WO2006049095A1 - Thermal print head and method for manufacturing same - Google Patents

Thermal print head and method for manufacturing same Download PDF

Info

Publication number
WO2006049095A1
WO2006049095A1 PCT/JP2005/019879 JP2005019879W WO2006049095A1 WO 2006049095 A1 WO2006049095 A1 WO 2006049095A1 JP 2005019879 W JP2005019879 W JP 2005019879W WO 2006049095 A1 WO2006049095 A1 WO 2006049095A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
print head
thermal print
protective film
heating resistor
Prior art date
Application number
PCT/JP2005/019879
Other languages
French (fr)
Japanese (ja)
Inventor
Takumi Yamade
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to EP05799068A priority Critical patent/EP1815996A1/en
Priority to CN2005800376413A priority patent/CN101052531B/en
Priority to US11/666,630 priority patent/US7697020B2/en
Publication of WO2006049095A1 publication Critical patent/WO2006049095A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33505Constructional details
    • B41J2/3351Electrode layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33505Constructional details
    • B41J2/3353Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3359Manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Definitions

  • the present invention relates to a thermal print head used for a thermal printer.
  • the present invention also relates to a method for manufacturing a thermal print head.
  • FIG. 11 of the present application shows an example of a thermal print head as a related technique of the present invention.
  • the illustrated thermal print head B includes an insulating substrate 91 on which a glaze layer 92 made of glass, a heating resistor 93, an electrode 94, and a protective film 96 are formed. Are stacked.
  • the protective film 96 is made of a material mainly composed of glass.
  • the electrode 94 can be formed of a metal material having excellent conductivity such as Al, Cu, Au, and the like.
  • a metal material having excellent conductivity such as Al, Cu, Au, and the like.
  • Au is a chemically stable material and has excellent corrosion resistance.
  • Au has lower electrical resistance (resistivity) than A1.
  • the electrode 94 is made of Au, the voltage drop force is smaller than when A1 is used, and the power loss can be reduced.
  • an object of the present invention is to provide a thermal print head in which adhesion between an Au electrode and a protective film is enhanced.
  • Another object of the present invention is to provide a method for manufacturing such a thermal print head.
  • the present invention takes the following technical means.
  • a thermal printhead provided by the first aspect of the present invention includes a substrate, a glaze layer, a heating resistor, and an electrode mainly composed of Au for energizing the heating resistor. And a protective film covering the heating resistor and the electrode. A plurality of recesses are formed on the surface of the electrode.
  • the adhesion between the electrode and the protective film can be increased.
  • the adhesion can be improved by the so-called anchor effect.
  • a relatively large stress can be generated in the protective film in the direction along the boundary surface due to the difference in thermal expansion coefficient between the electrode and the protective film.
  • the displacement in the direction along the boundary surface is less likely to occur, which is suitable for suppressing the peeling of the protective film from such a surface.
  • the plurality of recesses are formed by setting the center line average roughness Ra of the surface of the electrode to 0.1 to 0.5 / z m. According to such a configuration, the above-described anchor effect is appropriately exhibited.
  • the plurality of concave portions are formed by a plurality of through portions penetrating in the thickness direction of the electrode.
  • the penetrating portion may be formed to have a circular cross section.
  • the diameter of the through hole is, for example, 1 to: LO / zm.
  • the through portion may be formed to have a rectangular cross section instead of a circular cross section.
  • the rectangle has a short side and a long side, and the length of the short side (width of the rectangle) is, for example, 1 to 1 O / zm.
  • a part of the protective film that has penetrated into the penetrating portion is in direct contact with the heating resistor that is the glaze layer formed on the lower layer side of the electrode.
  • the heating resistor that is the glaze layer formed on the lower layer side of the electrode.
  • the heat generating resistor has better adhesion to the protective film than the electrode, securing the adhesion region between the protective film and the glaze layer or the heat generating resistor improves the adhesion of the protective film. Peeling can be suppressed.
  • the thermal print head of the present invention further includes an insulating film formed on the lower layer side of the electrode.
  • the insulating film has better adhesion to the protective film than the electrode. Therefore, even with such a configuration, a part of the protective film that has entered the through portion directly adheres to the insulating film, thereby improving the adhesion of the protective film and suitable for suppressing the peeling of the protective film. It is.
  • a thermal printhead provided by the second aspect of the present invention includes a substrate, a glaze layer, a heating resistor, and an electrode mainly composed of Au for energizing the heating resistor. And a protective film covering the heating resistor and the electrode. A metal thin film containing at least one of Ni, Cr, and Ti is formed on the electrode.
  • the adhesion between the electrode and the protective film can be increased.
  • metals such as Ni, Cr, and Ti have better adhesion to the protective film than Au. Therefore, peeling of the protective film can be suppressed by interposing the metal thin film containing the metal between the electrode and the protective film.
  • the above metal since the above metal has excellent adhesion to Au, no defects occur when the metal thin film is peeled off from the electrode.
  • a method of manufacturing a thermal print head includes a step of forming a glaze layer on a substrate, a step of forming an electrode containing Au as a main component on the glaze layer, a step of forming a heating resistor, and the heating resistor and electrode. Forming a protective film covering the substrate. Further, according to the manufacturing method, the step of heat-treating the substrate is provided after the step of forming the electrode.
  • the manufacturing method of the present invention further includes a step of forming a metal film including at least one of Ni, Cr, and Ti between the glaze layer and the electrode. According to this, the metal component of the metal film diffuses to the vicinity of the surface of the electrode. Since the metal has better adhesion to the protective film than Au, the metal component diffused in the vicinity of the electrode surface functions as an adhesive and improves the adhesion of the protective film.
  • FIG. 1A is a plan view schematically showing a main part of a thermal print head according to a first embodiment of the present invention
  • FIG. 1B is a partial plan view showing a modified example of the common electrode. .
  • FIG. 2A is a cross-sectional view showing the thermal print head of the first embodiment
  • FIG. 2B is a cross-sectional view schematically showing the states of the surfaces of the common electrode and the individual electrodes.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • FIG. 4 is a cross-sectional view showing a modified example of the thermal print head of the first embodiment.
  • FIG. 5 is a plan view schematically showing a main part of a thermal print head according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a thermal print head according to a second embodiment.
  • FIGS. 7A to 7D are cross-sectional views illustrating a method for manufacturing the thermal print head of the second embodiment.
  • FIGS. 8A to 8B are cross-sectional views illustrating a step that follows the step of FIG.
  • FIG. 9 is a cross-sectional view illustrating a step that follows the step of FIG. 8.
  • FIG. 10 is a cross-sectional view showing a modified example of the thermal print head of the second embodiment.
  • FIG. 11 is a cross-sectional view showing an example of a thermal print head as a related technique of the present invention.
  • Thermal print head A1 consists of substrate 1, glaze layer 2, heating resistor 3, common electrode 41, and multiple It has individual electrodes 42, a metal thin film 5, and a protective film 6 (see FIG. 2A).
  • the substrate 1 is a flat plate having a rectangular shape in plan view, and is made of an insulator such as alumina ceramic.
  • a glaze layer 2 On the substrate 1, a glaze layer 2, a heating resistor 3, an electrode layer 4 (each electrode 41, 42), a metal thin film 5 and a protective film 6 are laminated.
  • the glaze layer 2 serves as a heat storage layer. Furthermore, the glaze layer 2 provides a smooth surface suitable for forming the common electrode 3 and the individual electrodes 4. According to this configuration, the common electrode 3 and the individual electrode 4 can be securely fixed on the substrate 1.
  • the glaze layer 2 is formed by printing a glass paste and firing the paste.
  • the glaze layer 2 includes a raised portion 21 that has an arcuate outer surface.
  • the heating resistor 3 is made of, for example, TaSiO formed by a CVD method or a sputtering method.
  • the raised layer 21 is formed so as to cover the raised portion 21.
  • the thickness of the heating resistor 3 is, for example, 0.2 to 2. O / zm.
  • the electrode layer 4 is laminated on the upper layer side of the heating resistor 3, and is formed by sputtering, for example, a metal material containing Au as a main component.
  • the thickness of the electrode layer 4 is, for example, 0.3 to 2.
  • a part of the electrode layer 4 is selectively etched by, for example, a photolithography method, whereby the common electrode 41 and the individual electrode 42 are formed.
  • the common electrode 41 includes a common line portion 41A and a plurality of extending portions 41B. As shown in FIG. 1A, the common line portion 41A includes a portion (main portion) extending along the longitudinal direction of the substrate 1 and a portion (sub-portion) extending from the both end portions in the short direction of the substrate 1. . Each of the extending portions 41B protrudes from the main portion of the common line portion 41A in the short direction of the substrate 1.
  • the common line portion 41A is a portion for allowing current to flow collectively to a heating resistor portion 31 (to be described later) with a terminal portion force outside the figure, and has a large area.
  • each individual electrode 42 has its one end extending to each extending portion 41B so that a part of the heating resistor 3 is exposed in the vicinity of the top surface of the raised portion 21 of the glaze layer 2. And spaced apart from each other.
  • the other end of each individual electrode 42 is electrically connected to the driving IC 7.
  • the driving IC 7 is for controlling energization based on image data for printing that is also transmitted with an external force, and is mounted on the substrate 1. When the drive IC 7 selectively energizes the individual electrode 42, it faces the individual electrode 42 of the heating resistor 3.
  • the exposed portion between the extending portion 41B functions as the heat generating resistor portion 31 and is configured to form one heat generating dot.
  • a plurality of recesses are formed in the extended portions 41B of the common electrode and the surfaces 41Ba and 42a of the individual electrodes 42.
  • the plurality of recesses are formed by making the surfaces 41Ba and 42a rough.
  • the center line average roughness Ra of the surfaces 41Ba and 42a is 0.1 to 0.5 m.
  • Such irregularities can be formed by a surface treatment technique such as light etching.
  • the metal thin film 5 is laminated on the upper layer side of the common line portion 41A, and is made of Ni, Cr, or Ti.
  • a metal containing at least one kind is formed by a plating process or a sputtering method.
  • the thickness of the metal thin film 5 is set to, for example, 0.2 to 2. O / z m.
  • a plurality of through holes h having a circular shape in a plan view (circular in cross section) are formed as penetrating portions that penetrate to the lower glaze layer 2 or the heating resistor 3.
  • the diameter of the through hole h is preferably 1 to: LO / z m.
