WO2006035609A1 - Method for trace analysis and analyzer therefor - Google Patents

Method for trace analysis and analyzer therefor Download PDF

Info

Publication number
WO2006035609A1
WO2006035609A1 PCT/JP2005/016979 JP2005016979W WO2006035609A1 WO 2006035609 A1 WO2006035609 A1 WO 2006035609A1 JP 2005016979 W JP2005016979 W JP 2005016979W WO 2006035609 A1 WO2006035609 A1 WO 2006035609A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
fluorine
fluoride
mixed gas
Prior art date
Application number
PCT/JP2005/016979
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Sakai
Hiromoto Ohno
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to JP2006537674A priority Critical patent/JP4699377B2/en
Publication of WO2006035609A1 publication Critical patent/WO2006035609A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8859Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample inorganic compounds

Definitions

  • the present invention relates to a method for analyzing a trace component contained in a mixed gas containing fluorine gas. More specifically, the present invention comprises a fluorine gas and a diluent gas. The present invention relates to a method for easily and accurately analyzing carbon oxide, carbon dioxide, and other trace components, and an analyzer for the same.
  • the usable filler is limited to a filler that does not react with fluorine, and in such a filler, fluorine gas and Since there is no suitable filler for separating other components such as oxygen, there is a problem that the components that cannot be separated cannot be analyzed.
  • the method (2) in the case of fluorine gas diluted with a rare gas or the like, there is a problem that fluorine is not completely fixed by the metal fluoride and fluorine gas remains.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-287001
  • the present invention seeks to solve the problems associated with the prior art as described above, eliminates the disadvantages of the conventional methods, and contains a mixture containing fluorine that can be used as a special material gas for semiconductors. It is an object of the present invention to provide a method for simply and accurately analyzing a trace component contained in a gas and to provide an analyzer for the method.
  • the present invention relates to a method for analyzing a trace component contained in a mixed gas containing fluorine shown in the following [1] to [6] and an analyzer therefor.
  • a method for analyzing a trace component comprising: converting the fluorine gas into hydrogen fluoride, removing the fixed hydrogen fluoride, and then analyzing the trace component.
  • the hydrogen fluoride fixed layer removal uses a layer filled with an alkali metal fluoride.
  • the concentration power of fluorine gas in the mixed gas is 30 vol% or less.
  • a gas sampler with a sample metering tube connected to a hexagonal switching valve that can switch the carrier gas flow path, and a sample metering tube that can dispense a certain amount of sample, and Gas chromatograph
  • the trace gas analyzer is arranged such that the mixed gas and the hydrogen-containing material force flow in this order.
  • a fluorine gas and a diluent gas are used, and a mixed gas containing a trace component and a hydrogen-containing substance are reacted to convert the fluorine gas into hydrogen fluoride, thereby fixing and removing hydrogen fluoride.
  • analysis by gas chromatograph makes it possible to analyze the trace components contained in the mixed gas containing fluorine simply, accurately and efficiently.
  • FIG. 1 is a diagram showing an analysis device for trace components in a mixed gas containing fluorine gas according to the present invention.
  • FIG. 2 is an enlarged view of the six-way switching valve 6 shown in FIG.
  • the analysis method of the present invention consists of a fluorine gas and a diluent gas, and contains trace components.
  • the fluorine gas is converted to hydrogen fluoride by reacting the mixed gas and the hydrogen-containing substance, and the hydrogen fluoride is fixed and removed, and then analyzed by gas chromatography.
  • dilution gas for example, helium (He), neon (Ne), argon (Ar), thalibutone (Kr), xenon (Xe), radon (Rn) and nitrogen (N) force are also selected.
  • helium (He) for example, helium (He), neon (Ne), argon (Ar), thalibutone (Kr), xenon (Xe), radon (Rn) and nitrogen (N) force are also selected.
  • He helium
  • Ne neon
  • Ar argon
  • Kr thalibutone
  • Xe xenon
  • Rn radon
  • N nitrogen
  • the concentration of fluorine gas in the mixed gas is preferably 30 vol% or less, more preferably 10 vol% or less. If it is 30 vol% or more, a large amount of heat is generated when the fluorine gas reacts with the hydrogen-containing substance, which may cause problems such as safety and corrosion.
  • any substance that can react with fluorine gas and a substance by-produced by the reaction does not hinder the analysis of the trace component may be used, for example, hydrogen (H),
  • hydrogen-containing compounds such as methane (CH), ethane (C H) and propane (C H).
  • hydrogen (H) is preferable.
  • the fluorine gas is replaced with hydrogen fluoride.
  • the reaction is promoted even at room temperature, but it is preferable to set the temperature within the range of 50 to 250 ° C to complete the reaction! /.
  • the mixed gas containing the trace component and the hydrogen-containing substance are mixed in advance before the reaction tube.
  • the gas containing hydrogen fluoride generated by the above reaction is introduced into a tube filled with an alkali metal fluoride, and the hydrogen fluoride is fixed and removed.
  • the alkali metal fluoride used here may be any compound that can remove hydrogen fluoride in a fixed manner. For example, lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF ) And the like.
  • the chemical change when hydrogen fluoride is introduced into a tube filled with an alkali metal fluoride, for example, when sodium fluoride (NaF) is used is expressed as follows.
  • hydrogen fluoride is removed in a fixed manner by an alkali metal fluoride such as sodium fluoride.
  • an alkali metal fluoride such as sodium fluoride.
  • the temperature of the tube filled with the alkali metal fluoride is not particularly limited. In the tube filled with the alkali metal fluoride, only hydrogen fluoride is removed, and oxygen, nitrogen, carbon monoxide, carbon dioxide, other gases, which are trace components contained in the mixed gas, and Dilution gas passes through the tube without loss or increase.
  • the mixed gas is introduced into a gas sampler equipped with a sample measuring tube.
  • the gas introduced into the gas sampler and weighed to a certain amount is guided to a gas chromatograph by a carrier gas such as helium (He), for example, by switching a six-way switching valve and filled with an appropriate filler.
  • He helium
  • the trace component contained in the mixed gas is separated by the separation column.
  • a thermal conductivity detector can be used as a detector of the gas chromatograph.
  • a photoion detector that is particularly sensitive to inorganic gas can be used.
  • FIG. 1 showing the apparatus used for the analysis method of the present invention.
  • helium gas is circulated by the mass flow controller 8 from the pipe extending from valve 1, and a mixed gas containing fluorine gas and a pipe through which hydrogen gas circulates as a hydrogen-containing substance, for example, Helium is substituted for air components and other components that give positive errors in analysis.
  • valves 1, 4 and 5 are closed, the valve 3 and the sample container valve 7 are opened, and the mixed gas containing fluorine gas is circulated at a constant flow rate by the mass flow controller 8.
  • hydrogen gas is caused to flow at a constant flow rate from the pipe extending from valve 2 by the mass flow controller 9.
  • the flow rate of hydrogen gas per unit time should be such that the molar ratio is equal to or greater than the flow rate of fluorine gas per unit time.
  • the mixed gas and hydrogen gas containing fluorine gas are guided to the reaction tube 11 of fluorine gas and hydrogen gas heated by the heater 12 and exhausted from the valve 3 until a steady state is reached.
  • the valve 3 After confirming that the fluorine gas has been completely converted to hydrogen fluoride, the valve 3 is closed, the valves 4 and 5 are opened, and the outlet gas of the reaction tube 11 is connected to the tube 13 filled with alkali metal fluoride. Then, hydrogen fluoride is removed with an alkali metal fluoride such as sodium fluoride.
  • sample gas and unreacted hydrogen gas are exhausted through the sample measuring tube 14 and the flow meter 15.
  • the flow path is switched to the dotted line in FIG.
  • Sample gas introduced into gas chromatograph 16 and unreacted Hydrogen gas is separated by a column packed with a gas chromatograph packing material and detected by a thermal conductivity detector.
  • the sample gas was prepared by filling the sample container with fluorine gas generated by the fluorine generator FG (made by Showa Denko KK), and then further filling with neon (Ne) gas so that the fluorine concentration would be 3 vol%. .
  • the sample gas and the hydrogen gas are respectively supplied by a mass flow controller so that the hydrogen gas has a molar ratio twice that of the fluorine gas in the sample gas, and a reaction tube for the fluorine gas and the hydrogen-containing substance. These were mixed at the inlet, and introduced into a reaction tube heated to 150 ° C. with a heater.
  • the reaction tube outlet gas was absorbed in potassium iodide (KI) aqueous solution, titrated with sodium thiosulfate aqueous solution and analyzed for unreacted fluorine gas.
  • KI potassium iodide
  • the fluorine gas concentration was less than Ivolppm, and the fluorine gas was almost completely removed. I reacted.
  • the concentration of hydrogen fluoride was less than Ivolppm, and the hydrogen fluoride was removed.
  • the outlet gas of the tube filled with sodium fluoride (NaF) was introduced into a gas sampler with a sample measuring tube.
  • a certain amount of sample gas introduced into the sample metering tube is guided to the gas chromatograph by helium (He) as a carrier gas and filled in the gas chromatograph.
  • He helium
  • the resultant was separated with molecular sieve 5A and silica gel.
  • the oxygen concentration was less than 2 volppm
  • the nitrogen concentration was less than 2 volppm
  • the carbon dioxide concentration was less than Ivolppm.
  • the present invention relates to a method for analyzing trace components contained in a mixed gas containing fluorine gas in a simple and accurate manner and an analyzer therefor.
  • Such an analysis method and analysis apparatus of the present invention are useful for analyzing trace components contained in a mixed gas containing fluorine gas used as a special material gas for semiconductors, for example.

