmento de ADN de 2,5 kb que porta el terminador de transcripción del gen thnL de la cepa TFA de Sphingomonas macrogolitabida (López-Sánchez et al, 2009 Appl. Environ. Microbiol. 76(1): 110-8) clonado en el sitio Eco72I.
La expresión del gen gfp en la cep a EPI300™-TlR/pMPO579 es muy baj a (aproximadamente 1.300 U.F., similar a la fluorescencia intrínseca de EPI300™-T1R) y el aumento del número de copias del plásmido añadiendo arabinosa 1 mM durante 6 horas no dio como resultado un aumento sustancial de la expresión (Figura 3). En la cepa especializada MP0553, que produce de manera constitutiva niveles bajos de ARN polimerasa de T7, los niveles de expresión también eran muy bajos cuando el número de copias del plásmido era bajo. Sin embargo, los niveles de expresión aumentaban drásticamente cuando se aumentaba el número de copias del plásmido mediante la adición de arabinosa. Este resultado mostró claramente que el promotor de T7 en pMP0579 era funcional y podría dirigir la transcripción del ADN metagenómico clonado en este vector y que la cepa especializada MP0553 producía ARN polimerasa de T7. El nivel de expresión de gfp del plásmido pMPO580, que contenía el terminador thnL, era incluso superior que el de pMP0579, lo que indicaba que este terminador no puede terminar la transcripción mediante la ARN polimerasa de T7 desde el promotor de T7 (Figura 3).
En la cepa especializada que producía el activador transcripcional NahR y la proteína antiterminación N, MP0554, el nivel basal de expresión de gfp a partir de pMP0579 era también bajo. El aumento del número de copias del plásmido añadiendo arabinosa aumentó los niveles de expresión sólo 2 veces. Se observaba un aumento moderado similar en los niveles de expresión cuando NahR activaba la transcripción en presencia de salicilato 5 mM durante 6 horas. Sin embargo, se obtenían niveles de expresión altos cuando se añadía tanto arabinosa como salicilato al medio de cultivo (Figura 4). Este resultado indicaba que el promotor psal en pMP0579 es funcional y podría dirigir la transcripción del ADN metagenómico clonado en este vector y que la cepa especializada MP0554 producía el activador transcripcional NahR requerido para la transcripción a partir de psal.
Para demostrar la antiterminación de la transcripción mediante la proteína N, se construyó la cepa MP0555. Esta cepa es isogénica con MP0554, siendo la única diferencia que MP0555 portaba un desplazamiento del marco en el codón 60 del gen N. Por tanto, la activación transcripcional mediante NahR debería mantenerse en esta cepa mientras que la antiterminación de la transcripción mediante la proteína N debería desaparecer.
Los niveles de expresión de gfp a partir de pMP0579 en esta cepa eran ligeramente menores que los de la cepa MP0554 (Figura 4), indicando así que la transcripción a partir de psal podía inducirse en esta cepa. En la cepa que producía la proteína N, la expresión a partir de pMPO580, que portaba el terminador transcripcional entre el promotor psal y el gen gfp (SEQ ID NO: 26), era alta de manera similar. Sin embargo, la expresión de gfp a partir de pMPO580 no podía inducirse en la cepa MP0555, que carecía de la proteína N (Figura 5). Este resultado indicaba claramente que la transcripción a partir de psal en pMPO580 se terminaba antes de alcanzar el gen gfp, presumiblemente en el terminador del gen thnL ubicado aproximadamente a 2,3 kb en el sentido de 3' del inicio de transcripción desde psal, pero que la transcripción podía discurrir por gfp si también se inducía la producción de la proteína antiterminadora mediante salicilato (en la cepa MP0554). EJEMPLO 5 Identificación de sistemas reguladores mediante la tecnología SIGEX.
