WO2006035815A1 - 熱帯熱マラリア原虫のエノラーゼ蛋白質の部分ペプチドの製造方法 - Google Patents

熱帯熱マラリア原虫のエノラーゼ蛋白質の部分ペプチドの製造方法 Download PDF

Info

Publication number
WO2006035815A1
WO2006035815A1 PCT/JP2005/017851 JP2005017851W WO2006035815A1 WO 2006035815 A1 WO2006035815 A1 WO 2006035815A1 JP 2005017851 W JP2005017851 W JP 2005017851W WO 2006035815 A1 WO2006035815 A1 WO 2006035815A1
Authority
WO
WIPO (PCT)
Prior art keywords
asn
seq
bzl
glu
obzl
Prior art date
Application number
PCT/JP2005/017851
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Oku
Kazuto Omi
Keisuke Kuriyama
Jyunya Yamamoto
Keiichi Yamada
Ryoichi Katakai
Kumiko Sato
Mamoru Suzuki
Shin-Ichiro Kawazu
Shigeyuki Kano
Original Assignee
National University Corporation Gunma University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Gunma University filed Critical National University Corporation Gunma University
Priority to US11/663,962 priority Critical patent/US7713926B2/en
Priority to EP05788001A priority patent/EP1803731A4/en
Priority to JP2006537772A priority patent/JP4568842B2/ja
Publication of WO2006035815A1 publication Critical patent/WO2006035815A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56905Protozoa
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/44Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from protozoa
    • C07K14/445Plasmodium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for producing a partial peptide of Plasmodium enolase.
  • the present invention also provides a peptide capable of inducing an immunological response to malaria parasites using an immune reaction with humans and other animals, a diagnostic agent for an immune state against malaria infection, Plasmodium falciparum
  • the present invention relates to a method for producing a pharmaceutical such as an antigenic peptide for immunity that suppresses the growth of the drug.
  • Infectious diseases that seemed to have been overcome until recently have changed drastically due to the movement of people, changes in the global environment due to development, and changes in social activities. For example, the circumstances surrounding infectious diseases such as tropical diseases related to overseas travel and development in the rainforest, and emergence of drug resistance due to overuse of infectious agents are becoming increasingly severe.
  • Malaria a tropical protozoan disease, is particularly slow to counteract infectious diseases, with 3 to 500 million patients and 1.5 to 2.7 million deaths every year (WHO report 1999).
  • a drawback of peptide vaccines is that individual differences are expected in the effect of prophylactic immunity.
  • malaria with a high prevalence in endemic areas can be expected to reduce the number of patients and deaths even by reducing the risk of onset.
  • amino acid sequence of a part of the malaria parasite enolase represented by SEQ ID NO: 12 was selected.
  • the peptide compound containing this sequence is synthesized in a small amount (several milligrams) and can be used as an artificial antigen to induce an immunological response against malaria parasites, and a diagnostic material for immune status against malaria infection ( Immunity test), induces immunizing antigen to suppress the growth of malaria parasite I found what I can do.
  • the results of this study are reported in Patent Document 1 together with the results of studies on synthetic peptides using the amino acid sequences of a part of other malaria parasite enolases.
  • peptide vaccines are generally produced using solid phase synthesis or gene recombination. This allows any arrangement to be manufactured with little experience. However, in solid phase synthesis, the longer the chain, the lower the synthesis yield, and the lower the yield of the final product remaining after purification. In general, the amount of final product obtained by genetic recombination is also small.
  • a peptide having a partial amino acid sequence of the malaria parasite enolase represented by SEQ ID NO: 12 is synthesized by a solid-phase synthesis method at the laboratory level, only a few hundred micrograms to several milligrams are obtained. .
  • synthesized by a genetic recombination method even if E. coli is cultured in a relatively large 2 liter container at the laboratory level, only 1 to 2 millidalam (about 1 person as a vaccine) is obtained. Even if it is carried out in the world's largest 1000-liter container, it will only yield 500-1000 milligrams (about 500 people as a vaccine).
  • Patent Document 1 JP 2002-371098
  • Non-patent literature 1 Nature 2004 430 ⁇ 900-903
  • the present invention provides a method suitable for large-scale synthesis of peptides necessary for inducing an immunological response against Plasmodium falciparum using an immune response with humans and other animals. That's true. It is another object of the present invention to provide a method suitable for large-scale synthesis of an antigen sequence for immunization that suppresses the growth of Plasmodium falciparum, a diagnostic material for an immune state against malaria infection.
  • the present invention is as follows.
  • R and R are side chain protecting groups ((C H) C-) of asparagine residues or unprotected.
  • R is a side chain protecting group of aspartic acid residue (C H CH-0- or (CH) C-0-)
  • R is a side chain protecting group (C H CH-or (CH) C-) of an aspartic acid residue.
  • R is the side chain protecting group of lysine residue ((CH) C-0-CO-, C H CH-0- CO-, 2-chlorobe
  • R is a side chain protecting group ((CH) C-) of asparagine residue or unprotected, R is a side chain protecting group of lysine residue ((CH) C-0-CO-, CH CH -0- CO-, 2-chlorobenzyl
  • R is a side chain protecting group of a tyrosine residue (C H -C
  • a group (C H CH 2 — or (CH 2) C—).
  • R is a tyrosine residue side chain protecting group (C H -CH-, C1-C H -CH-or (C
  • R is a side-chain protecting group ((C H) C-) of asparagine residue or unprotected
  • R is a side chain protecting group of the serine residue (C H CH-or (CH) C-), and R is asparagine
  • R is a side chain protecting group (C H CH-or (CH) C-) of serine residue
  • the peptide of SEQ ID NO: 1 is produced by the method of any one of (1) to (3), and a sugar chain sequence, peptide, protein, polysaccharide, at one or both of the N-terminus and C-terminus of the peptide, A method for producing a peptide of SEQ ID NO: 1 having a terminal modified, which binds a metal complex, polymer carrier, gel, film, latex particle, metal fine particle or plastic plate.
  • a method for producing a malaria parasite infection comprising the steps of: producing the peptide of SEQ ID NO: 1 by any one of methods (1) to (3); and blending the peptide with a pharmaceutically acceptable carrier.
  • a method for producing a medicament for prevention or treatment or a diagnostic agent for Plasmodium infection A method for producing a medicament for prevention or treatment or a diagnostic agent for Plasmodium infection.
  • Prevention or prevention of Plasmodium infection comprising the steps of producing a peptide of SEQ ID NO: 1 having a terminal modified by the method of (4) and combining the peptide with a pharmaceutically acceptable carrier
  • a method for producing a therapeutic drug or a diagnostic agent for Plasmodium infection comprising the steps of: producing the peptide of SEQ ID NO: 1 by any one of methods (1) to (3); and blending the peptide with a pharmaceutically acceptable carrier.
  • N a -t-butoxycarbol-glutamic acid- ⁇ -benzyl-a-trichloroethinoresestenole consisting essentially of L-form.
  • a method for producing a peptide characterized in that the N a -t-butoxycarbol-glutamic acid- ⁇ -benzyl-a-trichlorodiethyl ester of (7) is used.
  • FIG. 1 shows one embodiment of the present invention, H-Glu-Glu-Glu-Glu-Glu-Ala-Ser-Glu-Phe-Tyr- Asn- Ser- Glu- Asn- Lys- Thr- Tyr —Asp—Leu—Asp—Phe—Lys—Pro—Asn—Asn—Asp-Gly-Gly-OH (SEQ ID NO: 13)
  • FIG. 2 shows one embodiment of the present invention, H-Glu-Glu-Glu-Glu-Glu-Ala-Ser-Glu-Phe-Tyr- Asn- Ser- Glu- Asn- Lys- Thr- Tyr — Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (SEQ ID NO: 13)
  • SEQ ID NO: 13 This is a crystal structure obtained by analyzing the reflection data of L-glutamic acid- ⁇ -benzyl ester-tri-trichloroethyl ester measured by CuK ⁇ -ray X-ray diffraction.
  • FIG. 3 shows an embodiment of the present invention, H-Glu-Glu-Glu-Glu-Glu-Ala-Ser-Glu-Phe-Tyr- Asn- Ser- Glu- Asn- Lys- Thr- Tyr — Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (SEQ ID NO: 13)
  • Spectral data (mass) of the synthesized product by mass analysis using the MALDI-TOF method The range is m / e 500-4500).
  • FIG. 4 shows an embodiment of the present invention, H-Glu-Glu-Glu-Glu-Glu-Ala-Ser-Glu-Phe-Tyr- Asn- Ser- Glu- Asn- Lys- Thr- Tyr — Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (SEQ ID NO: 13)
  • Spectral data (mass) of the synthesized product by mass analysis using the MALDI-TOF method The range is m / e 3180-3280).
  • FIG. 5 shows one embodiment of the present invention, H-Cys (Acm) -Gly-Gly-Ala-Ser-Glu-Phe-Tyr— Asn— Ser— (jlu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— A It is a flowchart which shows the synthetic
  • FIG. 6 shows one embodiment of the present invention, H-Cys (Acm)-Gly- Gly- Ala- Ser- Glu- Phe- Tyr— Asn— Ser— (jlu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn—
  • a sp-Gly-OH SEQ ID NO: 48 was subjected to mass spectrometry by mass spectrometry (mass range m / e 860- 1020 and m / e 1440-1530).
  • FIG. 7 is an embodiment of the present invention, H-Glu-Glu-Glu-Glu-Glu-Ala-Ser-Glu-Phe-Tyr- Asn- Ser- Glu- Asn- Lys- Thr- Tyr — Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (SEQ ID NO: 13) for the synthetic product and various serum of P. falciparum malaria patients (1-7) ) And the antibody titer (RFU value) measurement by fluorescence ELISA method. As a comparison, data from sera of non-infected persons (8-12) are shown.
  • FIG. 8 shows a structure of a substance in which a plurality of peptide compounds of the present invention are linked.
  • AD22 represents a peptide of SEQ ID NO: 1 or a terminal-modified peptide into which a compound that induces a higher-order structure is introduced at either or both of the amino terminal and carboxy terminal of SEQ ID NO: 1.
  • a dotted line represents that the peptide compound is connected linearly repeatedly.
  • amino acids ti ⁇ UXaa Ala Seruiu Phe Tyr Asn ber Glu Asn Lys Thr Tyr Asp Leu Asp Phe Lys T are bound by combining the following fragments (i) to (V): The peptide of hr Pro Asn Asn Asp Xaa (SEQ ID NO: 1) is produced.
  • Xaa represents 0, 1, or a plurality of arbitrary amino acid residues, and the number thereof is not particularly limited as long as the peptide of SEQ ID NO: 1 can induce an immunological response against malaria parasites. 0 to 20 are preferable. Xaa may further be added with a carrier.
  • Each of the peptides (i) to (V) can be produced according to an ordinary peptide synthesis method. Preferably, it can be produced by a liquid phase reaction.
  • the peptide of (ii) and the peptide of (i) (when Xaa is 0) is L-glutamic acid at the C-terminus, so it was difficult to synthesize N-a-protected-L-glutamic acid- y-Benzyl ester-a-protected ester, in particular Na-t-butoxycarbol-L-glutamic acid- ⁇ -benzyl-a-trichlorodiethyl ester, which was successfully synthesized by the inventors, was used as the reaction peptide. It is preferable to synthesize using.
  • the peptide of (0 to (V) described above is converted into an N-terminal or C-terminal fragment of the peptide of SEQ ID NO: 1, ie, (i) or (V ) Fragments may be joined one by one in order.For example, (i) and (ii), (iii), (iv) and (V) are joined separately, and the resulting fragments are joined together. When combined, it may be like that.
  • the peptide fragments are bound in a state where the terminal ends not participating in the binding reaction between the fragments and the reactive side chain of each fragment are protected.
  • the amino terminal of (ii) it is preferable to carry out by protecting Asp and Leu at the carboxy terminus of (iii) and the reactive side chain present in these peptides.
  • amino-terminal protecting group examples include (CH) C-0-CO-, C H CH -0-CO-, 9-fluor.
  • Examples of the carboxyl-terminal protecting group include -0 -CH 2 -CC 1, -0-CH 2 -CO-C H,-0 -CH -C H and the like.
  • the side chain protecting group is appropriately selected depending on each amino acid.
  • Examples of the fragments (i) to (V) in which the side chain is protected include the following.
  • R and R are side chain protecting groups of asparagine residues (e.g. (C H) C-) or unprotected, R is
  • a side chain protecting group of a sparagic acid residue for example, C H CH 0-0- or (CH 3) C-0-).
  • R is a side chain protecting group of an aspartic acid residue (e.g. C H CH-or (CH) C-), R is a rigid group
  • R is the side chain protecting group of the threonine residue (eg For example, CH 2 CH 3 — or (CH 2) C—).
  • R is the side chain protecting group of the asparagine residue (e.g. (C H) C-) or unprotected, R is the lysine residue
  • R is the side chain protecting group of the threonine residue
  • R is a side chain protecting group of a tyrosine residue (e.g. C H -CH-or
  • 6 5 2 3 3 10 6 5 2 is CI -C H -CH-or (CH) C-), R is the side chain protecting group of the aspartic acid residue (e.g. C
  • R is a side chain protecting group of a tyrosine residue (for example, C H -CH-, C1-C H -CH-or (CH) C-)
  • R is side chain protecting group of asparagine residue (eg (C H) C-) or unprotected, R is serine
  • Residue side chain protecting group e.g. C H CH-or (CH) C-
  • R is on the side of the aspartic acid residue
  • a chain protecting group (e.g. C H CH -0- or (CH) C- 0-).
  • R is the side chain protecting group of the serine residue (e.g. C H CH-or (CH) C-), R is the glutamic acid residue
  • a side chain protecting group of the group (for example, C H CH -0- or (CH) C-0-)
  • each fragment can be carried out according to the usual peptide condensation reaction, but it is preferred to use a condensing agent.
  • a condensing agent a combination of 1-ethyl 3- (3 dimethylaminopropyl) monocarbodiimide and 1-hydroxybenzotriazole, 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethylthio Combination of oral hexafluorophosphate and 1-hydroxybenzotriazole, or 0- (7-azabenzotriazole-1-yl) -1,1,3,3-tetramethyl Fate alone can be used.
  • the condensation reaction is preferably performed in a liquid phase from the viewpoint of further improving the yield.
  • the peptide of SEQ ID NO: 1 can be obtained by deprotecting the bound peptide as described above. Deprotection can be performed by a conventional method.
  • immunological response is a concept including both a cellular immunological response and a humoral immunological response.
  • cellular immunological response refers to immunity caused by, for example, macrophages, natural killer cells (NK cells), eosinophils, T cells, etc.
  • NK cells natural killer cells
  • eosinophils eosinophils
  • T cells eosinophils
  • T cells eosinophils
  • T cells eosinophils
  • humoral immunological responses are known to be caused by host-derived antibodies that can specifically bind to proteins, sugar chains, etc. derived from P. falciparum malaria parasites. . It is desirable to induce antibodies from the antigenic peptide produced according to the present invention as a humoral immunological response.
  • a terminal-modified peptide by introducing a compound that induces a higher-order structure into either or both of the amino terminal and carboxy terminal of SEQ ID NO: 1.
  • Such higher order structures are easily recognized by immune system cells such as macrophages NK cells, T cells, or antibodies! /.
  • a sugar chain sequence As the compound that induces a higher order structure, a sugar chain sequence, a peptide sequence, a protein, a polysaccharide, a metal complex, or a polymer carrier, gel, film, latex particle, metal fine particle, plastic plate, and the like can be used.
  • a binding mode depending on the type of modifier, for example, a covalent bond, an ionic bond, or a coordinate bond.
  • a film-bound peptide can be prepared by spin casting and the presence of antibodies in the test sample can be detected by plotting the test sample on the resulting film.
  • the peptide bound to the latex particles can be prepared according to an emulsion polymerization method or a suspension polymerization method, and the obtained latex particles can be used for an agglutination reaction.
  • the binding to the plastic plate or the microbead can be performed by dropping an appropriate amount of the peptide into the wall of the plastic plate or by immersing the microbead in the peptide solution.
  • a substance containing a plurality of peptide sequences in one molecule can be produced.
  • the peptide compounds may be linked by a linker substance.
  • the linker material is used to increase the molecular weight of peptide compounds in a linear (Fig. 6) or branched chain.
  • the number to be connected is not particularly limited, but 4 to 8 is preferable.
  • AD22 is a peptide of SEQ ID NO: 1 or a terminal-modified peptide into which a compound that induces a higher order structure is introduced at either or both of the amino terminal and carboxy terminal of SEQ ID NO: 1.
  • the dotted line represents that the peptide compound is repeatedly connected in a straight line.
  • the linker substance that can be used here is a kind of amino acid sequence linked by covalent bond, ionic bond, coordinate bond, sugar chain sequence, dicarboxylic acid compound, diamine compound, metal complex, etc.
  • the power that can be composed of several combinations is not limited to these.
  • the linker is composed of a peptide of the Xaa part of SEQ ID NO: 1 or a compound that induces the higher-order structure bound to the peptide! You may be ashamed.
  • carrier molecules or polymer carriers include natural proteins such as tetanus toxoid, ovalbumin, serum albumin, hemocyanin, and the like.
  • a pharmaceutically acceptable carrier for prevention or treatment of Plasmodium infection by combining a peptide or terminal-modified peptide obtained by the production method of the present invention or a compound in which a plurality of these are linked together with a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier include an immunostimulant, a diluent, a stabilizer, a preservative, and a buffer.
  • Examples of drugs for preventing or treating malaria parasite infection include vaccines for preventing infection and therapeutic vaccines for activating immunity against malaria parasite antigens in already infected patients. It is done.
  • Examples of diagnostic reagents for Plasmodium infection include diagnostics for examining the presence of antibodies against Plasmodium antigens.
  • an analog of the peptide of SEQ ID NO: 1 can also be produced in the same manner as in the production method of the present invention.
  • the “peptide analog” is a peptide produced by substitution, deletion and / or insertion of amino acid constituting the peptide of SEQ ID NO: 1, and the present invention relates to an immunological response. It means a peptide having the same activity as that of the peptide.
  • the number of amino acids to be replaced, deleted and / or inserted is not particularly limited, but 1 to 5 is preferable. 1 to 2 are more preferable.
  • Possible methods for using similar sequences include, but are not limited to, solubility at the time of chemical synthesis, crystallinity, solubility for use in immune reactions, and more effective immunological responses. Is not to be done.
  • a pharmaceutical or diagnostic agent can be produced in the same manner.
  • the present invention also relates to N a -t-butoxycarbonyl-glutamic acid- ⁇ -benzyl-a-trichlorodiethyl ester (Boc-Glu) which is used for the synthesis of the peptide of SEQ ID NO: 1 and which is substantially only L form.
  • Boc-Glu N a -t-butoxycarbonyl-glutamic acid- ⁇ -benzyl-a-trichlorodiethyl ester
  • the present inventor determined that the molar ratio of ⁇ -t-butoxypolyl-L-glutamic acid- ⁇ -benzyl ester and trichlorodiethyl alcohol is DMAP as a reaction promoting catalyst from the conventional 0.5 equivalent. It was clarified that Boc-Glu (OBzl) -OTce, which is practically effective only in the L form, can be obtained by performing a condensation reaction with DCC using only 0.1 equivalents. This L-form Boc-Glu (OBzl) -OTce can be widely used for the synthesis of peptides containing glutamic acid in addition to the peptide of SEQ ID NO: 1. The phrase “substantially only the L form also has a force” means that it contains 95% or more, preferably 98% or more, more preferably 99% or more, and particularly preferably 100% L form.
  • Boc-Ala-OH Na-t-butoxycarbonyl-L-alanine
  • Boc-Cys (Acm) -OH N a -t-butoxycarbol-S-acetamidomethyl-L-cysteine
  • Boc- Ser (Bzl)-OH N a -t-butoxycarbol-0-benzyl-L-serine
  • Boc- Thr (Bzl) -OH Na-t-butoxycarbonyl-0-benzenole- L-threonine
  • Boc-Phe-OH Na-t-butoxycarbonyl-L-phenylalanine
  • Boc-Tyr (Cl -Bzl)-OH N ⁇ -t-butoxycarbol-0-2,6-dichlorobenzyl-L-tyro
  • Boc-Asn-OH Na-t-butoxycarbonyl-L-asparagine
  • Boc-Asp (OBzl) -OH N a -t-butoxycarbonyl-L-aspartic acid- ⁇ -benzyl ester
  • Boc- Glu (OBzl)- ⁇ N a -t-butoxycarbol- L-glutamic acid- ⁇ -benzyl ester
  • Boc tert-Butoxycarbol (t-Bu-O-CO-)
  • OTce Trichrome mouth ethyl (-CH-CC1)
  • Bzl benzyl (-CH-CH)
  • HATU 0- (7-azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexofonore lovophate
  • L-amino acid or side chain protected L-amino acid (1.0 mol) was dissolved in 4M NaOH aqueous solution (250 ml) and dissolved in a minimum amount of dioxane with slow cooling with ice-MeOH (Boc) 0 (
  • a peptide compound having an amino group protected with N-a-t-butoxycarbol was placed in a 300 ml eggplant flask and TFA (or 4M HC1 in dioxane) was dissolved in a fume hood. Immediately, the lid was covered with a calcium salt tube to prevent moisture from entering. After confirming the completion of the reaction by TLC, concentrate and concentrate by adding distilled Et 0 repeatedly until there is no TFA odor (or hydrochloric acid odor).
  • HC1-H-Asp (OBzl) -Gly-Gly-OBzl (1.95 g, 4.20 mmol) was dissolved in DMF, neutralized with NMM (46 2 ⁇ ⁇ , 4.20 mmol), then Boc- Asn-OH (1.024 g , 4.41 mmol), HOBt (1.195 g, 8.8 2 mmol), EDC-HCl (0.845 g, 4.41 mmol) were added and stirred. After concentration, the residue is dissolved in AcOEt and washed with 10% aqueous citrate solution, water, saturated aqueous NaHCO solution, water, and saturated brine in this order.
  • TFA 'H- Asn- Asp (OBzl)-Gly- Gly- OBzl (SEQ ID NO: 16) (1.73 g, 2.64 mmol) was dissolved in DMF, neutralized with DIEA (493 ⁇ 1, 2.90 mmol), then Boc -Asn-OH (0.67 g, 2.90 mmol), HOBt (0.71 g, 5.30 mmol), HBTU (1.10 g, 2.90 mmol) were prepared and stirred in an ice bath for 1.5 hours.
  • the obtained precipitate was dissolved in CHC1 and MeOH, and ether was added to obtain a precipitate.
  • Boc-Pro-OH (6.46 g, 30.0 mmol) is placed in a 300 ml eggplant flask and distilled CHC1 (80 ml).
  • Boc- Asp (OBzl)- ⁇ (0.20 g, 0.61 mmol)
  • HOBt 0.082 g, 0.61 mmol
  • the extract was washed with saturated brine in that order and dried over Na 2 SO 4. Concentrate the filtrate under reduced pressure to remove the oily substance.
  • the liquid was concentrated to obtain an oily substance.
  • the obtained powder was recrystallized from CHC1-hexane to obtain white crystals.
  • SEQ ID NO: 24 (2.30 g, 1.75 mmol) was added, and DMF (20 ml) was melted. After neutralization with NMM (193 ⁇ 1), Boc-Asn-OH (0.45 g, 1.93 mmol), HOBt (0.52 g, 3.85 mmol), EDC-HC1 (0.37 g, 1.93 mmol) were added. Stir for 3 hours at room temperature for 4 hours. After completion of the reaction, the mixture was concentrated, and ion-exchanged water was added to the residue to precipitate a precipitate. After filtration, the glass filter was washed with 10% aqueous citrate solution, water, saturated aqueous NaHCO solution, water, and saturated saline in this order.
  • Boc—Asn—OH (2.16 g, 9.30 mmol) and HOBt (2.51 g, 18.6 mmol) dissolved in F (10 ml) were calorieated.
  • DCC (1.92 g, 9.30 mmol) was dissolved in distilled CHCl (20 ml) and added in small portions.
  • EDC-HC1 (0.230 g, 1.21 mmol) was added with stirring under ice cooling. After completion of the reaction, it was concentrated and dissolved in AcOEt. 10% aqueous citrate solution, water, saturated aqueous NaHCO solution, water, saturated saline
  • Recrystallization was performed with tella to obtain a white precipitate.
  • Recrystallization was performed by gradually adding to obtain a white precipitate.
  • Boc-Glu (OBzl) -OH (33.8 g, 100 mmol) is placed in a 500 ml eggplant flask and distilled CHC1
  • HCl′H-Glu (OBzl) -OTce (4.05 g, 10.0 mmol) was placed in a 300 ml eggplant-shaped flask and dissolved in distilled CHC1 (100 ml). After neutralization with NMM (1.10 ml, 10.0 mmol), Boc— Ser (Bzl) —
  • HCl'H-Ala-Ser (Bzl) -Glu (OBzl) -OTce (1.44 g, 2.20 mmol) was placed in a 500 ml eggplant-shaped flask and dissolved in DMF (80 ml). After neutralizing with NMM (0.242 ml, 2.20 mmol), and adding Boc— Glu (0 Bzl) -OH (0.891 g, 2.64 mmol), HOBt (0.357 g, 2.64 mmol), EDC was stirred under ice-cooling. -Added HC1 (0.506 g, 2.64 mmol). After completion of the reaction, the reaction mixture was concentrated and the residue was dissolved in AcOEt. 10% citrate aqueous solution, water, saturated NaHCO aqueous solution, water, saturated brine
  • Crystallization was performed to obtain white crystals.
  • Crystallization was performed to obtain white crystals.
  • Zinc powder (1.0 g) was added and stirred at room temperature for 1 hour. After completion of the reaction, the mixture was filtered and the filtrate was concentrated. A 10% aqueous citrate solution was added, and the resulting precipitate was washed with ion exchanged water on a glass filter.
  • TFA'H-Asn-Asn-Asp (OBzl) -Gly-Gly-OBzl (SEQ ID NO: 37) (0.25 g, 0.33 mmol) was placed in an eggplant flask and dissolved in DMF (10 ml). Neutralize with NMM (36 ⁇ 1) and Boc— Asp (OBzl) -Phe-Lys (Cl-Z) -Thr (Bzl)-Pro-OH (SEQ ID NO: 36) (0.37 g, 0.37 mmol), HOBt ( 0.09 4 g, 0.69 mmol), EDC-HC1 (0.066 g, 0.37 mmol) was added.
  • the filtrate was concentrated. A 10% aqueous citrate solution was added, and the resulting precipitate was washed with ion-exchanged water on a glass filter.
  • Lys (CZ)-Thr (Bzl)-Pro- Asn- Asn- Asp (OBzl)-Gly- Gly- OBzl synthesis) (SEQ ID NO: 38) TFA 'H-Asp (OBzl)-Phe- Lys ( CZ) -Thr (Bzl) -Pro-Asn- Asn- Asp (OB zl) -Gly-Gly-OBzl (SEQ ID NO: 40) (0.27 g, 0.16 mmol) was added and dissolved in DMF (10 ml). Neutralized with DIEA (27 ⁇ 1, 0.16 mmol). Boc— Asn— Lys (C Z) — Thr (Bzl) — Tyr (Cl -Bzl)
  • Boc-Phe-Tyr Cl-Bzl-Asn- Ser (Bzl) -Glu (OBzl) -OTce
  • HCl-H-Gly-OTce (5.09 g, 20.0 mmol) was dissolved in distilled dichloromethane, neutralized with NMM (2.20 m 1, 20.0 mmol), then Boc- Asp (OBzl) -OH (7.11 g, 22.0 mmol) , DCC (4.54 g, 22.0 mmol), was added and stirred.
  • HC1-H-Asp (OBzl) -Gly-OTce (5.68 g, 12.7 mmol) was dissolved in DMF, neutralized with NMM (1.34 ml, 12.7 mmol), and then Boc- Asn-OH (3.11 g, 14.0 mmol) , HOBt (3.62 g, 28.0 mmol), EDC-HCl (2.57 g, 14.0 mmol) were added and stirred. After concentration, the residue is dissolved in AcOEt, washed in turn with 10% aqueous citrate, water, saturated aqueous NaHCO, water and saturated brine, and with anhydrous Na 2 SO 4.
  • TFA 'H- Asn- Asp (OBzl)-Gly- OTce (1.12 g, 2.00 mmol) was dissolved in DMF, neutralized with NMM (220 ml, 2.00 mmol) and then Boc- Asn-OH (0.51 g, 2.20 mmol), HOBt (0.60 g, 4.4 0 mmol), EDC-HC1 (0.44 g, 2.20 mmol) were added. After completion of the reaction, the mixture was concentrated, and ion-exchanged water was added to the residue to precipitate a precipitate. After filtration, the sample was washed on a glass filter in the order of 10% aqueous citrate, water, saturated aqueous NaHCO, water, and saturated saline.
  • the obtained precipitate was dissolved in DMF, and ether was added to obtain a precipitate.
  • TFA'H-Asn-Asn-Asp (OBzl) -Gly-OTce (SEQ ID NO: 57) (0.64 g, 0.85 mmol) was placed in an eggplant flask and dissolved in DMF. Neutralize with NMM (93 ml), Boc- Asp (OBzl)-Phe- Lys (Cl — Z) — Thr (Bzl) — Pro— OH (SEQ ID NO: 36) (0.94 g, 8.9 mmol), HOBt (0.67 g , 0.50 mmol), EDC-HCl (0.47 g, 2.50 mmol) was stirred.
  • the precipitate was filtered. Saturated NaHCO water, water, 10% citrate water, water
  • Boc-Cys (Acm)-Gly- Gly- Ala- Ser (Bzl)-Glu (OBzl)-Phe- Tyr (Cl-Bzl)-Asn- Ser (Bzl)-Glu (OBzl) by fragment condensation -Asn- Lys (C ⁇ Z)-Thr (Bzl)-Tyr (Cl-Bzl)-Asp (OB
  • Pro- Asn- Asn- Asp (OBzl)-Gly- OTce (SEQ ID NO: 64) (0.59 g, 0.13 mmol) was added and dissolved in DMF. Separately, Boc- Cys (Acm)-Gly- Gly- Ala- Ser ( Bzl) -Glu (OBzl) -OH (SEQ ID NO: 63) (0.157 g, 0.18 mmol), DIEA (77.0 ml, 0.45 mmol), HATU (69.0 mg, 0.18 mmol) were collected. After completion of the reaction, the mixture was concentrated, saturated aqueous NaHCO was added, and the resulting precipitate was filtered. Glass fi

