TWI770568B - Fluorine detection in a gas discharge light source - Google Patents

Fluorine detection in a gas discharge light source Download PDF

Info

Publication number
TWI770568B
TWI770568B TW109125631A TW109125631A TWI770568B TW I770568 B TWI770568 B TW I770568B TW 109125631 A TW109125631 A TW 109125631A TW 109125631 A TW109125631 A TW 109125631A TW I770568 B TWI770568 B TW I770568B
Authority
TW
Taiwan
Prior art keywords
gas
fluorine
concentration
mixture
water
Prior art date
Application number
TW109125631A
Other languages
Chinese (zh)
Other versions
TW202111321A (en
Inventor
歐瑪 祖里塔
Original Assignee
美商希瑪有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商希瑪有限責任公司 filed Critical 美商希瑪有限責任公司
Publication of TW202111321A publication Critical patent/TW202111321A/en
Application granted granted Critical
Publication of TWI770568B publication Critical patent/TWI770568B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0052Gaseous halogens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2258F2, i.e. molecular fluoride is comprised for lasing around 157 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A method includes: receiving at least a portion of a mixed gas from a gas discharge chamber, wherein the mixed gas includes fluorine; reacting the fluorine in the mixed gas portion with a hydroxide to form a new gas mixture including oxygen and water; sensing a concentration of water within the new gas mixture; and estimating a concentration of fluorine within the mixed gas portion based on the sensed concentration of water.

Description

氣體放電光源中之氟偵測Fluorine Detection in Gas Discharge Light Sources

所揭示主題係關於混合氣體中之氟之偵測。The disclosed subject matter relates to the detection of fluorine in mixed gases.

在光微影中所使用之一種類型的氣體放電光源稱為準分子光源或雷射。準分子光源通常使用一或多種稀有氣體,諸如氬氣、氪氣或氙氣與反應氣體(諸如氟或氯)之組合。準分子光源之名稱衍生自在電刺激(所供應能量)及(氣體混合物之)高壓的適當條件下產生稱為準分子之偽分子的實情,其僅以供能狀態存在且在紫外線範圍內產生經放大光。One type of gas discharge light source used in photolithography is called an excimer light source or laser. Excimer light sources typically use one or more noble gases such as argon, krypton or xenon in combination with reactive gases such as fluorine or chlorine. The name excimer light source is derived from the fact that under appropriate conditions of electrical stimulation (supplied energy) and high pressure (of gas mixtures) pseudo-molecules called excimers are generated, which exist only in an energized state and produce in the ultraviolet range Amplify light.

準分子光源產生具有在深紫外線(DUV)範圍內之波長的光束,且此光束用以使光微影設備中之半導體基板(或晶圓)圖案化。可使用單個氣體放電腔室或使用複數個氣體放電腔室來建構準分子光源。Excimer light sources generate light beams with wavelengths in the deep ultraviolet (DUV) range, and this light beam is used to pattern semiconductor substrates (or wafers) in photolithography equipment. The excimer light source can be constructed using a single gas discharge chamber or using a plurality of gas discharge chambers.

在一些通用態樣中,一種方法包括:自一氣體放電腔室接收一混合氣體之至少一部分,該混合氣體包括氟;使該混合氣體部分中之該氟與一氫氧化物反應以形成包括氧氣及水之一新氣體混合物;感測該新氣體混合物內之水之一濃度;及基於水之感測到的濃度估計該混合氣體部分內之氟之一濃度。In some general aspects, a method includes: receiving from a gas discharge chamber at least a portion of a mixed gas, the mixed gas including fluorine; reacting the fluorine in the mixed gas portion with a hydroxide to form a mixture comprising oxygen and a new gas mixture of water; sensing a concentration of water within the new gas mixture; and estimating a concentration of fluorine within the gas mixture portion based on the sensed concentration of water.

實施可包括以下特徵中之一或多者。舉例而言,該氫氧化物可包括一鹼土金屬氫氧化物。該氫氧化物可缺少一鹼金屬及碳。Implementations may include one or more of the following features. For example, the hydroxide can include an alkaline earth metal hydroxide. The hydroxide may lack an alkali metal and carbon.

該混合氣體可為包括一增益介質與一緩衝氣體之至少一混合物之一準分子雷射氣體。The mixed gas may be an excimer laser gas including at least a mixture of a gain medium and a buffer gas.

該方法亦可包括:基於該混合氣體部分中之氟之經估計濃度調整來自一組氣體供應器之一氣體混合物中之氟之一相對濃度;及藉由將經調整氣體混合物自該等氣體供應器添加至該氣體放電腔室來進行一氣體更新。可藉由利用一增益介質及一緩衝氣體以及氟之一混合物填充該氣體放電腔室來進行該氣體更新。可藉由利用一增益介質填充該氣體放電腔室來利用該增益介質與該緩衝氣體之該混合物填充該氣體放電腔室,該增益介質包括一稀有氣體及一鹵素,及包括一惰性氣體之一緩衝氣體。該稀有氣體可包括氬氣、氪氣或氙氣;該鹵素可包括氟;且該惰性氣體可包括氦氣或氖氣。可藉由以下操作以利用該增益介質及該緩衝氣體以及氟之該混合物填充該氣體放電腔室:將該增益介質及該緩衝氣體以及氟之該混合物添加至該氣體放電腔室中之一現有混合氣體;或至少利用該增益介質與該緩衝氣體以及氟之該混合物替換該氣體放電腔室中之一現有混合氣體。可藉由進行一氣體再填充方案或一氣體注入方案中之一或多者來進行該氣體更新。The method may also include: adjusting a relative concentration of fluorine in a gas mixture from a set of gas supplies based on the estimated concentration of fluorine in the mixed gas portion; and by supplying the adjusted gas mixture from the gas supplies A gas discharger is added to the gas discharge chamber to perform a gas refresh. The gas refresh can be performed by filling the gas discharge chamber with a mixture of a gain medium and a buffer gas and fluorine. The gas discharge chamber can be filled with the mixture of the gain medium and the buffer gas by filling the gas discharge chamber with a gain medium comprising a noble gas and a halogen, and one comprising an inert gas buffer gas. The noble gas may include argon, krypton, or xenon; the halogen may include fluorine; and the inert gas may include helium or neon. The gas discharge chamber can be filled with the mixture of the gain medium and the buffer gas and fluorine by adding the gain medium and the mixture of the buffer gas and fluorine to an existing one in the gas discharge chamber mixed gas; or at least replace an existing mixed gas in the gas discharge chamber with the mixture of the gain medium and the buffer gas and fluorine. The gas refresh may be performed by performing one or more of a gas refill scheme or a gas injection scheme.

可藉由在對該氣體放電腔室進行一氣體更新之前接收該混合氣體部分而自該氣體放電腔室接收該混合氣體之該部分。該氣體更新可包括將一氣體混合物自一組氣體供應器添加至該氣體放電腔室,該氣體混合物包括至少一些氟。The portion of the mixed gas may be received from the gas discharge chamber by receiving the portion of the mixed gas prior to a gas refresh of the gas discharge chamber. The gas refresh may include adding a gas mixture to the gas discharge chamber from a set of gas supplies, the gas mixture including at least some fluorine.

可藉由進行一氣體再填充方案或一氣體注入方案中之一或多者來進行該氣體更新。The gas refresh may be performed by performing one or more of a gas refill scheme or a gas injection scheme.

可藉由自該氣體放電腔室放出該混合氣體及將所放出之混合氣體引導至容納該氫氧化物之一反應容器而自該氣體放電腔室接收該混合氣體之該部分。該方法亦可包括:將該新氣體混合物自該反應容器轉移至一量測容器,其中該感測該新氣體混合物內之水之該濃度包含感測在該量測容器內之該新氣體混合物內之水之該濃度。可藉由將該量測容器內之一感測器暴露於該新氣體混合物來感測該新氣體混合物內之水之該濃度。The portion of the mixed gas can be received from the gas discharge chamber by venting the mixed gas from the gas discharge chamber and directing the vented mixed gas to a reaction vessel containing the hydroxide. The method may also include: transferring the new gas mixture from the reaction vessel to a measuring vessel, wherein sensing the concentration of water in the new gas mixture includes sensing the new gas mixture within the measuring vessel the concentration of the water within. The concentration of water in the new gas mixture can be sensed by exposing a sensor in the measuring vessel to the new gas mixture.

該方法亦可包括:在已估計該混合氣體部分內之氟之該濃度之後,自該量測容器排出該新氣體混合物。The method may also include discharging the new gas mixture from the measurement vessel after the concentration of fluorine in the mixed gas portion has been estimated.

可藉由在不利用另一材料稀釋該混合氣體部分之情況下感測該新氣體混合物內之水之該濃度來感測該新氣體混合物內之水之該濃度。The concentration of water in the new gas mixture can be sensed by sensing the concentration of water in the new gas mixture without diluting the mixed gas portion with another material.

該混合氣體部分可藉由形成加上水之一無機氟化物化合物來與該氫氧化物反應以形成包括水之該新氣體混合物。該氫氧化物可包括氫氧化鈣,且該無機氟化物化合物可包括氟化鈣。The mixed gas portion can react with the hydroxide by forming an inorganic fluoride compound plus water to form the new gas mixture including water. The hydroxide may include calcium hydroxide, and the inorganic fluoride compound may include calcium fluoride.

可藉由在該反應開始之後僅在已過去一預定時間段之後才感測該新氣體混合物內之水之該濃度來感測該新氣體混合物內之水之該濃度。The concentration of water in the new gas mixture can be sensed by sensing the concentration of water in the new gas mixture only after a predetermined period of time has elapsed after the reaction begins.

該混合氣體部分可為一排出氣體且該混合氣體部分可藉由自該排出氣體移除氟而與該氫氧化物反應以形成包括水之該新氣體混合物。The mixed gas portion can be an exhaust gas and the mixed gas portion can react with the hydroxide by removing fluorine from the exhaust gas to form the new gas mixture including water.

可藉由僅基於水之該感測到的濃度及該混合氣體部分中之氟與該氫氧化物之間的化學反應來估計而基於水之該感測到的濃度估計該混合氣體部分內之氟之該濃度。The amount of water in the mixed gas portion can be estimated based on the sensed concentration of water by estimating only based on the sensed concentration of water and the chemical reaction between the fluorine and the hydroxide in the mixed gas portion. The concentration of fluorine.

該混合氣體部分中之氟之該濃度可為約百萬分之500至2000。The concentration of fluorine in the mixed gas portion may be about 500 to 2000 parts per million.

形成包括水之該新氣體混合物的該混合氣體部分中之該氟與該氫氧化物之該反應為穩定的。The reaction of the fluorine and the hydroxide in the portion of the mixed gas that forms the new gas mixture including water is stable.

該混合氣體部分中之該氟可藉由進行一反應而與該氫氧化物反應以形成包括水之該氣體混合物,該反應為線性且提供該混合氣體部分中之氟之該濃度與該新氣體混合物中該水之該濃度之間的一直接相關性。The fluorine in the mixed gas portion can react with the hydroxide to form the gas mixture including water by performing a reaction that is linear and provides the concentration of fluorine in the mixed gas portion and the new gas A direct correlation between the concentration of the water in the mixture.

該方法亦可包括感測該新氣體混合物內之氧氣之一濃度,且估計該混合氣體部分內之氟之該濃度可另外基於氧氣之感測到的濃度。The method may also include sensing a concentration of oxygen within the new gas mixture, and estimating the concentration of fluorine within the portion of the mixed gas may additionally be based on the sensed concentration of oxygen.

在其他通用態樣中,一種方法包括:藉由將一第一氣體混合物自一組氣體供應器添加至一氣體放電腔室來進行一第一氣體更新;在該第一氣體更新之後移除來自該氣體放電腔室之一混合氣體之至少一部分,該混合氣體包括氟;使經移除之混合氣體部分之該氟與一反應物反應以形成包括氧氣及水之一新氣體混合物;感測該新氣體混合物內之水之一濃度;基於水之感測到的濃度估計該經移除之混合氣體部分內之氟之一濃度;基於該經移除之混合氣體中之氟之經估計濃度調整來自該組氣體供應器之一第二氣體混合物中之氟之一相對濃度;及藉由將經調整第二氣體混合物自該等氣體供應器添加至該氣體放電腔室來進行一第二氣體更新。In other general aspects, a method includes: performing a first gas refresh by adding a first gas mixture from a set of gas supplies to a gas discharge chamber; removing after the first gas refresh at least a portion of a mixed gas of the gas discharge chamber, the mixed gas including fluorine; reacting the fluorine of the removed portion of the mixed gas with a reactant to form a new gas mixture including oxygen and water; sensing the A concentration of water in the new gas mixture; a concentration of fluorine in the removed mixed gas portion estimated based on the sensed concentration of water; adjusted based on the estimated concentration of fluorine in the removed mixed gas a relative concentration of fluorine in a second gas mixture from a second gas mixture of the set of gas suppliers; and a second gas update by adding the adjusted second gas mixture from the gas suppliers to the gas discharge chamber .

實施可包括以下特徵中之一或多者。舉例而言,該反應物可包括氫氧化物。該氣體放電腔室中之該混合氣體可包括一準分子雷射氣體,該準分子雷射氣體包括一增益介質與一緩衝氣體之至少一混合物。Implementations may include one or more of the following features. For example, the reactants can include hydroxides. The mixed gas in the gas discharge chamber may include an excimer laser gas including at least a mixture of a gain medium and a buffer gas.

可藉由在不量測該經移除之混合氣體部分內之該氟濃度之情況下估計該經移除之混合氣體部分內之該氟濃度來基於水之該感測到的濃度估計該經移除之混合氣體部分內之氟之該濃度。The fluorine concentration in the removed mixed gas portion can be estimated based on the sensed concentration of water by estimating the fluorine concentration in the removed mixed gas portion without measuring the fluorine concentration in the removed mixed gas portion. This concentration of fluorine in the removed mixed gas portion.

在其他通用態樣中,一種設備包括:一偵測設備,其流體地連接至一準分子氣體放電系統之每一氣體放電腔室;及一控制系統,其連接至該偵測設備。每一偵測設備包括:一容器,其界定容納一氫氧化物且流體地連接至該氣體放電腔室以用於自該反應空腔中之該氣體放電腔室接收包括氟之混合氣體之一反應空腔;及一水感測器。該容器使得接收到之混合氣體之該氟與該氫氧化物之間的一反應能夠形成包括氧氣及水之一新氣體混合物。該水感測器經組態以流體地連接至該新氣體混合物,且當流體地連接至該新氣體混合物時,感測該新氣體混合物內之水之一量。該控制系統經組態以:自該水感測器接收輸出且估計自該氣體放電腔室接收到之該混合氣體中之氟之一濃度;判定是否應基於該混合氣體中之氟之該經估計濃度而調整來自一氣體維持系統之一氣體供應系統的一氣體混合物中之氟之一濃度;及將一信號發送至該氣體維持系統,指示該氣體維持系統在對該氣體放電腔室之一氣體更新期間調整自該氣體維持系統之該氣體供應系統供應至該氣體放電腔室之一氣體混合物中之氟之該相對濃度。In other general aspects, an apparatus includes: a detection apparatus fluidly connected to each gas discharge chamber of an excimer gas discharge system; and a control system connected to the detection apparatus. Each detection apparatus includes: a vessel defined to hold a hydroxide and fluidly connected to the gas discharge chamber for receiving one of the mixed gases including fluorine from the gas discharge chamber in the reaction cavity a reaction cavity; and a water sensor. The vessel enables a reaction between the fluorine and the hydroxide of the received mixed gas to form a new gas mixture comprising oxygen and water. The water sensor is configured to be fluidly connected to the new gas mixture, and when fluidly connected to the new gas mixture, sense an amount of water within the new gas mixture. The control system is configured to: receive output from the water sensor and estimate a concentration of fluorine in the mixed gas received from the gas discharge chamber; determine whether to be based on the experience of the fluorine in the mixed gas estimating the concentration to adjust a concentration of fluorine in a gas mixture from a gas supply system of a gas maintenance system; and sending a signal to the gas maintenance system indicating that the gas maintenance system is in one of the gas discharge chambers The relative concentration of fluorine in a gas mixture supplied from the gas supply system of the gas maintenance system to the gas discharge chamber is adjusted during gas refresh.

實施可包括以下特徵中之一或多者。舉例而言,該準分子氣體放電系統之每一氣體放電腔室可容納一能量源且可含有包括一準分子雷射氣體之一氣體混合物,該準分子雷射氣體包括一增益介質及氟。Implementations may include one or more of the following features. For example, each gas discharge chamber of the excimer gas discharge system may contain an energy source and may contain a gas mixture including an excimer laser gas including a gain medium and fluorine.

該偵測設備亦可包括一量測容器,其流體地連接至該反應容器之該反應空腔且界定經組態以接收該新氣體混合物之一量測空腔。該水感測器可經組態以感測該量測空腔中之該新氣體混合物內之水之一量。The detection apparatus may also include a measurement vessel fluidly connected to the reaction cavity of the reaction vessel and defining a measurement cavity configured to receive the new gas mixture. The water sensor can be configured to sense an amount of water in the new gas mixture in the measurement cavity.

該經移除之混合氣體部分中之氟之該濃度可為約百萬分之500至2000。The concentration of fluorine in the removed portion of the mixed gas may be about 500 to 2000 parts per million.

該準分子氣體放電系統可包括複數個氣體放電腔室,且該偵測設備可流體地連接至該複數個氣體放電腔室中之每一氣體放電腔室。該偵測設備可包括複數個容器,每一容器界定容納該氫氧化物之一反應空腔,且每一容器流體地連接至該等氣體放電腔室中之一者且該偵測設備包括複數個水感測器,每一水感測器均與一個容器相關聯。該偵測設備可包括複數個容器,每一容器界定容納該氫氧化物之一反應空腔,且每一容器流體地連接至該等氣體放電腔室中之一者且該偵測設備包括與所有該等容器流體地連接之單個水感測器。The excimer gas discharge system can include a plurality of gas discharge chambers, and the detection device can be fluidly connected to each gas discharge chamber of the plurality of gas discharge chambers. The detection apparatus may include a plurality of vessels, each vessel defining a reaction cavity containing the hydroxide, and each vessel is fluidly connected to one of the gas discharge chambers and the detection apparatus includes a plurality of water sensors, each water sensor is associated with a container. The detection apparatus may include a plurality of vessels, each vessel defining a reaction cavity containing the hydroxide, and each vessel fluidly connected to one of the gas discharge chambers and the detection apparatus including and A single water sensor to which all the containers are fluidly connected.

