WO2006045930A1 - Moteur a collecteur muni d'un dispositif de controle de la position angulaire et de la vitesse de rotation de son induit - Google Patents

Moteur a collecteur muni d'un dispositif de controle de la position angulaire et de la vitesse de rotation de son induit Download PDF

Info

Publication number
WO2006045930A1
WO2006045930A1 PCT/FR2005/002618 FR2005002618W WO2006045930A1 WO 2006045930 A1 WO2006045930 A1 WO 2006045930A1 FR 2005002618 W FR2005002618 W FR 2005002618W WO 2006045930 A1 WO2006045930 A1 WO 2006045930A1
Authority
WO
WIPO (PCT)
Prior art keywords
broom
additional
brush
collector
followed
Prior art date
Application number
PCT/FR2005/002618
Other languages
English (en)
Inventor
Nicolas Boissonnade
Original Assignee
Carbone Lorraine Applications Electriques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbone Lorraine Applications Electriques filed Critical Carbone Lorraine Applications Electriques
Priority to US11/577,985 priority Critical patent/US20090304368A1/en
Priority to EP05811927A priority patent/EP1807923A1/fr
Publication of WO2006045930A1 publication Critical patent/WO2006045930A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby

Definitions

  • the invention relates to collector motors provided with a device for controlling the angular position of their armature, also called rotor. It can concern as much engines and actuators embedded in motor vehicles as electric motors of greater power, such as the rolling mill motors.
  • the detection of the angular position of an electric motor makes it possible, with the control of the direction of rotation, to control the movement of moving parts activated by such motors, for example parts embedded in a motor vehicle such as an electrically adjustable window. , a wiper blade, a sunroof, an outside mirror, a gas inlet valve, etc. It also makes it possible to control and regulate the rotational speed of the electric motor, the latter being, for example, the fan motor of an air conditioning device or the powerful motor of a rolling mill. In the latter case, the regulation of the speed of rotation of the rolls of the rolling mill is essential to control the dimensional quality and the surface appearance of the slabs or rolled sheets.
  • the electric motors used for moving embedded parts are DC motors, which comprise a frame and a shaft integral with the rotor.
  • the frame comprises the stator or inductor (magnetic field source), typically a set of permanent magnets or a fixed winding creating a magnetic field, and electrical contacts gliss ⁇ nts, able to be connected to a power source.
  • the stator or inductor magnetic field source
  • On the rotor also called armature, are wound conductive son connected to the blades of a collector secured to the rotor.
  • the sliding electrical contacts typically brushes 5 of carbon material, are plated on the surface of the collector, so that, during the rotation of the rotor, they are brought into contact successively with each of the blades of the rotor. manifold.
  • the brushes rubbing on the collector blades, bring a current in the w wire connecting the two blades in contact with said brushes.
  • This current combined with the magnetic flux of the inductor gives rise to a force that drives the rotor wire in rotation (Laplace force).
  • the blades separated from each other by an insulator, are arranged in such a way that the portion of the conductive wire passing through a magnetic flux zone of given polarity is
  • the conducting wire corresponds to a set of coils wound at precise locations of the rotor and whose ends are connected to two successive blades: the armature can therefore be represented by a long wire separated into segments connected to each other by the collector blades.
  • the broom has a width greater than the insulating space of two blades. In this way, the switching takes place in two stages since, when the brush is brought into contact with the next blade, the loop associated with the two successive blades is first short-circuited. Thus, the switching of a collector blade to another is done by shorting, through the blade, a winding wound in a specific area of the rotor.
  • the application DE 42 29 045 provides for the addition of an exploration track parallel to the collector connected to at least one lamella of the collector but having a circumferential length greater than this one.
  • An additional broom is assigned to this exploration track and allows after measurement of the voltage differences between the exploration track and the slats then analysis of their undulations, to estimate the rotational speed and the angular position.
  • application EP 0 753931 several additional brushes are introduced which are applied to the collector. The voltage taken by these additional brushes is processed by an electronic circuit which analyzes the undulations.
  • Applications EP 0 433 733 and FR 2 791 486 make use of an analysis of the rotor current flowing through the motor.
  • EP 0 433 733 analyzes the variations introduced by the counter electromotive force generated in the armature.
  • a third brush is electrically insulated and wider than the space between two successive blades. This third broom, when it straddles two blades, bypasses the coil associated with these blades, the resulting modification of the currents and induced magnetic fields creating, in the electrical current flowing through the motor, pulses whose frequency is proportional to the rotational speed of the motor.
  • the applicant has sought a technical solution for measuring the angular position of the axis associated with the rotor of a collector electric motor which does not require the introduction of a complex or expensive device and which delivers easy useful signals to interpret.
  • a first object of the invention is an electric collector motor comprising a frame and a shaft integral with a rotor, said frame comprising a stator and supply brushes, able to be connected to a power supply source, the rotor being secured to a blade collector and
  • Comprising a voltage measuring means characterized in that said additional broom and said monitored broom have a substantially equal width and are arranged symmetrically with respect to a diametral plane of the rotor.
  • the additional broom is at least periodically in contact with the supply broom said "broom followed" by means of a blade. It is moreover connected to an electrical circuit which comprises a voltage measuring means which makes it possible to continuously know the voltage on said additional brush.
  • the circuit is arranged in such a way that the voltage on the additional brush is known with respect to another voltage: a constant reference voltage [ground for example] or that of one of the supply brushes (the broom followed for example).
  • the electrical circuit advantageously also comprises a signal processing means using said voltage measured on the additional brush and for counting the current pulses generated in said electrical circuit which is connected the additional brush, especially when the followed broom leaves a collector blade .
  • the device equipping the engine according to the invention is simple and makes it possible to measure the angular position of the engine by counting the collector blades.
  • the principle followed is to use the alternation of the different electrical signals transmitted on the additional broom and appear on the one hand when the supply mop followed and the additional broom are in contact by means of a blade and other when a blade loses contact with the broom followed. Indeed, an overvoltage occurs when a blade leaves a supply broom. This overvoltage results in a current pulse generated in the electrical circuit to which the additional brush is connected. It is this current pulse which, for example after shaping, filtration and transformation, makes it possible to count the collector blades and consequently to measure the position and / or to control the speed of the motor.
  • the supply broom is called in the context of this invention "broom followed" since it is added an additional broom which is placed close to it and which, associated with a measuring circuit, makes it possible to continuously monitor the transmitted electrical signals. and in particular the pulses generated when a blade leaves the broom followed.
  • the extra b ⁇ l ⁇ i is placed near the followed broom.
  • the additional broom and the tracked broom are spaced from each other a distance less than the width of a blade, so that the additional broom is periodically at the same potential as the broom followed through a common blade.
  • the additional broom may be placed after or before the latter, with respect to the direction of rotation of the motor.
  • a collector blade When placed after the broom followed (downstream), a collector blade first meets the supply broom and then the additional broom. When she leaves the broom followed, she is still in contact with the additional broom.
  • the pulse corresponds essentially to the discharge of the self-inductance of the portion of the induced winding which is connected to the blade still in contact with the supply brush and to that which has just lost contact with said brush.
  • a collector blade When placed before the broom followed (upstream), a collector blade first encounters the additional broom and then the broom followed.
  • the pulse results from the transition of a state where the two brushes are on the same blade and where the potential difference between the brushes is therefore zero, to a state where the two brushes are on different blades and where the difference potential of the brushes is essentially the potential drop generated by the induced current flowing through the coil connected to the two said blades.
  • the pulse corresponds essentially to the crossing of a current in the segment of the armature which is connected to the blade still in contact with the supply brush and to that which has just lost contact with said brush. In this case, the signal is weaker, but remains exploitable.
  • the additional broom and the broom followed could have different widths: the broom followed is a broom whose width should be As close as possible to that of the other broom or brushes and the additional broom could be narrower since it serves essentially to collect the impulse created when a blade leaves the broom followed.
  • the additional broom and the followed broom have a substantially equal width and are arranged symmetrically with respect to a diametral plane of the rotor so as to play interchangeable roles irrespective of the direction of rotation of the motor .
  • the choice of the direction of rotation is simply made for example by means of transistors or a properly connected relay.
  • the additional broom then becomes the tracked broom and the tracked broom, on which is also connected the circuit comprising the voltage measuring means and the signal processing means, becomes the additional broom.
  • the two brushes are therefore connected to both the power supply and the measurement and signal processing circuit, so that the system can be reversible (operation in both directions of rotation).
  • the measurement and signal processing circuit connects the monitored broom and the additional broom, which therefore is permanently not electrically isolated.
  • such a configuration improves the electromagnetic compatibility of the motor, in particular when the additional broom is placed downstream of the tracked brush (that is to say after it in the direction of rotation).
  • the tracked broom and the additional broom are connected by said electrical circuit and, when the tracked broom leaves a blade which still remains in contact with the additional broom, a part of the discharge current of the winding associated with these two blades is drifted towards this electrical circuit, which reduces the amplitude of the surge.
  • the additional broom and the tracked broom have a substantially equal width. This must be sufficient for the brushes to resist wear as well as other brushes. However, it is recommended that the The overall width of the assembly formed by the additional broom and the broom followed not thirsty too important, because the engine efficiency decreases with the number of segments of winding short circuit and it is even more important that the broom followed and the extra broom are wide. Wherever possible, an overall width of the assembly formed by the additional broom and broom will be aimed as close as possible to the width of the other brooms. Typically, this overall width should not exceed the minimum width of the supply brushes other than the followed brush (generally all such brushes have the same width) plus the width of a blade. In this way, a maximum of two blades is short-circuited.
  • the space separating the tracked broom and the additional broom must be less than the width of a blade so that there is at each passage of a blade pooling potential and possibility of discharge in the additional broom as soon as the blade leaves the power broom.
  • the space between the followed broom and the additional broom must be as small as possible, but large enough to avoid the creation of unwanted arcs between them. This distance depends in particular on the material used for the brooms and the insulation used (air, paper, plastic, ...) and can vary between a few hundredths of a millimeter and a few millimeters. Typically, it is a few tenths of a millimeter for a 12 volt DC motor.
  • the additional brush is electrically connected to a voltage measuring means and an electrical signal processing means.
  • the electrical signal to be processed is constructed from the voltage on the additional brush.
  • the potential difference between the additional brush and the ground can be taken as a signal.