Abstract

[PROBLEMS] To provide a method for analyzing trace components contained in a mixed gas containing fluorine gas easily and simply with high precision and an analyzer therefor. [MEANS FOR SOLVING PROBLEMS] A method for trace analysis, characterized by reacting (i) a mixed gas which comprises fluorine gas and a diluent gas and contains trace components with (ii) a hydrogen-containing substance to convert the fluorine gas into hydrogen fluoride, removing the hydrogen fluoride through fixation, and then analyzing the trace components by gas chromatography; and an analyzer for trace components which comprises a reactor tube forreacting (i) a mixed gas which comprises fluorine gas and a diluent gas and contains trace components with (ii) a hydrogen-containing substance, a tube filled with an alkali metal fluoride, a gas sampler composed of a six-way changeover valve capable of changing the flow channel of a carrier gas and a sample measuring tube capable of preparing a certain amount of a sample that is connected to the valve, and a gas chromatograph and which is piped so that the mixed gas and the hydrogen-containing substance can flow in this order.

Description

明 細 書  Specification
微量成分の分析方法およびその分析装置  Trace component analysis method and analyzer
技術分野  Technical field
[0001] 本発明は、フッ素ガスを含む混合ガスに含まれる微量成分の分析方法に関し、さら に詳しくはフッ素ガスと希釈ガスとからなり、微量成分を含有する混合ガス中の酸素、 窒素、一酸化炭素、二酸化炭素、その他の微量成分を簡便かつ精度良く分析する 方法およびその分析装置に関するものである。  [0001] The present invention relates to a method for analyzing a trace component contained in a mixed gas containing fluorine gas. More specifically, the present invention comprises a fluorine gas and a diluent gas. The present invention relates to a method for easily and accurately analyzing carbon oxide, carbon dioxide, and other trace components, and an analyzer for the same.
背景技術  Background art
[0002] フッ素ガスに含まれる微量成分の分析方法としては、従来より、(1)フッ素ガスが接 触する部分に、ニッケル、モネル、フッ素榭脂、フッ素油等を使用した耐蝕性のガスク 口マトグラフにより分析する方法、および(2)フッ素ガスを金属フッ化物充填層に通し て高次金属フッ化物として固定ィ匕除去した後、ガスクロマトグラフにより分析する方法 (特開平 7— 287001号公報 (特許文献 1) )等が知られている。しかし、(1)の方法にお いては、フッ素ガスを分離カラムへ直接導入するため、使用可能な充填材がフッ素と 反応しない充填剤に限定され、またそのような充填剤においてはフッ素ガスと酸素等 の他成分とを分離するための適当な充填剤がないため、分離できない成分を分析で きないという問題がある。また、(2)の方法においては、希ガス等で希釈されたフッ素 ガスの場合、金属フッ化物によりフッ素が完全に固定化されず、フッ素ガスが残って しまうという問題点がある。  [0002] Conventionally, as a method for analyzing trace components contained in fluorine gas, (1) a corrosion-resistant gas outlet that uses nickel, monel, fluorine resin, fluorine oil, or the like for the portion in contact with fluorine gas. (2) A method in which fluorine gas is passed through a metal fluoride packed bed to remove fixed ions as a high-order metal fluoride and then analyzed by gas chromatography (Japanese Patent Laid-Open No. 7-287001 (Patents) References 1)) are known. However, in the method (1), since the fluorine gas is directly introduced into the separation column, the usable filler is limited to a filler that does not react with fluorine, and in such a filler, fluorine gas and Since there is no suitable filler for separating other components such as oxygen, there is a problem that the components that cannot be separated cannot be analyzed. In the method (2), in the case of fluorine gas diluted with a rare gas or the like, there is a problem that fluorine is not completely fixed by the metal fluoride and fluorine gas remains.
特許文献 1:特開平 7— 287001号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-287001
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明は、上記のような従来技術に伴う問題点を解決しょうとするものであり、上記 従来法の欠点を排除し、半導体用特殊材料ガスとして使用することができるフッ素を 含む混合ガスに含まれる微量成分の分析を簡便かつ精度良く行う方法を提供するこ と、およびその分析装置を提供することを目的とする。 [0003] The present invention seeks to solve the problems associated with the prior art as described above, eliminates the disadvantages of the conventional methods, and contains a mixture containing fluorine that can be used as a special material gas for semiconductors. It is an object of the present invention to provide a method for simply and accurately analyzing a trace component contained in a gas and to provide an analyzer for the method.
課題を解決するための手段 [0004] 本発明者らは、上記課題を解決すべく鋭意検討した結果、フッ素ガスと希釈ガスと からなり、微量成分を含有する混合ガス、および水素含有物質を反応させてフッ素ガ スをフッ化水素に変換し、該フッ化水素を固定ィ匕除去した後、分析することを特徴と する分析方法を用いることにより、ならびにフッ素ガスと希釈ガスとからなり微量成分 を含有する混合ガスおよび水素含有物質を反応させる反応管、アルカリ金属のフッ 化物が充填された管、キャリアーガスの流路を切り替え可能な六方切り替えバルブに 一定量のサンプルを分取可能な試料計量管が接続されたガスサンプラー、ならびに ガスクロマトグラフを有し、前記混合ガスおよび前記水素含有物質がこの順で流れる ように配管された微量成分の分析装置を用いることにより、フッ素を含む混合ガスに 含まれる微量成分の分析が可能であることを見出し、本発明を完成するに至った。 Means for solving the problem [0004] As a result of intensive studies to solve the above problems, the present inventors have made fluorine gas by reacting a mixed gas containing a trace component and a hydrogen-containing substance, which is composed of a fluorine gas and a diluent gas. By using an analysis method characterized in that the hydrogen fluoride is converted to hydrogen fluoride and the hydrogen fluoride is removed and then analyzed, and a mixed gas containing hydrogen and a diluent gas and containing a trace component and hydrogen Gas sampler with a reaction tube for reacting contained substances, a tube filled with alkali metal fluoride, and a six-way switching valve capable of switching the carrier gas flow path connected to a sample metering tube capable of dispensing a certain amount of sample And a trace component analyzer having a gas chromatograph and piped so that the mixed gas and the hydrogen-containing substance flow in this order. Found that analysis of trace components contained in the mixed gas containing fluorine is possible, thereby completing the present invention.