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 以下の(i)~(v)のフラグメントを結合させることによってワクチンとして有用な配列番号1のアミノ酸配列を有する熱帯熱マラリア原虫蛋白質の部分ペプチドを製造する。 (v)Asn-Asn-Asp-Xaa(配列番号2) (iv)Asp-Phe-Lys-Thr-Pro(配列番号3) (iii)Asn-Lys-Thr-Tyr-Asp-Leu(配列番号4) (ii)Phe-Tyr-Asn-Ser-Glu(配列番号5) (i)Xaa-Ala-Ser-Glu(配列番号6) ((i)、(v)において、Xaaは0を含む任意の数のアミノ酸残基を示す)

Description

熱帯熱マラリア原虫のエノラーゼ蛋白質の部分ペプチドの製造方法 技術分野
[0001] 本発明は、マラリア原虫エノラーゼの部分ペプチドの製造方法に関する。本発明は またヒトおよび他の動物との免疫反応を利用したマラリア原虫に対する免疫学的応答 を誘発することができるペプチド、マラリア感染への免疫状態の診断薬、熱帯熱マラリ ァ原虫(Plasmodium falciparum)の増殖を抑える免疫用抗原ペプチドなどの医薬の製 造方法に関する。
背景技術
[0002] (1)マラリアを含めた感染症の現況:
近年まで克服されていたかに見えていた感染症は、人'物の移動、開発による地球 環境変化、社会活動様式の変容などにより大きく様変わりしてきた。例えば、海外旅 行や熱帯雨林での開発に関係する熱帯性疾患、感染症薬の繁用ゃ乱用による薬剤 耐性の出現など感染症を取り巻く状況はむしろ厳しさを増して 、る。
熱帯性の原虫疾患であるマラリアは、感染症の中でも特に対策が遅れており、毎年 、患者 3-5億人と 150-270万人の死者を出している(WHO report 1999)。ヒトに感染 する原虫は 4種類あるが、特に熱帯熱マラリア原虫は重症化と高死亡率をもたらす。 またマラリアは健康問題のみならず、アフリカ諸国での経済活動の停滞と社会不安の 一因ともなつている。
感染者の増加は、熱帯雨林開発や温暖化との関連も指摘され、 International Panel on Climate Change報告(1996 & 1998)によると地球温暖化の場合 2°Cの温度上昇 で 5000-8000万人の増加が予測されている。 日本国内に於いては近年の海外渡航 者の増加により、感染者 (輸入マラリア)は年間 120-150人と増加傾向にある(1980年 代は 50-70人)。
[0003] (2)従来の研究と問題点:
現在、多く用いられている医薬は、特許使用料を含んでいるため高価で発展途上 国での普及を阻んでいる。クロ口キンなど安価な薬もあるが、これまでの無制限な使 用力も非常に薬剤耐性が進んでしまっている。
[0004] マラリア対策は多くの問題を抱えているが、国内外の製薬企業は治療'予防物質の 開発をあまり積極的に行っていない。理由として研究開発が先進国にとって重要な 加齢疾患に片寄っていること、開発途上国向けの製品は市場が小さいこと、などが挙 げられる。このため、既存企業だけでは新たな物質開発が望めない状況にある。そこ で安価で効果的な治療、予防薬、検査材料について製造法を実用化し、社会へ供 給する必要性が出ている。
[0005] 現在のマラリア治療にはベトナム戦争で開発された化合物 (メフ口キン)が多く使用 されている。最新の治療薬は 2000年に米国で認可されたマラロンである力 これも既 存薬の転用である。最新の報告として既知の天然物治療薬 (アルテミシニン)と同様 の作用機序をもつ安価な合成化合物 OZ227が注目されて 、る(非特許文献 1)。
[0006] し力しマラリア原虫殺作用のある薬剤は頭痛、吐き気など副作用の非常に強いもの が多い。そのため予防内服は一般に薦められていない。実際、既存の化合物 (キ- ーネ、クロ口キン)は劇物である。これに対し、ペプチドワクチンはアミノ酸を成分とす るため、目的の予防免疫反応のみを起こし、既存治療物質に見られる強い毒性がな い。
[0007] ペプチドワクチンの欠点は、予防免疫の効果に個人差が予想されることである。し かし、もともと流行地に於ける罹患率の高いマラリアは、発症リスクを軽減するだけで も、十分に患者と死亡者の減少を期待できる。
[0008] 本発明者らは長年にわたり、流行地での疫学研究と実験室レベルでの分子論的解 析を組み合わせたペプチドワクチン開発を行ってきた。すなわち、ヒトに感染した熱 帯熱マラリア原虫が産生する解糖系酵素、エノラーゼが熱帯熱マラリアへの防御免 疫分子として働いていることを見出し、これを利用したワクチン開発を行ってきた。
[0009] 例えば配列番号 12で示されるマラリア原虫エノラーゼの一部分のアミノ酸配列を選 択した。
[0010] この配列を含んだペプチドィ匕合物を少量合成し (数ミリグラム)、人工抗原として用 いることでマラリア原虫に対する免疫学的応答を誘発できること、マラリア感染に対す る免疫状態の診断材料 (免疫検査)、マラリア原虫の増殖を抑える免疫用抗原を誘導 できること、などを見出した。この研究結果はその他のマラリア原虫エノラーゼの一部 分のアミノ酸配列を用いた合成ペプチドの研究結果と合わせて特許文献 1に報告さ れている。
[0011] 従来技術ではペプチドワクチンは一般に固相合成法または遺伝子組み替えを用い て製造される。これはどのような配列でもあまり経験を必要とせずに製造することが可 能である。しかし固相合成法では一般に長鎖になるほど合成収率が低ぐ精製後に 残る最終生成物の収量は少ない。また遺伝子組み換えでも、一般に最終生成物の 得られる量は少ない。
[0012] 実際に配列番号 12で示されるマラリア原虫エノラーゼの部分アミノ酸配列を持つぺ プチドについて、実験室レベルで固相合成法により合成した場合、数百マイクロダラ ム〜数ミリグラムを得るにすぎない。また遺伝子組み換え法により合成した場合、実験 室レベルでは比較的大きな 2リットル容器で大腸菌を培養した場合でも、 1〜2ミリダラ ム(ワクチンとして約 1人分)を得るにすぎない。また工業的に世界最大級の 1000リツ トル容器で行っても、ようやく 500〜1000ミリグラム(ワクチンとして約 500人分)を得 るにすぎない。
[0013] また従来技術でフラグメント縮合法による配列番号 12のペプチドの合成を計画した 場合、グルタミン酸残基を末端に持つフラグメント合成が最大の問題である。なぜなら 、実施例で示した合成中間体 N- a -t-ブチルォキシカルボ-ル- L-グルタミン酸- γ - ベンジルエステル- α -トリクロ口ェチルエステル、およびその他に選択可能な合成中 間体、 N- a -保護- L-グルタミン酸- γ -ベンジルエステル- α -保護エステルを合成す るためには N- a -保護- L-グルタミン酸- γ -ベンジルエステルへのトリクロロェチルェ ステル基またはその他に選択可能なエステル基の導入が必要であるが、非特許文献 2によると、 N- a -保護- L-グルタミン酸- γ -ベンジルエステルの α位カルボン酸の保 護を目的としたエステルイ匕はラセミ化を起こしやすぐペプチド合成に用いることは不 適であると容易に考えつく。し力も、その後に合成が試された例はない。
[0014] そのため、報告事例に基づきラセミ化を考慮して、従来技術でフラグメント縮合法に よる配列番号 12のペプチドの合成を実施した場合、用いる一つのフラグメントが 14 残基以上になってしまう。一般に最大でも 5〜7残基の大きさのフラグメントに分割す るのは合成時と精製時の収率低下を防ぐためである。従って従来技術によれば、フラ グメント縮合による大規模な合成は効率よく行うことができない。
特許文献 1:特開 2002-371098
非特許文献 1: Nature 2004年 430卷 900-903
非特許文献 2 Journal of Organic Chemistry 1982年 47卷 1962- 1965
発明の開示
[0015] 本発明は、ヒトおよび他の動物との免疫反応を利用した、熱帯熱マラリア原虫に対 する免疫学的応答を誘発するのに必要なペプチドの大規模合成に適した方法を提 供すること〖こある。本発明は特に、マラリア感染への免疫状態の診断材料、熱帯熱マ ラリア原虫(Plasmodium falciparum)の増殖を抑える免疫用抗原配列の大規模合成に 適した方法を提供することも課題とする。
[0016] 本発明者等は、フラグメント縮合法と呼ばれる均一反応系を用いたィ匕学合成法に 着目し鋭意検討した結果、 5つのセグメントに分割して合成することを計画し、その際 にグルタミン酸残基を末端に持つフラグメント、 (II) Phe-Tyr(R )- Asn(R )- Ser(R )- Glu(
3 4 5
R ) (配列番号 10)および(I) Xaa- Ala- Ser(R )- Glu(R ) (配列番号 11)の合成につ!/、て
6 1 2
検討を行うことにより、 5つのフラグメントの合成について成功した。
[0017] フラグメントのうち、式 (I)と式 (II)のペプチドの合成には従来不可能であった合成 中間体、 N- a -保護- L-グルタミン酸- γ -ベンジルエステル- α -保護エステルが出 発原料となる。この合成条件を詳細に検討したところ、驚くべきことに我々はラセミィ匕 して 、な 、L体生成物を効率よく純粋に得ることに成功した。
[0018] 続いて 5つのフラグメントを逐次的に縮合する力、又は部分的に更に大きなセグメン トにした後で縮合することを計画し、その際に用いる縮合剤について検討を行うことに より、 5つのフラグメントを 1本の保護ペプチド鎖とすることに成功した。
[0019] これらの手段、即ち、 N- a -保護- L-グルタミン酸- γ -ベンジルエステル- α -保護 エステルの合成、 5つのセグメントの合成、セグメントを縮合し 1本の保護ペプチド鎖と すること、を合わせて実施することにより目的とするマラリア原虫エノラーゼの部分配 列を持つペプチドまたはその類似体の合成を大規模に行う方法を見出し、本発明を 完成したものである。この場合大規模とは、遺伝子組換法に比較し 100倍以上の規模 で生産できることを指している。即ち、実験室レベルの小スケールで行っても、約 100 〜500ミリグラム (ワクチンとして約 50〜250人分)を一度に得ることができる。実験室 規模の合成をわず力^〜 4回行うだけで、工業的に世界最大級の遺伝子組換体の生 産設備で行うのと同じ規模のペプチドを得ることが可能である。さらに工業スケール で生産が実施されれば、年間の世界的需要に匹敵する数百万人分のペプチド供給 が期待される。
すなわち、本発明は以下のとおりである。
(1)配列番号 1のペプチドの製造方法であって、該ペプチドを、以下の(i)〜(v)のフ ラグメントを結合させることによって製造することを特徴とする方法。
(V) Asn-Asn-Asp-Xaa (配列番号 2)
(iv) Asp-Phe-Lys-Thr-Pro (配列番号 3)
(iii) Asn-Lys-Thr-Tyr-Asp-Leu (配列番号 4)
(ii) Phe-Tyr-Asn-Ser-Glu (配列番号 5)
(1) Xaa-Ala-Ser-Glu (配列番号 6)
( (i)、(V)において、 Xaaは 0、 1または複数の任意のアミノ酸残基を示す)
(2)以下の修飾ペプチドを結合させ、脱保護することにより配列番号 1のペプチドを 製造する、(1)の製造方法。
(V)Asn(R )— Asn(R )— Asp(R )— Xaa
15 16 17
(配列番号 7 : R と R はァスパラギン残基の側鎖保護基 ((C H ) C-)または無保護で
15 16 6 5 3
あり、 R はァスパラギン酸残基の側鎖保護基 (C H CH - 0-又は (CH ) C-0-)である
17 6 5 2 3 3
o )
(iV)Asp(R )-Phe-Lys(R )- Thr(R )- Pro
12 13 14
(配列番号 8 : R はァスパラギン酸残基の側鎖保護基 (C H CH -又は (CH ) C-)であ
12 6 5 2 3 3 り、 R はリジン残基の側鎖保護基((CH ) C-0-CO-, C H CH - 0- CO-, 2- chlorobe
13 3 3 6 5 2
nzyloxycarbonyl-又は 9- fluorenylmethoxvcarbonyl- )であり、 R はスレオニン残基の
14
側鎖保護基 (C H CH -又は (CH ) C-)である。 )
6 5 2 3 3
(III)Asn(R )— Lys(R )— Thr(R )— Tyr(R )— Asp(R )— Leu
7 8 9 10 11
(配列番号 9 : Rはァスパラギン残基の側鎖保護基 ((C H ) C-)または無保護であり、 Rはリジン残基の側鎖保護基((CH ) C-0-CO-, C H CH - 0- CO- , 2- chlorobenzyl
8 3 3 6 5 2
oxvcarbony卜又は 9- fluorenvlmethoxycarbony卜)であり、 Rはスレオ-ン残基の側鎖
9
保護基 (C H CH -又は (CH ) C-)であり、 R はチロシン残基の側鎖保護基 (C H -C
6 5 2 3 3 10 6 5
H -又は CI -C H -CH -又は (CH ) C-)であり、 R はァスパラギン酸残基の側鎖保護
2 2 6 3 2 3 3 11
基(C H CH -又は (CH ) C-)である。 )
6 5 2 3 3
(II) Phe-Tyr(R )— Asn(R )— Ser(R )— Glu(R )
3 4 5 6
(配列番号 10 : Rはチロシン残基の側鎖保護基 (C H -CH -, C1 - C H -CH -又は (C
3 6 5 2 2 6 3 2
H ) C-)であり、 Rはァスパラギン残基の側鎖保護基 ((C H ) C-)または無保護であり
3 3 4 6 5 3
、 Rはセリン残基の側鎖保護基 (C H CH -又は (CH ) C-)であり、 Rはァスパラギン
5 6 5 2 3 3 6
酸残基の側鎖保護基 (C H CH - 0-又は (CH ) C- 0- )である。 )
6 5 2 3 3
(I) Xaa-Ala-Ser(R )— Glu(R )
1 2
(配列番号 11 : Rはセリン残基の側鎖保護基 (C H CH -又は (CH ) C-)であり、 Rは
1 6 5 2 3 3 2 グルタミン酸残基の側鎖保護基 (C H CH - 0-又は (CH ) C- 0- )である。 )
6 5 2 3 3
(3) 1—ェチル 3— (3 ジメチルァミノプロピル)一カルボジイミドと 1—ヒドロキシべ ンゾトリアゾールの組合わせ、 2- (1H-ベンゾトリアゾール -1-ィル) -1,1, 3,3-テトラメチ ルゥ口-ゥムへキサフルオロフォスフェートと 1ーヒドロキシベンゾトリアゾールの組合 わせ、または 0-(7-ァザべンゾトリアゾール -1-ィル) -1,1, 3,3-テトラメチルゥ口-ゥム へキサフルオロフォスフェートの何れかを用いて前記ペプチドを縮合させることを特 徴とする請求項 2に記載の製造方法。
(4) (1)〜(3)のいずれかの方法によって配列番号 1のペプチドを製造し、さらに、該 ペプチドの N末端または C末端の一方または両方に糖鎖配列、ペプチド、タンパク質 、多糖、金属錯体、高分子担体、ゲル、フィルム、ラテックス粒子、金属微粒子または プラスチックプレートを結合させる、末端が修飾された配列番号 1のペプチドの製造 方法。
(5) (1)〜(3)のいずれかの方法によって配列番号 1のペプチドを製造する工程、及 び該ペプチドを医薬的に許容可能な担体と配合する工程を含む、マラリア原虫感染 症の予防もしくは治療のための医薬、またはマラリア原虫感染症の診断薬の製造方 法。 (6) (4)の方法によって末端が修飾された配列番号 1のペプチドを製造する工程、及 び該ペプチドを医薬的に許容可能な担体と配合する工程を含む、マラリア原虫感染 症の予防もしくは治療のための医薬、またはマラリア原虫感染症の診断薬の製造方 法。
(7)実質的に L体のみからなる N a -t-ブトキシカルボ-ル-グルタミン酸- γ -ベンジル - a -トリクロロェチノレエステノレ。
(8) (7)の N a -t-ブトキシカルボ-ル-グルタミン酸- γ -ベンジル- a -トリクロ口ェチル エステルを用いることを特徴とする、ペプチドの製造方法。
図面の簡単な説明
[図 1]図 1は本発明の一実施態様である、 H- Glu- Glu- Glu- Glu- Ala- Ser- Glu- Phe- T yr— Asn— Ser— Glu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (配列番号 13)の合成手順を示すフローチャートである。
[図 2]図 2は本発明の一実施態様である、 H- Glu- Glu- Glu- Glu- Ala- Ser- Glu- Phe- T yr— Asn— Ser— Glu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (配列番号 13)について、合成中間体となる N- a -t-ブチルォキシ力 ルポ-ル- L-グルタミン酸- γ -ベンジルエステル-ひ -トリクロ口ェチルエステルを CuK α線による X線回折法で測定した反射データを解析することで得られた結晶構造で ある。
[図 3]図 3は本発明の一実施態様である、 H- Glu- Glu- Glu- Glu- Ala- Ser- Glu- Phe- T yr— Asn— Ser— Glu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (配列番号 13)について、合成生成物を MALDI-TOF法で質量分析 したスペクトルデータ(質量範囲 m/e 500-4500)である。
[図 4]図 4は本発明の一実施態様である、 H- Glu- Glu- Glu- Glu- Ala- Ser- Glu- Phe- T yr— Asn— Ser— Glu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (配列番号 13)について、合成生成物を MALDI-TOF法で質量分析 したスペクトルデータ(質量範囲 m/e 3180-3280)である。
[図 5]図 5は本発明の一実施態様である、 H- Cys(Acm)- Gly- Gly- Ala- Ser- Glu- Phe- Tyr— Asn— Ser— (jlu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— A sp-Gly-OH (配列番号 48)の合成手順を示すフローチャートである。
[図 6]図 6は本発明の一実施態様である、 H- Cys(Acm)- Gly- Gly- Ala- Ser- Glu- Phe- Tyr— Asn— Ser— (jlu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— A sp-Gly-OH (配列番号 48)について、合成生成物を ESI法で質量分析 (質量範囲 m/e 860-1020および m/e 1440-1530)したスペクトルデータである。
[図 7]図 7は本発明の一実施態様である、 H- Glu- Glu- Glu- Glu- Ala- Ser- Glu- Phe- T yr— Asn— Ser— Glu— Asn— Lys— Thr— Tyr— Asp— Leu— Asp— Phe— Lys— Thr— Pro— Asn— Asn— As p-Gly-Gly-OH (配列番号 13)について、合成生成物と様々な熱帯熱マラリア患者血 清(1〜7)との蛍光 ELISA法による抗体価 (RFU値)測定を示したグラフである。比較と して非感染者の血清 (8〜12)によるデータを示す。
[図 8]本発明のペプチド化合物が複数個連結された物質の構造を示す図。 AD22は 配列番号 1のペプチド、又は配列番号 1のァミノ末端とカルボキシ末端の何れかまた は両方に高次構造を誘導する化合物が導入された末端修飾ペプチドを示す。なお、 点線はペプチド化合物が繰り返して直線状に連結されていることを表す。
発明を実施するための最良の形態
[0022] 本発明にお 、ては、以下の (i)〜 (V)のフラグメントを結合させることによってアミノ酸 目 ti歹 UXaa Ala Ser uiu Phe Tyr Asn ber Glu Asn Lys Thr Tyr Asp Leu Asp Phe Lys T hr Pro Asn Asn Asp Xaa (配列番号 1)のペプチドを製造する。
(v) Xaa-Asn-Asn-Asp (配列番号 2)
(iv)Asp-Phe-Thr-Pro (配列番号 3)
(iii) Asn— Lys— Thr— Tyr— Asp— Leu (配列番号 4)
(ii) Phe- Tyr- Asn- Ser- Glu (配列番号 5)
(i)Ala- Ser-Glu- Xaa (配列番号 6)
(i)、(v)において、 Xaaは 0、 1または複数の任意のアミノ酸残基を示し、その数は配 列番号 1のペプチドがマラリア原虫に対する免疫学的応答を誘発できる限り特に制限 されないが、 0〜20個が好ましい。なお、 Xaaにはさらに担体が付加されていてもよい
[0023] (i)〜 (V)のペプチドはそれぞれ通常のペプチド合成方法に従って製造することが でき、好ましくは液相反応により製造することができる。
ただし、 (ii)のペプチド及び (i)のペプチド (Xaaが 0の場合)は C末端が L-グルタミン 酸であるため、従来は合成が困難であった N- a -保護- L-グルタミン酸- y -ベンジル エステル- a -保護エステル、特に本発明者らが合成に成功した N a -t-ブトキシカル ボ-ル -L-グルタミン酸- γ -ベンジル- a -トリクロ口ェチルエステルを反応開始ぺプ チドに用いて合成することが好ま 、。
[0024] 配列番号 1のペプチドを製造するためには、上記 (0〜 (V)のペプチドを、配列番号 1のペプチドにおける N末端側または C末端側のフラグメント、すなわち、(i)または (V) のフラグメントから順番に一フラグメントずつ結合させてもよいが、例えば、(i)と (ii)、 ( iii)と (iv)と (V)をそれぞれ別々に結合させ、得られた断片をつなぎ合わせると 、うよう にしてもよい。
[0025] ペプチドフラグメントの結合は、フラグメント同士の結合反応に関与しない側の末端 、および各フラグメントの反応性側鎖を保護した状態で行うことが好ましい。例えば、( ii) Asp-Phe-Thr-Pro (配列番号 3)と(iii) Asn- Lys- Thr- Tyr- Asp- Leu (配列番号 4)を 結合させるときは、 (ii)のァミノ末端の Asp及び (iii)のカルボキシ末端の Leuおよびこ れらのペプチドに存在する反応性側鎖を保護して行うことが好ましい。
ァミノ末端の保護基としては、例えば、 (CH ) C-0-CO-, C H CH -0-CO-, 9- fluor
3 3 6 5 2
enylmethoxycarbony卜が挙げられ、カルボキシル末端の保護基としては、例えば、 -0 -CH -CC1 , -0-CH -CO-C H , - 0- CH - C Hなどが挙げられる。
2 3 2 6 5 2 6 5