  • the additional broom and followed broom being used interchangeably any thirst that the direction of rotation of the motor, the processed and formatted signal uses the potential difference between the tracked broom and the additional broom.
  • the number and spatial arrangement of the brushes depends on the multipolarity of the electric motor.
  • the invention can be applied to any type of multipole DC motor, typically 2, 4 or 6 poles, whether it is a small motor embedded in a motor vehicle or a mill motor. We will illustrate the invention further by a particular embodiment: a bipolar DC motor, representative of the engines of equipment embedded in motor vehicles.
  • the power brushes are conventionally arranged on the circumference of the motor so that they are diametrically opposed. This arrangement allows a systematic distribution of currents on each of the winding winding channels.
  • the neutral line of the motor corresponds to the boundary between these zones, that is to say in diametrically opposite places where the magnetic polarity changes sign. It is here that the current must be reversed and the brushes must be placed closer to the neutral line.
  • the bipolar DC motor produced according to this embodiment of the invention has an additional brush and a brush followed symmetrically with respect to the diametral plane of the rotor, the latter coinciding with the plane of symmetry of the other power brush.
  • the width of the supply broom - or, more generally, the maximum width of the supply brooms other than the broom followed - and the overall width of the group consisting of the tracked broom and the additional broom. are less than the width of a blade plus two interlamines (spaces separating the blades).
  • a pulse of lower amplitude is collected in the measuring circuit.
  • the corrugations collected are sufficient to allow, after filtering and transformation, the counting of the blades.
  • Another object according to the invention is a method for controlling the angular position and rotational speed of the rotor of a collector motor, typically a DC motor, consisting of counting the number of collector blades passing in front of a collector motor.
  • fixed point characterized in that the chosen fixed point is one of the supply brooms, called followed broom, in that an additional broom is placed near said broom followed, at a distance less than the width of a blade and in that the voltage on said additional brush is continuously measured.
  • the additional brush is connected to a circuit comprising a voltage measuring means and an electrical signal processing means using said voltage. The signal is processed in such a way that the pulses generated can be counted each time a commutator blade leaves the tracked broom.
  • the additional broom may be placed after or before the broom followed, relative to the direction of rotation of the motor. If the additional broom is placed downstream of the followed broom and a blade leaves the followed broom, a discharge current appears in the segment of the armature which is connected to the blade still in contact with said broom followed and to that which loses contact with said tracked broom.
  • the processing means is advantageously an electronic circuit which uses the voltage measured continuously on the additional brush to generate a signal and which allows to shape, filter and transform into a square signal said signal. In this way, it makes it possible to count the collector blades and consequently to control the angular position of the motor and / or its speed of rotation.
  • the additional brush and the brush followed are of substantially equal width and are arranged symmetrically with respect to a diametral plane of the rotor so as to play interchangeable roles irrespective of the direction of rotation of the motor.
  • the signal collected on the additional broom is compared with the supply voltage of the broom followed. This measures the potential difference between the tracked broom and the additional broom. This potential difference is then filtered in order to eliminate the high frequency disturbances.
  • a comparator based on operational amplifier can be used to generate a square signal. The signal filtering, as well as the referenced voltage for the switching of the operational amplifier and therefore the creation of the square signal are determined according to the motor. This choice makes it possible to operate the system even when the engine stops, that is to say when it is no longer powered, but still rotated by its inertia.
  • Another object according to the invention is a device for controlling the angular position and the rotational speed of a collector motor comprising brush holders equipped with brushes capable of being connected to an external electrical circuit and comprising an additional brush , characterized in that said additional broom is placed next to one of said brushes adapted to be connected to an external electrical circuit, called brush followed, at a distance less than the width of a blade of the collector of said motor and in that said additional brush is connected to an electrical circuit comprising voltage measuring means and electrical signal processing means using the voltage thus measured and making it possible to count the pulses generated when a blade leaves the tracked brush.
  • the brushes that can be connected to an external electrical circuit are generally the supply brushes that can be connected to the supply circuit. But, as we will see later, the system can work in the same way when the engine is not powered, that is to say when it runs as a generator. In this case, the external circuit may be an electrical circuit powered by the generator.
  • the additional broom may be placed after or before the followed broom, with respect to the direction of rotation of the rotor. If the additional broom is placed downstream of the followed broom and a blade leaves the broom followed, a discharge current ⁇ pp ⁇ r ⁇ ît in the segment of the armature which is connected to the blade still in contact with said tracked broom and to that which loses contact with said tracked broom.
  • the additional wiper is connected to an electrical circuit which comprises a voltage measuring means and an electrical signal processing means, typically an electronic circuit, using the measured voltage and making it possible to count the pulses generated when a blade leaves the broom followed by .
  • an electrical circuit which comprises a voltage measuring means and an electrical signal processing means, typically an electronic circuit, using the measured voltage and making it possible to count the pulses generated when a blade leaves the broom followed by .
  • the pulses are shaped, filtered and transformed so as to count the collector blades,
  • the additional broom and the tracked broom have a substantially equal width and are arranged symmetrically with respect to a diametral plane of the rotor so as to play roles " interchangeable regardless of the direction of rotation of the motor.
  • the device allowing the reversal of the direction of rotation can very simply be realized, starting, for example, from transistors or relays.
  • the electronic circuit makes it possible to process the signal collected on the additional brush by comparing the latter with the supply voltage of the followed brush.
  • the potential difference between the monitored brush and the additional brush is thus measured and this potential difference is then filtered in order to eliminate the high frequency disturbances.
  • the signal filtering, as well as the reference voltage for the switching of the operational amplifier therefore the creation of the square signal are determined according to the electric motor concerned.
  • This electronic circuit must be operational regardless of the direction of rotation of the motor. It is possible to apply the solutions currently used to reverse the direction of rotation of the motor, only the wiring of transistors or relays is slightly modified, which entails no extra cost of production. With such a device, the system can be operated even when the engine stops, that is to say when it is no longer powered, but still rotated by its inertia. It is therefore also possible to control the angular position of the rotor when the motor is operating as a generator, that is to say that, in the absence of power supply and if the rotor is rotated, this system also makes it possible to count the pulses generated by the passage of the blades. It is thus possible to use such a device for example in displacement sensors.
  • FIGS. 1a, 1b and 1c are three schematic illustrations representing the respective positions of certain parts of the rotor (winding sections and / or
  • Figure la illustrates schematically a cross section of the collector and brushes of a conventional collector motor having 8 blades.
  • Figure Ib illustrates a cylindrical projection of the inductor, brushes, winding and collector.
  • Figure Ic illustrates a cylindrical zo projection of the collector and brushes, the turns of the coil sections being, for the sake of clarity, indicated by a symbol without spatial significance.
  • Figure 2 schematically illustrates a cross section of the collector and brushes of a collector motor according to the invention.
  • Figures 3 ⁇ , 3b and 3c illustrate (schematically for the coil sections) a cylindrical projection of the collector and brushes of a collector motor according to the invention, in three different spatial configurations.
  • Figure 4 shows schematically the evolution over time of the measured voltage difference between the supply brush and the additional brush.
  • the bipolar motor of FIG. 1 is an electric collector motor comprising a frame and a shaft integral with a rotor, said frame comprising a stator and the supply brushes 100 and 110 connected to a power supply source by the circuit. 120.
  • the rotor is secured to a manifold provided here with 8 blades (L1, L2, L3, L4, L5, L6, L7, L8) and comprising a set of wound turns whose ends are connected to two successive blades of the collector. . As can be seen in Figure Ic, these turns are segments of the same winding, interconnected by means of the blades.
  • FIG. 1 an electric collector motor comprising a frame and a shaft integral with a rotor, said frame comprising a stator and the supply brushes 100 and 110 connected to a power supply source by the circuit. 120.
  • the rotor is secured to a manifold provided here with 8 blades (L1, L2, L3, L4, L5, L6, L7, L8) and comprising a set of wound turns whose ends are
  • the parts 1, 16, 8 and 9 are close to the neutral line: during the rotation R, they pass from one polar zone to the other and are subject during this passage of an inversion current by switching the brushes on the blades.
  • the blade is slightly wider than the blade, its width E being typically equal to the sum of the width L of the blade and 2 interlocks e.
  • FIG. 2 diagrammatically illustrates the collector blades and the brushes according to the invention:
  • the collector is identical to the collector of the conventional DC motor shown in FIG. 1: the invention does not impose a modification of the rotor.
  • One of the two power brooms, the broom 100, is not modified, the other is replaced by a pair of brooms, the broom followed 200 performing the function of power supply and the additional broom 300, placed at near the track 200, at a distance D less than the width L of a blade and is located after it in the direction of rotation R of the motor.
  • the additional brush 300 is electrically connected to the brush 200 followed by a circuit 310 comprising a device 320 for measuring and processing an electrical signal S.
  • FIGS 2 and 3a illustrate the blades and brushes in a first configuration, similar to that encountered in the conventional case illustrated in Figure I c.
  • the supply broom 100 feeds the armature via a first blade L5, diametrically opposed to the blade LI which is in contact with the other broom 200 and also with the additional broom 300.
  • the broom additional 300 and the track 200 being at the same potential as the LI blade, the measured potential difference is 0V.
  • the signal Sa recentered, is equal to half of the voltages applied to the tracked broom and the additional broom. In this case, it is here equal to half of the supply voltage of the motor, ie 6V for a 12V motor.
  • the additional broom 300 and the broom 200 track have the same thickness E 'and are arranged symmetrically so as to play interchangeable roles irrespective of the direction of rotation of the motor: if we reverse the polarity of the terminal d supply to reverse the rotation, simply connect the reversed pole on the other broom; in this way, the additional broom 300 becomes a supply broom and the supply broom 200 becomes the additional broom to which the signal measurement and processing circuit is connected.
  • the 100 also short-circuits the segment comprising the parts 7 and 16 by bringing the blades L5 and L6 into contact.
  • a pulse is created and discharges into the broom 300.
  • the voltage difference between the broom 200 and the broom 300 is recovered to generate the output signal.
  • the peak appearing on the signal Sb of FIG. 3b corresponds to the pulse directly generated by the discharge of the section of the winding of the armature which is connected to the blade L2 still in contact with the supply broom 200 and to that LI that loses contact with said supply broom 200.
  • the blade L5 leaves the broom 100.
  • the additional broom 300 is again in contact with the supply broom 200 through the next blade L2.
  • the signal presented at Sc corresponds to the small potential difference existing at the ends of the winding segment comprising parts 8 and 15. A new cycle begins again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

