WO2006037828A1 - Sistema de generación de energía eléctrica y desalación en una planta flotante - Google Patents

Sistema de generación de energía eléctrica y desalación en una planta flotante Download PDF

Info

Publication number
WO2006037828A1
WO2006037828A1 PCT/ES2005/000526 ES2005000526W WO2006037828A1 WO 2006037828 A1 WO2006037828 A1 WO 2006037828A1 ES 2005000526 W ES2005000526 W ES 2005000526W WO 2006037828 A1 WO2006037828 A1 WO 2006037828A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating
desalination
water
plant
pumping
Prior art date
Application number
PCT/ES2005/000526
Other languages
English (en)
French (fr)
Inventor
Manuel Torres Martinez
Original Assignee
Torres Martinez M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200402824A external-priority patent/ES2265738B1/es
Application filed by Torres Martinez M filed Critical Torres Martinez M
Publication of WO2006037828A1 publication Critical patent/WO2006037828A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/62Application for desalination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention is related to the use of wind energy, proposing a system that allows the air force to be transformed into hydraulic energy, by means of a floating wind turbine structure, for application to electrical production, to water desalination, or a combination of Both purposes.
  • seawater Due to desalination, seawater allows fresh drinking water to be obtained, while due to its liquid fluid quality, said seawater also has excellent energy transmission properties with very high energy efficiency, through hydraulic cylinders; while the wind is in turn proven as a good source of energy for the actuation of mechanisms such as wind turbines producing electricity.
  • a system that combines the use of wind and seawater in the production of energy to obtain desalinated water and / or produce electrical energy that can be used in the installation itself or supplied to the distribution network.
  • This system object of the invention comprises the use of a floating platform, in which it incorporates a wind turbine that is driven by the wind, said wind turbine incorporating a hydraulic pumping mechanism, by means of which water from the aquatic flotation medium can be pumped by the same wind turbine drive by means of the wind.
  • the hydraulic energy produced by the wind turbine can be used to drive a Pelton turbine with an electric generator, to produce electric power.
  • the hydraulic energy produced by the wind turbine can be used to power a desalination plant incorporated in the floating platform itself.
  • the hydraulic energy produced by the wind turbine can be used partially to produce electricity and partially to obtain desalinated water, in a combination of the two previous applications.
  • the investment costs to generate electricity can be reduced from 20 to 25% compared to the costs of conventional installations with piloting at the bottom of the sea, with the advantage of being able to install at depths of up to 100 meters and that the production is obtained from a clean and renewable energy.
  • the hydraulic pumping mechanism of the system consists of a set of pinions that are incorporated in the rotor axis of the wind turbine that takes advantage of the energy of the wind, of which sprockets hang by means of connecting rods some rods or similar elements that support to the pistons of respective cylinders that are submerged in the water on which the wind turbine carrier platform floats, which cylinders are provided with unidirectional closing and opening valves, so that when lowering and raising the corresponding pistons a function is obtained of water pumping.
  • the water that pumps the cylinders is carried through a conduit to a collector, from which it passes to a desalination plant and / or an electrical production installation, incorporated on the own floating platform
  • the waste (salt dies) of the water that is subjected to desalination is reverted to an accessory pumping system, similar to that operated by the wind turbine, thus achieving a complementary flow of pumped water, which is sent to the collector of the installation, with which a very high yield is obtained.
  • the floating platform is constituted by a bicycle wheel structure comprising one or two annular tires attached to a central hub, such that said tires are formed by tubular elements that determine a float type behavior.
  • the wind turbine tower is incorporated on the central hub, which is braced by braces with respect to the base, thus forming a joint assembly of the entire structure.
  • the tower section has an aerodynamic oblong shape, which, together with the fact that the wind turbine is placed in the lee, establishes an always constant orientation of the wind turbine against the wind, thanks to the rotation of the entire structure on its floating support, before the incidences of the wind. In this way the wind turbine always supports the efforts of the wind in some localized areas, which allows to reinforce these zones and improve the response of the wind turbine to fatigue.
  • rudders are arranged on the floating platform, which can be oriented automatically or manually. The leeward placement of the wind turbine on the tower, favors the orientation of the entire assembly and due to the aerodynamic profile of the tower, dead zones of the drive are avoided when the blades pass behind it.
  • a support structure which consists of a central column that is supported by an anchor anchored on the bottom of the waterbed.
  • This support structure is also stiffened by braces on the floating platform, comprising at the bottom a telescopic section through which it is possible to compensate for the variations in height caused by the tides and the swell of the aquatic environment where the installation is made, when such aquatic environment is the sea.
  • the anchored anchor determines a conical hollow while the column of the support structure has at its end a spherical widening that fits into said conical hollow, which establishes a joint in the form of a ball-shaped valve, of the structural assembly of the wind turbine supported on this single anchored anchor point.
  • the floating structure avoids, by means of this ball joint, rigid stresses, damping the tipping effects, and also allows greater wind turbine drive during roll recoveries.
  • the column of the support structure is hollow, the hydraulic pumping mechanism is incorporated inside it, while in relation to the lower part a duct is arranged in the anchorage anchored, from the conical hollow, with exit through any part thereof, so that the anchoring of the end sphere of the support structure in the recess determines a tight seal, constituting a continuity between the anchored anchor duct and the inside of the column.
  • the support structure is formed with a tubular concrete column, whereby a structural assembly is achieved that determines by itself a lower weight poise, leaving the center of gravity in a low position that ensures the stability of the Floating installation set.
  • membranes that perform said process are arranged on the floating platform by means of the known reverse osmosis technique, said membranes being incorporated radially on the floating platform, to distribute their weight evenly.
  • the assembly of a structure of these characteristics can be done in places of land, on an annular ditch practiced in the ground and filled with water, achieving the same effects as in the assembly on a body of water such as the sea, lakes and rivers .
  • the floating structure comprises a central hollow crown in relation to which a manifold is arranged, to which the pumping system pours the water, said manifold comprising at least one transverse tube that is attached to the hollow crown, which determines a division into three independent annular spaces, of which one constitutes a deposit in conjunction with the tube or tubes of the collector, for the feed water coming from the pumping and destined for desalination, while the other two spaces constitute two reservoirs for the rejection brine of the desalination membranes and for the desalinated water that is obtained as a product of desalination.
  • the structure of the floating platform is constituted of stainless steel tubes, taking advantage of the interior of said structure as a complement of reservoir for the water coming from the pumping destined for desalination, together with the central crown and with the tube or cross collector tubes.
  • a desalination plant incorporated on a floating structure is arranged, which is established related to a set of wind generators, incorporated on respective floating structures, with which the hydraulic energy supply is effected by wind action, for the contribution of the water to be desalted and the production of the necessary electrical energy, incorporating the own floating desalination plant a pumping system with electric motor drive.
  • the system of the invention results in certain advantageous characteristics, acquiring its own life and preferential character for the desalination and electrical production functions to which it is intended, compared to the conventional equipment and installations used for those functions.
  • Figure 1 shows a diagram in vertical section of the arrangement of the recommended system.
  • Figures 2 and 3 are views according to respective perpendicular longitudinal cuts of the recommended system.
  • Figures 4 and 5 are enlarged details, according to a sectioned side view and a front view, of the assembly of the pinions of the hydraulic pumping mechanism, on the rotor axis of the wind turbine of the system.
  • Figures 6A, 6B and 6C show in enlarged detail a cylinder of the hydraulic pumping mechanism in successive paths of the pumping action.
  • Figure 7 is a perspective of the installation of a wind turbine on a floating platform, with equipment for electrical production by means of the system of the invention.
  • Figure 8 is a perspective of the installation of a wind turbine on a floating platform, with an equipment for electrical production and an equipment for desalination by means of the system of the invention.
  • Figures 9 and 10 are views of a wind turbine provided with a pumping system according to the invention, arranged, respectively, for desalination and for electrical production.
  • Figure 11 is an enlarged scheme of the System layout for desalination function.
  • Figure 12 is an enlarged scheme of the system layout for the electrical production function.
  • Figure 13 is an enlarged scheme of the system layout for a combined desalination and electrical production function.
  • FIG. 14 A perspective of the structure of a floating platform according to the invention is shown in Figure 14.
  • Figure 15 is a perspective view of a partial assembly formed by a floating platform with a wind turbine tower arranged on it.
