WO2006047975A1 - Kohärente terahertz-strahlungsquelle - Google Patents
Kohärente terahertz-strahlungsquelle Download PDFInfo
- Publication number
- WO2006047975A1 WO2006047975A1 PCT/DE2005/001578 DE2005001578W WO2006047975A1 WO 2006047975 A1 WO2006047975 A1 WO 2006047975A1 DE 2005001578 W DE2005001578 W DE 2005001578W WO 2006047975 A1 WO2006047975 A1 WO 2006047975A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation source
- metal contacts
- semiconductor substrate
- terahertz radiation
- coherent
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 68
- 230000001427 coherent effect Effects 0.000 title claims abstract description 31
- 239000004065 semiconductor Substances 0.000 claims abstract description 56
- 239000002184 metal Substances 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 230000000737 periodic effect Effects 0.000 claims abstract description 30
- 230000005684 electric field Effects 0.000 claims abstract description 20
- 239000002800 charge carrier Substances 0.000 claims description 8
- 230000005284 excitation Effects 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000005468 ion implantation Methods 0.000 claims description 4
- 230000001066 destructive effect Effects 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 claims description 2
- 238000010292 electrical insulation Methods 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 230000005670 electromagnetic radiation Effects 0.000 claims 1
- 238000002310 reflectometry Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 206010003677 Atrioventricular block second degree Diseases 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S1/00—Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
- H01S1/02—Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2302/00—Amplification / lasing wavelength
- H01S2302/02—THz - lasers, i.e. lasers with emission in the wavelength range of typically 0.1 mm to 1 mm
Definitions
- the invention relates to a terahertz radiation source according to the preamble of claim 1.
- Coherent terahertz radiation is important for a variety of applications.
- the frequency range extends from 10 GHz to 50 terahertz (THz).
- THz terahertz
- the complex conductivity of solids, semiconductors, superconductors and dielectrics can be determined non-contact and non-invasively.
- biological systems e.g. DNA, explosives and medical applications, e.g. Caries diagnosis
- specific advantages for methods of investigation with THz radiation are apparent [B. Ferguson and X.C. Zhang, Nature Materials, Vol. 1, pp. 26-33, 2002].
- the generation of coherent THz radiation can be divided into two types: I.
- THz radiation pulses having a wide frequency spectrum in the range of 10 GHz to 30 THz can be generated [US Patent 5,729,017].
- the radiated THz radiation is also adjustable in frequency [ER Brown, KA Mclntosh, KB Nichols and CL Dennis, Applied Physics Lettters, Vol. 66, pp. 285-287, 1995].
- impulsive and continuous various designs of radiation sources and radiation detectors have been described.
- the basis of these radiation sources and detectors is a semiconductor substrate which absorbs at the wavelength of the laser used, ie that the absorption of photons electron-hole pairs are formed. These charge carriers are separated in an electric field and thus generate a photocurrent.
- the radiated THz radiation is proportional to the temporal change of this photocurrent.
- the electric field in the semiconductor In order to generate the most intense THz emission possible, the electric field in the semiconductor must be as large as possible and the number of excited charge carriers must be as high as possible.
- the physical limits for the field strength are given by the breakdown field strength of the semiconductor (typical values are in the range of 100 kV / cm) and for the excited carrier density by the incident average laser power and the associated thermal load of the semiconductor.
- the THz radiation hits the semiconductor, which is excited simultaneously with a laser pulse.
- the semiconductor is not electrically biased and the incident THz wave generates a photocurrent that is proportional to the instantaneous field strength of the THz radiation pulse.
- the electrical bias of the semiconductor is realized in the case of a THz radiation source via two metal contacts, which are applied to the surface of the semiconductor. An electrical voltage is applied to these metal contacts, so that a surface-near electric field is formed in the semiconductor in which the photogenerated charge carriers are transported.
- the decoupling of the THz radiation from the semiconductor happens on the one hand directly through the photocurrent in the semiconductor or via a metallic antenna which is coupled to the metal contacts. Such an antenna often restricts the emitting frequency range by its frequency characteristic.