Moteur électrique à collecteur comprenant un bâti et un arbre solidaire d'un rotor, ledit bâti comprenant un stator et des balais d'alimentation (100, 200), aptes à être connectés à une source d'alimentation électrique, le rotor étant solidaire d'un collecteur à lames (L1 , L2, L3, L4, L5, L6, L7, L8) et comprenant un ensemble de spires bobinées dont les extrémités sont reliées à deux lames successives dudit collecteur, ledit bâti comprenant au moins un balai supplémentaire (300) situé à proximité de l'un des balais d'alimentation, appelé balai suivi (200) à une distance (D) inférieure à la largeur (L) d'une lame. Le balai supplémentaire et le balai suivi ont la même épaisseur et sont disposés symétriquement par rapport à un plan diamétral du rotor. Le balai supplémentaire est relié électriquement à un moyen (310) qui permet de compter les impulsions directement générées sur le balai supplémentaire lorsque le balai suivi (200) quitte une lame (L1 ) du collecteur.

Description

MOTEUR A COLLECTEUR MUNI D'UN DISPOSITIF DE CONTROLE DE LA POSITION ANGULAIRE ET DE LA VITESSE DE ROTATION DE SON INDUIT
DOMAINE TECHNIQUE
L'invention concerne les moteurs à collecteur munis d'un dispositif de contrôle de la position angulaire de leur induit, appelé également rotor. Elle peut concerner autant les moteurs et actionneurs embarqués dans les véhicules automobiles que les moteurs électriques de plus grande puissance, tels que les moteurs de laminoirs.
ETAT DE LA TECHNIQUE
La détection de la position angulaire d'un moteur électrique permet, avec la maîtrise du sens de rotation, de contrôler le déplacement de pièces mobiles activées par de tels moteurs, par exemple des pièces embarquées dans un véhicule automobile telles qu'une vitre réglable électriquement, un balai d'essuie-glaces, un toit ouvrant, un rétroviseur extérieur, une vanne d'admission de gaz, etc. Elle permet également de contrôler et réguler la vitesse de rotation du moteur électrique, ce dernier étant par exemple le moteur du ventilateur d'un dispositif d'air climatisé ou encore le moteur puissant d'un laminoir. Dans ce dernier cas, la régulation de la vitesse de rotation des cylindres du laminoir est essentielle pour maîtriser la qualité dimensionnelle et l'aspect de surface des brames ou tôles laminées.
Les moteurs électriques employés pour le déplacement de pièces embarquées sont des moteurs à courant continu, qui comportent un bâti et un arbre solidaire du rotor. Le bâti comprend le stator ou inducteur (source de champ magnétique), typiquement un ensemble d'aimants permanents ou un bobinage fixe créant un champ magnétique, et des contacts électriques glissαnts, aptes à être connectés à une source d'alimentation électrique. Sur le rotor, appelé également induit, sont bobinés des fils conducteurs reliés aux lames d'un collecteur solidaire du rotor. Pour connecter électriquement les bobinages du rotor, les contacts électriques glissants, typiquement des balais 5 en matériau carboné, sont plaqués sur la surface du collecteur, de sorte que, pendant la rotation du rotor, ils sont mis en contact successivement avec chacune des lames du collecteur.
Les balais, en frottant sur les lames du collecteur, amènent un courant dans le w fil conducteur reliant les deux lames en contact avec lesdits balais. Ce courant, combiné au flux magnétique de l'inducteur donne naissance à une force qui entraîne le fil du rotor en rotation (force de Laplace). Les lames, séparées les unes des autres par un isolant, sont agencées de telle façon que la partie du fil conducteur traversant une zone de flux magnétique de polarité donnée soit
/5 traversée par un courant de sens constant malgré la rotation. Cet agencement est rendu possible grâce à une inversion du sens du courant (commutation) qui se produit lorsque les balais passent d'une lame à l'autre, passage qui coïncide au passage d'une partie du fil conducteur qui relie les deux lames en contact avec lesdits balais d'une zone de polarité magnétique donnée à la zone de
20 polarité opposée. Grâce à l'inversion de sens du courant dans ladite partie de fil, celle-ci, parvenue dans la zone de polarité magnétique opposée, reste soumise à une force tangentielle de même sens.
Lors de la commutation, plus précisément lorsqu'une lame quitte le contact
25 d'un balai, une surtension plus ou moins brutale apparaît entre ledit balai et ladite lame. Cette surtension peut se traduire par une étincelle ou encore un arc électrique, ce qui a pour inconvénients d'entraîner une dégradation du balai par électroérosion, d'entraîner la perturbation du milieu par rayonnement électromagnétique et la création d'une surtension dans le circuit
30 d'alimentation. On pallie à ces inconvénients notamment en choisissant pour les balais un matériau particulièrement bien adapté: par exemple, pour les petits moteurs électriques embarqués dans un véhicule automobile, on utilise souvent une nuance métallographitique frittée, préparée à partir d'un mélange de poudres composées essentiellement de graphite naturel et de cuivre. Une telle nuance présente une faible résistivité électrique, un faible coefficient de frottement, de bonnes propriétés réfractaires et une bonne aptitude à éviter le grippage et la soudure sur le collecteur. On y pallie également en effectuant un agencement spatial particulier des bobines et de leur connexions aux lames. En général, le fil conducteur correspond à un ensemble de spires bobinées en des endroits précis du rotor et dont les extrémités sont reliées à deux lames successives: l'induit peut donc être représenté par un long fil séparé en segments rattachés les uns aux autres par les lames du collecteur. D'autre part, le balai a une largeur supérieure à l'espace isolant deux lames. De la sorte, la commutation s'effectue en deux temps puisque, lors de la mise en contact du balai avec la lame suivante, la boucle associée aux deux lames successives est mise d'abord en court-circuit. Ainsi, la commutation d'une lame de collecteur vers une autre se fait par la mise en court-circuit, au travers de la lame, d'un enroulement bobiné dans une zone précise du rotor. Du fait de ce court-circuit, qui a tendance à annuler le courant dans ledit enroulement, l'inversion de courant est un peu moins brutale. Toutefois, du fait de l'énergie électromagnétique emmagasinée dans l'enroulement, le courant dans ledit enroulement ne peut être inversé ni même annulé rapidement sans qu'il se produise une surtension importante entre les extrémités de l'enroulement.
On connaît dans de tels moteurs différentes techniques pour produire un signal électrique représentatif de la vitesse du moteur ou de sa position angulaire. Un tel signal permet un asservissement de la vitesse de rotation ou un contrôle de la position angulaire du moteur. Ces techniques s'appuient essentiellement sur une mesure des variations du champ magnétique au niveau du collecteur à l'aide d'une sonde à effet Hall et d'un anneau magnétique avec une - A -
αimαntαtion souvent multipolaire et généralement placée près du collecteur, ou sur la mesure des ondulations des tensions d'alimentation dues à la commutation au niveau des lames de collecteur, décrit par exemple dans le brevet US 6 144 179 (effet "ripple" ) ou encore ajout de capteurs extérieurs, nécessitant une transformation du collecteur et/ou de l'alimentation.
La demande DE 42 29 045 prévoit l'ajout d'une piste d'exploration parallèle au collecteur, raccordée au moins à une lamelle du collecteur mais de longueur circonférentielle plus grande que celle-ci. Un balai supplémentaire est affecté à cette piste d'exploration et permet après mesure des différences de tension entre la piste d'exploration et les lamelles puis analyse de leurs ondulations, d'estimer la vitesse de rotation et la position angulaire. Dans la demande EP 0 753931 , on introduit plusieurs balais additionnels que l'on applique sur le collecteur. La tension prélevée par ces balais additionnels est traitée par un circuit électronique qui en analyse les ondulations. Les demandes EP 0 433 733 et FR 2 791 486 font appel à une analyse du courant rotorique traversant le moteur. EP 0 433 733 analyse les variations introduites par la force contre- électromotrice générée dans l'induit. Dans la demande de brevet FR 2791 486, on introduit un troisième balai électriquement isolé et de largeur supérieure à l'espace compris entre deux lames successives. Ce troisième balai, lorsqu'il est à cheval sur deux lames, court-circuite la bobine associée à ces lames, la modification des courants et champs magnétiques induits qui en résulte créant, dans le courant électrique traversant le moteur, des impulsions dont la fréquence est proportionnelle à la vitesse de rotation du moteur.