[0026] 側鎖の保護基は各アミノ酸によって適切に選択されるが、側鎖が保護された上記 (i )〜 (V)のフラグメントとしては、以下のものが挙げられる。
(V) Asn(R )-Asn(R )- Asp(R )- Xaa (配列番号 7)
15 16 17
R と R はァスパラギン残基の側鎖保護基 (例えば (C H ) C-)または無保護、 R はァ
15 16 6 5 3 17 スパラギン酸残基の側鎖保護基 (例えば C H CH - 0-又は (CH ) C- 0- )を示す。
6 5 2 3 3
[0027] (iV) Asp(R )- Phe- Lys(R )- Thr(R )- Pro (配列番号 8)
12 13 14
R はァスパラギン酸残基の側鎖保護基 (例えば C H CH -又は (CH ) C -)、 R はリジ
12 6 5 2 3 3 13 ン残基の側鎖保護基 (CH ) C-0-CO-, C H CH - O- CO-, 2-chlorobenzyloxycarbon
3 3 6 5 2
y卜又は 9- fluorenylmethoxycarbony卜)である。 R はスレオニン残基の側鎖保護基(例 えば C H CH -又は (CH ) C-)である。
6 5 2 3 3
[0028] (III)Asn(R )- Lys(R )- Thr(R )- Tyr(R )- Asp(R )- Leu (配列番号 9)
7 8 9 10 11
Rはァスパラギン残基の側鎖保護基 (例えば (C H ) C-)または無保護、 Rはリジン残
7 6 5 3 8 基の側鎖保護基(例えば (CH ) C-0-CO-, C H CH -Ο-CO-, 2-chlorobenzyloxyca
3 3 6 5 2
rbony卜又は 9- fluorenylmethoxycarbony卜)、 Rはスレオニン残基の側鎖保護基(例え
9
ば C H CH -又は (CH ) C -)、 R はチロシン残基の側鎖保護基 (例えば C H -CH -又
6 5 2 3 3 10 6 5 2 は CI -C H -CH -又は (CH ) C -)、 R はァスパラギン酸残基の側鎖保護基 (例えば C
2 6 3 2 3 3 11
H CH -又は (CH ) C-)である。
6 5 2 3 3
[0029] (II) Phe-Tyr(R )- Asn(R )- Ser(R )- Glu(R ) (配列番号 10)
3 4 5 6
Rはチロシン残基の側鎖保護基 (例えば C H -CH -, C1 - C H -CH -又は (CH ) C- )
3 6 5 2 2 6 3 2 3 3
、 Rはァスパラギン残基の側鎖保護基 (例えば (C H ) C-)または無保護、 Rはセリン
4 6 5 3 5 残基の側鎖保護基 (例えば C H CH -又は (CH ) C -)、 Rはァスパラギン酸残基の側
6 5 2 3 3 6
鎖保護基 (例えば C H CH - 0-又は (CH ) C- 0- )である。
6 5 2 3 3
[0030] (i) Xaa-Ala-Ser(R )- Glu(R ) (配列番号 11)
1 2
Rはセリン残基の側鎖保護基 (例えば C H CH -又は (CH ) C -)、 Rはグルタミン酸残
1 6 5 2 3 3 2
基の側鎖保護基 (例えば C H CH - 0-又は (CH ) C- 0- )である。
6 5 2 3 3
[0031] 各フラグメントの結合は通常のペプチドの縮合反応にしたがって行うことができるが 、縮合剤を用いて行うことが好ましい。縮合剤としては、 1—ェチル 3— (3 ジメチ ルァミノプロピル)一カルボジイミドと 1—ヒドロキシベンゾトリアゾールの組合わせ、 2- ( 1H-ベンゾトリアゾール -1-ィル) -1,1, 3, 3-テトラメチルゥ口-ゥムへキサフルオロフォ スフェートと 1 ヒドロキシベンゾトリアゾールの組合わせ、または 0- (7-ァザベンゾトリ ァゾール -1-ィル) -1,1, 3, 3-テトラメチルゥ口-ゥムへキサフルオロフォスフェート単独 を用いることができる。縮合反応は収率をより向上させるという観点からは液相で行う ことが好ましい。
[0032] 上記のようにして結合させたペプチドを脱保護することによって配列番号 1のぺプチ ドを得ることができる。脱保護は通常の方法によって行うことができる。
[0033] 免疫学的応答を引き起こし易くするため、本発明のペプチドには、マラリア原虫の エノラーゼの高次構造を安定ィ匕しうるような設計と製造がなされることが望まし 、。な お、本発明にお!/ヽて「免疫学的応答」とは細胞性免疫学的応答と体液性免疫学的応 答の両方を含む概念である。このうち、細胞性免疫学的応答とは、例えばマクロファ ージ、ナチュラルキラー細胞 (NK細胞)、好酸球、 T細胞などにより引き起こされる免 疫のことをいい、熱帯熱マラリア原虫に対する細胞性免疫学的応答としては、キラー T細胞が関与するものが知られている。また、体液性免疫学的応答とはとしては、熱 帯熱マラリア原虫由来のタンパク質、糖鎖などに対して特異的に結合することができ る宿主由来の抗体により引き起こされるものが知られている。本発明により製造される 抗原ペプチドからは体液性免疫学的応答として抗体を誘導させることが望ましい。
[0034] より具体的には、配列番号 1のァミノ末端とカルボキシ末端の何れかまたは両方に 高次構造を誘導する化合物を導入して末端修飾ペプチドを製造することが好ましい 。このような高次構造はマクロファージゃ NK細胞、 T細胞などの免疫系細胞、あるい は抗体により認識されやす!/、部分である。
高次構造を誘導する化合物としては、糖鎖配列、ペプチド配列、タンパク質、多糖 、金属錯体、または高分子担体、ゲル、フィルム、ラテックス粒子、金属微粒子、ブラ スチックプレートなどを使用することができる。
これらは、修飾物質の種類に応じた結合様式、例えば、共有結合、イオン結合、配 位結合などでアミノ末端とカルボキシ末端の何れかまたは両方に結合させることがで きる。
より具体的には、フィルムを結合させたペプチドは、スピンキャスト法で調製すること ができ、得られたフィルム上に試験試料をプロットすることにより試験試料中の抗体の 存在を検出することができる。ラテックス粒子に結合したペプチドは、乳化重合法、懸 濁重合法に従って調製することができ、得られたラテックス粒子は凝集反応に使用す ることができる。プラスチックプレート上またはマイクロビーズ上への結合は、ペプチド をプラスチックプレートのゥヱル中に適量を滴下することにより、またはペプチドの溶 液中にマイクロビーズを浸すことにより行うことができる。
[0035] さらに、本発明のペプチド化合物の製造方法を用いることで、 1分子中に複数個の ペプチド配列を含有する物質を作製することもできる。複数個のペプチド化合物を含 有させるためにはペプチド化合物をリンカ一物質により連結させて 、てもよ 、。このリ ンカー物質は直線状 (図 6)または分岐鎖状にペプチドィ匕合物を並べて高分子量ィ匕 するために利用される。連結させる個数は特に制限されないが、 4〜8個が好ましい。
AD22は配列番号 1のペプチド、又は配列番号 1のァミノ末端とカルボキシ末端の何 れカまたは両方に高次構造を誘導する化合物が導入された末端修飾ペプチドであ る。なお、点線はペプチドィ匕合物が繰り返して直線状に連結されていることを表す。 ここで使用することができるリンカ一物質には、共有結合、イオン結合、配位結合で 結ばれたアミノ酸配列、糖鎖配列、ジカルボン酸化合物、ジァミン化合物、金属錯体 、など力も選ばれる 1種類または幾つかの組み合わせで構成することができる力 こ れらのものには限定されない。また、上記リンカ一は配列番号 1の Xaa部分のぺプチ ド、またはこれに結合される上記の高次構造を誘導する化合物より構成されて!ヽても よい。
キヤリヤー分子もしくは高分子担体の一例として、破傷風トキソイド、オボアルブミン 、血清アルブミン、へモシァニン等のような天然タンパク質などを挙げることもできる。
[0036] 本発明の製造方法によって得られるペプチドもしくは末端修飾ペプチドまたはこれ らが複数個連結された化合物を医薬的に許容可能な担体と配合することによって、 マラリア原虫感染症の予防又は治療のための医薬組成物を製造することもできる。こ こで、「医薬的に許容可能な担体」とは、例えば、免疫賦活剤、希釈剤、安定剤、保 存剤、緩衝剤等が挙げられる。
なお、マラリア原虫感染症の予防又は治療のための医薬とは、感染予防のための ワクチン、既に感染している患者においてマラリア原虫抗原に対する免疫を活性化さ せるための治療用のワクチンなどが挙げられる。また、マラリア原虫感染症の診断試 薬としては、マラリア原虫抗原に対する抗体の存在を調べるための診断薬などが挙 げられる。
[0037] なお、本発明の製造方法と同様にして、配列番号 1のペプチドの類似体を製造する こともできる。ここで、「ペプチドの類似体」とは、配列番号 1のペプチドを構成するアミ ノ酸が置換、欠失および/また挿入することにより生成されるペプチドであって、免疫 学的応答に関して本発明のペプチドと同様の活性を有するペプチドのことをいう。置 換、欠失および/また挿入されるアミノ酸の個数は特に制限されないが、 1〜5個が好 ましぐ 1〜2個がより好ましい。
類似配列体の利用方法として、化学合成時に於ける溶解性'結晶性、免疫反応に 使用する際の溶解性、免疫学的応答をより効果的にすること、が考えられるが、これ らに限定されるものではない。類似配列体を用いることによって、同様に医薬や診断 薬を製造することもできる。
[0038] 本発明はまた、配列番号 1のペプチドの合成に用いた、実質的に L体のみ力 なる N a -t-ブトキシカルボニル-グルタミン酸- γ -ベンジル- a -トリクロ口ェチルエステル( Boc-Glu(OBzl)-OTce)に関する。従来、純粋な L体の Boc- Glu(OBzl)- OTceは、ラセ ミ化の問題により合成が困難であると考えられていた (Journal of Organic Chemistry 1982年 47卷 1962-1965、非特許文献 2)。これに対し、本発明者は Ν α -t-ブトキシカ ルポ-ル- L-グルタミン酸- γ -ベンジルエステルとトリクロ口エチルアルコールを、反 応促進触媒としての DMAPのモル比を従来の 0.5等量より大幅に減じて 0.1等量のみ 用いて、 DCCにより縮合反応させることによって実質的に L体のみ力 なる Boc-Glu( OBzl)-OTceを得ることができることを明らかにした。この L体の Boc-Glu(OBzl)-OTce は、配列番号 1のペプチド以外にも、広くグルタミン酸を含むペプチドの合成に用い ることができる。なお、「実質的に L体のみ力もなる」とは、 95%以上、好ましくは 98%以 上、より好ましくは 99%以上、特に好ましくは 100% L体を含むことを意味する。
実施例
[0039] 以下、実施例を挙げて本発明をより具体的に説明する。なお、本発明は以下の実 施例に限定されるものではない。
H— Glu— Glu— Glu— Gm— Ala— Ser— Glu— Phe— Tyr— Asn— ¾er— (jlu— Asn— Lys— Thr— Tyr— asp— Leu- Asp- Phe- Lys- Thr- Pro- Asn- Asn- Asp- Gly- Gly- OH (配列番号 13)
の合成手順を図 1に、および合成の詳細を実施例 1〜10に示す。
更に、
H-Cys-uly-uly-Ala-Ser-Glu-Phe-Tyr-Asn-Ser-Glu-Asn-Lys-Thr-Tyr-asp-Leu- Asp- Phe- Lys- Thr- Pro- Asn- Asn- Asp- Gly- Gly- OH (配列番号 49)
の合成手順を図 5に、および合成の詳細を実施例 11〜 17に示す。
し力 以下の具体例は本発明を限定するものではなぐ例えば保護基や縮合剤を 他の慣用のものと置換するなど、適宜変更できることは勿論である。
[0040] なお、以下の実施例では次のような略号を使用した。
(アミノ酸誘導体)
p-Tos-OH- H-Gly-OBzl:グリシンベンジルエステルパラトルエンスルホン酸塩 Boc-Gly-OH: N a -t-ブトキシカルボニル-グリシン
Boc-Ala-OH: N a -t-ブトキシカルボニル- L-ァラニン
Boc-Cys(Acm)-OH: N a -t-ブトキシカルボ-ル- S-ァセタミドメチル- L-システィン
Boc- Ser(Bzl)- OH: N a -t-ブトキシカルボ-ル- 0-ベンジル- L-セリン
Boc- Thr(Bzl)- OH: N a -t-ブトキシカルボニル- 0-ベンジノレ- L-スレオニン
Boc-Phe-OH: N a -t-ブトキシカルボニル- L-フエ二ルァラニン
Boc-Tyr(Cl -Bzl)- OH : N α -t-ブトキシカルボ-ル- 0-2,6-ジクロロベンジル- L-チロ
2
シン
Boc-Asn-OH: N a -t-ブトキシカルボニル- L-ァスパラギン
Boc-Asp(OBzl)-OH : N a -t-ブトキシカルボニル- L-ァスパラギン酸- β -ベンジルェ ステル
Boc- Glu(OBzl)- ΟΗ: N a -t-ブトキシカルボ-ル- L-グルタミン酸- γ -ベンジルエステ ル
Boc- Lys(C卜 Ζ)- ΟΗ : Ν α - 1-ブトキシカルボ-ル- Ν ε -2-クロルべンジルォキシカル ボニノレ- L-リジン
HC H- Gly-OTce :グリシントリクロ口ェチルエステル塩酸塩
HCl' H- Leu-OTce : L-ロイシントリクロ口ェチルエステル塩酸塩
HCl' H- Pro- OTce : L-プロリントリクロ口ェチルエステル塩酸塩
HC1 · H-Glu(OBzl)-OTce: L-グルタミン酸- γ -ベンジルエステル-ひ -トリクロ口ェチル エステル塩酸塩
[0041] (アミノ酸の主鎖および側鎖保護基)
Acm :ァセタミドメチル(CH CO-NH-CH -)
3 2
Boc: tert-ブトキシカルボ-ル(t- Bu-〇- CO- )
OTce :トリクロ口ェチル(- CH - CC1 ) Bzl:ベンジル(- CH - C H )
2 6 5
OBzl :ベンジル(— O— CH— C H )
2 6 5
C卜 Z : 2-クロ口べンジルォキシカルボ-ル(C H C1-CH - 0- CO-)
6 4 2
CI - Bzl: 2,6-ジクロロべンジル(- CH -C H C1 )
2 2 6 3 2
[0042] (ペプチド合成用試薬)
DCC: Ν,Ν'-ジシクロ口へキシルカルボジイミド
HOBt: 1-ヒドロキシベンゾトリアゾール
HATU : 0-(7-ァザべンゾトリアゾール - 1-ィル) - 1,1,3,3-テトラメチルゥロニゥムへキサ フノレ才ロフォスフェート
DIEA: Ν,Ν-ジイソプロピルェチルァミン
HBTU: 2- (1H-ベンゾトリアゾール -1-ィル) - 1,1,3,3-テトラメチルゥロニゥムへキサフ ノレ才ロフォスフェート
TFA:トリフルォロ酢酸
TFMSA:トリフルォロメタンスルホン酸
(Boc) 0 :ジ -t-ブチルカルボネート
2
N : N-メチルモルフォリン
EDC · HC1: 1-ェチル -3-(3 -ジメチルァミノプロピル) -カルボジイミド塩酸塩
DMAP: Ν,Ν-ジメチルァミノピリジン
p-Tos-OH:パラトルエンスルホン酸
[0043] (溶媒)
THF:テトラヒドロフラン
CHC1:クロロホルム
3
CDC1:重水素化クロ口ホルム
3
AcOEt :酢酸ェチル
D F: N,N-ジメチルホルムアミド
DMSO-d:重水素化ジメチルスルホキシド
6
MeOH :メタノーノレ
Et 0:ジェチルエーテル [0044] [合成手順 1: Boc-L-アミノ酸の合成]
L-アミノ酸または側鎖を保護した L-アミノ酸(1.0 mol)を 4M NaOH水溶液 (250 ml) に溶かし、氷- MeOHで徐々に冷却しながら最小量のジォキサンに溶かした (Boc) 0 (
2
240.0 g, 1.1 mol)を 30分かけて徐々〖こカ卩えた。氷浴で 1時間、室温で 1時間半攪拌し た。析出した NaHCOをろ別した後、 pH3.0にして EtOAcで抽出する。抽出した EtOAc
3
溶液は 10%クェン酸水溶液で洗浄の後、 Na SOで乾燥させた。ろ過後ろ液を減圧濃
2 4
縮し、残渣をへキサンで結晶化させた。その後、 AcOEt-へキサンで再結晶を行い、 B OC- L-アミノ酸を得た。
[0045] [合成手順 2 :アミノ基末端の脱保護反応、脱 Boc化合物の合成]
アミノ基を N- a -t-ブトキシカルボ-ル保護したペプチド化合物を 300 mlナスフラスコ に入れドラフト内で TFA (または 4M HC1のジォキサン溶液)をカ卩ぇ溶解させた。直ち に塩ィ匕カルシウム管で蓋をし、水分の混入を防いだ。 TLCにより反応の終了を確認 後、濃縮し TFA臭(または塩酸臭)がなくなるまで繰り返し蒸留 Et 0を加えて濃縮する
2
と最終的に TFA塩 (または塩酸塩)の白色粉末を得る。収率は、ほぼ定量的である。
[0046] [実施例 1]
(1) Boc- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成(配列番号 14)
(la : Boc- Gly- Gly- OBzlの合成)
p- Tos- ΟΗ · Η- Gly- OBzl (5.13 g, 15.2 mmol)を蒸留ジクロロメタンに溶解し、 Boc- G ly-OH (2.93 g, 16.7 mmol), DCC (3.45 g, 16.7 mmol)をカ卩え、氷浴で一時間、室温 で一晩撹拌した。 DCUreaをろ過後、ろ液をエバポレーターで濃縮した。残さを AcOEt に溶かし、 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗
3
浄し、 Na SOで乾燥させた。濃縮後、へキサンで結晶化させた。得られた粗結晶を Ac
2 4
OEt-へキサンで再結晶を行った。
収量 4.56 g (93%).
1H-NMR (CDC1 , 300 MHz) : 7.35 (5H,— Bzl); 6.58, 5.09(2H, NH), 5.19 (2H, Bzl— C
3
H -); 4.10, 3.84 (4H, a CH); 1.47 (9H, Boc t— Bu— ).
2
[0047] (lb : Boc- Asp(OBzl)- Gly- Gly- OBzlの合成)
HCl- H-Gly-Gly-OBzl (3.15 g, 12.17 mmol)を蒸留ジクロロメタンに溶解し、 NMM (1.3 39 ml, 12.17 mmol)で中和後、 Boc- Asp(OBzl)- OH (4.30 g, 13.3 mmol), DCC (2.74 g , 13.3 mmol), HOBt (1.80 g, 13.3 mmol)をカロえて撹拌した。
DCUreaをろ取後、ろ液をエバポレーターで濃縮した。残渣を AcOEtに溶かし、 10% クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄し、 Na SO
3 2 4 で乾燥させた。濃縮後、得られたオイル状物質を真空ポンプで乾燥させた。
収量 5.53 g (86%)、 [ α ] 20 = 7.9° (c 0.1 , MeOH).
D
JH-NMR (CDC1 , 300 MHz) : 7.26 (10H, Bzl); 7.06, 6.84, 5.52 (3H, NH); 5.16, 5.10
3
(4H, Bzl— CH -); 4.52, 4.09, 3.95 (5H, a CH); 3.13, 2.80 (2H, Glu— CH -); 1.44 (9
2 2
H, Boc t-Bu).
[0048] ( lc : Boc- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成)(配列番号 15)
HC1 - H-Asp(OBzl)-Gly-Gly-OBzl (1.95 g, 4.20 mmol)を DMFに溶解し、 NMM (46 2 μ \, 4.20 mmol)で中和後、 Boc- Asn- OH (1.024 g, 4.41 mmol), HOBt (1.195 g, 8.8 2 mmol), EDC - HCl (0.845 g, 4.41 mmol)をカ卩えて撹拌した。濃縮後、残さを AcOEtに 溶解し、 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄
3
し、 Na SOで乾燥させた。濃縮後、へキサンを加えて沈殿を得た。
2 4
収率 2.19 g (81%)、 [ α ] 20 = -16.9。 (c 0.1 , MeOH)ゝ融点 70-71°C.
D
質量分析(ESI法): m/e = 704.4 ([M+Na]").
JH-NMR (DMSO, 300 MHz) : 7.35(10H, Bzl); 8.28, 8.20, 8.10, 7.35, 6.94 (6H, NH); 5.12, 5.07 (4H, Bzl— CH -); 4.67, 4.21 (2H, a CH); 3.91 , 3.89 (4H, Gly a CH); 2.
2
86, 2.67, 2.52, 2.43 (4H, β CH ); 1.36 (9H, Boc t— Bu).
2
[0049] ( ld : Boc- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成)(配列番号 14)
TFA' H- Asn- Asp(OBzl)- Gly- Gly- OBzl (配列番号 16) (1.73 g, 2.64 mmol)を DMFに 溶解し、 DIEA (493 μ 1, 2.90 mmol)で中和した後、 Boc- Asn- OH (0.67 g, 2.90 mmol) , HOBt (0.71 g, 5.30 mmol), HBTU (1.10 g, 2.90 mmol)をカロえ、氷浴で 1.5時間撹拌 した。
得られた沈殿を CHC1、 MeOHに溶解し、エーテルを加え沈殿を得た。
3
収量 1.28 g (64%)、 [ α ] 20 = -23.1° (c 0.1 , MeOH)ゝ融点 172-175。C.
D
質量分析(ESI法): m/e = 796.4 ([M+H]+), 818.4 ([M+Na]+). 1H-NMR (DMSO-d , 500 MHz) : 7.37 (10H, Glu OBzl,— OBzl); 8.37, 8.13, 8.06, 7.4
6
4, 7.33, 6.99, 6.92 (9H, NH); 5.12, 5.08 (4H, Bzl— CH―); 4.65, 4.46, 4.24, 3.91 3.
2
70 (5H, a CH); 2.89, 2.64, 2.56, 2.40 (4H, β CH ); 1.36 (9H , Boc t— Bu).
2
[0050] [実施例 2]
(2) Boc- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- OTceの合成 (配列番号 17) (2a: Boc- Pro- OTceの合成)
300 mlナスフラスコに Boc- Pro- OH(6.46 g, 30.0 mmol)を入れ、蒸留 CHC1 (80 ml)に
3 溶かし、氷冷撹拌下で予め最少量の蒸留 CHC1に溶かした DCC(6.82 g, 33.0 mmol)
3