參考圖1,設備100包括偵測設備105,其經組態以使用市售氟感測器量測或估計腔室110內之氣體混合物107中之氟(F)之濃度而無需直接量測氣體混合物107中之氟之濃度。在室溫下,氟為雙原子分子之氣體且由其分子結構F2 表示。如本文所使用之術語「氟」因此係指分子氟F2 。腔室110中之氟分子F2 之濃度在過高而不准許氟之直接偵測的範圍內。舉例而言,腔室110中之氟之濃度大於約百萬分之(ppm)500且可為約1000 ppm或至多約2000 ppm。然而,市售氟感測器通常在10 ppm下飽和,因此使得使用市售氟感測器直接量測腔室110中之氟之濃度係不現實的。實際上,偵測設備105實現將來自腔室110之氟轉化成一或多個組分(其包括水)之化學反應,該一或多個組分中之每一者可利用感測設備116之市售感測器115偵測到及量測。偵測設備105可基於在化學反應之後存在之水之量(如由感測器115所供應)且基於關於該化學反應之資訊計算或估計在開始該化學反應之前存在多少氟。1, apparatus 100 includes detection apparatus 105 configured to measure or estimate the concentration of fluorine (F) in gas mixture 107 within chamber 110 using a commercially available fluorine sensor without directly measuring the gas Fluorine concentration in mixture 107. At room temperature, fluorine is a gas of diatomic molecules and is represented by its molecular structure F2 . The term "fluorine" as used herein thus refers to molecular fluorine F2. The concentration of fluorine molecules F2 in chamber 110 is in a range that is too high to permit direct detection of fluorine. For example, the concentration of fluorine in chamber 110 is greater than about 500 parts per million (ppm) and may be about 1000 ppm or up to about 2000 ppm. However, commercially available fluorine sensors typically saturate at 10 ppm, thus making it impractical to directly measure the concentration of fluorine in chamber 110 using a commercially available fluorine sensor. In effect, detection device 105 implements a chemical reaction that converts fluorine from chamber 110 into one or more components, including water, each of which can be utilized by sensing device 116 . Commercially available sensor 115 detects and measures. The detection device 105 may calculate or estimate how much fluorine was present before the chemical reaction was started based on the amount of water present after the chemical reaction (as supplied by the sensor 115) and based on information about the chemical reaction.

為了使此估計準確,偵測設備105可假定將來自腔室110之氟轉化成組分的化學反應為線性反應,其中在開始化學反應之前氟之濃度與在結束化學反應時水之濃度之間存在直接相關性。或,偵測設備105可假定完成氟之轉化(且因此,在化學反應之後氣體中不存在殘餘分子氟F2 )。To make this estimate accurate, detection device 105 may assume that the chemical reaction that converts fluorine from chamber 110 into components is a linear reaction, with the concentration of fluorine before starting the chemical reaction and the concentration of water at the end of the chemical reaction There is a direct correlation. Alternatively, the detection apparatus 105 may assume that the conversion of fluorine is complete (and thus, no residual molecular fluorine F2 is present in the gas after the chemical reaction ) .

設備100與氣體維持系統120連通,該氣體維持系統120至少包括經由套管系統127流體地連接至腔室110之氣體供應系統。如下文詳細論述,氣體維持系統120包括一或多個氣體供應器及控制單元(其亦包括閥系統)以用於控制來自供應器之氣體中之哪些經由套管系統127轉移進入或離開腔室110。The apparatus 100 is in communication with a gas maintenance system 120 that includes at least a gas supply system fluidly connected to the chamber 110 via a cannula system 127 . As discussed in detail below, the gas maintenance system 120 includes one or more gas suppliers and a control unit (which also includes a valve system) for controlling which of the gas from the suppliers is diverted into or out of the chamber via the cannula system 127 110.

設備100包括控制器130,該控制器130自水感測器115接收輸出且計算在開始化學反應之前存在多少氟以估計氣體混合物107中之氟之量。控制器130使用此資訊以判定是否需要調整氣體混合物107中之氟之濃度。控制器130因此基於該判定來判定如何調整氣體維持系統120之供應器中待轉移進入或離開腔室110之氣體之相對量。控制器130將信號發送至氣體維持系統120,指示其在對腔室110之氣體更新期間調整氣體混合物107中之氟之相對濃度。The apparatus 100 includes a controller 130 that receives output from the water sensor 115 and calculates how much fluorine is present before the chemical reaction begins to estimate the amount of fluorine in the gas mixture 107 . The controller 130 uses this information to determine whether the concentration of fluorine in the gas mixture 107 needs to be adjusted. The controller 130 thus determines, based on this determination, how to adjust the relative amount of gas to be diverted into or out of the chamber 110 in the supply of the gas maintenance system 120 . The controller 130 sends a signal to the gas maintenance system 120 instructing it to adjust the relative concentration of fluorine in the gas mixture 107 during the gas refresh of the chamber 110 .

偵測設備105包括界定容納氫氧化物Σ(-OH) 145之反應空腔140之反應容器135,其中Σ為金屬。反應空腔140經由套管137流體地連接至腔室110以自腔室110接收包括氟之混合氣體150。儘管未展示,但一或多個流體控制裝置(諸如閥)可置放於套管137中以控制混合氣體150何時引導至反應空腔140之時序,以及控制混合氣體150流動至反應容器135中之速率。以此方式,反應空腔140使得接收到之混合氣體150之氟與氫氧化物145之間的化學反應能夠形成新氣體混合物155。界定反應空腔140之反應容器135之內部應由非反應性材料製成以免干擾或更改接收到之混合氣體150之氟與氫氧化物145之間的化學反應。舉例而言,反應容器135之內部可由諸如不鏽鋼或蒙納合金(Monel metal)之非反應性金屬製成。The detection apparatus 105 includes a reaction vessel 135 defining a reaction cavity 140 containing hydroxide Σ(-OH) 145, where Σ is a metal. The reaction cavity 140 is fluidly connected to the chamber 110 via the sleeve 137 to receive the mixed gas 150 including fluorine from the chamber 110 . Although not shown, one or more fluid control devices, such as valves, may be placed in the sleeve 137 to control the timing of when the mixed gas 150 is directed to the reaction cavity 140 and to control the flow of the mixed gas 150 into the reaction vessel 135 rate. In this way, the reaction cavity 140 enables the chemical reaction between the fluorine of the received mixed gas 150 and the hydroxide 145 to form a new gas mixture 155 . The interior of the reaction vessel 135 that defines the reaction cavity 140 should be made of non-reactive materials so as not to interfere or alter the chemical reaction between the fluorine of the received mixed gas 150 and the hydroxide 145 . For example, the interior of the reaction vessel 135 may be made of a non-reactive metal such as stainless steel or Monel metal.

水感測器115流體地連接以接收新氣體混合物155且感測新氣體混合物155內之水之量。水感測器115可為能夠偵測在歸因於化學反應而預期之濃度範圍內之水之濃度的市售水感測器。舉例而言,水感測器115感測新氣體混合物155內之在200至1000 ppm範圍內之水。The water sensor 115 is fluidly connected to receive the fresh gas mixture 155 and sense the amount of water within the fresh gas mixture 155 . The water sensor 115 may be a commercially available water sensor capable of detecting the concentration of water within the concentration range expected due to the chemical reaction. For example, the water sensor 115 senses water within the fresh gas mixture 155 in the range of 200 to 1000 ppm.

水感測器115 (且視情況,氧氣感測器117)可在量測容器170之量測空腔175內部。量測空腔175經由套管177流體地連接至反應空腔140。儘管圖1中未展示,但一或多個流體控制裝置(諸如閥)可置放於套管177中以控制新氣體混合物155何時引導至量測空腔175之時序,以及控制新氣體混合物155流動至量測容器170中之速率。Water sensor 115 (and optionally, oxygen sensor 117 ) may be inside measurement cavity 175 of measurement vessel 170 . The measurement cavity 175 is fluidly connected to the reaction cavity 140 via a cannula 177 . Although not shown in FIG. 1 , one or more fluid control devices, such as valves, may be placed in the sleeve 177 to control the timing of when the new gas mixture 155 is directed to the measurement cavity 175 , as well as to control the new gas mixture 155 The rate of flow into the measuring vessel 170.

在一些實施中,水感測器115可為濕度計,其量測空腔175中之水蒸氣之量或濕度。量測濕度之工具通常亦量測溫度、壓力、質量或甚至吸收濕氣之物質中之機械或電氣變化,此係由於彼等因素亦可影響濕度。藉由校準及計算,此等經量測之量可引起濕度之量測。濕度計可為使用冷凝溫度(亦稱為露點)、物質之完全蒸氣飽和點的電子裝置。濕度計可為偵測及量測物質之電容或電阻之變化以判定濕度之裝置。濕度計可為量測物質保持靜電荷之能力之變化的電阻性濕度計。濕度計可為量測物質傳輸電之能力之變化的基於電容器之濕度計。In some implementations, the water sensor 115 can be a hygrometer that measures the amount or humidity of water vapor in the cavity 175 . Tools that measure humidity typically also measure temperature, pressure, mass, or even mechanical or electrical changes in moisture-absorbing substances, since these factors can also affect humidity. By calibration and calculation, these measured quantities can lead to measurements of humidity. A hygrometer can be an electronic device that uses the condensation temperature (also known as the dew point), the complete vapor saturation point of a substance. A hygrometer can be a device that detects and measures changes in capacitance or resistance of substances to determine humidity. A hygrometer can be a resistive hygrometer that measures changes in the ability of a substance to retain an electrostatic charge. A hygrometer can be a capacitor-based hygrometer that measures changes in the ability of a substance to transmit electricity.

在一些實施中,儘管未要求,但感測設備116包括第二感測器117,其可為感測新氣體混合物155內之在百萬分之(ppm) 200至1000範圍內之氧氣的氧氣感測器117。In some implementations, although not required, the sensing device 116 includes a second sensor 117 that can sense oxygen in the fresh gas mixture 155 in the range of 200 to 1000 parts per million (ppm) oxygen Sensor 117 .

合適於此濃度範圍之氧氣感測器117之一個實例為氧氣分析儀,其利用精密二氧化鋯感測器以偵測氧氣。二氧化鋯感測器包括由高純度、高密度、穩定的氧化鋯陶瓷製成之單元。二氧化鋯感測器產生指示新氣體混合物155之氧氣濃度之電壓信號。此外,二氧化鋯感測器之輸出由氧氣感測器117內之高速微處理器分析(例如轉換及線性化)以提供直接數位讀出以供控制器130使用。習知二氧化鋯單元包括在其內表面及外表面上電鍍有多孔鉑電極之二氧化鋯陶瓷管。當二氧化鋯感測器經加熱至高於特定溫度(例如600 C或1112°F)時,其變成氧離子傳導電解質。電極為氧分子O2 至氧離子及氧離子至氧分子之變化提供催化表面。單元之高濃度參考氣體側上之氧分子獲得電子以變成進入電解質之離子。同時,在內電極處,氧離子失去電子且作為氧分子自表面釋放。當二氧化鋯感測器之每一側上之氧氣濃度不同時,氧離子自高濃度側遷移至低濃度側。此離子流產生電子不平衡,導致跨電極之DC電壓。此電壓為感測器溫度及感測器之每一側上之氧氣分壓(濃度)之比率的函數。此電壓隨後由氧氣感測器117內之高速微處理器分析以由控制器130直接讀出。An example of an oxygen sensor 117 suitable for this concentration range is an oxygen analyzer, which utilizes a precision zirconium dioxide sensor to detect oxygen. Zirconia sensors include cells made of high-purity, high-density, and stable zirconia ceramics. The zirconium dioxide sensor produces a voltage signal indicative of the oxygen concentration of the fresh gas mixture 155 . In addition, the output of the zirconia sensor is analyzed (eg, converted and linearized) by a high speed microprocessor within the oxygen sensor 117 to provide a direct digital readout for use by the controller 130. A conventional zirconium dioxide cell includes a zirconium dioxide ceramic tube with porous platinum electrodes electroplated on its inner and outer surfaces. When the zirconium dioxide sensor is heated above a certain temperature (eg, 600 C or 1112° F), it becomes an oxygen ion conducting electrolyte. The electrodes provide catalytic surfaces for the change of oxygen molecules O2 to oxygen ions and oxygen ions to oxygen molecules. Oxygen molecules on the high-concentration reference gas side of the cell gain electrons to become ions that enter the electrolyte. At the same time, at the inner electrode, oxygen ions lose electrons and are released from the surface as oxygen molecules. When the oxygen concentration on each side of the zirconia sensor is different, oxygen ions migrate from the high concentration side to the low concentration side. This flow of ions creates an electron imbalance, resulting in a DC voltage across the electrodes. This voltage is a function of the sensor temperature and the ratio of the oxygen partial pressure (concentration) on each side of the sensor. This voltage is then analyzed by a high speed microprocessor within the oxygen sensor 117 for direct readout by the controller 130.

由於氟與氫氧化物之間的化學反應為易於實施及控制的化學計量上簡單之化學反應而使混合氣體150中之氟與氫氧化物145反應。此外,化學反應之經控制化學計量比率為固定的。另外,氟與氫氧化物之間的化學反應為穩定的化學反應。若化學反應並未逆轉且新氣體混合物之組分並不與新氣體混合物中之任何其他物反應以形成氟,則化學反應可為穩定的。接下來論述穩定且具有經控制化學計量比率的混合氣體150中之氟與氫氧化物145之間的一個合適的化學反應。The fluorine in the mixed gas 150 reacts with the hydroxide 145 because the chemical reaction between the fluorine and the hydroxide is a stoichiometrically simple chemical reaction that is easy to implement and control. Furthermore, the controlled stoichiometric ratio of chemical reactions is fixed. In addition, the chemical reaction between fluorine and hydroxide is a stable chemical reaction. A chemical reaction may be stable if the chemical reaction is not reversed and the components of the new gas mixture do not react with anything else in the new gas mixture to form fluorine. A suitable chemical reaction between fluorine and hydroxide 145 in a stable and controlled stoichiometric ratio of mixed gas 150 is discussed next.

在一些實施中,氫氧化物145呈顆粒、固體、粉末形式。此外,呈顆粒形式之氫氧化物145可緊密封裝至反應容器135 (其可為管)中,使得氫氧化物145之粉末中之粒子不存在移動。氫氧化物145之粉末外部及反應容器135內之空間中之區域或體積視為孔,且藉由使用呈顆粒形式之氫氧化物145,有可能確保存在較大表面積以允許氫氧化物145與氟之間的充分化學反應。在一些實施中,且取決於特定氫氧化物,將氫氧化物145及反應容器135維持在室溫下,且氫氧化物145與氟之間的反應繼續進行而不需催化劑。In some implementations, the hydroxide 145 is in particulate, solid, powder form. Furthermore, the hydroxide 145 in particulate form can be tightly packed into the reaction vessel 135 (which can be a tube) so that there is no movement of the particles in the powder of the hydroxide 145 . Areas or volumes outside the powder of the hydroxide 145 and in the space within the reaction vessel 135 are considered pores, and by using the hydroxide 145 in particulate form, it is possible to ensure that there is a large surface area to allow the hydroxide 145 to interact with each other. Sufficient chemical reaction between fluorines. In some implementations, and depending on the particular hydroxide, hydroxide 145 and reaction vessel 135 are maintained at room temperature, and the reaction between hydroxide 145 and fluorine proceeds without the need for a catalyst.

氫氧化物145可填充反應容器135內之反應空腔140。反應容器135之形狀(且因此反應空腔140)不限於特定形式。The hydroxide 145 can fill the reaction cavity 140 within the reaction vessel 135 . The shape of reaction vessel 135 (and thus reaction cavity 140 ) is not limited to a particular form.

氫氧化物145包括金屬Σ,其可為鹼土金屬。此外,氫氧化物145缺少鹼金屬及碳。因此,氫氧化物145可為氫氧化鈣[Ca(OH)2 ] (在此實例中,Σ為Ca)。氫氧化鈣呈顆粒及固體形式且具有足夠的孔以提供足夠表面積以允許與氟氣體之化學反應。氫氧化鈣之粒子之間的空間足夠大以准許氟氣體流動至氫氧化鈣中以實現化學反應。舉例而言,氫氧化鈣可呈顆粒形式,該顆粒封裝成一行且封裝之水平取決於待分析之混合氣體150中之氟濃度之水平。使混合氣體150傳遞(例如,流動)通過或跨越氫氧化物145以實現氟與氫氧化鈣之間的化學反應。The hydroxide 145 includes metal Σ, which may be an alkaline earth metal. In addition, hydroxide 145 lacks alkali metals and carbon. Thus, hydroxide 145 may be calcium hydroxide [Ca(OH) 2 ] (Σ is Ca in this example). Calcium hydroxide is in particulate and solid form with sufficient pores to provide sufficient surface area to allow chemical reaction with fluorine gas. The spaces between the calcium hydroxide particles are large enough to allow fluorine gas to flow into the calcium hydroxide to effect the chemical reaction. For example, calcium hydroxide may be in the form of particles packed in a row and the level of packing depends on the level of fluorine concentration in the mixed gas 150 to be analyzed. The mixed gas 150 is passed (eg, flowed) through or across the hydroxide 145 to effect a chemical reaction between the fluorine and the calcium hydroxide.