- the disadvantages of all previous embodiments of such THz radiation sources are: In order to generate a high electric field strength in the semiconductor, the metal contacts must have a small distance.
- the breakdown field strength for many semiconductors is in the range of 100 kV / cm, which is achieved with an electrode spacing of 1 ⁇ m and a voltage of 10 V.
- the useful area of the semiconductor for optical excitation is adversely limited to a few ⁇ m 2 . On such a small area can be coupled only a limited average laser power, otherwise the semiconductor is locally heated or irreversibly damaged. Heating results in a reduction in charge carrier mobility, thereby reducing the temporal changes in the photocurrent and resulting in reduced intensity of the THz radiation.
- the distance of the metal contacts is chosen to be large, ie in the range of a few 100 microns to cm.
- the semiconductor can be irradiated with the exciting laser large area with a higher average power.
- a voltage of 10000 V would already have to be applied at an electrode spacing of 1 mm.
- Such voltage are disadvantageous for a technical use.
- pulsed voltage sources are also used. As a rule, these generate strong electrical disturbances in the detectors and measuring devices used for THz detection [Patent DE 100 02 728 A1; G. Zhao, RN Schouten, N. van der Vaik, W. Th. Wenckebach and PCM Planken, Review of Scientific Instruments, Vol. 73, pp. 1715.1719, 2002].
- the invention has for its object to realize a coherent THz radiation source in the frequency range between 10 GHz and 50 THz.
- the technical solution should be suitable for areas of more than 100 ⁇ m 2 , the electric field in the semiconductor substrate of the THz radiation source may have values above 10 kV / cm and can manage with voltages of less than 100 V for the operation of the radiation source.
- Figure 2 is a schematic representation of a cross section through an embodiment of a coherent THz radiation source
- Figure 3 shows the emitted frequency spectra of one embodiment of a coherent THz radiation source for different applied voltages.
- Figure 1 contains a schematic representation of the embodiment of a coherent THz radiation source.
- the basis of the coherent THz radiation source forms a semiconductor substrate 1.
- This semiconductor substrate may consist of known semiconductors, advantageously compound semiconductors of the Illth and Vth period of the Periodic Table with high mobility and / or high breakdown field strength, such as GaAs, InP, GaSb, InSb, InGaAs, GaN, InGaN, GaNAs or GaInNAs.
- These semiconductor substrates can be modified in a particular way, for example via ion implantation and / or particular growth conditions, in order to increase the breakdown field strength, in particular so-called low-temperature grown GaAs.
- two metal contacts 2 are applied, which are executed in a periodic, interlocking finger structure.
- the number of periods of the structure should be greater than 1 and is open at the top.
- Figure 1 shows 4 periods as an example.
- the width of the contact fingers can be between 100 nm and a few ⁇ m. If a voltage is applied to the two metal contacts, then an electric field 3 is formed in the semiconductor substrate, which changes its sign between the metal contacts.
- An embodiment may be advantageous in which the execution of the periodic metal contacts is asymmetrical, ie that the electrode spacings are greater for a self-adjusting field direction than for the opposite field direction.
- the arrangement described above is now superimposed on a further layer, which has the purpose that the optical excitation of the semiconductor substrate only in the areas between the metal contacts, which have the same field direction.
- an upper periodic structure 4 made of a material is applied, which either absorbs or reflects the incident light in the undesired area.
- optically generated carriers are unidirectionally accelerated along the unobscured direction of the electric field. This leads to an emission of THz radiation, which is structurally and coherently superimposed in the far field of the THz radiation source.
- the upper periodic structure 4 can be made in various designs.
- An alternative embodiment is shown in Figure 2 in cross-section perpendicular to the metal contacts.
- An electrically insulating layer 5 is applied to the two metal contacts 2.
- This may be, for example, a non-conductive plastic, silicon dioxide, silicon nitride or other insulators commonly used in semiconductor technology.