  • Figure 16 is a perspective of the lower anchor of the floating structural assembly according to the invention.
  • Figure 17 shows a side view in correspondence with the previous figure.
  • Figure 18 shows a side view of the floating structure of a wind turbine mounted on a flotation channel.
  • Figure 19 shows a detailed perspective of the anchoring anchorage of the floating structure on the seabed.
  • Figure 20 shows in schematic a practical application of the system of the invention in relation to a distribution network on land.
  • Figure 21 is an enlarged detail of the assembly of the floating structure with a central hollow crown.
  • Figure 22 is an enlarged detail of the actuation of the pumping system by motors passing through the central manifold.
  • Figure 23 is an enlarged detail of the middle zone of the floating structure, with the central crown sectioned.
  • Figure 24 shows in perspective the set of a system application installation, with a floating desalination plant and a series of wind generators on independent floating structures.
  • the object of the invention relates to a system that allows the transformation of wind energy into hydraulic energy, for application to functions of desalination of sea water and / or electricity production, on a floating platform (2) in which Desalination and electrical production equipment for system application are incorporated.
  • a hydraulic pumping mechanism (3) is provided in relation to a wind turbine (1), by means of which water can be pumped from the aquatic environment (4) on which the platform (2) floats ), for the application of said water in the system functions.
  • the hydraulic pumping mechanism (3) consists of a set of pinions (5) associated with the axis (6) of the wind turbine rotor (1), including for example a central pinion (5.1) incorporated on the shaft (6) and a series of satellite pinions (5.2) associated in engagement with it, as seen in figures 4 and 5, without the distribution shown being limiting.
  • rods or similar elements (8) are suspended by connecting rods (7), at the lower end of which the pistons (9) of cylinders (10) that are submerged in the middle are suspended aquatic (4).
  • the cylinders (10) are arranged at the end of respective tubes (11), with respect to which the corresponding cylinders (10) determine a passage with unidirectional valves (12) opening upwards, while at the bottom said cylinders (10) are closed by their respective pistons (9), which in turn have unidirectional valves (13) opening upwards.
  • the pumped water can be sent to a desalination plant (15), as shown in figure 9, to obtain desalinated water, or to an electric generating turbine (16), as shown in figure 10, to produce electricity, being arranged in any In this case, the corresponding installations on the floating platform (2), as shown in figures 7 and 8.
  • the water pumped from the cylinders (10) is taken directly to the generating turbine (16), which can be, for example, a Pelton turbine with an electric generator, without limitation.
  • the groups (19) of desalination membranes require a certain water pressure for their operation, so that in the manifold (18) there is a pressure switch (21) that measures the pressure of the water and as a function of this opens by means of the solenoid valves
  • conduit (23) connects with one or more hydraulic cylinders (24), with inlet through an electrovalve (25) and evacuation outlet through another solenoid valve (26), each cylinder (24) being coupled to a tube (27) that is connected by a branch (28) to the manifold (18) and which at its end incorporates a pumping cylinder (29) as the cylinders (10) that are driven by the wind turbine
  • filters (30) are arranged, by which dirt is prevented from entering the system circuit.
  • the platform (2) comprises one or two annular tires
  • the tower section (1.1) of a wind turbine (1) which is braced by braces (31) with respect to the floating platform (2) thus forming a joint assembly of the entire structure.
  • the tower section (1.1) has an aerodynamic shape that avoids the dead zones of the drive when the blades (1.2) pass behind the tower (1.1), as well as the appearance of tipping and twisting pairs, thanks to the turn of the entire structure on its floating platform (2) in the event of wind.
  • the wind turbine (1) is oriented leeward on the tower (1.1), so that it is oriented in the wind direction, so that the platform (2) is oriented and rotated so that the leading edge of the tower (1.1) is always oriented towards the wind.
  • one or more rudders (32) will be arranged on the floating platform (2), which will allow the wind turbine to be oriented. These rudders (32) can be oriented manually, or automatically, by a computer program that determines their position based on the direction and strength of the wind. It is also provided that these rudders (32) can be oriented independently of each other, to compensate for the torsional effects generated by the different forces generated on the blades (1.2) and on the platform (2).
  • a support structure which consists of a central column (33) telescopically structured in the lower part, with the assembly supported by gravity on an anchor (34) anchored on the seabed, in what is called within the marine language a "dead".
  • the support structure is stiffened by braces (35) for bracing the floating platform (2) and by means of its telescopic composition compensates for the action of the tides and the sway of the waves of the aquatic environment.
  • the anchoring anchorage (34) determines a conical hollow (34.1) while the telescopic column (33) determines at its lower end a spherical widening (33.1) that fits into said conical hollow (34.1), establishing an anchoring as a patella from The entire structural assembly on a single point, which avoids rigid stress damping the effects of overturning, in addition to allowing greater actuation of the wind turbine (1) during roll recoveries. In this way, a greater performance in the use of wind energy and a decrease in fatigue is achieved.
  • the telescopic column (33) is hollow and in combination with it a conduit (36) is arranged in the anchoring anchor (34), which starts from the conical hole (34.1) to exit laterally through the bottom.
  • a tight seal is determined in the conical recess (34.1), achieving continuity between the conduit (36) of the anchoring anchor (34) and the inside of the telescopic column ( 33).
  • the hermetic closure of the telescopic column (33) allows to determine airtight pipes to evacuate the water once desalinated in the application of the system as a desalination plant, as well as to pass electric conduction cables in applications of electric power generation.
  • Desalination application can be performed by any of the known techniques, such as the known reverse osmosis technique, for which desalination membranes (15) are incorporated in radial arrangement, which are controlled by a control located on the floating platform itself (2).
  • a wind turbine (1) can be incorporated in the same conditions of floating on land, in disposition with respect to an annular ditch (37) practiced in the ground as a circular channel filled with water, in which the tires are placed floating
  • Figure 20 shows, schematically, an example of practical application, so that a wind turbine park is disposed at sea to desalinate water that is taken to land deposits, some of these deposits can be established as ditches for the assembly of wind turbines floating on land (1), to create networks of water transport and generation and distribution of electrical energy in an area of influence occupied by said network.
  • a corresponding pumping equipment can also be arranged to supply water in a complementary manner to the supply provided by the wind generators (40).
  • the desalination plant (39) can also be connected to earth by means of a pipe (42), through which desalinated water can be sent for distribution to land consumption, at the same time as by the pipe itself (42) an electric cable can be arranged for the connection of the desalination plant
  • the structure of the floating platform (2) is formed with a hollow central crown (43), inside which a manifold (44) is disposed in which the upper tubes (11) end up water rising from the pumping cylinders (10), said manifold (44) comprising one or more pipes arranged transversely in the hollow crown (43), which together with said manifold (44) forms a reservoir in which it is collected the water that supplies the pumping equipment, for the feeding to the desalination membranes (15) and to the means of electrical production where appropriate.
  • the central crown (43) internally determines a division into three independent annular spaces (43.1, 43.2 and 43.3) which are used as reservoirs for the different waters involved in the desalination process so that one of the spaces (43.1) is used in conjunction with the collector (44) and the platform's own tubular structure (2), as a reservoir of water from desalination feed supplied by the pumping equipment, while the other two spaces (43.2) and (43.3) are used as deposits to collect, respectively, the salt that results in rejection of desalination and the resulting desalinated water as a product of desalination.
  • the pumps (8) of the pumping equipment pass through the manifold (44), which can be arranged together with a set of pinions (5) associated with the rotor of a wind turbine (1) installed on the platform Floating (2), as described above, but said wheel-attached jaws (8) can also be arranged (45) arranged in relation to a motor drive by means of one or more motors (46), according to Figure 22, and may be the motors (46) of any conventional type.
  • a motor drive system of a hydraulic pumping equipment by means of motors (46) or by means of a wind turbine (1)
  • the pumping drive to supply the water to be desalinated is it can be carried out by means of a combination of both drive systems, so that when there is sufficient wind the drive can be carried out by means of the wind system, without consuming input energy, while when there is no wind or it is insufficient, the drive can be performed by means of the engine system, or by a joint use of the two wind and motor systems, resulting in a very economical result overall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Sistema de generación de energía eléctrica y desalación en una planta flotante, utilizando un aerogenerador (1) en disposición sobre una plataforma flotante (2) sobre un medio acuático (4) , incorporando un mecanismo de bombeo hidráulico (3) que es accionado por el funcionamiento de un aerogenerador o mediante motores (46) , de manera que mediante dicho mecanismo (3) se produce un bombeo de agua del medio acuático (4) para su utilización en la obtención de agua desalada y/o en la producción de electricidad.

