JP4268296B2 - Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine - Google Patents

Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine Download PDF

Info

Publication number
JP4268296B2
JP4268296B2 JP35163499A JP35163499A JP4268296B2 JP 4268296 B2 JP4268296 B2 JP 4268296B2 JP 35163499 A JP35163499 A JP 35163499A JP 35163499 A JP35163499 A JP 35163499A JP 4268296 B2 JP4268296 B2 JP 4268296B2
Authority
JP
Japan
Prior art keywords
fluorine
oxygen
concentration
gas
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35163499A
Other languages
Japanese (ja)
Other versions
JP2001165924A (en
Inventor
幸生 福田
伸二 三好
貴彦 来島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP35163499A priority Critical patent/JP4268296B2/en
Publication of JP2001165924A publication Critical patent/JP2001165924A/en
Application granted granted Critical
Publication of JP4268296B2 publication Critical patent/JP4268296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、フッ素を含有する混合ガス中のフッ素の測定方法及び装置に関する。
【0002】
【従来の技術】
従来、ガス中のフッ素濃度を分析する方法としては、種々の方法が知られているが、一般的には、湿式法および乾式法の二つの方法が知られている。
【0003】
湿式法としては、(1)LiCl溶液中にフッ素ガスを通して塩素を酸化させ、これを電極により分析する方法等が知られている。
〔S.Kaye.M.Griggs:Anal.Chem.,40,2217,(1968)〕
また、乾式方法としては、(2)NaFペレットにより資料ガス中のHFを取り除いた後、NaCl層を通してフッ素と反応させ、発生した塩素ガスをNaOH溶液に吸収させて、生成した次亜塩素酸をヨウ素滴定により求める方法〔A.M.G.Macdonaldet al,“Fluoline”,Encyclopedia of Industrial Chemical Analsis,Vol.13,Newyork−London−Sydney−Tronto,1971〕、(3)クロマトグラフ法として、試料が接触する部分にニッケルなどの特殊な材質を用い、熱電導度セルはPTFEで被覆したものを用いて直接フッ素ガスを分析する方法〔E.Rudzitis:Anal.Chem.35,465.(1963)〕、等が知られている。
【0004】
【発明が解決しようとする課題】
フッ素混合ガス中に初めから存在する酸素分を測定する方法において、直接フッ素を補足する物質、たとえばSi,Geなどを用いる場合、それらの物質の中に不純物としてSiO2 などが存在した場合、フッ素と反応して酸素を放出する。
【0005】
このような場合、もともと存在しないフッ素混合ガス中の酸素として検出され、測定誤差を生じる。
また、これらの不純物を除去するために水素などを用いて還元するなどの操作が必要である。
【0006】
【課題を解決するための手段】
本発明にかかるフッ素濃度測定方法および装置においては、一方で周期律表III族の金属の化合物の充填層でフッ素を酸素に置換することにより、試料ガス中のフッ素を酸素に置換した酸素濃度と、もともとフッ素混合ガス中に含まれていた酸素濃度の合計を求め、もう一方で試料中のフッ素を酸素以外のハロゲン成分に置換し、ハロゲン成分を吸着する事により酸素計にダメージを与えることなく、もとの試料ガス中に含まれる酸素分のみを求めて、その差分からフッ素濃度を算出するようにした。後者の具体的な方法は、フッ素ガスを酸素以外の成分に置換するフッ素以外のハロゲン化合物を含む充填層とフッ素と反応したハロゲン成分を吸着する物質を含む充填層を通し、試料ガス中に初めから存在する酸素のみを測定する方法である。