Chacun de ces agencements de détection présente des inconvénients, en terme de surcoût du moteur: perte de rendement, perte de précision (notamment avec le système à effet Hall où on n'obtient qu'une impulsion par tour), nécessité d'introduire des capteurs spécifiques, de modifier la surface du collecteur (en créant par exemple une piste d'exploration supplémentaire), et/ou encore de connecter des circuits électroniques de traitement destinés à fournir l'information voulue. De plus, quelle que soit la solution choisie, l'interprétation des signaux relevés dans un moteur électrique est toujours délicate, étant donné que des signaux parasites liés à la formation d'arcs, aux perturbations de commutation polaire et aux modifications des courants et 5 champs induits, se superposent aux signaux utiles.
PROBLEME POSE
La demanderesse a cherché une solution technique permettant de mesurer la /o position angulaire de l'axe associé au rotor d'un moteur électrique à collecteur qui ne nécessite pas l'introduction d'un dispositif complexe ou coûteux et qui délivre des signaux utiles faciles à interpréter.
DESCRIPTION DE L'INVENTION
/5
Un premier objet de l'invention est un moteur électrique à collecteur comprenant un bâti et un arbre solidaire d'un rotor, ledit bâti comprenant un stator et des balais d'alimentation, aptes à être connectés à une source d'alimentation électrique, le rotor étant solidaire d'un collecteur à lames et
20 comprenant un ensemble de spires bobinées dont les extrémités sont reliées à deux lames successives dudit collecteur, ledit bâti comprenant au moins un balai supplémentaire situé à proximité de l'un des balais d'alimentation, que nous appellerons par la suite "balai suivi", à une distance inférieure à la largeur d'une lame, ledit balai supplémentaire étant relié à un circuit électrique
25 comprenant un moyen de mesure de tension électrique, caractérisé en ce que ledit balai supplémentaire et ledit balai suivi ont une largeur substantiellement égale et sont disposés de façon symétrique par rapport à un plan diamétral du rotor.
30 De la sorte, le balai supplémentaire est au moins périodiquement en contact avec le balai d'alimentation dit "balai suivi" par le biais d'une lame. Il est de plus relié à un circuit électrique qui comprend un moyen de mesure de tension qui permet de connaître en continu la tension sur ledit balai supplémentaire. Le circuit est agencé de telle sorte que l'on connaisse la tension sur le balai supplémentaire par rapport à une autre tension: une tension de référence constante [la masse par exemple) ou encore celle de l'un des balais d'alimentation (le balai suivi par exemple). Le circuit électrique comprend avantageusement également un moyen de traitement de signal utilisant ladite tension mesurée sur le balai supplémentaire et permettant de compter les impulsions de courant générées dans ledit circuit électrique auquel est relié le balai supplémentaire, notamment lorsque le balai suivi quitte une lame du collecteur.
Le dispositif équipant le moteur selon l'invention est simple et permet de mesurer la position angulaire du moteur par comptage des lames du collecteur. Le principe suivi consiste à utiliser l'alternance des signaux électriques différents transmis sur le balai supplémentaire et qui apparaissent d'une part lorsque le balai d'alimentation suivi et le balai supplémentaire sont en contact par le biais d'une lame et d'autre part lorsqu'une lame perd le contact avec le balai suivi. En effet, une surtension apparaît lorsqu'une lame quitte un balai d'alimentation. Cette surtension se traduit par une impulsion de courant générée dans le circuit électrique auquel est relié le balai supplémentaire. C'est ce^te impulsion de courant qui, par exemple après mise en forme, filtration et transformation, permet de compter les lames du collecteur et par conséquent de mesurer la position et/ou d'asservir la vitesse du moteur. Le balai d'alimentation est appelé dans le cadre de cette invention "balai suivi" puisqu'on lui adjoint un balai supplémentaire qui est placé à sa proximité et qui, associé à un circuit de mesure, permet de suivre en permanence les signaux électriques transmis et notamment les impulsions générées lorsqu'une lame quitte le balai suivi. Le bαlαi supplémentaire est placé à proximité du balai suivi. Le balai supplémentaire et le balai suivi sont distants l'un de l'autre d'une distance inférieure à la largeur d'une lame, de sorte que le balai supplémentaire se trouve périodiquement au même potentiel que le balai suivi par l'intermédiaire d'une lame commune.
Le balai supplémentaire peut être placé après ou avant ce dernier, par rapport au sens de la rotation du moteur.
Lorsqu'il est placé après le balai suivi (en aval), une lame du collecteur rencontre d'abord le balai d'alimentation puis le balai supplémentaire. Lorsqu'elle quitte le balai suivi, elle est encore en contact avec le balai supplémentaire. L'impulsion correspond essentiellement à la décharge de la self-inductance de la portion du bobinage induit qui est reliée à la lame encore en contact avec le balai d'alimentation et à celle qui vient de perdre le contact avec ledit balai.
Lorsqu'il est placé avant le balai suivi (en amont), une lame du collecteur rencontre d'abord le balai supplémentaire puis le balai suivi. L'impulsion résulte de la transition d'un état où les deux balais sont sur la même lame et où la différence de potentiel entre les balais est par conséquent nulle, à un état où les deux balais sont sur des lames différentes et où la différence de potentiel entrée les balais correspond essentiellement à la chute de potentiel générée par le courant induit qui traverse la bobine reliée aux deux susdites lames. L'impulsion correspond essentiellement à la traversée d'un courant dans le segment de l'induit qui est relié à la lame encore en contact avec le balai d'alimentation et à celle qui vient de perdre le contact avec ledit balai. Dans ce cas, le signal est plus faible, mais reste exploitable.
Le balai supplémentaire et le balai suivi pourraient avoir des largeurs différentes: le balai suivi est un balai d'alimentation dont la largeur doit être αussi proche que possible de celle du ou des autres balais d'alimentation et le balai supplémentaire pourrait être plus étroit puisqu'il sert essentiellement à recueillir l'impulsion créée lorsqu'une lame quitte le balai suivi. Toutefois, selon l'invention, le balai supplémentaire et le balai suivi ont une largeur substantiellement égale et sont disposés de façon symétrique par rapport à un plan diamétral du rotor de façon à pouvoir jouer des rôles interchangeables quel que soit le sens de rotation du moteur.
Le choix du sens de rotation s'effectue simplement par exemple à l'aide de transistors ou d'un relais correctement branché. Le balai supplémentaire devient alors le balai suivi et le balai suivi , sur lequel est branché également le circuit comprenant le moyen de mesure de tension et le moyen de traitement de signal, devient le balai supplémentaire. Les deux balais sont donc reliés à la fois à l'alimentation et au circuit de mesure et de traitement de signal, de telle sorte que le système peut être réversible (fonctionnement dans les deux sens de rotation). Dans une telle configuration, le circuit de mesure et de traitement de signal relie le balai suivi et le balai supplémentaire, qui de ce fait est en permanence non isolé électriquement.
De plus, une telle configuration améliore la compatibilité électromagnétique du moteur, en particulier lorsque le balai supplémentaire est placé en aval du balai suivi (c'est-à-dire après celui-ci dans le sens de rotation). Le balai suivi et le balai supplémentaire sont reliés par ledit circuit électrique et, lorsque le balai suivi quitte une lame qui reste toutefois en contact avec le balai supplémentaire, une partie du courant de décharge de l'enroulement associé à ces deux lames est dérivé vers ce circuit électrique, ce qui réduit l'amplitude de la surtension.
Selon l'invention, le balai supplémentaire et le balai suivi ont une largeur substantiellement égale. Celle-ci doit être suffisante pour que les balais résistent à l'usure aussi bien que les autres balais. Toutefois, il est recommandé que la lαrgeur hors tout de l'ensemble formé par le balai supplémentaire et le balai suivi ne soif pas trop importante, car le rendement dυ moteur diminue avec le nombre de segments dυ bobinage mis en court circuit et celui-ci est d'autant plus important que le balai suivi et le balai supplémentaire sont larges. Dans la mesure du possible, on visera une largeur hors tout de l'ensemble formé par le balai supplémentaire et Je balai suivi aussi proche que possible de la largeur du oυ des autres balais d'alimentation. Typiquement, cette largeur hors tout ne devrait pas dépasser la largeur minimale des balais d'alimentation autres que îe balai suivi (en générai tous ces balais ont la même largeur) plus la largeur d'une lame. De la sorte, on court-circuite au maximum deux lames.