在混合氣體150內存在氟氣體(F2 )之情況下,若氫氧化物為氟化鈣Ca(OH)2 ,則發生以下兩步驟化學反應: 1) 2F2 + Ca(OH)2 = CaF2 + OF2 + H2 O; 2) OF2 + Ca(OH)2 = CaF2 + O2 + H2 O。 對於與氫氧化鈣[Ca(OH)2 ] 145之分子相互作用之氟(F2 )之每兩個分子,輸出無機氟化物化合物(氟化鈣或CaF2 )之兩個分子、氧氣(O2 )之一個分子及水(H2 O)之兩個分子。此化學反應為線性且化學計量上簡單之反應。因此,為了僅聚焦於氟及水,對於輸入至化學反應中之氟F2 之每一個分子,自化學反應輸出水H2 O之一個分子。寫此之另一方式為,對於輸入至化學反應中之每一個莫耳(mole)之氟F2 ,自化學反應輸出一個莫耳之H2 O。因此,若將2莫耳之氟F2 輸入至化學反應中,則在化學反應之後釋放2莫耳之水H2 O。此水藉由水感測器115偵測到。因此,舉例而言,由於控制器130 (自所儲存記憶體中存取資料)已知在此化學反應中之氟與水的比率為1:1,故若藉由感測器115偵測到0.6莫耳之水,則控制器130判定氣體混合物107中存在0.6莫耳之氟。在其他實施中,偵測設備105可假定完成氟之轉化(且因此,在化學反應之後氣體中並不存在殘餘分子氟F2 )。舉例而言,若在開始化學反應之後已過去足夠時間,則此假定可為有效假定。In the presence of fluorine gas (F 2 ) in the mixed gas 150 , if the hydroxide is calcium fluoride Ca(OH) 2 , the following two-step chemical reaction occurs: 1) 2F 2 + Ca(OH) 2 = CaF 2 + OF 2 + H 2 O; 2) OF 2 + Ca(OH) 2 = CaF 2 + O 2 + H 2 O. For every two molecules of fluorine (F 2 ) interacting with molecules of calcium hydroxide [Ca(OH) 2 ] 145, two molecules of an inorganic fluoride compound (calcium fluoride or CaF 2 ), oxygen (O 2 ) one molecule and two molecules of water (H 2 O). This chemical reaction is a linear and stoichiometrically simple reaction. Therefore, to focus only on fluorine and water, for every molecule of fluorine F2 input into the chemical reaction, one molecule of water H2O is output from the chemical reaction. Another way of writing this is that for every mole of fluorine F2 input to the chemical reaction, one mole of H2O is output from the chemical reaction. Therefore, if 2 moles of fluorine F 2 are input into a chemical reaction, 2 moles of water H 2 O are released after the chemical reaction. This water is detected by the water sensor 115 . Thus, for example, since the controller 130 (which accesses data from stored memory) knows that the ratio of fluorine to water in this chemical reaction is 1:1, if the sensor 115 detects 0.6 moles of water, the controller 130 determines that 0.6 moles of fluorine is present in the gas mixture 107 . In other implementations, the detection apparatus 105 may assume that the conversion of fluorine is complete (and thus, no residual molecular fluorine F2 is present in the gas after the chemical reaction ) . This assumption may be a valid assumption, for example, if sufficient time has elapsed after starting the chemical reaction.

在此實例中,若感測設備116亦包括氧氣感測器117,則來自氧氣感測器117之氧氣之濃度之量測可與來自水感測器115之水之量測結合使用。因此,若將4莫耳之氟F2 輸入至化學反應中,則在化學反應之後釋放2莫耳之氧氣O2 。此氧氣藉由氧氣感測器117偵測到。作為實例,由於控制器130已知在此化學反應中之氟與氧氣的比率為2:1,故若藉由感測器117偵測到0.3莫耳之氧氣,則控制器判定氣體混合物107中存在0.6莫耳之氟。控制器130可使用來自氧氣感測器117及水感測器115兩者之資料來估計存在於氣體混合物107中之氟之濃度(此係由於氧氣、水及氟之重量或質量為已知的)。舉例而言,可使用兩個資料集進行氟之更準確判定。額外校準及校正亦可藉由控制器來使用(例如以考慮氟、氧氣或水之消耗或低效偵測),如由熟習此項技術者將理解的。In this example, if sensing device 116 also includes oxygen sensor 117 , the measurement of the concentration of oxygen from oxygen sensor 117 may be used in conjunction with the measurement of water from water sensor 115 . Therefore, if 4 moles of fluorine F 2 are input into a chemical reaction, 2 moles of oxygen O 2 are released after the chemical reaction. This oxygen is detected by the oxygen sensor 117 . As an example, since the controller 130 knows that the ratio of fluorine to oxygen in this chemical reaction is 2:1, if the sensor 117 detects 0.3 moles of oxygen, the controller determines that the gas mixture 107 is in the 0.6 moles of fluorine is present. Controller 130 can use data from both oxygen sensor 117 and water sensor 115 to estimate the concentration of fluorine present in gas mixture 107 (since the weights or masses of oxygen, water, and fluorine are known ). For example, a more accurate determination of fluorine can be made using two data sets. Additional calibrations and corrections may also be used by the controller (eg to account for fluorine, oxygen or water consumption or inefficiency detection), as will be understood by those skilled in the art.

在一些實施中,氫氧化物145與混合氣體150中之氟之間的反應在一或多個特定設計的條件下發生。舉例而言,氫氧化物145與混合氣體150中之氟之間的反應可在存在一或多種催化劑下發生,該一或多種催化劑為改變化學反應之速率但在結束化學反應時在化學上不改變之物質。作為另一實例,氫氧化物145與混合氣體150中之氟之間的反應可在諸如溫度受控環境或濕度受控環境之受控環境下發生。In some implementations, the reaction between hydroxide 145 and fluorine in mixed gas 150 occurs under one or more specifically designed conditions. For example, the reaction between hydroxide 145 and fluorine in mixed gas 150 can occur in the presence of one or more catalysts that alter the rate of the chemical reaction but are chemically indifferent when the chemical reaction is terminated. Substances that change. As another example, the reaction between hydroxide 145 and fluorine in mixed gas 150 may occur in a controlled environment, such as a temperature-controlled environment or a humidity-controlled environment.

參考圖2,設備100可例如在紫外線(UV)或深紫外線(DUV)光源200內實施,該光源200產生引導至光微影設備222以用於使晶圓上之微電子特徵圖案化之光束211。光源200包括連接至光源200之各種元件以實現光束211之產生之控制系統290。儘管控制系統290展示為單塊,但其可由複數個子組件製成,該等子組件中之任何一或多者可自其他子組件移除或在光源200內之元件本端。此外,控制器130可視為控制系統290之一部分或設備100之一部分。Referring to Figure 2, apparatus 100 may be implemented, for example, within an ultraviolet (UV) or deep ultraviolet (DUV) light source 200 that generates a light beam directed to a photolithography apparatus 222 for patterning microelectronic features on a wafer 211. The light source 200 includes a control system 290 connected to the various elements of the light source 200 to enable the generation of the light beam 211 . Although the control system 290 is shown as a single piece, it can be made from a plurality of subassemblies, any one or more of which can be removed from other subassemblies or local to components within the light source 200 . Additionally, controller 130 may be considered part of control system 290 or part of device 100 .

在此實施中,設備100經組態以計算產生光源200之光束211的準分子氣體放電系統225之氣體放電腔室210中之一或多者內之氟之濃度。儘管僅展示一個氣體放電腔室210,但準分子氣體放電系統225可包括複數個氣體放電腔室210,其中之任何一或多者與設備100之偵測設備105以及其他元件(諸如光學元件、度量衡裝置及機電元件)流體連通以用於控制光束211之態樣,此類其他元件未在圖2中展示。此外,圖2中僅展示與設備100相關之光源200之組件。舉例而言,光源200可包括置放於最後一個氣體放電腔室210之輸出處之光束製備系統以調整引導至光微影設備222之光束211之一或多個性質。In this implementation, the apparatus 100 is configured to calculate the concentration of fluorine within one or more of the gas discharge chambers 210 of the excimer gas discharge system 225 that produces the light beam 211 of the light source 200 . Although only one gas discharge chamber 210 is shown, the excimer gas discharge system 225 may include a plurality of gas discharge chambers 210, any one or more of which are associated with the detection device 105 of the device 100 and other elements such as optics, Metrology and electromechanical elements) are in fluid communication for controlling the aspect of the light beam 211, such other elements are not shown in FIG. 2 . Furthermore, only the components of the light source 200 associated with the apparatus 100 are shown in FIG. 2 . For example, the light source 200 may include a beam preparation system placed at the output of the last gas discharge chamber 210 to adjust one or more properties of the beam 211 directed to the photolithography apparatus 222.

氣體放電腔室210容納能量源230且含有氣體混合物207。能量源230將能量之來源提供至氣體混合物207;特定而言,能量源230將足夠能量提供至氣體混合物207以致使粒子數反轉,從而經由腔室210內之受激發射實現增益。在一些實例中,能量源230為藉由置放於氣體放電腔室210內之一對電極提供之放電。在其他實例中,能量源230為光學泵浦源。The gas discharge chamber 210 houses the energy source 230 and contains the gas mixture 207 . Energy source 230 provides a source of energy to gas mixture 207 ; in particular, energy source 230 provides sufficient energy to gas mixture 207 to cause population inversion to achieve gain via stimulated emission within chamber 210. In some examples, energy source 230 is a discharge provided by a pair of electrodes placed within gas discharge chamber 210 . In other examples, the energy source 230 is an optical pump source.

氣體混合物207包括增益介質,其包括稀有氣體及鹵素,諸如氟。在DUV光源200之操作期間,消耗氣體放電腔室210內之氣體混合物207 (其為光放大提供增益介質)之氟,且隨著時間推移,此減少光放大之量且因此改變由光源200產生之光束211之特性。相較於在初始氣體再填充程序下設定之氟之濃度,光微影設備222試圖將氣體放電腔室210中之氣體混合物207內之氟之濃度維持在某一容限內。由此,按常規步調且在氣體維持系統120之控制下,將額外氟添加至氣體放電腔室210。氟消耗量在氣體放電腔室之間有所不同,故封閉迴路控制用以判定在每一機會下推動或注入至氣體放電腔室210中之氟之量。設備100用以判定氣體放電腔室210中剩餘之氟之濃度,且因此用於判定推動或注入至氣體放電腔室210中之氟之量的總體方案中。The gas mixture 207 includes a gain medium, which includes noble gases and halogens, such as fluorine. During operation of the DUV light source 200, the fluorine of the gas mixture 207 within the gas discharge chamber 210, which provides a gain medium for light amplification, is consumed, and over time, this reduces the amount of light amplification and thus changes produced by the light source 200. The characteristics of the beam 211. The photolithography apparatus 222 attempts to maintain the concentration of fluorine within the gas mixture 207 in the gas discharge chamber 210 within a certain tolerance compared to the concentration of fluorine set under the initial gas refill procedure. Thus, additional fluorine is added to the gas discharge chamber 210 at a conventional pace and under the control of the gas maintenance system 120 . Fluorine consumption varies from gas discharge chamber to gas discharge chamber, so closed loop control is used to determine the amount of fluorine to push or inject into gas discharge chamber 210 at each opportunity. The apparatus 100 is used to determine the concentration of fluorine remaining in the gas discharge chamber 210, and thus, in the overall scheme of determining the amount of fluorine pushed or injected into the gas discharge chamber 210.

如所提及,氣體混合物207包括增益介質,其包括稀有氣體及氟。氣體混合物207可包括其他氣體,諸如緩衝氣體。該增益介質為氣體混合物207內之雷射主動實體,且增益介質可由單個原子、分子或偽分子構成。因此,粒子數反轉在增益介質中藉由自能量源230抽吸具有放電之氣體混合物207 (且因此增益介質)經由受激發射產生。如上文所提及,增益介質通常包括稀有氣體及鹵素,而緩衝氣體通常包括惰性氣體。稀有氣體包括例如氬氣、氪氣或氙氣。鹵素包括例如氟。惰性氣體包括例如氦氣或氖氣。氣體混合物207內除氟之外的氣體為惰性的(稀薄氣體或稀有氣體),且由此,假定在混合氣體150與氫氧化物145之間進行之唯一化學反應為混合氣體150中之氟與氫氧化物145之間的反應。As mentioned, the gas mixture 207 includes a gain medium, which includes noble gases and fluorine. The gas mixture 207 may include other gases, such as buffer gases. The gain medium is the laser active entity within the gas mixture 207, and the gain medium may be composed of individual atoms, molecules or pseudo-molecules. Thus, population inversion is produced in the gain medium via stimulated emission by pumping the gas mixture 207 (and thus the gain medium) with a discharge from the energy source 230 . As mentioned above, the gain medium typically includes noble gases and halogens, while the buffer gas typically includes inert gases. Rare gases include, for example, argon, krypton, or xenon. Halogen includes, for example, fluorine. Inert gases include, for example, helium or neon. The gases other than fluorine in the gas mixture 207 are inert (lean or noble gases), and thus, it is assumed that the only chemical reaction that takes place between the mixed gas 150 and the hydroxide 145 is the fluorine in the mixed gas 150 and the Reaction between hydroxides 145.

再次參考圖1,氣體維持系統120為用於調整特性(諸如氣體混合物107或207內之組分之相對濃度或壓力)之氣體管理系統。Referring again to FIG. 1 , gas maintenance system 120 is a gas management system for adjusting properties such as relative concentrations or pressures of components within gas mixture 107 or 207 .

參考圖3,在感測設備包括與水感測器115結合使用以判定或估計氣體混合物107中之氟之濃度之氧氣感測器117的一些實施中,設備為設備300且偵測設備105為包括氟感測器360之偵測設備305,該氟感測器360流體地連接至反應空腔140且經組態以判定新氣體混合物155中之氟之濃度何時降至低於下限值。氟感測器360可為在高於氟之濃度下飽和之市售氟感測器,該氟之濃度太低而無法用於混合氣體150中之氟之直接量測。然而,氟感測器360具有最小偵測臨限值且可用以由此偵測新氣體混合物155中之氟之濃度何時降至低於下限值。舉例而言,氟感測器360可在10 ppm濃度下飽和,但其可具有約0.05 ppm之最小偵測臨限值,且可在新氣體混合物155中之氟之濃度降至低於0.1 ppm之後開始偵測新氣體混合物155中之氟。3, in some implementations where the sensing device includes an oxygen sensor 117 used in conjunction with the water sensor 115 to determine or estimate the concentration of fluorine in the gas mixture 107, the device is device 300 and detection device 105 is A detection device 305 includes a fluorine sensor 360 fluidly connected to the reaction cavity 140 and configured to determine when the concentration of fluorine in the new gas mixture 155 falls below a lower limit value. The fluorine sensor 360 may be a commercially available fluorine sensor that saturates above a concentration of fluorine that is too low for direct measurement of fluorine in the mixed gas 150 . However, the fluorine sensor 360 has a minimum detection threshold and can be used to thereby detect when the concentration of fluorine in the new gas mixture 155 falls below the lower limit. For example, the fluorine sensor 360 may be saturated at a 10 ppm concentration, but it may have a minimum detection threshold of about 0.05 ppm, and the concentration of fluorine in the fresh gas mixture 155 may drop below 0.1 ppm The detection of fluorine in the new gas mixture 155 is then started.

控制器130經組態為自氟感測器360接收輸出之控制器330。控制器330包括沿將新氣體混合物155輸送至氧氣感測器117之線路與流動控制裝置365相互作用之模組。流動控制裝置365可為諸如閘閥或其他流體控制閥之裝置。Controller 130 is configured as controller 330 that receives output from fluorine sensor 360 . Controller 330 includes a module that interacts with flow control device 365 along the lines that deliver fresh gas mixture 155 to oxygen sensor 117 . Flow control device 365 may be a device such as a gate valve or other fluid control valve.

控制器330將信號發送至流動控制裝置365以僅在自氟感測器360之輸出判定新氣體混合物155中之氟之濃度降至低於下限值(例如,0.1 ppm)時才使得新氣體混合物155能夠流動至氧氣感測器117。以此方式,若氟之濃度降至低於下限值,則氧氣感測器117僅暴露於新氣體混合物155,由此保護氧氣感測器117以免氟水平不可接受。下限值可為基於氧氣感測器117之損壞臨限值而判定之值。因此,在高於下限值之氟之濃度下,可能對氧氣感測器117造成損壞。下限值可為基於氧氣感測器117之誤差臨限值而判定之值。因此,在高於下限值之氟之濃度下,量測誤差可影響氧氣感測器117之準確度。The controller 330 sends a signal to the flow control device 365 to enable the fresh gas only when the fluorine concentration in the fresh gas mixture 155, as determined from the output of the fluorine sensor 360, falls below a lower limit (eg, 0.1 ppm) The mixture 155 can flow to the oxygen sensor 117 . In this way, the oxygen sensor 117 is only exposed to the fresh gas mixture 155 if the concentration of fluorine falls below the lower limit, thereby protecting the oxygen sensor 117 from unacceptable levels of fluorine. The lower limit value may be a value determined based on the damage threshold value of the oxygen sensor 117 . Therefore, at the concentration of fluorine higher than the lower limit, damage to the oxygen sensor 117 may be caused. The lower limit value may be a value determined based on the error threshold value of the oxygen sensor 117 . Therefore, the measurement error may affect the accuracy of the oxygen sensor 117 at a concentration of fluorine higher than the lower limit.

偵測設備305亦包括流體地連接至反應容器135之反應空腔140之量測容器370。量測容器370界定經組態以接收新氣體混合物155之量測空腔375。此外,水感測器115及氧氣感測器117容納於量測空腔375內。量測容器370為含有新氣體混合物155以使得水感測器115能夠感測新氣體混合物155中之水之濃度且使得氧氣感測器115能夠感測新氣體混合物155中之氧氣之濃度的任何容器。界定量測空腔375之量測容器370之內部應由非反應性材料製成以免改變新氣體混合物155之組成。舉例而言,量測容器370之內部可由非反應性金屬製成。The detection apparatus 305 also includes a measurement vessel 370 fluidly connected to the reaction cavity 140 of the reaction vessel 135 . The measurement vessel 370 defines a measurement cavity 375 that is configured to receive the new gas mixture 155 . In addition, the water sensor 115 and the oxygen sensor 117 are accommodated in the measurement cavity 375 . The measurement vessel 370 is any that contains the fresh gas mixture 155 to enable the water sensor 115 to sense the concentration of water in the fresh gas mixture 155 and to enable the oxygen sensor 115 to sense the concentration of oxygen in the fresh gas mixture 155 container. The interior of the measurement vessel 370 defining the measurement cavity 375 should be made of non-reactive materials so as not to alter the composition of the new gas mixture 155 . For example, the interior of the measurement vessel 370 may be made of non-reactive metal.

參考圖4,在一些實施中,設備100經設計為設備400且偵測設備105經設計為偵測設備405,該偵測設備405包括緩衝容器470,該緩衝容器470自反應容器135所需之流速解耦來自腔室110之排氣之流速。以此方式,緩衝容器470經由偵測設備405實現氟量測,而不影響由氣體維持系統120進行之氣體交換之穩態操作。Referring to FIG. 4 , in some implementations, apparatus 100 is designed as apparatus 400 and detection apparatus 105 is designed as detection apparatus 405 , which detection apparatus 405 includes a buffer vessel 470 from which the reaction vessel 135 requires The flow rate decouples the flow rate of the exhaust gas from the chamber 110 . In this manner, buffer vessel 470 enables fluorine measurement via detection device 405 without affecting the steady state operation of gas exchange by gas maintenance system 120 .