  • the through hole h can be formed by etching using a glass mask, for example.
  • a slit S having a long rectangular cross section may be formed instead of the through hole h.
  • Each slit S has a short side and a long side.
  • the protective film 6 is formed so as to cover the heating resistor 3, the common electrode 41, and the individual electrode 42. For example, a force such as SiO or SiN is also formed.
  • the protective film 6 can be formed by CVD or spa
  • the thickness of the protective film 6 is set to, for example, 3 to: LO / z m. As clearly shown in FIGS. 2 and 3, a part of the protective film 6 enters the through hole h and is in direct contact with the glaze layer 2 and the heating resistor 3.
  • the thermal print head A of the present embodiment a plurality of recesses are formed on the extended portions 41B of the common electrode 41 and the surfaces 41Ba and 42a of the individual electrodes 42. For this reason, part of the protective film 6 (formed on the upper layer side of the electrode layer 4) enters the concave portions of the surfaces 41Ba and 42a, and the adhesion of the protective film 6 can be improved by the so-called anchor effect. Therefore, it is possible to suppress the peeling of the protective film 6 and improve the durability of the thermal print head A1.
  • the center line average roughness Ra of the surfaces 41Ba and 42a is 0.1. When it is set to ⁇ 0.5 / zm, the above-described anchor effect is appropriately exhibited, which is suitable for suppressing peeling of the protective film 6.
  • the adhesion of the protective film 6 can be increased. Specifically, metals such as Ni, Cr, and Ti have a large ionization tendency and are unstable compared to Au, and therefore, an oxide film is easily formed on the surface. The presence of the oxide film makes it possible to ensure adhesion with glass. Therefore, by interposing the metal thin film 5 between the electrode layer 4 (common line portion 41A in this embodiment) and the protective film 6, the peeling of the protective film 6 is suppressed and the durability of the thermal print head is improved. be able to. In addition, since the above metal has excellent adhesion to Au, when the metal thin film 5 is peeled off from the electrode layer 4, no defects are caused.
  • the common line portion 41A and the metal thin film 5 are formed with a plurality of through holes h that communicate with the lower surface of the common line portion 41A.
  • the protective film 6 formed on the upper layer side of the common line portion 41A directly enters the through hole h and directly contacts the glaze layer 2 and the heating resistor 3 formed on the lower layer side of the common line portion 41A. In close contact. Since the glaze layer 2 or the heating resistor 3 has better adhesion to the protective film 6 than the electrode layer 4, it is protected by securing an adhesion area between the protective film 6 and the glaze layer 2 or the heating resistor 3. The adhesion with the film 6 is improved, and as a result, peeling of the protective film 6 can be suppressed.
  • the protective film 6 since a part of the protective film 6 enters the through hole h, even if stress is generated in the protective film 6 along the boundary surface with the lower layer, the displacement in the direction along the boundary surface hardly occurs. Become. Therefore, it is suitable for suppressing peeling of the protective film 6. Furthermore, when the diameter of the through hole h is 1 to 10 / ⁇ ⁇ , a part of the protective film 6 is appropriately filled in the through hole h, while the sectional area of the common line portion 41A is reduced. It can avoid becoming extremely small. As a result, an increase in voltage drop in the common line portion 41A is suppressed, which is preferable. As described above, the slit is used as the penetration portion. Even when the S (Fig.
  • the slit S be formed so as to extend in a direction substantially orthogonal to the width direction of the common line portion 41A.
  • the width (short side length) of the slit S is preferably 1 to 10 / ⁇ ⁇ . Is preferred. In this case, an increase in the amount of voltage drop in the common line portion 41A, where the cross-sectional area of the common line portion 41A does not become extremely small, is suppressed.
  • the common line portion 41A of the common electrode 41 is a portion for supplying a current to the heating resistor portions 31 at once, and is formed to have a relatively large area.
  • FIG. 4 is a cross-sectional view (corresponding to FIG. 3) for explaining a modified example of the thermal print head based on the present embodiment.
  • an insulating film 8 is formed on the lower layer side of the common line portion 41A.
  • a material having excellent adhesion to the constituent material of the protective film 6 for example, SiO, SiN, etc. is appropriately selected and used, for example, Ta
  • Insulating film 8 has better adhesion to protective film 6 than electrode layer 4
  • the thermal print head Ala a part of the protective film 6 enters the through hole h and directly contacts the insulating film 8, thereby improving the adhesion of the protective film 6 and preventing the protective film 6 from being peeled off. Can be suppressed.
  • the insulating film 8 has better adhesion to the protective film 6 than the glaze layer 2 and the heating resistor 3.
  • the thermal print head Ala has an electrode layer 4 formed on the insulating film 8, and even though the thermal print head Ala is in a range, the adhesive force of the protective film 6 is higher than that of the thermal print head A 1 described above. improves. Therefore, according to the thermal print head Ala, peeling of the protective film 6 can be more effectively suppressed.
  • FIGS. 5 and 6 show a thermal print head A2 according to a second embodiment of the present invention.
  • the thermal print head A2 includes a substrate 1, a glaze layer 2, a heating resistor 3, a common electrode 410, a plurality of individual electrodes 420, and a protective film 6.
  • the protective film 6 is omitted.
  • a glaze layer 2 On the substrate 1, a glaze layer 2, an electrode layer 4, a heating resistor 3 and a protective film 6 are sequentially laminated.
  • the glaze layer 2 has a raised portion 21 whose outer surface is raised in a substantially arc shape. Yes.
  • the electrode layer 4 is laminated on the upper layer side of the glaze layer 2. Part of the electrode layer 4 is selectively etched, and a common electrode 410 and individual electrodes 420 are formed by performing a heat treatment to be described later.
  • the common electrode 410 has the same shape as that of the first embodiment, and includes a common line portion 410A and a plurality of extending portions 410B. However, the through hole is not formed in the common line portion 410A, and this is different from the shape of the common electrode 41 in the first embodiment.
  • Each individual electrode 420 is formed at a distance from each extending portion 410B so as to expose a part of the raised portion 21 in the vicinity of the top surface of the raised portion 21 of the glaze layer.
  • the glass component of the lower glaze layer 2 diffuses to the vicinity of these surfaces.
  • the glass component diffused near the surface of the electrode is schematically represented by dots. Such diffusion of the glass component is achieved by performing a heat treatment described later.
  • the heating resistor 3 is laminated on the upper layer side of the electrode layer 4.
  • the heating resistor 3 is formed so as to cover the exposed portion of the raised portion 21 of the glaze layer and to straddle one end portion of the extending portion 410B and one end portion of the individual electrode 420.
  • an exposed portion between the extending portion 410B and the individual electrode 420 opposed thereto functions as the heating resistor 31 and is configured to form one heating dot. Therefore, in this embodiment, the heating resistor 3 is formed on the upper layer side of the electrode layer 4 and the metal thin film 5 is formed.
  • the laminated structure of the first embodiment is used. Is different.
  • the glaze layer 2 is formed on the substrate 1 so as to have a raised portion 21 whose outer surface is raised in a substantially arc shape.
  • the glaze layer 2 is formed by printing and baking a glass paste.
  • an electrode layer 4 is formed on the glaze layer 2.
  • the electrode layer 4 is formed by printing and baking a metal paste mainly composed of Au.
  • a part of the electrode layer 4 is selectively etched by photolithography or the like to form a common electrode 410 ′ and individual electrodes 420 ′ in which the glass component is not diffused, as shown in FIG. 7C.
  • the substrate 1 is subjected to a heat treatment at 800 ° C. to 900 ° C.
  • the glass component of the glaze layer 2 diffuses into the common electrode 410 ′ and the individual electrode 420 ′, and the common electrode 410 and the individual electrode 42 0 containing the glass component in the vicinity of these surfaces. Is formed.
  • the heating resistor layer 3 ′ is formed by, for example, depositing TaSiO by CVD or sputtering.
  • the protective film 6 is formed by, for example, SiO
  • SiN is deposited by CVD or sputtering.
  • the glass component of the glaze layer 2 is diffused near the surfaces of the common electrode 410 and the individual electrode 420. Since glass has better adhesion to the protective film 6 than Au, the glass component diffused near the surface of the common electrode 410 and the individual electrode 420 functions as an adhesive, and the adhesion of the protective film 6 is improved. . Therefore, it is possible to improve the durability of the thermal print head A2.
  • FIG. 10 is a cross-sectional view for explaining a modification of the thermal print head according to the second embodiment.
  • the thermal print head A2a shown in FIG. 10 has a configuration in which a metal film 9 is formed between the glaze layer 2 and the electrode layer 4 by a sputtering method or the like.
  • the metal film 9 is formed by forming a metal containing, for example, Ni, Cr, or Ti on the glaze layer 2 by sputtering.
  • the thermal print head A2a by performing heat treatment after the electrodes are formed as described above, the metal components contained in the metal film 9 are diffused to the vicinity of the surface, thereby forming the common electrode 411 and the individual electrodes 421.
  • the metal Since the metal has better adhesion to the protective film 6 than Au, the metal component diffused in the vicinity of the surfaces of the common electrode 411 and the individual electrode 421 functions as an adhesive, and the adhesion of the protective film 6 is improved. improves.
  • the metal component of the metal film 9 may have better adhesion to the protective film 6 than the glass component of the glaze layer 2, and if this is applied, the thermal print head A2a is preferred.
  • the metal film 9 is a thin film having a predetermined thickness or less.
  • the glass component of the glaze layer 2 can be expected to diffuse to the vicinity of the surfaces of the common electrode 411 and the individual electrode 421.
  • the present invention is not limited to the embodiments described above.
  • the recesses formed in the electrodes are not limited to those formed by etching, and may be formed by other methods such as sandblasting or using a stepper.
  • the formation of the recess by light etching may be performed on only a part of the electrode, or may be performed on the entire electrode.
  • the formation of the metal thin film 5 or the through hole h may be performed on only a part of the electrode or may be performed on the entire electrode.
  • the through portion is not limited to a through hole having a circular shape in plan view or a slit having a rectangular shape in plan view.
  • the shape, number, arrangement, and the like of the through portions can be set as appropriate.
  • the protective film is not limited to the single-layer structure in each of the above embodiments.
  • the protective film may have a laminated structure including two or more layers provided with an abrasion resistant layer.
  • the thermal print head of the present invention may be a thin film type or a thick film type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electronic Switches (AREA)

Abstract

A thermal print head (A1) is provided with a board (1), a grazed layer (2), a heat element (3), an electrode (4) having Au as a main ingredient for carrying electricity to the heat element (3), and a protection film (6) for covering the heat element (3) and the electrode (4). On the surface of the electrode (4), a plurality of recessed parts are formed.