[0005] 本発明は、以下の [1]〜 [6]に示されるフッ素を含む混合ガスに含まれる微量成分 の分析方法およびその分析装置に関する。 [0005] The present invention relates to a method for analyzing a trace component contained in a mixed gas containing fluorine shown in the following [1] to [6] and an analyzer therefor.
[1] (i)フッ素ガスと希釈ガスとからなり、微量成分を含有する混合ガス、および [1] (i) a mixed gas comprising a fluorine gas and a diluent gas, containing a trace component, and
(ii)水素含有物質 (ii) Hydrogen-containing substances
を反応させ、該フッ素ガスをフッ化水素に変換し、該フッ化水素を固定ィ匕除去した後 、該微量成分を分析することを特徴とする微量成分の分析方法。  A method for analyzing a trace component, comprising: converting the fluorine gas into hydrogen fluoride, removing the fixed hydrogen fluoride, and then analyzing the trace component.
[0006] [2]前記混合ガスと前記水素含有物質とを反応させる際の温度が、 50〜250°Cの 範囲である上記 [1]に記載の分析方法。  [0006] [2] The analysis method according to [1] above, wherein the temperature at which the mixed gas and the hydrogen-containing substance are reacted is in the range of 50 to 250 ° C.
[3]前記希釈ガスが不活性ガスである上記 [ 1]または [2]に記載の分析方法。  [3] The analysis method according to [1] or [2] above, wherein the dilution gas is an inert gas.
[4]前記フッ化水素の固定ィ匕除去が、アルカリ金属のフッ化物が充填された層を用 [4] The hydrogen fluoride fixed layer removal uses a layer filled with an alkali metal fluoride.
V、て行なわれる上記 [1]〜 [3]の 、ずれかに記載の分析方法。 V, The analysis method according to any one of [1] to [3] above.
[0007] [5]前記混合ガス中のフッ素ガスの濃度力 30vol%以下である上記 [1]〜[4]の [0007] [5] The concentration power of fluorine gas in the mixed gas is 30 vol% or less.
V、ずれかに記載の分析方法。 V, analysis method as described in somewhere.
[6] (i)フッ素ガスと希釈ガスとからなり、微量成分を含有する混合ガス、および (ii) 水素含有物質を反応させる反応管、  [6] (i) a mixed gas comprising a fluorine gas and a diluent gas and containing a trace component, and (ii) a reaction tube for reacting a hydrogen-containing substance,
アルカリ金属のフッ化物が充填された管、  A tube filled with alkali metal fluoride,
キャリアーガスの流路を切り替え可能な六方切り替えバルブに、一定量のサンプル を分取可能な試料計量管が接続されたガスサンプラー、ならびに ガスクロマトグラフ A gas sampler with a sample metering tube connected to a hexagonal switching valve that can switch the carrier gas flow path, and a sample metering tube that can dispense a certain amount of sample, and Gas chromatograph
を有し、前記混合ガスおよび前記水素含有物質力この順で流れるように配管された 微量成分の分析装置。  The trace gas analyzer is arranged such that the mixed gas and the hydrogen-containing material force flow in this order.
発明の効果  The invention's effect
[0008] 本発明によれば、フッ素ガスと希釈ガスとからなり、微量成分を含有する混合ガスと 水素含有物質とを反応させフッ素ガスをフッ化水素に変換し、フッ化水素を固定化除 去した後、ガスクロマトグラフにより分析することにより、フッ素を含む混合ガスに含ま れる微量成分を簡便かつ精度良ぐ効率よく分析することができる。  [0008] According to the present invention, a fluorine gas and a diluent gas are used, and a mixed gas containing a trace component and a hydrogen-containing substance are reacted to convert the fluorine gas into hydrogen fluoride, thereby fixing and removing hydrogen fluoride. After the removal, analysis by gas chromatograph makes it possible to analyze the trace components contained in the mixed gas containing fluorine simply, accurately and efficiently.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明のフッ素ガスを含有する混合ガス中の微量成分の分析装置を示す図で ある。  [0009] Fig. 1 is a diagram showing an analysis device for trace components in a mixed gas containing fluorine gas according to the present invention.
[図 2]図 1に示された六方切替バルブ 6の拡大図である。  FIG. 2 is an enlarged view of the six-way switching valve 6 shown in FIG.
符号の説明  Explanation of symbols
[0010] 1〜5 バノレブ [0010] 1-5 Banolev
6 六方切替バルブ  6 Six-way switching valve
7 容器バルブ  7 Container valve
8〜9 マスフローコントローラー  8-9 mass flow controller
10 試料容器  10 Sample container
11 フッ素ガスと水素含有物質との反応管  11 Reaction tube for fluorine gas and hydrogen-containing material
12 加熱ヒーター  12 Heating heater
13 アルカリ金属のフッ化物が充填された管  13 Tube filled with alkali metal fluoride
14 試料計量管  14 Sample measuring tube
15 流量十  15 Flow rate 10
16 ガスクロマトグラフ  16 Gas chromatograph
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明に係る分析方法および分析装置について詳細に説明する。 [0011] Hereinafter, an analysis method and an analysis apparatus according to the present invention will be described in detail.
本発明の分析方法においては、フッ素ガスと希釈ガスとからなり、微量成分を含有 する混合ガス、および水素含有物質を反応させてフッ素ガスをフッ化水素に変換し、 該フッ化水素を固定ィ匕除去した後、ガスクロマトグラフにより分析する。 In the analysis method of the present invention, it consists of a fluorine gas and a diluent gas, and contains trace components. The fluorine gas is converted to hydrogen fluoride by reacting the mixed gas and the hydrogen-containing substance, and the hydrogen fluoride is fixed and removed, and then analyzed by gas chromatography.