を加え、トリクロ口エタノール (3.50ml, 37.0 mmol), DMAP(0.38 g, 3.0 mmol)をカ卩えて 氷浴で 2時間、室温で一日撹拌した。 DCUreaをろ過し、ろ液を減圧濃縮した。残さを AcOEtに溶かし、 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の
3
順に洗浄し、 Na SOで乾燥した。ろ液を減圧濃縮しオイルを得た。
2 4
収量 10.08 g (97%) (オイル状生成物).
JH-NMR (CDC1 , 300 MHz) :4.92, 4.76, 4.64 (2H, -OTce— CH -); 4.41 (1H, a CH
3 2
); 3.51 (2H, Pro δ CH ); 2.28, 2.11 (2H, Pro β CH ); 1.94 (2H, Pro y CH ); 1.44 (9H
2 2 2
, Boc t-Bu).
[0051] (2b: Boc- Thr(Bzl)- Pro- OTceの合成)
(操作方法 1) 300mlナスフラスコに HCl'H- Pro- OTce(14.16 g, 50 mmol)を入れ、 蒸留 CHC1 (50 ml)に溶力した。 NMM (5.5 ml, 50 mmol)で中和した後、予め最少量の
3
蒸留 CHC1に溶かした DCC (11.35 g, 55 mmol)を加え、氷浴で 2時間、室温でー晚撹
3
拌した。反応終了後、 DCUreaをろ過し、ろ液を減圧濃縮した。残さに AcOEtを加え、 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄し、 Na
3 2 soで乾燥した。ろ液を減圧濃縮しオイルを得た。このオイルは少し放置すると結晶
4
化した。
収率: 19.52 g (73%)、 [ α ] 20: -49.4 (c 0.1, MeOH)ゝ融点: 98- 99°C
D
(操作方法 2) HCl'H- Pro- OTce(4.29 g, 15.0 mmol)を、蒸留ジクロロメタンに溶か した。 NMM (1.68 ml, 15.0 mmol)で中和した後、 Boc- Thr(Bzl)- OH (3.08 g, 10.5 mm ol), DCC (2.48 g, 11.7 mmol)をカ卩え、撹拌した。反応終了後、 DCUreaをろ過し、ろ液 を減圧濃縮した。残さに AcOEtをカ卩え、 10%クェン酸水、水、飽和 NaHC03水、水、 飽和食塩水の順に洗浄し、 Na SOで乾燥した。ろ液にへキサンを加え結晶化を得た
2 4 収量 4.20 g (74%)、 [ α ] 20 = -55.8。 (c 0.1 , MeOH)ゝ融点 102- 103°C.
D
JH-NMR (DMSO-d , 300 MHz) : 7.30 (5H, Thr Bzl); 6.60 (1H , NH); 4.88 (2H, Bz
6
1— CH―); 4.53 (2H,— OTce— CH―); 4.52, 4.35(2H, a CH); 3.76 (3H, Pro δ CH , T
2 2 2 hr β CH); 2.28, 1.97 (2H, Pro β CH ); 1.97 (2H, Pro y CH ); 1.39 (9H, Boc t— Bu); 1
2 2
.09 (3H, Thr y CH ).
3
(2c: Boc- Lys(C卜 Z)- Thr(Bzl)- Pro- OTceの合成)
(操作方法 1) 300 mlナスフラスコに HCl ' H-Thr(Bzl)- Pro- OTce (0.52 g, 1.1 mmol )を入れ、蒸留 CHC1 (25 ml)に溶力した。 NMM (0.21 ml)で中和した後、 Boc- Lys(C卜
3
Z)-OH (0.50 g, 1.2 mmol), DCC (0.25 g, 1.2 mmol)を加え、氷浴で 2時間、室温で一 晚撹拌した。反応終了後、 DCUreaをろ過し、ろ液を減圧濃縮した。残さに AcOEtを 加え 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄し、
3
Na SOで乾燥した。ろ液を減圧濃縮し、オイル状物質を得た。得られたオイル状物質
2 4
(0.86g)を AcOEt:ベンゼン =1 :3, AcOEt:ベンゼン =1 : 1の展開溶媒を用いたカラムクロ マトグラフィ一により精製した。
収率 0.53 g (58%) (オイル状生成物)、 [ α ] 20 = -42.6° (c 0.1 , MeOH).
D
(操作方法 2) HCl ' H-Thr(Bzl)- Pro- OTce (4.74 g, lOmmol)を DMFに溶解させ、 B oc-Lys(Cl-Z)-OH (3.31 g, 10.5 mmol), HATU (4.00 g, 10.5 mmol), DIEA (5.1 mL) を加え、一時間撹拌した。濃縮後、得られたオイルを AcOEt :ベンゼン = 1 :3, AcOEt :ベンゼン = 1 : 1の展開溶媒を用いたシリカゲルカラムクロマトグラフィーにより精製し た。
収率: 7.2 g (86%) (オイル状生成物)
質量分析(ESI法): m/e = 835.4 ([M+H]+), 855.5 ([M+Na]+).
1H-NMR (DMSO-d , 300 MHz) : 7.82, 7.44, 7.36-7.27, 6.93 (12H, Thr Bzl, NH, Lys
6
Cl-Z, Lys ε -NH); 5.07 (2H, Bzl— CH―); 4.88 (2H, -OTce— CH―); 4.53 (2H, Cl-
2 2
Z— CH -); 4.67, 4.48, 3.91 , 3.78 (3H, a CH, Thr β CH); 3.78 (2H, Pro δ CH ); 2.94 (2H, Lys ε CH ), 2.26, 1.94 (2H, Pro β CH ), 1.94 (2H, Pro y CH ), 1.54 (2H, Lys
2 2 2
j8 CH ), 1.35 (9H, Boc t— Bu, Lys y CH , Lys δ CH ), 1.11 (3H, Thr y CH ).
2 2 2 3
[0053] (2d: Boc- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- OTceの合成)(配列番号 18)
(操作方法 1) 300 mlナスフラスコに HCl'H- Lys(C Z)- Thr(Bzl)- Pro- OTce (1.46 g, 1.9 mmol)を入れ、 DMF (20 ml)に溶力した。氷冷下、 NMM (0.22 ml)で中和した後 、 Boc-Phe-OH (0.56 g, 2.1 mmol), HOBt (0.28 g, 2.1 mmol), EDC-HCl (0.40 g, 2.1 mmol)を加え、氷浴で 2時間、室温で一晩撹拌した。反応終了後、真空ポンプを用い て減圧濃縮した。残さに AcOEtをカ卩え、 10%クェン酸水溶液、水、飽和 NaHCO水溶
3 液、水、飽和食塩水の順に洗浄し、 Na SOで乾燥した。ろ液を減圧濃縮し、オイル状
2 4
物質を得た。オイル状物質を AcOEtに溶解し、石油エーテルを加えて白色の粉末を 得た。
収率 1.45 g (78%)、 [ α ] 20 = -39.2。 (c 0.1, MeOH)ゝ融点 70- 71°C.
D
(操作方法 2) 300 mlナスフラスコに HCl'H- Lys(C Z)- Thr(Bzl)- Pro- OTce (2.28 g, 2.95 mmol)を入れ、 DMFに溶力した。氷冷下、 NMM(0.22 ml)で中和した後、 Boc- Phe-OH (0.88 g, 3.30 mmol), HOBt (0.44 g, 3.30 mmol), EDC -HCl (0.69 g, 3.3 mm ol)を加え、撹拌した。反応終了後、真空ポンプを用いて減圧濃縮した。残さに AcOEt を加え、 10%クェン酸水、水、飽和 NaHCO水、水、飽和食塩水の順に洗浄し、 Na SO
3 2 で乾燥した。ろ液を減圧濃縮し、オイルを得た。オイルを AcOEtに溶解し、石油エー
4
テルを加えて白色の粉末を得た。 AcOEt:ベンゼン = 1:3, AcOEt:ベンゼン = 1:1の 展開溶媒を用いたシリカゲルカラムクロマトグラフィーにより精製した。
収率 2.01 g (69%)、 [ α ] 20 = -35.4。 (c 0.1, MeOH)ゝ融点 69- 71°C.
D
質量分析(ESI法): m/e = 982.5 ([M+H]+), 1004.4 ([M+Na]").
1H-NMR (DMSO-d , 300 MHz) : 7.82, 7.44, 7.36-7.27, 6.93 (12H, Thr Bzl, NH, Lys
6
Cl-Z, Lys ε NH); 5.07(2H, Bzl— CH -); 4.88(2H,— OTce— CH -); 4.53(2H, Cト Z -
2 2
CH -); 4.67, 4.48, 3.91, 3.78 (4H, a CH, Thr jS CH); 3.78 (2H , Pro δ CH ); 2.94 (
2 2
2H , Lys ε CH ); 2.26, 1.94 (2H, Pro β CH ); 1.94 (2H, Pro y CH ); 1.54 (2H, Lys
2 2 2
j8 CH ); 1.35 (13H, Boc t— Bu, Lys y CH , Lys δ CH ); 1.11 (3H, Thr y CH ).
2 2 2 3
[0054] (2e: Boc- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- OTceの合成)(配列番号 17) (操作方法 1) 300 mlナスフラスコに HC1 · H— Phe— Lys(C卜 Z)— Thr(Bzl)— Pro— OTce ( 配列番号 19) (0.50 g, 0.55 mmol)を入れ、蒸留 CHC1 (10 ml)に溶力した。氷冷下、 N
3
ΜΜ(60 ΐ)で中和した後、 Boc- Asp(OBzl)- ΟΗ (0.20 g, 0.61 mmol), HOBt (0.082 g, 0.61 mmol)をカ卩え、予め蒸留 CHC1 (10 ml)に溶解した DCC (0.13 g, 0.61 mmol)をカロ
3
えて氷浴で 2時間、室温で一晩撹拌した。反応終了後、 DCUreaをろ過し、ろ液を減 圧濃縮した。残さに AcOEtをカ卩ぇ 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、
3
飽和食塩水の順に洗浄し、 Na SOで乾燥した。ろ液を減圧濃縮し、オイル状物質を
2 4
得た。このオイル状物質を CHC1に溶かし、石油エーテルをカ卩えて白色沈殿を得た。
3
収率: 0.55 g (85%)、 [ α ] 20 :-46.5 (c 0.1, MeOH)ゝ融点: 108- 110°C.
D
(操作方法 2) 300 mlナスフラスコに HC1 · H— Phe— Lys(C卜 Z)— Thr(Bzl)— Pro— OTce (1 .76 g, 1.92 mmol)を入れ、蒸留 CHC13に溶かした。氷冷下、 NMM (211 ml)で中和し た後、 Boc— D(OBzl)— OH (0.68 g, 2.11 mmol), HOBt (0.29 g, 2.11 mmol), DCC (0.44 g, 2.11 mmol)を加えて撹拌した。反応終了後、 DCUreaをろ過し、ろ液を減圧濃縮し た。残さに AcOEtをカ卩ぇ 10%クェン酸水、水、飽和 NaHCO水、水、飽和食塩水の順
3
に洗浄し、 Na SOで乾燥した。ろ液を減圧濃縮し、オイルを得た。残さを AcOEtに溶
2 4
かし、へキサンを加えて白色沈殿を得た。
収率 1.71 g (78%)、 [ α ] 20 =—40.1。 (c 0.1, MeOH)ゝ融点 108- 109°C.
D
質量分析(ESI法): m/e = 1185.3 ([M+H]+), 1207.5 ([M+Na]").
JH-NMR (DMSO-d , 300 MHz): 8.05, 8.12, 7.82, 7.44, 7.36-7.27, 7.19 (10H, Bzl;
6
4H, Cl-Z; 4H, NH; 1H, Lys ε NH), 5.07(4H, Bzl— CH―); 4.88 (2H,— OTce— CH -)
2 2
; 4.53 (2H, Cl-Z— CH -); 4.67, 4.48, 4.35, 3.83, 3.72 (4H, a CH, Thr β CH); 3.78
2
(2H, Pro δ CH ); 2.94, 2.70, 2.55 (2H, Lys ε CH; 2H, Asp β CH ); 2.26, 1.94 (2
2 2 2
H, Pro β CH ); 1.94 (2H, Pro y CH ); 1.54 (2H, Lys β CH ); 1.35 (9H, Boc t— Bu;
2 2 2
2H, Lys y CH; 2H, Lys δ CH ); 1.11 (3H, Thr y CH ).
2 2 3
[実施例 3]
(3) Boc-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- OTceの合成(配列
2
番号 20)
(3a: Boc- Asp(OBzl)- Leu- OTceの合成) ナスフラスコに HCl'H— Leu— OTce (2.99 g, 10 mmol)を入れ、蒸留 CHC1 (60 ml)に
3
溶かした。氷冷下、 NMM(1.10 ml)で中和した後、 Boc- Asp(OBzl)- OH (2.46 g, 11 m mol)、 DCC (2.27 g, 11 mmol)を加え、氷浴で 1.5時間、室温でー晚撹拌した。反応終 了後、 DCUreaをろ過し、ろ液を減圧濃縮した。残さに AcOEtをカ卩ぇ 10%クェン酸水溶 液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄し、 Na SOで乾燥した。ろ
3 2 4
液を濃縮しオイル状物質を得た。
得られたオイル状物質 (5.65 g, 9.95 mmol)を AcOEt:ベンゼン =1:7、 AcOEt:ベンゼ ン =1:5の展開溶媒を用いてカラムクロマトグラフィーにより精製し、濃縮後透明のオイ ル状物質を得た。
収率 4.45 g (78%)、 [ α ] 20 = 46.5° (c 0.1, MeOH)ゝ融点 70- 71°C.
D
JH-NMR (CDC1 , 300 MHz): 7.35 (5H, Bzl); 5.18, 5.14, 4.64, 4.60 (2H, -OTce— C
3
H -); 6.96, 5.71 (2H, NH); 5.14 (2H, Bzl— CH -); 4.70, 4.55 (3H, a CH); 3.07, 2.7
2 2
7 (2H, Asp β CH ); 1.64 (2H, Leu β CH; IH, Leu y CH); 1.44 (9H, Boc t— Bu); 0.
2 2
95 (6H, Leu δ CH ).
2
(3b: Boc-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- OTceの合成)
2
ナスフラスコに HCl'H— Asp(OBzl)— Leu— OTce (2.05 g, 4.07 mmol)を蒸留 CHC1 (10
3 ml)に溶力した。氷冷下、 NMM (0.45 ml)で中和した後、 Boc- Tyr(Cl -Bzl)- OH (1.52
2
g, 4.47 mmol), HOBt (0.61 g, 4.52 mmol), EDC -HC1 (0.86 g, 4.49 mmol)をカロえ、氷 浴で 1時間、室温で一晩撹拌した。反応終了後、濃縮し、残さを DMFに溶解し減圧濃 縮した。残さにイオン交換水を加えて沈殿を析出させた。ろ過後、ガラスフィルター上 で 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄した。
3
デシケーターで乾燥し、白色粉末を得た。
収率 3.06 g (85%)、 [ α ] 20 =—46.5。 (c 0.1, MeOH)ゝ融点 101- 104°C.
D
1H-NMR (CDC1 , 300 MHz): 7.37, 7.33, 7.14, 6.98, 6.95 (5H, Bzl; 3H, CI -Bzl; 4H,
3 2
Tyr C H— ; 3H, NH); 4.87, 4.83, 4.64, 4.60 (2H, -OTce— CH -); 5.12, 5.24 (2H, B
6 5 2
zl— CH—; 2H, CI -Bzl— CH―); 4.80, 4.62, 4.30 (3H, a CH); 3.05, 3.02, 2.65 (2H,
2 2 2
Asp β CH; IH, Tyr β CH ); 1.71, 1.58 (2H, Leu β CH; IH, Leu y CH); 1.41 (9H
2 2 2
, Boc t-Bu); 0.94 (6H, Leu δ CH ). [0057] (3c: Boc-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- OTceの合成)(配列番号 21)
2
ナスフラスコに HCl ' H-Tyr(Cl - Bzl)- Asp(0 Bzl)- Leu- OTce (2.48 g, 3.0 mmol)入れ
2
、 DMF(30 ml)に溶力した。 NMM (330 1)で中和した後、 Boc— Thr(Bzl)— OH (1.02 g, 3 .3 mmol), HOBt (0.45 g, 3.3 mmol), EDC - HCl (0.63 g, 3.3 mmol)を加え、氷浴で 3時 間、室温で 4時間撹拌した。反応終了後、濃縮し、残さにイオン交換水を加えて沈殿 を析出させた。ろ過後、ガラスフィルター上で 10%クェン酸水溶液、水、飽和 NaHCO
3 水溶液、水、飽和食塩水溶液の順に洗浄した。デシケーターで乾燥し、白色粉末を 得た。
得られた粉末を CHC1 -へキサンで再結晶し、白色結晶を得た。
3
収率 2.45 g (76%)、 [ α ] 20 = -46.5。 (c 0.1 , MeOH)ゝ融点 149- 151。C.
D
^-NMR (CDCl, 300 MHz): 7.36, 7.34, 7.32, 7.11 , 6.99, 6.97, 6.87, 6.84 (10H, Bz
3
1; 3H, CI -Bzl; 4H, Y— Ph; 3H, NH); 5.35 (1H, NH); 4.87, 4.83, 4.65, 4.61 (2H,—〇
2
Tee— CH -); 5.18, 5.11 (4H, Bzl— CH—; 2H, CI—Bzl— CH -); 4.87, 4.83, 4.65, 4.43
2 2 2 2
, 4.08 (4H, a CH; 2H, Bzl— CH—; 1H, Thr β CH); 3.05, 3.02, 2.65 (2H, Asp β C
2
H; 1H, Tyr β CH ); 1.71 , 1.58 (2H, Leu β CH; 1H, Leu y CH); 1.41 (9H, Boc t—
2 2 2
Bu); 1.18 (3H, Thr y CH ); 0.94 (6H, Leu δ CH )·
3 2
[0058] (3d: Boc-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(〇Bzl)- Leu- OTceの合成)(配列番
2
号 22)
ナスフラスコに HC1 · H-Thr(Bzl)-Tyr(Cl -Bzl)- Asp(OBzl)- Leu- OTce (配列番号 23
2
) (2.14 g, 2.10 mmol)を入れ、 DMF (40 ml)に溶力した。 NMM (230 μ 1)で中和した後、 Boc-Lys(Cl-Z)-OH (0.95 g, 2.3 mmol), HOBt (0.31 g, 2.3 mmol), EDC - HCl (0.44 g , 2.3 mmol)を加え、氷浴で 3時間、室温で 4時間撹拌した。反応終了後濃縮し、残さ にイオン交換水をカ卩えて沈殿を析出させた。ろ過後、ガラスフィルター上で 10%クェン 酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄した。デシケータ
3
一で乾燥し、白色粉末を得た。
カラムクロマトグラフィー(展開溶媒 CHC1: MeOH=98:2)により精製を行った。
3
収率 2.56 g (89%)、 [ α ] 20 = -46.5。 (c 0.1 , MeOH)ゝ融点 149- 151。C.
D
^-NMR (CDCl, 300 MHz): 7.36, 7.34, 7.32, 7.11 , 6.99, 6.97, 6.87, 6.84 (10H, Bz 1; 4H, Cl-Z; 3H, CI - Bzl; 4H, Tyr C H ; 4H, NH; 1H, Lys ε NH); 5.35 (1H, NH); 4
2 6 5
.87, 4.83, 4.65, 4.61 (2H,— OTce— CH -); 5.18, 5.11 , 4.60 (4H, Bzl— CH—; 2H, CI
2 2 2
-Bzl— CH—; 2H, Cl-Z— CH -); 4.87, 4.83, 4.65, 4.43; 4.08 (5H, a CH, 2H, Bzl— C
2 2
H—; 1H, Thr β CH); 3.45, 3.05, 3.02, 2.94, 2.65 (2H, Asp β CH; 2H, Tyr β CH;
2 2 2
2H, Lys ε CH ); 1.71 , 1.69, 1.58 (2H, Leu β CH; 1H, Leu y CH; Lys j8 CH ; Ly
2 2 2 s y CH ); 1.41 (9H, Boc t— Bu); 1.18 (3H, Thr y CH ); 0.94 (6H, Leu δ CH ).
2 3 2
[0059] (3e: Boc-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- OTceの合成)(配
2
列番号 20)
ナスフラスコに HC1 · H-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(0 Bzl)- Leu- OTce (
2
配列番号 24) (2.30 g, 1.75 mmol)を入れ、 DMF (20 ml)〖こ溶力した。 NMM (193 μ 1) で中和した後、 Boc-Asn-OH (0.45 g, 1.93 mmol), HOBt (0.52 g, 3.85 mmol), EDC - HC1 (0.37 g, 1.93 mmol)を加え、氷浴で 3時間、室温で 4時間撹拌した。反応終了後 、濃縮し、残さにイオン交換水を加えて沈殿を析出させた。ろ過後、ガラスフィルター 上で 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄した
3
。デシケーターで乾燥し、白色粉末を得た。
収率 2.45 g (94%)、 [ α ] 20 =—46.5。 (c 0.1 , MeOH)ゝ融点 207- 209°C.
D