Se realizó una reconstrucción de la tecnología SIGEX (Uchiyama et al., 2005 Nat. Biotechnol. 23:88-93) mediante la cual los clones que portan sistemas reguladores del ADN metagenómico que responden a una señal particular pueden identificarse inicialmente mediante examen usando citometría de flujo, para estimar si el fósmido pMP0579 era adecuado para esta tecnología ya que la transcripción del gen gfp diferencial a partir de este vector puede discriminarse mediante citometría de flujo.
Con este propósito, se hicieron crecer cultivos en LB de MP0554 Rif y MP0554 NaF que portaban el plásmido pMP0579 y posteriormente se diluyeron en dos cultivos similares de LB que contenía arabinosa 1 mM para aumentar el número de copias del plásmido. También se añadió salicilato 5 niM al cultivo de MP0554 Nal7pMP0579. Tras 16 horas de incubación se mezclaron ambos cultivos a diferentes razones (1 : 1 , 1 Nalr:104 Rif y 1 Nalr:105 Rif). Se sometieron los cultivos mezclados a citometría de flujo y se separaron las bacterias que expresaban altos niveles de GFP y se sembraron en placa de LB con cloranfenicol para un análisis adicional. Se hicieron crecer las colonias resultantes en LB con rifampicina y en LB con ácido nalidíxico para someter a prueba su resistencia a estos antibióticos. De esta manera, pudieron establecerse las razones de bacterias inducidas frente a no inducidas que podían recuperarse tras la separación y compararlas con las que se fijaron inicialmente mediante dilución. En la mezcla con una razón 1 NaF: 1 Rif, prácticamente todas las bacterias recuperadas tras la separación eran NaF (inducidas); con la razón 1 NaF:104 Rif la proporción de bacterias inducidas aumentó desde el 0,01 % hasta aproximadamente el 30%> tras la separación; finalmente, con la razón 1 NaF:105 Rif esta proporción aumentó desde el 0,001%> hasta aproximadamente el 15%> tras la separación. En resumen, la cepa inducida se había enriquecido 104 veces tras la separación (tabla 1). Estos resultados indicaban que las bibliotecas metagenómicas construidas en el fósmido pMP0579 podían usarse para identificar sistemas reguladores metagenómicos que responden a un inductor particular usando la tecnología SIGEX.
Figure imgf000026_0001
Tabla 1. Incremento de la proporción de bacterias inducidas analizadas por citometría de flujo, comenzando con un cultivo mezcla con MP0554/pMP0579 inducida (cepa derivada de Naf) y MP0554/pMP0579 no inducida (Rif) en cocientes diferentes (1:1, 1:10,000 y 1: 100,000, siempre la cepa inducida es la minon aria. EJEMPLO 6 Construcción de una biblioteca metagenómica en la cepa EPI300™-T1R.
Las modificaciones introducidas en los vectores y las cepas especializadas debían permitir la expresión de ADN metagenómico, permitiendo así la identificación de clones con actividades de interés que de lo contrario permanecerían sin detectar. Para validar el rendimiento aumentado de los vectores y las cepas modificados mostrando que su uso permitía el aislamiento de un mayor número de clones con las características deseadas, se usó el plásmido pMP0579 para construir una biblioteca metagenómica procedente de una costa contaminada con petróleo crudo en Punta San García, Cádiz, España, debido a un vertido de petróleo de un barco.
Se aisló el ADN de la muestra tal como anteriormente se ha descrito. Se extrajeron las bacterias mediante adición directa de tampón de ruptura (NaCl 0,2 M, Tris-HCl 50 mM pH 8,0) a la muestra y mezclando durante la noche con agitación. Entonces, se centrifugó a velocidad baja (400 g durante 3 minutos) y se vertió el sobrenadante sobre una disolución de la resina Nycodenz (1,3 g ml-1). La centrifugación en un gradiente de la resina Nycodenz (Axis-Shield) permitía enriquecer la biomasa microbiana. La centrifugación se llevó a cabo a 10.000 g x durante 40 minutos a 4°C. Podía observarse una banda blanquecina que contenía células bacterianas en la superficie de contacto entre la resina Nycodenz y la fase acuosa. Se recuperó esta banda y se mezcló con solución salina tamponada con fosfato (PBS). Se sedimentaron las células mediante centrifugación a 10.000 g durante 20 minutos y se resuspendieron en tampón TE (Tris 10 mM, EDTA 1 mM, pH 8,0).
