WO2006042986A1 - Method for producing a syngas having a h2/co ratio less than 2.5 - Google Patents

Method for producing a syngas having a h2/co ratio less than 2.5 Download PDF

Info

Publication number
WO2006042986A1
WO2006042986A1 PCT/FR2005/050818 FR2005050818W WO2006042986A1 WO 2006042986 A1 WO2006042986 A1 WO 2006042986A1 FR 2005050818 W FR2005050818 W FR 2005050818W WO 2006042986 A1 WO2006042986 A1 WO 2006042986A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis gas
hydrogen
gas
methane
separation
Prior art date
Application number
PCT/FR2005/050818
Other languages
French (fr)
Inventor
Paul Wentink
Original Assignee
L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2006042986A1 publication Critical patent/WO2006042986A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/156Methane [CH4]

Definitions

  • the present invention relates to a novel process for the production of synthesis gas having a hydrogen to carbon monoxide (H 2 / CO) ratio of less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO 2 and steam. water as components providing oxygen.
  • H 2 / CO hydrogen to carbon monoxide
  • the conversion of the gaseous hydrocarbon compounds into a synthesis gas mainly comprising H 2 and CO is generally carried out by partial oxidation using an oxidizing gas and / or reaction with water vapor or CO 2 .
  • a synthesis gas with a ratio When it is desired to directly generate a synthesis gas with a ratio
  • H 2 / CO less than 2.5, it is necessary to use a synthesis gas generation technology that relies on oxidation with oxygen; in this case the ratio H 2 / CO will naturally be low.
  • a synthesis gas generation technology that relies on oxidation with oxygen; in this case the ratio H 2 / CO will naturally be low.
  • such technology only applies to high capacity units and is not suitable for low productions.
  • the synthesis gas is produced by reaction with steam and
  • Steam hydrocarbon reforming is a catalytic process.
  • the composition of the gas obtained at the end of the reforming depends on various parameters among which the proportions in different constituents of the gaseous mixture feeding the reforming stage, the pressure and the temperature will be mentioned.
  • the product obtained usually contains hydrogen, oxides of carbon (monoxide and dioxide), methane, steam and various gases present at the start of the reaction and inert under the reaction conditions used, such as nitrogen.
  • synthesis gas crude in the following description, can be processed to produce pure hydrogen, pure carbon monoxide or H 2 / CO mixtures.
  • a mixture of H 2 / CO is used in a large number of processes among which the synthesis of methanol, or the Fisher-process
  • the H 2 / CO ratio is a key parameter. It is therefore essential, during the production of synthesis gas, to control this ratio in the final product.
  • the solution usually adopted to solve this problem consists in: removing the CO 2 contained in the raw synthesis gas generated by the steam reforming, by washing with amines to recycle it to reforming, thus increasing the level of CO 2 present during this reforming and favoring the production of CO, which leads to the reduction of the H 2 / CO ratio in the reforming product; - Remove excess hydrogen by passage on a membrane that allows to recover hydrogen at low pressure and low purity. In order to be able to value it, it will be necessary to recompress this hydrogen before purifying it by adsorption by pressure modulation (PSA).
  • PSA pressure modulation
  • the aim of the present invention is to propose a process for producing synthesis gas having a hydrogen / carbon monoxide H 2 / CO ratio of less than 2.5 using steam reforming with recycling to CO 2 reforming. and methane contained in the raw synthesis gas.
  • Another object of the present invention is to propose a process for producing synthesis gas having a hydrogen / carbon monoxide ratio H 2 / CO of less than 2.5 using steam reforming which operates under optimal energy conditions. that is, with a low vapor / carbon (V / C) ratio.
  • the greater amount of unconverted methane does not detract from the purity of the synthesis gas ultimately produced by the recycling of methane.
  • the purity of the synthesis gas produced depends solely on its nitrogen content.
  • the invention also has the advantage of directly producing hydrogen which may have a purity greater than 98% (ie a hydrogen concentration greater than 98% by volume). It is therefore no longer necessary to obtain purified hydrogen to go through a recompression step before a PSA purification step.
  • the invention relates to a process for the production of synthesis gas having a hydrogen / carbon monoxide (H 2 / CO) ratio of less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO 2 and steam.
  • water as oxygen supplying components, wherein a raw synthesis gas is generated comprising at least hydrogen, carbon monoxide, carbon dioxide, water vapor, and also in amounts less, unreacted methane and nitrogen, and wherein said raw synthesis gas is subjected to a separation process comprising at least the following steps: a step of cooling the raw synthesis gas to about the temperature ambient, a step of removing the condensed water contained, and characterized in that it further comprises the following steps: a step of separating the mixture obtained in:
  • At least one gaseous stream containing hydrogen with a purity higher than 98% a step of reincorporation of all or part of the gaseous flow containing carbon dioxide and methane to the stage of generation of the raw synthesis gas, as a partial substitution of at least a portion of the flows feeding said step of generating the gaseous gas; raw synthesis.
  • the present invention therefore makes it possible to produce a synthesis gas having a hydrogen / carbon monoxide H 2 / CO ratio of less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO 2 and of water vapor to obtain a raw synthesis gas, containing mainly hydrogen, carbon monoxide, carbon dioxide, and water vapor, but also in smaller amounts, methane and nitrogen, the crude synthesis is then subjected to a treatment comprising a step of cooling the crude synthesis gas to about room temperature, followed by a step of removing the condensed water, the invention being characterized in that subsequently, the process allows in a single step to produce three gaseous streams containing respectively: CO 2 and methane which are recycled to the reforming feed; CO 2 makes it possible to reduce the H 2 / CO ratio and increase the carbon efficiency beyond that of a traditional process, as the main product, a synthesis gas containing hydrogen and monoxide in such proportions that the ratio H 2 / CO is less than 2.5 and containing as main impur
  • the process according to the invention is particularly advantageous when the synthesis gas is generated by steam reforming (the stresses related to the presence of excessive amounts of inert gas in the synthesis gas produced are in fact lower when the processes are operated at higher temperatures. 'oxygen). It is therefore particularly interesting since the synthesis gas production plant will have a low production capacity, typically 5,000 to 40,000 Nm 3 / h, since in this case this production will be provided by steam reforming of hydrocarbons .
  • the separation process is advantageously a pressure swing adsorption process (PSA separation process) ("Pressure Swing Adsorption").
  • PSA separation process Pressure Swing Adsorption
  • the PSA unit comprises one or more adsorbers in parallel, each adsorber comprises at least two beds, a lower bed and an upper bed, the order of the beds being as follows according to the sense circulation of the raw synthesis gas in the adsorber: lower bed, then upper bed.
  • the lower adsorbent bed which retains at least 80%, preferably at least 90% of the CO 2 and methane contained in crude synthesis gas, as well as a lower proportion of CO and hydrogen (this adsorbent belongs to the family of zeolites and / or activated carbons); a controlled flow passes through the upper bed where nitrogen and CO are retained, allowing the production of purified hydrogen, in such quantities that the required H 2 / CO ratio is obtained.
  • the bed follows the traditional regeneration cycle during which a CO / CO 2 / CH 4 / N 2 mixture is recovered. This stream is recycled to the top of the process where it is used as a carbon rich feed mixture for reforming.
  • the composition of the synthesis gas leaving (from the separation step) is stabilized by adding to said stream of synthesis gas leaving hydrogen from the gas flow leaving the upper bed during the production step.
  • the separation process PSA makes it possible successively to obtain the gas stream containing H 2 , and the gas stream containing the synthesis gas during the PSA cycle production step, followed during the step of regeneration of the adsorbent by a flow N 2 / CO (whose recovery in the form of separated stream is optional), and the flow containing CO 2 and methane.
  • FIG. 1 is a diagram of a method according to the prior art
  • FIG. 2 is a diagram of a method according to the invention
  • FIG. 1 illustrates a process according to the prior art in which a gaseous mixture of base hydrocarbons (1) is treated in a unit for preparing a synthesis gas by reforming methane with steam (2) to provide a raw synthesis gas (3) containing essentially CO, H 2 , CO 2 , H 2 O, but also CH 4 and N 2 .
  • This raw synthesis gas (3) is introduced into a cooler (4) in which it is cooled to a temperature of the order of room temperature.
  • the cooled raw gas (5) is then introduced into a water separator (6) in which the condensed water is removed.
  • the gas (7) is treated by a CO 2 removal unit (8) which delivers a gas (9) freed from CO 2 ; the recovered CO 2 (10) is compressed via the compressor (11) to produce a compressed CO 2 (12) at a pressure compatible with reforming. The gas (12) is then returned to the reforming to increase the CO content and thus reduce the ratio H 2 / CO reforming.
  • the gas (9) is treated by passage over a membrane (13) which removes excess hydrogen in a gas stream (14) at low pressure and produces synthesis gas (15) having the H 2 / CO ratio less than 2.5.
  • the hydrogen contained in the gas stream (14) is re ⁇ compressed via the compressor (16), the gas (17) thus compressed is then purified by passing through a PSA unit (18) which delivers purified hydrogen (19) and a waste (20) which is returned as fuel to reforming.
  • Figure 2 illustrates the method according to the invention. Unlike the processes of the prior art, as illustrated by the method of FIG. 1, the gas (7) is treated by a separation process (30) leading to three products:
  • a gas (31) comprising mainly CO 2 and methane which is recompressed via the compressor (32) at a pressure compatible with the reforming to provide a compressed gas (33).
  • the gas (33) is then returned to the reforming to increase the CO content and thus reduce the H 2 / CO ratio, the methane present in the gas (33) partially substituting for the gas (1),
  • a gas (34) essentially comprising a mixture H 2 and CO having the ratio H 2 / CO required less than 2.5. This ratio being obtained by the separation of excess hydrogen, a gas (35) containing the hydrogen thus separated in the form of high purity hydrogen, suitable for sale.
  • Figure 3 illustrates the principle of separation used in the implementation of the invention.
  • the gaseous mixture (7) is sent under pressure to a first bed of adsorbent (40) called "lower bed” where are retained mainly CO 2 and methane and less than the other constituents while a gas stream under pressure containing most of the CO, hydrogen and nitrogen passes through this first bed to reach the upper bed (41).
  • the stream (31) is recovered at low pressure at the lower bed.
  • a low pressure stream containing nitrogen and CO is recovered following the stream (34); it may optionally, in the context of the invention, be treated independently of the flow (34).
  • Table 1 presents a material balance obtained by implementing the method known to those skilled in the art according to FIG. 1, in which the synthesis gas is generated by steam reforming of natural gas, the CO elimination step. 2 employs an amine wash, and wherein the hydrogen is separated by membrane.
  • Table 2 presents a material balance obtained by implementing the process of the invention according to FIGS. 2 and 3, in which the synthesis gas is generated by steam reforming of natural gas, and the raw synthesis gas obtained is treated in a PSA according to the invention, in substitution of CO 2 removal and removal of excess hydrogen per membrane.
  • the invention allows a cost reduction of 5% at the level of the investment, and a reduction of the operating costs of 8%, considering that the The cost of energy accounts for 70% of these operating costs.