L'espace séparant le balai suivi et le balai supplémentaire doit être inférieur à fa largeur d'une lame pour qu'il y ait à chaque passage d'une lame mise en commun du potentiel et possibilité de décharge dans le balai supplémentaire dès que la lame quitte le balai d'alimentation. Pour des raisons évidentes d'encombrement et de rendement du moteur, l'espace séparant le balai suivi et le balai supplémentaire doit être le plus faible possible, mais suffisamment important pour éviter la création d'arcs intempestif entre ceux-ci. Cette distance dépend notamment du matériau utilisé pour les balais et de l'isolant employé (air, papier, plastique, ...) et peut varier entre quelques centièmes de millimètres et quelques millimètres. Typiquement, elle est de quelques dixièmes de millimètre pour un moteur à courant continu de 12 volts.
Le balai supplémentaire est relié électriquement à un moyen de mesure de tension et à un moyen de traitement de signal électrique. Le signal électrique à traiter est construit à partir de la tension sur le balai supplémentaire. On peut par exemple prendre comme signal la différence de potentiel entre le balai supplémentaire et la masse. Mais, de préférence, le balai supplémentaire et balai suivi étant utilisables de façon interchangeable quel que soif le sens de rotation du moteur, le signal traité et mis en forme utilise la différence de potentiel entre le balai suivi et le balai supplémentaire. Le nombre et la disposition spatiale des balais dépend de la multipolarité du moteur électrique. L'invention peut s'appliquer à tout type de moteur à courant continu multipolaire, typiquement à 2, 4 ou 6 pôles, qu'il s'agisse d'un petit moteur embarqué dans un véhicule automobile ou d'un moteur de laminoir. Nous illustrerons par la suite l'invention par un mode de réalisation particulier : un moteur à courant continu bipolaire, représentatif des moteurs des équipements embarqués dans les véhicules automobiles.
Sur un tel moteur, les balais d'alimentation sont disposés classiquement sur la circonférence du moteur de sorte qu'ils sont diamétralement opposés. Cette disposition permet une répartition systématique des courants sur chacune des voies d'enroulement du bobinage. La ligne neutre du moteur correspond à la frontière entre ces zones, c'est-à-dire aux endroits diamétralement opposés où la polarité magnétique change de signe. C'est à cet endroit que le courant doit s'inverser et les balais doivent être placés au plus près de la ligne neutre.
Le moteur à courant continu bipolaire réalisé selon cette modalité de l'invention présente un balai supplémentaire et un balai suivi symétriques par rapport au plan diamétral du rotor, ce dernier coïncidant avec le plan de symétrie de l'autre balai d'alimentation. Dans ce mode de réalisation préféré, la largeur du balai d'alimentation - ou, plus généralement, la largeur maximale des balais d'alimentation autres que le balai suivi - et la largeur hors tout du groupe constitué par le balai suivi et le balai supplémentaire sont inférieures à la largeur d'une lame plus deux interlames (espaces séparant les lames).
Si le balai supplémentaire est placé en aval du balai suivi et qu'une lame quitte le balai suivi, un courant de décharge apparaît dans le segment de bobinage de l'induit qui est relié à la lame encore en contact avec le balai suivi et à celle qui a perdu le contact avec ledit balai suivi. Elle se traduit par une variation brutale de tension sur balai supplémentaire, et par conséquent par une variation brutale de la différence de potentiel entre le balai supplémentaire et le balai suivi. Toutefois, le balai suivi et le balai supplémentaire étant reliés par un circuit résistif, les perturbations électromagnétiques du moteur sont amoindries.
Si le balai supplémentaire est placé en amont du balai suivi et qu'une lame quitte le balai suivi, une impulsion de plus faible amplitude est recueillie dans le circuit de mesure. Les ondulations recueillies sont suffisantes pour permettre, après filtrage et transformation, le comptage des lames.
Un autre objet selon l'invention est un procédé pour contrôler la position angulaire et la vitesse de rotation du rotor d'un moteur à collecteur, typiquement d'un moteur à courant continu, consistant à compter le nombre de lames du collecteur passant devant un point fixe, caractérisé en ce que le point fixe choisi est un des balais d'alimentation, appelé balai suivi, en ce que l'on place un balai supplémentaire à proximité dudit balai suivi, à une distance inférieure à la largeur d'une lame et en ce qu'on mesure en continu la tension sur ledit balai supplémentaire. Pour effectuer cette mesure en continu, on relie le balai supplémentaire à un circuit comprenant un moyen de mesure de tension et un moyen de traitement de signal électrique utilisant ladite tension. Le signal est traité de telle sorte que l'on puisse compter les impulsions générées à chaque fois qu'une lame du collecteur quitte le balai suivi.
Le balai supplémentaire peut être placé après ou avant le balai suivi, par rapport au sens de la rotation du moteur. Si le balai supplémentaire est placé en aval du balai suivi et qu'une lame quitte le balai suivi, un courant de décharge apparaît dans le segment de l'induit qui est relié à la lame encore en contacf avec ledit balai suivi et à celle qui perd le contact avec ledit balai suivi. Le moyen de traitement est avantageusement un circuit électronique qui utilise la tension mesurée en continu sur le balai supplémentaire pour générer un signal et qui permet de mettre en forme, filtrer et transformer en signal carré ledit signal. De la sorte, il permet de compter les lames du collecteur et par conséquent contrôler la position angulaire du moteur et/ou sa vitesse de rotation.
Selon l'invention, le balai supplémentaire et le balai suivi ont une largeur substantiellement égale et sont disposés de façon symétrique par rapport à un plan diamétral du rotor de façon à pouvoir jouer des rôles interchangeables quel que soit le sens de rotation du moteur.
Le signal recueilli sur le balai supplémentaire est comparé à la tension d'alimentation du balai suivi. On mesure ainsi la différence de potentiel entre le balai suivi et le balai supplémentaire. Cette différence de potentiel est ensuite filtrée afin d'en éliminer les perturbations hautes fréquences. Un comparateur, à base d'amplificateur opérationnel peut être utilisé pour générer un signal carré. Le filtrage du signal, ainsi que la tension de référencé pour la commutation de l'amplificateur opérationnel et par conséquent la création du signal carré sont déterminés en fonction du moteur. Ce choix permet de faire fonctionner le système même lorsque le moteur s'arrête, c'est à dire lorsqu'il n'est plus alimenté, mais toujours entraîné en rotation par son inertie.
On peut, par exemple, filtrer juste les hautes fréquences superposées au signal ou filtrer le signal de sorte de n'avoir plus que la fréquence fondamentale de ce dernier. Ces moyens sont aisés à mettre en oeuvre et la génération d'un signal carré à partir de ces moyens est très facile. De plus, on peut facilement imaginer la mise en oeuvre de tout système permettant de modifier le rapport cyclique, l'amplitude, etc. du signal carré. La tension de référence pour la commutation de l'amplificateur opérationnel est par exemple créée à partir du signal lui-même en le filtrant. Cette opération permet le fonctionnement du système même lorsque le moteur s'arrête. Il serait par conséquent possible de mesurer la position d'un moteur fonctionnant en génératrice. Enfin, un montage monostable peut éventuellement être ajouté pour régler le rapport cyclique du signal carré généré.
Un autre objet selon l'invention est un dispositif de contrôle de la position angulaire et de la vitesse de rotation d'un moteur à collecteur comprenant des porte-balais munis de balais aptes à être connectés à un circuit électrique extérieur et comprenant un balai supplémentaire, caractérisé en ce que ledit balai supplémentaire est placé à côté de l'un desdits balais aptes à être connectés à un circuit électrique extérieur, appelé balai suivi, à une distance inférieure à la largeur d'une lame du collecteur dudit moteur et en ce que ledit balai supplémentaire est relié à un circuit électrique comprenant un moyen de mesure de tension et un moyen de traitement de signal électrique utilisant la tension ainsi mesurée et permettant de compter les impulsions générées lorsqu'une lame quitte le balai suivi.
Les balais aptes à être connectés à un circuit électrique extérieur sont en général les balais d'alimentation aptes à être connectés au circuit d'alimentation. Mais, comme nous le verrons plus loin, le système peut fonctionner de la même façon lorsque le moteur n'est pas alimenté, c'est-à- dire lorsqu'il fonctionne en génératrice. Dans ce cas, le circuit extérieur peut être un circuit électrique alimenté par la génératrice.
Le balai supplémentaire peut être placé après ou avant le balai suivi, par rapport au sens de la rotation du rotor. Si le balai supplémentaire est placé en aval du balai suivi et qu'une lame quitte le balai suivi, un courant de décharge αppαrαît dans le segment de l'induit qui est relié à la lame encore en contact avec ledit balai suivi et à celle qui perd le contact avec ledit balai suivi.