【0007】
本発明は、フッ素濃度未知のフッ素含有混合ガス中のフッ素濃度を測定する方法であって、
(1) 前記フッ素含有混合ガス中のフッ素と反応して酸素を発生する周期律表III族の金属の化合物を含む充填層に該混合ガスを通
(2) 該混合ガス中のフッ素を他のハロゲン成分に置換できる化合物の充填層及び該ハロゲン成分を吸着する物質の充填層に該混合ガスを通
(3) (1)における酸素濃度を酸素分析計で分析し、
(4) (2)における酸素濃度を酸素分析計で分析し、そして
(5) (3)及び(4)で分析した酸素濃度を比較することによ該混合ガス中のフッ素濃度の測定方法に関する。
【0008】
本発明は又、フッ素濃度未知のフッ素含有混合ガス中のフッ素濃度を測定する装置であって、その装置は前記フッ素含有混合ガス中のフッ素と反応して酸素を発生する周期律表III族の金属の化合物を含む充填層、該混合ガス中のフッ素を他のハロゲン成分に置換できる化合物の充填層、該ハロゲン成分を吸着する物質の充填層、前記酸素濃度を測定する酸素分析計、該酸素分析計にパージ用不活性ガスを供給する不活性ガス供給ライン及び前記酸素分析計のスパンを調整する酸素濃度既知の標準ガスを供給するラインを含む装置にも関する。
【0009】
前記酸素分析計は標準ガスなどによりZero−Span調整することが可能なジルコニア式、磁気式あるいはガルバニ電池式などの酸素濃度を絶対測定する分析計、あるいはGC/TCD、GC/MSなどのガスクロマトグラフィー法により酸素成分を分離し標準ガスとの対比測定する分析計であることが好ましい。
【0010】
フッ素と反応して酸素を発生する周期律表III族の金属の化合物はアルミナであることが好ましい。
以下に本発明の好ましい装置の図面によって本発明をさらに説明する。
【0011】
図1は本発明の装置である。1はフッ素含有混合ガス、2は減圧弁、3、4は弁、5は標準ガス、6はマスフローコントローラ、7、8は弁、9はフッ素含混有混合ガス中のフッ素を酸素に置換できる周期律表III族の金属の化合物の充填層、10は充填層9用の温調器、11は、フッ素を他のハロゲンに置換できる化合物の充填層、12は11で発生したそのハロゲンを吸着する物質の充填層、13及び14は弁、15はパージ用不活性ガス用の弁、16は酸素分析計である。
【0012】
図2は一定の濃度のフッ素ガスを分析するための装置のフローシートである。21は5%フッ素含有混合ガスである。22は減圧弁、23及び24は弁、25は希釈用のネオンガス、26はマスフローコントローラー、27はフッ素を酸素に置換する化合物の充填層、28は温調器、29及び30は弁、31は酸素分析計である。
【0013】
図4はフッ素含有混合ガスから酸素を発生させずにフッ素を除去し、その混合ガス中の酸素を分析する装置のフローシートである。41はフッ素含有混合ガス、42は減圧弁、43及び44は弁、45は酸素標準ガス、46はマスフローコントローラー、47はフッ素を他のハロゲン成分に置換できる化合物の充填層、48はそのハロゲンを吸着する物質の充填層、49は弁、50は不活性ガス用弁、41はGC/MSである。
【0014】
【実施例1】
本発明の原理を化学反応式を用いて簡単に説明すると、以下の式により表される。
【0015】
6F2 +2Al23 →4AlF3 +3O2 ・・・・・(1)
この反応によりガス中のフッ素6分子に対し、酸素3分子当量の割合で定量的に酸素に置換される。この反応は室温においても十分に完全反応を起こすが、反応効率を考えると100〜200℃に一定に保つことが望ましい。
【0016】
充填層としてフッ素によるパッシベーションを施した直径1/2inch×0.3mの金属製の配管に活性アルミナ約10gを充填したものを用い、フッ素が酸素に完全に置換されるかを調べた。
【0017】
フッ素濃度を1%に調整されたネオンガスを温度条件、流量条件を表1の条件で充填層に流通し、充填層出口のガス中にフッ素が検出されるかどうかを調べた。検出はヨウ化カリ水溶液を含浸させた布を用い、布の色が変化するかどうかで調べた。予めこの方法によりフッ素濃度0.1ppm以上で検出することが判っている。結果を表1.に示す。
【0018】
この結果、表1.で示すように酸素濃度を測定するために必要なガス流量域で、カラム温度が室温(20℃)から200℃までの全ての条件においてフッ素が完全に酸素に置換されていることが判った。
【0019】
【表1】