Abstract

The invention concerns a method for producing a syngas having a H2/CO ratio less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO2 and water vapour, which consists in generating a raw syngas comprising at least hydrogen, carbon monoxide, carbon dioxide, water vapour, and also in smaller amounts methane and nitrogen (3), and wherein said cooled raw syngas (5) with its condensed water eliminated (7) is subjected to a separation into: a gas stream containing the carbon dioxide and the methane (31); a gas stream of syngas having a H2/CO ratio less than 2.5 (34); a gas stream containing essentially hydrogen (35); reincorporating the gas stream containing carbon dioxide and methane (33) for feeding the reformer.

Description

PROCEDE DE PRODUCTION D'UN GAZ DE SYNTHESE PRESENTANT UN RATIO H2/CO INFERIEUR A 2,5.PROCESS FOR PRODUCING A SYNTHESIS GAS HAVING A H 2 / CO RATIO LESS THAN 2.5.
La présente invention concerne un nouveau procédé pour la production de gaz de synthèse présentant un rapport hydrogène sur monoxyde de carbone (H2/CO) inférieur à 2,5 par oxydation catalytique endothermique d'hydrocarbures en présence de CO2 et de vapeur d'eau comme composants fournissant de l'oxygène.The present invention relates to a novel process for the production of synthesis gas having a hydrogen to carbon monoxide (H 2 / CO) ratio of less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO 2 and steam. water as components providing oxygen.
La transformation des composés hydrocarbonés gazeux en un gaz de synthèse comprenant majoritairement H2 et CO s'effectue généralement par oxydation partielle à l'aide d'un gaz oxydant et/ou réaction avec de la vapeur d'eau ou du CO2. Lorsque l'on souhaite générer directement un gaz de synthèse présentant un ratioThe conversion of the gaseous hydrocarbon compounds into a synthesis gas mainly comprising H 2 and CO is generally carried out by partial oxidation using an oxidizing gas and / or reaction with water vapor or CO 2 . When it is desired to directly generate a synthesis gas with a ratio
H2/CO inférieur à 2,5, il est nécessaire de faire appel à une technologie de génération de gaz de synthèse qui s'appuie sur l'oxydation à l'oxygène; dans ce cas le ratio H2/CO sera naturellement bas. Cependant, une telle technologie ne s'applique qu'à des unités de forte capacité et n'est pas adaptée aux faibles productions. Dans le cas d'unités de faible capacité, la production de gaz de synthèse se fait par réaction avec de la vapeur et duH 2 / CO less than 2.5, it is necessary to use a synthesis gas generation technology that relies on oxidation with oxygen; in this case the ratio H 2 / CO will naturally be low. However, such technology only applies to high capacity units and is not suitable for low productions. In the case of small capacity units, the synthesis gas is produced by reaction with steam and
CO2.CO 2 .
Le reformage d'hydrocarbures à la vapeur est un procédé catalytique. La composition du gaz obtenu à l'issue du reformage dépend de différents paramètres parmi lesquels on citera notamment les proportions en différents constituants du mélange gazeux alimentant l'étape de reformage, la pression et la température. Le produit obtenu contient usuellement de l'hydrogène, des oxydes de carbone (monoxyde et dioxyde), du méthane, de la vapeur ainsi que différents gaz présents au départ de la réaction et inertes dans les conditions de réaction utilisées, comme l'azote.Steam hydrocarbon reforming is a catalytic process. The composition of the gas obtained at the end of the reforming depends on various parameters among which the proportions in different constituents of the gaseous mixture feeding the reforming stage, the pressure and the temperature will be mentioned. The product obtained usually contains hydrogen, oxides of carbon (monoxide and dioxide), methane, steam and various gases present at the start of the reaction and inert under the reaction conditions used, such as nitrogen.
Les principales réactions mises en jeu lors du reformage catalytique à la vapeur sont les suivantes, elles donnent lieu à des équilibres : CH4 + H2O = CO + 3H2 (I)The main reactions involved in catalytic steam reforming are the following: they give rise to equilibria: CH 4 + H 2 O = CO + 3H 2 (I)
CH4 + CO2 = 2CO + 2H2 (II)CH 4 + CO 2 = 2CO + 2H 2 (II)
CO + H2O = CO2 + H2 (III)CO + H 2 O = CO 2 + H 2 (III)
Le gaz de synthèse directement issu du reformage, appelé gaz de synthèse brut dans la suite de la description, peut être traité pour produire de l'hydrogène pur, du monoxyde de carbone pur ou des mélanges H2/CO. On utilise un mélange H2/CO dans un grand nombre de procédés parmi lesquels la synthèse du méthanol, ou le procédé Fisher-The synthesis gas directly from the reforming, called synthesis gas crude in the following description, can be processed to produce pure hydrogen, pure carbon monoxide or H 2 / CO mixtures. A mixture of H 2 / CO is used in a large number of processes among which the synthesis of methanol, or the Fisher-process
Tropsch pour la synthèse de composés contenant du carbone tels que des hydrocarbures à chaîne longue. Pour ces différentes applications, mais aussi pour d'autres applications non citées ici, qui utilisent le gaz de synthèse comme produit de départ, le rapport H2/CO est un paramètre clé. II est donc essentiel, lors de la production de gaz de synthèse de contrôler ce ratio dans le produit final. La solution habituellement retenue pour résoudre ce problème consiste à : éliminer le CO2 contenu dans le gaz de synthèse brut généré par le reformage à la vapeur, par lavage aux aminés pour le recycler vers le reformage, augmentant ainsi le taux de CO2 présent lors de ce reformage et favorisant la production de CO, ce qui conduit à la diminution du ratio H2/CO dans le produit de reformage ; - éliminer l'excès d'hydrogène par passage sur une membrane qui permet de récupérer de l'hydrogène à basse pression et basse pureté. Afin de pouvoir le valoriser, il sera nécessaire de recomprimer cet hydrogène avant de le purifier par adsorption par modulation de pression (PSA).Tropsch for the synthesis of carbon-containing compounds such as long chain hydrocarbons. For these different applications, but also for other applications not mentioned here, which use synthesis gas as starting material, the H 2 / CO ratio is a key parameter. It is therefore essential, during the production of synthesis gas, to control this ratio in the final product. The solution usually adopted to solve this problem consists in: removing the CO 2 contained in the raw synthesis gas generated by the steam reforming, by washing with amines to recycle it to reforming, thus increasing the level of CO 2 present during this reforming and favoring the production of CO, which leads to the reduction of the H 2 / CO ratio in the reforming product; - Remove excess hydrogen by passage on a membrane that allows to recover hydrogen at low pressure and low purity. In order to be able to value it, it will be necessary to recompress this hydrogen before purifying it by adsorption by pressure modulation (PSA).