在一個實例中,腔室110內氟之濃度為約1000 ppm,腔室110之體積為36公升(L),且腔室110內之壓力為200至400千帕斯卡(kPa)。緩衝容器470之內部空腔具有約0.1 L之體積及200至400 kPa之壓力。量測空腔175具有0.1 L之體積、約200至400 kPa之壓力、1000 ppm之水濃度及約500 ppm之氧氣濃度。在水感測器115進行水濃度之量測(且視情況,氧氣感測器117進行氧濃度之量測)且將資料輸出至控制器130之後,隨後量測空腔175可以受控方式清空。In one example, the concentration of fluorine within chamber 110 is about 1000 ppm, the volume of chamber 110 is 36 liters (L), and the pressure within chamber 110 is 200 to 400 kilopascals (kPa). The inner cavity of the buffer vessel 470 has a volume of about 0.1 L and a pressure of 200 to 400 kPa. The measurement cavity 175 has a volume of 0.1 L, a pressure of about 200 to 400 kPa, a water concentration of 1000 ppm, and an oxygen concentration of about 500 ppm. After the water sensor 115 measures the water concentration (and optionally the oxygen sensor 117 measures the oxygen concentration) and outputs the data to the controller 130, the measurement cavity 175 can then be emptied in a controlled manner .

如上文參考圖1所提及,設備100經組態以量測或估計腔室110中之氣體混合物107中之氟之濃度。在一些實施中,如圖5中所展示,設備100經設計為設備500且偵測設備105經設計為偵測設備505,該偵測設備505經組態以量測或估計各別腔室510_1、510_2…510_i中之氣體混合物507_1、507_2…507_i中之氟之濃度,其中i為大於1之整數。在偵測設備505中,存在與各別腔室510_1、510_2…510_i相關聯之獨立或專用感測設備516_1、516_2…516_i。以此方式,每一感測設備516_1、516_2…516_i可用以量測各別腔室510_1、510_2…510_i中之氟濃度。As mentioned above with reference to FIG. 1 , apparatus 100 is configured to measure or estimate the concentration of fluorine in gas mixture 107 in chamber 110 . In some implementations, as shown in FIG. 5, apparatus 100 is designed as apparatus 500 and detection apparatus 105 is designed as detection apparatus 505, which is configured to measure or estimate the respective chamber 510_1 , the concentration of fluorine in the gas mixtures 507_1, 507_2...507_i in 510_2...510_i, where i is an integer greater than 1. In the detection device 505, there are separate or dedicated sensing devices 516_1, 516_2...516_i associated with the respective chambers 510_1, 510_2...510_i. In this way, each sensing device 516_1, 516_2...516_i can be used to measure the fluorine concentration in the respective chamber 510_1, 510_2...510_i.

偵測設備505連接至氣體維持系統520,該氣體維持系統520包括經由各別套管系統527_1、527_3…527_i流體地連接至每一腔室510_1、510_2…510_i之氣體供應系統,該各別套管系統527_1、527_3…527_i為主套管系統527之一部分。氣體維持系統520包括一或多個氣體供應器及控制單元以用於控制來自供應器之氣體中之哪些查看主套管系統527轉移進入及離開各別腔室510_1、510_2…510_i。偵測設備505包括經由各別套管537_1、537_2…537_i自各別腔室510_1、510_2…510_i接收混合氣體550_1、550_2…550_i (其包括氟)之各別反應容器535_1、535_2…535_i。隨後將由在各別反應容器535_1、535_2…535_i中接收到之混合氣體550_1、550_2…550_i之氟與氫氧化物545_1、545_2…545_i之間的化學反應形成之新氣體混合物555_1、555_2…555_i引導至各別感測設備516_1、516_2…516_i。The detection device 505 is connected to a gas maintenance system 520 comprising a gas supply system fluidly connected to each of the chambers 510_1 , 510_2 ... 510_i via a respective casing system 527_1, 527_3... The pipe systems 527_1 , 527_3 . . . 527_i are part of the main casing system 527 . The gas maintenance system 520 includes one or more gas supplies and a control unit for controlling which of the gas from the supplies is diverted into and out of the respective chambers 510_1 , 510_2 . . . 510_i by the main casing system 527 . The detection apparatus 505 includes respective reaction vessels 535_1, 535_2...535_i receiving mixed gases 550_1, 550_2...550_i (which include fluorine) from respective chambers 510_1, 510_2...510_i via respective sleeves 537_1, 537_2...537_i. The new gas mixtures 555_1, 555_2...555_i formed by the chemical reaction between the fluorine of the mixed gases 550_1, 550_2...550_i received in the respective reaction vessels 535_1, 535_2...535_i and the hydroxides 545_1, 545_2...545_i are then directed to respective sensing devices 516_1 , 516_2 . . . 516_i.

偵測設備505亦包括連接至氣體維持系統520且連接至感測設備516_1、516_2…516_i中之每一者的控制器530。如控制器530,控制器530自感測設備516_1、516_2…516_i接收輸出且計算或估計在反應容器535_1、535_2…535_i中開始化學反應之前存在多少氟以估計各別氣體混合物507_1、507_2…507_i中之氟之量。The detection device 505 also includes a controller 530 connected to the gas maintenance system 520 and to each of the sensing devices 516_1 , 516_2 . . . 516_i. Like controller 530, controller 530 receives outputs from sensing devices 516_1, 516_2...516_i and calculates or estimates how much fluorine is present in reaction vessels 535_1, 535_2...535_i before chemical reactions begin to estimate respective gas mixtures 507_1, 507_2...507_i The amount of fluorine in it.

在其他實施中,有可能使用量測所有腔室510_1、510_2…510_i中之氟之單個感測設備516,只要偵測設備505包括腔室510_1、510_2…510_i與偵測設備505之間的合適的管道以防止針對腔室510_1、510_2…510_i中之每一者藉由感測設備516進行之量測之間存在串音。此外,若一次僅對一個腔室510進行氣體交換,則單個感測設備516設計可起作用,且因此控制器530可在任一時刻量測單個腔室510中之氟。In other implementations, it is possible to use a single sensing device 516 that measures fluorine in all chambers 510_1 , 510_2 . ducts to prevent crosstalk between measurements made by the sensing device 516 for each of the chambers 510_1 , 510_2 . . . 510_i. Furthermore, a single sensing device 516 design can function if only one chamber 510 is gas exchanged at a time, and thus the controller 530 can measure fluorine in a single chamber 510 at any one time.

參考圖6,展示併有諸如偵測設備105之偵測設備605及諸如圖1、3、4或5之控制器130之控制器630之例示性DUV光源600。DUV光源600包括為雙載物台脈衝輸出設計之準分子氣體放電系統625。氣體放電系統625具有兩個載物台:第一載物台601,其為輸出脈衝經放大光束606之主控振盪器(MO);及第二載物台602,其為自第一載物台601接收光束606之功率放大器(PA)。第一載物台601包括MO氣體放電腔室610_1且第二載物台602包括PA氣體放電腔室610_2。MO氣體放電腔室610_1包括作為其能量源之兩個細長電極630_1。電極630_1將能量之來源提供至腔室610_1內之氣體混合物607_1。PA氣體放電腔室610_2包括作為其能量源之兩個細長電極630_2,該等兩個細長電極630_2將能量之來源提供至腔室610_2內之氣體混合物607_2。6, an exemplary DUV light source 600 is shown incorporating a detection device 605, such as detection device 105, and a controller 630, such as controller 130 of Figures 1, 3, 4, or 5. DUV light source 600 includes an excimer gas discharge system 625 designed for dual stage pulse output. Gas discharge system 625 has two stages: a first stage 601, which is a master oscillator (MO) that outputs a pulsed amplified beam 606; and a second stage 602, which is driven from the first stage Stage 601 receives the power amplifier (PA) of light beam 606 . The first stage 601 includes an MO gas discharge chamber 610_1 and the second stage 602 includes a PA gas discharge chamber 610_2. The MO gas discharge chamber 610_1 includes two elongated electrodes 630_1 as its energy source. Electrode 630_1 provides a source of energy to gas mixture 607_1 within chamber 610_1. The PA gas discharge chamber 610_2 includes as its energy source two elongated electrodes 630_2 that provide a source of energy to the gas mixture 607_2 within the chamber 610_2.

MO 601將光束606 (其可稱作種子光束)提供至PA 602。MO氣體放電腔室610_1容納包括其中發生放大之增益介質之氣體混合物607_1,且MO 601亦包括光學回饋機構,諸如形成於MO氣體放電腔室610_1之一側上之光譜特徵選擇系統680與MO氣體放電腔室610_1之第二側上之輸出耦合器681之間的光學諧振器。MO 601 provides beam 606, which may be referred to as a seed beam, to PA 602. MO gas discharge chamber 610_1 houses gas mixture 607_1 including gain medium in which amplification occurs, and MO 601 also includes optical feedback mechanisms such as spectral feature selection system 680 formed on one side of MO gas discharge chamber 610_1 and MO gas Optical resonator between output couplers 681 on the second side of discharge chamber 610_1.

PA氣體放電腔室610_2容納包括增益介質607_2之氣體混合物607_2,其中在撒佈有來自MO 601之種子光束606時發生放大。若PA 602經設計為再生環諧振器,則將其描述為功率環放大器(PRA),且在此狀況下,可提供來自環設計之足夠光學回饋。PA 602包括返回光束682,其(例如經由反射)使光束返回至PA氣體放電腔室610_2中以形成循環及封閉迴路路徑,其中至環放大器中之輸入在光束耦合設備683處與離開環放大器之輸出相交。PA gas discharge chamber 610_2 contains gas mixture 607_2 including gain medium 607_2, in which amplification occurs when seed beam 606 from MO 601 is sprinkled. If the PA 602 is designed as a regenerative ring resonator, it is described as a power ring amplifier (PRA), and in this case, sufficient optical feedback from the ring design can be provided. PA 602 includes a return beam 682 that returns the beam (eg, via reflection) into the PA gas discharge chamber 610_2 to form a circulating and closed loop path, with the input into the ring amplifier at beam coupling device 683 and out of the ring amplifier The output intersects.

MO 601使得能夠在相對低的輸出脈衝能量(當與PA 602之輸出相比較時)下精密調諧光譜參數,諸如中心波長及頻寬。PA自MO 601接收種子光束606且放大此輸出以獲得對於輸出光束211必需之功率以供用於諸如光微影設備222之輸出設備中。藉由反覆地穿過PA 602來放大種子光束606且藉由MO 601之組態判定種子光束606之光譜特徵。MO 601 enables fine tuning of spectral parameters, such as center wavelength and bandwidth, at relatively low output pulse energy (when compared to the output of PA 602). The PA receives seed beam 606 from MO 601 and amplifies this output to obtain the necessary power for output beam 211 for use in an output device such as photolithography device 222. The seed beam 606 is amplified by repeatedly passing through the PA 602 and the spectral characteristics of the seed beam 606 are determined by the configuration of the MO 601 .

各別氣體放電腔室610_1、610_2中所使用之氣體混合物607_1、607_2可為用於產生約為所需波長及頻寬之經放大光束(諸如種子光束606及輸出光束211)之合適的氣體之組合。舉例而言,氣體混合物607_1、607_2可包括氟化氬(ArF),其發射波長約為193奈米(nm)之光,或氟化氪(KrF),其發射波長約為248 nm之光。The gas mixtures 607_1 , 607_2 used in the respective gas discharge chambers 610_1 , 610_2 may be of suitable gases for generating amplified beams of approximately the desired wavelength and bandwidth, such as seed beam 606 and output beam 211 . combination. For example, the gas mixtures 607_1, 607_2 may include argon fluoride (ArF), which emits light at a wavelength of about 193 nanometers (nm), or krypton fluoride (KrF), which emits light at a wavelength of about 248 nm.

偵測設備605包括氣體維持系統620,其為用於準分子氣體放電系統625且尤其用於氣體放電腔室610_1及610_2之氣體管理系統。氣體維持系統620包括一或多個氣體源651A、651B、651C等(諸如密封氣體瓶或罐)及閥系統652。一或多個氣體源651A、651B、651C等經由閥系統652內之閥之集合連接至MO氣體放電腔室610_1及PA氣體放電腔室610_2。以此方式,可以氣體混合物內之組分之特定相對量將氣體注入至各別氣體放電腔室610_1或610_2中。儘管未展示,但氣體維持系統620亦可包括一或多個其他組件,諸如流量限制器、排氣閥、壓力感測器、量規及測試埠。The detection apparatus 605 includes a gas maintenance system 620, which is a gas management system for the excimer gas discharge system 625 and in particular for the gas discharge chambers 610_1 and 610_2. Gas maintenance system 620 includes one or more gas sources 651A, 651B, 651C, etc. (such as sealed gas cylinders or tanks) and valve system 652 . One or more gas sources 651A, 651B, 651C, etc. are connected to MO gas discharge chamber 610_1 and PA gas discharge chamber 610_2 through a set of valves within valve system 652. In this way, the gas can be injected into the respective gas discharge chamber 610_1 or 610_2 in specific relative amounts of the components within the gas mixture. Although not shown, the gas maintenance system 620 may also include one or more other components, such as flow restrictors, exhaust valves, pressure sensors, gauges, and test ports.

氣體放電腔室610_1及610_2中之每一者含有氣體之混合物(氣體混合物607_1、607_2)。作為實例,氣體混合物607_1、607_2含有鹵素,諸如氟,以及其他氣體,諸如氬氣、氖氣,且可能含有呈總計為總壓力之不同分壓之其他氣體。舉例而言,若氣體放電腔室610_1、610_2中所使用之增益介質為氟化氬(ArF),則氣體源651A含有包括鹵素氟、稀有氣體氬氣及一或多種其他稀薄氣體,諸如緩衝氣體(其可為惰性氣體,諸如氖氣)之氣體混合物。氣體源651A內之此種混合物可稱作三合氣體,由於其含有三種類型的氣體。在此實例中,另一氣體源651B可含有包括氬氣及一或多種其他氣體但無氟之氣體混合物。氣體源651B中之此種混合物可稱作雙合氣體,由於其含有兩種類型的氣體。Each of the gas discharge chambers 610_1 and 610_2 contains a mixture of gases (gas mixtures 607_1 , 607_2 ). As an example, the gas mixtures 607_1, 607_2 contain halogens, such as fluorine, and other gases, such as argon, neon, and possibly other gases at different partial pressures that add up to the total pressure. For example, if the gain medium used in the gas discharge chambers 610_1, 610_2 is argon fluoride (ArF), the gas source 651A contains halogen fluorine, noble gas argon, and one or more other rare gases, such as buffer gas (which may be an inert gas such as neon) gas mixture. Such a mixture within gas source 651A may be referred to as a triple gas, since it contains three types of gases. In this example, another gas source 651B may contain a gas mixture that includes argon and one or more other gases but no fluorine. Such a mixture in the gas source 651B may be referred to as a duplex gas, since it contains two types of gases.

氣體維持系統620可包括閥控制器653,其經組態以將一或多個信號發送至閥系統652以致使閥系統652在氣體更新中將氣體自特定氣體源651A、651B、651C等轉移至該等氣體放電腔室610_1、610_2中。氣體更新可為對氣體放電腔室內之氣體混合物607之再填充,其中至少利用增益介質及緩衝氣體以及氟之混合物替換氣體放電腔室中之現有混合氣體。氣體更新可為注入方案,其中將增益介質及緩衝氣體以及氟之混合物添加至氣體放電腔室中之現有混合氣體。Gas maintenance system 620 may include valve controller 653 configured to send one or more signals to valve system 652 to cause valve system 652 to divert gas from specific gas sources 651A, 651B, 651C, etc. to in the gas discharge chambers 610_1 and 610_2. The gas refresh can be a refilling of the gas mixture 607 within the gas discharge chamber, wherein at least the existing gas mixture in the gas discharge chamber is replaced with a mixture of gain medium and buffer gas and fluorine. Gas refresh can be an injection scheme in which a mixture of gain medium and buffer gas and fluorine is added to the existing gas mixture in the gas discharge chamber.

替代地或另外,閥控制器653可將一或多個信號至發送閥系統652以致使閥系統652在必要時自放電腔室610_1、610_2放出氣體,且此類所放出氣體可排出至表示為689之氣體傾卸。在一些實施中,所放出氣體替代地饋入至偵測設備605係可能的,如圖7中所展示。Alternatively or additionally, valve controller 653 may send one or more signals to valve system 652 to cause valve system 652 to vent gas from discharge chambers 610_1 , 610_2 as necessary, and such vented gas may be vented to a signal denoted as 689 Gas Dumping. In some implementations, it is possible for the evolved gas to instead be fed into detection device 605, as shown in FIG.

在DUV光源600之操作期間,消耗氣體放電腔室610_1、610_2內之氬(或氪)氟化物分子(其為光放大提供增益介質)之氟,且隨時間推移,此減小光放大之量且因此減小由光微影設備222用於晶圓處理之光束211之能量。此外,在DUV光源600之操作過程中,污染物可進入氣體放電腔室610_1、610_2。因此,有必要將氣體自氣體源651A、651B、651C等中之一或多者注入至氣體放電腔室610_1、610_2中,以便沖洗污染物或補充失去之氟。During operation of the DUV light source 600, the fluorine of the argon (or krypton) fluoride molecules (which provide the gain medium for optical amplification) within the gas discharge chambers 610_1, 610_2 is consumed, and over time, this reduces the amount of optical amplification And thus reduce the energy of the beam 211 used by the photolithography apparatus 222 for wafer processing. Furthermore, during operation of the DUV light source 600, contaminants may enter the gas discharge chambers 610_1, 610_2. Therefore, it is necessary to inject gas into the gas discharge chambers 610_1, 610_2 from one or more of the gas sources 651A, 651B, 651C, etc., in order to flush contaminants or replenish lost fluorine.