Description

SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA Y DESALACIÓN
EN UNA PLANTA FLOTANTE
Sector de la técnica
La presente invención está relacionada con el aprovechamiento de la energia eólica, proponiendo un sistema que permite transformar la fuerza del aire en energia hidráulica, mediante una estructura de aerogenerador flotante, para la aplicación a producción eléctrica, a desalación de agua, o una combinación de ambas finalidades.
Estado de la técnica
El crecimiento de la población y la mejora de la calidad de vida vienen determinando un aumento exponencial de la demanda de agua y energia para el consumo, de modo que en muchos lugares el aprovechamiento del caudal de los rios va llegando al limite, mientras que la demanda sigue creciendo.
Por ello, para el abastecimiento del agua necesaria para el consumo se ha optado por recurrir a la desalación de agua del mar, para lo cual la técnica más conocida es la osmosis inversa, con la que el consumo de energia en la desalación es de 4 Kw por metro cúbico, debiendo tomarse dicha energia de la red de suministro eléctrico, o bien recurrir a sistemas de cogeneración eléctrica con la desalación.
El costo energético y de inversión de las plantas desaladoras conocidas, es muy alto, debido a que en el proceso de desalación se lleva a cabo el bombeo del mismo agua tres veces, para la extracción del agua a desalar, para el filtrado del agua en la planta y para alimentar el agua a las membranas de desalación; requiriendo esos tres bombeos respectivas instalaciones de motores y bombas, que suponen un costo importante, mientras que en cada uno de los bombeos hay perdidas notables de eficacia energética.
En el entorno marino hay abundancia de agua salada y, en general, también el viento tiene una significativa presencia, siendo éstos dos recursos naturales y además renovables y por tanto inagotables, con posibilidad de ser utilizados sin dañar el ecosistema.
Por la desalación, el agua del mar permite obtener agua dulce de consumo, mientras que por su calidad de fluido liquido dicha agua del mar tiene además excelentes propiedades de transmisión de energía con muy alto rendimiento energético, a través de cilindros hidráulicos; en tanto que el viento está comprobado a su vez como una buena fuente de energía para el accionamiento de mecanismos tales como aerogeneradores de producción de energía eléctrica.
Objeto de la invención
De acuerdo con la invención se propone un sistema que combina la utilización del viento y del agua del mar en la producción de energía para obtener agua desalada y/o producir energía eléctrica que puede ser utilizada en la propia instalación o suministrarse a la red de distribución general.
Este sistema objeto de la invención comprende la utilización de una plataforma flotante, en la cual se incorpora un aerogenerador que es accionado por el viento, llevando incorporado dicho aerogenerador un mecanismo de bombeo hidráulico, mediante el cual se puede bombear agua del medio acuático de flotación por el mismo accionamiento del aerogenerador mediante el viento.
Se obtiene asi una disposición en la que el aerogenerador permite convertir la energía del viento en energía eléctrica mediante el mecanismo correspondiente y además por medio del mecanismo de bombeo convierte también la energía eólica de accionamiento en energía hidráulica, la cual puede ser utilizada a su vez como medio de producción en diferentes formas de aplicación, tales como:
A) La energía hidráulica que produce el aerogenerador puede ser utilizada para accionar una turbina Pelton con un generador eléctrico, para producir energía eléctrica.
B) La energía hidráulica que produce el aerogenerador puede ser utilizada para alimentar una instalación desaladora incorporada en la propia plataforma flotante.
C) La energía hidráulica que produce el aerogenerador puede ser utilizada parcialmente para producir energía eléctrica y parcialmente para obtener agua desalada, en una combinación de las dos aplicaciones anteriores.
Con este sistema los costos de la desalación del agua del mar se pueden reducir entre un 30 y un 40% respecto de los sistemas convencionales, debido a que solo se efectúa un bombeo del agua a desalar, reduciendo, respecto de los sistemas convencionales que efectúan tres bombeos, de 4 a 2,5 Kw la energia eléctrica necesaria por metro cúbico, además de la reducción de motores y bombas, con los correspondientes circuitos hidráulicos, que reduce el costo de la instalación y permite un mejor control del conjunto funcional.
Por otra parte, los costos de inversión para generar energia eléctrica, se pueden reducir de un 20 a un 25% respecto de los costos de las instalaciones convencionales con pilotaje en el fondo del mar, con la ventaja de poderse instalar en profundidades de hasta 100 metros y que la producción se obtiene a partir de una energia limpia y renovable.
Según una realización, el mecanismo de bombeo hidráulico del sistema consta de un conjunto de piñones que van incorporados en el eje del rotor del aerogenerador que aprovecha la energia del viento, de los cuales piñones penden por medio de bielas unas sirgas o elementos semejantes que sustentan a los émbolos de respectivos cilindros que quedan sumergidos en el agua sobre la que flota la plataforma portadora del aerogenerador, los cuales cilindros van provistos con unas válvulas unidireccionales de cierre y apertura, de modo que al bajar y subir los émbolos correspondientes se obtiene una función de bombeo del agua.
El agua que bombean los cilindros se lleva a través de un conducto hasta un colector, desde el cual pasa a una instalación desaladora y/o a una instalación de producción eléctrica, incorporadas sobre la propia plataforma flotante.
El residuo (sal muera) del agua que se somete a desalación, se revierte a un sistema de bombeo accesorio, semejante al que es accionado por el aerogenerador, consiguiéndose asi un caudal complementario de agua bombeada, que se manda al colector de la instalación, con lo que se obtiene un rendimiento muy elevado.
La plataforma flotante está constituida por una estructura a modo de rueda de bicicleta comprendiendo una o dos llantas anulares unidas a un buje central, de tal manera que dichas llantas están formadas por elementos tubulares que determinan un comportamiento de tipo flotador.
Sobre el buje central se incorpora la torre del aerogenerador, la cual se arriosta mediante tirantes respecto de la base formando asi un conjunto solidario de toda la estructura.
La sección de la torre presenta una forma oblonga aerodinámica, lo cual, junto al hecho de que el aerogenerador se coloca a sotavento, establece una orientación siempre constante del aerogenerador frente al viento, merced al giro de toda la estructura sobre su apoyo flotante, ante las incidencias del viento. De esta forma el aerogenerador siempre soporta los esfuerzos del viento en unas zonas localizadas, lo que permite reforzar estas zonas y mejorar la respuesta del aerogenerador a las fatigas. Para mejorar el comportamiento de orientación se disponen unos timones, en la plataforma flotante, los cuales pueden ser orientados de forma automática o manual. La colocación a sotavento del aerogenerador sobre la torre, favorece la orientación de todo el conjunto y debido al perfil aerodinámico de la torre se evitan las zonas muertas del accionamiento cuando las palas pasan , por detrás de la misma.
Por debajo de la plataforma flotante va una estructura de sustentación, la cual consta de una columna central que se dispone apoyada en un anclaje fondeado sobre el fondo del lecho acuático. Esta estructura de sustentación se rigidiza también mediante tirantes de arriostamiento a la plataforma flotante, comprendiendo en la parte inferior un tramo telescópico mediante el cual permite compensar las variaciones de altura que ocasionan las mareas y el oleaje del medio acuático donde va hecha la instalación, cuando tal medio acuático sea el mar.