Después de esto, se extrajo el ADN con el kit GENOME DNA (MP Biomedicals). Usando este método, se obtuvieron 24 μg de ADN a partir de 160 g de suelo, con un tamaño promedio de aproximadamente 40 kb.
Para construir la biblioteca metagenómica a partir del ADN aislado, se siguió el protocolo del kit de producción de bibliotecas de fósmidos CopyControl™ (EPICENTRE), empleando el fósmido pMP0579 en lugar de pCCIFOS.
Para preparar pMP0579, se linealizó mediante restricción con la enzima Pmll (New England Biolabs, isoesquizómero de Eco72I), se desfosforiló con fosfatasa alcalina de gamba (USB) y se concentró con un dispositivo de filtrado con centrifugación (Microcon, Millipore).
La biblioteca metagenómica construida comprendía aproximadamente 2 Gigabases distribuidas en aproximadamente 54.000 clones diferentes y se mantenía en la cepa EPI300™- T1R.
EJEMPLO 7 Identificación de clones resistentes a carbenicilina
Se transfirió la biblioteca metagenómica mediante conjugación con derivados mutantes espontáneos resistentes a ácido nalidíxico y rifampicina de las cepas EPI300™-T1R, MP0553 y MP0554.
Conjugaciones triparentales durante la noche usando EPI300™-T1R que albergaba toda la biblioteca metagenómica como cultivo donador, cada uno de los derivados resistentes a ácido nalidíxico y rifampicina como cepas receptoras y DH5a/pRK2013 como cepa auxiliar, dieron como resultado una frecuencia de conjugación muy alta, siempre superior al 6%, independientemente de la cepa receptora. Estos datos indicaban que los clones metagenómicos podían transferirse a otras cepas con una frecuencia similar al vector original pMP0579, a pesar de las aproximadamente 40 kb de ADN metagenómico que porta cada clon.
Los microorganismos cultivados han sido la fuente de casi todos los genes de resistencia a antibióticos caracterizados; por tanto, se conoce poco acerca de las reservas ambientales de genes de resistencia y su contribución a la resistencia en entornos clínicos. Los antibióticos β- lactámicos se encuentran entre los antibióticos prescritos con mayor frecuencia para seres humanos y ganado, generando una presión de selección potente para los genes que codifican para elementos de resistencia en entornos próximos a la actividad humana. También se predice que las β-lactamasas son abundantes en los suelos incluso en ausencia de presión de selección antropogénica, porque el suelo es rico en microorganismos que producen antibióticos de β- lactama, tales como penicilinas y cefalosporinas, y ya se han detectado β-lactamasas en bibliotecas metagenómicas procedentes del intestino humano y procedente de reservas ambientales.
Resultaba interesante estimar la abundancia de estos genes de resistencia en los suelos y cuántos de estos genes de resistencia no podían detectarse en bibliotecas metagenómicas convencionales usando vectores tipo fósmido. Por tanto, se eligió la resistencia al antibiótico β- lactámico carbenicilina como la actividad de interés para identificar entre los clones metagenómicos transferidos. Además, la actividad podía seleccionarse directamente en placas de LB que contenían 100 mg/1 de carbenicilina, lo que facilitaba la validación del procedimiento.