フッ素ガスと希釈ガスとからなる混合ガスを直接ガスクロマトグラフで分析しようとす ると、ガスクロマトグラフの腐食劣化や分離カラムの充填剤の劣化が起こり精度よく分 析できな!/、ため、フッ素ガスを除去する必要が生じる。  If a mixed gas consisting of fluorine gas and dilution gas is analyzed directly by gas chromatography, corrosion of the gas chromatograph and deterioration of the packing material of the separation column will occur and the analysis will not be possible with high accuracy. Need to be removed.
[0012] 前記希釈ガスとしては、例えばヘリウム (He)、ネオン (Ne)、アルゴン (Ar)、タリブト ン (Kr)、キセノン (Xe)、ラドン (Rn)および窒素 (N )力も選ばれる少なくとも 1種を含 [0012] As the dilution gas, for example, helium (He), neon (Ne), argon (Ar), thalibutone (Kr), xenon (Xe), radon (Rn) and nitrogen (N) force are also selected. Including species
2  2
む不活性ガスが挙げられる。混合ガス中のフッ素ガスの濃度は好ましくは 30vol%以 下であり、より好ましくは 10vol%以下である。 30vol%以上では、フッ素ガスと水素含 有物質とを反応させる際に大きな発熱を伴い、安全上の問題や腐食等の問題が生じ る場合がある。  Inert gas. The concentration of fluorine gas in the mixed gas is preferably 30 vol% or less, more preferably 10 vol% or less. If it is 30 vol% or more, a large amount of heat is generated when the fluorine gas reacts with the hydrogen-containing substance, which may cause problems such as safety and corrosion.
[0013] また、水素含有物質としては、フッ素ガスと反応可能であり、該反応により副生成す る物質が微量成分分析の阻害要因にならない物質であればよぐたとえば水素 (H )、  [0013] In addition, as the hydrogen-containing substance, any substance that can react with fluorine gas and a substance by-produced by the reaction does not hinder the analysis of the trace component may be used, for example, hydrogen (H),
2 ならびにメタン(CH )、ェタン (C H )およびプロパン (C H )等の水素含有ィ匕合物が挙  2 and hydrogen-containing compounds such as methane (CH), ethane (C H) and propane (C H).
4 2 6 3 8  4 2 6 3 8
げられる力 中でも水素(H )好ましい。  Among these, hydrogen (H) is preferable.
2  2
これらの水素含有物質とフッ素とが反応するときの化学変化を、たとえば水素 (H )を  Chemical changes when these hydrogen-containing substances react with fluorine, such as hydrogen (H).
2 用いた場合にっ 、て反応式で表せば次式のようになる。  2 When it is used, it can be expressed by the following equation.
[0014] F + H → 2HF · · · (1)  [0014] F + H → 2HF · · · (1)
2 2  twenty two
上記反応式(1)のようにフッ素ガスはフッ化水素に置き換えられる。また、反応の効 率を上げるために、高 、温度でフッ素と水素含有物質とを反応させることが望ま ヽ As in the above reaction formula (1), the fluorine gas is replaced with hydrogen fluoride. In order to increase the efficiency of the reaction, it is desirable to react fluorine and a hydrogen-containing substance at a high temperature.
。例えば、水素含有物質が水素の場合は、室温でも反応は促進されるが、反応を完 結するため 50〜250°Cの温度範囲にすることが好まし!/、。 . For example, when the hydrogen-containing substance is hydrogen, the reaction is promoted even at room temperature, but it is preferable to set the temperature within the range of 50 to 250 ° C to complete the reaction! /.
[0015] また、水素含有物質中の水素原子とフッ素ガス中のフッ素原子とのモル比は、 HZ F = 1〜 10の範囲であることが好まし!/、。 [0015] The molar ratio of the hydrogen atom in the hydrogen-containing substance to the fluorine atom in the fluorine gas is preferably in the range of HZ F = 1 to 10! /.
フッ素ガスと水素含有物質とが反応する反応管では、フッ素ガスおよび水素含有物 質のみが反応し、フッ素ガスに含まれる微量成分である酸素、窒素、一酸化炭素、二 酸化炭素、その他のガス、および希釈ガスは損失や増加することなく管を通過する。 なお窒素は、それ自身が希釈ガスとして用いられた場合には、微量成分とはならない [0016] フッ素ガスと希釈ガスとからなり、微量成分を含有する混合ガスと、水素を含有する ガスとを反応管に供給する方法としては、たとえば、それぞれのガスをマスフローコン トローラーによって供給する方法が挙げられる。また、この微量成分を含有する混合 ガスおよび水素含有物質を、反応管の前段で予め混合しておくことが好ま 、。 上記の反応で生成したフッ化水素を含むガスは、アルカリ金属のフッ化物が充填さ れた管に導入され、フッ化水素は固定ィ匕除去される。ここで用いられるアルカリ金属 のフッ化物としては、フッ化水素を固定ィ匕除去可能であれば何れの化合物でもよぐ たとえばフッ化リチウム(LiF)、フッ化ナトリウム (NaF)、フッ化カリウム (KF)等が挙げら れる。アルカリ金属のフッ化物が充填された管に、フッ化水素が導入された場合の化 学変化を、たとえばフッ化ナトリウム (NaF)を用いた場合について反応式で表せば以 下のようになる。 In a reaction tube where fluorine gas reacts with hydrogen-containing substances, only fluorine gas and hydrogen-containing substances react and oxygen, nitrogen, carbon monoxide, carbon dioxide, and other gases, which are trace components contained in fluorine gas, are reacted. , And dilution gas passes through the tube without loss or increase. Nitrogen is not a minor component when used as a diluent gas. [0016] As a method for supplying a gas mixture containing a trace component and a gas composed of a fluorine gas and a dilution gas to a reaction tube, for example, a method of supplying each gas with a mass flow controller Is mentioned. In addition, it is preferable that the mixed gas containing the trace component and the hydrogen-containing substance are mixed in advance before the reaction tube. The gas containing hydrogen fluoride generated by the above reaction is introduced into a tube filled with an alkali metal fluoride, and the hydrogen fluoride is fixed and removed. The alkali metal fluoride used here may be any compound that can remove hydrogen fluoride in a fixed manner. For example, lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF ) And the like. The chemical change when hydrogen fluoride is introduced into a tube filled with an alkali metal fluoride, for example, when sodium fluoride (NaF) is used, is expressed as follows.
[0017] HF + NaF→NaF-HF · · · (2)  [0017] HF + NaF → NaF-HF (2)