El anclaje fondeado determina un hueco cónico mientras que la columna de la estructura de sustentación posee en su extremo un ensanchamiento esférico que encaja en dicho hueco cónico con lo cual se establece una unión a modo de válvula en forma de rótula, del conjunto estructural del aerogenerador apoyado sobre este único punto del anclaje fondeado. La estructura flotante evita, mediante esta unión en rótula los esfuerzos rígidos, amortiguando los efectos de vuelco, y además permite un mayor accionamiento del aerogenerador durante las recuperaciones del balanceo.
La columna de la estructura de sustentación es hueca, incorporándose en su interior el mecanismo de bombeo hidráulico, mientras que en relación con la parte inferior se dispone un conducto en el anclaje fondeado, desde el hueco cónico, con salida por cualquier parte del mismo, de forma que el anclaje de la esfera extrema de la estructura de soporte en el hueco determina un cierre estanco, constituyendo una continuidad entre el conducto del anclaje fondeado y el interior de la columna.
Según una realización, la estructura de sustentación se forma con una columna tubular de hormigón, con lo cual se logra un conjunto estructural que determina por si mismo un aplomo de contrapeso inferior, quedando el centro de gravedad en una posición baja que asegura la estabilidad del conjunto flotante de la instalación.
Para la aplicación de desalación se disponen sobre la propia plataforma flotante unas membranas que realizan dicho proceso mediante la conocida técnica de osmosis inversa, incorporándose dichas membranas dispuestas radialmente sobre la plataforma flotante, para repartir uniformemente su peso.
El montaje de una estructura de estas caracteristicas se puede hacer en lugares de tierra firme, sobre una acequia anular practicada en el terreno y llena de agua, consiguiendo los mismos efectos que en el montaje sobre una masa de agua como el mar, lagos y rios.
La estructura flotante comprende una corona hueca central en relación con la cual se dispone un colector, al que el sistema de bombeo vierte el agua, comprendiendo dicho colector al menos un tubo transversal que queda unido a la corona hueca, la cual determina una división en tres espacios anulares independientes, de los que uno constituye un depósito en unión con el tubo o tubos del colector, para el agua de alimentación procedente del bombeo y destinada para la desalación, mientras que los otros dos espacios constituyen sendos depósitos para la salmuera de rechazo de las membranas desaladoras y para el agua desalada que se obtiene como producto de la desalación.
De un modo particular, la estructura de la plataforma flotante se constituye de tubos de acero inoxidable, aprovechándose el interior de dicha estructura como complemento de depósito para el agua procedente del bombeo destinada para la desalación, conjuntamente con la corona central y con el tubo o tubos del colector transversal.
En una realización práctica de aplicación se dispone una planta desaladora incorporada sobre una estructura flotante, la cual se establece relacionada con un conjunto de generadores eólicos, incorporados sobre respectivas estructuras flotantes, con los cuales se efectúa el suministro de energia hidráulica por acción del viento, para la aportación del agua a desalar y la producción de la energia eléctrica necesaria, incorporando la propia planta desaladora flotante un sistema de bombeo con accionamiento por motores eléctricos.
Con todo ello, el sistema de la invención resulta de unas características ciertamente ventajosas, adquiriendo vida propia y carácter preferente para las funciones de desalación y producción eléctrica a las que está destinado, frente a los equipos e instalaciones convencionales que se utilizan para esas funciones. Descripción de las figuras
La figura 1 muestra un esquema en corte vertical de la disposición del sistema preconizado.
Las figuras 2 y 3 son sendas vistas según respectivos cortes longitudinales perpendiculares, del sistema preconizado.
Las figuras 4 y 5 son sendos detalles ampliados, según una vista lateral seccionada y una vista frontal, del montaje de los piñones del mecanismo de bombeo hidráulico, sobre el eje del rotor del aerogenerador del sistema.
Las figuras 6A, 6B y 6C muestran en detalle ampliado un cilindro del mecanismo de bombeo hidráulico en sendas sucesivas posiciones de la acción del bombeo.
La figura 7 es una perspectiva de la instalación de un aerogenerador sobre una plataforma flotante, con un equipo para producción eléctrica mediante el sistema de la invención.
La figura 8 es una perspectiva de la instalación de un aerogenerador sobre una plataforma flotante, con un equipo para producción eléctrica y un equipo para desalación mediante el sistema de la invención.
Las figuras 9 y 10 son sendas vistas de un aerogenerador provisto con un sistema de bombeo según la invención, en disposición, respectivamente, para desalación y para producción eléctrica.
La figura 11 es un esquema ampliado de la disposición del sistema para la función de desalación.
La figura 12 es un esquema ampliado de la disposición del sistema para la función de producción eléctrica.
La figura 13 es un esquema ampliado de la disposición del sistema para una función combinada de desalación y de producción eléctrica.
En la figura 14 se muestra una perspectiva de la estructura de una plataforma flotante según la invención.
La figura 15 es una perspectiva de un conjunto parcial formado por una plataforma flotante con una torre de un aerogenerador dispuesta sobre ella.
La figura 16 es una perspectiva del anclaje inferior del conjunto estructural flotante según la invención.
La figura 17 muestra una vista lateral en correspondencia con la figura anterior.
La figura 18 muestra una vista lateral de la estructura flotante de un aerogenerador en montaje sobre un canal de flotación.
La figura 19 muestra una perspectiva en detalle del anclaje de fondeo de la estructura flotante sobre el fondo marino.
La figura 20 muestra en esquema una aplicación práctica del sistema de la invención en relación con una red de distribución en tierra.
La figura 21 es un detalle ampliado del conjunto de la estructura flotante con una corona hueca central.
La figura 22 es un detalle ampliado del accionamiento del sistema de bombeo mediante motores pasando por el colector central.
La figura 23 es un detalle ampliado de la zona media de la estructura flotante, con la corona central seccionada.
La figura 24 muestra en perspectiva el conjunto de una instalación de aplicación del sistema, con una planta desaladora flotante y una serie de generadores eólicos sobre estructuras flotantes independientes.
Descripción detallada de la invención
El objeto de la invención se refiere a un sistema que permita la transformación de la energia eólica en energía hidráulica, para la aplicación a funciones de desalación de agua del mar y/o producción de electricidad, sobre una plataforma flotante (2) en la cual se incorporan los equipos de desalación y producción eléctrica de aplicación del sistema.
Según una realización del sistema de la invención, en relación con un aerogenerador (1) se dispone incorporado un mecanismo (3) de bombeo hidráulico, mediante el cual se puede bombear agua del medio acuático (4) sobre el que flota la plataforma (2) , para la aplicación de dicha agua en las funciones del sistema. El mecanismo de bombeo hidráulico (3) consta de un conjunto de piñones (5) asociados al eje (6) del rotor del aerogenerador (1) , incluyendo por ejemplo un piñón central (5.1) incorporado sobre el eje (6) y una serie de piñones satélites (5.2) asociados en engrane con aquél, tal como se observa en las figuras 4 y 5, sin que la distribución representada sea limitativa.