También se sembraron conjugaciones triparentales en placas de LB con ácido nalidíxico/rifampicina para seleccionar la cepa receptora, más cloranfenicol para seleccionar la transferencia de los clones, carbenicilina para seleccionar clones que conferían a la cepa receptora resistencia a este antibiótico y arabinosa para aumentar el número de copias del fósmido. La tabla 2 muestra el número de clones resistentes a carbenicilina (Cb1) detectados por cada millón de transconjugantes que habían recibido un clon metagenómico, cuando se usaban como receptoras las cepas especializadas o derivadas de la cepa EPI300™-T1R convencional que permitían la expresión heteróloga bien a partir del promotor de T7 o bien a partir del promotor psal. Se obtuvo un número aproximadamente 6 veces mayor de transconjugantes resistentes a carbenicilina con las cepas especializadas en comparación con la cepa EPI300™- T1R convencional. Además, en el caso de MP0554, este aumento dependía de la adición de salicilato 1 mM, que inducía la activación de la transcripción a partir de psal por NahR y la antiterminación por parte de la proteína N.
Figure imgf000029_0002
Tabla 2. Número de clones resistentes a carbenicilina detectados en las diferentes cepas por cada millón de transconjungantes.
Se analizó el patrón de restricción de los fósmidos que conferían resistencia a carbenicilina presentes en 100 transconjugantes, 10 de EPI300™-T1R, 40 de MP0553 y 50 de MP0554. Se aislaron un total de 6 fósmidos diferentes (Figura 6). Todos los transconjugantes de EPI300™-T1R Cbr tenían el mismo fósmido, ETN1. Este fósmido también se encontró entre los transconjugantes derivados de las cepas especializadas. El uso de MP0553 , la cepa que produce ARN polimerasa de T7, permitió la identificación de 3 fósmidos adicionales, TN2, TN3 y TN4. Estos fósmidos también se identificaron entre los transconjugantes derivados de MP0554, la cepa especializada que permitía la antiterminación de N. Esta cepa permitió la identificación de dos fósmidos adicionales, N5 y N6, que no se identificaron usando las demás cepas.
Para confirmar la capacidad de cada fósmido para conferir Cbr a cada una de las cepas receptoras, se transfirieron los seis fósmidos de vuelta a la cepa EPI300™-T1R Rif y al derivado EPI300™-T1R Nalr. Se usaron cultivos de estas cepas que albergaban cada uno de los seis fósmidos como donadores en conjugaciones triparentales junto con las cepas receptoras Naf y Rif y la cepa auxiliar DH5a/pRK2013.
Figure imgf000029_0001
Figure imgf000030_0001
Tabla 3. Frecuencia de transconjugantes resistentes a carbenicilina (bacterias resistentes a carbenicilina/ transconjugantes que han recibido el clon), para cada clon en cada cepa. Tal como se muestra en la tabla 3, los seis fósmidos se transfirieron eficazmente a cada una de las 3 cepas receptoras. Sólo el fósmido ETNl confirió Cbr a EPI300™-T1R NalR. La expresión del gen que confería resistencia a carbenicilina estaba aparentemente limitada ya que sólo una fracción de los transconjugantes mostraba resistencia y podía generar una colonia. Los plásmidos ETNl, TN2, TN3 y TN4 proporcionaron Cbr a la cepa MP0553 que producía ARN polimerasa de T7 y todos ellos confirieron Cbr a la cepa MP0554. Estos resultados, usando los fósmidos aislados, estaban totalmente de acuerdo con los obtenidos usando toda la biblioteca metagenómica y mostraban claramente que al menos seis fósmidos de la biblioteca codificaban potencialmente para genes de resistencia a carbenicilina, tal como se identificaba en las cepas especializadas permitiendo la expresión heteróloga del ADN metagenómico. Sin embargo, sólo una pequeña fracción (uno de seis) de los fósmidos expresaron realmente el gen de resistencia por sí mismos y confirieron Cbr en la cepa EPI300™-T1R.
Por tanto, estos resultados mostraban el potencial de usar la expresión heteróloga para detectar clones de fósmidos que contienen genes con funciones de interés.