Le balai supplémentaire est relié à un circuit électrique qui comprend un moyen de mesure de tension et un moyen de traitement de signal électrique, typiquement un circuit électronique, utilisant la tension mesurée et permettant de compter les impulsions générées lorsqu'une lame quitte le balai suivi. A l'aide d'un circuit électronique approprié, les impulsions sont mises en forme, filtrées et transformées de façon à pouvoir compter les lames du collecteur,
Selon l'invention, le balai supplémentaire et le balai suivi ont une largeur substantiellement égale et sont disposés de façon symétrique par rapport à un plan diamétral du rotor de façon à pouvoir jouer des rôles "interchangeables quel que soit le sens de rotation du moteur. Le dispositif permettant l'inversion du sens de rotation peut très simplement être réalisé, à partir, par exemple, de transistors ou de relais.
Le circuit électronique permet de traiter le signal recueilli sur le balai supplémentaire en comparant ce dernier à la tension d'alimentation du balai suivi. On mesure ainsi la différence de potentiel entre le balai suivi et le balai supplémentaire et cette différence de potentiel est ensuite filtrée afin d'en éliminer les perturbations hautes fréquences. Le filtrage du signal, ainsi que la tension de référence pour la commutation de l'amplificateur opérationnel par conséquent la création du signal carré sont déterminés en fonction du moteur électrique concerné.
Ce circuit électronique doit pouvoir être opérationnel quel que soit le sens de rotation du moteur. On peut appliquer les solutions utilisées actuellement pour inverser le sens de rotation du moteur, seul le câblage des transistors ou relais est légèrement modifié, ce qui n'entraîne aucun surcoût de réalisation. Avec un tel dispositif, on peut faire fonctionner le système même lorsque le moteur s'arrête, c'est à dire lorsqu'il n'est plus alimenté, mais toujours entraîné en rotation par son inertie. Il est donc également possible de contrôler la position angulaire du rotor lorsque le moteur fonctionne en génératrice, c'est- 5 à-dire que, en l'absence d'alimentation et si le rotor est entraîné en rotation, ce système permet également de compter les impulsions générées par le passage des lames. On peut ainsi utiliser un tel dispositif par exemple dans des capteurs de déplacement.
w
FIGURES
Les figures la, I b et Ic sont trois illustrations schématiques représentant les positions respectives de certaines parties du rotor (sections du bobinage et/ou
/5 lames du collecteur) et de certaines parties liées au bâti du moteur [pôles de l'inducteur, balais). La figure la illustre schématiquement une coupe transversale du collecteur et des balais d'un moteur à collecteur classique comportant 8 lames. La figure I b illustre une projection cylindrique de l'inducteur, des balais, du bobinage et du collecteur. La figure Ic illustre une zo projection cylindrique du collecteur et des balais, les spires des sections de bobine étant, pour plus de clarté, signalées par un symbole sans signification spatiale. Pour illustrer l'invention, nous avons choisi un bobinage imbriqué. Nous aurions pu choisir d'autres types de bobinages (des bobinages ondulés par exemple) sur lesquels l'invention peut également s'appliquer, car le principe de
25 fonctionnement reste le même.
La figure 2 illustre schématiquement une coupe transversale du collecteur et des balais d'un moteur à collecteur selon l'invention. Les figures 3α, 3b et 3c illustrent (schémαtiquement pour les sections de bobine) une projection cylindrique du collecteur et des balais d'un moteur à collecteur selon l'invention, dans trois configurations spatiales différentes.
La figure 4 présente schématiquement l'évolution au cours du temps de la différence de tension mesurée entre le balai d'alimentation et le balai supplémentaire.
Description d'un moteur à courant continu bi-polaire (Figure 1)
Le moteur bipolaire de la figure 1 est un moteur électrique à collecteur comprenant un bâti et un arbre solidaire d'un rotor, ledit bâti comprenant un stator et les balais d'alimentation 100 et 110 connectés à une source d'alimentation électrique par le circuit 120. Le rotor est solidaire d'un collecteur muni ici de 8 lames (Ll, L2, L3, L4, L5, L6, L7, L8) et comprenant un ensemble de spires bobinées dont les extrémités sont reliées à deux lames successives du collecteur. Comme on peut le voir sur la figure Ic, ces spires sont les segments d'un même bobinage, liés entre eux par l'intermédiaire des lames. Sur la figure 1 b, on peut voir que les segment sont bobinés sur le rotor de telle sorte que les parties montantes traversées par un courant montant (respectivement 1, 2, 3, 4, 5, 6, 7 et 8) et les parties descendantes traversées par un courant descendant (respectivement 9,10, 11, 12, 13, 14 et 15) se trouvent dans deux zones polaires (50 et 60), traversées chacune par un champ magnétique de sens opposé.
Les parties 1, 16, 8 et 9 se trouvent à proximité de la ligne neutre: au cours de la rotation R, elles passent d'une zone polaire à l'autre et font l'objet au cours de ce passage d'une inversion de courant par commutation des balais sur les lames.
En général, le balai est légèrement plus large que la lame, sa largeur E étant typiquement égale à la somme de la largeur L de la lame et de 2 interlames e. Cette condition géométrique préférée (E = L + 2e) facilite la commutation du courant dans l'induit.
DESCRIPTION DETAILLEE DE L'INVENTION - illustrée par un dispositif de comptage des lames dans un moteur à courant continu bipolaire (Figures 2, 3a, 3b, 3c et 4)
La figure 2 illustre schématiquement les lames du collecteur et les balais selon l'invention: Le collecteur est identique au collecteur du moteur à courant continu classique représenté en figure 1 : l'invention n'impose pas une modification du rotor. L'un des deux balais d'alimentation, le balai 100, n'est pas modifié, l'autre est remplacé par un couple de balais, le balai suivi 200 remplissant la fonction d'alimentation électrique et le balai supplémentaire 300, placé à proximité du balai suivi 200, à une distance D inférieure à la largeur L d'une lame et est situé après celui-ci dans le sens de rotation R du moteur. Le balai supplémentaire 300 est relié électriquement au balai suivi 200 par un circuit 310 comprenant un dispositif 320 de mesure et de traitement d'un signal électrique S.
Les figures 2 et 3a) illustrent les lames et des balais dans une première configuration, semblable à celle rencontrée dans le cas classique illustré sur la figure I c. Le balai d'alimentation 100 alimente l'induit par l'intermédiaire d'une première lame L5, diamétralement opposée à la lame LI qui est en contact avec l'autre balai d'alimentation 200 et également avec le balai supplémentaire 300. Le balai supplémentaire 300 et le balai suivi 200 se trouvant au même potentiel que la lame LI, la différence de potentiel mesurée vaut 0V. Le signal Sa, recentré, est égal à la moitié des tensions appliquées sur le balai suivi et sur le balai supplémentaire. En l'occurrence, il est ici égal à la moitié de la tension d'alimentation du moteur, soit 6V pour un moteur de 12V. Dαns le cadre de cet exemple, le balai d'alimentation 200 et le balai supplémentaire 300 ont la même largeur E', choisie de telle sorte que 2*E' + D = E
Le balai supplémentaire 300 et le balai suivi 200 ont la même épaisseur E' et sont disposés de façon symétrique de façon à pouvoir jouer des rôles interchangeables quel que soit le sens de rotation du moteur: si l'on inverse la polarité de la borne d'alimentation pour inverser la rotation, il suffit de brancher le pôle inversé sur l'autre balai; de la sorte, le balai supplémentaire 300 devient balai d'alimentation et le balai d'alimentation 200 devient le balai supplémentaire sur lequel on branche le circuit de mesure et de traitement de signal.
Sur la figure 3b), on voit qu'en poursuivant la rotation, la lame L2 arrive au contact du balai d'alimentation 200, ce qui a pour conséquence de mettre en court-circuit le segment du bobinage comprenant les parties 8 et 15. Le balai
100 met également en court-circuit le segment comprenant les parties 7 et 16 par la mise en contact des lames L5 et L6. Lorsque la lame LI quitte le balai d'alimentation 200, une impulsion est créée et se décharge dans le balai 300. La différence de tension entre le balai 200 et le balai 300 est récupérée pour générer le signal de sortie. Le pic apparaissant sur le signal Sb de la figure 3b correspond à l'impulsion directement générée par la décharge de la section du bobinage de l'induit qui est reliée à la lame L2 encore en contact avec ledit balai d'alimentation 200 et à celle LI qui perd le contact avec ledit balai d'alimentation 200.
Puis la lame L5 quitte le balai 100. Le balai supplémentaire 300 se retrouve à nouveau en contact avec le balai d'alimentation 200 grâce à la lame suivante L2. Le signal présenté en Sc correspond à la faible différence de potentiel existant aux extrémités du segment du bobinage comprenant les parties 8 et 15. Un nouveau cycle recommence.