Description

明 細 書  Specification
サーマルプリントヘッドおよびその製造方法  Thermal print head and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、サーマルプリンタに用いられるサーマルプリントヘッドに関する。また本 発明は、サーマルプリントヘッドの製造方法に関する。  The present invention relates to a thermal print head used for a thermal printer. The present invention also relates to a method for manufacturing a thermal print head.
背景技術  Background art
[0002] 従来、感熱紙等の記録紙に印字を行うための装置として様々なサーマルプリントへ ッドが提案されている (例えば下記の特許文献 1参照)。本願の図 11は、本発明の関 連技術としてのサーマルプリントヘッドの一例を示す。具体的には、図示されたサー マルプリントヘッド Bは、絶縁性の基板 91を含んでおり、この基板上に、ガラスからな るグレーズ層 92、発熱抵抗体 93、電極 94、および保護膜 96が積層形成されている 。保護膜 96はガラスを主成分とする材料カゝら形成されている。このサーマルプリント ヘッド Bによる印字処理時には、感熱紙などの記録紙を保護膜 96上に圧接させた状 態で相対移動させる。この際に、発熱抵抗体 93において発生した熱が記録紙に伝 わり、所望の印字がなされる。  Conventionally, various thermal print heads have been proposed as apparatuses for printing on recording paper such as thermal paper (see, for example, Patent Document 1 below). FIG. 11 of the present application shows an example of a thermal print head as a related technique of the present invention. Specifically, the illustrated thermal print head B includes an insulating substrate 91 on which a glaze layer 92 made of glass, a heating resistor 93, an electrode 94, and a protective film 96 are formed. Are stacked. The protective film 96 is made of a material mainly composed of glass. During the printing process by the thermal print head B, a recording paper such as a thermal paper is moved relative to the protective film 96 in a pressure contact state. At this time, heat generated in the heating resistor 93 is transmitted to the recording paper, and desired printing is performed.
[0003] 上記した構成のサーマルプリントヘッドにぉ 、て、電極 94は、例えば Al、 Cu、 Au などの導電性の優れた金属材料にて形成することが可能である。このうち Auは、化 学的に安定した材料であり、耐食性に優れている。そのため、電極 94を Au製とすれ ば、電極の腐食に起因する通電不良を回避することができる。また、 Auは、 A1などに 比べると電気抵抗 (抵抗率)が小さい。このため、電極 94を Auで形成すると、 A1を用 いた場合よりも電圧降下量力 、さくなり、電力ロスを低減することができる。  In the thermal printhead having the above-described configuration, the electrode 94 can be formed of a metal material having excellent conductivity such as Al, Cu, Au, and the like. Among these, Au is a chemically stable material and has excellent corrosion resistance. For this reason, if the electrode 94 is made of Au, it is possible to avoid poor conduction due to corrosion of the electrode. In addition, Au has lower electrical resistance (resistivity) than A1. For this reason, when the electrode 94 is made of Au, the voltage drop force is smaller than when A1 is used, and the power loss can be reduced.
[0004] 電極を Au製とすることで、上述したような利点が得られる力 その一方で次のような 不具合が生じうる。すなわち、 Auは、 A1など他の良導電性金属と比較すると保護膜 を形成するガラスとの密着性が悪い。このため、保護膜が電極 94から剥離するおそ れがあり、サーマルプリントヘッドの耐久性の低下につながる。また、電極と保護膜と の熱膨張率の差により保護膜に応力が発生するが、この応力は、保護膜の剥離を助 長すること〖こなる。 [0005] 特許文献 1 :特開 2002— 67367号公報 [0004] By making the electrode made of Au, it is possible to obtain the advantages as described above. On the other hand, the following problems may occur. That is, Au has poor adhesion to the glass forming the protective film compared to other highly conductive metals such as A1. For this reason, the protective film may be peeled off from the electrode 94, leading to a decrease in durability of the thermal print head. In addition, a stress is generated in the protective film due to the difference in coefficient of thermal expansion between the electrode and the protective film. This stress promotes peeling of the protective film. Patent Document 1: Japanese Patent Application Laid-Open No. 2002-67367
発明の開示  Disclosure of the invention
[0006] 本発明は、上記した事情のもとで考え出されたものである。そこで本発明は、 Au製 の電極と保護膜の密着性が高められたサーマルプリントヘッドを提供することを課題 とする。さらに本発明は、そのようなサーマルプリントヘッドの製造方法を提供すること を別の課題とする。  [0006] The present invention has been conceived under the circumstances described above. Accordingly, an object of the present invention is to provide a thermal print head in which adhesion between an Au electrode and a protective film is enhanced. Another object of the present invention is to provide a method for manufacturing such a thermal print head.
[0007] 上記課題を解決するため、本発明では、次の技術的手段を講じている。  [0007] In order to solve the above problems, the present invention takes the following technical means.
[0008] 本発明の第 1の側面によって提供されるサーマルプリントヘッドは、基板と、グレー ズ層と、発熱抵抗体と、この発熱抵抗体に通電を行なうための Auを主成分とする電 極と、上記発熱抵抗体および電極を覆う保護膜とを具備している。上記電極の表面 には、複数の凹部が形成されている。 [0008] A thermal printhead provided by the first aspect of the present invention includes a substrate, a glaze layer, a heating resistor, and an electrode mainly composed of Au for energizing the heating resistor. And a protective film covering the heating resistor and the electrode. A plurality of recesses are formed on the surface of the electrode.
[0009] このような構成によれば、上記電極と上記保護膜との密着力を高めることができる。 According to such a configuration, the adhesion between the electrode and the protective film can be increased.
具体的には、電極の表面に複数の凹部を形成することにより、電極を覆う保護膜の 一部が凹部内に入り込む。その結果いわゆるアンカー効果による密着力の向上を図 ることができる。また、保護膜には、電極と保護膜との熱膨張率の差によってこれらの 境界面に沿う方向に比較的大きな応力が生じうる。本発明によれば、上記境界面に 沿う方向のズレが生じ難くなり、このような面からも保護膜の剥離を抑制するのに好適 である。  Specifically, by forming a plurality of recesses on the surface of the electrode, a part of the protective film covering the electrode enters the recess. As a result, the adhesion can be improved by the so-called anchor effect. In addition, a relatively large stress can be generated in the protective film in the direction along the boundary surface due to the difference in thermal expansion coefficient between the electrode and the protective film. According to the present invention, the displacement in the direction along the boundary surface is less likely to occur, which is suitable for suppressing the peeling of the protective film from such a surface.
[0010] 好ましくは、上記複数の凹部は、上記電極の表面の中心線平均粗さ Raが 0. 1〜0 . 5 /z mとされることにより形成されている。このような構成によれば、上述したアンカ 一効果が適切に発揮される。  [0010] Preferably, the plurality of recesses are formed by setting the center line average roughness Ra of the surface of the electrode to 0.1 to 0.5 / z m. According to such a configuration, the above-described anchor effect is appropriately exhibited.
[0011] 好ましくは、上記複数の凹部は、上記電極の厚み方向に貫通する複数の貫通部に より形成されている。上記貫通部は、円形の断面を有するように形成してもよい。この 場合、上記貫通孔の直径は、例えば 1〜: LO /z mである。また、本発明では、円形の 断面に代えて、矩形の断面となるように上記貫通部を形成してもよい。この場合、当 該矩形は短辺および長辺を有するものとし、短辺の長さ(矩形の幅)は、例えば 1〜1 O /z mとする。このような構成によれば、貫通部に入り込んだ保護膜の一部は、電極 の下層側に形成されたグレーズ層ゃ発熱抵抗体と直接密着する。グレーズ層ある ヽ は発熱抵抗体は、電極よりも保護膜に対する密着性が良好であるため、保護膜とグ レーズ層ゃ発熱抵抗体との密着領域を確保することによって保護膜の密着力が向上 し、保護膜の剥離を抑制することができる。 [0011] Preferably, the plurality of concave portions are formed by a plurality of through portions penetrating in the thickness direction of the electrode. The penetrating portion may be formed to have a circular cross section. In this case, the diameter of the through hole is, for example, 1 to: LO / zm. In the present invention, the through portion may be formed to have a rectangular cross section instead of a circular cross section. In this case, the rectangle has a short side and a long side, and the length of the short side (width of the rectangle) is, for example, 1 to 1 O / zm. According to such a configuration, a part of the protective film that has penetrated into the penetrating portion is in direct contact with the heating resistor that is the glaze layer formed on the lower layer side of the electrode. There is a glaze layer Since the heat generating resistor has better adhesion to the protective film than the electrode, securing the adhesion region between the protective film and the glaze layer or the heat generating resistor improves the adhesion of the protective film. Peeling can be suppressed.
[0012] 好ましくは、本発明のサーマルプリントヘッドは、上記電極の下層側に形成された 絶縁膜をさらに具備する。絶縁膜は、電極よりも保護膜に対する密着性に優れている 。したがって、このような構成によっても、上記貫通部に入り込んだ保護膜の一部が 絶縁膜と直接密着することによって保護膜の密着力が向上し、保護膜の剥離の抑制 を図るのには好適である。  [0012] Preferably, the thermal print head of the present invention further includes an insulating film formed on the lower layer side of the electrode. The insulating film has better adhesion to the protective film than the electrode. Therefore, even with such a configuration, a part of the protective film that has entered the through portion directly adheres to the insulating film, thereby improving the adhesion of the protective film and suitable for suppressing the peeling of the protective film. It is.