De los piñones (5) van suspendidas por medio de bielas (7) unas sirgas o elementos análogos (8), en el extremo inferior de las cuales quedan suspendidos los émbolos (9) de unos cilindros (10) que quedan sumergidos en el medio acuático (4).
Los cilindros (10) van dispuestos en el extremo de respectivos tubos (11) , con respecto a los cuales los correspondientes cilindros (10) determinan un paso con válvulas unidireccionales (12) de apertura hacia arriba, mientras que por la parte inferior dichos cilindros (10) quedan cerrados por sus respectivos émbolos (9), los cuales poseen a su vez unas válvulas unidireccionales (13) de apertura hacia arriba.
Con ello asi, al ser accionado el aerogenerador (1) por el viento y girar su rotor, por medio de los piñones (5) y a través de las bielas (7) se produce un movimiento oscilante de subida y bajada de las sirgas (8) y en consecuencia un movimiento de elevación y descenso de los émbolos (9) de los cilindros (10) .
Al producirse ese movimiento, cuando el émbolo (9) de un cilindro (10) desciende, la presión que ocasiona el descenso hace que las válvulas (13) del émbolo (9) se abran, con lo que el agua entra por la parte inferior en el cilindro (10) , como representa la figura 6A .
Cuando el movimiento llega al punto inferior, el cilindro (10) se halla lleno de agua y las válvulas (13) del émbolo (9) se cierran, como representa la figura 6B.
A continuación se produce la elevación del émbolo
(9) y debido a la presión que produce dicha elevación, las válvulas (13) del émbolo (9) permanecen cerradas, en tanto que las válvulas (12) de la parte superior se abren, con lo cual el agua contenida en el cilindro
(10) es impulsada al tubo (11) , como representa la figura 6C, produciéndose asi un bombeo que proyecta un flujo de agua a través del tubo (11) y desde éste por una salida (14) hacia los lugares de aplicación.
El agua bombeada se puede enviar a una instalación desaladora (15) , como representa la figura 9, para obtener agua desalada, o bien a una turbina (16) generadora de electricidad, como representa la figura 10, para producir electricidad, disponiéndose en cualquier caso las instalaciones correspondientes sobre la propia plataforma flotante (2) , como se observa en las figuras 7 y 8.
Para producir electricidad (figura 12) , el agua bombeada desde los cilindros (10) se lleva directamente a la turbina generadora (16) , que puede ser, por ejemplo, una turbina Pelton con generador eléctrico, sin carácter limitativo.
Para la desalación de agua (figura 11) , el agua bombeada desde los cilindros (10) se lleva, pasando por una unidad de tratamiento químico (17), hasta un colector (18) al que van acoplados una serie de grupos
(19) de membranas desaladoras, respecto de los cuales se controla la entrada del agua mediante correspondientes electroválvulas (20) , en función de la presión existente en el colector (18) .
Los grupos (19) de membranas desaladoras requieren de una determinada presión de agua para su funcionamiento, por lo cual en el colector (18) se dispone un presostato (21) que mide la presión del agua y en función de ésta abre mediante las electroválvulas
(20) correspondientes la entrada a los grupos (19) de membranas que puedan alimentarse con la presión existente.
En la desalación, un 40% del agua tratada se obtiene como agua desalada, enviándose por un conducto
(22) de evacuación a las conducciones de distribución para el consumo, mientras que el 60% restante del agua resulta como sal muera, saliendo por un conducto (23) para ser revertido al medio acuático (4) .
Dado que la sal muera que sale por el conducto
(23) todavía tiene una presión que puede ser aprovechada, se ha previsto una realización en la que dicho conducto (23) conecta con uno o más cilindros hidráulicos (24) , con entrada a través de una electroválvula (25) y salida de evacuación a través de otra electroválvula (26), yendo cada cilindro (24) acoplado a un tubo (27) que va conectado mediante una derivación (28) con el colector (18) y que en su extremo incorpora un cilindro de bombeo (29) como los cilindros (10) que son accionados por el aerogenerador
(D • Con lo cual, mediante una alternancia de la apertura y cierre de las electroválvulas (25 y 26) en secuencia inversa, se obtiene un accionamiento del o los cilindros (24), los cuales producen el accionamiento de los cilindros (29) correspondientes, dando lugar a un bombeo complementario de agua que es enviada por los respectivos tubos (27) y la derivación
(28) al colector (18) .
Las aplicaciones de desalación y de producción de electricidad mediante el sistema, pueden ser combinadas, como muestra la figura 13, enviándose una parte del agua bombeada a una turbina (16) generadora de electricidad y el resto del agua a los grupos (19) de membranas de una instalación dasaladora, todo ello con independencia de la producción eléctrica que se puede obtener mediante el aerogenerador (1) con el mecanismo generador correspondiente.
En las zonas de paso del agua para su introducción en los cilindros de bombeo (10 y 29) , se disponen filtros (30), mediante los cuales se evita la entrada de suciedad al circuito del sistema. Dichos filtros
(30) pueden ser de cualquier tipo convencional apto para cumplir la función indicada, estando previstos con carácter preferente unos filtros (30) de tipo autolimpiante, para reducir el mantenimiento.
Según una realización, (figuras 14 a 17), la plataforma (2) comprende una o dos llantas anulares
(2.1) a modo de flotadores con unos tubos (2.2) que dotan a la estructura de la necesaria rigidez. Las llantas (2.1) se unen a un buje central (2.3) mediante unos radios (2.4), obteniéndose de esta forma una estructura similar a la de la rueda de una bicicleta. Sobre el buje central (2.3) se incorpora la torre
(1.1) de un aerogenerador (1) , la cual se arriostra mediante tirantes (31) respecto de la plataforma flotante (2) formando asi un conjunto solidario de toda la estructura. La sección de la torre (1.1) presenta una forma aerodinámica tal que evita las zonas muertas del accionamiento cuando las palas (1.2) pasan por detrás de la torre (1.1), asi como la aparición de pares de vuelco y torsión, merced del giro de toda la estructura sobre su plataforma flotante (2) ante las incidencias del viento.
En efecto, el aerogenerador (1) va orientado a sotavento sobre la torre (1.1), de forma que se orienta en la dirección del viento, de manera que la plataforma (2) se orienta y gira para que el borde de ataque de la torre (1.1) siempre se encuentre orientado hacia el viento.
De esta forma, se cumple un efecto "veleta", según el cual, el aerogenerador siempre está orientado de la misma forma respecto de la dirección del viento. Con ello se consigue que sean siempre unas concretas partes del aerogenerador las que tengan que soportar la incidencia mayor del viento y de las olas, pudiendo ser reforzadas estas partes, tanto en la torre (1.1) como en las llantas flotantes (2.1), los cuales pueden tener diferentes condiciones de flotabilidad en unas u otras zonas.
Además, esta disposición orientada a sotavento, junto con la forma aerodinámica de la torre (1.1), permiten reducir los esfuerzos a soportar por esta última. Por otro lado, la forma aerodinámica de la torre (1.1) y la orientación a sotavento, permiten también que el aire siga unos flujos que reducen las zonas muertas de las palas (1.2) en su paso por detrás de la torre (1.1) .