Claims

REVENDICATIONS
) Moteur électrique à collecteur comprenant un bâti et un arbre solidaire d'un rotor, ledit bâti comprenant un stator et des balais d'alimentation (100, 200), aptes à être connectés à une source d'alimentation électrique, le rotor étant solidaire d'un collecteur à lames (Ll , L2, L3, L4, L5, L6, L7, L8) et comprenant un ensemble de spires bobinées dont les extrémités sont reliées à deux lames successives dudit collecteur, ledit bâti comprenant au moins un balai supplémentaire (300) situé à proximité de l'un des balais d'alimentation, appelé balai suivi (200), à une distance (D) inférieure à la largeur (L) d'une lame, ledit balai supplémentaire étant relié à un circuit électrique (310) comprenant un moyen (320) de mesure de tension électrique, caractérisé en ce que ledit balai supplémentaire et ledit balai suivi ont une largeur (E') substantiellement égale et sont disposés de façon symétrique par rapport à un plan diamétral du rotor.
2) Moteur électrique à collecteur selon la revendication 1 dans lequel ledit moyen (320) de mesure permet de connaître en continu la tension sur ledit balai supplémentaire (300) et dans lequel le circuit électrique (310) comprend avantageusement également un moyen de traitement de signal utilisant ladite tension mesurée sur le balai supplémentaire et permettant de compter les impulsions de courant générées dans ledit circuit électrique (310), notamment lorsque le balai suivi (200) quitte une lame (Ll ) du collecteur.
3) Moteur électrique à collecteur selon la revendication 1 ou 2 dans lequel le balai supplémentaire (300) est placé en aval du balai suivi (200) (sens de rotation du moteur). 4) Moteur électrique à collecteur selon la revendication 1 ou 2 dans lequel le balai supplémentaire (300) est placé en amont du balai suivi (200) (sens de rotation du moteur).
5 5) Moteur électrique à collecteur selon l'une quelconque des revendications 1 à 4 dans lequel ledit balai suivi (200) a une largeur (E') égale à celle (E) du ou des autres balais d'alimentation (100).
6) Moteur électrique à collecteur selon l'une quelconque des revendications 1 W à 5 dans lequel la largeur hors tout de l'ensemble formé par le balai supplémentaire et le balai suivi ne dépasse pas la largeur minimale des balais d'alimentation autres que le balai suivi plus la largeur d'une lame, c'est-à-dire, si EO est la largeur minimale des balais d'alimentation autres que le balai suivi, dans lequel : 15 2.E' + D < EO + L
7) Moteur électrique à collecteur selon l'une quelconque des revendications 1 à 6, dans lequel la largeur maximale des balais d'alimentation (100) autre(s) que le balai suivi (200) et la largeur hors tout de l'ensemble formé par le 20 balai supplémentaire et le balai suivi sont inférieures à une valeur correspondant à la largeur d'une lame plus deux interlames (L+2*e).
8) Moteur électrique à collecteur selon l'une quelconque des revendications 1 à 7 dans lequel ledit circuit électrique est également relié au balai suivi, et
25 dans lequel le moyen de mesure de tension mesure la différence de potentiel entre le balai suivi et le balai supplémentaire.
9) Moteur électrique à collecteur selon l'une quelconque des revendications 2 à 8 dans lequel ledit moyen de traitement de signal est un circuit
30 électronique qui utilise la tension mesurée en continu sur le balai sυpplémentαire pour générer un signal et permet de mettre en forme, filtrer et transformer en signal carré ledit signal.
10) Moteur électrique à collecteur selon la revendication 9 dans lequel le signal carré est généré à partir d'un montage comparateur, par exemple à base d'amplificateur opérationnel, où la tension de référence est créée à partir d'une valeur moyenne ou d'un filtrage du signal.
1 1 } Procédé pour contrôler la position angulaire du rotor d'un moteur à collecteur consistant à compter le nombre de lames du collecteur passant devant un point fixe, ledit point fixe choisi étant un des balais d'alimentation (200), appelé balai suivi, procédé dans lequel on place υn balai supplémentaire (300) à une distance (D) inférieure à la largeur (L) d'une lame et dans lequel on mesure en continu la tension sur ledit balai supplémentaire caractérisé en ce que on dispose ledit balai supplémentaire et ledit balai suivi de façon symétrique par rapport à un plan diamétral du rotor, lesdits balai supplémentaire et balai suivi ayant une largeur substantiellement égale et étant reliés à l'alimentation de façon à pouvoir jouer des rôles interchangeables quel que soit le sens de rotation du moteur.
12) Procédé selon la revendication 1 ] dans lequel on relie ledit balai supplémentaire (300) à un circuit (310) comprenant un moyen de mesure de tension et un moyen de traitement de signal électrique (S) utilisant ladite tension mesurée sur ledit balai supplémentaire et permettant de compter les impulsions générées à chaque fois qu'une lame du collecteur quitte le balai suivi (200).
] 3) Procédé selon la revendication 1 1 ou 12, dans lequel on mesure la différence de potentiel entre ledit balai suivi et ledit balai supplémentaire, cette différence de potentiel étant ensuite filtrée afin d'en éliminer les perturbations hautes fréquences. 14) Procédé selon l'une quelconque des revendications 11 à 13, dans lequel on génère un signal carré à partir d'un montage comparateur, typiquement à base d'amplificateur opérationnel dans lequel la tension de référence est
5 crée à partir d'une valeur moyenne ou d'un filtrage du signal.
15) Dispositif de contrôle de la position angulaire et de la vitesse de rotation d'un moteur ou d'un générateur à collecteur comprenant des porte-balais munis de balais (100, 200) aptes à être connectés à un circuit électrique
10 extérieur et comprenant un balai supplémentaire (300), ledit balai supplémentaire étant placé à côté de l'un des dits balais d'alimentation, appelé balai suivi (200), à une distance (D) inférieure à la largeur (L) d'une lame du collecteur dudit moteur, ledit balai supplémentaire étant relié à un circuit électrique (310) comprenant un moyen de mesure de tension et un
/5 moyen de traitement de signal électrique qui utilise la tension ainsi mesurée et permet de compter les impulsions générées lorsqu'une lame (Ll ) quitte le balai suivi (200) caractérisé en ce que ledit balai supplémentaire et le dit balai suivi ont une largeur substantiellement égale, sont disposés de façon symétrique par rapport à un plan diamétral du rotor et sont reliés à
20 l'alimentation électrique de façon à pouvoir jouer des rôles interchangeables quel que soit le sens de rotation du moteur.
PCT/FR2005/002618 2004-10-25 2005-10-21 Moteur a collecteur muni d'un dispositif de controle de la position angulaire et de la vitesse de rotation de son induit WO2006045930A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/577,985 US20090304368A1 (en) 2004-10-25 2005-10-21 Commutator motor comprising a device for controlling the angular position and rotational speed of the armature thereof
EP05811927A EP1807923A1 (fr) 2004-10-25 2005-10-21 Moteur a collecteur muni d'un dispositif de controle de la position angulaire et de la vitesse de rotation de son induit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411335 2004-10-25
FR0411335A FR2877161B1 (fr) 2004-10-25 2004-10-25 Moteur a collecteur muni d'un dispositif de controle de la position angulaire et de la vitesse de rotation de son induit