Par ailleurs, des contraintes croissantes vis-à-vis des inertes présents dans le gaz de synthèse ont conduit à opérer le reformage à la vapeur à des conditions opératoires pour lesquelles le rapport vapeur/carbone (ou steam/carbon (S/C) en langue anglaise) est plus élevé que requis par l'optimum énergétique, ceci afin de limiter la présence de méthane n'ayant pas réagi dans le gaz issu du reformage. L'azote qui est l'autre principal inerte présent après l'étape d'élimination du CO2 ne peut quant à lui être éliminé autrement que par l'utilisation d'une boîte froide. L'option consistant à utiliser cette boîte froide est retenue uniquement lorsqu'un client souhaite du CO au titre de produit additionnel.Furthermore, increasing stresses with respect to the inert gases present in the synthesis gas have led to steam reforming at operating conditions for which the steam / carbon (or steam / carbon (S / C) ratio in English language) is higher than required by the energy optimum, in order to limit the presence of unreacted methane in the gas resulting from reforming. Nitrogen, which is the other main inert present after the CO 2 removal step, can not be eliminated other than by the use of a cold box. The option to use this cold box is retained only when a customer wants CO as an additional product.
Le but de la présente invention est de proposer un procédé de production de gaz de synthèse présentant un rapport hydrogène sur monoxyde de carbone H2/CO inférieur à 2,5 mettant en œuvre un reformage à la vapeur avec recyclage vers le reformage du CO2 et du méthane contenu dans le gaz de synthèse brut.The aim of the present invention is to propose a process for producing synthesis gas having a hydrogen / carbon monoxide H 2 / CO ratio of less than 2.5 using steam reforming with recycling to CO 2 reforming. and methane contained in the raw synthesis gas.
Un autre but de la présente invention est de proposer un procédé de production de gaz de synthèse présentant un rapport hydrogène sur monoxyde de carbone H2/CO inférieur à 2,5 mettant en œuvre un reformage à la vapeur qui fonctionne dans des conditions énergétiques optimales, c'est-à-dire avec un ratio vapeur/carbone (V/C) bas. La plus grande quantité de méthane non converti ne nuit pas à la pureté du gaz de synthèse produit au final grâce au recyclage du méthane. La pureté du gaz de synthèse produit dépend alors uniquement de sa teneur en azote. L'invention a aussi l'avantage de produire directement de l'hydrogène pouvant présenter une pureté supérieure à 98% (c'est-à-dire une concentration en hydrogène supérieure à 98% en volume). Il n'est donc plus nécessaire, pour obtenir de l'hydrogène purifié de passer par une étape de recompression avant une étape de purification par PSA. La recompression du flux d'hydrogène produit ne sera requise que dans le cas où on souhaitera exporter de l'hydrogène haute pression à une pression supérieure à 30 bar. Un autre avantage de l'invention réside dans le fait que le procédé permet un rendement carbone (carbon efficiency en langue anglaise) amélioré grâce au recyclage du méthane à l'alimentation du reformeur.Another object of the present invention is to propose a process for producing synthesis gas having a hydrogen / carbon monoxide ratio H 2 / CO of less than 2.5 using steam reforming which operates under optimal energy conditions. that is, with a low vapor / carbon (V / C) ratio. The greater amount of unconverted methane does not detract from the purity of the synthesis gas ultimately produced by the recycling of methane. The purity of the synthesis gas produced depends solely on its nitrogen content. The invention also has the advantage of directly producing hydrogen which may have a purity greater than 98% (ie a hydrogen concentration greater than 98% by volume). It is therefore no longer necessary to obtain purified hydrogen to go through a recompression step before a PSA purification step. The recompression of the hydrogen flow product will be required only in the case where it will be desired to export high pressure hydrogen at a pressure greater than 30 bar. Another advantage of the invention lies in the fact that the process allows an improved carbon efficiency in the English language thanks to the recycling of methane to the reformer feed.
Pour cela, l'invention concerne un procédé pour la production de gaz de synthèse présentant un rapport hydrogène sur monoxyde de carbone (H2/CO) inférieur à 2,5 par oxydation catalytique endothermique d'hydrocarbures en présence de CO2 et de vapeur d'eau comme composants fournissant de l'oxygène, dans lequel on génère un gaz de synthèse brut, comprenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, de la vapeur d'eau, et aussi en quantités moindres, du méthane n'ayant pas réagi et de l'azote, et dans lequel ledit gaz de synthèse brut étant soumis à un procédé de séparation comportant au moins les étapes suivantes : une étape de refroidissement du gaz de synthèse brut à environ la température ambiante, une étape d'élimination de l'eau condensée contenue, et caractérisé en ce qu'il comprend en outre les étapes suivantes : une étape de séparation du mélange obtenu en :For this purpose, the invention relates to a process for the production of synthesis gas having a hydrogen / carbon monoxide (H 2 / CO) ratio of less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO 2 and steam. water as oxygen supplying components, wherein a raw synthesis gas is generated comprising at least hydrogen, carbon monoxide, carbon dioxide, water vapor, and also in amounts less, unreacted methane and nitrogen, and wherein said raw synthesis gas is subjected to a separation process comprising at least the following steps: a step of cooling the raw synthesis gas to about the temperature ambient, a step of removing the condensed water contained, and characterized in that it further comprises the following steps: a step of separating the mixture obtained in:
• au moins un flux gazeux contenant plus de 80%, de préférence plus de 90 % du dioxyde de carbone et du méthane présents dans le gaz de synthèse brut ;At least one gas stream containing more than 80%, preferably more than 90% of the carbon dioxide and methane present in the raw synthesis gas;
• au moins un flux gazeux de gaz de synthèse contenant de l'hydrogène et du monoxyde de carbone dans des proportions telles que le ratio H2/CO est inférieur à 2,5 ;At least one gaseous stream of synthesis gas containing hydrogen and carbon monoxide in proportions such that the H 2 / CO ratio is less than 2.5;