[0013] 本発明の第 2の側面によって提供されるサーマルプリントヘッドは、基板と、グレー ズ層と、発熱抵抗体と、この発熱抵抗体に通電を行なうための Auを主成分とする電 極と、上記発熱抵抗体および電極を覆う保護膜とを具備している。上記電極上には、 Ni、 Cr、および Tiのうちの少なくとも 1種を含有する金属薄膜が形成されている。  [0013] A thermal printhead provided by the second aspect of the present invention includes a substrate, a glaze layer, a heating resistor, and an electrode mainly composed of Au for energizing the heating resistor. And a protective film covering the heating resistor and the electrode. A metal thin film containing at least one of Ni, Cr, and Ti is formed on the electrode.
[0014] このような構成によれば、本発明の第 1の側面と同様に、電極と保護膜との密着力 を高めることができる。すなわち、 Ni、 Cr、 Tiなどの金属は、 Auよりも保護膜との密着 性に優れている。したがって、上記金属を含む金属薄膜を電極と保護膜との間に介 在させることにより、保護膜の剥離を抑制することができる。また、上記金属は Auとの 付着力に優れて ヽるため、金属薄膜が電極から剥離すると ヽぅ不具合が生じることも ない。  [0014] According to such a configuration, as in the first aspect of the present invention, the adhesion between the electrode and the protective film can be increased. In other words, metals such as Ni, Cr, and Ti have better adhesion to the protective film than Au. Therefore, peeling of the protective film can be suppressed by interposing the metal thin film containing the metal between the electrode and the protective film. In addition, since the above metal has excellent adhesion to Au, no defects occur when the metal thin film is peeled off from the electrode.
[0015] 本発明の第 3の側面によれば、サーマルプリントヘッドの製造方法が提供される。こ の製造方法は、基板上にグレーズ層を形成する工程と、上記グレーズ層上に Auを 主成分とする電極を形成する工程と、発熱抵抗体を形成する工程と、上記発熱抵抗 体および電極を覆う保護膜を形成する工程とを有する。さらに当該製造方法によれ ば、上記電極を形成する工程の後に、上記基板を熱処理する工程が設けられる。  [0015] According to a third aspect of the present invention, a method of manufacturing a thermal print head is provided. The manufacturing method includes a step of forming a glaze layer on a substrate, a step of forming an electrode containing Au as a main component on the glaze layer, a step of forming a heating resistor, and the heating resistor and electrode. Forming a protective film covering the substrate. Further, according to the manufacturing method, the step of heat-treating the substrate is provided after the step of forming the electrode.
[0016] このような製造方法によれば、電極の下層に形成されたグレーズ層のガラス成分が 電極の表面近傍まで拡散する。ガラスは、 Auよりも保護膜に対する密着性に優れて いるため、電極の表面近傍に拡散したグレーズ層のガラス成分が接着剤として機能 し、保護膜の密着力が向上する。その結果、サーマルプリントヘッドの耐久性の向上 を図ることができる。 [0017] 好ましくは、本発明の製造方法は、上記グレーズ層と上記電極の間に、 Ni、 Cr、お よび Tiのうちの少なくとも 1種を含む金属膜を形成する工程をさらに有する。これによ れば、電極の表面近傍まで金属膜の上記金属成分が拡散する。上記金属は、 Auよ りも保護膜に対する密着性に優れているため、電極の表面近傍に拡散した上記金属 成分が接着剤として機能し、保護膜の密着力が向上する。 [0016] According to such a manufacturing method, the glass component of the glaze layer formed in the lower layer of the electrode diffuses to the vicinity of the surface of the electrode. Since glass has better adhesion to the protective film than Au, the glass component of the glaze layer that has diffused near the surface of the electrode functions as an adhesive, improving the adhesion of the protective film. As a result, the durability of the thermal print head can be improved. [0017] Preferably, the manufacturing method of the present invention further includes a step of forming a metal film including at least one of Ni, Cr, and Ti between the glaze layer and the electrode. According to this, the metal component of the metal film diffuses to the vicinity of the surface of the electrode. Since the metal has better adhesion to the protective film than Au, the metal component diffused in the vicinity of the electrode surface functions as an adhesive and improves the adhesion of the protective film.
[0018] 本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明 によって、より明ら力となろう。  [0018] Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1Aは本発明の第 1実施例に基づくサーマルプリントヘッドの要部を概略的に 示す平面図であり、図 1Bは共通電極の改変例を示す部分平面図である。  FIG. 1A is a plan view schematically showing a main part of a thermal print head according to a first embodiment of the present invention, and FIG. 1B is a partial plan view showing a modified example of the common electrode. .
[図 2]図 2Aは第 1実施例のサーマルプリントヘッドを示す断面図であり、図 2Bは共通 電極および個別電極の表面の状態を模式的に示す断面図である。  FIG. 2A is a cross-sectional view showing the thermal print head of the first embodiment, and FIG. 2B is a cross-sectional view schematically showing the states of the surfaces of the common electrode and the individual electrodes.
[図 3]図 1の III III線に沿う断面図である。  FIG. 3 is a sectional view taken along line III-III in FIG.
[図 4]第 1実施例のサーマルプリントヘッドの改変例を示す断面図である。  FIG. 4 is a cross-sectional view showing a modified example of the thermal print head of the first embodiment.
[図 5]本発明の第 2実施例に基づくサーマルプリントヘッドの要部を概略的に示す平 面図である。  FIG. 5 is a plan view schematically showing a main part of a thermal print head according to a second embodiment of the present invention.
[図 6]第 2実施例のサーマルプリントヘッドを示す断面図である。  FIG. 6 is a cross-sectional view showing a thermal print head according to a second embodiment.
[図 7]図 7A〜7Dは、第 2実施例のサーマルプリントヘッドを製造する方法を説明する 断面図である。  FIGS. 7A to 7D are cross-sectional views illustrating a method for manufacturing the thermal print head of the second embodiment.
[図 8]図 8A〜8Bは、図 7の工程に続く工程を説明する断面図である。  FIGS. 8A to 8B are cross-sectional views illustrating a step that follows the step of FIG.
[図 9]図 8の工程に続く工程を説明する断面図である。  FIG. 9 is a cross-sectional view illustrating a step that follows the step of FIG. 8.
[図 10]第 2実施例のサーマルプリントヘッドの改変例を示す断面図である。  FIG. 10 is a cross-sectional view showing a modified example of the thermal print head of the second embodiment.
[図 11]本発明の関連技術としてのサーマルプリントヘッドの一例を示す断面図である 発明を実施するための最良の形態  FIG. 11 is a cross-sectional view showing an example of a thermal print head as a related technique of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の好ましい実施例について、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
[0021] 図 1〜図 3は、本発明の第 1実施例に基づくサーマルプリントヘッド A1を示す。サー マルプリントヘッド A1は、基板 1、グレーズ層 2、発熱抵抗体 3、共通電極 41、複数の 個別電極 42、金属薄膜 5、および保護膜 6 (図 2A参照)を備えている。 1 to 3 show a thermal print head A1 according to a first embodiment of the present invention. Thermal print head A1 consists of substrate 1, glaze layer 2, heating resistor 3, common electrode 41, and multiple It has individual electrodes 42, a metal thin film 5, and a protective film 6 (see FIG. 2A).
[0022] 基板 1は、平面視長矩形の平板状であり、たとえばアルミナセラミックなどの絶縁体 で構成されている。基板 1上には、グレーズ層 2、発熱抵抗体 3、電極層 4 (各電極 41 , 42)、金属薄膜 5および保護膜 6が積層して形成されている。グレーズ層 2は、蓄熱 層としての役割を果たす。さらにグレーズ層 2は、共通電極 3や個別電極 4を形成す るのに適する滑らかな表面を提供する。この構成によれば、共通電極 3や個別電極 4 を基板 1上に確実に固定することができる。グレーズ層 2は、ガラスペーストを印刷塗 布した後、同ペーストを焼成することによって形成される。グレーズ層 2は、隆起部 21 を含んでおり、同隆起部は、円弧状の外面を有している。発熱抵抗体 3は、たとえば TaSiOを CVD法またはスパッタリング法によって成膜したものであり、少なくともダレ[0022] The substrate 1 is a flat plate having a rectangular shape in plan view, and is made of an insulator such as alumina ceramic. On the substrate 1, a glaze layer 2, a heating resistor 3, an electrode layer 4 (each electrode 41, 42), a metal thin film 5 and a protective film 6 are laminated. The glaze layer 2 serves as a heat storage layer. Furthermore, the glaze layer 2 provides a smooth surface suitable for forming the common electrode 3 and the individual electrodes 4. According to this configuration, the common electrode 3 and the individual electrode 4 can be securely fixed on the substrate 1. The glaze layer 2 is formed by printing a glass paste and firing the paste. The glaze layer 2 includes a raised portion 21 that has an arcuate outer surface. The heating resistor 3 is made of, for example, TaSiO formed by a CVD method or a sputtering method.
2 2
ーズ層 2の隆起部 21を覆うように形成されている。発熱抵抗体 3の厚みは、たとえば 0 . 2〜2. O /z mである。電極層 4は、発熱抵抗体 3の上層側に積層され、たとえば Au を主成分とする金属材料をスパッタリング法によって成膜したものである。電極層 4の 厚みは、たとえば 0. 3〜2. である。電極層 4は、たとえばフォトリソグラフィ法な どによってその一部分が選択的にエッチングされており、このことにより共通電極 41、 個別電極 42が形成されて ヽる。  The raised layer 21 is formed so as to cover the raised portion 21. The thickness of the heating resistor 3 is, for example, 0.2 to 2. O / zm. The electrode layer 4 is laminated on the upper layer side of the heating resistor 3, and is formed by sputtering, for example, a metal material containing Au as a main component. The thickness of the electrode layer 4 is, for example, 0.3 to 2. A part of the electrode layer 4 is selectively etched by, for example, a photolithography method, whereby the common electrode 41 and the individual electrode 42 are formed.