JH-NMR (DMSO-d , 300 MHz): 8.35, 7.36, 7.34, 7.32, 7.11 , 6.99, 6.97, 6.87, 6.84
6
(10H, Bzl; 4H, Cl-Z; 3H, CI -Bzl; 4H, Tyr C6H5; 6H, NH; 1H, Lys ε NH; 2H, Asn
2
γ ΝΗ ); 4.87, 4.83, 4.65, 4.61 (2H, -OTce— CH -); 5.18, 5.11 , 4.60 (4H, Bzl— CH
2 2
—; 2H, CI -Bzl— CH—; 2H, Cl-Z— CH -); 4.87, 4.83, 4.71 , 4.55, 4.43, 4.30, 4.23 (
2 2 2 2
6H, a CH; 2H, Bzl— CH—; 1H, Thr β CH); 3.15, 3.05, 3.02, 2.94, 2.65 (2H, Asp
2
β CH; 1H, Tyr β CH; 2H, Lys ε CH; 2H, Asn β CH ); 1.71 , 1.69, 1.58 (2H, Le
2 2 2 2
u j8 CH ; 1H, Leu y CH;2H Lys β CH ;2H Lys y CH ); 1.41 (9H, Boc t— Bu); 1.18
2 2 2
(3H, Thr y CH ); 0.94 (6H, Leu δ CH ).
3 2
[0060] [実施例 4]
(4) Boc-Phe-Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- OTceの合成(配列番号 25)
2
(4a: Boc- Asn- Ser(Bzl)- Glu(OBzl)- OTceの合成)
(操作方法 1) 100 mlナス型フラスコに HCl ' H- Ser(Bzl)- Glu(OBzl)- OTce(8.45 mm ol)を入れ、蒸留 CHCl (10 ml)に溶力した。 NMM (0.930 ml, 8.45 mmol)で中和し、 DM
3
F(10ml)に溶かした Boc— Asn— OH (2.16 g, 9.30 mmol), HOBt (2.51 g, 18.6 mmol)を カロえた。別に DCC (1.92 g, 9.30 mmol)を蒸留 CHCl (20 ml)に溶力し、少量ずつ加え
3
た。反応終了後、 DCUが出なくなるまで濃縮とろ過を繰り返し、 AcOEtに溶力した。 10 %クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄を行い、
3
無水 Na SOにより乾燥した。ろ過後、減圧濃縮し CHC1 -石油エーテルで白色沈殿を
2 4 3
得た。ゲルろ過カラムクロマトグラフィー(Sephadex LH20, MeOH)を行い精製した。 収量 4.62 g (72%)、 [ α ] 20 = -24.2。 (c 0.1 , MeOH)ゝ融点 64- 66°C.
D
(操作方法 2) 300 mlナス型フラスコに HCl ' H- Ser(Bzl)- Glu(OBzl)- OTce (10 mmol )を入れ、 DMF (40 ml)に溶力した。 NMM (1.1 ml, 10 mmol)で中和し、 Boc— Asn— OH (2.55 g, 11 mmol), HOBt (2.97 g, 22 mmol), EDC - HC1 (2.11 g, 11 mmol)を加えた 。反応終了後、残さを AcOEtに溶かし、 10%クェン酸水、水、飽和 NaHCO水、水、飽
3 和食塩水の順に洗浄を行い、無水 Na SOにより乾燥した。ろ過後、減圧濃縮し、 AcO
2 4
Et-エーテルから白色沈殿を得た。
収量 5.48 g (72%)、 [ α ] 20 = -22.2。 (c 0.1 , MeOH)ゝ融点 64- 66°C.
D
質量分析(ESI法): m/e = 781.2 ([M+Na]").
JH-NMR (CDC1 , 300 MHz) : 7.52, 7.36, 5.88, 5.54 (5H, NH, Asn y NH ); 7.36, 7.24
3 2
(10H, Glu OBzl, Ser Bzl); 5.08 (2H, Glu OBzl— CH -); 4.60 (2H, -OTce— CH -); 4
2 2
.52 (2H , Ser—Bzl— CH -); 4.68, 4.56, 4.42 (3H, a CH); 4.00, 3.60 (2H, Ser β C
2
H ); 2.84, 2.68 (2H, Asn β CH ); 2.50 (2H, Glu j8 CH ); 2.32, 2.10 (2H, Glu y C
2 2 2
H ); 1.38 (9H, Boc t— Bu).
2
(4b: Boc- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 26)
2
(操作方法 1) 100 mlナス型フラスコに HCl ' H- Asn- Ser(Bzl)-Glu(OBzl)- OTce (0.7 66 g, 1.10 mmol)を入れ、 DMF(20 ml)に溶力した。 NMM (0.120 ml, 1.10 mmol)で中 和し、 Boc— Tyr(Cl—Bzl)— OH (0.528 g, 1.21 mmol), HOBt (0.327 g, 2.42 mmol)をカロ
2
えた後、氷冷撹拌下、 EDC - HC1 (0.230 g, 1.21 mmol)を加えた。反応終了後、濃縮し AcOEtに溶かした。 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水
3
の順に洗浄を行い、無水 Na SOにより乾燥した。ろ過後、減圧濃縮し CHC1 -石油ェ 一テルで白色沈殿を得た。 TLCにより Boc-Tyr(Cl -Bzl)- OHと考えられるスポットが確
2
認されたためカラムクロマトグラフィー(CHC1: MeOH = 93 :7)により精製を行った。 CH
3
C1 -石油エーテルにより結晶化を行い、白色沈殿を得た。
3
収量 0.87 g (73%)、 [ α ] 20 = -18.4。 (c 0.1 , MeOH)ゝ融点 150- 152°C.
D
(操作方法 2) 300 mlナス型フラスコに HC1 · H- Asn- Ser(Bzl)- Glu(OBzl)- OTce (4.1 8 g, 6.0 mmol)を入れ、 DMF (40 ml)に溶力した。 NMM (0.66 ml, 6.0 mmol)で中和し 、 Boc-Tyr(Cl—Bzl)— OH (2.77 g, 6.3 mmol), HOBt - H O (0.96 g, 6.3 mmol)を加えた
2 2
後、氷冷撹拌下、 EDC - HC1 (1.21 g, 6.3 mmol)を加えた。反応終了後、濃縮し、水を 加えて生じた沈殿をろ過した。 THF-エーテルで再結晶を行い、白色結晶を得た。 収量 5.35 g (82%)、 [ α ] 20 = -18.4。 (c 0.1 , MeOH)ゝ融点 150- 152°C.
D
JH-NMR (CDC1 , 300 MHz) : 7.68, 7.54, 7.43, 7.37, 5.92, 5.34 (6H, NH, Asn y NH )
3 2
; 7.34, 7.30, 7.26 (13H , Tyr CI -Bzl, Glu OBzl, Ser Bzl); 7.12, 6.94 (4H, Tyr C H )
2 6 5
; 5.22 (2H, Tyr CI—Bzl— CH -); 5.07 (2H, Glu OBzl— CH -); 4.85, 4.64(2H, -OTce
2 2 2
— CH ); 4.46 (2H, Ser Bzl— CH -); 5.01 , 4.66, 4.48, 4.20 (4H, a CH); 3.96, 3.78 (
2 2
2H, Ser β CH ); 3.07, 2.83 (Tyr β CH ); 2.75, 2.58 (2H, Asn j8 CH ); 2.52 (2H, G
2 2 2 lu β CH ); 2.33, 2.17 (2H, Glu y CH ); 1.37 (9H, Boc t— Bu— ).
2 2
(4c: Boc-Phe-Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 25)
2
(操作方法 1) 100 mlナス型フラスコに HCl ' H- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OB
2
zl)- OTce (配列番号 27) (1.83 g, 1.80 mmol)を入れ、 DMF (50 ml)に溶力した。 NMM (200 μ 1, 1.80 mmol)で中和し、 Boc- Phe- OH (0.525 g, 1.98 mmol), HOBt (0.535 g, 3.96 mmol)を加えた後、氷冷撹拌下、 EDC - HC1 (0.380 g, 1.98 mmol)を加えた。反応 終了後、濃縮し水を加え生じた沈殿をろ過した。ガラスフィルター上で 10%クェン酸 水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄を行った。 TFE-エー
3
テルで再結晶を行い、白色沈殿を得た。
収量 2.11 g (95%)、 [ α ] 20 = -16.7。 (c 0.1 , DMF)ゝ融点 202- 204。C.
D
(操作方法 2) 300 mlナス型フラスコに HC1 · H- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OB
2
zl)— OTce (3.87 g, 3.8 mmol)を入れ、 DMF (50 ml)に溶力した。 NMM (418 ml, 3.8 m mol)で中和し、 Boc— Phe— OH (1.11 g, 4.18 mmol), HOBt - H O (0.64 g, 4.18 mmol) をカロえた後、氷冷撹拌下、 EDC - HC1 (0. 80 g, 4.18 mmol)を加えた。反応終了後、水 をカロえ生じた沈殿をろ過した。ガラスフィルター上で 10%クェン酸水、水、飽和 NaHC 0水、水、飽和食塩水の順に洗浄を行った。 CHC1: TFE (3: 1)で溶解させ、 MeOHを
3 3
徐々に加えることで再結晶を行い、白色沈殿を得た。
収量 4.24 g (91%)、 [ α ] 20 -16.7。 (c = 0.1 , DMF)、融点 202-204°C
D
質量分析(ESI法): m/e = 1251.1 ([M+Na , 1267.4 ([M+K]+).
JH-NMR (DMSO-d , 300 MHz) : 8.52, 8.41 , 8.20, 7.89, 6.87 (7H, NH, Asn y NH );
6 2
7.52, 7.43, 7.33-7.16, 6.90 (22H, Phe C H— , Tyr— C H -, Tyr—CI — Bzl, Glu— OBz
6 5 6 4 2
1, Ser -Bzl); 5.13, (2H, Tyr—CI—Bzl— CH―); 5.06 (2H, Glu— OBzl— CH―); 4.90, 4.
2 2 2
79 (2H,— OTce— CH―); 4.46 (2H , Ser—Bzl— CH―); 4.65, 4.52, 4.41 , 4.10 (5H, a
2 2
CH); 3.65 (2H, Ser β CH ); 2.96, 2.87 (Phe β CH ); 2.74, 2.66 (Tyr β CH ); 2.51 ,
2 2 2
2.48 (2H, Asn β CH ); 2.41 (2H, Glu j8 CH ); 2.10, 2.00 (2H, Glu γ CH ); 1.26
2 2 2
(9H, Boc t-Bu).
[実施例 5]
(5) Boc- [Glu(OBzl)] - Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成(配列番号 28)
4
(5a: Boc- Glu(OBzl)- OTceの合成)
500 mlナス型フラスコに Boc- Glu(OBzl)- OH (33.8 g, 100 mmol)を入れ、蒸留 CHC1
3
(150 ml)に溶力し、トリクロ口エチルアルコール(10.6 ml, 110 mmol)をカ卩えた。別に DC C (22.7 g, 110 mmol)を計り、蒸留 CHC1 (100 ml)に溶力した。これを氷冷撹拌下、パ
3
スツールピペットを用いて 500 mlナス型フラスコに加えた。ここでエステル結合の生成 を促進する触媒として、極微量の DMAP (1.22 g, 10 mmol)を加えた。反応の進行は 薄層クロマトグラフィーで追跡した。このスケールならば、反応は 1〜3時間で完結す る。 DMAPの添加量を精査した結果、従来の方法 (非特許文献 2)で用いられてきた 0. 5等量が生成物のラセミ化を促進して 、ることがわ力つた。そこで添加量は 0.1等量が 適当であることを明らかにした。反応終了後、 DCUが出なくなるまで濃縮とろ過を繰り 返し、 AcOEtに溶かした。 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和
3
食塩水の順に洗浄を行い、無水 Na SOにより乾燥した。ろ過後に減圧濃縮を行い、
2 4
粗結晶を得た。 AcOEt-へキサンにより再結晶を行うと、きれいな無色プリズム状結晶 が得られた。驚くべきことに従来の技術では達成されえな力つた、ラセミ化の阻止が、 つまり L-アミノ酸であることが X線単結晶構造解析と旋光度測定により確認された。結 晶構造は図 2に示す。旋光度は [ a ] 2Qとして下に示した。
D
収率 39.4 g (84%)、 [ α ] 20 = -27.8° (c 0.1 , MeOH)ゝ融点 94- 96。C.
D
^-NMR (CDC1, 300 MHz) : 7.36 (5H, Glu—〇Bzl); 5.13 (3H, NH,— Bzl— CH -); 4.8
3 2
9, 4.66 (2H, -OTce— CH -); 4.46 (1H, CH); 2.52 (2H, Glu β CH ); 2.29, 2.07 (2
2 2
H, Glu y CH ); 1.42 (9H, Boc t— Bu— ).
2
結晶学的データ: a = 9.995(2) A, c = 12.970(4) A, V = 1122.0(4) A3,空間群 P3 (#144
1
).
[0064] (5b: Boc- Ser(Bzl)- Glu(OBzl)- OTceの合成)
300 mlナス型フラスコに HCl ' H- Glu(OBzl)- OTce (4.05 g, 10.0 mmol)を入れ、蒸留 CHC1 (100 ml)に溶力した。 NMM (1.10 ml, 10.0 mmol)で中和した後、 Boc— Ser(Bzl)—
3
OH (3.25 g, 11.0 mmol)をカ卩えた。別に DCC (2.27 g, 11.0 mmol)を蒸留 CHC1に溶
3 かし、氷冷撹拌下、 300 mlナス型フラスコに少量ずつ加えた。反応終了後、 DCUが出 なくなるまで濃縮とろ過を繰り返し、残さを AcOEtに溶力した。 10%クェン酸水溶液、 水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄を行い、無水 Na SOにより乾
3 2 4 燥した。ろ過後、減圧濃縮し、無色オイルを得た。カラムクロマトグラフィー(CHC1: M
3 eOH=98:2)により精製した。
収率 5.46 g (オイル状物質) (85%).
1H-NMR (CDC1 , 300 MHz) : 7.33, 7.29 (10H, Glu OBzl, Ser Bzl); 7.19 (1H, Glu NH
3
); 5.38(1H, Ser NH); 5.10 (2H, Glu -OBzl— CH -); 4.86, 4.65 (2H, -OTce— CH -);
2 2
4.77 (1H, Ser a CH); 4.53 (2H, Ser—Bzl— CH -); 4.30 (1H, Glu a CH); 3.91 , 3.57
2
(2H, Ser β CH ); 2.45 (2H , Glu j8 CH ); 2.32, 2.05 (2H, Glu γ CH ); 1.54 (9H, B
2 2 2
oc t- Bu).
[0065] (5c: Boc- Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成)
300 mlナス型フラスコに HCl ' H- Ser(Bzl)-Glu(OBzl)- OTce (10.0 mmol)を入れ、蒸 留 CHC1 (50 ml)を入れた。 NMM (1.10 ml, 10.0 mmol)で中和し、 Boc- Ala- OH (2.08
3
g, 11.0 mmol), HOBt (1.49 g, 11.0 mmol)をカロえた。別に DCC (2.27 g, 11.0 mmol)を 蒸留 CHC1 (20 ml)に溶かし、少量ずつ加えた。反応終了後、 DCUが出なくなるまで
3
濃縮とろ過を繰り返し、残さを AcOEtに溶力した。 10%クェン酸水溶液、水、飽和 NaH CO水溶液、水、飽和食塩水の順に洗浄を行い、無水 Na SOにより乾燥した。ろ過
3 2 4
後、減圧濃縮し、エーテル-石油エーテルで結晶化を行い、白色結晶を得た。
収量 5.51 g (77%), [ α ] 20 = -24.3。 (c 0.1 , MeOH)ゝ融点 90- 93。C.
D
質量分析(ESI法): m/e = 738.1 ([M+Na .
JH-NMR (DMSO-d , 300 MHz) : 8.48, 7.86, 6.95 (3H, NH); 7.33, 7.29 (10H, Glu O
6
Bzl, Ser Bzl); 5.08 (2H, Glu OBzl— CH -); 4.86 (2H ,— OTce— CH -); 4.54, 4.47, 4.
2 2
00 (3H , a CH); 4.47 (2H , Ser Bzl— CH -); 3.60 (2H, Ser β CH ); 2.49 (2H, Glu
2 2
y CH ); 2.11 , 1.98 (2H, Glu j8 CH ); 1.35 (9H, Boc t— Bu); 1.15 (3H, Ala a CH ).
2 2 3
[0066] (5d: Boc- Glu(OBzl)- Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 29)
500 mlナス型フラスコに HCl ' H- Ala- Ser(Bzl)- Glu(OBzl)- OTce (1.44 g, 2.20 mmol) を入れ、 DMF (80 ml)に溶力した。 NMM (0.242 ml, 2.20 mmol)で中和し、 Boc— Glu(0 Bzl)- OH (0.891 g, 2.64 mmol), HOBt (0.357 g, 2.64 mmol)をカ卩えた後、氷冷撹拌下 、 EDC - HC1 (0.506 g, 2.64 mmol)をカ卩えた。反応終了後、濃縮し、残さを AcOEtに溶 力した。 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄
3
を行い、無水 Na SOにより乾燥した。ろ過後、減圧濃縮し、 AcOEt-へキサンで再結
2 4
晶を行い、白色結晶を得た。
収量 1.94 g (94%)、 [ α ] 20 = -21.4° (c 0.1 , MeOH)ゝ融点 101- 103°C.
D
質量分析(ESI法): m/e = 935.2 ([M+H]+), 957.2 ([M+Na]+), 973.2 ([M+K]+).
1H-NMR (DMSO-d , 300 MHz) : 8.43, 8.12, 7.89, 6.94 (4H, NH); 7.33-7.26 (15H,
6
Glu OBzl, Ser Bzl); 5.07, 5.06 (4H, Glu OBzl— CH -); 4.90, 4.81 (2H, -OTce— CH
2 2
-); 4.45(2H, Ser Bzl— CH -); 4.55, 4.45, 4.33 3.93 (4H, a CH); 3.58 (2H, Ser β CH
2
); 2.46, 2.35(4H, Glu y CH ); 2.10, 1.93, 1.76 (4H, Glu j8 CH ); 1.35(9H, Boc t— B
2 2 2
Figure imgf000031_0001
[0067] (5d: Boc- [Glu(OBzl)] - Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 30)
2
500 mlナス型フラスコに HC1 · H-Glu(OBzl)- Ala- Ser(Bzl)-Glu(OBzl)- OTce (配列番 号 31) (1.48 g, 1.70 mmol)を入れ、 DMF (80 ml)に溶かした。 NMM (0.187 ml, 1.70 m mol)で中和し、 Boc— Glu(OBzl)— OH (0.631 g, 1.87 mmol), HOBt (0.253 g, 1.87 mmol )を加えた後、氷冷撹拌下、 EDC - HC1 (0.358 g, 1.87 mmol)をカ卩えた。反応終了後、 濃縮し、残さを AcOEtに溶カゝした。 10%クェン酸水溶液、水、飽和 NaHCO水溶液、
3 水、飽和食塩水の順に洗浄を行い、無水 Na SOにより乾燥した。ろ過後、減圧濃縮
2 4
し、 AcOEt-へキサンで再結晶を行い、白色結晶を得た。
収量 1.81 g (92%)、 [ α ] 20 = -17.9° (c 0.1 , MeOH)ゝ融点 175- 179°C.
D
質量分析(ESI法): m/e = 1154.4 ([M+H]+), 1176.4 ([M+Na]+), 1192.2 ([M+K]+). JH-NMR (DMSO-d , 300 MHz) : 8.45, 8.10, 8.08, 7.89, 7.02 (5H, NH); 7.32-7.28 (
6
20H, Glu OBzl, Ser Bzl); 5.08, 5.04 (6H, Glu OBzl— CH -); 4.90, 4.80 (2H,— OTce
2
— CH -); 4.44 (2H, Ser Bzl— CH -); 4.56, 4.44, 4.30, 3.92 (5H, a CH); 3.58(2H, Ser
2 2
j8 CH ); 2.44, 2.38 (6H, Glu y CH ); 2.11 , 1.90, 1.77 (6H, Glu j8 CH ); 1.33 (9H,
2 2 2
Boc t-Bu); 1.28 (3H, Ala β CH ).
3
[0068] (5e: Boc- [Glu(OBzl)] - Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 32)
3
500 mlナス型フラスコに HC1 · H- [Glu(OBzl)] -Ala- Ser(Bzl)-Glu(OBzl)- OTce (配列
2