上記反応式(2)のようにフッ化水素はアルカリ金属のフッ化物、例えばフッ化ナトリ ゥムにより固定ィ匕除去される。また、上記のフッ化水素の固定ィ匕反応は室温でも十分 に促進されるため、前記のアルカリ金属のフッ化物が充填された管の温度は特に制 限されない。前記のアルカリ金属のフッ化物が充填された管では、フッ化水素のみが 除去され、上記混合ガスに含まれる微量成分である酸素、窒素、一酸化炭素、二酸 化炭素、その他のガス、および希釈ガスは損失や増加することなく管を通過する。  As shown in the above reaction formula (2), hydrogen fluoride is removed in a fixed manner by an alkali metal fluoride such as sodium fluoride. In addition, since the above-described hydrogen fluoride fixation reaction is sufficiently promoted even at room temperature, the temperature of the tube filled with the alkali metal fluoride is not particularly limited. In the tube filled with the alkali metal fluoride, only hydrogen fluoride is removed, and oxygen, nitrogen, carbon monoxide, carbon dioxide, other gases, which are trace components contained in the mixed gas, and Dilution gas passes through the tube without loss or increase.
[0018] 上記混合ガスは、上記のようにフッ素ガスおよびフッ化水素が除去されたあとには、 試料計量管を備えたガスサンプラーに導入される。ここでガスサンプラーに導入され て一定量に計量されたガスは、六方切り替えバルブの切り替えにより、例えばへリウ ム(He)等のキャリアガスによってガスクロマトグラフに導かれ、適当な充填剤が充填さ れた分離カラムによって、前記の混合ガスに含まれる微量成分が分離される。  [0018] After the fluorine gas and hydrogen fluoride have been removed as described above, the mixed gas is introduced into a gas sampler equipped with a sample measuring tube. Here, the gas introduced into the gas sampler and weighed to a certain amount is guided to a gas chromatograph by a carrier gas such as helium (He), for example, by switching a six-way switching valve and filled with an appropriate filler. The trace component contained in the mixed gas is separated by the separation column.
[0019] 例えばモレキュラーシーブ 5Aの様な充填剤を前記分離カラムに用いれば、酸素、 窒素、一酸化炭素を分離することができる。このとき二酸ィ匕炭素は吸着されてしまうが 、他の充填剤、例えばシリカゲル等を使用すれば酸素、窒素および一酸化炭素と二 酸化炭素とを分離することができる。 本発明において、ガスクロマトグラフの検出器としては、熱伝導度検出器が使用で きるが、より高い感度を得たいのであれば、無機ガスに対し特に感度の高い光イオン 検出器等も使用できる。 For example, when a filler such as molecular sieve 5A is used in the separation column, oxygen, nitrogen, and carbon monoxide can be separated. At this time, although carbon dioxide is adsorbed, oxygen, nitrogen, carbon monoxide and carbon dioxide can be separated by using other fillers such as silica gel. In the present invention, a thermal conductivity detector can be used as a detector of the gas chromatograph. However, if it is desired to obtain higher sensitivity, a photoion detector that is particularly sensitive to inorganic gas can be used.
[0020] 「具体的な分析方法および分析 Ί  [0020] “Specific Analysis Methods and Analysis Ί
次に、本発明の分析方法に用いる装置を示す図 1を用いて、本発明の実際の分析 方法および分析装置を更に具体的に説明する。  Next, the actual analysis method and analysis apparatus of the present invention will be described more specifically with reference to FIG. 1 showing the apparatus used for the analysis method of the present invention.
まず、フッ素ガスを含有する混合ガスが充填された試料容器 10を配管に接続した後 、容器バルブ 7が閉まっていることを確認し、バルブ 4、 5を開、 2、 3を閉、六方切替バ ルブ 6を図 1の実線の状態とし、バルブ 1からのびる配管からヘリウムガスをマスフロー コントローラー 8によって流通させ、フッ素ガスを含有する混合ガス、および水素含有 物質としてたとえば水素ガスが流通する配管、ノ レブ等に存在する、空気成分その 他分析に正の誤差を与える成分をへリウムで置換する。  First, after connecting the sample container 10 filled with the mixed gas containing fluorine gas to the pipe, confirm that the container valve 7 is closed, open the valves 4 and 5, close the 2 and 3, and switch the hexagon Valve 6 is in the state of the solid line in FIG. 1, helium gas is circulated by the mass flow controller 8 from the pipe extending from valve 1, and a mixed gas containing fluorine gas and a pipe through which hydrogen gas circulates as a hydrogen-containing substance, for example, Helium is substituted for air components and other components that give positive errors in analysis.
[0021] 次にバルブ 1、 4、 5を閉じ、バルブ 3および試料容器バルブ 7を開け、フッ素ガスを含 有する混合ガスをマスフローコントローラー 8により一定流量で流通させる。同時にバ ルブ 2からのびる配管から水素ガスをマスフローコントローラー 9により一定流量で流 通させる。この時水素ガスの単位時間あたりの流量は、フッ素ガスの単位時間あたり の流量に対して同等以上のモル比となるような流量とする。フッ素ガスを含有する混 合ガス及び水素ガスは、ヒーター 12によって加熱された、フッ素ガスと水素ガスとの反 応管 11に導かれ、定常状態になるまでバルブ 3から排気される。  Next, the valves 1, 4 and 5 are closed, the valve 3 and the sample container valve 7 are opened, and the mixed gas containing fluorine gas is circulated at a constant flow rate by the mass flow controller 8. At the same time, hydrogen gas is caused to flow at a constant flow rate from the pipe extending from valve 2 by the mass flow controller 9. At this time, the flow rate of hydrogen gas per unit time should be such that the molar ratio is equal to or greater than the flow rate of fluorine gas per unit time. The mixed gas and hydrogen gas containing fluorine gas are guided to the reaction tube 11 of fluorine gas and hydrogen gas heated by the heater 12 and exhausted from the valve 3 until a steady state is reached.
[0022] フッ素ガスが完全にフッ化水素に変換されたのを確認後、バルブ 3を閉じてバルブ 4 、 5を開け反応管 11の出口ガスをアルカリ金属のフッ化物が充填された管 13に導入し 、アルカリ金属のフッ化物、たとえばフッ化ナトリウムによりフッ化水素を固定ィ匕除去す る。  [0022] After confirming that the fluorine gas has been completely converted to hydrogen fluoride, the valve 3 is closed, the valves 4 and 5 are opened, and the outlet gas of the reaction tube 11 is connected to the tube 13 filled with alkali metal fluoride. Then, hydrogen fluoride is removed with an alkali metal fluoride such as sodium fluoride.