Figure 0004268296
【0020】
【実施例2】
図2に示す測定系でフッ素濃度を5%に調整したネオンガス1と希釈用に100%ネオンガス5を用い、それぞれのガスの流量を制御するマスフローコントローラー6を用いて、流量比により5%のフッ素濃度を希釈し数種類の濃度のフッ素混合ガスを発生させる。マスフローコントローラーはあらかじめ石鹸膜流量計を用いて実流量を測定し校正されたものを用いた。ガスの流量はトータルで200CCMになるように設定し、上記希釈したガスを充填層に流通し、その時の酸素濃度を酸素濃度既知の標準ガスにより校正されたジルコニア式酸素分析計を用いて測定を行った。
【0021】
結果を表2.及び図3.に示す。
この結果より導入したガスのフッ素濃度に対し、ジルコニア式酸素計の酸素濃度指示値をフッ素濃度に換算(酸素濃度の2倍値)した値はほぼ一致し、直線関係が得られた。
【0022】
この結果より、フッ素濃度に対して充填層により酸素に置換された酸素濃度はリニアであり酸素濃度を換算した値はフッ素濃度といえることがわかった。
【0023】
【表2】
Figure 0004268296
【0024】
【実施例3】
フッ素混合ガス中に初めから存在する酸素を測定するために、フッ素と反応して酸素を放出しないフッ素以外のハロゲン化合物、たとえばKClなどを用いてフッ素をハロゲン成分に置換する反応原理を化学式を用いて説明すると、以下の式により表される。
【0025】
2 +2KCl→2KF+Cl2 ・・・・・(2)
この反応はフッ素はハロゲン元素中で最も電気陰性度が大きく反応性に富むため、フッ素以外のハロゲン化合物と反応し簡単に置換される。
【0026】
反応により生成した塩素などのハロゲン成分は活性炭やポーラスポリマーに吸着、除去することが可能である。
フッ素反応充填層としてフッ素によるパッシベーションを施した外径φ4mm、内径φ3mm×1mの金属製のガスカラムにKClを充填し、塩素吸着充填層として外径φ4mm、内径φ3mm×1mの金属製のガスカラムにCarbonMolecuar Sieve を充填したものを直列に配置し、フッ素混合ガス中の酸素が測定可能かを調べた。
【0027】
フッ素濃度を1%に調整されたネオンガスに既知の酸素濃度を添加したガスを充填層に流通し、充填層出口のガス中の酸素濃度をガスクロ(検出器:MS)を用いて測定した。使用したガスクロはあらかじめ既知の酸素標準ガスにより検量線を取得したものを使用した。評価系を図4.に、結果を表3.および図5.に示す。
【0028】
この結果、表3.および図5.で示すように添加した酸素濃度と測定された酸素濃度は比例関係にあり、フッ素混合ガス中の酸素濃度の測定が可能であることが判る。
【0029】
【表3】
Figure 0004268296