Se ha previsto que sobre la plataforma flotante (2) vayan dispuestos uno o más timones (32) , que permiten colaborar en la orientación del aerogenerador. Estos timones (32) pueden orientarse de forma manual, o bien de manera automática, mediante un programa informático que determina su posición en función de la dirección y de la fuerza del viento. También se ha previsto que estos timones (32) se puedan orientar de forma independiente entre si, para compensar los efectos de torsión que se generan por las diferentes fuerzas que se generan sobre las palas (1.2) y sobre la plataforma (2) .
Por la parte inferior de la plataforma flotante (2) va una estructura de sustentación la cual consta de una columna central (33) estructurada de forma telescópica en la parte inferior, disponiéndose el conjunto apoyado por gravedad sobre un anclaje (34) fondeado sobre el fondo marino, en lo que se denomina dentro del lenguaje marinero un "muerto". La estructura de sustentación se rigidiza mediante tirantes (35) de arriostamiento a la plataforma flotante (2) y mediante su composición telescópica compensa la acción de las mareas y el vaivén del oleaje del medio acuático.
El anclaje de fondeo (34) determina un hueco cónico (34.1) mientras que la columna telescópica (33) determina en su extremo inferior un ensanchamiento esférico (33.1) que encaja en dicho hueco cónico (34.1), estableciendo un anclaje a modo de rótula de todo el conjunto estructural sobre un único punto, lo que evita los esfuerzos rígidos amortiguando los efectos de vuelco, además de permitir un mayor accionamiento del aerogenerador (1) durante las recuperaciones del balanceo. De esta forma se consigue un mayor rendimiento en el aprovechamiento de la energía eólica y una disminución de la fatiga.
En la figura 19 se observa que la columna telescópica (33) es hueca y en combinación con ella se dispone un conducto (36) en el anclaje de fondeo (34), que parte desde el hueco cónico (34.1) para salir lateralmente por la parte inferior. Por otro lado, mediante el encaje del ensanchamiento esférico (33.1) se determina un cierre estanco en el hueco cónico (34.1), consiguiéndose una continuidad entre el conducto (36) del anclaje de fondeo (34) y el interior de la columna telescópica (33) .
Mediante el apoyo de rótula de la columna (33) sobre el anclaje (34), y la forma telescópica de dicha columna (33) , se permite compensar las variaciones de altura de la plataforma flotante (2) , por efecto de las mareas y el oleaje del mar, asi como los movimientos laterales de dicha plataforma flotante (2) por el arrastre del agua.
Además, el cierre hermético de la columna telescópica (33) permite determinar unas conducciones estancas para evacuar el agua una vez desalada en la aplicación del sistema como planta desaladora, asi como pasar cables de conducción eléctrica en aplicaciones de generación de energía eléctrica.
La aplicación de desalación puede realizarse mediante cualquiera de las técnicas conocidas, como por ejemplo, la conocida técnica de osmosis inversa, para lo cual se incorporan unas membranas desaladoras (15) en disposición radial, las cuales son controladas mediante un control ubicado en la propia plataforma flotante (2) .
Un aerogenerador (1) puede ser incorporado en las mismas condiciones de flotación sobre tierra firme, en disposición respecto de una acequia anular (37) practicada en el terreno como un canal circular llenado de agua, en el que se colocan flotando las llantas
(2.1), mientras que el anclaje se realiza mediante una zapata central provista de un hueco de forma cónica (38) para el apoyo del ensanchamiento esférico (33.1) del extremo de la estructura sustentadora de la plataforma (2), según la figura 18.
La figura 20 muestra, esquemáticamente, un ejemplo de aplicación práctica, de manera que un parque de aerogeneradores se dispone en el mar para desalar agua que es llevada hasta unos depósitos en tierra, pudiendo establecerse algunos de estos depósitos como acequias para el montaje de aerogeneradores flotantes en tierra (1) , para crear redes de transporte de agua y de generación y distribución de energía eléctrica en una zona de influencia ocupada por dicha red.
Según muestra la figura 24, es susceptible también disponer una planta desaladora (39) , incorporada sobre una estructura flotante de las características descritas anteriormente, en instalación sobre el mar y en combinación con dicha planta desaladora (39) una serie de generadores eólicos (40) , sobre respectivas estructuras flotantes, disponiendo los mencionados generadores eólicos (40) de respectivos mecanismos de bombeo, para mandar agua a la planta desaladora (39) a través de respectivas conducciones (41) de conexión con ella, para el aprovechamiento del agua bombeada, en dicha planta desaladora (39) , para desalación y/o producción de energía eléctrica en la misma. En la propia planta desaladora (39) puede disponerse además un correspondiente equipo de bombeo, para suministrar agua de manera complementaria al suministro que proporcionan los generadores eólicos (40) .
La planta desaladora (39) puede además conectarse con tierra por medio de una tubería (42) , a través de la cual se puede enviar el agua desalada para su distribución al consumo en tierra, al mismo tiempo que por la propia tubería (42) se puede disponer un cable eléctrico, para la conexión de la planta desaladora
(39) con tierra.
En una forma de realización, la estructura de la plataforma flotante (2) se forma con una corona central hueca (43) , en el interior de la cual se dispone un colector (44) en el que terminan superiormente los tubos (11) de subida del agua desde los cilindros de bombeo (10), comprendiendo dicho colector (44) uno o más tubos dispuestos transversalmente en la corona hueca (43) , la cual forma junto con el mencionado colector (44) un depósito en el que se recoge el agua que suministra el equipo de bombeo, para la alimentación a las membranas desaladoras (15) y a los medios de producción eléctrica en su caso.
La corona central (43) determina interiormente una división en tres espacios anulares independientes (43.1, 43.2 y 43.3) los cuales se utilizan como depósitos para las distintas aguas que intervienen en el proceso de la desalación de manera que uno de los espacios (43.1) se utiliza en unión con el colector (44) y la propia estructura tubular de la plataforma (2) , como depósito del agua de alimentación para la desalación que suministra el equipo de bombeo, mientras que los otros dos espacios (43.2) y (43.3) se utilizan como depósitos para recoger, respectivamente, la sal muera que resulta como rechazo de la desalación y el agua desalada resultante como producto de la desalación.
Las sirgas (8) del equipo de bombeo pasan en este caso a través del colector (44), pudiendo disponerse dichas sirgas (8) unidas a un juego de piñones (5) asociados al rotor de un aerogenerador (1) instalado sobre la plataforma flotante (2) , como se ha descrito anteriormente, pero también se pueden disponer dichas sirgas (8) unidas a ruedas (45) dispuestas en relación con un accionamiento motriz mediante uno o más motores (46) , según la figura 22, pudiendo ser los motores (46) de cualquier tipo convencional.
En la planta desaladora se puede establecer por lo tanto un sistema de accionamiento motriz, de un equipo de bombeo hidráulico mediante motores (46) o mediante un aerogenerador (1) , con lo cual, el accionamiento del bombeo para suministrar el agua a desalar se puede realizar mediante una combinación de ambos sistemas de accionamiento, de modo que cuando hay viento suficiente el accionamiento se puede realizar mediante el sistema eólico, sin consumir energía de aportación, mientras que cuando no hay viento o éste es insuficiente, el accionamiento se puede realizar mediante el sistema de motores, o mediante una utilización conjunta de los dos sistemas eólicos y de motores, resultando con ello en el conjunto global un resultado muy económico.