- a periodic structured metal layer is applied, which prevents the optical excitation in every other period of the periodic metal contacts 2.
- a dielectric multilayer is applied to the two metal contacts. This multilayer forms a Bragg mirror for the mean wavelength of the incident laser light.
- This multilayer just like the upper periodic metal layer, is patterned to be removed in the areas where the laser light is to excite the semiconductor substrate.
- a further embodiment of the coherent THz radiation source consists of a modification of the semiconductor substrate between the metal contacts 2 in the regions in which the optical excitation is suppressed by the upper periodic structure 4 in the embodiment described above.
- This modification of the semiconductor substrate 1 can be effected by ion implantation and has the consequence that the semiconductor substrate 1 is not absorbed in this area or optically excited charge carriers in this area have a significantly lower mobility than in the non-implanted areas. As a result, the upper periodic structure 4 can be omitted.
- the periodically arranged metal contacts 2 are written directly into the same by implanting the semiconductor substrate 1 therein.
- one of the metal contacts can be replaced by a high p-type doping and the other by a high n-type doping in the semiconductor substrate.
- a periodic p-n or p-i-n transition is then formed, which is biased in the reverse direction via an electrical voltage.
- regions with the same electric field direction are covered by the upper periodic structure.
- Figure 3 shows frequency spectra of THz radiation generated with a coherent THz radiation source described here at various applied voltages.
- the used specifications of the studied embodiment of the beam source are: semiconductor substrate GaAs, period of the metal contacts 10 ⁇ m, distance of two metal contact fingers 5 ⁇ m, width of the metal contact fingers 5 ⁇ m, metal contact material Gold, thickness of the insulating layer 500 nm, material of the insulating layer silicon oxide, period of the upper periodic Structure 20 ⁇ m, material of the upper periodic structure gold, dimensions of the total coherent THz radiation source 2 mm x 2 mm.
- the spectra extend over a frequency range of 10 GHz to 5 THz.
- the upper limit of the detected THz radiation is given by the detection principle, but not by the emission characteristic of the coherent THz radiation source. It can clearly be seen that with increasing voltage applied to the metal contacts, the intensity of the emitted THz radiation increases.
- the coherent THz radiation source is in a static magnetic field.
- the THz radiation source is cooled by a Peltier element, for example, in order to dissipate the heat introduced by the laser radiation.
- a further advantageous embodiment may consist in that the semiconductor substrate 1 consists of a thin semiconductor film having a thickness greater than 100 nm, which has been applied to another semiconductor substrate or dielectric substrate.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Lasers (AREA)
- Semiconductor Lasers (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05787095A EP1825530B1 (de) | 2004-09-23 | 2005-09-09 | Kohärente terahertz-strahlungsquelle |
DE502005005767T DE502005005767D1 (de) | 2004-09-23 | 2005-09-09 | Kohärente terahertz-strahlungsquelle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004046123A DE102004046123A1 (de) | 2004-09-23 | 2004-09-23 | Kohärente Terahertz-Strahlungsquelle |