【図面の簡単な説明】
【図1】本発明の好ましい装置のフローシート。
【図2】一定濃度のフッ素ガスを分析するための装置のフローシート。
【図3】希釈フッ素濃度とフッ素換算濃度との関係を示すグラフ。
【図4】フッ素含有混合ガス中の酸素を分析する装置のフローシート。
【図5】添加酸素濃度とGC/MS測定酸素濃度との関係を示すグラフ。[0001]
[Industrial application fields]
The present invention relates to a method and apparatus for measuring fluorine in a mixed gas containing fluorine.
[0002]
[Prior art]
Conventionally, various methods are known as methods for analyzing the concentration of fluorine in a gas. Generally, two methods, a wet method and a dry method, are known.
[0003]
As a wet method, (1) a method in which chlorine is oxidized by passing fluorine gas into a LiCl solution and this is analyzed with an electrode is known.
[S. Kaye. M.M. Griggs: Anal. Chem. , 40, 2217, (1968)]
As a dry method, (2) HF in the sample gas is removed by NaF pellets, then reacted with fluorine through the NaCl layer, and the generated chlorine gas is absorbed in the NaOH solution, and the generated hypochlorous acid is removed. Method determined by iodine titration [A. M.M. G. Macdonald et al, “Fluoline”, Encyclopedia of Industrial Chemical Analysis, Vol. 13, New York-London-Sydney-Toronto, 1971], (3) As a chromatographic method, a special material such as nickel is used for the portion in contact with the sample, and the thermal conductivity cell is directly coated with PTFE. Method for analyzing fluorine gas [E. Rudzitis: Anal. Chem. 35,465. (1963)], etc. are known.
[0004]
[Problems to be solved by the invention]
In the method of measuring the oxygen content present in the fluorine mixed gas from the beginning, when using a substance that directly captures fluorine, such as Si, Ge, etc., if there is SiO2 or the like as an impurity in the substance, fluorine and Reacts to release oxygen.
[0005]
In such a case, it is detected as oxygen in the fluorine mixed gas which does not exist originally, resulting in a measurement error.
In addition, an operation such as reduction using hydrogen or the like is required to remove these impurities.
[0006]
[Means for Solving the Problems]
In the fluorine concentration measuring method and apparatus according to the present invention, on the other hand, by substituting fluorine with oxygen in the packed layer of the group III metal compound of the periodic table , Calculating the total oxygen concentration originally contained in the fluorine mixed gas , replacing the fluorine in the sample with a halogen component other than oxygen, and adsorbing the halogen component without damaging the oximeter Only the oxygen content contained in the original sample gas was obtained, and the fluorine concentration was calculated from the difference. The latter specific method is carried out by passing a packed bed containing a halogen compound other than fluorine, which substitutes a fluorine gas with a component other than oxygen, and a packed bed containing a substance that adsorbs a halogen component reacted with fluorine, into the sample gas. This is a method of measuring only the oxygen present from
[0007]
The present invention is a method for measuring the fluorine concentration in a fluorine-containing mixed gas whose fluorine concentration is unknown,
(1) passing the gaseous mixture into the filling layer containing the compound of the metal of the periodic table Group III react with fluorine in the fluorine-containing mixed gas to generate oxygen,
(2) passing the mixture gas to the packed bed of substance which adsorbs a packed bed and the halogen component of the fluorine can be substituted with other halogen component compounds of the mixed gas,
(3) Analyze the oxygen concentration in (1) with an oxygen analyzer,
(4) (2) the oxygen concentration was analyzed by an oxygen analyzer in, and (5) (3) and (4) measuring method of the fluorine concentration in the mixed gas that by the comparing the oxygen concentration was analyzed by About.
[0008]