その後試料ガス及び未反応の水素ガスは試料計量管 14、流量計 15を通り排気され る。次にバルブ 5を閉じて流量計 15によりガスの流通が止まったことを確認後、六方切 替バルブ 6により流路を図 1の点線に切り換える。この操作により試料計量管内に導 入された一定量の試料ガス及び未反応水素ガスはキャリアガスにより同伴されガスク 口マトグラフ 16に導入される。ガスクロマトグラフ 16に導入された試料ガス及び未反応 水素ガスはガスクロマトグラフ用の充填剤が充填されたカラムで分離され、熱伝導度 検出器で検出される。予め同様な操作で分析した標準ガスのピーク面積と試料ガス の微量成分のピーク面積を比較することによって微量成分の濃度を知ることが出来る Thereafter, the sample gas and unreacted hydrogen gas are exhausted through the sample measuring tube 14 and the flow meter 15. Next, after closing the valve 5 and confirming that the gas flow has stopped by the flow meter 15, the flow path is switched to the dotted line in FIG. By this operation, a certain amount of sample gas and unreacted hydrogen gas introduced into the sample measuring tube are entrained by the carrier gas and introduced into the gas outlet matrix 16. Sample gas introduced into gas chromatograph 16 and unreacted Hydrogen gas is separated by a column packed with a gas chromatograph packing material and detected by a thermal conductivity detector. By comparing the peak area of the standard gas analyzed in advance with the same procedure and the peak area of the trace component of the sample gas, the concentration of the trace component can be determined.
[0023] [実施例] [0023] [Example]
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例のみ に限定されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples.
フッ素発生装置エフジヱネ(昭和電工株式会社製)より発生したフッ素ガスを試料容 器に充填した後、フッ素濃度が 3vol%となるようにネオン (Ne)ガスをさらに充填する ことにより試料ガスを調製した。  The sample gas was prepared by filling the sample container with fluorine gas generated by the fluorine generator FG (made by Showa Denko KK), and then further filling with neon (Ne) gas so that the fluorine concentration would be 3 vol%. .
[0024] 前記試料ガス及び水素ガスを、水素ガスが試料ガス中のフッ素ガスに対してモル比 で 2倍となるようにそれぞれマスフローコントローラ一により供給し、フッ素ガスと水素 含有物質との反応管の入口でこれらを混合し、ヒーターで 150°Cに加熱保持された 反応管に導入した。反応管出口ガスをヨウ化カリウム (KI)水溶液に吸収させ、チォ 硫酸ナトリウム水溶液で滴定し未反応フッ素ガスの分析を行ったところ、フッ素ガス濃 度は Ivolppm未満であり、フッ素ガスはほぼ完全に反応して ヽた。  [0024] The sample gas and the hydrogen gas are respectively supplied by a mass flow controller so that the hydrogen gas has a molar ratio twice that of the fluorine gas in the sample gas, and a reaction tube for the fluorine gas and the hydrogen-containing substance. These were mixed at the inlet, and introduced into a reaction tube heated to 150 ° C. with a heater. The reaction tube outlet gas was absorbed in potassium iodide (KI) aqueous solution, titrated with sodium thiosulfate aqueous solution and analyzed for unreacted fluorine gas.The fluorine gas concentration was less than Ivolppm, and the fluorine gas was almost completely removed. I reacted.
[0025] 次に、反応管出口ガスを、アルカリ金属のフッ化物としてフッ化ナトリウム (NaF)が 充填された管に導入した後、その出口ガスをヨウ化カリウム (KI)水溶液にヨウ素酸力 リウム (KIO )をカ卩えた水溶液に吸収させ、チォ硫酸ナトリウム水溶液で滴定してフッ  [0025] Next, after introducing the outlet gas of the reaction tube into a tube filled with sodium fluoride (NaF) as an alkali metal fluoride, the outlet gas was added to an aqueous potassium iodide (KI) solution. (KIO) is absorbed into the prepared aqueous solution and titrated with an aqueous sodium thiosulfate solution.
3  Three
化水素の分析を行ったところ、フッ化水素の濃度は Ivolppm未満であり、フッ化水素 は固定ィ匕除去されていた。  When hydrogen fluoride was analyzed, the concentration of hydrogen fluoride was less than Ivolppm, and the hydrogen fluoride was removed.
[0026] 続いて、前記のフッ化ナトリウム (NaF)が充填された管の出口ガスを、試料計量管 付きのガスサンプラーに導入した。六方切り替えバルブによりガスサンプラー内の流 路を切り替えることにより、試料計量管に導入された一定量の試料ガスは、キャリアガ スとしてのヘリウム(He)によってガスクロマトグラフへ導かれ、ガスクロマトグラフ内に 充填されたモレキュラシーブ 5Aおよびシリカゲルにて分離された。熱伝導度検出器 で分析したところ、酸素濃度が 2volppm未満、窒素濃度が 2volppm未満、二酸化炭 素濃度が Ivolppm未満であった。 産業上の利用可能性 [0026] Subsequently, the outlet gas of the tube filled with sodium fluoride (NaF) was introduced into a gas sampler with a sample measuring tube. By switching the flow path in the gas sampler with the hexagonal switching valve, a certain amount of sample gas introduced into the sample metering tube is guided to the gas chromatograph by helium (He) as a carrier gas and filled in the gas chromatograph. The resultant was separated with molecular sieve 5A and silica gel. When analyzed with a thermal conductivity detector, the oxygen concentration was less than 2 volppm, the nitrogen concentration was less than 2 volppm, and the carbon dioxide concentration was less than Ivolppm. Industrial applicability
本発明は、フッ素ガスを含む混合ガスに含まれる微量成分を簡便かつ精度良く分 析する方法およびその分析装置に関する。このような本発明の分析方法およびその 分析装置は、たとえば半導体用特殊材料ガスとして使用するフッ素ガスを含む混合 ガスに含まれる微量成分の分析にお!、て有用である。  The present invention relates to a method for analyzing trace components contained in a mixed gas containing fluorine gas in a simple and accurate manner and an analyzer therefor. Such an analysis method and analysis apparatus of the present invention are useful for analyzing trace components contained in a mixed gas containing fluorine gas used as a special material gas for semiconductors, for example.