DE102004046123.6 | 2004-09-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006047975A1 true WO2006047975A1 (de) | 2006-05-11 |
WO2006047975A8 WO2006047975A8 (de) | 2006-08-10 |
Family
ID=35539598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2005/001578 WO2006047975A1 (de) | 2004-09-23 | 2005-09-09 | Kohärente terahertz-strahlungsquelle |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1825530B1 (de) |
AT (1) | ATE412255T1 (de) |
DE (2) | DE102004046123A1 (de) |
WO (1) | WO2006047975A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006012817A1 (de) * | 2006-03-21 | 2007-10-04 | Batop Gmbh | Photoleitender Terahertz Emitter |
WO2007112925A1 (de) * | 2006-03-29 | 2007-10-11 | Rwth Aachen University | Thz-antennen-array, system und verfahren zur herstellung eines thz-antennen-arrays |
EP2120291A1 (de) | 2008-05-16 | 2009-11-18 | Forschungszentrum Dresden - Rossendorf e.V. | Skalierbare Terahertz-Antennen |
EP2602821A1 (de) * | 2011-12-07 | 2013-06-12 | Universität Augsburg | Auf Graphen basierende Nanovorrichtungen für Terahertz Elektronik |
US8563955B2 (en) | 2009-06-12 | 2013-10-22 | Baden-Wurttemberg Stiftung Ggmbh | Passive terahertz radiation source |
DE102012010926A1 (de) | 2012-06-04 | 2013-12-05 | Amo Gmbh | Bimetall-Halbleiterstruktur zur Erzeugung von gepulsten und kontinuierlichen elektromagnetischen Feldsignalen im Mikrowellen-, Millimeterwellen und Terahertz-Frequenzbereich |
DE102016116900B3 (de) * | 2016-09-09 | 2017-11-16 | Helmholtz-Zentrum Dresden - Rossendorf E.V. | THz-Antenne und Vorrichtung zum Senden und/oder Empfangen von THz-Strahlung |
JP2021519523A (ja) * | 2018-03-30 | 2021-08-10 | サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック | 任意の偏光方向を有するテラヘルツ放射の生成及び検出 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006059573B3 (de) * | 2006-12-16 | 2008-03-06 | Batop Gmbh | Anordnung zur Abstrahlung oder zum Empfang von Terahertz-Strahlung |
DE102008031751B3 (de) * | 2008-07-04 | 2009-08-06 | Batop Gmbh | Photoleitende Antenne zur Abstrahlung oder zum Empfang von Terahertz-Strahlung |
DE102014100350B4 (de) | 2013-01-15 | 2021-12-02 | Electronics And Telecommunications Research Institute | Photomischer mit photonischem Kristall vom Typ mit großflächiger Anordnung zum Erzeugen und Detektieren von Breitband-Terahertz-Wellen |
DE102016011383A1 (de) | 2016-09-21 | 2018-03-22 | Batop Gmbh | Photoleitende Antenne zur Erzeugung oder zum Empfang von Terahertz-Strahlung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0606776A2 (de) * | 1993-01-14 | 1994-07-20 | Hitachi Europe Limited | Emission und Detektion von Terahertz-Strahlung |
US5401953A (en) * | 1993-09-23 | 1995-03-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optically-switched submillimeter-wave oscillator and radiator having a switch-to-switch propagation delay |
US5663639A (en) * | 1994-01-18 | 1997-09-02 | Massachusetts Institute Of Technology | Apparatus and method for optical heterodyne conversion |
JP2000049403A (ja) * | 1998-07-28 | 2000-02-18 | Nec Corp | 超高周波発振素子およびそれを用いた超高周波発振装置 |
US20030178584A1 (en) * | 2000-02-28 | 2003-09-25 | Arnone Donald Dominic | Imaging apparatus and method |
-
2004
- 2004-09-23 DE DE102004046123A patent/DE102004046123A1/de not_active Withdrawn
-
2005
- 2005-09-09 DE DE502005005767T patent/DE502005005767D1/de active Active
- 2005-09-09 AT AT05787095T patent/ATE412255T1/de active
- 2005-09-09 EP EP05787095A patent/EP1825530B1/de not_active Not-in-force
- 2005-09-09 WO PCT/DE2005/001578 patent/WO2006047975A1/de active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0606776A2 (de) * | 1993-01-14 | 1994-07-20 | Hitachi Europe Limited | Emission und Detektion von Terahertz-Strahlung |
US5401953A (en) * | 1993-09-23 | 1995-03-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optically-switched submillimeter-wave oscillator and radiator having a switch-to-switch propagation delay |
US5663639A (en) * | 1994-01-18 | 1997-09-02 | Massachusetts Institute Of Technology | Apparatus and method for optical heterodyne conversion |
JP2000049403A (ja) * | 1998-07-28 | 2000-02-18 | Nec Corp | 超高周波発振素子およびそれを用いた超高周波発振装置 |
US20030178584A1 (en) * | 2000-02-28 | 2003-09-25 | Arnone Donald Dominic | Imaging apparatus and method |
Non-Patent Citations (4)
Title |
---|
AVETISYAN YU ET AL: "Now approach for THz-wave difference frequency generation in surface emitting geometry", CONFERENCE ON LASERS AND ELECTRO-OPTICS. (CLEO 2001). TECHNICAL DIGEST. POSTCONFERENCE EDITION. BALTIMORE, MD, MAY 6-11, 2001, TRENDS IN OPTICS AND PHOTONICS. (TOPS), US, WASHINGTON, WA : OSA, US, vol. VOL. 56, 6 May 2001 (2001-05-06), pages 166 - 167, XP010559692, ISBN: 1-55752-662-1 * |
DREYHAUPT A ET AL: "High-intensity terahertz radiation from a microstructured large-area photoconductor", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 86, no. 12, 17 March 2005 (2005-03-17), pages 121114 - 121114, XP012064697, ISSN: 0003-6951 * |
DREYHAUPT A ET AL: "Large-area high-power THz emitter based on interdigitated electrodes", INFRARED AND MILLIMETER WAVES, 2004 AND 12TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, 2004. CONFERENCE DIGEST OF THE 2004 JOINT 29TH INTERNATIONAL CONFERENCE ON KARLSRUHE, GERMANY SEPT. 27 - OCT. 1, 2004, PISCATAWAY, NJ, USA,IEEE, 27 September 2004 (2004-09-27), pages 83 - 84, XP010794975, ISBN: 0-7803-8490-3 * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 05 14 September 2000 (2000-09-14) * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006012817A1 (de) * | 2006-03-21 | 2007-10-04 | Batop Gmbh | Photoleitender Terahertz Emitter |
DE102006012817B4 (de) * | 2006-03-21 | 2017-10-12 | Batop Gmbh | Photoleitender Terahertz-Emitter |
WO2007112925A1 (de) * | 2006-03-29 | 2007-10-11 | Rwth Aachen University | Thz-antennen-array, system und verfahren zur herstellung eines thz-antennen-arrays |
US8581784B2 (en) | 2006-03-29 | 2013-11-12 | Rwth Aachen University | THz antenna array, system and method for producing a THz antenna array |
EP2120291A1 (de) | 2008-05-16 | 2009-11-18 | Forschungszentrum Dresden - Rossendorf e.V. | Skalierbare Terahertz-Antennen |
DE102008023991A1 (de) | 2008-05-16 | 2009-12-03 | Forschungszentrum Dresden - Rossendorf E.V. | Skalierbare Terahertz-Antennen, ihre Herstellung und Verwendung |
US8563955B2 (en) | 2009-06-12 | 2013-10-22 | Baden-Wurttemberg Stiftung Ggmbh | Passive terahertz radiation source |
WO2013083351A1 (en) * | 2011-12-07 | 2013-06-13 | Universität Augsburg | Graphene-based nanodevices for terahertz electronics |
US9496060B2 (en) | 2011-12-07 | 2016-11-15 | Universitaet Augsburg | Graphene-based nanodevices for terahertz electronics |
EP2602821A1 (de) * | 2011-12-07 | 2013-06-12 | Universität Augsburg | Auf Graphen basierende Nanovorrichtungen für Terahertz Elektronik |