需要複數個氣體源651A、651B、651C等,此係由於氣體源651A中之氟處於通常高於雷射操作所要之分壓的特定分壓下。為了在所要較低分壓下將氟添加至氣體腔室610_1或610_2,氣體源651A中之氣體可經稀釋,且氣體源651B中不含有鹵素之氣體可用於此目的。Multiple gas sources 651A, 651B, 651C, etc. are required because the fluorine in gas source 651A is at a specific partial pressure that is generally higher than that required for laser operation. To add fluorine to the gas chamber 610_1 or 610_2 at the desired lower partial pressure, the gas in the gas source 651A can be diluted, and the halogen-free gas in the gas source 651B can be used for this purpose.

儘管未展示,但閥系統652之閥可包括指派給氣體放電腔室610_1及610_2中之每一者的複數個閥。舉例而言,可使用允許氣體以第一流速進入及離開每一氣體放電腔室610_1、610_2之注入閥。作為另一實例,可使用允許氣體以不同於第一流速(例如,更快)之第二流速進入及離開每一氣體放電腔室610_1、610_2之腔室填充閥。Although not shown, the valves of valve system 652 may include a plurality of valves assigned to each of gas discharge chambers 610_1 and 610_2. For example, an injection valve that allows gas to enter and exit each gas discharge chamber 610_1 , 610_2 at a first flow rate may be used. As another example, a chamber fill valve may be used that allows gas to enter and exit each gas discharge chamber 610_1 , 610_2 at a second flow rate that is different from the first flow rate (eg, faster).

在對氣體放電腔室610_1或610_2進行再填充方案時,例如藉由清空氣體放電腔室610_1或610_2 (藉由將氣體混合物放出至氣體傾卸689)且接著利用新鮮氣體混合物再填充氣體放電腔室610_1或610_2來替換氣體放電腔室610_1或610_2中之所有氣體。進行再填充從而在氣體放電腔室610_1或610_2中獲得特定壓力及氟之濃度。當對氣體放電腔室610_1或610_2進行注入方案時,在將氣體混合物注入至氣體放電腔室中之前氣體放電腔室並未清空或僅放出少量。在兩種氣體更新中,偵測設備605 (其類似於偵測設備105而設計)可接收放出之氣體混合物中之一些作為混合氣體150以供偵測設備605內之分析,從而判定氣體放電腔室610_1或610_2內氟之濃度以便判定如何執行氣體更新。When refilling the gas discharge chamber 610_1 or 610_2, for example by purging the gas discharge chamber 610_1 or 610_2 (by venting the gas mixture to the gas dump 689) and then refilling the gas discharge chamber with fresh gas mixture The chamber 610_1 or 610_2 replaces all the gas in the gas discharge chamber 610_1 or 610_2. Refilling is performed to obtain a specific pressure and concentration of fluorine in the gas discharge chamber 610_1 or 610_2. When the injection scheme is performed on the gas discharge chamber 610_1 or 610_2, the gas discharge chamber is not emptied or only a small amount is discharged before the gas mixture is injected into the gas discharge chamber. In both gas updates, detection device 605 (which is similar in design to detection device 105) may receive some of the gas mixture emitted as gas mixture 150 for analysis within detection device 605 to determine the gas discharge chamber The concentration of fluorine in the chamber 610_1 or 610_2 in order to determine how to perform the gas refresh.

閥控制器653與偵測設備605 (且尤其與偵測設備605中之控制器130)介接。另外,閥控制器653可與為控制系統690之一部分的其他控制模組及子組件介接,該控制系統接下來論述。The valve controller 653 interfaces with the detection device 605 (and in particular with the controller 130 in the detection device 605). Additionally, valve controller 653 may interface with other control modules and sub-assemblies that are part of control system 690, which is discussed next.

參考圖7,以方塊圖展示為DUV光源(諸如光源200或600)之一部分的控制系統790 (其可為控制系統290或690)。提供關於控制系統790之細節,其係關於本文中所描述之偵測設備105/605及關於氣體控制及氟濃度估計之方法之態樣。此外,控制系統790可包括圖7中未展示之其他特徵。一般而言,控制系統790包括數位電子電路、電腦硬體、韌體及軟體中之一或多者。7, a control system 790 (which may be control system 290 or 690) that is part of a DUV light source, such as light source 200 or 600, is shown in block diagram. Details are provided regarding the control system 790 regarding aspects of the detection apparatus 105/605 described herein and regarding the methods of gas control and fluorine concentration estimation. Additionally, control system 790 may include other features not shown in FIG. 7 . Generally speaking, the control system 790 includes one or more of digital electronic circuits, computer hardware, firmware and software.

控制系統790包括記憶體700,其可為唯讀記憶體及/或隨機存取記憶體。適合於有形地體現電腦程式指令及資料之儲存裝置包括所有形式之非揮發性記憶體,包括(藉助於實例)半導體記憶體裝置,諸如EPROM、EEPROM及快閃記憶體裝置;磁碟,諸如內部硬碟及可移磁碟;磁光碟;及CD-ROM磁碟。控制系統790亦可包括一或多個輸入裝置705 (諸如,鍵盤、觸控螢幕、麥克風、滑鼠、手持式輸入裝置等)及一或多個輸出裝置710 (諸如,揚聲器或監視器)。Control system 790 includes memory 700, which may be read-only memory and/or random access memory. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory including, by way of example, semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks, such as internal Hard disks and removable disks; magneto-optical disks; and CD-ROM disks. The control system 790 may also include one or more input devices 705 (such as a keyboard, touch screen, microphone, mouse, handheld input device, etc.) and one or more output devices 710 (such as a speaker or monitor).

控制系統790包括一或多個可程式化處理器715及有形地體現於用於藉由可程式化處理器(諸如,處理器715)執行之機器可讀儲存裝置中的一或多個電腦程式產品720。一或多個可程式化處理器715可各自執行程式之指令以藉由對輸入資料進行操作及產生適當輸出來進行所要功能。大體而言,處理器715自記憶體700接收指令及資料。可藉由經專門設計之ASIC (特殊應用積體電路)補充前文中之任一者或前文中之任一者可併入於經專門設計之ASIC中。Control system 790 includes one or more programmable processors 715 and one or more computer programs tangibly embodied in a machine-readable storage device for execution by a programmable processor, such as processor 715 Product 720. One or more programmable processors 715 may each execute the instructions of the program to perform desired functions by operating on input data and generating appropriate output. In general, processor 715 receives instructions and data from memory 700 . Either of the foregoing may be supplemented by or incorporated in a specially designed ASIC (application specific integrated circuit).

控制系統790亦可在其他組件或模組中包括偵測設備105之控制器130、330、530 (在圖7中表示為方框730)及與氣體維持系統620之閥控制器653介接之氣體維持模組731。此等模組中之每一者可為藉由諸如處理器715之一或多個處理器執行之一組電腦程式產品。此外,控制器730/模組731中之任一者可存取儲存於記憶體700內之資料。The control system 790 may also include, among other components or modules, the controllers 130 , 330 , 530 of the detection device 105 (represented as block 730 in FIG. 7 ) and interfaced with the valve controller 653 of the gas maintenance system 620 Gas maintenance module 731 . Each of these modules may be a set of computer program products executed by one or more processors such as processor 715 . Additionally, either controller 730/module 731 can access data stored in memory 700.

控制系統790內之控制器/特徵/模組之間及控制系統790內之控制器/特徵/模組與設備100之其他組件(其可為DUV光源600)之間的連接可為有線或無線的。Connections between controllers/features/modules within control system 790 and between controllers/features/modules within control system 790 and other components of device 100, which may be DUV light sources 600, may be wired or wireless of.

儘管圖7中僅展示幾個模組,但控制系統790有可能包括其他模組。另外,儘管控制系統790表示為所有組件看起來共置之方框,但控制系統790有可能由空間或時間上彼此實體遠離的組件組成。舉例而言,控制器730可與感測設備116或氣體維持系統120實體地共置。作為另一實例,氣體維持模組731可與氣體維持系統620之閥控制器653實體地共置,且可與控制系統790之其他組件分開。Although only a few modules are shown in FIG. 7, it is possible for the control system 790 to include other modules. Additionally, although control system 790 is represented as a block where all components appear to be co-located, it is possible for control system 790 to be composed of components that are physically or temporally distant from each other. For example, controller 730 may be physically co-located with sensing device 116 or gas maintenance system 120 . As another example, gas maintenance module 731 may be physically co-located with valve controller 653 of gas maintenance system 620 and may be separate from other components of control system 790 .

另外,控制系統790可包括微影模組732,其自光微影設備222之微影控制器接收指令,例如量測或估計腔室110之氣體混合物107內氟之濃度的指令。Additionally, the control system 790 may include a lithography module 732 that receives commands from a lithography controller of the photolithography apparatus 222, such as commands to measure or estimate the concentration of fluorine in the gas mixture 107 of the chamber 110.

參考圖8,在一些實施中,設備100經設計為設備800且偵測設備105經設計為與氟洗滌器804並行工作之偵測設備805,該氟洗滌器804與氣體維持系統820流體地連通。氟洗滌器804與氣體維持系統820結合使用以藉由在化學上使氣體混合物807內之氟反應以形成可例如經由排氣裝置安全地處理之化學物質而恰當地自腔室110排出氣體混合物807。8, in some implementations, apparatus 100 is designed as apparatus 800 and detection apparatus 105 is designed as detection apparatus 805 operating in parallel with a fluorine scrubber 804 in fluid communication with a gas maintenance system 820 . Fluorine scrubber 804 is used in conjunction with gas maintenance system 820 to properly exhaust gas mixture 807 from chamber 110 by chemically reacting fluorine within gas mixture 807 to form a chemical that can be safely disposed of, such as via exhaust .

將放出氣體維持系統820之混合氣體150之一部分引導至緩衝容器870,且隨後引導至包括氫氧化物845之另一氟洗滌器835。混合氣體150中之氟在化學上與氟洗滌器835中之氫氧化物845反應(以上文所論述之方式)且轉化為包括氧氣之新氣體混合物155。將新氣體混合物155引導至感測設備116,在此感測該新氣體混合物155。控制器130估計混合氣體150及氣體混合物107內之氧氣之濃度以及氟濃度且判定如何調整氣體維持系統820以進行氣體更新。在此實例中,氣體維持系統820包括流體地連接至三合氣體源851A及雙合氣體源851B之閥系統852。沿著線置放各種控制閥891以控制流速且控制引導穿過該等線之氣體之量。A portion of the mixed gas 150 of the vent gas maintenance system 820 is directed to a buffer vessel 870 and then to another fluorine scrubber 835 that includes hydroxide 845 . The fluorine in the mixed gas 150 chemically reacts with the hydroxide 845 in the fluorine scrubber 835 (in the manner discussed above) and is converted into a new gas mixture 155 that includes oxygen. The new gas mixture 155 is directed to the sensing device 116 where it is sensed. Controller 130 estimates the oxygen concentration and fluorine concentration within mixed gas 150 and gas mixture 107 and determines how to adjust gas maintenance system 820 for gas refresh. In this example, the gas maintenance system 820 includes a valve system 852 fluidly connected to the triadic gas source 851A and the bicompartmental gas source 851B. Various control valves 891 are placed along the lines to control the flow rate and to control the amount of gas directed through the lines.

參考圖9,藉由設備100進行程序900以用於偵測腔室110之氣體混合物107中之氟之濃度。參考圖1之設備,但程序900同樣適用於參考圖2至8所描述之設備。偵測設備105自氣體放電腔室110接收包括氟之混合氣體150之一部分(905)。混合氣體150中之氟在化學上與氫氧化物145反應以形成包括水之新氣體混合物155 (910)。例如利用感測器115感測新氣體混合物155中之水之濃度(915)。且,基於水之感測到的濃度估計混合氣體150中之氟之濃度(920)。舉例而言,控制器130可基於來自水感測器115之輸出估計混合氣體150中之氟之濃度。Referring to FIG. 9 , a procedure 900 is performed by the apparatus 100 for detecting the concentration of fluorine in the gas mixture 107 of the chamber 110 . Reference is made to the apparatus of FIG. 1, but the procedure 900 is equally applicable to the apparatus described with reference to FIGS. 2-8. Detection device 105 receives a portion of gas mixture 150 including fluorine from gas discharge chamber 110 (905). The fluorine in the mixed gas 150 chemically reacts with the hydroxide 145 to form a new gas mixture 155 that includes water (910). For example, sensor 115 is used to sense the concentration of water in fresh gas mixture 155 (915). And, the concentration of fluorine in the mixed gas 150 is estimated based on the sensed concentration of water (920). For example, the controller 130 may estimate the concentration of fluorine in the mixed gas 150 based on the output from the water sensor 115 .

偵測設備105可藉由自腔室110放出氣體混合物107 (釋放負壓)而接收混合氣體150 (905)。舉例而言,氣體維持系統120可包括使得氣體混合物107能夠自腔室110放出且隨後作為混合氣體150引導至偵測設備105之一系列閥。腔室110中之壓力可用以例如藉由使用一系列閥及真空泵產生負壓而對反應容器135或緩衝容器470加壓,將氣體混合物107推動離開腔室110且到達偵測設備105。反應容器135中所需之混合氣體150之量可基於水感測器115為得到精確且穩定的讀數之需求而判定。對混合氣體150之量之限制因素為反應空腔140中氫氧化物145之氟轉化容量。舉例而言,需要具有來自水感測器115之精確讀數,但亦需要使總氣流最小化,使得氫氧化物145可具有最大使用壽命。Detection device 105 may receive gas mixture 150 by venting gas mixture 107 from chamber 110 (releasing negative pressure) (905). For example, gas maintenance system 120 may include a series of valves that enable gas mixture 107 to be vented from chamber 110 and then directed to detection device 105 as mixed gas 150 . The pressure in chamber 110 can be used to pressurize reaction vessel 135 or buffer vessel 470 , for example by creating negative pressure using a series of valves and vacuum pumps, to push gas mixture 107 out of chamber 110 and to detection device 105 . The amount of gas mixture 150 required in the reaction vessel 135 can be determined based on the needs of the water sensor 115 to obtain accurate and stable readings. The limiting factor on the amount of mixed gas 150 is the fluorine conversion capacity of hydroxide 145 in reaction cavity 140 . For example, it is desirable to have accurate readings from the water sensor 115, but it is also desirable to minimize the total airflow so that the hydroxide 145 can have a maximum useful life.

藉由偵測設備105接收到(905)之混合氣體150可為自腔室110朝向氟洗滌器排出之混合氣體150,且因此混合氣體150可視為排出氣體。在圖8中展示此實施,其中混合氣體150中之氟在化學上與氟洗滌器835中之氫氧化物845反應且轉化成包括氧氣之新氣體混合物155。The mixed gas 150 received (905) by the detection device 105 may be the mixed gas 150 exhausted from the chamber 110 toward the fluorine scrubber, and thus the mixed gas 150 can be regarded as exhaust gas. This implementation is shown in Figure 8, where the fluorine in the mixed gas 150 chemically reacts with the hydroxide 845 in the fluorine scrubber 835 and is converted into a new gas mixture 155 that includes oxygen.

可進行程序900以預測氣體更新,諸如氣體再填充或氣體注入。舉例而言,可藉由將第一氣體混合物自氣體維持系統120添加至腔室110而進行第一氣體更新,且在使用腔室110一定時間段之後,可進行程序900。在進行程序900之後,隨後可藉由將經調整第二氣體混合物自氣體維持系統120添加至腔室110而進行第二氣體更新。經調整第二氣體混合物具有可基於藉由程序900進行之量測的氟之濃度(或氟之量)。Routine 900 may be performed to predict gas refresh, such as gas refill or gas injection. For example, the first gas refresh can be performed by adding the first gas mixture from the gas maintenance system 120 to the chamber 110, and after using the chamber 110 for a certain period of time, the procedure 900 can be performed. After procedure 900 is performed, a second gas refresh may then be performed by adding the adjusted second gas mixture to chamber 110 from gas maintenance system 120 . The adjusted second gas mixture has a concentration of fluorine (or amount of fluorine) that can be based on measurements made by process 900 .

可藉由形成加上水及氧氣之無機氟化物化合物使氟在化學上與氫氧化物145反應(910)。此無機氟化物化合物(其存在於新氣體混合物155中)並不與水感測器115相互作用。Fluorine can be chemically reacted with hydroxide 145 by forming an inorganic fluoride compound to which water and oxygen are added (910). This inorganic fluoride compound (which is present in the fresh gas mixture 155 ) does not interact with the water sensor 115 .

在使氟在化學上與氫氧化物145反應以形成新氣體混合物155 (910)之後,可將新氣體混合物155自反應容器135轉移至量測容器170中,以使得能夠感測新氣體混合物155中之水之濃度(915)。因此可藉由將量測容器170內之感測器115暴露於新氣體混合物155來感測新氣體混合物155中之水之濃度(915)。感測新氣體混合物155中之水之濃度(915)而不必利用另一材料稀釋混合氣體150。After chemically reacting the fluorine with hydroxide 145 to form new gas mixture 155 (910), new gas mixture 155 can be transferred from reaction vessel 135 into measurement vessel 170 to enable new gas mixture 155 to be sensed Concentration of water in (915). The concentration of water in the fresh gas mixture 155 can thus be sensed by exposing the sensor 115 within the measurement vessel 170 to the fresh gas mixture 155 (915). The concentration of water in the new gas mixture 155 is sensed (915) without having to dilute the mixed gas 150 with another material.

此外,在化學反應(910)開始之後,直至已過去預定時間段或僅在已過去預定時間段之後才可適合於等待感測新氣體混合物155中之水之濃度(915)。此將確保在將水感測器115暴露於新氣體混合物155之前混合氣體150中之足夠的氟已轉化成水及無機氟化物化合物。取決於混合氣體150中之氟之相對量及氫氧化物145之總體積,可能會花費若干秒或若干分鐘以將氟完全轉化成水。Furthermore, after the chemical reaction has started (910), it may not be suitable to wait until or only after a predetermined period of time has elapsed to sense the concentration of water in the new gas mixture 155 (915). This will ensure that sufficient fluorine in the mixed gas 150 has been converted to water and inorganic fluoride compounds before exposing the water sensor 115 to the new gas mixture 155 . Depending on the relative amount of fluorine in the mixed gas 150 and the total volume of the hydroxide 145, it may take several seconds or several minutes to completely convert the fluorine to water.