番号 33) (1.31 g, 1.20 mmol)を入れ、 DMF (80 ml)に溶かした。 NMM (0.132 ml, 1.20 mmol)で中和し、 Boc— Glu(OBzl)— OH (0.445 g, 1.32 mmol), HOBt (0.178 g, 1.32 m mol)をカ卩えた後、氷冷撹拌下、 EDC - HCK0.263 g, 1.32 mmol)をカ卩えた。反応終了後 、濃縮し、水を加えて沈殿を析出させた。ろ過し、ガラスフィルター上で 10%クェン酸 水溶液、水、飽和 NaHCO水溶液、水の順に洗浄を行った。 CHC1 -へキサンで再結
3 3
晶を行い、白色結晶を得た。
収量 1.47 g (89%)、 [ α ] 20 = -25.0。 (c 0.1 , MeOH)ゝ融点 222-224°C.
D
1H-NMR (DMSO-d , 300 MHz) : 8.46, 8.08, 7.89, 7.00 (6H, NH); 7.30-7.26 (25H,
6
Glu OBzl, Ser Bzl); 5.04 (8H, Glu OBzl— CH -); 4.90, 4.80 (2H, OTce— CH ); 4.44 (
2 2
2H, Ser Bzl— CH -); 4.56, 4.45, 4.28, 3.91 (6H, a CH); 3.58 (2H, Ser β CH ); 2.46,
2 2
2.37 (8H, Glu y CH ); 2.11 , 1.90, 1.78 (8H, Glu j8 CH ); 1.34 (9H, Boc t— Bu), 1.1
2 2
6 (3H, Ala β CH ).
3
[0069] (5f: Boc- [Glu(OBzl)] - Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 28)
4
500 mlナス型フラスコに HC1 · H- [Glu(OBzl)] -Ala- Ser(Bzl)-Glu(OBzl)- OTce (配列 番号 34) (1.18 g, 0.90 mmol)を入れ、 DMF (80 ml)に溶力した。 NMM (99 μ 1, 0.90 mm ol)で中和し、 Boc- Glu(OBzl)- OH (0.334 g, 0.99 mmol), HOBt (0.134 g, 0.99 mmol) をカロえた後、氷冷撹拌下、 EDC - HC1 (0.190 g, 0.99 mmol)をカ卩えた。反応終了後、 濃縮し、水を加えて沈殿を析出させた。ろ過し、ガラスフィルター上で 10%クェン酸水 溶液、水、飽和 NaHCO水溶液、水の順に洗浄を行った。 DMF-水で再沈殿を行い、
3
白色沈殿を得た。
収量 1.26 g (90%)、 [ α ] 20 = -24.0。 (c 0.1 , DMF)ゝ融点 240- 243°C.
D
JH-NMR (DMSO-d , 300 MHz) : 8.46, 8.08, 7.90, 7.00 (7H , NH); 7.32-7.26 (30H,
6
Glu OBzl, Ser Bzl); 5.04 (10H, Glu OBzl— CH ); 4.90, 4.80 (2H,— OTce— CH -); 4.
2 2
43 (2H, Ser Bzl— CH -); 4.55, 4.43, 4.24, 3.90 (7H, a CH), 3.58 (2H, Ser j8 CH ), 2
2 2
.47, 2.38 (10H, Glu y CH ), 2.10, 1.90, 1.78 (10H, Glu β CH ); 1.32 (9H, Boc t— B
2 2
Figure imgf000033_0001
[実施例 6]
(6)フラグメント縮合による Boc- Asp(OBzl)- Phe- Lys(Q-Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成(配列番号 35)
(6a: Boc- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- OH (配列番号 36)の合成)
(操作方法 1) ナスフラスコに Boc- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- OTce (配列番号 17) (0.55 g, 0.46 mmol)を入れ、 CH COOH (9 ml)に溶力し、 H O (1 ml)を
3 2 加えた。亜鉛粉末(1.0 g)を加えて室温で 1時間撹拌した。反応終了後、ろ過し、ろ 液を濃縮した。 10%クェン酸水溶液をカ卩え、得られた沈殿をガラスフィルター上でィォ ン交換水により洗浄した。
収率 0.39 g (81%)、 [ α ] 20 = -36.1。 (c 0.1 , MeOH)ゝ融点 88- 91。C.
D
(操作方法 2) ナスフラスコに Boc- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- OTce (配列番号 17) (3.56g, 3.00 mmol)を入れた。これを CH COOH (9 ml)に溶力し、 H 0 (
3 2
1 ml)を加えた。亜鉛粉末(1.0 g)を加えて室温で 1時間撹拌した。薄層クロマトグラフ ィ一により反応を追跡した。反応終了を確認の後、ろ過し、ろ液を濃縮した。 10%タエ ン酸水を加え、得られた沈殿をガラスフィルター上でイオン交換水により数回洗浄し 収率 1.71 g (91%)、 [ α ] 20 = -51.0。 (c = 0.1, MeOH)ゝ融点 88- 90°C.
D
[0071] (6b: Boc- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成)(配列番号 35)
ナスフラスコに TFA' H- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzl (配列番号 37) (0.25 g, 0.33 mmol)をいれ、 DMF (10 ml)に溶力した。 NMM (36 μ 1)で中和し、 Boc— Asp(OBzl) -Phe-Lys(Cl-Z)-Thr(Bzl)- Pro- OH (配列番号 36) (0.37 g, 0.37 mmol), HOBt (0.09 4 g, 0.69 mmol), EDC -HC1 (0.066 g, 0.37 mmol)を加えた。氷— MeOH浴で 13.5時間 撹拌し、反応終了後、 DMFを濃縮し、イオン交換水を加えて沈殿を析出させた。ガラ スフィルター上で 10%クェン酸水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の
3
順に洗浄した。デシケーターで乾燥し、白色粉末を得た。ゲルろ過カラムクロマトダラ フィー(Sephadex LH20、 DMF)により精製を行った。
収率 0.35 g (63%)、 [ α ] 20 = -34.9
D 。 (c 0.1, DMF)ゝ融点 94- 97°C.
[0072] [実施例 7]
(7) Boc-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe-
2
Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成(配列番号 38) (7a: Boc-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- OH (配列番号 39)
2
の合成)
(操作方法 1) ナスフラスコに Boc- Asn- Lys(C Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OBz
2
1)- Leu- OTce (配列番号 19) (2.40 g, 1.61 mmol)を入れ、 CH COOH (27 ml)に溶かし
3
、 H O (3 ml)を加えた。亜鉛粉末(4.0 g)を加えて室温で 1時間撹拌した。反応終了後
2
、ろ過し、ろ液を濃縮した。 10%クェン酸水溶液を加え、得られた沈殿をガラスフィルタ 一上でイオン交換水により洗浄した。
収率: 1.93 g (88%)、 [ α ] 2。:- 21.2 (c 0.1, MeOH)ゝ融点: 192- 194。C
D
(操作方法 2) ナスフラスコに Boc- Asn- Lys(C Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OBz
2
1)- Leu- OTce (配列番号 19) (1.17 g, 0.78 mmol)を入れ、 CH COOH (27 ml)に溶かし
3
、 H 0(3 ml)を加えた。亜鉛粉末(4.0 g)を加えて室温で 1時間撹拌した。反応終了後
2
、ろ過し、ろ液を濃縮した。 10%クェン酸水を加え、得られた沈殿をガラスフィルター上 でイオン交換水により数回洗浄した。 収率 0.95g (89%)、 [ α ] 20 = -17.3。 (c 0.1 , MeOH)ゝ融点 191- 193°C.
D
1H-NMR (DMSO, 300 MHz): 8.35, 7.83, 7.53, 7.43, 7.25, 7.14, 6.91 , 6.87 (10H, Bz 1; 4H, Cl-Z; 3H; 3H, CI— Bzl; 4H, Tyr C H ; 6H, NH; 1H, Lys ε NH; 2H, Asn y N
2 6 5
H ); 5.18, 5.11 , 4.60 (4H, Bzl— CH; 2H, CI—Bzl— CH—; 2H, Cト Z— CH -); 4.87, 4.
2 2 2 2 2
83, 4.71 , 4.55, 4.43, 4.30, 4.23 (6H, a CH; 2H, Bzl— CH -; 1H, Thr β CH); 3.15,
2
3.05, 3.02, 2.94, 2.65 (2H, Asp β CH; 1H, Tyr β CH; 2H, Lys ε CH; 2H, Asn
2 2 2
β CH ); 1.71 , 1.69, 1.51 (2H, Leu β CH; 1H, Leu y CH; Lys β CH; Lys y CH );
2 2 2 2
1.41 (9H, Boc t-Bu); 1.02 (3H, Thr y CH ); 0.81 (6H, Leu δ CH ).
3 2
[0073] (7b: Boc-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe-
2
Lys(C Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成)(配列番号 38) ナスフラスコに TFA' H-Asp(OBzl)- Phe- Lys(C Z)-Thr(Bzl)- Pro- Asn- Asn- Asp(OB zl)- Gly- Gly- OBzl (配列番号 40) (0.27 g, 0.16 mmol)を入れ、 DMF (10 ml)に溶解し た。 DIEA (27 μ 1, 0.16 mmol)で中和した。 Boc— Asn— Lys(C Z)— Thr(Bzl)— Tyr(Cl -Bzl)
2
- Asp(OBzl)- Leu- OH (配列番号 39) (0.23 g, 0.17 mmol), DIEA (29 μ 1, 0.17 mmol), HATU (0.065 g, 0.17 mmol)を加え、氷- MeOH浴で 1.5時間撹拌した。反応終了後、 濃縮し、イオン交換水を加えて沈殿を析出させた。ガラスフィルター上で 10%クェン酸 水溶液、水、飽和 NaHCO水溶液、水、飽和食塩水の順に洗浄した。デシケーター
3
で乾燥し、白色粉末を得た。
収率 0.47 g (94%)、 [ α ] 20 = -23.3。 (c 0.1 , DMF)ゝ融点 201- 203°C.
D
[0074] [実施例 8]
(8)フラグメント縮合による Boc- Phe- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Lys
2
(Cl-Z)-Thr(BzD-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)
2
-Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzl (配列番号 41)の合成
(8a: Boc- Phe- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- OH (配列番号 42)の合成)
2
300 mlナス型フラスコに Boc- Phe- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- OTce (配
2
列番号 23) (1.23 g, 1.00 mmol)を入れた。 90%酢酸(30.0 ml)に溶力し、亜鉛粉末(2 g)を加え撹拌した。反応終了後、ろ過、濃縮を行い、 10%クェン酸水溶液、を加えた。 析出した沈殿をろ過し、ガラスフィルター上で水洗を行った。 収量 1.05 g (95%)、 [ α ] 20 = -23.9° (c 0.1, DMF)ゝ融点 205- 208°C.
D
質量分析(ESI法): m/e = 1097.2 ([M+H]+), 1119.4 ([M+Na]+), 1135.2 ([M+K]+).
[0075] (8b: Boc-Phe-Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Lys(C卜 Z)- Thr(Bzl)- Tyr
2
(CI - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(
2
OBzl)- Gly- Gly- OBzlの合成)(配列番号 41)
300 mlナスフラスコに TFA · H- Asn- Lys(C Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OBzl)- L
2
eu- Asp(OBzl)-Phe-Lys(Cl-Z)-Thr(Bzl)-Pro-Asn-Asn-Asp(OBzl)-Gly-Gly-OBzl ( 配列番号 43) (0.354 g, 0.12 mmol)を入れ、 DMF (80 ml)に溶力し、 DIEA (20.4 1, 0.1 20 mmol)で中和した。別に Boc— Phe— Tyr(Cl— Bzl)— Asn— Ser(Bzl)— Glu(OBzl)— OH (配
2
列番号 42) (0.138 g, 0.126 mmol)を DMF(50 ml)に溶かし DIEA(21.4 /z 1, 0.126 mmol) で中和したものを用意し、氷冷撹拌下、 500 mlナス型フラスコに加えた。 HATU (0.04 8 g, 0.126 mmol)をカ卩えた。反応終了後、濃縮し飽和 NaHCO水溶液、を加え、生じ
3
た沈殿をろ過した。ガラスフィルター上で飽和 NaHCO水溶液、水、 10%クェン酸水
3
溶液、水の順に洗浄を行った。ゲルろ過クロマトグラフィー(Sephadex LH60, DMF)に よる精製を行った。
収量 = 0.352 g (73%)、 [ α ] 20 =—14.4 (c 0.1, DMF)ゝ融点 = 115- 117°C.
D
[0076] [実施例 9]
(9) Boc- Glu(OBzl)- Glu(OBzl)- Glu(OBzl)- Glu(OBzl)- Ala- Ser(Bzl)-Glu(OBzl)- Phe- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Lys(C卜 Z)- Thr(Bzl)- Tyr(Cl -Bzl)- Asp(
2 2
OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成 (保護 28残基ペプチドの合成)(配列番号 44)
(9a: Boc- [Glu(OBzl)] - Ala- Ser(Bzl)- Glu(OBzl)- OH (配列番号 45)の合成)
4
300 mlナス型フラスコに Boc- [Glu(OBzl)] -Ala- Ser(Bzl)-Glu(OBzl)- OBzl (配列番号
4
46) (1.28 g, 0.800 mmol)をいれた。酢酸(36 ml)と DMF (36 ml)によりこれを溶解させ 、続いて亜鉛粉末(2 g)を加え撹拌した。反応終了後、ろ過、濃縮を行い、 10%クェン 酸水溶液を加えた。析出した沈殿をろ過し、ガラスフィルター上で水洗を行った。 収量 1.06 g (90%)、 [ α ] 20 = 57.5° (c 0.1, DMF)ゝ融点 194- 198°C.
D
質量分析(ESI法): m/e = 1484.5 ([M+Na]"). [0077] (9b: Boc- Glu(OBzl)- Glu(OBzl)- Glu(OBzl)- Glu(OBzl)- Ala- Ser(Bzl)- Glu(OBzl)- Phe Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Lys(C卜 Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(
2 2
OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzlの合成)(配列番号 44)
300 mlナス型フラスコに TFA · H— Phe— Tyr(Cl— Bzl)— Asn— Ser(Bzl)— Glu(OBzl)— Asn— L
2
ys(Cl-Z)-
Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- As
2
n— Asn— Asp(OBzl)—
Gly-Gly-OBzl (配列番号 47) (386 mg, 96 μ mol)を入れ、 DMF (60 ml)で溶解させ、 D IEA (16.32 μ 1, 96.0 μ mol)をカ卩えた。別に Boc- [Glu(OBzl)] -Ala - Ser(Bzl)- Glu(OBzl)
4
-OH (配列番号 45) (148.0 mg, 100.8 mol)を DMF (30 ml)に溶かし DIEA (17.14.u l, 100.8 mol)で中和したものを用意し、氷冷撹拌下、 300 mlナス型フラスコに加えた。 HATU (38.0 mg, 100.8 mol)をカ卩えた。反応終了後、濃縮し飽和 NaHCO水溶液、
3 を加え、生じた沈殿をろ過した。ガラスフィルター上で飽和 NaHCO水溶液、水、 10%
3
クェン酸水溶液、水の順に洗浄を行った。ゲルろ過カラムクロマトグラフィー(Sephade X LH60, DMF)による精製を行った。
収量 0.40 g (77%), [ α ] 20 = -14.1。 (c 0.1, DMF)ゝ融点 305- 308°C.
D
[0078] [実施例 10]
(10) H- Glu- Glu- Glu- Glu- Ala- Ser- Glu- Phe- Tyr- Asn- Ser- Glu- Asn- Lys- Thr- Tyr- Asp- Leu- Asp- Phe- Lys- Thr- Pro- Asn- Asn- Asp- Gly- Gly- OHの合成(最終脱保護 反応)(配列番号 13)
50 mlナス型フラスコに氷冷下、 m -タレゾール (0.167 ml, 1.60 mmol),チオア-ソー ル (374 mg, 3.20 mmol), TFA (2.38 ml), TFMSA (0.283 ml, 3.20 mmol)を入れた。こ こに、
Boc- Glu(OBzl)- Glu(OBzl)- Glu(OBzl)- Glu(OBzl)- Ala- Ser-Glu(OBzl)- Phe- Tyr(C卜
2
Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Lys(C卜 Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OBzl)- Le
2
u- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- Gly- OBzl ( 配列番号 44) (0.350 mg, 0.0640 mmol)を力卩ぇ静置した。 2時間後、蒸留エーテルをカロ え、冷蔵庫に一晩放置した。遠沈管に移し、遠心器にかけて上清を除いた。これを 3 回繰り返した。乾燥した後、得られた粉末を DMFに溶解させた。これをゲルろ過カラ ムクロマトグラフィー(Sephadex LH60, DMF)にかけることで精製を行った。生成物の 確認は質量分析法により行った。図 3、 4にスペクトルデータを示す。
収量 0.160 g (81%)、 [ α ] 20 = -21.3 (c 0.1, DMF)ゝ融点 274-276°C.
D
質量分析(MALDI- TOF法): m/e = 3242.1 ([M+H]+), 3224.1 ([M+H-H 0]+).
2
[0079] [実施例 11]
(11) Boc- Asn- Asn- Asp(OBzl)- Gly- OTceの合成(配列番号 50)
(11a: Boc- Asp(OBzl)- Gly- OTceの合成)
HCl-H-Gly-OTce (5.09 g,20.0 mmol)を蒸留ジクロロメタンに溶解し、 NMM (2.20 m 1, 20.0 mmol)で中和後、 Boc- Asp(OBzl)- OH (7.11 g,22.0 mmol), DCC (4.54 g, 22.0 mmol),を加えて撹拌した。
DCUreaをろ取後、ろ液をエバポレーターで濃縮した。残さを AcOEtに溶かし、 10%ク ェン酸水、水、飽和 NaHCO水、水、飽和食塩水の順に洗浄し、無水 Na SOで乾燥
3 2 4 させた。濃縮後、得られたオイルを AcOEt :ベンゼン = 1:3, AcOEt :ベンゼン = 1:1の 展開溶媒を用いたシリカゲルカラムクロマトグラフィーにより精製した。
収量 6.24 g (61%) (オイル状生成物)
JH-NMR (CDC1 , 300 MHz): 7.26 (10H,— Bzl), 4.73 (2H, -OTce— CH -), 7.06, 5.56
3 2
(2H, NH), 5.16, 5.10 (4H, Bzl— CH -), 4.52, 4.09 and (3H, a CH), 3.13 and 2.80 (
2
2H, Asp β CH ), 1.44 (9H, Boc t— Bu).
2
[0080] (l ib : Boc- Asn- Asp(OBzl)- Gly- OTceの合成)
HC1 - H-Asp(OBzl)-Gly-OTce (5.68 g, 12.7 mmol)を DMFに溶解し、 NMM (1.34 ml , 12.7 mmol)で中和後、 Boc- Asn- OH (3.11 g, 14.0 mmol), HOBt (3.62 g, 28.0 mmol ), EDC -HCl (2.57 g, 14.0 mmol)をカ卩えて撹拌した。濃縮後、残さを AcOEtに溶解し、 10%クェン酸水、水、飽和 NaHCO水、水、飽和食塩水の順に洗浄し、無水 Na SOで
3 2 4 乾燥させた。濃縮後、へキサンを加えて沈殿を得た。
収量 5.08 g (64%)、 [ α ] 20 = -3.8° (c 0.1, MeOH)ゝ融点 93- 95°C. 1H-NMR (DMSO-d , 300 MHz) : 7.35 (10H, Bzl), 4.88 (2H,— OTce— CH -), 7.60, 6,
6 2
02, 5.93, 5.55 (5H, NH), 5.12, 5.07 (4H, Bzl— CH -), 4.87, 4.41 (2H, a CH), 4.11 ,
2
4.08 (2H, Gly a CH), 2.86, 2.67, 2.52, 2.43 (4H, j8 CH), 1.36 (9H, Boc t— Bu).
[0081] ( 11 Boc- Asn- Asn- Asp(OBzl)- Gly- OTceの合成)(配列番号 50)
TFA' H- Asn- Asp(OBzl)- Gly- OTce (1.12 g, 2.00 mmol)を DMFに溶解し、 NMM (220 ml, 2.00 mmol)で中和した後、 Boc- Asn- OH (0.51 g, 2.20 mmol), HOBt (0.60 g, 4.4 0 mmol), EDC - HC1 (0.44 g, 2.20 mmol)をカ卩えた。反応終了後、濃縮し、残さにィォ ン交換水を加えて沈殿を析出させた。ろ過後、ガラスフィルター上で 10%クェン酸水、 水、飽和 NaHCO水、水、飽和食塩水の順に洗浄した。
3
得られた沈殿を DMFに溶解し、エーテルを加え沈殿を得た。
収量 1.29 g (87%)、 [ α ] 20 = -26.4° (c 0.1 , DMF)ゝ融点 206- 208°C.
D
質量分析(ESI法): m/e = 639.0 ([M+H]+), 1279.4 ([2M+H]+).
1H-NMR (DMSO-d , 500 MHz): 7.37 (10H, Bzl), 4.90 (2H, -OTce— CH -), 8.37, 8.
6 2
13, 8.06, 7.44, 6.99, 6.92 (8H, NH), 5.12, 5.08 (4H, Bzl - CH -), 4.65, 4.46, 4.24,
2
3.91 (5H, a CH), 2.89, 2.64, 2.56, 2.40 (4H, j8 CH), 1.36 (9H, Boc t- Bu).
[0082] [実施例 12]
( 12) Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成(配列番号 51) ( 12a : Boc- Gly- Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 52)
300 mlナス型フラスコに HCl ' H- Ala- Ser(Bzl)- Glu(OBzl)- OTce(4.5 mmol),蒸留 TH F (40 ml)を入れた。 NMM (495 ml, 4.5 mmol)で中和し、 Boc- Gly- OH(0.867 g, 4.95 mmol), HOBt (0.867 g, 4.95 mmol), EDC - HC1 (0.949 g, 4.95 mmol)を加えた。反 応終了後、残さを AcOEtに溶かした。 10%クェン酸水、水、飽和 NaHCO水、水、飽和
3
食塩水の順に洗浄を行い、無水 Na SOにより乾燥した。ろ過後、減圧濃縮し、 CHC1
2 4 3
—へキサンで結晶化を行い、白色沈殿を得た。
収量 3.10 g (89%)、 [ α ] 20 = -27.4 (c 0.1 , MeOH)ゝ融点 142- 144°C.
D
1H-NMR (CDC1 , 300 MHz): 7.35, 6.89, 6.68, 5.09 (4H, NH); 7.33, 7.30 (10H, Glu
3
OBzl, Ser Bzl); 5.09 (2H, Glu OBzl— CH -); 4.86, 4.65 (2H, -OTce— CH -); 4.73, 4
2 2
.43, 3.92, 3.72 (5H, a CH); 4.53 (2H, Ser Bzl— CH -); 3.61 (2H, Ser β CH ); 2.47 ( 2H, Glu y CH ); 2.30, 2.11 (2H, Glu β CH ); 1.44 (9H, Boc t— Bu); 1.42, 1.39 (3H,
2 2
Figure imgf000040_0001
[0083] (12b : Boc- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成)(配列番号 53)
300 mlナス型フラスコに HC1 · H- Gly- Ala- Ser(Bzl)-Glu(OBzl)- OTce (配列番号 54) ( 4.5 mmol), DMF (40 ml)を入れた。 NMM (495 ml, 4.5 mmol)で中和し、 Boc- Gly- O H(0.867 g, 4.95 mmol), HOBt (0.867 g, 4.95 mmol), EDC -HCl (0.949 g, 4.95 mmol) を加えた。反応終了後、残さを AcOEtに溶かした。 10%クェン酸水、水、飽和 NaHC 0水、水、飽和食塩水の順に洗浄を行い、無水 Na SOにより乾燥した。ろ過後、減
3 2 4
圧濃縮し、 AcOEt-へキサンで結晶化を行い、白色沈殿を得た。
収量 3.43 g (92%)、 [ α ] 20 = -24.4° (c 0.1, MeOH)ゝ融点 132- 134。C.
D
質量分析(ESI法): m/e = 830.2 ([M+H]+), 850.2 ([M+Na]+).
JH-NMR (DMSO-d , 300 MHz): 8.40, 8.10, 8.01, 7.95, 6.98 (5H, NH); 7.33, 7.29 (
6
10H, Glu OBzl, Ser Bzl); 5.07 (2H, Glu OBzl— CH -); 4.91, 4.81 (2H, -OTce— CH )
2 2
; 4.53, 4.41, 4.35, 3.60, 3.54 (7H, a CH); 4.47 (2H, Ser Bzl— CH -); 3.61 (2H, Ser
2
β CH ); 2.49 (2H, Glu y CH ); 2.12, 1.96 (2H, Glu β CH ); 1.37 (9H, Boc t— Bu); 1
2 2 2
.20, 1.17 (3H, Ala j8 CH ).
3
[0084] (12c: Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- OTceの合成(配列番号 54)
300 mlナス型フラスコに HC1 · H- Gly- Gly- Ala- Ser(Bzl)-Glu(OBzl)- OTce (配列番号 55) (1.07 g, 1.4 mmol), DMF (30 ml)を入れた。 NMM (154 ml, 1.4 mmol)で中和し、 Boc-Cys(Acm)-OH (0.45 g, 1.54 mmol), HOBt (0.236 g, 1.54 mmol), EDC -HCl (0. 295 g, 1.54 mmol)を加えた。反応終了後、残さを AcOEtに溶かした。 10%クェン酸水 、水、飽和 NaHCO水、水、飽和食塩水の順に洗浄を行い、無水 Na SOにより乾燥し
3 2 4
た。ろ過後、減圧濃縮し、 CHC1 -へキサンで結晶化を行い、白色結晶を得た。
3
収量 1.21 g (86%)、 [ α ] 20 = -29.8° (c 0.1, MeOH)ゝ融点 142- 143°C、質量分析(
D
ESI法): m/e = 1026.3 ([M+Na]").
1H-NMR (DMSO-d , 300 MHz): 8.49, 8.43, 8.15, 8.03, 7.01 (7Η, NH); 7.35, 7.31 (
6
10H, Glu OBzl, Ser Bzl); 5.08 (2H, Glu OBzl— CH -); 4.92, 4.82 (2H, -OTce— CH
2 2
-); 4.56, 4.38, 4.35, 4.25, 3.74, 3.62 (8H, a CH); 4.48 (2H, Ser Bzl— CH -); 4.19 ( 2H, Acm— CH -); 3.62 (2H, Ser β CH ); 2.92, 2.67 (2H, Cys β CH ); 2.49 (2H, Gl
2 2 2
u γ CH ); 2.13, 1.97 (2H, Glu β CH ); 1.84 (3H, Acm— CH ); 1.38 (9H, Boc t— Bu);
2 2 3
1.21, 1.19 (3H, Ala β ΟΗ ).
3
[0085] [実施例 13]
( 13)フラグメント縮合による Boc- Asp(OBzl)- Phe- Lys(C Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly -OTceの合成(配列番号 56)
ナスフラスコに TFA'H- Asn- Asn- Asp(OBzl)- Gly- OTce (配列番号 57) (0.64 g, 0.85 mmol)をいれ、 DMFに溶力した。 NMM (93ml)で中和し、 Boc- Asp(OBzl)- Phe- Lys(Cl — Z)— Thr(Bzl)— Pro— OH (配列番号 36)(0.94 g, 8.9 mmol), HOBt (0.67 g, 0.50 mmol), EDC -HCl (0.47 g, 2.50 mmol)をカ卩ぇ撹拌した。反応終了後、 DMFを濃縮し、イオン 交換水をカ卩えて沈殿を析出させた。ガラスフィルター上で 10%クェン酸水、水、飽和 N aHCO水、水、飽和食塩水の順に洗浄した。デシケーターで乾燥し、白色粉末を得
3
た。
得られた結晶を DMF-エーテル-へキサンで 2度再結晶を行 、、白色の結晶を得た。 収量 0.94 g (66%)、 [ α ] 20 = -60.5。 (c = 0.1, DMF)ゝ融点 172-174°C.
D
質量分析(ESI法): m/e = 639.0 ([M+H]+).
[0086] [実施例 14]
(14)フラグメント縮合による Boc- Asn- Lys(C卜 Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OBzl)-
2
Leu- Asp(OBzl)- Phe- Lys(C Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- OTceの合 成 (配列番号 58)
TFA-H-Asp(OBzl)-Phe-Lys(Cl-Z)-Thr(Bzl)-Pro-Asn-Asn-Asp(OBzl)-Gly-OTce (配列番号 59) (0.87 g, 0.52 mmol)を DMFに溶解し、 Boc- Asn- Lys(Q-Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OBzl)- Leu- OH (配列番号 19) (0.74 g, 0.54 mmol), DIEA (263 ml,
2
1.56 mmol), HATU (0.21 g, 0.55 mmol)をカ卩え、氷- MeOH浴で 1.5時間撹拌した。反 応終了後、濃縮し、イオン交換水を加えて沈殿を析出させた。ガラスフィルター上で 1 0%クェン酸水、水、飽和 NaHCO水、水、飽和食塩水の順に洗浄した。
3
得られた結晶を CH C1:TFE=3:1- MeOHで再結晶を行 、精製した。
3
収量 1.14 g (75%)、 [ a ] 20 = -26.5° (c 0.1, DMF)ゝ融点 236- 238。C. [0087] [実施例 15]
( 15)フラグメント縮合による Boc- Phe- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Ly
2
s(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)
2
-Pro- Asn- Asn- Asp(OBzl)- Gly- OTceの合成(配列番号 60)
ナスフラスコに TFA. H- Asn- Lys(C卜 Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp
2
(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- OTce (配列番号 61 ) (1.10 g, 0.38 mmol)を入れ DMFに溶かし、 Boc- Phe- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu
2
(OBzl)-OH (配列番号 42) (0.45 g, 0.40 mmol), DIEA (211 μ 1, 1,24 mmol), HATU ( 0.048 g, 0.126 mmol)をカ卩えた。反応終了後、濃縮し飽和 NaHCO水を加え、生じた
3
沈殿をろ過した。ガラスフィルター上で飽和 NaHCO水、水、 10%クェン酸水、水の順
3
に洗浄を行った。ゲルろ過クロマトグラフィー(Sephadex LH60, DMF)による精製を 行った。
収量 0.63 g (42%)、 [ α ] 20 = -16.5。 (c 0.1, DMF)ゝ融点 188- 189°C.
D
[0088] [実施例 16]
(16)フラグメント縮合による Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- Phe- T yr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Lys(C卜 Z)- Thr(Bzl)- Tyr(Cl - Bzl)- Asp(OB
2 2 zl)- Leu- Asp(OBzl)- Phe- Lys(C Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- OTceの 合成 (配列番号 62)
(16a: Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- OHの合成)(配列番号 63) 200 mlナス型フラスコに Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- OTce ( 配列番号 51) (0.603 g, 0.60 mmol)を入れた。 90%酢酸水溶液 (10 ml)に溶力し、亜 鉛粉末 (2 g)を加え撹拌した。反応終了後、ろ過、濃縮を行い、 10%クェン酸水を加え た。析出した沈殿をろ過し、ガラスフィルター上で水洗を行った。
収量 0.380 g (72%)、 [ α ] 20 = -23.0° (c = 0.1, DMF)ゝ融点: 139- 141°C.
D
質量分析(ESI法): m/e = 896.4 ([M+Na]"), 912.4 ([M+K]+).
1H-NMR (DMSO-d , 300 MHz): 8.45, 8.10, 8.01, 6.98 (7H, NH); 7.33, 7.30 (10H,
6
Glu OBzl; Ser Bzl); 5.06 (2H, Glu OBzl— CH -); 4.49, 4.36, 4.24, 3.73, 3.61 (8H,
2
a CH); 4.47 (2H, Ser Bzl— CH -); 4.18 (2H, Acm— CH -); 3.61 (2H, Ser β CH ); 2. 91, 2.67 (2H, Cys β CH ); 2.40 (2H, Glu y CH ); 2.05, 1.89 (2H, Glu β CH ); 1.83
2 2 2
(3H, Acm— CH ); 1.37 (9H, Boc t— Bu); 1.19, 1.12 (3H, Ala β CH ).
3 3
[0089] (16b : Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- Phe- Tyr(Cl - Bzl)- Asn- Ser(
2
Bzl)-Glu(OBzl)-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)-
2
Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- OTceの合成)(配列番号 62 )
フラスコに TFA · H-Glu(OBzl)-Phe-Tyr(Cl— Bzl)— Asn— Ser(Bzl)— Glu(OBzl)— Asn— Lys
2
(Cl-Z)-Thr(BzD-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)-
2
Pro- Asn- Asn- Asp(OBzl)- Gly- OTce (配列番号 64) (0.59 g, 0.13 mmol)を入れ DMF に溶力し、別に Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- OH (配列番号 63) (0.157 g, 0.18 mmol), DIEA(77.0 ml, 0.45 mmol), HATU(69.0 mg, 0.18 mmol)をカロ えた。反応終了後、濃縮し飽和 NaHCO水を加え、生じた沈殿をろ過した。ガラスフィ
3
ルター上で飽和 NaHCO水、水、 10%クェン酸水、水の順に洗浄を行った。ゲルろ過
3
クロマトグラフィー (Sephadex LH60, DMF)による精製を行った。
収量 0.48 g (69%).
[0090] [実施例 17]
H-Cys(Acm -uly-uly-Ala-¾er-Giu-Phe-Tyr-Asn-Ser-Glu-Asn-Lys-Thr-Tyr- As p- Leu- Asp- Phe- Lys- Thr- Pro- Asn- Asn- Asp- Gly- OHの合成(最終脱保護反応) ( 配列番号 48)
(17a: Boc- Cvs(Acm)- Gly- Gly- Ala- Ser(Bzl)- Glu(OBzl)- Phe- Tyr(Cl - Bzl)- Asn- Ser(
2
Bzl)-Glu(OBzl)-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)-
2
Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- OHの合成)(配列番号 65) フラスコに Boc- Cys(Acm)- Gly- Gly- Ala- Ser(Bzl)-Glu(OBzl)- Phe- Tyr(Cl -Bzl)- Asn
2
-Ser(Bzl)-Glu(OBzl)-Asn-Lys(Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(0
2
Bzl)- Phe- Lys(C卜 Z)- Thr(Bzl)- Pro- Asn- Asn- Asp(OBzl)- Gly- OTce (配列番号 62) (0. 48 g, 0.10 mmol)を入れ、 DMF (7 ml)に溶力し、 CH COOH (3 ml)をカ卩えた。 Zn粉末(
3
1.0 g)を加えて室温で 1時間撹拌した。反応終了後、ろ過し、ろ液を濃縮した。 10%ク ェン酸水を加え、得られた沈殿をガラスフィルター上でイオン交換水により洗浄した。 収量 298 mg (62%).
[0091] (17b : H—Cys(Acm)— Gly— Gly— Ala— Ser— Glu— Phe— Tyr— Asn— Ser— Glu— Asn— Lys— Thr— T yr- Asp- Leu- Asp- Phe- Lys- Thr- Pro- Asn- Asn- Asp- Gly- OHの合成(最終脱保護反 応)(配列番号 48)
フラスコに氷冷下、 m—クレゾ一ノレ (0.33 ml, 3.2 mmol),チオア-ソーノレ (0.37 ml, 3. 2 mmol), TFA(0.94 ml), TFMSA (0.352 ml, 3.2 mmol)を入れた。 Boc— Cys(Acm)— Gly - Gly- Ala- Ser(Bzl)- Glu(OBzl)- Phe- Tyr(Cl - Bzl)- Asn- Ser(Bzl)- Glu(OBzl)- Asn- Lys(
2
Cl-Z)-Thr(Bzl)-Tyr(Cl - Bzl)- Asp(OBzl)- Leu- Asp(OBzl)- Phe- Lys(C卜 Z)- Thr(Bzl)-
2
Pro- Asn- Asn- Asp(OBzl)- Gly- OH (配列番号 65) (298 mg, 64 mmol)を力卩ぇ静置した 。 2時間後、蒸留エーテルを加え、上清を除いた (X 3)。乾燥した後、ゲルろ過クロマト グラフィー (Sephadex LH60, DMF)による精製を行った。生成物の確認は質量分析法 により行った。図 6にスペクトルデータを示す。
収量 150 mg (77%)、融点 197°C.
質量分析(ESI法): m/e = 1480.1 ([M+2H]2+)、 987.1 ([M+3H]3+).
[0092] [実施例 18]
(18) H- Glu- Glu- Glu- Glu- Ala- Ser- Glu- Phe- Tyr- Asn- Ser- Glu- Asn- Lys- Thr- Tyr- Asp- Leu- Asp- Phe- Lys- Thr- Pro- Asn- Asn- Asp- Gly- Gly- OH (配列番号 13)を用 いた蛍光 ELISA法による熱帯熱マラリア患者の検出
実施例 10で合成された、ペプチドィ匕合物(配列番号 13) 500 gを抗原として、ジメ チルスルホキシド 100 1に溶解させ、次いでこの溶液に 0.05 Μのカーボネートバッフ ァー(ρΗ9.6) 1900 μ 1をカ卩えた。これを抗原溶液として 96穴のプラスティックプレートの 各穴に 70 1づっ注入し、プレート上にペプチド化合物を固着させた。
[0093] 被検血清としては日本国内の病院でインフォームドコンセントのもとに採血された熱 帯熱マラリア患者血清を、対照血清としては日本国内でインフォームドコンセントのも とに採血された非感染者の血清を、それぞれ用いた。これらの被検血清と対照血清 を各穴に加えて血清中の抗体をペプチド化合物(配列番号 13)と反応させた。
[0094] 血清を除!、た後、ヒトイムノグロブリンに対する酵素標識 2次抗体を反応させた。最 後に各穴に残った酵素を蛍光基質液 (0.1 Μトリス- HCレ ッファー溶液で 200 Μに 希釈した 4-メチルアンべリフエリル-フォスフェート溶液)と反応させる。測定はマイクロ フルォロリーダー (ダイナテツクック社製)で行った。抗体価の測定結果は相対蛍光単 位 (RFU値)で表示した。
[0095] 図 7には、ペプチド化合物(配列番号 13)を用いて蛍光 ELISA法で測定された、熱 帯熱マラリア患者血清の抗体価(1〜7)を示す。比較として非感染者血清の抗体価 ( 8〜12)を示す。患者の抗体価の平均値(181)は非感染者の抗体価の平均値 (67)よ り大きいことがわ力つた。すなわち実施例で合成されたペプチドィ匕合物 (配列番号 13 )は免疫診断に用いることのできる材料であるとわかる。すなわち免疫診断材料として 有用である。
産業上の利用の可能性
[0096] 本発明に従ってペプチド化合物を合成することで、マラリア原虫エノラーゼの部分 ペプチドを含む化合物を得ることができる。本発明の方法で得られたペプチドはヒト および他の動物との免疫反応を利用したマラリア原虫に対する免疫学的応答を誘発 することができる。さらに、マラリア感染への免疫状態の診断材料、熱帯熱マラリア原 虫(Plasmodium falciparum)の増殖を抑える免疫用抗原として使用することができる。