DE102012010926A1 (de) | 2012-06-04 | 2013-12-05 | Amo Gmbh | Bimetall-Halbleiterstruktur zur Erzeugung von gepulsten und kontinuierlichen elektromagnetischen Feldsignalen im Mikrowellen-, Millimeterwellen und Terahertz-Frequenzbereich |
DE102016116900B3 (de) * | 2016-09-09 | 2017-11-16 | Helmholtz-Zentrum Dresden - Rossendorf E.V. | THz-Antenne und Vorrichtung zum Senden und/oder Empfangen von THz-Strahlung |
WO2018046254A1 (de) | 2016-09-09 | 2018-03-15 | Helmholtz-Zentrum Dresden - Rossendorf E. V. | Thz-antenne und vorrichtung zum senden und/oder empfangen von thz-strahlung |
JP2021519523A (ja) * | 2018-03-30 | 2021-08-10 | サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック | 任意の偏光方向を有するテラヘルツ放射の生成及び検出 |
US11808627B2 (en) | 2018-03-30 | 2023-11-07 | Centre National De La Recherche Scientifique | Generation and detection of terahertz radiation with an arbitrary polarization direction |
Also Published As
Publication number | Publication date |
---|---|
EP1825530B1 (de) | 2008-10-22 |
WO2006047975A8 (de) | 2006-08-10 |
EP1825530A1 (de) | 2007-08-29 |
DE502005005767D1 (de) | 2008-12-04 |
ATE412255T1 (de) | 2008-11-15 |
DE102004046123A1 (de) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1825530B1 (de) | Kohärente terahertz-strahlungsquelle | |
DE102007012475B4 (de) | Schneller Photoleiter und Verfahren zur Herstellung und Antenne mit Photoleiter | |
DE60114286T2 (de) | Selbstmodengekoppelter Quantenkaskaden-Laser | |
DE69606812T2 (de) | Halbleiterlaser | |
DE102006059573B3 (de) | Anordnung zur Abstrahlung oder zum Empfang von Terahertz-Strahlung | |
DE69222617T2 (de) | Nicht-lineare optische Vorrichtung | |
DE102014100350B4 (de) | Photomischer mit photonischem Kristall vom Typ mit großflächiger Anordnung zum Erzeugen und Detektieren von Breitband-Terahertz-Wellen | |
DE69203199T2 (de) | Spektralphotometer. | |
EP1905125B1 (de) | Thz-sender und thz-empfänger | |
DE102006010297B3 (de) | Photoleitende Terahertz Antenne | |
DE112013004626T5 (de) | Photomischer und Verfahren zum Herstellen desgleichen | |
DE69005179T2 (de) | Anordnungen mit einer asymmetrischen Delta-Dotierung. | |
EP3414368B1 (de) | Terahertz-antenne und verfahren zum herstellen einer terahertz-antenne | |
DE69204525T2 (de) | Wellenmodulator und optischer Detektor mit Quantenpotentialtöpfen. | |
DE102019100945B4 (de) | Hochfrequenzvorrichtung und zugehöriges Verfahren zum Erzeugen und Erfassen von elektromagnetischer THz-Strahlung | |
DE19711505C1 (de) | Halbleiterheterostruktur-Strahlungsdetektor für Wellenlängen aus dem infraroten Spektralbereich | |
DE102016116900B3 (de) | THz-Antenne und Vorrichtung zum Senden und/oder Empfangen von THz-Strahlung | |
DE2058917C3 (de) | Verfahren und Vorrichtung zum Modulieren eines Halbleiter-Lasers | |
DE102012010926A1 (de) | Bimetall-Halbleiterstruktur zur Erzeugung von gepulsten und kontinuierlichen elektromagnetischen Feldsignalen im Mikrowellen-, Millimeterwellen und Terahertz-Frequenzbereich | |
EP2650985B1 (de) | System zur Frequenzkonversion sowie Halbleiterbauelement | |
DE102006012817B4 (de) | Photoleitender Terahertz-Emitter | |
EP2120291A1 (de) | Skalierbare Terahertz-Antennen | |
DE19648659B4 (de) | Verfahren zur Bestimmung von Degradationsprozessen in Halbleiterlasern | |
DE102011015384A1 (de) | Photoleitendes Antennenarray zum Empfang gepulster Terahertzstrahlung | |
CH696569A5 (de) | Lawinen-Quanten-Intersubbandübergangs-Halbleiterlaser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005787095 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005787095 Country of ref document: EP |