• au moins un flux gazeux contenant de l'hydrogène à une pureté supérieure à 98% ; une étape de réincorporation de tout ou partie du flux gazeux contenant le dioxyde de carbone et le méthane vers l'étape de génération du gaz de synthèse brut, en substitution partielle d'au moins une partie des flux alimentant ladite étape de génération du gaz de synthèse brut. La présente invention permet donc de produire un gaz de synthèse présentant un rapport hydrogène sur monoxyde de carbone H2/CO inférieur à 2,5 par oxydation catalytique endothermique d'hydrocarbures en présence de CO2 et de vapeur d'eau pour l'obtention d'un gaz de synthèse brut, contenant essentiellement de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, et de la vapeur d'eau, mais aussi en quantités moindres, du méthane et de l'azote, le gaz de synthèse brut étant ensuite soumis à un traitement comportant une étape de refroidissement du gaz de synthèse brut à environ la température ambiante, suivie d'une étape d'élimination de l'eau condensée, l'invention se caractérisant en ce que par la suite, le procédé permet en une seule étape de produire trois flux gazeux contenant respectivement : le CO2 et le méthane qui sont recyclés à l'alimentation du reformage ; le CO2 permettant de réduire le ratio H2/CO et d'augmenter le rendement carbone (carbon efficiency) au-delà de celui d'un procédé traditionnel, comme produit principal, un gaz de synthèse contenant de l'hydrogène et du monoxyde de carbone dans des proportions telles que le ratio H2/CO est inférieur à 2,5 et contenant comme impureté principale l'azote provenant du mélange d'hydrocarbures alimentant le reformeur, et l'hydrogène en excès, lequel est produit sous la forme d'un flux d'hydrogène à haute pression et de haute pureté, comparable à l'hydrogène obtenu à partir d'une unité de purification d'hydrogène de type PSA traditionnel.At least one gaseous stream containing hydrogen with a purity higher than 98%; a step of reincorporation of all or part of the gaseous flow containing carbon dioxide and methane to the stage of generation of the raw synthesis gas, as a partial substitution of at least a portion of the flows feeding said step of generating the gaseous gas; raw synthesis. The present invention therefore makes it possible to produce a synthesis gas having a hydrogen / carbon monoxide H 2 / CO ratio of less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO 2 and of water vapor to obtain a raw synthesis gas, containing mainly hydrogen, carbon monoxide, carbon dioxide, and water vapor, but also in smaller amounts, methane and nitrogen, the crude synthesis is then subjected to a treatment comprising a step of cooling the crude synthesis gas to about room temperature, followed by a step of removing the condensed water, the invention being characterized in that subsequently, the process allows in a single step to produce three gaseous streams containing respectively: CO 2 and methane which are recycled to the reforming feed; CO 2 makes it possible to reduce the H 2 / CO ratio and increase the carbon efficiency beyond that of a traditional process, as the main product, a synthesis gas containing hydrogen and monoxide in such proportions that the ratio H 2 / CO is less than 2.5 and containing as main impurity nitrogen from the mixture of hydrocarbons fed to the reformer, and excess hydrogen, which is produced in the form of a flow of hydrogen at high pressure and high purity, comparable to the hydrogen obtained from a traditional PSA hydrogen purification unit.
Dans le procédé selon l'invention, on supprime, par rapport à la solution connue de l'homme du métier au moins une étape de procédé, c'est-à-dire l'étape d'élimination séparée du CO2 du gaz brut, ce qui permet une simplification d'appareillage considérable ainsi qu'une diminution importante des coûts. Le procédé selon l'invention est particulièrement intéressant lorsque le gaz de synthèse est généré par reformage à la vapeur (les contraintes liées à la présence d'inertes en quantité excessive dans le gaz de synthèse produit sont en effet moindres lorsque les procédés fonctionnent à l'oxygène). Il est donc particulièrement intéressant dès lors que l'installation de production de gaz de synthèse aura une faible capacité de production, typiquement 5 000 à 40 000Nm3/h, puisque dans ce cas cette production sera assurée par reformage à la vapeur d'hydrocarbures. Le reformage à la vapeur produit un mélange de H2/CO/CO2 et CH4 présentant une composition fonction de celle du mélange d'alimentation, et fonction des équilibres réactionnels mis en jeu lors du reformage. Selon une première variante du procédé selon l'invention, le procédé de séparation est avantageusement un procédé d'adsorption modulée en pression (procédé de séparation PSA) ("Pressure Swing Adsorption" en anglais). Après les étapes de refroidissement et d'élimination d'eau, le gaz de synthèse brut est ainsi envoyé à une unité de type PSA permettant d'obtenir au moins les trois flux gazeux principaux décrits ci-dessus.In the process according to the invention, at least one process step, that is to say the step of separate removal of the CO 2 from the raw gas, is eliminated with respect to the solution known to those skilled in the art. , which allows a considerable simplification of apparatus and a significant decrease in costs. The process according to the invention is particularly advantageous when the synthesis gas is generated by steam reforming (the stresses related to the presence of excessive amounts of inert gas in the synthesis gas produced are in fact lower when the processes are operated at higher temperatures. 'oxygen). It is therefore particularly interesting since the synthesis gas production plant will have a low production capacity, typically 5,000 to 40,000 Nm 3 / h, since in this case this production will be provided by steam reforming of hydrocarbons . Steam reforming produces a mixture of H 2 / CO / CO 2 and CH 4 having a composition that is a function of that of the feed mixture, and a function of the reaction equilibria involved during reforming. According to a first variant of the process according to the invention, the separation process is advantageously a pressure swing adsorption process (PSA separation process) ("Pressure Swing Adsorption"). After the cooling and water removal steps, the raw synthesis gas is thus sent to a PSA type unit making it possible to obtain at least the three main gas flows described above.
De préférence, l'unité PSA comprend un ou plusieurs adsorbeurs en parallèle, chaque adsorbeur comprend au moins deux lits, un lit inférieur (lower bed) et un lit supérieur (upper bed), l'ordre des lits étant le suivant selon le sens de circulation du gaz de synthèse brut dans l'adsorbeur : lit inférieur, puis lit supérieur.Preferably, the PSA unit comprises one or more adsorbers in parallel, each adsorber comprises at least two beds, a lower bed and an upper bed, the order of the beds being as follows according to the sense circulation of the raw synthesis gas in the adsorber: lower bed, then upper bed.