Claims

REIVINDICACIONES
1.- Sistema de generación de energia eléctrica y desalación en una planta flotante, caracterizado porque la instalación se dispone sobre una planta flotante (2) situada sobre un medio acuático (4), tal como el mar, incorporando un mecanismo de bombeo hidráulico (3) que se acciona por medios dispuestos sobre la plataforma flotante (2) , mediante el cual mecanismo (3) se produce un bombeo de agua desde el medio acuático (4), para la utilización del agua bombeada en la obtención de agua desalada y/o en la producción de energia eléctrica, mediante sistemas incorporados sobre la misma plataforma flotante (2) .
2.- Sistema de generación de energia eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque el mecanismo de bombeo hidráulico (3) dispone de unos medios de accionamiento (5-45) que van asociados al rotor de un aerogenerador (1) o respecto de motores (46) , desde los cuales medios de accionamiento cuelgan unas sirgas (8) o elementos similares que se relacionan en la parte inferior con unos cilindros (10) de bombeo hidráulico.
3.- Sistema de generación de energia eléctrica y desalación en una planta flotante, de acuerdo con la segunda reivindicación, caracterizado porque los cilindros de bombeo (10) van unidos en la parte superior a respectivos tubos (11) , con los que
/ ' comunican a través de válvulas unidireccionales (12) de apertura hacia arriba, mientras que por la parte inferior dichos cilindros (10) quedan cerrados mediante 5 correspondientes émbolos (9) que disponen a su vez de unas válvulas unidireccionales (13) de apertura hacia arriba, permitiendo la entrada de agua y el bombeo del agua interior a los correspondientes tubos (11) mediante el movimiento de elevación y descenso que transmiten los medios (5-45) a través de las sirgas
(8), a las cuales van unidos dichos émbolos (9) de los cilindros de bombeo (10) .
4.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizada porque el agua que bombea el mecanismo (3) es conducida hasta un colector (18) , desde el cual se envia a una turbina
(16) de generación eléctrica, o a una instalación desaladora (15) , o parcialmente a cada uno de dichos destinos para una combinación de ambas aplicaciones.
5.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con las reivindicaciones primera y cuarta, caracterizado porque la sal muera residual que sale de la instalación desaladora (15) se aprovecha para el accionamiento de uno o más cilindros hidráulicos (24) , mediante los cuales se accionan uno o más cilindros de bombeo (29) que producen un bombeo adicional de agua de suministro al colector (18) para las aplicaciones del sistema.
6.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque la estructura de la plataforma flotante (2) comprende una o dos llantas (2.1) a modo de flotadores anulares, las cuales van unidas a un buje central (2.3) a través de unos radios (2.4), presentando una estructura similar a la rueda de una bicicleta, sobre la cual es susceptible de incorporarse un aerogenerador (1) orientado a sotavento, estableciéndose la estructura en apoyo sobre un anclaje de fondeo (34) mediante una columna telescópica (33) de sustentación.
7.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la sexta reivindicación, caracterizado porque el aerogenerador (1) que se dispone sobre la plataforma flotante (2) comprende una torre (1.1) de sección aerodinámica en forma oblonga, la cual reduce la resistencia al viento y evita la aparición de puntos muertos en el accionamiento de las palas (1.2) del aerogenerador (1) .
8.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la sexta reivindicación, caracterizado porque la columna telescópica (33) determina en el extremo inferior un ensanchamiento (33.1) de forma esférica, mediante el cual se establece un apoyo de rótula sobre un hueco cónico (34.1) que define el anclaje de fondeo (34) .
9.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque la plataforma flotante (2) dispone de uno o más timones
(32) , los cuales facilitan la autoorientación de la plataforma flotante (2) en la dirección del viento, según un efecto "veleta".
10.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque la plataforma flotante (2) es susceptible de montarse en flotación sobre acequias (37) llenas de agua formadas como canales anulares en tierra firme.
11.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque la estructura de la plataforma flotante (2) comprende una corona hueca central (43) , la cual determina un depósito de recogida del agua que suministra el mecanismo de bombeo (3) , conjuntamente con un colector
(44) formado por uno o más tubos transversales que van unidos a dicha corona (43) .
12.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la reivindicación once, caracterizado porque la estructura de la plataforma flotante (2) consta de una estructura tubular, la cual se une a la corona hueca central (43) como complemento de depósito para alojar el agua que suministra el mecanismo de bombeo (3) .
13.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la reivindicación once, caracterizado porque la corona hueca central (43) determina una división interna en tres espacios anulares (43.1, 43.2 y 43.3), utilizándose uno de los espacios (43.1) en unión con el colector (44) para depósito del agua que suministra el mecanismo de bombeo (3) , mientras que los otros dos espacios (43.2 y 43.3) se utilizan como depósitos para recoger, respectivamente, la sal muera de rechazo de la desalación y el agua desalada resultante como producto de la desalación.
14.- Sistema de generación de energía eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque el mecanismo de bombeo (3) se establece en relación con un accionamiento motriz formado por uno o más motores (46) , los cuales actúan el movimiento de vaivén vertical de un grupo de cilindros de bombeo (10) .
15.- Sistema de generación de energia eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado. porque el mecanismo de bombeo (3) se establece en relación con un accionamiento motriz formado por un aerogenerador (1) , el cual actúa el movimiento de vaivén vertical de un grupo de cilindros de bombeo (10) .
16,- Sistema de generación de energia eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque el mecanismo de bombeo (3) se establece en relación con un accionamiento motriz formado por uno o más motores (46) que actúan el movimiento de vaivén vertical de un grupo de cilindros de bombeo (10) y en relación con un accionamiento motriz formado por un aerogenerador (1) que actúa el movimiento de vaivén vertical de otro grupo de cilindros de bombeo (10), permitiendo realizar el bombeo hidráulico mediante accionamiento combinado o independiente de ambos sistemas.
17.- Sistema de generación de energia eléctrica y desalación en una planta flotante, de acuerdo con la sexta reivindicación, caracterizado porque la columna telescópica (33) de sustentación de la plataforma flotante (2) se estructura de hormigón, determinando una función de contrapeso para mantener la estabilidad del conjunto flotante sobre el agua.
18.- Sistema de generación de energia eléctrica y desalación en una planta flotante, de acuerdo con la primera reivindicación, caracterizado porque en una aplicación se dispone una planta desaladora (39) incorporada sobre una plataforma flotante (2) , estableciéndose dicha planta desaladora (39) comunicada por medio de tuberías (41) con una serie de generadores eólicos (40) dispuestos sobre respectivas plataformas flotantes (2) independientes, yendo provistos dichos generadores eólicos (40) con respectivos mecanismos de bombeo (3) , para suministrar desde ellos el agua necesaria a la planta desaladora (39) , en tanto que dicha planta desaladora (39) posee ella misma un correspondiente mecanismo de bombeo (3) , que permite complementar el suministro hidráulico que se suministra desde los generadores eólicos (40) .
PCT/ES2005/000526 2004-10-01 2005-09-29 Sistema de generación de energía eléctrica y desalación en una planta flotante WO2006037828A1 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP200402338 2004-10-01
ES200402338 2004-10-01
ES200402824A ES2265738B1 (es) 2004-11-23 2004-11-23 Sistema de transformacion de energia eolica en energia hidraulica.
ESP200402824 2004-11-23