[0023] 共通電極 41は、コモンライン部 41Aおよび複数の延出部 41Bからなる。図 1Aに示 すように、コモンライン部 41Aは、基板 1の長手方向に沿って延びる部分 (主部)と、 その両端部から基板 1の短手方向に延びる部分 (副部)とを含む。上記各延出部 41 Bは、コモンライン部 41Aの主部から、基板 1の短手方向に突出している。コモンライ ン部 41Aは、図外の端子部力も後述する発熱抵抗部 31に対して一括して電流を流 すための部分であり、大きな面積を有する構成とされている。  [0023] The common electrode 41 includes a common line portion 41A and a plurality of extending portions 41B. As shown in FIG. 1A, the common line portion 41A includes a portion (main portion) extending along the longitudinal direction of the substrate 1 and a portion (sub-portion) extending from the both end portions in the short direction of the substrate 1. . Each of the extending portions 41B protrudes from the main portion of the common line portion 41A in the short direction of the substrate 1. The common line portion 41A is a portion for allowing current to flow collectively to a heating resistor portion 31 (to be described later) with a terminal portion force outside the figure, and has a large area.
[0024] 図 2Aに示すように、各個別電極 42は、グレーズ層 2の隆起部 21の頂上面近傍に おいて発熱抵抗体 3の一部分を露出させるように、その一端が各延出部 41Bと間隔 を隔てて形成されている。各個別電極 42の他端は、駆動 IC7に電気的に接続されて いる。駆動 IC7は、外部力も送信されてくるプリント用の画像データに基づいて通電 を制御するためのものであり、基板 1上に搭載されている。駆動 IC7によって個別電 極 42に選択的に通電がなされると、発熱抵抗体 3のうち、個別電極 42とこれに対向 する延出部 41Bとの間の露出部分が発熱抵抗部 31として機能し、 1つの発熱ドットを 形成するように構成されて 、る。 [0024] As shown in FIG. 2A, each individual electrode 42 has its one end extending to each extending portion 41B so that a part of the heating resistor 3 is exposed in the vicinity of the top surface of the raised portion 21 of the glaze layer 2. And spaced apart from each other. The other end of each individual electrode 42 is electrically connected to the driving IC 7. The driving IC 7 is for controlling energization based on image data for printing that is also transmitted with an external force, and is mounted on the substrate 1. When the drive IC 7 selectively energizes the individual electrode 42, it faces the individual electrode 42 of the heating resistor 3. The exposed portion between the extending portion 41B functions as the heat generating resistor portion 31 and is configured to form one heat generating dot.
[0025] 図 2Bに示すように、共通電極の延出部 41Bおよび個別電極 42の表面 41Ba, 42a には、複数の凹部が形成されている。これら複数の凹部は、表面 41Ba, 42aを凹凸 状の粗面とすることにより形成されている。好ましくは、表面 41Ba, 42aの中心線平 均あらさ Raは、 0. 1〜0. 5 mである。このような凹凸状は、たとえばライトエッチング などの表面処理手法により形成することができる。  As shown in FIG. 2B, a plurality of recesses are formed in the extended portions 41B of the common electrode and the surfaces 41Ba and 42a of the individual electrodes 42. The plurality of recesses are formed by making the surfaces 41Ba and 42a rough. Preferably, the center line average roughness Ra of the surfaces 41Ba and 42a is 0.1 to 0.5 m. Such irregularities can be formed by a surface treatment technique such as light etching.
[0026] 金属薄膜 5は、コモンライン部 41Aの上層側に積層され、 Ni、 Cr、 Tiのうちの  [0026] The metal thin film 5 is laminated on the upper layer side of the common line portion 41A, and is made of Ni, Cr, or Ti.
少なくとも 1種を含む金属をメツキ処理あるいはスパッタリング法によって成膜したもの である。金属薄膜 5の厚みは、たとえば 0. 2〜2. O /z mに設定される。コモンライン部 41 Aおよび金属薄膜 5には、下層側のグレーズ層 2あるいは発熱抵抗体 3まで貫通 する貫通部として、平面視円形 (断面が円形)の複数の貫通孔 hが形成されている。 貫通孔 hの直径は、好ましくは 1〜: LO /z mである。貫通孔 hは、たとえばガラスマスク を利用したエッチングにより形成することができる。なお、貫通部としては、図 1Bに示 すように、貫通孔 hに代えて、断面が長矩形状のスリット Sを形成してもよい。各スリット Sは、短辺と長辺とを有している。  A metal containing at least one kind is formed by a plating process or a sputtering method. The thickness of the metal thin film 5 is set to, for example, 0.2 to 2. O / z m. In the common line portion 41 A and the metal thin film 5, a plurality of through holes h having a circular shape in a plan view (circular in cross section) are formed as penetrating portions that penetrate to the lower glaze layer 2 or the heating resistor 3. The diameter of the through hole h is preferably 1 to: LO / z m. The through hole h can be formed by etching using a glass mask, for example. As shown in FIG. 1B, as the through portion, a slit S having a long rectangular cross section may be formed instead of the through hole h. Each slit S has a short side and a long side.
[0027] 保護膜 6は、発熱抵抗体 3、共通電極 41および個別電極 42を覆うように形成されて おり、たとえば SiO、 SiNなど力も構成されている。保護膜 6は、 CVD法あるいはスパ  [0027] The protective film 6 is formed so as to cover the heating resistor 3, the common electrode 41, and the individual electrode 42. For example, a force such as SiO or SiN is also formed. The protective film 6 can be formed by CVD or spa
2  2
ッタリング法によって形成されている。保護膜 6の厚みは、たとえば 3〜: LO /z mに設定 される。図 2および図 3に良く表れているように、保護膜 6の一部は、貫通孔 hに入り込 み、グレーズ層 2や発熱抵抗体 3と直接密着している。  It is formed by the sputtering method. The thickness of the protective film 6 is set to, for example, 3 to: LO / z m. As clearly shown in FIGS. 2 and 3, a part of the protective film 6 enters the through hole h and is in direct contact with the glaze layer 2 and the heating resistor 3.
[0028] 次に、上記構成を有するサーマルプリントヘッド Aの作用について説明する。 Next, the operation of the thermal print head A having the above configuration will be described.
[0029] 本実施例のサーマルプリントヘッド Aにおいて、共通電極 41の延出部 41Bおよび 個別電極 42の表面 41Ba, 42aには、複数の凹部が形成されている。このため、保護 膜 6 (電極層 4の上層側に形成される)の一部が表面 41Ba, 42aの凹部に入り込み、 いわゆるアンカー効果により保護膜 6の密着力の向上を図ることができる。したがって 、保護膜 6の剥離を抑制して、サーマルプリントヘッド A1の耐久性の向上を図ること ができる。なお、本実施例において、表面 41Ba, 42aの中心線平均あらさ Raが 0. 1 〜0. 5 /z mとされる場合は、上述したアンカー効果が適切に発揮されることとなり、保 護膜 6の剥離を抑制するのに好適である。 In the thermal print head A of the present embodiment, a plurality of recesses are formed on the extended portions 41B of the common electrode 41 and the surfaces 41Ba and 42a of the individual electrodes 42. For this reason, part of the protective film 6 (formed on the upper layer side of the electrode layer 4) enters the concave portions of the surfaces 41Ba and 42a, and the adhesion of the protective film 6 can be improved by the so-called anchor effect. Therefore, it is possible to suppress the peeling of the protective film 6 and improve the durability of the thermal print head A1. In this embodiment, the center line average roughness Ra of the surfaces 41Ba and 42a is 0.1. When it is set to ˜0.5 / zm, the above-described anchor effect is appropriately exhibited, which is suitable for suppressing peeling of the protective film 6.
[0030] また、保護膜 6には、電極層 4を構成する Auと保護膜 6を構成するガラスとの熱膨 張率の差によって、これらの境界面に沿う方向に比較的大きな応力が生じうる。しか しながら、本実施例によれば、上記境界面に沿う方向のズレが生じ難くなり、保護膜 の剥離を抑制するのに好適である。  [0030] In addition, a relatively large stress is generated in the protective film 6 in the direction along the boundary surface due to the difference in thermal expansion coefficient between Au constituting the electrode layer 4 and glass constituting the protective film 6. sell. However, according to the present embodiment, the displacement in the direction along the boundary surface is less likely to occur, which is suitable for suppressing the peeling of the protective film.
[0031] 共通電極 41のコモンライン部 41Aの上層側には、 Ni、 Cr、 Tiのいずれかを含有す る金属薄膜 5が形成されているため、保護膜 6の密着力を高めることができる。具体 的には、 Ni、 Cr、 Tiなどの金属は、 Auと比較するとイオン化傾向が大きく不安定であ るため、表面に酸化膜を形成しやすい。この酸ィ匕膜の存在により、ガラスとの密着性 を確保することが可能となる。したがって、金属薄膜 5を電極層 4 (本実施例ではコモ ンライン部 41A)と保護膜 6との間に介在させることにより、保護膜 6の剥離を抑制し、 サーマルプリントヘッドの耐久性を向上させることができる。また、上記金属は Auとの 付着力に優れて ヽるため、金属薄膜 5が電極層 4から剥離すると ヽぅ不具合が生じる こともない。  [0031] Since the metal thin film 5 containing Ni, Cr, or Ti is formed on the upper side of the common line 41A of the common electrode 41, the adhesion of the protective film 6 can be increased. . Specifically, metals such as Ni, Cr, and Ti have a large ionization tendency and are unstable compared to Au, and therefore, an oxide film is easily formed on the surface. The presence of the oxide film makes it possible to ensure adhesion with glass. Therefore, by interposing the metal thin film 5 between the electrode layer 4 (common line portion 41A in this embodiment) and the protective film 6, the peeling of the protective film 6 is suppressed and the durability of the thermal print head is improved. be able to. In addition, since the above metal has excellent adhesion to Au, when the metal thin film 5 is peeled off from the electrode layer 4, no defects are caused.