La plus grande part de l'hydrogène et du CO traversent sous forme de produits haute pression, à pression contrôlée, le lit d'adsorbant inférieur qui retient au moins 80%, de préférence au moins 90% du CO2 et du méthane contenus dans le gaz de synthèse brut, ainsi qu'une part moindre du CO et de l'hydrogène, (cet adsorbant appartient à la famille des zéolithes et/ou des charbons actifs) ; un flux contrôlé traverse le lit supérieur où l'azote et le CO sont retenus, permettant la production d'hydrogène purifié, dans des quantités telles que le ratio H2/CO requis est obtenu. Après l'étape de production, le lit suit le cycle de régénération traditionnel durant lequel un mélange CO/CO2/CH4/N2 est récupéré. Ce courant est recyclé en tête du procédé où il est utilisé comme mélange d'alimentation riche en carbone pour le reformage.Most of the hydrogen and the CO pass through in the form of high pressure products, at controlled pressure, the lower adsorbent bed which retains at least 80%, preferably at least 90% of the CO 2 and methane contained in crude synthesis gas, as well as a lower proportion of CO and hydrogen (this adsorbent belongs to the family of zeolites and / or activated carbons); a controlled flow passes through the upper bed where nitrogen and CO are retained, allowing the production of purified hydrogen, in such quantities that the required H 2 / CO ratio is obtained. After the production step, the bed follows the traditional regeneration cycle during which a CO / CO 2 / CH 4 / N 2 mixture is recovered. This stream is recycled to the top of the process where it is used as a carbon rich feed mixture for reforming.
De manière avantageuse, afin de stabiliser la composition du gaz de synthèse produit dans le temps, la composition du gaz de synthèse sortant (issu de l'étape de séparation) est stabilisée par adjonction audit flux de gaz de synthèse sortant d'hydrogène provenant du flux gazeux quittant la lit supérieur durant l'étape de production.Advantageously, in order to stabilize the synthesis gas composition produced over time, the composition of the synthesis gas leaving (from the separation step) is stabilized by adding to said stream of synthesis gas leaving hydrogen from the gas flow leaving the upper bed during the production step.
En fonction des différents cycles de pression, le procédé de séparation PSA permet d'obtenir successivement le flux gazeux contenant H2, et le flux gazeux contenant le gaz de synthèse pendant l'étape de production du cycle PSA, suivis durant l'étape de régénération de l'adsorbant par un flux N2/ CO (dont la récupération sous forme de flux séparé est optionnelle), et le flux contenant CO2 et méthane.Depending on the different pressure cycles, the separation process PSA makes it possible successively to obtain the gas stream containing H 2 , and the gas stream containing the synthesis gas during the PSA cycle production step, followed during the step of regeneration of the adsorbent by a flow N 2 / CO (whose recovery in the form of separated stream is optional), and the flow containing CO 2 and methane.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre. Des formes et des modes de réalisation de l'invention sont donnés à titre d'exemples non limitatifs, illustrés par les dessins joints dans lesquels :Other characteristics and advantages of the invention will appear on reading the description which follows. Embodiments and embodiments of the invention are given by way of non-limiting examples, illustrated by the accompanying drawings in which:
- la figure 1 est un schéma d'un procédé selon l'art antérieur, - la figure 2 est un schéma d'un procédé selon l'invention,FIG. 1 is a diagram of a method according to the prior art, FIG. 2 is a diagram of a method according to the invention,
- la figure 3 illustre un principe de séparation utilisé. La figure 1 illustre un procédé selon l'art antérieur dans lequel un mélange gazeux d'hydrocarbures de base (1) est traité dans une unité de préparation d'un gaz de synthèse par reformage de méthane à la vapeur (2) pour fournir un gaz de synthèse brut (3) contenant essentiellement CO, H2, CO2, H2O, mais aussi CH4 et N2. Ce gaz de synthèse brut (3) est introduit dans un refroidisseur (4) dans lequel il est refroidi à une température de l'ordre de la température ambiante. Le gaz brut refroidi (5) est ensuite introduit dans un séparateur d'eau (6) dans lequel l'eau condensée est éliminée.- Figure 3 illustrates a separation principle used. FIG. 1 illustrates a process according to the prior art in which a gaseous mixture of base hydrocarbons (1) is treated in a unit for preparing a synthesis gas by reforming methane with steam (2) to provide a raw synthesis gas (3) containing essentially CO, H 2 , CO 2 , H 2 O, but also CH 4 and N 2 . This raw synthesis gas (3) is introduced into a cooler (4) in which it is cooled to a temperature of the order of room temperature. The cooled raw gas (5) is then introduced into a water separator (6) in which the condensed water is removed.
Le gaz (7) est traité par une unité (8) d'élimination du CO2 qui délivre un gaz (9) débarrassé du CO2 ; le CO2 récupéré (10) est comprimé via le compresseur (11) pour produire un CO2 comprimé (12) à une pression compatible avec le reformage. Le gaz (12) est alors renvoyé vers le reformage pour augmenter le taux de CO et ainsi diminuer le ratio H2/CO du reformage. Le gaz (9) est traité par passage sur une membrane (13) qui élimine l'hydrogène en excès dans un flux gazeux (14) à basse pression et produit un gaz de synthèse (15) présentant le ratio H2/C0 inférieur à 2,5. Afin de valoriser l'hydrogène contenu dans le flux gazeux (14), celui-ci est re¬ comprimé via le compresseur (16), le gaz (17) ainsi comprimé est alors purifié par passage dans une unité PSA (18) qui délivre de l'hydrogène purifié (19) ainsi qu'un résiduaire (20) qui est renvoyé en tant que combustible vers le reformage.The gas (7) is treated by a CO 2 removal unit (8) which delivers a gas (9) freed from CO 2 ; the recovered CO 2 (10) is compressed via the compressor (11) to produce a compressed CO 2 (12) at a pressure compatible with reforming. The gas (12) is then returned to the reforming to increase the CO content and thus reduce the ratio H 2 / CO reforming. The gas (9) is treated by passage over a membrane (13) which removes excess hydrogen in a gas stream (14) at low pressure and produces synthesis gas (15) having the H 2 / CO ratio less than 2.5. In order to value the hydrogen contained in the gas stream (14), it is re¬ compressed via the compressor (16), the gas (17) thus compressed is then purified by passing through a PSA unit (18) which delivers purified hydrogen (19) and a waste (20) which is returned as fuel to reforming.
La figure 2 illustre le procédé selon l'invention. A la différence des procédés de l'art antérieur, tel qu'illustré par le procédé de la figure 1 , le gaz (7) est traité par un procédé de séparation (30) conduisant à trois produits :Figure 2 illustrates the method according to the invention. Unlike the processes of the prior art, as illustrated by the method of FIG. 1, the gas (7) is treated by a separation process (30) leading to three products:
- un gaz (31) comprenant majoritairement du CO2 et du méthane qui est recomprimé via le compresseur (32) à une pression compatible avec le reformage pour fournir un gaz comprimé (33). Le gaz (33) est alors renvoyé vers le reformage pour augmenter le taux de CO et ainsi diminuer le ratio H2/CO, le méthane présent dans le gaz (33) se substituant partiellement au gaz (1),a gas (31) comprising mainly CO 2 and methane which is recompressed via the compressor (32) at a pressure compatible with the reforming to provide a compressed gas (33). The gas (33) is then returned to the reforming to increase the CO content and thus reduce the H 2 / CO ratio, the methane present in the gas (33) partially substituting for the gas (1),
- un gaz (34) comprenant essentiellement un mélange H2 et CO présentant le ratio H2/CO requis inférieur à 2,5. Ce ratio étant obtenu par la séparation de l'hydrogène en excès, - un gaz (35) contenant l'hydrogène ainsi séparé sous forme d'hydrogène haute pureté, apte à être vendu. La figure 3 illustre le principe de la séparation utilisé lors de la mise en œuvre de l'invention. Le mélange gazeux (7) est envoyé sous pression sur un premier lit d'adsorbant (40) dit « lit inférieur » où sont retenus principalement le CO2 et le méthane ainsi que de façon moindre les autres constituants tandis qu'un flux gazeux sous pression contenant la majeure partie du CO, de l'hydrogène et de l'azote traverse ce premier lit pour atteindre le lit supérieur (41). Un flux (35) à débit contrôlé d'hydrogène traverse ce second lit pour produire de l'hydrogène pur à 98% en quantité telle que le mélange gazeux (34) récupéré à la jonction entre les deux lits présente le ratio H2/CO requis. Lors de l'étape de régénération de l'adsorbant, le flux (31) est récupéré à basse pression au niveau du lit inférieur. Lors de l'étape de régénération, un flux basse pression contenant l'azote et du CO est récupéré à la suite du flux (34) ; il pourra, de manière facultative dans le cadre de l'invention être traité indépendamment du flux (34).a gas (34) essentially comprising a mixture H 2 and CO having the ratio H 2 / CO required less than 2.5. This ratio being obtained by the separation of excess hydrogen, a gas (35) containing the hydrogen thus separated in the form of high purity hydrogen, suitable for sale. Figure 3 illustrates the principle of separation used in the implementation of the invention. The gaseous mixture (7) is sent under pressure to a first bed of adsorbent (40) called "lower bed" where are retained mainly CO 2 and methane and less than the other constituents while a gas stream under pressure containing most of the CO, hydrogen and nitrogen passes through this first bed to reach the upper bed (41). A flow (35) controlled flow of hydrogen through the second bed to produce 98% pure hydrogen in an amount such that the gas mixture (34) recovered at the junction between the two beds has the ratio H 2 / CO required. During the regeneration step of the adsorbent, the stream (31) is recovered at low pressure at the lower bed. During the regeneration step, a low pressure stream containing nitrogen and CO is recovered following the stream (34); it may optionally, in the context of the invention, be treated independently of the flow (34).
Les tableaux suivants présentent le bilan matière obtenu lors de la production de gaz de synthèse présentant un rapport H2/CO inférieur à 2,5. Le tableau 1 présente un bilan matière obtenu en mettant en œuvre le procédé connu de l'homme du métier selon la figure 1 dans lequel le gaz de synthèse est généré par reformage à la vapeur de gaz naturel, l'étape d'élimination du CO2 met en œuvre un lavage aux aminés, et dans lequel l'hydrogène est séparé par membrane.The following tables present the material balance obtained during the production of synthesis gas having an H 2 / CO ratio of less than 2.5. Table 1 presents a material balance obtained by implementing the method known to those skilled in the art according to FIG. 1, in which the synthesis gas is generated by steam reforming of natural gas, the CO elimination step. 2 employs an amine wash, and wherein the hydrogen is separated by membrane.
Le tableau 2 présente un bilan matière obtenu en mettant en œuvre le procédé de l'invention selon les figures 2 et 3, dans lequel le gaz de synthèse est généré par reformage à la vapeur de gaz naturel, et le gaz de synthèse brut obtenu est traité dans un PSA conformément à l'invention, en substitution des étapes d'élimination de CO2 et d'élimination d'hydrogène en excès par membrane. Table 2 presents a material balance obtained by implementing the process of the invention according to FIGS. 2 and 3, in which the synthesis gas is generated by steam reforming of natural gas, and the raw synthesis gas obtained is treated in a PSA according to the invention, in substitution of CO 2 removal and removal of excess hydrogen per membrane.
Tableau 1Table 1
Figure imgf000010_0001
Figure imgf000010_0001
Tableau2Table 2
Figure imgf000010_0002
Le tableau 3 ci-dessous répertorie les améliorations de performances observées lorsque l'on substitue la solution de l'invention à la solution traditionnelle.
Figure imgf000010_0002
Table 3 below lists the performance improvements observed when substituting the solution of the invention for the traditional solution.
Tableau 3Table 3
Figure imgf000011_0001
Figure imgf000011_0001
La mise en œuvre du procédé de l'invention présente les caractéristiques suivantes par rapport à la solution classique :The implementation of the method of the invention has the following characteristics compared with the conventional solution:
- une réduction de la consommation de gaz naturel, - une consommation d'énergie globalement supérieure, mais avec une réduction globale des coûts opératoires d'environ 1 ,2 million d'euros/an,- a reduction in natural gas consumption, - an overall higher energy consumption, but with an overall reduction in operating costs of approximately EUR 1, 2 million / year,
- un investissement total globalement plus bas ; en effet, les coûts liés à la compression sont comparables, tandis que la suppression de l'unité d'élimination de CO2 compense le coût de la nouvelle unité de séparation. Ceci permet de considérer que la suppression de la membrane, ainsi que celle de l'unité de purification PSA H2 constituent des gains d'investissements.- a total investment overall lower; indeed, the costs of compression are comparable, while the removal of the CO 2 removal unit offsets the cost of the new separation unit. This allows to consider that the removal of the membrane, as well as that of the PSA H 2 purification unit are investment gains.
On peut considérer dans ce cas que, ramené à l'ensemble de l'unité, l'invention permet une réduction de coûts de 5% au niveau de l'investissement, et une réduction des coûts opératoires de 8%, en considérant que le coût de l'énergie compte pour 70% dans ces coûts opératoires. In this case, it can be considered that, reduced to the whole of the unit, the invention allows a cost reduction of 5% at the level of the investment, and a reduction of the operating costs of 8%, considering that the The cost of energy accounts for 70% of these operating costs.