Claims

REIVINDICACIONES
1. Un vector para el clonaje de ADN en una célula hospedadora , en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor T7, y
(c) un sitio de clonación de ADN metagenómico.
Un vector para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor regulable psal,
(c) una secuencia que codifica para el sitio nutL, y
(d) un sitio de clonación de ADN metagenómico.
Un vector para el clonaje de ADN en una célula hospedadora, en donde dicho vector de clonaje es un vector artificial que se replica autónomamente en el interior de dicha célula hospedadora, que comprende:
(a) un origen de transferencia de ADN,
(b) un promotor regulable psal,
(c) una secuencia que codifica para el sitio nutL,
(d) un promotor T7, y
(e) un sitio de clonación de ADN metagenómico.
Vector según cualquiera de las reivindicaciones 1 a 3 que comprende adicionalmente una secuencia de ADN metagénomico en el sitio de clonación de ADN metagenómico operativamente unido. 5. Vector según cualquiera de las reivindicaciones 1 a 4 en donde el origen de transferencia de ADN es el oriT del plásmido RP4.
6. Vector según cualquiera de las reivindicaciones 1 a 5 que comprende un gen reportero.
7. Vector según la reivindicación 6, en donde dicho gen reportero es el gen de gfp.
8. Una célula hospedadora, que comprende un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) un promotor lacUV5,
ii) una secuencia del atenuador nasF, y
iii) una secuencia del gen-1 del fago T7 que codifica para la ARN polimerasa de T7,
y en donde el promotor está operativamente unido a la secuencia iii).
Una célula hospedadora, que comprende
(a) un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) un promotor lacUV5,
ii) una secuencia del atenuador nasF, y
iii) una secuencia del gen-1 del fago T7 que codifica para la ARN polimerasa de T7,
y en donde el promotor está operativamente unido a la secuencia iii); y
(b) un vector según la reivindicación 1 o un vector según la reivindicación 3, en donde dicho vector contiene además un ADN metagenómico en el sitio de clonación de ADN metagenómico operativamente unido al promotor T7 y en donde dicha célula permite la transcripción de ADN metagenómico desde el promotor T7 presente en dicho vector.
10. Célula según las reivindicaciones 8 ó 9, que carece del represor transcripcional Lacl.
1 l .Una célula hospedadora que comprende un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) una secuencia del gen nahR,
ii) un promotor pnah,
iii) un promotor psal, y
iv) una secuencia del gen N del fago lambda,
en donde el promotor ii) está operativamente unido a la secuencia i), el promotor iii) está operativamente unido a la secuencia iv) y en donde las secuencias i) y iv) se transcriben de manera divergente.
12.Una célula hospedadora que comprende
(a) un fragmento de ADN insertado en su genoma en donde dicho fragmento comprende
i) una secuencia del gen nahR,
ii) un promotor pnah,
iii) un promotor psal, y
iv) una secuencia del gen N del fago lambda,
en donde el promotor ii) está operativamente unido a la secuencia i), el promotor iii) está operativamente unido a la secuencia iv) y en donde las secuencias i) y iv) se transcriben de manera divergente; y
(b) un vector según la reivindicación 2 o un vector según la reivindicación 3, en donde dicho vector contiene además un ADN metagenómico en el sitio de clonación de ADN metagenómico operativamente unido al promotor psal y en donde dicha célula permite la transcripción del ADN metagenómico desde el promotor psal presente en dicho vector.
13. Célula según las reivindicaciones 8 a 12 en donde dicha célula es una bacteria. 14. Célula según la reivindicación 13 en donde dicha bacteria es Escherichia coli.
15. Método para la expresión heteróloga de bibliotecas metagenómicas y analizar la función de genes que comprende el uso de los vectores según las reivindicaciones 1 a 7 o de las células según las reivindicaciones 8 a 14.
16. Método de clonaje de ADN que comprende:
(a) introducir el ADN en uno de los vectores según las reivindicaciones 1 a 7,
(b) introducir dicho vector de clonaj e en una célula hospedadora inicial, preferiblemente en una bacteria,
(c) cultivar dicha célula hospedadora, y
(d)transferir dicho ADN clonado a una o más células huéspedes secundarias.
17. Método para preparar una biblioteca de clones de ADN que comprende:
(a) introducir dicho ADN en uno de los vectores según las reivindicaciones 1 a 7,
(b) introducir dicho vector en una primera célula hospedadora, (c) cultivar dicha célula hospedadora para preparar la primera biblioteca de clones de ADN, y
(d) transferir dicha primera biblioteca a una o más células huéspedes secundarias para preparar una o más bibliotecas secundarias.
PCT/ES2010/070761 2010-11-22 2010-11-22 Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas WO2012069668A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070761 WO2012069668A1 (es) 2010-11-22 2010-11-22 Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070761 WO2012069668A1 (es) 2010-11-22 2010-11-22 Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas

Publications (1)

Publication Number Publication Date
WO2012069668A1 true WO2012069668A1 (es) 2012-05-31

Family

ID=46145395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070761 WO2012069668A1 (es) 2010-11-22 2010-11-22 Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas

Country Status (1)

Country Link
WO (1) WO2012069668A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155822B2 (en) 2015-05-14 2021-10-26 Universidad De Los Andes Transposon that promotes functional DNA expression in episomal DNAs and method to enhance DNA transcription during functional analysis of metagenomic libraries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050240A2 (en) * 2001-12-12 2003-06-19 Eli Lilly And Company Expression system
WO2007141540A2 (en) * 2006-06-09 2007-12-13 Sinvent As Rk2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species
ES2299284A1 (es) * 2004-11-04 2008-05-16 Universidad Pablo De Olavide Sistema de expresion de genes heterologos controlado por un atenuador de la transcripcion.
US20100255561A1 (en) * 2009-04-06 2010-10-07 Eric Steinmetz Host-vector system for cloning and expressing genes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050240A2 (en) * 2001-12-12 2003-06-19 Eli Lilly And Company Expression system
ES2299284A1 (es) * 2004-11-04 2008-05-16 Universidad Pablo De Olavide Sistema de expresion de genes heterologos controlado por un atenuador de la transcripcion.
WO2007141540A2 (en) * 2006-06-09 2007-12-13 Sinvent As Rk2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species
US20100255561A1 (en) * 2009-04-06 2010-10-07 Eric Steinmetz Host-vector system for cloning and expressing genes