在一些實施中,可藉由使低速率(例如約0.1 slpm或更低)下之混合氣體150跨越或通過氫氧化物145以形成特定流速下之新氣體混合物155來實施化學反應(910)係有可能的。在此狀況下,可以連續方式感測水(915)。可自在一段時間內感測到的水量測值(915)之積分或感測到的水量測值(915)何時已達至穩定狀態來估計氟之濃度(920)。In some implementations, the chemical reaction (910) system can be performed by passing the mixed gas 150 at a low rate (eg, about 0.1 slpm or less) across or through the hydroxide 145 to form a new gas mixture 155 at a specific flow rate possible. In this condition, water can be sensed in a continuous manner (915). The concentration of fluorine (920) can be estimated from the integration of the sensed water mass measurement (915) over a period of time or when the sensed water mass measurement (915) has reached a steady state.

基於感測到的水之濃度(915)且亦基於將混合氣體150中之氟轉化成水之化學反應之瞭解來估計新氣體混合物155中之氟(920)。Fluorine in the new gas mixture 155 is estimated (920) based on the sensed concentration of water (915) and also based on knowledge of the chemical reactions that convert fluorine in the mixed gas 150 to water.

在完成程序900後(亦即,在已在920處估計混合氣體150內氟之濃度之後),隨後自量測容器170排出(移除)新氣體混合物155以准許同樣對新批次之混合氣體150進行程序900。After the procedure 900 is completed (ie, after the concentration of fluorine in the mixed gas 150 has been estimated at 920), the new gas mixture 155 is then vented (removed) from the measurement vessel 170 to permit the same for the new batch of mixed gas 150 proceeds to routine 900.

參考圖10,一旦估計氟濃度(920)且在完成程序900後,藉由設備100進行程序1000。氣體維持系統120自偵測設備105之控制器130接收輸出,且基於氟之經估計濃度調整來自一組氣體供應器(諸如氣體源651A、651B、651C等)之氣體混合物中之氟之相對濃度(1005)。氣體維持系統120藉由經由套管系統127將經調整氣體混合物添加至腔室110來進行氣體更新(1010)直至腔室110內之壓力達至所需水平。可藉由監視氣體維持系統120內之閥之時序來完成及追蹤氣體更新。Referring to FIG. 10 , once the fluorine concentration is estimated ( 920 ) and after the procedure 900 is completed, the procedure 1000 is performed by the apparatus 100 . The gas maintenance system 120 receives output from the controller 130 of the detection device 105 and adjusts the relative concentration of fluorine in the gas mixture from a set of gas suppliers (such as gas sources 651A, 651B, 651C, etc.) based on the estimated concentration of fluorine (1005). The gas maintenance system 120 performs a gas refresh (1010) by adding the adjusted gas mixture to the chamber 110 through the cannula system 127 until the pressure within the chamber 110 reaches the desired level. Gas updates can be accomplished and tracked by monitoring the timing of valves within the gas maintenance system 120 .

舉例而言,參考圖2,氣體更新(1010)可包括利用增益介質及緩衝氣體以及氟之混合物填充氣體放電腔室210,其中該增益介質包括稀有氣體及氟且緩衝氣體包括惰性氣體。有可能相對於何時進行氟濃度估計(900)而延遲氣體更新(1010)之進行。在一些實施中,若控制器130判定氣體混合物107中之氟之濃度已降至低於可接受水平,則可緊接地在估計(900)之後進行調整(1005)及氣體更新(1010)。在一些實施中,有可能延遲氟之調整(1005)直至判定氣體混合物107中之氟之濃度已降至低於可接受水平。舉例而言,若控制器130判定氣體混合物107中之氟之濃度仍然較高,但設備100出於其他原因必須進行氣體更新,則有可能進行氣體更新而不需要以提高氣體混合物107中之氟之水平為目標。For example, referring to Figure 2, gas refresh (1010) may include filling the gas discharge chamber 210 with a mixture of a gain medium and a buffer gas and fluorine, wherein the gain medium includes a noble gas and fluorine and the buffer gas includes an inert gas. It is possible to delay the gas update (1010) with respect to when the fluorine concentration estimation (900) is made. In some implementations, if the controller 130 determines that the concentration of fluorine in the gas mixture 107 has dropped below an acceptable level, an adjustment ( 1005 ) and a gas update ( 1010 ) may be performed immediately after the estimation ( 900 ). In some implementations, it is possible to delay the adjustment of the fluorine (1005) until it is determined that the concentration of fluorine in the gas mixture 107 has dropped below an acceptable level. For example, if the controller 130 determines that the concentration of fluorine in the gas mixture 107 is still high, but the apparatus 100 must perform a gas refresh for other reasons, it is possible to perform a gas refresh without the need to increase the fluorine in the gas mixture 107 level is the target.

參考圖11,在一些實施中,偵測設備305進行程序1100而非程序900以估計混合氣體150中之氟之濃度。程序1100類似於程序900,包括以下步驟:自氣體放電腔室110接收包括氟之混合氣體150之部分(905);及使混合氣體150中之氟在化學上與氫氧化物145反應以形成包括水及氧氣之新氣體混合物155 (910)。程序1100判定新氣體混合物155中之氟之濃度是否降至低於下限值(1112)。舉例而言,流體地連接至反應空腔140之氟感測器360可進行此判定(1112)且控制器330可向前繼續進行僅在新氣體混合物155中之氟之濃度已降至低於下限值時(1112)才指示感測設備116感測新氣體混合物155中之水之濃度(經由感測器115)及氧氣之濃度(經由感測器117)兩者(915)的步驟。如前所述,基於氧氣之感測到的濃度估計混合氣體150中之氟之濃度(920)。Referring to FIG. 11 , in some implementations, the detection device 305 performs the process 1100 instead of the process 900 to estimate the concentration of fluorine in the mixed gas 150 . Process 1100 is similar to process 900 and includes the steps of: receiving a portion of mixed gas 150 including fluorine from gas discharge chamber 110 (905); and chemically reacting the fluorine in mixed gas 150 with hydroxide 145 to form a mixture comprising Fresh gas mixture of water and oxygen 155 (910). Routine 1100 determines whether the concentration of fluorine in new gas mixture 155 has dropped below a lower limit (1112). For example, fluorine sensor 360 fluidly connected to reaction cavity 140 may make this determination (1112) and controller 330 may proceed forward only if the concentration of fluorine in new gas mixture 155 has dropped below The lower limit value (1112) instructs the sensing device 116 to sense both the water concentration (via sensor 115) and the oxygen concentration (via sensor 117) in the new gas mixture 155 (915). As before, the concentration of fluorine in the mixed gas 150 is estimated based on the sensed concentration of oxygen (920).

在一些實施中,下限值為基於感測器115之損壞臨限值而判定之值。在其他實施中,下限值為基於該感測器115之誤差臨限值而判定之值。舉例而言,下限值可為0.1 ppm。In some implementations, the lower limit is a value determined based on the damage threshold of the sensor 115 . In other implementations, the lower limit is a value determined based on the error threshold of the sensor 115 . For example, the lower limit may be 0.1 ppm.

在以下編號條項中陳述本發明之其他態樣。 1.一種方法,其包含: 自一氣體放電腔室接收一混合氣體之至少一部分,其中該混合氣體包括氟; 使該混合氣體部分中之該氟與一氫氧化物反應以形成包括氧氣及水之一新氣體混合物; 感測該新氣體混合物內之水之一濃度;及 基於水之感測到的濃度估計該混合氣體部分內之氟之一濃度。 2.如條項1之方法,其中該氫氧化物包括一鹼土金屬氫氧化物。 3.如條項1之方法,其中該氫氧化物缺少一鹼金屬及碳。 4.如條項1之方法,其中該混合氣體為包含一增益介質與一緩衝氣體之至少一混合物之一準分子雷射氣體。 5.如條項1之方法,其進一步包含: 基於該混合氣體部分中之氟之經估計濃度調整來自一組氣體供應器之一氣體混合物中之氟之一相對濃度;及 藉由將經調整氣體混合物自該等氣體供應器添加至該氣體放電腔室來進行一氣體更新。 6.如條項5之方法,其中進行該氣體更新包含:利用一增益介質及一緩衝氣體以及氟之一混合物填充該氣體放電腔室。 7.如條項6之方法,其中利用該增益介質與該緩衝氣體之該混合物填充該氣體放電腔室包含:利用一增益介質填充該氣體放電腔室,該增益介質包括一稀有氣體及一鹵素,及包括一惰性氣體之一緩衝氣體。 8.如條項7之方法,其中該稀有氣體包括氬氣、氪氣或氙氣;該鹵素包括氟;且該惰性氣體包括氦氣或氖氣。 9.如條項6之方法,其中利用該增益介質及該緩衝氣體以及氟之該混合物填充該氣體放電腔室包含: 將該增益介質及該緩衝氣體以及氟之該混合物添加至該氣體放電腔室中之一現有混合氣體;或 至少利用該增益介質與該緩衝氣體以及氟之該混合物替換該氣體放電腔室中之一現有混合氣體。 10.如條項5之方法,其中進行該氣體更新包含:進行一氣體再填充方案或一氣體注入方案中之一或多者。 11.如條項1之方法,其中自該氣體放電腔室接收該混合氣體之至少該部分包含:在對該氣體放電腔室進行一氣體更新之前接收該混合氣體部分,其中該氣體更新包含將一氣體混合物自一組氣體供應器添加至該氣體放電腔室,其中該氣體混合物包括至少一些氟。 12.如條項11之方法,其中進行該氣體更新包含:進行一氣體再填充方案或一氣體注入方案中之一或多者。 13.如條項1之方法,其中自該氣體放電腔室接收該混合氣體之至少該部分包含:自該氣體放電腔室放出該混合氣體;及將所放出之混合氣體引導至容納該氫氧化物之一反應容器。 14.如條項13之方法,其進一步包含將該新氣體混合物自該反應容器轉移至一量測容器,其中該感測該新氣體混合物內之水之該濃度包含感測該量測容器內之該新氣體混合物內之水之該濃度。 15.如條項13之方法,其中感測該新氣體混合物內之水之該濃度包含將該量測容器內之一感測器暴露於該新氣體混合物。 16.如條項1之方法,其進一步包含在已估計該混合氣體部分內之氟之該濃度之後,自該量測容器排出該新氣體混合物。 17.如條項1之方法,其中感測該新氣體混合物內之水之該濃度包含在不利用另一材料稀釋該混合氣體部分之情況下感測該新氣體混合物內之水之該濃度。 18.如條項1之方法,其中使該混合氣體部分與該氫氧化物反應以形成包括水之該新氣體混合物包含形成加上水之一無機氟化物化合物。 19.如條項18之方法,其中該氫氧化物包含氫氧化鈣,且該無機氟化物化合物包含氟化鈣。 20.如條項1之方法,其中感測該新氣體混合物內之水之該濃度包含:在該反應開始之後僅在已過去一預定時間段之後才感測該新氣體混合物內之水之該濃度。 21.如條項1之方法,其中該混合氣體部分為一排出氣體且使該混合氣體部分與該氫氧化物反應以形成包括水之該新氣體混合物包含自該排出氣體移除氟。 22.如條項1之方法,其中基於水之該感測到的濃度估計該混合氣體部分內之氟之該濃度包含:僅基於水之該感測到的濃度及該混合氣體部分中之氟與該氫氧化物之間的化學反應來估計。 23.如條項1之方法,其中該混合氣體部分中之氟之該濃度為約百萬分之500至2000。 24.如條項1之方法,其中形成包括水之該新氣體混合物的該混合氣體部分中之該氟與該氫氧化物之該反應為穩定的。 25.如條項1之方法,其中使該混合氣體部分中之該氟與該氫氧化物反應以形成包括水之該新氣體混合物包含:進行一反應,該反應為線性且提供該混合氣體部分中之氟之該濃度與該新氣體混合物中之該水之該濃度之間的一直接相關性。 26.如條項1之方法,其進一步包含感測該新氣體混合物內之氧氣之一濃度,其中估計該混合氣體部分內之氟之該濃度亦基於氧氣之該感測到的濃度。 27.一種方法,其包含: 藉由將一第一氣體混合物自一組氣體供應器添加至一氣體放電腔室來進行一第一氣體更新; 在該第一氣體更新之後移除來自該氣體放電腔室之一混合氣體之至少一部分,其中該混合氣體包括氟; 使經移除之混合氣體部分之該氟與一反應物反應以形成包括氧氣及水之一新氣體混合物; 感測該新氣體混合物內之水之一濃度; 基於水之感測到的濃度估計該經移除之混合氣體部分內之氟之一濃度; 基於該經移除之混合氣體部分中之氟之經估計濃度調整來自該組氣體供應器之一第二氣體混合物中之氟之一相對濃度;及 藉由將經調整第二氣體混合物自該等氣體供應器添加至該氣體放電腔室來進行一第二氣體更新。 28.如條項27之方法,其中該反應物包含氫氧化物。 29.如條項27之方法,其中該氣體放電腔室中之該混合氣體包含一準分子雷射氣體,該準分子雷射氣體包括一增益介質與一緩衝氣體之至少一混合物。 30.如條項27之方法,其中基於水之該感測到的濃度估計該經移除之混合氣體部分內之氟之該濃度包含:在不量測該經移除之混合氣體部分內之該氟濃度之情況下估計該經移除之混合氣體部分內之該氟濃度。 31.一種設備,其包含 一偵測設備,其流體地連接至一準分子氣體放電系統之每一氣體放電腔室,其中每一偵測設備包含: 一容器,其界定容納一氫氧化物之一反應空腔且流體地連接至用於在該反應空腔中自該氣體放電腔室接收包括氟之混合氣體之該氣體放電腔室,該容器使得接收到之混合氣體之該氟與該氫氧化物之間的一反應能夠形成包括氧氣及水之一新氣體混合物;及 一水感測器,其經組態以流體地連接至該新氣體混合物,且當流體地連接至該新氣體混合物時,感測該新氣體混合物內之水之一量;及 一控制系統,其連接至該偵測設備,該控制系統經組態以: 自該水感測器接收輸出且估計自該氣體放電腔室接收到之該混合氣體中之氟之一濃度; 判定是否應基於該混合氣體中之氟之該經估計濃度而調整來自一氣體維持系統之一氣體供應系統的一氣體混合物中之氟之一濃度;及 將一信號發送至該氣體維持系統,指示該氣體維持系統在對該氣體放電腔室之一氣體更新期間調整自該氣體維持系統之該氣體供應系統供應至該氣體放電腔室之一氣體混合物中之氟之該相對濃度。 32.如條項31之設備,其中該準分子氣體放電系統之每一氣體放電腔室容納一能量源且含有包括一準分子雷射氣體之一氣體混合物,該準分子雷射氣體包括一增益介質及氟。 33.如條項31之設備,其中: 該偵測設備進一步包含一量測容器,其流體地連接至該反應容器之該反應空腔且界定經組態以接收該新氣體混合物之一量測空腔;且 該水感測器經組態以感測該量測空腔中之該新氣體混合物內之水之一量。 34.如條項31之設備,其中該經移除之混合氣體部分中之氟之該濃度為約百萬分之500至2000。 35.如條項31之設備,其中該準分子氣體放電系統包括複數個氣體放電腔室,且該偵測設備流體地連接至該複數個氣體放電腔室中之每一氣體放電腔室,其中該偵測設備包括複數個容器,每一容器界定容納該氫氧化物之一反應空腔,且每一容器流體地連接至該等氣體放電腔室中之一者且該偵測設備包括複數個水感測器,每一氧氣感測器均與一個容器相關聯。 36.如條項31之設備,其中該準分子氣體放電系統包括複數個氣體放電腔室,且該偵測設備流體地連接至該複數個氣體放電腔室中之每一氣體放電腔室,其中該偵測設備包括複數個容器,每一容器界定容納該氫氧化物之一反應空腔,且每一容器流體地連接至該等氣體放電腔室中之一者且該偵測設備包括與所有該等容器流體地連接之單個水感測器。Other aspects of the invention are set forth in the numbered clauses below. 1. A method comprising: receiving at least a portion of a mixed gas from a gas discharge chamber, wherein the mixed gas includes fluorine; reacting the fluorine in the mixed gas portion with a hydroxide to form a new gas mixture comprising oxygen and water; sensing a concentration of water in the new gas mixture; and A concentration of fluorine within the mixed gas portion is estimated based on the sensed concentration of water. 2. The method of clause 1, wherein the hydroxide comprises an alkaline earth metal hydroxide. 3. The method of clause 1, wherein the hydroxide lacks an alkali metal and carbon. 4. The method of clause 1, wherein the mixed gas is an excimer laser gas comprising at least a mixture of a gain medium and a buffer gas. 5. The method of clause 1, further comprising: Adjusting a relative concentration of fluorine in a gas mixture from a set of gas suppliers based on the estimated concentration of fluorine in the mixed gas portion; and A gas refresh is performed by adding a conditioned gas mixture from the gas supplies to the gas discharge chamber. 6. The method of clause 5, wherein performing the gas refresh comprises filling the gas discharge chamber with a mixture of a gain medium and a buffer gas and fluorine. 7. The method of clause 6, wherein filling the gas discharge chamber with the mixture of the gain medium and the buffer gas comprises: filling the gas discharge chamber with a gain medium, the gain medium comprising a noble gas and a halogen , and a buffer gas including an inert gas. 8. The method of clause 7, wherein the noble gas comprises argon, krypton, or xenon; the halogen comprises fluorine; and the noble gas comprises helium or neon. 9. The method of clause 6, wherein filling the gas discharge chamber with the mixture of the gain medium and the buffer gas and fluorine comprises: adding the mixture of the gain medium and the buffer gas and fluorine to an existing gas mixture in the gas discharge chamber; or At least one existing mixed gas in the gas discharge chamber is replaced with the mixture of the gain medium and the buffer gas and fluorine. 10. The method of clause 5, wherein performing the gas refresh comprises performing one or more of a gas refill scheme or a gas injection scheme. 11. The method of clause 1, wherein receiving at least the portion of the mixed gas from the gas discharge chamber comprises: receiving the mixed gas portion prior to performing a gas refresh of the gas discharge chamber, wherein the gas refresh comprises converting A gas mixture is added to the gas discharge chamber from a set of gas suppliers, wherein the gas mixture includes at least some fluorine. 12. The method of clause 11, wherein performing the gas refresh comprises performing one or more of a gas refill scheme or a gas injection scheme. 13. The method of clause 1, wherein receiving at least the portion of the mixed gas from the gas discharge chamber comprises: emitting the mixed gas from the gas discharge chamber; and directing the emitted mixed gas to contain the hydroxide One of the reaction vessels. 14. The method of clause 13, further comprising transferring the new gas mixture from the reaction vessel to a measuring vessel, wherein the sensing the concentration of water in the new gas mixture comprises sensing the measuring vessel the concentration of water in the new gas mixture. 15. The method of clause 13, wherein sensing the concentration of water in the new gas mixture comprises exposing a sensor in the measurement vessel to the new gas mixture. 16. The method of clause 1, further comprising venting the new gas mixture from the measurement vessel after the concentration of fluorine in the mixed gas portion has been estimated. 17. The method of clause 1, wherein sensing the concentration of water in the new gas mixture comprises sensing the concentration of water in the new gas mixture without diluting a portion of the mixed gas with another material. 18. The method of clause 1, wherein reacting the mixed gas portion with the hydroxide to form the new gas mixture comprising water comprises forming an inorganic fluoride compound plus water. 19. The method of clause 18, wherein the hydroxide comprises calcium hydroxide and the inorganic fluoride compound comprises calcium fluoride. 20. The method of clause 1, wherein sensing the concentration of water in the new gas mixture comprises: sensing the concentration of water in the new gas mixture only after a predetermined period of time has elapsed after the reaction begins concentration. 21. The method of clause 1, wherein the mixed gas portion is an exhaust gas and reacting the mixed gas portion with the hydroxide to form the new gas mixture comprising water comprises removing fluorine from the exhaust gas. 22. The method of clause 1, wherein estimating the concentration of fluorine in the mixed gas portion based on the sensed concentration of water comprises: based solely on the sensed concentration of water and fluorine in the mixed gas portion The chemical reaction with the hydroxide is estimated. 23. The method of clause 1, wherein the concentration of fluorine in the mixed gas portion is about 500 to 2000 parts per million. 24. The method of clause 1, wherein the reaction of the fluorine and the hydroxide in the portion of the mixed gas forming the new gas mixture comprising water is stable. 25. The method of clause 1, wherein reacting the fluorine in the mixed gas portion with the hydroxide to form the new gas mixture comprising water comprises: performing a reaction that is linear and provides the mixed gas portion A direct correlation between the concentration of fluorine in the new gas mixture and the concentration of the water in the new gas mixture. 26. The method of clause 1, further comprising sensing a concentration of oxygen within the new gas mixture, wherein estimating the concentration of fluorine within the mixed gas portion is also based on the sensed concentration of oxygen. 27. A method comprising: performing a first gas refresh by adding a first gas mixture to a gas discharge chamber from a set of gas suppliers; removing at least a portion of a mixed gas from the gas discharge chamber after the first gas refresh, wherein the mixed gas includes fluorine; reacting the fluorine of the removed portion of the mixed gas with a reactant to form a new gas mixture comprising oxygen and water; sensing a concentration of water in the new gas mixture; Estimating a concentration of fluorine within the removed portion of the mixed gas based on the sensed concentration of water; Adjust a relative concentration of fluorine in a second gas mixture from a second gas mixture of the set of gas suppliers based on the estimated concentration of fluorine in the removed portion of the mixed gas; and A second gas refresh is performed by adding a conditioned second gas mixture from the gas supplies to the gas discharge chamber. 28. The method of clause 27, wherein the reactant comprises a hydroxide. 29. The method of clause 27, wherein the mixed gas in the gas discharge chamber comprises an excimer laser gas comprising at least a mixture of a gain medium and a buffer gas. 30. The method of clause 27, wherein estimating the concentration of fluorine within the removed mixed gas portion based on the sensed concentration of water comprises: not measuring the removed mixed gas portion The fluorine concentration in the removed mixed gas portion is estimated with the fluorine concentration. 31. An apparatus comprising A detection device fluidly connected to each gas discharge chamber of an excimer gas discharge system, wherein each detection device includes: a vessel defining a reaction cavity containing a hydroxide and fluidly connected to the gas discharge chamber for receiving a mixed gas including fluorine in the reaction cavity from the gas discharge chamber, the vessel such that A reaction between the fluorine and the hydroxide of the received mixed gas can form a new gas mixture comprising oxygen and water; and a water sensor configured to be fluidly connected to the new gas mixture, and when fluidly connected to the new gas mixture, sense an amount of water within the new gas mixture; and A control system connected to the detection device, the control system configured to: receiving output from the water sensor and estimating a concentration of fluorine in the mixed gas received from the gas discharge chamber; determining whether a concentration of fluorine in a gas mixture from a gas supply system of a gas maintenance system should be adjusted based on the estimated concentration of fluorine in the mixed gas; and sending a signal to the gas maintenance system instructing the gas maintenance system to adjust the supply of the gas supply system from the gas maintenance system to a gas mixture in the gas discharge chamber during a gas refresh of the gas discharge chamber The relative concentration of fluorine. 32. The apparatus of clause 31, wherein each gas discharge chamber of the excimer gas discharge system houses an energy source and contains a gas mixture comprising an excimer laser gas comprising a gain medium and fluorine. 33. The apparatus of clause 31, wherein: The detection apparatus further includes a measurement vessel fluidly connected to the reaction cavity of the reaction vessel and defining a measurement cavity configured to receive the new gas mixture; and The water sensor is configured to sense an amount of water in the new gas mixture in the measurement cavity. 34. The apparatus of clause 31, wherein the concentration of fluorine in the removed portion of the mixed gas is about 500 to 2000 parts per million. 35. The apparatus of clause 31, wherein the excimer gas discharge system comprises a plurality of gas discharge chambers, and the detection device is fluidly connected to each gas discharge chamber of the plurality of gas discharge chambers, wherein The detection apparatus includes a plurality of vessels, each vessel defining a reaction cavity containing the hydroxide, and each vessel is fluidly connected to one of the gas discharge chambers and the detection apparatus includes a plurality of Water sensors, each oxygen sensor is associated with a container. 36. The apparatus of clause 31, wherein the excimer gas discharge system comprises a plurality of gas discharge chambers, and the detection device is fluidly connected to each gas discharge chamber of the plurality of gas discharge chambers, wherein The detection apparatus includes a plurality of vessels, each vessel defining a reaction cavity containing the hydroxide, and each vessel is fluidly connected to one of the gas discharge chambers and the detection apparatus includes and all The containers are fluidly connected to a single water sensor.

其他實施係在以下申請專利範圍之範疇內。Other implementations are within the scope of the following patent application.

100:設備 105:偵測設備 107:氣體混合物 110:腔室 115:水感測器 116:感測設備 117:氧氣感測器 120:氣體維持系統 127:套管系統 130:控制器 135:反應容器 137:套管 140:反應空腔 145:氫氧化物 150:混合氣體 155:新氣體混合物 170:量測容器 175:量測空腔 177:套管 200:光源 207:氣體混合物 210:氣體放電腔室 211:光束 222:光微影設備 225:準分子氣體放電系統 230:能量源 290:控制系統 300:設備 305:偵測設備 330:控制器 360:氟感測器 365:流動控制裝置 370:量測容器 375:量測空腔 400:設備 405:偵測設備 470:緩衝容器 500:設備 505:偵測設備 507_1,507_2…507_i:氣體混合物 510:腔室 510_1,510_2…510_i:腔室 516:感測設備 516_1,516_2…516_i:感測設備 520:氣體維持系統 527:主套管系統 527_1,527_3…527_i:套管系統 530:控制器 535_1,535_2…535_i:反應容器 537_1,537_2…537_i:套管 545_1,545_2…545_i:氫氧化物 550_1,550_2…550_i:混合氣體 555_1,555_2…555_i:新氣體混合物 600:DUV光源 601:第一載物台 602:第二載物台 605:偵測設備 606:光束 607_1:氣體混合物 607_2:氣體混合物 610_1:MO氣體放電腔室 610_2:PA氣體放電腔室 620:氣體維持系統 625:氣體放電系統 630:控制器 630_1:細長電極 630_2:細長電極 651A:氣體源 651B:氣體源 651C:氣體源 652:閥系統 653:閥控制器 680:光譜特徵選擇系統 681:輸出耦合器 682:返回光束 683:光束耦合設備 689:氣體傾卸 690:控制系統 700:記憶體 705:輸入裝置 710:輸出裝置 715:處理器 720:電腦程式產品 730:控制器 731:氣體維持模組 732:微影模組 790:控制系統 800:設備 804:氟洗滌器 805:偵測設備 807:氣體混合物 820:氣體維持系統 835:氟洗滌器 845:氫氧化物 820:氣體維持系統 851A:三合氣體源 851B:雙合氣體源 852:閥系統 870:緩衝器 891:閥 900:程序 905:步驟 910:步驟 915:步驟 920:步驟 1000:程序 1005:步驟 1010:步驟 1100:程序 1112:步驟100: Equipment 105: Detect equipment 107: Gas mixture 110: Chamber 115: Water Sensor 116: Sensing equipment 117: Oxygen sensor 120: Gas Maintenance System 127: Casing system 130: Controller 135: Reaction Vessel 137: Casing 140: Reaction cavity 145: Hydroxide 150: mixed gas 155: New gas mixture 170: Measuring container 175: Measuring cavity 177: Casing 200: light source 207: Gas mixture 210: Gas discharge chamber 211: Beam 222: Light lithography equipment 225: Excimer Gas Discharge Systems 230: Energy Source 290: Control System 300: Equipment 305: Detection device 330: Controller 360: Fluorine Sensor 365: Flow Control Devices 370: Measuring Vessel 375: Measuring cavity 400: Equipment 405: Detection device 470: Buffer container 500: Equipment 505: Detection device 507_1, 507_2…507_i: gas mixture 510: Chamber 510_1, 510_2…510_i: Chamber 516: Sensing Device 516_1, 516_2…516_i: Sensing device 520: Gas Maintenance System 527: Main casing system 527_1, 527_3…527_i: Casing system 530: Controller 535_1, 535_2…535_i: Reaction vessel 537_1, 537_2…537_i: casing 545_1, 545_2...545_i: Hydroxide 550_1, 550_2…550_i: Mixed gas 555_1, 555_2…555_i: new gas mixture 600: DUV light source 601: The first stage 602: Second stage 605: Detection device 606: Beam 607_1: Gas mixture 607_2: Gas mixture 610_1: MO gas discharge chamber 610_2: PA gas discharge chamber 620: Gas Maintenance System 625: Gas discharge system 630: Controller 630_1: Elongated electrode 630_2: Elongated electrode 651A: Gas Source 651B: Gas source 651C: Gas source 652: Valve System 653: Valve Controller 680: Spectral Feature Selection System 681: Output Coupler 682: Return Beam 683: Beam Coupling Equipment 689: Gas Dump 690: Control System 700: memory 705: Input Device 710: Output device 715: Processor 720: Computer Program Products 730: Controller 731: Gas Maintenance Module 732: lithography module 790: Control System 800: Equipment 804: Fluorine Scrubber 805: Detection device 807: Gas mixture 820: Gas Maintenance System 835: Fluorine Scrubber 845: Hydroxide 820: Gas Maintenance System 851A: Triad gas source 851B: Double gas source 852: Valve System 870: Buffer 891: Valve 900: Procedure 905: Steps 910: Steps 915: Steps 920: Steps 1000: Program 1005: Steps 1010: Steps 1100: Program 1112: Steps

圖1為包括經組態以量測腔室內之氣體混合物中之氟之濃度之偵測設備之設備的方塊圖;1 is a block diagram of an apparatus including a detection apparatus configured to measure the concentration of fluorine in a gas mixture within a chamber;

圖2為實施為產生引導至光微影設備之光束之深紫外線(DUV)光源之一部分的圖1之設備之方塊圖;2 is a block diagram of the apparatus of FIG. 1 implemented as part of a deep ultraviolet (DUV) light source that generates a light beam directed to a photolithography apparatus;

圖3為圖1之設備之偵測設備之實施之方塊圖,其中該偵測設備包括氟感測器;3 is a block diagram of an implementation of a detection device of the device of FIG. 1, wherein the detection device includes a fluorine sensor;

圖4為圖1之設備之實施之方塊圖,其中該偵測設備包括緩衝容器;4 is a block diagram of an implementation of the apparatus of FIG. 1, wherein the detection apparatus includes a buffer container;

圖5為圖1之設備之實施之方塊圖,其中該偵測設備包括複數個反應容器,每一反應容器與複數個腔室中之一者相關聯;5 is a block diagram of an implementation of the apparatus of FIG. 1 wherein the detection apparatus includes a plurality of reaction vessels, each reaction vessel being associated with one of the plurality of chambers;

圖6為圖2之設備之實施之方塊圖,其中展示例示性DUV光源之細節;6 is a block diagram of an implementation of the apparatus of FIG. 2 showing details of an exemplary DUV light source;

圖7為圖2或6中所展示之DUV光源之一部分的控制系統之實施之方塊圖;7 is a block diagram of an implementation of a control system for a portion of the DUV light source shown in FIG. 2 or 6;

圖8為圖1之設備之另一實施之方塊圖,其中該設備結合氟洗滌器實施;Figure 8 is a block diagram of another implementation of the apparatus of Figure 1, wherein the apparatus is implemented in conjunction with a fluorine scrubber;

圖9為藉由用於偵測腔室之氣體混合物中之氟之濃度之偵測設備進行之程序的流程圖;9 is a flow chart of a procedure performed by a detection apparatus for detecting the concentration of fluorine in a gas mixture of a chamber;

圖10為一旦估計氟濃度且在完成圖9之程序後藉由設備進行之程序之流程圖;及Figure 10 is a flow diagram of the procedure performed by the apparatus once the fluorine concentration has been estimated and after the procedure of Figure 9 has been completed; and

圖11為用以估計腔室中之氣體混合物中之氟之濃度之藉由偵測設備進行之程序而非圖9之程序的流程圖。FIG. 11 is a flow chart of a procedure performed by a detection apparatus instead of the procedure of FIG. 9 to estimate the concentration of fluorine in the gas mixture in the chamber.

107:氣體混合物 107: Gas mixture

110:腔室 110: Chamber

115:水感測器 115: Water Sensor

116:感測設備 116: Sensing equipment

117:氧氣感測器 117: Oxygen sensor

120:氣體維持系統 120: Gas Maintenance System

127:套管系統 127: Casing system

130:控制器 130: Controller

135:反應容器 135: Reaction Vessel

137:套管 137: Casing

140:反應空腔 140: Reaction cavity

145:氫氧化物 145: Hydroxide

150:混合氣體 150: mixed gas

155:新氣體混合物 155: New gas mixture

170:量測容器 170: Measuring container

175:量測空腔 175: Measuring cavity

177:套管 177: Casing

400:設備 400: Equipment

405:偵測設備 405: Detection device

470:緩衝容器 470: Buffer container

Claims (36)