Claims

請求の範囲 The scope of the claims
[1] ( フッ素ガスと希釈ガスとからなり、微量成分を含有する混合ガス、および  [1] (A mixed gas consisting of a fluorine gas and a diluent gas, containing trace components, and
(ii)水素含有物質  (ii) Hydrogen-containing substances
を反応させ、該フッ素ガスをフッ化水素に変換し、該フッ化水素を固定ィ匕除去した後 After the reaction, the fluorine gas is converted into hydrogen fluoride, and the hydrogen fluoride is fixed and removed.
、該微量成分を分析することを特徴とする微量成分の分析方法。 A method for analyzing a trace component, comprising analyzing the trace component.
[2] 前記混合ガスと前記水素含有物質とを反応させる際の温度が、 50〜250°Cの範囲 である請求項 1に記載の分析方法。 [2] The analysis method according to claim 1, wherein the temperature at which the mixed gas and the hydrogen-containing substance are reacted is in the range of 50 to 250 ° C.
[3] 前記希釈ガスが不活性ガスである請求項 1または 2に記載の分析方法。 [3] The analysis method according to [1] or [2], wherein the dilution gas is an inert gas.
[4] 前記フッ化水素の固定化除去が、アルカリ金属のフッ化物が充填された層を用い て行なわれる請求項 1〜3のいずれかに記載の分析方法。 [4] The analysis method according to any one of [1] to [3], wherein the immobilization and removal of hydrogen fluoride is performed using a layer filled with an alkali metal fluoride.
[5] 前記混合ガス中のフッ素ガスの濃度力 30vol%以下である請求項 1〜4のいずれ かに記載の分析方法。 [5] The analysis method according to any one of claims 1 to 4, wherein the concentration of fluorine gas in the mixed gas is 30 vol% or less.
[6] (i)フッ素ガスと希釈ガスとからなり、微量成分を含有する混合ガス、および (ii) 水素含有物質を反応させる反応管、 [6] (i) a mixed gas comprising a fluorine gas and a diluent gas and containing a trace component, and (ii) a reaction tube for reacting a hydrogen-containing substance,
アルカリ金属のフッ化物が充填された管、  A tube filled with alkali metal fluoride,
キャリアーガスの流路を切り替え可能な六方切り替えバルブに、一定量のサンプル を分取可能な試料計量管が接続されたガスサンプラー、ならびに  A gas sampler with a sample metering tube connected to a hexagonal switching valve that can switch the carrier gas flow path, and a sample metering tube that can dispense a certain amount of sample, and
ガスクロマトグラフ  Gas chromatograph
を有し、前記混合ガスおよび前記水素含有物質力この順で流れるように配管された 微量成分の分析装置。  The trace gas analyzer is arranged such that the mixed gas and the hydrogen-containing material force flow in this order.
PCT/JP2005/016979 2004-09-30 2005-09-14 Method for trace analysis and analyzer therefor WO2006035609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537674A JP4699377B2 (en) 2004-09-30 2005-09-14 Trace component analysis method and analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004287539 2004-09-30
JP2004-287539 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006035609A1 true WO2006035609A1 (en) 2006-04-06