Publications (1)

Publication Number Publication Date
WO2006045930A1 true WO2006045930A1 (fr) 2006-05-04

Family

ID=34949983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/002618 WO2006045930A1 (fr) 2004-10-25 2005-10-21 Moteur a collecteur muni d'un dispositif de controle de la position angulaire et de la vitesse de rotation de son induit

Country Status (4)

Country Link
US (1) US20090304368A1 (fr)
EP (1) EP1807923A1 (fr)
FR (1) FR2877161B1 (fr)
WO (1) WO2006045930A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029410A1 (de) * 2009-09-14 2011-03-17 Robert Bosch Gmbh Motorsystem, Vorrichtung zur Messung einer Drehzahl in dem Motorsystem sowie Verfahren zur Drehzahlmessung
BRPI1002960B1 (pt) * 2010-08-27 2020-04-07 Robert Bosch Ltda motor elétrico de corrente contínua e sistema de detecção de posição e velocidade angular
US9732733B2 (en) * 2015-11-12 2017-08-15 Jimmy McMillion Two phase wind power generator system
WO2021049449A1 (fr) * 2019-09-10 2021-03-18 パナソニックIpマネジメント株式会社 Moteur électrique et dispositif électrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1884021A (en) * 1929-09-18 1932-10-25 Westinghouse Electric & Mfg Co Commutating device for dynamo-electric machines
EP0359855A1 (fr) * 1988-09-21 1990-03-28 Siemens Aktiengesellschaft Dispositif tachymètrique pour un moteur à collecteur
JPH04213082A (ja) * 1990-10-18 1992-08-04 Mitsubishi Electric Corp 電機子コイルの試験装置及び試験用ブラシ保持器
JP2002010665A (ja) * 2000-06-15 2002-01-11 Ricoh Co Ltd 直流モータの回転検出装置および回転制御装置
US20040113499A1 (en) * 2001-12-20 2004-06-17 Masaaki Ikawa Encoder apparatus integrated with a small-size motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163259A1 (en) * 1999-12-17 2002-11-07 Ricoh Company, Ltd. DC motor
CN1222103C (zh) * 1999-12-27 2005-10-05 株式会社理光 直流马达的回转控制装置
US6791218B1 (en) * 2003-03-20 2004-09-14 Siemens Vdo Automotive Inc. Stall protection for brush motors with rotation sensing brush device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1884021A (en) * 1929-09-18 1932-10-25 Westinghouse Electric & Mfg Co Commutating device for dynamo-electric machines
EP0359855A1 (fr) * 1988-09-21 1990-03-28 Siemens Aktiengesellschaft Dispositif tachymètrique pour un moteur à collecteur
JPH04213082A (ja) * 1990-10-18 1992-08-04 Mitsubishi Electric Corp 電機子コイルの試験装置及び試験用ブラシ保持器
JP2002010665A (ja) * 2000-06-15 2002-01-11 Ricoh Co Ltd 直流モータの回転検出装置および回転制御装置
US20040113499A1 (en) * 2001-12-20 2004-06-17 Masaaki Ikawa Encoder apparatus integrated with a small-size motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 559 (P - 1455) 30 November 1992 (1992-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 05 3 May 2002 (2002-05-03) *

Also Published As

Publication number Publication date
US20090304368A1 (en) 2009-12-10
FR2877161B1 (fr) 2008-10-10
EP1807923A1 (fr) 2007-07-18
FR2877161A1 (fr) 2006-04-28

Similar Documents

Publication Publication Date Title
EP2338220A2 (fr) Machine hybride comportant un moteur synchrone et un moteur asynchrone
EP0158935A1 (fr) Machine electrodynamique vernier
EP2686940A2 (fr) Moteur electrique et installation de fermeture ou de protection solaire comprenant un tel moteur
EP0171483B1 (fr) Transducteur électromécanique
WO2006045930A1 (fr) Moteur a collecteur muni d&#39;un dispositif de controle de la position angulaire et de la vitesse de rotation de son induit
FR2823614A1 (fr) Machine tournante electrique comportant un stator forme de secteurs assembles
EP2209192A1 (fr) Machine électrique tournante, en particulier pour un démarreur de véhicule automobile
JP2008079451A (ja) 速度切り替え式モータ
WO2009024697A2 (fr) Machine electrique tournante, en particulier pour un demarreur de vehicule automobile
EP1251622B1 (fr) Bobine pour machine électrique tournante
FR2959360A1 (fr) Machine electrique comportant un rotor muni d&#39;un bobinage permettant de faciliter la commutation, et demarreur associe
EP0072283B1 (fr) Moteur électrique, notamment pour l&#39;entraînement d&#39;une pompe hydraulique à engrenages
EP3602753B1 (fr) Perfectionnement a une machine synchrone a aimants permanents
FR2805936A1 (fr) Moteur ou generateur a induction electrique ayant un inducteur multipolaire et un induit a ailettes rayonnantes
FR3062001B1 (fr) Moteur electrique tubulaire a aimants permanents
EP1619779A1 (fr) Moteur électrique triphase
EP3017526A2 (fr) Démarreur de véhicule automobile
WO2000057542A1 (fr) Procede de realisation d&#39;un bobinage pour machine electrique tournante, et machine electrique tournante comportant un tel bobinage
FR2791486A1 (fr) Moteur electrique a courant continu equipe de moyens perfectionnes de detection de rotation
FR2632133A1 (fr) Moteur a induction du type a aimantation
FR2992798A1 (fr) Moteur a courant continu, systeme de moteur et procede de realisation
EP3114759A1 (fr) Générateur électrique à aimants permanents doté d&#39;un collecteur de flux magnétique
WO2022003190A1 (fr) Machine électrique synchrone équipée d&#39;un commutateur mécanique
FR2950207A1 (fr) Systeme de moteur electrique a collecteur
WO2020165252A1 (fr) Machine électrique synchrone polyphasée à commutateur mécanique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005811927

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005811927

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11577985

Country of ref document: US