Claims

REVENDICATIONS
1. Procédé pour la production de gaz de synthèse présentant un rapport hydrogène sur monoxyde de carbone (H2/CO) inférieur à 2,5 par oxydation catalytique endothermique d'hydrocarbures en présence de CO2 et de vapeur d'eau comme composants fournissant de l'oxygène, dans lequel on génère un gaz de synthèse brut comprenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, de la vapeur d'eau, et aussi en quantités moindres du méthane et de l'azote, et dans lequel, ledit gaz de synthèse brut est soumis à un procédé de séparation comportant au moins les étapes suivantes : une étape de refroidissement du gaz de synthèse brut à environ la température ambiante, une étape d'élimination de l'eau condensée contenue, et caractérisé en ce qu'il comprend en outre les étapes suivantes : - une étape de séparation du mélange obtenu en :A process for the production of synthesis gas having a hydrogen to carbon monoxide (H 2 / CO) ratio of less than 2.5 by endothermic catalytic oxidation of hydrocarbons in the presence of CO 2 and water vapor as supplying components oxygen, in which a raw synthesis gas comprising at least hydrogen, carbon monoxide, carbon dioxide, water vapor, and also less amounts of methane and nitrogen, and wherein said crude synthesis gas is subjected to a separation process comprising at least the following steps: a step of cooling the crude synthesis gas to about room temperature, a step of removing the condensed water contained, and characterized in that it further comprises the following steps: a step of separating the mixture obtained in:
• au moins un flux gazeux contenant plus de 80%, de préférence plus de 90 % du dioxyde de carbone et du méthane présents dans le gaz de synthèse brut ;At least one gas stream containing more than 80%, preferably more than 90% of the carbon dioxide and methane present in the raw synthesis gas;
• au moins un flux gazeux de gaz de synthèse produit, contenant de l'hydrogène et du monoxyde de carbone dans des proportions telles que le ratio H2/CO est inférieur à 2,5 ;At least one gaseous stream of synthesis gas produced containing hydrogen and carbon monoxide in proportions such that the H 2 / CO ratio is less than 2.5;
• au moins un flux gazeux contenant de l'hydrogène à une pureté supérieure à 98% ; une étape de réincorporation de tout ou partie du flux gazeux contenant du dioxyde de carbone et du méthane vers l'étape de génération du gaz de synthèse brut, en substitution partielle d'au moins une partie des flux alimentant ladite étape de génération du gaz de synthèse brut.At least one gaseous stream containing hydrogen with a purity higher than 98%; a step of reincorporation of all or part of the gas stream containing carbon dioxide and methane to the step of generating the raw synthesis gas, as a partial substitution of at least a portion of the flows feeding said step of generating the gas of raw synthesis.
2. Procédé selon la revendication 1, caractérisé en ce que l'étape de séparation du gaz de synthèse brut met en œuvre une unité PSA.2. Method according to claim 1, characterized in that the step of separation of the raw synthesis gas uses a PSA unit.
3. Procédé selon la revendication 2, caractérisé en ce que chaque adsorbeur de l'unité PSA comprend au moins deux lits, un lit inférieur (lower bed) et un lit supérieur (upper bed), l'ordre des lits étant le suivant selon le sens de circulation du gaz de synthèse brut dans l'adsorbeur : lit inférieur, puis lit supérieur.3. Method according to claim 2, characterized in that each adsorber of the PSA unit comprises at least two beds, a lower bed and an upper bed, the order of the beds being as follows. the flow direction of the raw synthesis gas in the adsorber: lower bed, then upper bed.
4. Procédé selon l'une des revendications 2 ou 3 caractérisé en ce que la composition du gaz de synthèse sortant, issu de l'étape de séparation, est stabilisée par adjonction audit flux de gaz de synthèse sortant, d'hydrogène provenant du flux gazeux contenant de l'hydrogène issu de ladite séparation. 4. Method according to one of claims 2 or 3 characterized in that the composition of the outgoing synthesis gas, resulting from the separation step, is stabilized by adding to said outgoing synthesis gas stream, hydrogen from the gas stream containing hydrogen from said separation.
PCT/FR2005/050818 2004-10-20 2005-10-06 Method for producing a syngas having a h2/co ratio less than 2.5 WO2006042986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452377 2004-10-20
FR0452377A FR2876683B1 (en) 2004-10-20 2004-10-20 PROCESS FOR PRODUCING A SYNTHESIS GAS HAVING A H2 / CO RATIO LESS THAN 2.5