一種用於氣體偵測之方法,其包含:自一氣體放電腔室接收一混合氣體之至少一部分,其中該混合氣體包括氟(fluorine);使該混合氣體部分中之該氟與一氫氧化物反應以形成包括氧氣及水之一新氣體混合物;感測該新氣體混合物內之水之一濃度;及基於水之感測到的濃度估計該混合氣體部分內之氟之一濃度。 A method for gas detection, comprising: receiving at least a portion of a mixed gas from a gas discharge chamber, wherein the mixed gas includes fluorine; combining the fluorine in the mixed gas portion with a hydroxide reacting to form a new gas mixture including oxygen and water; sensing a concentration of water within the new gas mixture; and estimating a concentration of fluorine within the portion of the mixed gas based on the sensed concentration of water. 如請求項1之方法,其中該氫氧化物包括一鹼土金屬氫氧化物。 The method of claim 1, wherein the hydroxide comprises an alkaline earth metal hydroxide. 如請求項1之方法,其中該氫氧化物缺少一鹼金屬及碳。 The method of claim 1, wherein the hydroxide lacks an alkali metal and carbon. 如請求項1之方法,其中該混合氣體為包含一增益介質與一緩衝氣體之至少一混合物之一準分子雷射氣體。 The method of claim 1, wherein the mixed gas is an excimer laser gas comprising at least a mixture of a gain medium and a buffer gas. 如請求項1之方法,其進一步包含:基於該混合氣體部分中之氟之經估計濃度調整來自一組氣體供應器之一氣體混合物中之氟之一相對濃度;及藉由將經調整氣體混合物自該等氣體供應器添加至該氣體放電腔室來進行一氣體更新。 The method of claim 1, further comprising: adjusting a relative concentration of fluorine in a gas mixture from a set of gas suppliers based on the estimated concentration of fluorine in the mixed gas portion; and by combining the adjusted gas mixture A gas refresh is performed from the gas supplies added to the gas discharge chamber. 如請求項5之方法,其中進行該氣體更新包含:利用一增益介質及一緩衝氣體以及氟之一混合物填充該氣體放電腔室。 The method of claim 5, wherein performing the gas refresh comprises filling the gas discharge chamber with a mixture of a gain medium and a buffer gas and fluorine. 如請求項6之方法,其中利用該增益介質與該緩衝氣體之該混合物填充該氣體放電腔室包含:利用一增益介質填充該氣體放電腔室,該增益介質包括一稀有氣體及一鹵素,及包括一惰性氣體之一緩衝氣體。 The method of claim 6, wherein filling the gas discharge chamber with the mixture of the gain medium and the buffer gas comprises: filling the gas discharge chamber with a gain medium, the gain medium comprising a noble gas and a halogen, and Include an inert gas or a buffer gas. 如請求項7之方法,其中該稀有氣體包括氬氣、氪氣或氙氣;該鹵素包括氟;且該惰性氣體包括氦氣或氖氣。 The method of claim 7, wherein the noble gas comprises argon, krypton or xenon; the halogen comprises fluorine; and the noble gas comprises helium or neon. 如請求項6之方法,其中利用該增益介質及該緩衝氣體以及氟之該混合物填充該氣體放電腔室包含:將該增益介質及該緩衝氣體以及氟之該混合物添加至該氣體放電腔室中之一現有混合氣體;或至少利用該增益介質與該緩衝氣體以及氟之該混合物替換該氣體放電腔室中之一現有混合氣體。 The method of claim 6, wherein filling the gas discharge chamber with the mixture of the gain medium and the buffer gas and fluorine comprises: adding the gain medium and the mixture of the buffer gas and fluorine into the gas discharge chamber an existing gas mixture; or at least replace an existing gas mixture in the gas discharge chamber with the mixture of the gain medium, the buffer gas and fluorine. 如請求項5之方法,其中進行該氣體更新包含:進行一氣體再填充方案或一氣體注入方案中之一或多者。 The method of claim 5, wherein performing the gas refresh comprises performing one or more of a gas refill scheme or a gas injection scheme. 如請求項1之方法,其中自該氣體放電腔室接收該混合氣體之至少該部分包含:在對該氣體放電腔室進行一氣體更新之前接收該混合氣體部分,其中該氣體更新包含將一氣體混合物自一組氣體供應器添加至該氣體 放電腔室,其中該氣體混合物包括至少一些氟。 The method of claim 1, wherein receiving at least the portion of the mixed gas from the gas discharge chamber comprises: receiving the mixed gas portion prior to performing a gas refresh of the gas discharge chamber, wherein the gas refresh comprises converting a gas The mixture is added to the gas from a set of gas supplies a discharge chamber, wherein the gas mixture includes at least some fluorine. 如請求項11之方法,其中進行該氣體更新包含:進行一氣體再填充方案或一氣體注入方案中之一或多者。 The method of claim 11, wherein performing the gas refresh comprises performing one or more of a gas refill scheme or a gas injection scheme. 如請求項1之方法,其中自該氣體放電腔室接收該混合氣體之至少該部分包含:自該氣體放電腔室放出該混合氣體;及將所放出之混合氣體引導至容納該氫氧化物之一反應容器。 The method of claim 1, wherein receiving at least the portion of the mixed gas from the gas discharge chamber comprises: releasing the mixed gas from the gas discharge chamber; and directing the released mixed gas to a chamber containing the hydroxide a reaction vessel. 如請求項13之方法,其進一步包含將該新氣體混合物自該反應容器轉移至一量測容器,其中該感測該新氣體混合物內之水之該濃度包含感測該量測容器內之該新氣體混合物內之水之該濃度。 The method of claim 13, further comprising transferring the new gas mixture from the reaction vessel to a measurement vessel, wherein sensing the concentration of water in the new gas mixture comprises sensing the concentration in the measurement vessel This concentration of water in the new gas mixture. 如請求項13之方法,其中感測該新氣體混合物內之水之該濃度包含將該量測容器內之一感測器暴露於該新氣體混合物。 The method of claim 13, wherein sensing the concentration of water in the new gas mixture comprises exposing a sensor in the measurement vessel to the new gas mixture. 如請求項1之方法,其進一步包含在已估計該混合氣體部分內之氟之該濃度之後,自該量測容器排出該新氣體混合物。 The method of claim 1, further comprising discharging the new gas mixture from the measurement vessel after the concentration of fluorine in the mixed gas portion has been estimated. 如請求項1之方法,其中感測該新氣體混合物內之水之該濃度包含在不利用另一材料稀釋該混合氣體部分之情況下感測該新氣體混合物內之水之該濃度。 The method of claim 1, wherein sensing the concentration of water in the new gas mixture comprises sensing the concentration of water in the new gas mixture without diluting the mixed gas portion with another material. 如請求項1之方法,其中使該混合氣體部分與該氫氧化物反應以形成包括水之該新氣體混合物包含形成加上水之一無機氟化物化合物。 The method of claim 1, wherein reacting the mixed gas portion with the hydroxide to form the new gas mixture comprising water comprises forming an inorganic fluoride compound plus water. 如請求項18之方法,其中該氫氧化物包含氫氧化鈣,且該無機氟化物化合物包含氟化鈣。 The method of claim 18, wherein the hydroxide comprises calcium hydroxide and the inorganic fluoride compound comprises calcium fluoride. 如請求項1之方法,其中感測該新氣體混合物內之水之該濃度包含:在該反應開始之後僅在已過去一預定時間段之後才感測該新氣體混合物內之水之該濃度。 The method of claim 1, wherein sensing the concentration of water in the new gas mixture comprises sensing the concentration of water in the new gas mixture only after a predetermined period of time has elapsed after the reaction begins. 如請求項1之方法,其中該混合氣體部分為一排出氣體且使該混合氣體部分與該氫氧化物反應以形成包括水之該新氣體混合物包含自該排出氣體移除氟。 The method of claim 1, wherein the mixed gas portion is an exhaust gas and reacting the mixed gas portion with the hydroxide to form the new gas mixture including water comprises removing fluorine from the exhaust gas. 如請求項1之方法,其中基於水之該感測到的濃度估計該混合氣體部分內之氟之該濃度包含:僅基於水之該感測到的濃度及該混合氣體部分中之氟與該氫氧化物之間的化學反應來估計。 The method of claim 1, wherein estimating the concentration of fluorine in the mixed gas portion based on the sensed concentration of water comprises: based solely on the sensed concentration of water and fluorine in the mixed gas portion and the mixed gas portion The chemical reaction between the hydroxides is estimated. 如請求項1之方法,其中該混合氣體部分中之氟之該濃度為約百萬分之500至2000。 The method of claim 1, wherein the concentration of fluorine in the mixed gas portion is about 500 to 2000 parts per million. 如請求項1之方法,其中形成包括水之該新氣體混合物的該混合氣體部分中之該氟與該氫氧化物之該反應為穩定的。 The method of claim 1, wherein the reaction of the fluorine and the hydroxide in the portion of the mixed gas forming the new gas mixture comprising water is stable. 如請求項1之方法,其中使該混合氣體部分中之該氟與該氫氧化物反應以形成包括水之該新氣體混合物包含:進行一反應,該反應為線性且提供該混合氣體部分中之氟之該濃度與該新氣體混合物中之該水之該濃度之間的一直接相關性。 The method of claim 1, wherein reacting the fluorine in the mixed gas portion with the hydroxide to form the new gas mixture including water comprises: performing a reaction that is linear and provides the fluorine in the mixed gas portion A direct correlation between the concentration of fluorine and the concentration of the water in the fresh gas mixture. 如請求項1之方法,其進一步包含感測該新氣體混合物內之氧氣之一濃度,其中估計該混合氣體部分內之氟之該濃度亦基於氧氣之感測到的濃度。 The method of claim 1, further comprising sensing a concentration of oxygen within the new gas mixture, wherein estimating the concentration of fluorine within the mixed gas portion is also based on the sensed concentration of oxygen. 一種用於氣體偵測之方法,其包含:藉由將一第一氣體混合物自一組氣體供應器添加至一氣體放電腔室來進行一第一氣體更新;在該第一氣體更新之後移除來自該氣體放電腔室之一混合氣體之至少一部分,其中該混合氣體包括氟;使經移除之混合氣體部分之該氟與一反應物反應以形成包括氧氣及水之一新氣體混合物;感測該新氣體混合物內之水之一濃度;基於水之感測到的濃度估計該經移除之混合氣體部分內之氟之一濃度;基於該經移除之混合氣體部分中之氟之經估計濃度調整來自該組氣體供應器之一第二氣體混合物中之氟之一相對濃度;及藉由將經調整第二氣體混合物自該等氣體供應器添加至該氣體放電 腔室來進行一第二氣體更新。 A method for gas detection, comprising: performing a first gas update by adding a first gas mixture to a gas discharge chamber from a set of gas suppliers; removing after the first gas update at least a portion of a mixed gas from the gas discharge chamber, wherein the mixed gas includes fluorine; reacting the fluorine of the removed portion of the mixed gas with a reactant to form a new gas mixture including oxygen and water; sensing measuring a concentration of water in the new gas mixture; estimating a concentration of fluorine in the removed mixed gas portion based on the sensed concentration of water; based on the concentration of fluorine in the removed mixed gas portion Adjusting a relative concentration of fluorine in a second gas mixture from a second gas mixture of the set of gas suppliers; and by adding the adjusted second gas mixture from the gas suppliers to the gas discharge chamber for a second gas update. 如請求項27之方法,其中該反應物包含氫氧化物。 The method of claim 27, wherein the reactant comprises a hydroxide. 如請求項27之方法,其中該氣體放電腔室中之該混合氣體包含一準分子雷射氣體,該準分子雷射氣體包括一增益介質與一緩衝氣體之至少一混合物。 The method of claim 27, wherein the mixed gas in the gas discharge chamber comprises an excimer laser gas comprising at least a mixture of a gain medium and a buffer gas. 如請求項27之方法,其中基於水之該感測到的濃度估計該經移除之混合氣體部分內之氟之該濃度包含:在不量測該經移除之混合氣體部分內之該氟濃度之情況下估計該經移除之混合氣體部分內之該氟濃度。 The method of claim 27, wherein estimating the concentration of fluorine in the removed mixed gas portion based on the sensed concentration of water comprises: not measuring the fluorine in the removed mixed gas portion The fluorine concentration in the removed mixed gas portion was estimated in case of concentration. 一種用於氣體偵測之設備,其包含一偵測設備,其流體地連接至一準分子氣體放電系統之每一氣體放電腔室,其中每一偵測設備包含:一容器,其界定容納一氫氧化物之一反應空腔且流體地連接至用於在該反應空腔中自該氣體放電腔室接收包括氟之混合氣體之該氣體放電腔室,該容器使得接收到之混合氣體之該氟與該氫氧化物之間的一反應能夠形成包括氧氣及水之一新氣體混合物;及一水感測器,其經組態以流體地連接至該新氣體混合物,且當流體地連接至該新氣體混合物時,感測該新氣體混合物內之水之一量;及一控制系統,其連接至該偵測設備,該控制系統經組態以: 自該水感測器接收輸出且估計自該氣體放電腔室接收到之該混合氣體中之氟之一濃度;判定是否應基於該混合氣體中之氟之該經估計濃度而調整來自一氣體維持系統之一氣體供應系統的一氣體混合物中之氟之一濃度;及將一信號發送至該氣體維持系統,指示該氣體維持系統在對該氣體放電腔室之一氣體更新期間調整自該氣體維持系統之該氣體供應系統供應至該氣體放電腔室之一氣體混合物中之氟之該相對濃度。 An apparatus for gas detection comprising a detection apparatus fluidly connected to each gas discharge chamber of an excimer gas discharge system, wherein each detection apparatus comprises: a container defining a housing a reaction cavity of hydroxide and fluidly connected to the gas discharge chamber for receiving a mixed gas including fluorine from the gas discharge chamber in the reaction cavity, the container such that the received mixed gas is a reaction between fluorine and the hydroxide capable of forming a new gas mixture including oxygen and water; and a water sensor configured to be fluidly connected to the new gas mixture, and when fluidly connected to Sensing an amount of water in the new gas mixture when the new gas mixture is present; and a control system connected to the detection device, the control system configured to: Receive output from the water sensor and estimate a concentration of fluorine in the mixed gas received from the gas discharge chamber; determine whether adjustments from a gas maintenance should be made based on the estimated concentration of fluorine in the mixed gas a concentration of fluorine in a gas mixture of a gas supply system of the system; and sending a signal to the gas maintenance system instructing the gas maintenance system to adjust from the gas maintenance during a gas update to the gas discharge chamber The relative concentration of fluorine in a gas mixture supplied to the gas discharge chamber by the gas supply system of the system. 如請求項31之設備,其中該準分子氣體放電系統之每一氣體放電腔室容納一能量源且含有包括一準分子雷射氣體之一氣體混合物,該準分子雷射氣體包括一增益介質及氟。 The apparatus of claim 31, wherein each gas discharge chamber of the excimer gas discharge system houses an energy source and contains a gas mixture including an excimer laser gas including a gain medium and fluorine. 如請求項31之設備,其中:該偵測設備進一步包含一量測容器,其流體地連接至該反應容器之該反應空腔且界定經組態以接收該新氣體混合物之一量測空腔;且該水感測器經組態以感測該量測空腔中之該新氣體混合物內之水之一量。 31. The apparatus of claim 31, wherein: the detection apparatus further comprises a measurement vessel fluidly connected to the reaction cavity of the reaction vessel and defining a measurement cavity configured to receive the new gas mixture ; and the water sensor is configured to sense an amount of water in the new gas mixture in the measurement cavity. 如請求項31之設備,其中該經移除之混合氣體部分中之氟之該濃度為約百萬分之500至2000。 The apparatus of claim 31, wherein the concentration of fluorine in the removed portion of the mixed gas is about 500 to 2000 parts per million. 如請求項31之設備,其中該準分子氣體放電系統包括複數個氣體放電腔室,且該偵測設備流體地連接至該複數個氣體放電腔室中之每一氣體 放電腔室,其中該偵測設備包括複數個容器,每一容器界定容納該氫氧化物之一反應空腔,且每一容器流體地連接至該等氣體放電腔室中之一者且該偵測設備包括複數個水感測器,每一氧氣感測器均與一個容器相關聯。 The apparatus of claim 31, wherein the excimer gas discharge system includes a plurality of gas discharge chambers, and the detection device is fluidly connected to each gas in the plurality of gas discharge chambers a discharge chamber, wherein the detection apparatus includes a plurality of vessels, each vessel defining a reaction cavity containing the hydroxide, and each vessel is fluidly connected to one of the gas discharge chambers and the detection The testing equipment includes a plurality of water sensors, each oxygen sensor being associated with a container. 如請求項31之設備,其中該準分子氣體放電系統包括複數個氣體放電腔室,且該偵測設備流體地連接至該複數個氣體放電腔室中之每一氣體放電腔室,其中該偵測設備包括複數個容器,每一容器界定容納該氫氧化物之一反應空腔,且每一容器流體地連接至該等氣體放電腔室中之一者且該偵測設備包括與所有該等容器流體地連接之單個水感測器。 The apparatus of claim 31, wherein the excimer gas discharge system includes a plurality of gas discharge chambers, and the detection device is fluidly connected to each gas discharge chamber of the plurality of gas discharge chambers, wherein the detection device The detection apparatus includes a plurality of vessels, each vessel defining a reaction cavity containing the hydroxide, and each vessel is fluidly connected to one of the gas discharge chambers and the detection apparatus includes and all of the A single water sensor fluidly connected to the container.
TW109125631A 2019-08-29 2020-07-29 Fluorine detection in a gas discharge light source TWI770568B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962893377P 2019-08-29 2019-08-29
US62/893,377 2019-08-29

Publications (2)

Publication Number Publication Date
TW202111321A TW202111321A (en) 2021-03-16
TWI770568B true TWI770568B (en) 2022-07-11

Family

ID=72474371

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111124478A TWI820776B (en) 2019-08-29 2020-07-29 Fluorine detection in a gas discharge light source
TW109125631A TWI770568B (en) 2019-08-29 2020-07-29 Fluorine detection in a gas discharge light source

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111124478A TWI820776B (en) 2019-08-29 2020-07-29 Fluorine detection in a gas discharge light source

Country Status (4)

Country Link
JP (1) JP7360539B2 (en)
CN (1) CN114303059A (en)
TW (2) TWI820776B (en)
WO (1) WO2021041224A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096767A1 (en) * 2021-11-29 2023-06-01 Cymer, Llc Metrology apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149659A (en) * 1988-03-31 1992-09-22 Central Glass Company, Limited Method and apparatus for analyzing fluorine containing gases
US6028880A (en) * 1998-01-30 2000-02-22 Cymer, Inc. Automatic fluorine control system
JP2001165924A (en) * 1999-12-10 2001-06-22 Osaka Oxygen Ind Ltd Method and apparatus for measuring concentration of fluorine in fluorine-containing mixed gas
CN100458438C (en) * 2004-09-30 2009-02-04 昭和电工株式会社 Method for trace analysis and analyzer therefor
CN104914172A (en) * 2014-03-10 2015-09-16 福建省邵武市永晶化工有限公司 Method for measuring fluorine gas content in fluorine-containing mixing gas through gas chromatography method
TW201920936A (en) * 2017-09-25 2019-06-01 美商希瑪有限責任公司 Fluorine detection in a gas discharge light source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797106B2 (en) * 1988-12-16 1995-10-18 セントラル硝子株式会社 Fluorine-containing gas component concentration measuring method and apparatus
JPH0718862B2 (en) * 1988-03-31 1995-03-06 セントラル硝子株式会社 Fluorine concentration measuring method and apparatus
JPH02228086A (en) * 1989-02-28 1990-09-11 Central Glass Co Ltd Method and device for stabilization control of output of fluorine excimer laser
US6240117B1 (en) * 1998-01-30 2001-05-29 Cymer, Inc. Fluorine control system with fluorine monitor
US20170133813A1 (en) 2015-11-09 2017-05-11 Transformation Point Technologies, LLC Lasing gas recycling
US9819136B2 (en) * 2016-01-08 2017-11-14 Cymer, Llc Gas mixture control in a gas discharge light source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149659A (en) * 1988-03-31 1992-09-22 Central Glass Company, Limited Method and apparatus for analyzing fluorine containing gases
US6028880A (en) * 1998-01-30 2000-02-22 Cymer, Inc. Automatic fluorine control system
JP2001165924A (en) * 1999-12-10 2001-06-22 Osaka Oxygen Ind Ltd Method and apparatus for measuring concentration of fluorine in fluorine-containing mixed gas
CN100458438C (en) * 2004-09-30 2009-02-04 昭和电工株式会社 Method for trace analysis and analyzer therefor
CN104914172A (en) * 2014-03-10 2015-09-16 福建省邵武市永晶化工有限公司 Method for measuring fluorine gas content in fluorine-containing mixing gas through gas chromatography method
TW201920936A (en) * 2017-09-25 2019-06-01 美商希瑪有限責任公司 Fluorine detection in a gas discharge light source

Also Published As

Publication number Publication date
TWI820776B (en) 2023-11-01
TW202242376A (en) 2022-11-01
WO2021041224A1 (en) 2021-03-04
CN114303059A (en) 2022-04-08
JP7360539B2 (en) 2023-10-12
JP2022545182A (en) 2022-10-26
TW202111321A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
JP7254152B2 (en) Fluorine detection in gas discharge light sources
TWI670750B (en) Gas discharge light source and method for operating said gas discharge light source
US20150188274A1 (en) Method of controlling laser apparatus and laser apparatus
KR930000552B1 (en) Halogen gas laser control apparatus
TWI770568B (en) Fluorine detection in a gas discharge light source
KR102294664B1 (en) Fluorine concentration detection device and method
TWI542098B (en) System and method for high accuracy gas refill in a two chamber gas discharge laser system
US11451003B2 (en) Laser gas regenerating apparatus and electronic device manufacturing method
TWI840693B (en) Method of fluorine measurement
WO2024023968A1 (en) Laser device, laser system, and method for manufacturing electronic device
JPH10154842A (en) Excimer laser
JPH05347448A (en) Excimer laser oscillator