The present invention also provides a device for measuring the fluorine concentration of the fluorine concentration unknown fluorine-containing mixed gas, the apparatus of the periodic table Group III for generating oxygen by reacting with fluorine of the fluorine-containing mixed gas A packed bed containing a metal compound, a packed bed of a compound capable of substituting fluorine in the mixed gas with another halogen component, a packed bed of a substance that adsorbs the halogen component, an oxygen analyzer for measuring the oxygen concentration, the oxygen The present invention also relates to an apparatus including an inert gas supply line for supplying an inert gas for purging to an analyzer and a line for supplying a standard gas with a known oxygen concentration for adjusting the span of the oxygen analyzer.
[0009]
The oxygen analyzer is an analyzer for absolute measurement of oxygen concentration such as a zirconia type, a magnetic type or a galvanic cell type, which can be adjusted by Zero-Span with a standard gas, or a gas chromatograph such as GC / TCD or GC / MS. An analyzer that separates the oxygen component by a graphic method and measures the contrast with a standard gas is preferable.
[0010]
The group III metal compound that generates oxygen by reacting with fluorine is preferably alumina.
In the following, the invention is further illustrated by means of a drawing of a preferred device of the invention.
[0011]
FIG. 1 shows an apparatus according to the present invention. 1 is a fluorine-containing mixed gas, 2 is a pressure reducing valve, 3 and 4 are valves, 5 is a standard gas, 6 is a mass flow controller, 7 and 8 are valves, and 9 is a cycle in which fluorine in the fluorine-containing mixed gas can be replaced with oxygen Packing layer of compound of group III metal compound, 10 is a temperature controller for packing layer 9, 11 is a packing layer of compound capable of substituting fluorine with other halogen, and 12 adsorbs the halogen generated in 11 A packed bed of materials, 13 and 14 are valves, 15 is a valve for purging inert gas, and 16 is an oxygen analyzer.
[0012]
FIG. 2 is a flow sheet of an apparatus for analyzing fluorine gas having a constant concentration. 21 is a mixed gas containing 5% fluorine. 22 is a pressure reducing valve, 23 and 24 are valves, 25 is neon gas for dilution, 26 is a mass flow controller, 27 is a packed bed of a compound replacing fluorine with oxygen, 28 is a temperature controller, 29 and 30 are valves, and 31 is a valve It is an oxygen analyzer.
[0013]
FIG. 4 is a flow sheet of an apparatus for removing fluorine from a fluorine-containing mixed gas without generating oxygen and analyzing oxygen in the mixed gas. 41 is a fluorine-containing mixed gas, 42 is a pressure reducing valve, 43 and 44 are valves, 45 is an oxygen standard gas, 46 is a mass flow controller, 47 is a packed bed of a compound capable of substituting fluorine with other halogen components, and 48 is the halogen. A packed bed of substances to be adsorbed, 49 is a valve, 50 is a valve for an inert gas, and 41 is a GC / MS.
[0014]
[Example 1]
The principle of the present invention will be briefly described using a chemical reaction formula.
[0015]
6F 2 + 2Al 2 O 3 → 4AlF 3 + 3O 2 (1)
By this reaction, oxygen is quantitatively replaced with oxygen at a ratio of 3 molecular equivalents of oxygen to 6 molecules of fluorine in the gas. Although this reaction is sufficiently complete even at room temperature, it is desirable to keep it constant at 100 to 200 ° C. in view of reaction efficiency.
[0016]
As the packed layer, a metal pipe having a diameter of 1/2 inch × 0.3 m, which had been passivated with fluorine, was filled with about 10 g of activated alumina, and it was examined whether fluorine was completely replaced with oxygen.
[0017]