Publications (1)

Publication Number Publication Date
WO2006037828A1 true WO2006037828A1 (es) 2006-04-13

Family

ID=36142314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000526 WO2006037828A1 (es) 2004-10-01 2005-09-29 Sistema de generación de energía eléctrica y desalación en una planta flotante

Country Status (1)

Country Link
WO (1) WO2006037828A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037533A2 (en) * 2007-09-20 2009-03-26 Dehlsen Associates, L.L.C. Renewable energy fluid pump to fluid-based energy generation
NL2001663C2 (nl) * 2008-06-10 2009-12-11 Univ Delft Tech Systeem en werkwijze voor energiewinning.
WO2011073467A1 (es) * 2009-12-14 2011-06-23 Manuel Torrez Martinez Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante
WO2012030123A2 (ko) * 2010-08-30 2012-03-08 Kang Deok Soo 부유지지선 압축구조를 가진 해상부유풍력발전장치
US11472519B2 (en) * 2018-01-30 2022-10-18 Alliance For Sustainable Energy, Llc Flexible aquatic substructures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496846A (en) * 1982-06-04 1985-01-29 Parkins William E Power generation from wind
ES2024909A6 (es) * 1990-07-13 1992-03-01 Risueno Sanchez Antonio Plataforma flotante con aerogeneradores de helice.
ES2134682A1 (es) * 1995-02-27 1999-10-01 Inst Tecnologico De Canarias S Aeromotor para desalar agua con acoplamiento mecanico.
JP2004218436A (ja) * 2003-01-09 2004-08-05 National Maritime Research Institute 風力発電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496846A (en) * 1982-06-04 1985-01-29 Parkins William E Power generation from wind
ES2024909A6 (es) * 1990-07-13 1992-03-01 Risueno Sanchez Antonio Plataforma flotante con aerogeneradores de helice.
ES2134682A1 (es) * 1995-02-27 1999-10-01 Inst Tecnologico De Canarias S Aeromotor para desalar agua con acoplamiento mecanico.
JP2004218436A (ja) * 2003-01-09 2004-08-05 National Maritime Research Institute 風力発電装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037533A2 (en) * 2007-09-20 2009-03-26 Dehlsen Associates, L.L.C. Renewable energy fluid pump to fluid-based energy generation
WO2009037533A3 (en) * 2007-09-20 2009-08-20 Dehlsen Associates L L C Renewable energy fluid pump to fluid-based energy generation
NL2001663C2 (nl) * 2008-06-10 2009-12-11 Univ Delft Tech Systeem en werkwijze voor energiewinning.
WO2011073467A1 (es) * 2009-12-14 2011-06-23 Manuel Torrez Martinez Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante
ES2361986A1 (es) * 2009-12-14 2011-06-27 Manuel Torres Martinez Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante.
WO2012030123A2 (ko) * 2010-08-30 2012-03-08 Kang Deok Soo 부유지지선 압축구조를 가진 해상부유풍력발전장치
WO2012030123A3 (ko) * 2010-08-30 2012-04-26 Kang Deok Soo 부유지지선 압축구조를 가진 해상부유풍력발전장치
US11472519B2 (en) * 2018-01-30 2022-10-18 Alliance For Sustainable Energy, Llc Flexible aquatic substructures

Similar Documents

Publication Publication Date Title
ES2242599T3 (es) Generador hidrocratico.
US7948101B2 (en) Apparatus for production of hydrogen gas using wind and wave action
JP4444279B2 (ja) 製造設備
US4224527A (en) Fluid flow intensifier for tide, current or wind generator
ES2769312T3 (es) Aparato para recuperar energía de las olas
NZ214080A (en) Propeller type water reaction turbine which is tapered along its axis
WO2013150320A2 (en) Mechanical hydraulic electrical floating and grounded system exploiting the kinetic energy of waves (seas-lakes-oceans) and converting it to electric energy and to drinking water
AU5286993A (en) A device for a buoy-based wave power apparatus
CN102165183B (zh) 海浪能量提取的改进
US9163606B2 (en) Hydro-electric tube generation
AU2007280570A1 (en) Apparatus for converting energy from wave or current flow using pipes acting as venturi pumps
JP4628844B2 (ja) 波エネルギー利用装置
WO2006037828A1 (es) Sistema de generación de energía eléctrica y desalación en una planta flotante
JP2012193676A (ja) 水上発電装置
NZ565291A (en) Power generation using immersed vessel(s) using off-peak electricity for pumping out water from vessel and to generate electricity via turbine during peak demand to feed to grid
ES2304904B1 (es) Funcionamiento de una central hidroelectrida por la fuerza de las olas del mar.
KR101055178B1 (ko) 파력을 이용한 양수발전시스템
US4563248A (en) Solar distillation method and apparatus
JP2011196361A (ja) 水上発電装置
JP2020023956A (ja) 自然流体発電装置
JP5759603B1 (ja) 水力発電装置
WO2014190448A1 (zh) 在河流水中的发电方法及其装置
KR101272094B1 (ko) 조류펌프 및 이를 이용한 발전시스템
JP2005048603A (ja) 水力自家発電装置
ES2265738B1 (es) Sistema de transformacion de energia eolica en energia hidraulica.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05801435

Country of ref document: EP

Kind code of ref document: A1