Publications (1)

Publication Number Publication Date
WO2006042986A1 true WO2006042986A1 (en) 2006-04-27

Family

ID=34950673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050818 WO2006042986A1 (en) 2004-10-20 2005-10-06 Method for producing a syngas having a h2/co ratio less than 2.5

Country Status (2)

Country Link
FR (1) FR2876683B1 (en)
WO (1) WO2006042986A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086744A1 (en) * 2013-12-12 2015-06-18 Haldor Topsøe A/S Process for the production of synthesis gas
CN115432694A (en) * 2022-10-10 2022-12-06 四川天人化学工程有限公司 Method for manufacturing carbon nano tube by replacing methane with high-concentration carbon monoxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006050057A1 (en) * 2006-10-24 2008-04-30 Linde Ag Method for controlling, generation of synthesis gas containing carbon monoxide and free hydrogen by steam reformer, involves feeding hydrocarbons, free hydrogen, carbon dioxide, carbon monoxide and steam to steam reformer stage
NL2021677B1 (en) * 2018-09-20 2020-05-07 Green Vision Holding Bv METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE ACCORDING TO A PRESSURE SWING ADSORPTION PROCESS (PSA PROCESS)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669960A (en) * 1995-11-02 1997-09-23 Praxair Technology, Inc. Hydrogen generation process
EP1146009A1 (en) * 2000-04-13 2001-10-17 Air Products And Chemicals, Inc. Coproduction of carbon monoxide-rich syngas with high purity hydrogen
US20030191196A1 (en) * 2002-04-04 2003-10-09 Nitin Madhubhai Co-production of hydrogen and methanol from steam reformate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669960A (en) * 1995-11-02 1997-09-23 Praxair Technology, Inc. Hydrogen generation process
EP1146009A1 (en) * 2000-04-13 2001-10-17 Air Products And Chemicals, Inc. Coproduction of carbon monoxide-rich syngas with high purity hydrogen
US20030191196A1 (en) * 2002-04-04 2003-10-09 Nitin Madhubhai Co-production of hydrogen and methanol from steam reformate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086744A1 (en) * 2013-12-12 2015-06-18 Haldor Topsøe A/S Process for the production of synthesis gas
US9890098B2 (en) 2013-12-12 2018-02-13 Haldor Topsoe A/S Process for the production of synthesis gas
EA033204B1 (en) * 2013-12-12 2019-09-30 Хальдор Топсёэ А/С Process for the production of synthesis gas
CN115432694A (en) * 2022-10-10 2022-12-06 四川天人化学工程有限公司 Method for manufacturing carbon nano tube by replacing methane with high-concentration carbon monoxide

Also Published As

Publication number Publication date
FR2876683A1 (en) 2006-04-21
FR2876683B1 (en) 2007-02-23

Similar Documents

Publication Publication Date Title
EP1890961B1 (en) Method for simultaneously producing hydrogen and carbon monoxide
EP3713870B1 (en) Process and device for the combined production of hydrogen and carbon dioxide from a hydrocarbon mixture
EP1814819B1 (en) Method and installation for combined production of hydrogen and carbon dioxide
CA2792012C (en) Method for producing hydrogen with reduced co2 emissions
FR2953505A1 (en) PROCESS FOR PRODUCTION OF HYDROGEN COMBINED WITH CARBON DIOXIDE CAPTURE
EP2931654B1 (en) Method for producing hydrogen by reforming hydrocarbons using steam, combined with carbon dioxide capture and steam production
EP2931655A1 (en) Method for producing hydrogen by reforming hydrocarbons using steam, combined with carbon dioxide capture and steam production
FR2775276A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF CARBON MONOXIDE AND HYDROGEN
FR2961802A1 (en) Combined production of hydrogen and carbon dioxide from hydrocarbon mixture comprises e.g. reforming hydrocarbon mixture to give synthesis gas, cooling the gas, oxidation reaction, cooling and drying the gas and separating the gas
WO2010109106A1 (en) Method and apparatus for producing hydrogen
FR2838424A1 (en) Separation of hydrogen and carbon monoxide from a gas mixture uses a low temperature separation stage for a high purity with simultaneous production without surplus hydrogen
EP2864240A1 (en) Method and installation for the combined production of ammonia synthesis gas and carbon dioxide
WO2006042986A1 (en) Method for producing a syngas having a h2/co ratio less than 2.5
FR2917304A1 (en) PSA METHOD FOR RECOVERING SPECIFIC COMPOUNDS
FR2969136A1 (en) Producing carbon monoxide combined with production of hydrogen from hydrocarbon mixture, by reforming hydrocarbon mixture to obtain synthesis gas, cooling synthesis gas with heat recovery, and extracting carbon dioxide in cooled syngas
WO2008017783A2 (en) Method of separating a synthetic gas containing hydrogen and carbon monoxide but also at least carbon dioxide and water vapor
EP1097903B1 (en) Process and apparatus for the production of pure hydrogen starting from a gas containing helium
WO2007066036A2 (en) Method for synthesising methanol or oxo alcohols used for recycling a residual gas
WO2002085782A1 (en) Method for partial catalytic oxidation of hydrocarbons for producing synthetic gas with low h2/co ratio
EP0318342B1 (en) Process for reforming impure methanol and device for its application
FR2969134A1 (en) Production and treatment of synthesis gas, by generating synthesis gas by gasification, where synthesis gas contains hydrogen, carbon monoxide, carbon dioxide, methane, water and impurities and purifying acidic impurities washing in column
FR2903688A1 (en) Formaldehyde synthesis comprises oxy-dehydrogenation of a gas phase containing methanol using molecular oxygen in the presence of a silver catalyst
FR2890655A1 (en) PROCESS FOR CONVERTING HYDROCARBON GASES TO LIQUIDS OPTIMIZING HYDROGEN CONSUMPTION
BE885126A (en) PRODUCTION OF GASEOUS MIXTURES FOR AMMONIA SYNTHESIS
FR2969998A1 (en) Preparing methanol comprises obtaining a first stream of synthesis gas comprising e.g. hydrogen, adding hydrogen in the first synthesis gas stream to form second synthesis gas stream, and producing methanol from second synthesis gas stream

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05810792

Country of ref document: EP

Kind code of ref document: A1