[0032] コモンライン部 41 Aおよび金属薄膜 5には、コモンライン部 41 Aの下面まで通じる 複数の貫通孔 hが形成されている。ここで、コモンライン部 41Aの上層側に形成され る保護膜 6は、その一部が貫通孔 hに入り込んでコモンライン部 41Aの下層側に形成 されたグレーズ層 2や発熱抵抗体 3と直接密着する。グレーズ層 2あるいは発熱抵抗 体 3は、電極層 4よりも保護膜 6に対する密着性が良好であるため、保護膜 6とグレー ズ層 2や発熱抵抗体 3との密着領域を確保することによって保護膜 6との密着力が向 上し、その結果、保護膜 6の剥離を抑制することができる。また、保護膜 6の一部が貫 通孔 hに入り込んでいるため、保護膜 6にその下層との境界面に沿った応力が発生し ても、この境界面に沿う方向のズレが生じ難くなる。したがって、保護膜 6の剥離を抑 制するのに好適である。さらに、貫通孔 hの直径が 1〜10 /ζ πιとされている場合には 、保護膜 6の一部が貫通孔 h内に適切に充填される一方で、コモンライン部 41Aの断 面積が極端に小さくなることを回避できる。その結果、コモンライン部 41Aにおける電 圧降下量の増加が抑制され、好適である。なお、上述したように、貫通部としてスリツ ト S (図 IB)が形成されている場合においても、スリット S内に入り込んだ保護膜 6の一 部がグレーズ層 2あるいは発熱抵抗体 3と直接密着することにより、保護膜 6の剥離を 抑制することができる。ここで、スリット Sは、コモンライン部 41Aの幅方向に対して略 直交する方向に延びるように形成するのが好ましぐスリット Sの幅 (短辺の長さ)は 1 〜10 /ζ πιであるのが好ましい。この場合、コモンライン部 41Aの断面積が極端に小さ くなることがなぐコモンライン部 41Aにおける電圧降下量の増加が抑制される。 [0032] The common line portion 41A and the metal thin film 5 are formed with a plurality of through holes h that communicate with the lower surface of the common line portion 41A. Here, the protective film 6 formed on the upper layer side of the common line portion 41A directly enters the through hole h and directly contacts the glaze layer 2 and the heating resistor 3 formed on the lower layer side of the common line portion 41A. In close contact. Since the glaze layer 2 or the heating resistor 3 has better adhesion to the protective film 6 than the electrode layer 4, it is protected by securing an adhesion area between the protective film 6 and the glaze layer 2 or the heating resistor 3. The adhesion with the film 6 is improved, and as a result, peeling of the protective film 6 can be suppressed. Further, since a part of the protective film 6 enters the through hole h, even if stress is generated in the protective film 6 along the boundary surface with the lower layer, the displacement in the direction along the boundary surface hardly occurs. Become. Therefore, it is suitable for suppressing peeling of the protective film 6. Furthermore, when the diameter of the through hole h is 1 to 10 / ζ πι, a part of the protective film 6 is appropriately filled in the through hole h, while the sectional area of the common line portion 41A is reduced. It can avoid becoming extremely small. As a result, an increase in voltage drop in the common line portion 41A is suppressed, which is preferable. As described above, the slit is used as the penetration portion. Even when the S (Fig. IB) is formed, part of the protective film 6 that has entered the slit S directly adheres to the glaze layer 2 or the heating resistor 3, thereby suppressing the peeling of the protective film 6. can do. Here, it is preferable that the slit S be formed so as to extend in a direction substantially orthogonal to the width direction of the common line portion 41A. The width (short side length) of the slit S is preferably 1 to 10 / ζ πι. Is preferred. In this case, an increase in the amount of voltage drop in the common line portion 41A, where the cross-sectional area of the common line portion 41A does not become extremely small, is suppressed.
[0033] 共通電極 41のコモンライン部 41Aは、各発熱抵抗部 31に対して一括して電流を流 すための部分であり、比較的大きな面積を有するように形成されて!、る。  [0033] The common line portion 41A of the common electrode 41 is a portion for supplying a current to the heating resistor portions 31 at once, and is formed to have a relatively large area.
[0034] 図 4は、本実施例に基づくサーマルプリントヘッドの改変例を説明する断面図(図 3 に相当)である。図 4に示されたサーマルプリントヘッド Alaでは、コモンライン部 41A の下層側に絶縁膜 8が形成されている。絶縁膜 8は、保護膜 6の構成材料 (たとえば SiO、 SiNなど)に対して密着性の優れる材料が適宜選択して用いられ、たとえば Ta FIG. 4 is a cross-sectional view (corresponding to FIG. 3) for explaining a modified example of the thermal print head based on the present embodiment. In the thermal print head Ala shown in FIG. 4, an insulating film 8 is formed on the lower layer side of the common line portion 41A. For the insulating film 8, a material having excellent adhesion to the constituent material of the protective film 6 (for example, SiO, SiN, etc.) is appropriately selected and used, for example, Ta
2 2
Oで構成されている。絶縁膜 8は、電極層 4よりも保護膜 6に対する密着性に優れて Consists of O. Insulating film 8 has better adhesion to protective film 6 than electrode layer 4
2 5 twenty five
いるため、サーマルプリントヘッド Alaにおいては、保護膜 6の一部が貫通孔 hに入り 込んで絶縁膜 8と直接密着することにより、保護膜 6の密着力が向上し、保護膜 6の 剥離を抑制することができる。また、絶縁膜 8は、グレーズ層 2や発熱抵抗体 3よりも保 護膜 6に対する密着性に優れている。これにより、サーマルプリントヘッド Alaは、絶 縁膜 8上の電極層 4が形成されて!ヽな 、範囲にぉ 、ても、上述したサーマルプリント ヘッド A1と比して保護膜 6の密着力が向上する。したがって、サーマルプリントヘッド Alaによれば、保護膜 6の剥離をより効果的に抑制することができる。  Therefore, in the thermal print head Ala, a part of the protective film 6 enters the through hole h and directly contacts the insulating film 8, thereby improving the adhesion of the protective film 6 and preventing the protective film 6 from being peeled off. Can be suppressed. In addition, the insulating film 8 has better adhesion to the protective film 6 than the glaze layer 2 and the heating resistor 3. As a result, the thermal print head Ala has an electrode layer 4 formed on the insulating film 8, and even though the thermal print head Ala is in a range, the adhesive force of the protective film 6 is higher than that of the thermal print head A 1 described above. improves. Therefore, according to the thermal print head Ala, peeling of the protective film 6 can be more effectively suppressed.
[0035] 図 5および図 6は、本発明の第 2実施例に基づくサーマルプリントヘッド A2を示す。  [0035] FIGS. 5 and 6 show a thermal print head A2 according to a second embodiment of the present invention.
なお、図 5以降の図面においては、第 1実施例と同一または類似の要素には、第 1実 施例と同一の符号を付している。  In FIG. 5 and subsequent drawings, the same or similar elements as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment.
[0036] サーマルプリントヘッド A2は、基板 1、グレーズ層 2、発熱抵抗体 3、共通電極 410 、複数の個別電極 420、および保護膜 6を備えている。なお、図 5においては、保護 膜 6は省略されている。  The thermal print head A2 includes a substrate 1, a glaze layer 2, a heating resistor 3, a common electrode 410, a plurality of individual electrodes 420, and a protective film 6. In FIG. 5, the protective film 6 is omitted.
[0037] 基板 1上には、グレーズ層 2、電極層 4、発熱抵抗体 3および保護膜 6が順次積層し て形成されている。グレーズ層 2は、外面が略円弧状に隆起した隆起部 21を有して いる。電極層 4は、グレーズ層 2の上層側に積層されている。電極層 4は、その一部 分が選択的にエッチングされ、後述する熱処理を施すことにより共通電極 410、個別 電極 420が形成されて!、る。 [0037] On the substrate 1, a glaze layer 2, an electrode layer 4, a heating resistor 3 and a protective film 6 are sequentially laminated. The glaze layer 2 has a raised portion 21 whose outer surface is raised in a substantially arc shape. Yes. The electrode layer 4 is laminated on the upper layer side of the glaze layer 2. Part of the electrode layer 4 is selectively etched, and a common electrode 410 and individual electrodes 420 are formed by performing a heat treatment to be described later.
[0038] 共通電極 410は、第 1実施例と同様の形状であり、コモンライン部 410Aと複数の延 出部 410Bとを有している。ただし、コモンライン部 410Aには貫通孔が形成されてお らず、この点について第 1実施例における共通電極 41の形状と異なっている。各個 別電極 420は、グレーズ層の隆起部 21の頂上面近傍において隆起部 21の一部分 を露出させるように、各延出部 410Bと間隔を隔てて形成されている。共通電極 410 および個別電極 420にお ヽては、これらの表面近傍まで下層側のグレーズ層 2のガ ラス成分が拡散している。図 6および図 7〜図 10において、電極の表面近傍に拡散 したガラス成分は、模式的にドットで表されている。このようなガラス成分の拡散は、後 述する熱処理を施すことによって達成される。  [0038] The common electrode 410 has the same shape as that of the first embodiment, and includes a common line portion 410A and a plurality of extending portions 410B. However, the through hole is not formed in the common line portion 410A, and this is different from the shape of the common electrode 41 in the first embodiment. Each individual electrode 420 is formed at a distance from each extending portion 410B so as to expose a part of the raised portion 21 in the vicinity of the top surface of the raised portion 21 of the glaze layer. In the common electrode 410 and the individual electrode 420, the glass component of the lower glaze layer 2 diffuses to the vicinity of these surfaces. In FIG. 6 and FIGS. 7 to 10, the glass component diffused near the surface of the electrode is schematically represented by dots. Such diffusion of the glass component is achieved by performing a heat treatment described later.