Family

ID=36118761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016979 WO2006035609A1 (en) 2004-09-30 2005-09-14 Method for trace analysis and analyzer therefor

Country Status (5)

Country Link
JP (1) JP4699377B2 (en)
KR (1) KR100837477B1 (en)
CN (1) CN100458438C (en)
TW (1) TW200624804A (en)
WO (1) WO2006035609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057371A (en) * 2005-08-24 2007-03-08 Showa Denko Kk Quantitative analyzing method of gas component contained in fluorine gas and quantitative analyzer used therein
JP2010203850A (en) * 2009-03-02 2010-09-16 Toyo Tanso Kk Method and device for measuring concentration of fluorine gas

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061158B3 (en) * 2008-12-09 2010-04-08 Siemens Aktiengesellschaft Method and arrangement for the gas chromatographic analysis of a gas mixture
CN106537132A (en) * 2015-01-12 2017-03-22 R2Cd集团私人有限公司 Enhanced measurement system of photo-ionization detector with capabilities for automatic cleaning and automatic purging feature
JP7055323B2 (en) * 2017-07-21 2022-04-18 株式会社日立ハイテクサイエンス Mass spectrometer and mass spectrometry method
TWI770568B (en) * 2019-08-29 2022-07-11 美商希瑪有限責任公司 Fluorine detection in a gas discharge light source
CN112540140B (en) * 2020-12-16 2022-12-27 中船(邯郸)派瑞特种气体股份有限公司 Equipment and method for measuring trace impurities in HF (hydrogen fluoride) by gas chromatography
CN112782340A (en) * 2020-12-24 2021-05-11 青海盐湖工业股份有限公司 Method for measuring hydrogen content in chlorine
CN115308321A (en) * 2022-07-04 2022-11-08 浙江赛鹭鑫仪器有限公司 Fluorine gas and fluoride analysis system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162257A (en) * 1988-12-16 1990-06-21 Central Glass Co Ltd Method and apparatus for measuring concentrations of components of fluorine-containing gas
JPH049757A (en) * 1990-04-27 1992-01-14 Central Glass Co Ltd Method and apparatus for analyzing very small amount of impurity in fluorine or chlorine fluoride gas
JP2003014716A (en) * 2001-06-29 2003-01-15 Showa Denko Kk Analytical method for trace impurities in high-purity fluorine gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339962B2 (en) * 1994-04-18 2002-10-28 関東電化工業株式会社 Method and apparatus for analyzing impurity gas in fluorine gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162257A (en) * 1988-12-16 1990-06-21 Central Glass Co Ltd Method and apparatus for measuring concentrations of components of fluorine-containing gas
JPH049757A (en) * 1990-04-27 1992-01-14 Central Glass Co Ltd Method and apparatus for analyzing very small amount of impurity in fluorine or chlorine fluoride gas
JP2003014716A (en) * 2001-06-29 2003-01-15 Showa Denko Kk Analytical method for trace impurities in high-purity fluorine gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057371A (en) * 2005-08-24 2007-03-08 Showa Denko Kk Quantitative analyzing method of gas component contained in fluorine gas and quantitative analyzer used therein
JP2010203850A (en) * 2009-03-02 2010-09-16 Toyo Tanso Kk Method and device for measuring concentration of fluorine gas

Also Published As

Publication number Publication date
JP4699377B2 (en) 2011-06-08
CN100458438C (en) 2009-02-04
CN101031794A (en) 2007-09-05
TW200624804A (en) 2006-07-16
KR100837477B1 (en) 2008-06-12
KR20070058662A (en) 2007-06-08
JPWO2006035609A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006035609A1 (en) Method for trace analysis and analyzer therefor
US5017499A (en) Method for analyzing fluorine containing gases
JPH10104130A (en) Generator for gas mixture for low concentration calibration
WO2020129726A1 (en) Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
CN104914172A (en) Method for measuring fluorine gas content in fluorine-containing mixing gas through gas chromatography method
JP4744017B2 (en) Analysis method of trace impurities in high purity fluorine gas
JP2725876B2 (en) Method and apparatus for analyzing trace impurities in fluorine or chlorine fluoride gas
JP2005172472A (en) Gas analysis method, and gas analysis method for fuel cell
JP3339962B2 (en) Method and apparatus for analyzing impurity gas in fluorine gas
Cristescu et al. Investigation of separation performances of various isotope exchange catalysts for the deuterium-hydrogen system
JP4642602B2 (en) Method for quantitative analysis of gas components contained in fluorine gas and apparatus used therefor
JP5675409B2 (en) Gas measuring device and method for measuring hydride gas
JP4268296B2 (en) Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine
JP2012194088A (en) Gas sampling and measuring apparatus and gas sampling and measuring method
JP4211983B2 (en) Method and apparatus for measuring F2 gas concentration
Loader et al. Rapid catalytic oxidation of CO to CO2–On the development of a new approach to on‐line oxygen isotope analysis of organic matter
Bruno et al. Inorganic volatile fluorides obtained from electrical decomposition of sulfur hexafluoride in a quartz tube
KR20000002427A (en) Dichloro-silane gas analyzer using gas chromatography
JP2008039643A (en) Analyzing method of element in sample subjected to melting treatment in inert gas atmosphere and analyzer of element in sample
JP2009198350A (en) Method for analyzing carbon dioxide in ammonia-containing gas
EP2269057B1 (en) Detection of gaseous halogens
CN108132276A (en) A kind of measurement gas(Liquid)The device and method of solid phase interaction strength
JP3587606B2 (en) Method for measuring water content in hydrogen iodide
CN111397988A (en) Generation device and quantification method of isocyanic acid standard gas
Anderson et al. Studies with nitryl hypochlorite: Thermal dissociation rate and catalytic conversion to nitric oxide using an NO/O3 chemiluminescence detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537674

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580033032.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077009560

Country of ref document: KR

122 Ep: pct application non-entry in european phase