Neon gas having a fluorine concentration adjusted to 1% was passed through the packed bed under the conditions of temperature and flow rate shown in Table 1, and it was examined whether fluorine was detected in the gas at the outlet of the packed bed. Detection was carried out using a cloth impregnated with an aqueous solution of potassium iodide and examined whether the color of the cloth changed. It has been known in advance that this method can detect a fluorine concentration of 0.1 ppm or more. The results are shown in Table 1. Shown in
[0018]
As a result, Table 1. It was found that fluorine was completely replaced with oxygen under all conditions from the room temperature (20 ° C.) to 200 ° C. in the gas flow rate range required for measuring the oxygen concentration.
[0019]
[Table 1]
Figure 0004268296
[0020]
[Example 2]
Using a mass flow controller 6 for controlling the flow rate of each gas, using neon gas 1 with a fluorine concentration adjusted to 5% and 100% neon gas 5 for dilution in the measurement system shown in FIG. Dilute the concentration to generate fluorine mixed gas with several concentrations. As the mass flow controller, an actual flow rate was measured and calibrated using a soap film flow meter in advance. The gas flow rate is set to 200 CCM in total, and the diluted gas is circulated through the packed bed, and the oxygen concentration at that time is measured using a zirconia oxygen analyzer calibrated with a standard gas with a known oxygen concentration. went.
[0021]
The results are shown in Table 2. And FIG. Shown in
From this result, the value obtained by converting the oxygen concentration instruction value of the zirconia oxygen meter into the fluorine concentration (twice the oxygen concentration) substantially coincided with the fluorine concentration of the introduced gas, and a linear relationship was obtained.
[0022]
From this result, it was found that the oxygen concentration substituted with oxygen by the packed bed was linear with respect to the fluorine concentration, and the value obtained by converting the oxygen concentration was the fluorine concentration.
[0023]
[Table 2]
Figure 0004268296
[0024]
[Example 3]
In order to measure the oxygen present from the beginning in the fluorine mixed gas, the chemical principle is used to replace the fluorine with a halogen component using a halogen compound other than fluorine, such as KCl, which does not release oxygen by reacting with fluorine. This is expressed by the following formula.
[0025]
F 2 + 2KCl → 2KF + Cl 2 (2)
In this reaction, since fluorine has the highest electronegativity among halogen elements and is highly reactive, it reacts with halogen compounds other than fluorine and is easily substituted.
[0026]
Halogen components such as chlorine produced by the reaction can be adsorbed and removed by activated carbon or porous polymer.
A metal gas column with an outer diameter of φ4 mm and an inner diameter of φ3 mm × 1 m subjected to passivation with fluorine as a fluorine reaction packed bed is filled with KCl, and a carbon molecular column with an outer diameter of φ4 mm and an inner diameter of φ3 mm × 1 m as a chlorine adsorption packed layer. Those filled with Sieve were arranged in series, and it was examined whether or not oxygen in the fluorine mixed gas could be measured.
[0027]
A gas obtained by adding a known oxygen concentration to neon gas whose fluorine concentration was adjusted to 1% was passed through the packed bed, and the oxygen concentration in the gas at the outlet of the packed bed was measured using a gas chromatograph (detector: MS). The gas chromatograph used was a calibration curve obtained with a known oxygen standard gas in advance. Figure 4 shows the evaluation system. Table 3 shows the results. And FIG. Shown in
[0028]
As a result, Table 3. And FIG. As can be seen from the graph, the added oxygen concentration and the measured oxygen concentration are in a proportional relationship, and the oxygen concentration in the fluorine mixed gas can be measured.
[0029]
[Table 3]
Figure 0004268296