[0039] 発熱抵抗体 3は、電極層 4の上層側に積層されて ヽる。発熱抵抗体 3は、グレーズ 層の隆起部 21の露出部分を覆うとともに延出部 410Bの一端部と個別電極 420の一 端部とに跨るように形成されている。発熱抵抗体 3のうち、延出部 410Bとこれに対向 する個別電極 420との間の露出部分が発熱抵抗部 31として機能し、 1つの発熱ドット を形成するように構成されている。したがって、本実施例では、発熱抵抗体 3が電極 層 4の上層側に形成されて ヽる点、および金属薄膜 5が形成されて ヽな 、点にぉ ヽ て、第 1実施例の積層構造と異なっている。  The heating resistor 3 is laminated on the upper layer side of the electrode layer 4. The heating resistor 3 is formed so as to cover the exposed portion of the raised portion 21 of the glaze layer and to straddle one end portion of the extending portion 410B and one end portion of the individual electrode 420. Of the heating resistor 3, an exposed portion between the extending portion 410B and the individual electrode 420 opposed thereto functions as the heating resistor 31 and is configured to form one heating dot. Therefore, in this embodiment, the heating resistor 3 is formed on the upper layer side of the electrode layer 4 and the metal thin film 5 is formed. On the other hand, the laminated structure of the first embodiment is used. Is different.
[0040] 次に、上記したサーマルプリントヘッド A2の製造方法の一例を図 7〜図 9を参照し て説明する。  [0040] Next, an example of a method for manufacturing the above-described thermal print head A2 will be described with reference to FIGS.
[0041] まず、図 7Aに示すように、基板 1上に、外面が略円弧状に隆起した隆起部 21を有 するようにグレーズ層 2を形成する。グレーズ層 2の形成は、ガラスペーストを印刷'焼 成することにより行なう。次いで、図 7Bに示すように、グレーズ層 2上に電極層 4を形 成する。電極層 4の形成は、 Auを主成分とする金属ペーストを印刷'焼成することに より行なう。引き続き、電極層 4の一部分をフォトリソグラフィ法などによって選択的に エッチングし、図 7Cに示すように、ガラス成分が未拡散の共通電極 410'、個別電極 420'を形成する。 [0042] 次いで、基板 1は、たとえば 1時間にわたって 800°C〜900°Cの熱処理が施される 。電極の主成分である Auは、不純物が拡散しやすい性質を有している。このため、 図 7Dに示すように、グレーズ層 2のガラス成分が共通電極 410'、個別電極 420'の 内部に拡散し、これらの表面近傍にガラス成分を含んだ共通電極 410、個別電極 42 0が形成される。 First, as shown in FIG. 7A, the glaze layer 2 is formed on the substrate 1 so as to have a raised portion 21 whose outer surface is raised in a substantially arc shape. The glaze layer 2 is formed by printing and baking a glass paste. Next, as shown in FIG. 7B, an electrode layer 4 is formed on the glaze layer 2. The electrode layer 4 is formed by printing and baking a metal paste mainly composed of Au. Subsequently, a part of the electrode layer 4 is selectively etched by photolithography or the like to form a common electrode 410 ′ and individual electrodes 420 ′ in which the glass component is not diffused, as shown in FIG. 7C. Next, the substrate 1 is subjected to a heat treatment at 800 ° C. to 900 ° C. for 1 hour, for example. Au, which is the main component of the electrode, has the property of easily diffusing impurities. For this reason, as shown in FIG. 7D, the glass component of the glaze layer 2 diffuses into the common electrode 410 ′ and the individual electrode 420 ′, and the common electrode 410 and the individual electrode 42 0 containing the glass component in the vicinity of these surfaces. Is formed.
[0043] 次いで、図 8Aに示すように、発熱抵抗体層 3'を形成する。発熱抵抗体層 3'の形 成は、たとえば TaSiOを CVD法またはスパッタリング法によって成膜することにより  Next, as shown in FIG. 8A, a heating resistor layer 3 ′ is formed. The heating resistor layer 3 ′ is formed by, for example, depositing TaSiO by CVD or sputtering.
2  2
行なう。引き続き、発熱抵抗体層 3'の不用部分をエッチングにより除去し、図 8Bに示 すように発熱抵抗体 3を形成する。  Do. Subsequently, unnecessary portions of the heating resistor layer 3 ′ are removed by etching to form the heating resistor 3 as shown in FIG. 8B.
[0044] 次いで、図 9に示すように、保護膜 6を形成する。保護膜 6の形成は、たとえば SiO Next, as shown in FIG. 9, a protective film 6 is formed. The protective film 6 is formed by, for example, SiO
2 あるいは SiNを CVD法あるいはスパッタリング法によって成膜することにより行なう。  2 Alternatively, SiN is deposited by CVD or sputtering.
[0045] 本実施例によれば、共通電極 410および個別電極 420の表面近傍には、グレーズ 層 2のガラス成分が拡散している。ガラスは、 Auよりも保護膜 6に対する密着性に優 れているため、共通電極 410および個別電極 420の表面近傍に拡散したガラス成分 が接着剤として機能し、保護膜 6の密着力が向上する。したがって、サーマルプリント ヘッド A2の耐久性の向上を図ることができる。 According to the present embodiment, the glass component of the glaze layer 2 is diffused near the surfaces of the common electrode 410 and the individual electrode 420. Since glass has better adhesion to the protective film 6 than Au, the glass component diffused near the surface of the common electrode 410 and the individual electrode 420 functions as an adhesive, and the adhesion of the protective film 6 is improved. . Therefore, it is possible to improve the durability of the thermal print head A2.
[0046] 図 10は、第 2実施例に基づくサーマルプリントヘッドの改変例を説明する断面図で ある。図 10に示されたサーマルプリントヘッド A2aは、グレーズ層 2と電極層 4の間に スパッタリング法などによって金属膜 9が形成された構成を有している。金属膜 9の形 成は、グレーズ層 2上に、たとえば Ni、 Cr、 Tiのいずれかを含有する金属をスパッタリ ングによって成膜することにより行なう。このサーマルプリントヘッド A2aにおいては、 上述したように電極の形成後に熱処理を施すことによって、金属膜 9に含まれる上記 金属成分が表面近傍まで拡散した共通電極 411、個別電極 421となる。上記金属は 、 Auよりも保護膜 6に対する密着性に優れているため、共通電極 411および個別電 極 421の表面近傍に拡散した上記金属成分が接着剤として機能し、保護膜 6の密着 力が向上する。また、保護膜 6の種類によっては、グレーズ層 2のガラス成分よりも金 属膜 9の金属成分の方が保護膜 6との密着性に優れる場合があり、力かる場合にサ 一マルプリントヘッド A2aは好適である。なお、金属膜 9を所定の厚さ以下の薄膜とす ることにより、サーマルプリントヘッド A2aにおいても、グレーズ層 2のガラス成分が共 通電極 411、個別電極 421の表面近傍まで拡散することが期待できる。 FIG. 10 is a cross-sectional view for explaining a modification of the thermal print head according to the second embodiment. The thermal print head A2a shown in FIG. 10 has a configuration in which a metal film 9 is formed between the glaze layer 2 and the electrode layer 4 by a sputtering method or the like. The metal film 9 is formed by forming a metal containing, for example, Ni, Cr, or Ti on the glaze layer 2 by sputtering. In the thermal print head A2a, by performing heat treatment after the electrodes are formed as described above, the metal components contained in the metal film 9 are diffused to the vicinity of the surface, thereby forming the common electrode 411 and the individual electrodes 421. Since the metal has better adhesion to the protective film 6 than Au, the metal component diffused in the vicinity of the surfaces of the common electrode 411 and the individual electrode 421 functions as an adhesive, and the adhesion of the protective film 6 is improved. improves. Depending on the type of protective film 6, the metal component of the metal film 9 may have better adhesion to the protective film 6 than the glass component of the glaze layer 2, and if this is applied, the thermal print head A2a is preferred. The metal film 9 is a thin film having a predetermined thickness or less. Thus, also in the thermal print head A2a, the glass component of the glaze layer 2 can be expected to diffuse to the vicinity of the surfaces of the common electrode 411 and the individual electrode 421.
[0047] 本発明は、上記した実施例に限定されない。たとえば、電極に形成される凹部は、 エッチングにより形成されたものに限定されず、サンドブラスト処理ゃステッパーの利 用など他の手法により形成されたものであってもよい。 [0047] The present invention is not limited to the embodiments described above. For example, the recesses formed in the electrodes are not limited to those formed by etching, and may be formed by other methods such as sandblasting or using a stepper.
[0048] 上記第 1実施例において、ライトエッチングによる凹部の形成は、電極の一部のみ に対して行ってもよいし、電極全体にわたって行ってもよい。同様に、金属薄膜 5ある いは貫通孔 hの形成も、電極の一部のみに対して行ってもよいし、電極全体にわたつ て行ってもよい。 [0048] In the first embodiment, the formation of the recess by light etching may be performed on only a part of the electrode, or may be performed on the entire electrode. Similarly, the formation of the metal thin film 5 or the through hole h may be performed on only a part of the electrode or may be performed on the entire electrode.
[0049] 本発明において、貫通部は、平面視円形の貫通孔あるいは平面視長矩形状のスリ ットに限定されるものではない。貫通部の形状、数および配置等は適宜、設定可能で ある。  In the present invention, the through portion is not limited to a through hole having a circular shape in plan view or a slit having a rectangular shape in plan view. The shape, number, arrangement, and the like of the through portions can be set as appropriate.
[0050] 保護膜は、上記各実施例における単層構造に限定されるものではない。たとえば 保護膜は、耐摩耗層などを備えた 2層以上カゝらなる積層構造を有するものであっても よい。また、本発明のサーマルプリントヘッドは、薄膜型でもよいし厚膜型でもよい。  [0050] The protective film is not limited to the single-layer structure in each of the above embodiments. For example, the protective film may have a laminated structure including two or more layers provided with an abrasion resistant layer. The thermal print head of the present invention may be a thin film type or a thick film type.