Claims

請求の範囲
[1] アミノ酸配列 Xaa Ala Ser Glu Phe Tyr Asn Ser Glu Asn Lys Thr Tyr Asp Leu Asp Phe Lys Thr Pro Asn Asn Asp Xaa (配列番号 1)を有するペプチドの製造方法であつ て、該ペプチドを、以下の (i)〜(v)のフラグメントを結合させることによって製造するこ とを特徴とする方法。
(V) Asn- Asn- Asp- Xaa (配列番号 2)
(iv) Asp- Phe- Lys- Thr- Pro (配列番号 3)
(iii) Asn— Lys— Thr— Tyr— Asp— Leu (配列番号 4)
(ii) Phe- Tyr- Asn- Ser- Glu (配列番号 5)
(i) Xaa- Ala- Ser- Glu (配列番号 6)
( (i)、 (v)において、 Xaaは 0を含む任意の数のアミノ酸残基を示す)
[2] 以下の修飾ペプチドを結合させ、脱保護することにより配列番号 1のペプチドを製 造する、請求項 1に記載の製造方法。
(V)Asn(R )— Asn(R )— Asp(R )— Xaa
15 16 17
(配列番号 7 : R と R は (C H ) C-)または無保護であり、 R は C H CH - 0-又は (CH
15 16 6 5 3 17 6 5 2 3
) C- 0-である。 )
3
(iV)Asp(R )-Phe-Lys(R )- Thr(R14)- Pro
12 13
(配列番号 8 : R は C H CH -又は (CH ) C-であり、 R は (CH ) C— O— CO— , C H CH -
12 6 5 2 3 3 13 3 3 6 5 2
O— CO— , 2— chlorobenzyloxycarbonyl—又 ίま 9— fluorenylmethoxycarbonyl—であり、 R 【ま
14
C H CH -又は (CH ) C-である。)
6 5 2 3 3
(III) Asn(R )-Lys(R )— Thr(R )— Tyr(R )— Asp(Rl 1)— Leu
7 8 9 10
(配列番号 9 : Rは H ) C-または無保護であり、 Rは (CH ) C-0-CO-, C H CH - O
7 6 5 3 8 3 3 6 5 2
-CO-, 2— chlorobenzyloxycarbonyl—又 ίま 9— fluorenylmethoxycarbonyl—であり、 R ίま C
9 6
H CH -又は (CH ) C-であり、 R はじ H - CH -又は CI - C H - CH -又は (CH ) C-で
5 2 3 3 10 6 5 2 2 6 3 2 3 3 あり、 R は C H CH—又は (CH ) C—である。)
11 6 5 2 3 3
(II) Phe-Tyr(R )— Asn(R )— Ser(R )— Glu(R )
3 4 5 6
(配列番号 10 : Rは C H— CH -, CI— C H— CH -又は (CH ) C-であり、 Rは H ) C—
3 6 5 2 2 6 3 2 3 3 4 6 5 3 または無保護であり、 Rはじ H CH -又は (CH ) C-であり、 Rはじ H CH - O-又は (CH
5 6 5 2 3 3 6 6 5 2 ) C- o-である。 )
3 3
(I) Xaa— Ala— Ser(R )— Glu(R )
1 2
(配列番号 11 : Rは (C H CH -又は (CH ) C-であり、 Rは C H CH - O-又は (CH ) C—
1 6 5 2 3 3 2 6 5 2 3 3 o-である。)
[3] 1—ェチル 3— (3 ジメチルァミノプロピル)一カルボジイミドと 1—ヒドロキシベン ゾトリアゾールの組合わせ、 2-(1Η-ベンゾトリアゾール -1-ィル) -1,1, 3,3-テトラメチル ゥロニゥムへキサフルオロフォスフェートと 1ーヒドロキシベンゾトリアゾールの組合わ せ、または 0-(7-ァザべンゾトリアゾール -1-ィル) -1,1, 3,3-テトラメチルゥ口-ゥムへキ サフルオロフォスフェートの 、ずれかを用いて前記ペプチドを縮合させることを特徴と する請求項 1または 2に記載の製造方法。
[4] 請求項 1〜3のいずれかに記載の方法によって配列番号 1のペプチドを製造し、さら に、該ペプチドの N末端または C末端の一方または両方に糖鎖配列、ペプチド、タン パク質、多糖、金属錯体、高分子担体、ゲル、フィルム、ラテックス粒子、金属微粒子 またはプラスチックプレートを結合させる、末端が修飾された配列番号 1のペプチドの 製造方法。
[5] 請求項 1〜3のいずれか 1項に記載の方法によって配列番号 1のペプチドを製造す る工程、及び該ペプチドを医薬的に許容可能な担体と配合する工程を含む、マラリ ァ原虫感染症の予防もしくは治療のための医薬、またはマラリア原虫感染症の診断 薬の製造方法。
[6] 請求項 4に記載の方法によって末端が修飾された配列番号 1のペプチドを製造す る工程、及び該ペプチドを医薬的に許容可能な担体と配合する工程を含む、マラリ ァ原虫感染症の予防もしくは治療のための医薬、またはマラリア原虫感染症の診断 薬の製造方法。
[7] 実質的に L体のみからなる N a -t-ブトキシカルボ-ル-グルタミン酸- γ -ベンジル- a -トリクロロェチノレエステノレ。
[8] 請求項 7に記載の N a -t-ブトキシカルボ-ル-グルタミン酸- γ -ベンジル- a -トリクロ 口ェチルエステルを用いることを特徴とする、ペプチドの製造方法。
PCT/JP2005/017851 2004-09-28 2005-09-28 熱帯熱マラリア原虫のエノラーゼ蛋白質の部分ペプチドの製造方法 WO2006035815A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/663,962 US7713926B2 (en) 2004-09-28 2005-09-28 Method of producing partial peptide of enolase protein from Plasmodium falciparum
EP05788001A EP1803731A4 (en) 2004-09-28 2005-09-28 METHOD FOR THE PRODUCTION OF A PARTEPEPTIDE OF THE ENOLASEPROTEIN FROM PLASMODIUM FALCIPARUM
JP2006537772A JP4568842B2 (ja) 2004-09-28 2005-09-28 熱帯熱マラリア原虫のエノラーゼ蛋白質の部分ペプチドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-281518 2004-09-28
JP2004281518 2004-09-28

Publications (1)

Publication Number Publication Date
WO2006035815A1 true WO2006035815A1 (ja) 2006-04-06

Family

ID=36118961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017851 WO2006035815A1 (ja) 2004-09-28 2005-09-28 熱帯熱マラリア原虫のエノラーゼ蛋白質の部分ペプチドの製造方法

Country Status (4)

Country Link
US (1) US7713926B2 (ja)
EP (1) EP1803731A4 (ja)
JP (1) JP4568842B2 (ja)
WO (1) WO2006035815A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256324A (ja) * 2008-03-27 2009-11-05 Gunma Univ 微粒子およびその製造方法
WO2016084944A1 (ja) * 2014-11-28 2016-06-02 国立大学法人 群馬大学 熱帯熱マラリア原虫のエノラーゼタンパク質の部分配列を用いた人工抗原とその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105428B (zh) * 2015-06-23 2022-08-05 首都医科大学 Leu-Arg-Ala-Pro-Leu-Tyr-Val七肽,其合成,活性和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371098A (ja) * 2001-06-11 2002-12-26 Japan Atom Energy Res Inst マラリア感染診断材及びマラリア原虫の増殖を抑える免疫用抗原

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697022B1 (fr) * 1992-10-19 1994-12-16 Pasteur Institut Antigènes de Plasmodium falciparum capables d'induire des anticorps protecteurs à large spectre - Application à la vaccination.
US20050208078A1 (en) * 2003-11-20 2005-09-22 Hoffman Stephen L Methods for the prevention of malaria

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371098A (ja) * 2001-06-11 2002-12-26 Japan Atom Energy Res Inst マラリア感染診断材及びマラリア原虫の増殖を抑える免疫用抗原

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KATAKAI R ET AL: "Synthesis of sequential polydepsipeptides utilizing a new approach for the synthesis of depsipeptides.", BIOPOLYMERS., vol. 73, no. 6, 15 April 2004 (2004-04-15), pages 641 - 644, XP002994983 *
OKU H ET AL: "Addition of a peptide fragment on an alpha-helical depsipeptide induces alpha/3(10)-conjugated helix: synthesis, crystal structure, and CD spectra of Boc-Leu-Leu-Ala-(Leu-Leu-Lac)3-Leu-Leu-OEt.", BIOPOLYMERS., vol. 75, no. 3, 15 October 2004 (2004-10-15), pages 242 - 254, XP002994982 *
See also references of EP1803731A4 *
VANNERSTROM JL ET AL: "Identification of an antimalarial synthetic trioxolane drug development candidate.", NATURE., vol. 430, no. 7002, 19 August 2004 (2004-08-19), pages 900 - 904, XP002994981 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256324A (ja) * 2008-03-27 2009-11-05 Gunma Univ 微粒子およびその製造方法
WO2016084944A1 (ja) * 2014-11-28 2016-06-02 国立大学法人 群馬大学 熱帯熱マラリア原虫のエノラーゼタンパク質の部分配列を用いた人工抗原とその製造方法
CN107001435A (zh) * 2014-11-28 2017-08-01 国立研究开发法人日本医疗研究开发机构 使用了恶性疟原虫的烯醇化酶蛋白质的部分序列的人工抗原及其制造方法
US10583184B2 (en) 2014-11-28 2020-03-10 Shigeyuki Kano Artificial antigen produced using partial sequence of enolase protein originated from plasmodium falciparum, and method for producing same

Also Published As

Publication number Publication date
EP1803731A1 (en) 2007-07-04
US20070269377A1 (en) 2007-11-22
JPWO2006035815A1 (ja) 2008-05-15
EP1803731A4 (en) 2011-01-26
US7713926B2 (en) 2010-05-11
JP4568842B2 (ja) 2010-10-27

Similar Documents

Publication Publication Date Title
JP2594259B2 (ja) 膜アンカー/活性化合物接合体およびその製法
EP2611825B1 (en) Solid phase synthesis of h(gly2)glp-2
WO2007063903A1 (ja) 新規ペプチド化合物
JPH03504013A (ja) T細胞ヘルパー活性を有するペプチド
CA1340007C (en) Linear analogs of atrial natruiretic peptides
EP0597997B1 (en) Lanthionine bridged peptides
US6455244B1 (en) Methods for the detection of antibodies associated with autoimmune disorders and infectious agents employing immunoretroid peptides derived from antigens associated with said disorders and agents
Hudecz Manipulation of epitope function by modification of peptide structure: a minireview
EP0450715B1 (en) Immunogenic compounds, the process for their synthesis and their use in the preparation of antimalaria vaccines
RU2249599C2 (ru) Циклопептиды, способ их получения и применение в качестве ингибиторов или активаторов антиогенеза
JP4568842B2 (ja) 熱帯熱マラリア原虫のエノラーゼ蛋白質の部分ペプチドの製造方法
AU2004242787B9 (en) Methods for synthesizing conformationally constrained peptides, peptidometics and the use thereof as synthetic vaccines
Inman et al. Synthesis of N. alpha.-(tert-butoxycarbonyl)-N. epsilon.-[N-(bromoacetyl)-. beta.-alanyl]-L-lysine: Its use in peptide synthesis for placing a bromoacetyl cross-linking function at any desired sequence position
DeGraw et al. Stabilized analogs of thymopentin. 1. 4, 5-ketomethylene pseudopeptides
GB2282813A (en) Annular antigen scaffolds comprising thioether linkages
JPH051798B2 (ja)
US20040176283A1 (en) Methods and compositions for the design of synthetic vaccines
Lozano et al. Mapping the anatomy of a Plasmodium falciparum MSP-1 epitope using pseudopeptide-induced mono-and polyclonal antibodies and CD and NMR conformation analysis
WO1993021206A1 (en) Synthetic, stabilized, three-dimension polypeptides
JP3294695B2 (ja) エルカトニン水溶液剤の振とう安定化剤
JP3457004B2 (ja) hPTH(1−37)配列由来のペプチド
Holm et al. Ligand‐presenting assembly: a method for C‐and N‐terminal antigen presentation
EP0398443B1 (en) Immunogenic compounds and their use in the preparation of genetically unrestricted synthetic vaccines and in the immunoenzymatic determination of antisporozoite antibodies of plasmodium malariae
Inman et al. Nu-(tert-Butoxycarbonyl)-N-[N-(bromoacetyl)-@-alanyl]-L-lysine: Its Use in Peptide Synthesis for Placing Cross-Linking Function at Any Desired Sequence Position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPON
IT9019800A1 (it) Composti immunogenici e loro impiego per la preparazione di vaccini sintetici geneticamente non ristretti per la determinazione immunoenzimatica di anticorpi anti-sporozoita di plasmodium malariae

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537772

Country of ref document: JP

Ref document number: 11663962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005788001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1781/CHENP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005788001

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11663962

Country of ref document: US