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
EHRMANN M. ET AL.: "In vitro stability and expression of green fluorescent protein under high pressure conditions", LETTERS IN APPLIED MICROBIOLOGY, vol. 32, no. 4, April 2001 (2001-04-01), pages 230 - 234 *
NIKODINOVIC J. ET AL.: "A second generation snp-derived Escherichia coli-Streptomyces shuttle expression vector that is generally transferable by conjugation", PLASMID., vol. 56, no. 3., 1 November 2006 (2006-11-01), pages 223 - 227 *
ONAKA H. ET AL.: "pTOYAMAcos, pTYM18, and pTYml9,actinomycete-Escherichia coli integrating vectorsfor heterologous gene expression", JOURNAL OF ANTIBIOTICS., vol. 56, no. 11, November 2003 (2003-11-01), pages 950 - 956 *
ROYO J.L. ET AL.: "In vivo gene regulation in Salmonella spp. by a salicylate-dependent control ciccuit", NATURE METHODS, vol. 4, no. 11, November 2007 (2007-11-01), pages 937 - 942 *
WAGNER S. ET AL.: "Tuning Escherichia coli for membrane protein overexpression", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 105, no. 38, 23 September 2008 (2008-09-23), pages 14371 - 14375 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155822B2 (en) 2015-05-14 2021-10-26 Universidad De Los Andes Transposon that promotes functional DNA expression in episomal DNAs and method to enhance DNA transcription during functional analysis of metagenomic libraries

Similar Documents

Publication Publication Date Title
US20190241899A1 (en) Methods of Crispr Mediated Genome Modulation in V. Natriegens
US11299732B2 (en) Compositions and methods for transcription-based CRISPR-Cas DNA editing
JP2003506007A (ja) 抗原送達用プラスミド維持系
Lynch et al. Broad host range vectors for stable genomic library construction
US20080166773A1 (en) Vectors, kits and methods for cloning dna
EP2041288B1 (en) Rk2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species
ES2235159T5 (es) Bacteria lactico recombinante que contiene un promotor insertado.
Bari et al. CRISPR–Cas10 assisted editing of virulent staphylococcal phages
WO2012069668A1 (es) Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas
Bartosik et al. Novel broad-host-range vehicles for cloning and shuffling of gene cassettes
US20110027313A1 (en) Viral recombineering and uses thereof
ES2383078B1 (es) Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas.
US20230383286A1 (en) Phage engineering: protection by circularized intermediate
ES2383076A1 (es) Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas.
ES2383077A1 (es) Sistemas de expresión heteróloga para el análisis funcional de bibliotecas metagenómicas.
US7910522B2 (en) Method for the expression of unknown environmental DNA into adapted host cells
WO2016180379A1 (es) Nuevo transposón que promueve la expresión funcional de genes en adns episomales y un método para aumentar la transcripción de adn en análisis funcionales de librerías metagenómicas
Low et al. Isolation and analysis of suppressor mutations in tumor-targeted msbB Salmonella
Chen Novel genetic engineering tools for functional alteration of mammalian gut microbiomes
TABASSUM et al. Sexuality in Bacteria
Duan et al. Development of a CRISPR/Cas9-induced gene editing system for Pseudoalteromona fuliginea and its applications in functional genomics
Fernando et al. Enhancing the Ministring DNA (msDNA) Purification Using PI-Sce1 Homing Endonuclease/CRISPR-Cas3 Recombinant System
Árnadóttir Utilisation of endogenous CRISPR-Cas systems of Thermus thermophilus for genetic manipulation
McWhinnie Design of temperature inducible transcription factors and cognate promoters
WO2014201394A2 (en) Methods and compositions for the construction of prokaryotic organisms having multiple chromosomes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860005

Country of ref document: EP

Kind code of ref document: A1