Claims

請求の範囲 The scope of the claims
[I] 基板と、グレーズ層と、発熱抵抗体と、この発熱抵抗体に通電を行なうための Auを 主成分とする電極と、上記発熱抵抗体および電極を覆う保護膜とを具備しており、 上記電極の表面には、複数の凹部が形成されている、サーマルプリントヘッド。  [I] a substrate, a glaze layer, a heating resistor, an electrode mainly composed of Au for energizing the heating resistor, and a protective film covering the heating resistor and the electrode. A thermal print head in which a plurality of recesses are formed on the surface of the electrode.
[2] 上記複数の凹部は、上記電極の表面の中心線平均粗さ Raが 0. 1〜0. 5 μ mとさ れることにより形成されている、請求項 1に記載のサーマルプリントヘッド。 [2] The thermal print head according to claim 1, wherein the plurality of recesses are formed such that the center line average roughness Ra of the surface of the electrode is 0.1 to 0.5 μm.
[3] 上記複数の凹部は、上記電極の厚み方向に貫通する複数の貫通部により形成さ れて 、る、請求項 1に記載のサーマルプリントヘッド。 [3] The thermal print head according to claim 1, wherein the plurality of concave portions are formed by a plurality of through portions penetrating in the thickness direction of the electrode.
[4] 各貫通部は、断面が円形である、請求項 3に記載のサーマルプリントヘッド。 [4] The thermal print head according to claim 3, wherein each penetrating portion has a circular cross section.
[5] 各貫通孔の直径は、 1〜10 μ mである、請求項 4に記載のサーマルプリントヘッド。 [5] The thermal print head according to claim 4, wherein each through hole has a diameter of 1 to 10 μm.
[6] 各貫通部は、断面が矩形である、請求項 3に記載のサーマルプリントヘッド。 6. The thermal print head according to claim 3, wherein each penetrating portion has a rectangular cross section.
[7] 上記矩形は、短辺および長辺を有しており、上記短辺の長さは、 1〜: LO /z mである[7] The rectangle has a short side and a long side, and the length of the short side is 1 to: LO / z m
、請求項 6に記載のサーマルプリントヘッド。 The thermal print head according to claim 6.
[8] 上記電極の下層側に形成された絶縁膜をさらに具備する、請求項 3に記載のサー マルプリントヘッド。 8. The thermal print head according to claim 3, further comprising an insulating film formed on a lower layer side of the electrode.
[9] 基板と、グレーズ層と、発熱抵抗体と、この発熱抵抗体に通電を行なうための Auを 主成分とする電極と、上記発熱抵抗体および電極を覆う保護膜とを具備しており、 上記電極上には、 Ni、 Cr、および Tiのうちの少なくとも 1種を含有する金属薄膜が 形成されている、サーマルプリントヘッド。  [9] It includes a substrate, a glaze layer, a heating resistor, an electrode containing Au as a main component for energizing the heating resistor, and a protective film covering the heating resistor and the electrode. A thermal print head in which a metal thin film containing at least one of Ni, Cr, and Ti is formed on the electrode.
[10] 基板上にグレーズ層を形成する工程と、上記グレーズ層上に Auを主成分とする電 極を形成する工程と、発熱抵抗体を形成する工程と、上記発熱抵抗体および電極を 覆う保護膜を形成する工程とを有する構成において、 [10] A step of forming a glaze layer on the substrate, a step of forming an electrode mainly composed of Au on the glaze layer, a step of forming a heating resistor, and covering the heating resistor and the electrode In the configuration having a step of forming a protective film,
上記電極を形成する工程の後において、上記基板を熱処理する工程を有している 、サーマルプリントヘッドの製造方法。  A method of manufacturing a thermal print head, comprising a step of heat-treating the substrate after the step of forming the electrode.
[II] 上記グレーズ層と上記電極の間に、 Ni、 Cr、および Tiのうちの少なくとも 1種を含有 する金属膜を形成する工程をさらに有する、請求項 10に記載のサーマルプリントへッ ドの製造方法。  [II] The thermal print head according to claim 10, further comprising a step of forming a metal film containing at least one of Ni, Cr, and Ti between the glaze layer and the electrode. Production method.
PCT/JP2005/019879 2004-11-04 2005-10-28 Thermal print head and method for manufacturing same WO2006049095A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05799068A EP1815996A1 (en) 2004-11-04 2005-10-28 Thermal print head and method for manufacturing same
CN2005800376413A CN101052531B (en) 2004-11-04 2005-10-28 Thermal print head and method for manufacturing same
US11/666,630 US7697020B2 (en) 2004-11-04 2005-10-28 Thermal print head and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004320071A JP4633442B2 (en) 2004-11-04 2004-11-04 Thermal head
JP2004-320071 2004-11-04

Publications (1)

Publication Number Publication Date
WO2006049095A1 true WO2006049095A1 (en) 2006-05-11

Family

ID=36319106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019879 WO2006049095A1 (en) 2004-11-04 2005-10-28 Thermal print head and method for manufacturing same

Country Status (6)

Country Link
EP (1) EP1815996A1 (en)
JP (1) JP4633442B2 (en)
KR (1) KR100910679B1 (en)
CN (1) CN101052531B (en)
TW (1) TWI270476B (en)
WO (1) WO2006049095A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111391515A (en) * 2020-04-16 2020-07-10 山东华菱电子股份有限公司 MO heating resistor body thermal-sensitive printing head substrate and manufacturing method
JP2020138335A (en) * 2019-02-27 2020-09-03 ローム株式会社 Thermal print head

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874146B2 (en) * 2007-03-28 2012-02-15 京セラ株式会社 Recording head manufacturing method, recording head, and recording apparatus
JP5638627B2 (en) * 2010-12-25 2014-12-10 京セラ株式会社 Thermal head and thermal printer equipped with the same
US10525730B2 (en) * 2015-12-25 2020-01-07 Kyocera Corporation Thermal head and thermal printer
CN111372786B (en) * 2017-08-10 2022-03-25 罗姆股份有限公司 Thermal print head and method of manufacturing thermal print head
CN107813615B (en) * 2017-11-27 2023-05-23 杨潮平 Bus electrode framework, thermal printing head and preparation method thereof
JP2020073343A (en) * 2020-02-04 2020-05-14 ローム株式会社 Thermal print head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249640A (en) * 1985-08-29 1987-03-04 Mitsubishi Electric Corp Gold electrode structure
JPH02141262A (en) * 1988-11-22 1990-05-30 Oki Electric Ind Co Ltd Thermal head and production thereof
JPH0796620A (en) * 1993-09-30 1995-04-11 Kyocera Corp Thermal head
JPH10250128A (en) * 1997-03-07 1998-09-22 Alps Electric Co Ltd Thermal head and its manufacture
JP2000141728A (en) * 1998-11-10 2000-05-23 Alps Electric Co Ltd Thermal head

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594488A (en) * 1994-05-12 1997-01-14 Alps Electric Co., Ltd. Thermal head

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249640A (en) * 1985-08-29 1987-03-04 Mitsubishi Electric Corp Gold electrode structure
JPH02141262A (en) * 1988-11-22 1990-05-30 Oki Electric Ind Co Ltd Thermal head and production thereof
JPH0796620A (en) * 1993-09-30 1995-04-11 Kyocera Corp Thermal head
JPH10250128A (en) * 1997-03-07 1998-09-22 Alps Electric Co Ltd Thermal head and its manufacture
JP2000141728A (en) * 1998-11-10 2000-05-23 Alps Electric Co Ltd Thermal head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138335A (en) * 2019-02-27 2020-09-03 ローム株式会社 Thermal print head
JP7219634B2 (en) 2019-02-27 2023-02-08 ローム株式会社 thermal print head
CN111391515A (en) * 2020-04-16 2020-07-10 山东华菱电子股份有限公司 MO heating resistor body thermal-sensitive printing head substrate and manufacturing method

Also Published As

Publication number Publication date
JP2006130707A (en) 2006-05-25
CN101052531B (en) 2010-05-05
EP1815996A1 (en) 2007-08-08
TW200619045A (en) 2006-06-16
JP4633442B2 (en) 2011-02-16
KR20070072568A (en) 2007-07-04
CN101052531A (en) 2007-10-10
TWI270476B (en) 2007-01-11
KR100910679B1 (en) 2009-08-04

Similar Documents

Publication Publication Date Title
WO2006049095A1 (en) Thermal print head and method for manufacturing same
JP3603997B2 (en) Thermal head and method for manufacturing thermal head
US20090207229A1 (en) Thermal print head and method for manufacturing same
US7697020B2 (en) Thermal print head and method for manufacturing same
JP3108021B2 (en) Thermal head
JP4668637B2 (en) Thermal head and manufacturing method thereof
JP3298794B2 (en) Thermal head and method of manufacturing the same
JPH0732630A (en) Thermal head and production thereof
JP3639115B2 (en) Line thermal head
JP4309700B2 (en) Thermal head substrate, thermal head and manufacturing method thereof
JP3107196B2 (en) Thermal head
JP3365530B2 (en) Thermal head
JP2022112463A (en) Thermal print head, thermal printer and thermal print head manufacturing method
JPH01113261A (en) Thermal head
KR101390153B1 (en) Thermo-sensitive recording device and method of manufacturing a thermo-sensitive recording device
JP2023165458A (en) Thermal print head and thermal printer
JP2005074650A (en) Thermal head and thermal printer using it
CN114801503A (en) Thermal print head, thermal printer, and method for manufacturing thermal print head
JPH079640Y2 (en) Thermal head
JP2533087B2 (en) Thermal head
JP2731445B2 (en) Thermal head
JP2005074822A (en) Thermal head and manufacturing method therefor
JPH11314391A (en) Thermal head
JPH0890810A (en) Thick thermal head
JPH0238063A (en) Thermal head

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580037641.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11666630

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077010068

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005799068

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005799068

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11666630

Country of ref document: US