[Brief description of the drawings]
FIG. 1 is a flow sheet of a preferred apparatus of the present invention.
FIG. 2 is a flow sheet of an apparatus for analyzing a constant concentration of fluorine gas.
FIG. 3 is a graph showing the relationship between diluted fluorine concentration and fluorine equivalent concentration.
FIG. 4 is a flow sheet of an apparatus for analyzing oxygen in a fluorine-containing mixed gas.
FIG. 5 is a graph showing the relationship between the added oxygen concentration and the GC / MS measured oxygen concentration.

Claims (4)

フッ素濃度未知のフッ素含有混合ガス中のフッ素濃度を測定する方法であって、
(1) 前記フッ素含有混合ガス中のフッ素と反応して酸素を発生するアルミナを含む充填層に該混合ガスを通し、
(2) 該混合ガス中のフッ素を塩素成分に置換できるKClの充填層及び該塩素成分を吸着する活性炭及びポーラスポリマーからなる群から選ばれる少なくとも1つの充填層に該混合ガスを通し、
(3) (1)における酸素濃度を酸素分析計で分析し、
(4) (2)における酸素濃度を酸素分析計で分析し、そして
(5) (3)及び(4)で分析した酸素濃度を比較する
フッ素濃度の測定方法
A method for measuring fluorine concentration in a fluorine-containing mixed gas with unknown fluorine concentration,
(1) passing the gaseous mixture into the filling layer containing alumina for generating oxygen by reacting with fluorine of the fluorine-containing mixed gas,
(2) the fluorine of the mixed gas was passed through at least one of the mixed gas to the filling layer is selected from the group consisting of activated carbon and porous polymer adsorbs a packed bed and the chlorine component of the KCl which can be substituted by chlorine component,
(3) Analyze the oxygen concentration in (1) with an oxygen analyzer,
(4) Analyze the oxygen concentration in (2) with an oxygen analyzer, and (5) Compare the oxygen concentrations analyzed in (3) and (4)
Measuring method of fluorine concentration .
前記酸素分析計は標準ガスなどによりZero−Span調整することが可能なジルコニア式、磁気式あるいはガルバニ電池式などの酸素濃度を絶対測定する分析計、あるいはGC/TCD、GC/MSなどのガスクロマトグラフィー法により酸素成分を分離し標準ガスとの対比測定する分析計である請求項1記載の測定方法。  The oxygen analyzer is an analyzer for absolute measurement of oxygen concentration such as a zirconia type, a magnetic type or a galvanic cell type, which can be adjusted by Zero-Span with a standard gas, or a gas chromatograph such as GC / TCD or GC / MS. 2. The measuring method according to claim 1, wherein the analyzer is an analyzer that separates an oxygen component by a graphic method and measures the contrast with a standard gas. フッ素濃度未知のフッ素含有混合ガス中のフッ素濃度を測定する装置であって、その装置は前記フッ素含有混合ガス中のフッ素と反応して酸素を発生するアルミナを含む充填層、該混合ガス中のフッ素を塩素成分に置換できるKClの充填層、該塩素成分を吸着する活性炭及びポーラスポリマーからなる群から選ばれる少なくとも1つの充填層、前記酸素濃度を測定する酸素分析計、該酸素分析計にパージ用不活性ガスを供給する不活性ガス供給ライン及び前記酸素分析計のスパンを調整する酸素濃度既知の標準ガスを供給するラインを含む装置。An apparatus for measuring a fluorine concentration in a fluorine-containing mixed gas having an unknown fluorine concentration, the apparatus comprising a packed bed containing alumina that reacts with fluorine in the fluorine-containing mixed gas to generate oxygen, packed bed of KCl that fluorine can be substituted by chlorine components, at least one filler layer selected from the group consisting of activated carbon and porous polymer adsorbs the chlorine component, oxygen analyzer to measure the oxygen concentration, the oxygen analyzer An apparatus comprising an inert gas supply line for supplying an inert gas for purging and a line for supplying a standard gas with a known oxygen concentration for adjusting the span of the oxygen analyzer. 前記酸素分析計は標準ガスなどによりZero−Span調整することが可能なジルコニア式、磁気式あるいはガルバニ電池式などの酸素濃度を絶対測定する分析計、あるいはGC/TCD、GC/MSなどのガスクロマトグラフィー法により酸素成分を分離し標準ガスとの対比測定する分析計である請求項記載の測定装置。The oxygen analyzer is an analyzer for absolute measurement of oxygen concentration such as a zirconia type, a magnetic type or a galvanic cell type, which can be adjusted by Zero-Span with a standard gas, or a gas chromatograph such as GC / TCD or GC / MS. 4. The measuring apparatus according to claim 3 , wherein the measuring apparatus is an analyzer that separates an oxygen component by a graphic method and measures a comparison with a standard gas.
JP35163499A 1999-12-10 1999-12-10 Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine Expired - Fee Related JP4268296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35163499A JP4268296B2 (en) 1999-12-10 1999-12-10 Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35163499A JP4268296B2 (en) 1999-12-10 1999-12-10 Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine

Publications (2)

Publication Number Publication Date
JP2001165924A JP2001165924A (en) 2001-06-22
JP4268296B2 true JP4268296B2 (en) 2009-05-27

Family

ID=18418587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35163499A Expired - Fee Related JP4268296B2 (en) 1999-12-10 1999-12-10 Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine

Country Status (1)

Country Link
JP (1) JP4268296B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749823B2 (en) * 2005-10-11 2011-08-17 大陽日酸株式会社 Fluorine gas concentration measurement method
CN104914172B (en) * 2014-03-10 2017-06-23 福建永晶科技有限公司 A kind of method of content of fluorine in gas chromatography measurement fluorine mixed gas
WO2019060164A1 (en) * 2017-09-25 2019-03-28 Cymer, Llc Fluorine detection in a gas discharge light source
CN108287157A (en) * 2017-12-29 2018-07-17 和立气体(上海)有限公司 A kind of fluorine gas analysis reforming unit
TWI820776B (en) * 2019-08-29 2023-11-01 美商希瑪有限責任公司 Fluorine detection in a gas discharge light source
JP7511744B2 (en) 2020-09-10 2024-07-05 サイマー リミテッド ライアビリティ カンパニー Fluorine measuring device and fluorine measuring method
CN113917075A (en) * 2021-09-14 2022-01-11 苏州金宏气体股份有限公司 Device and method for testing fluorine content in fluorine-containing mixed gas
CN115032339B (en) * 2022-05-31 2023-03-17 中国矿业大学 High-concentration flue gas dilution measuring device and method

Also Published As

Publication number Publication date
JP2001165924A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
US5017499A (en) Method for analyzing fluorine containing gases
JP4268296B2 (en) Method and apparatus for measuring fluorine concentration in mixed gas containing fluorine
JP4699377B2 (en) Trace component analysis method and analyzer
Ashley Electroanalytical applications in occupational and environmental health
JP2725876B2 (en) Method and apparatus for analyzing trace impurities in fluorine or chlorine fluoride gas
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
US3996005A (en) Detection and measurement of NO2 and O3
US10060890B2 (en) Gas chromatograph intermediate processing apparatus and gas chromatograph
JP4642602B2 (en) Method for quantitative analysis of gas components contained in fluorine gas and apparatus used therefor
Konieczka et al. Utilization of thermal decomposition of immobilized compounds for the generation of gaseous standard mixtures used in the calibration of gas analysers
JP4564686B2 (en) Elemental analysis equipment for samples
JP3375072B2 (en) Method for detecting fluorine-containing compound gas
US2880071A (en) Process for detection and determination of fluid mixture components
Vidal-Madjar et al. Quantitative analysis of chlorofluorocarbons: Absolute calibration of the electron-capture detector
JP2003035647A (en) Volatile organic chlorine compound sensor
Christensen et al. Determination of hydrogen peroxide in workplace air: Interferences and method validation
Askew et al. Determining chlorine concentrations in air and water samples for scrubbing studies using ion chromatography
Fielden et al. Rapid automatic gas chromatographic method for the continual measurement of hydrogen cyanide and cyanogen in air
JPH0718862B2 (en) Fluorine concentration measuring method and apparatus
Hara et al. Pyrolytic Sulfurization Gas Chromatography. IX. Determination of the Atomic Ratio between C, H, O, N, Cl, Br, and I in an Organic Halogen Compound
EP2269057B1 (en) Detection of gaseous halogens
Song et al. Selective measurement of Cl 2 and HCl based on dopant-assisted negative photoionization ion mobility spectrometry combined with semiconductor cooling
JPH0546500B2 (en)
Adhihetty et al. Cesium ion-guided detection of trichloroethylene in air
SEFTON et al. Stain length passive dosimeters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees