WO2006035482A1 - Liquid crystal element having optical zoom function and method for manufacturing the same - Google Patents

Liquid crystal element having optical zoom function and method for manufacturing the same Download PDF

Info

Publication number
WO2006035482A1
WO2006035482A1 PCT/JP2004/014079 JP2004014079W WO2006035482A1 WO 2006035482 A1 WO2006035482 A1 WO 2006035482A1 JP 2004014079 W JP2004014079 W JP 2004014079W WO 2006035482 A1 WO2006035482 A1 WO 2006035482A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal element
electrode
cell structure
substrate
Prior art date
Application number
PCT/JP2004/014079
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyoshi Nakagawa
Original Assignee
Binit Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binit Corporation filed Critical Binit Corporation
Priority to KR1020077005072A priority Critical patent/KR101073657B1/en
Priority to CNB2004800440839A priority patent/CN100437219C/en
Priority to PCT/JP2004/014079 priority patent/WO2006035482A1/en
Priority to JP2006537576A priority patent/JP4532500B2/en
Publication of WO2006035482A1 publication Critical patent/WO2006035482A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • Liquid crystal element having optical zoom function and method for manufacturing the same
  • the present invention relates to an optical zoom function. More specifically, the present invention relates to an optical zoom function suitably used for a small digital still camera, a digital video camera, etc. in a mobile phone, a personal digital assistant (PDA) and the like.
  • PDA personal digital assistant
  • an image pickup device such as a front group lens, a rear group lens, and a CCD is sequentially arranged on the optical axis, and only the rear group lens is arranged in the direction of the guide pin (optical axis direction) by the driving means.
  • An ultra-compact lens driving device is disclosed!
  • Patent Document 2 includes a first lens group having negative refractive power as a whole, a second lens group having positive refractive power as a whole, and a whole lens in order toward the image plane side. And a third lens group having a positive refractive power, the second lens group moves to the object side, and the third lens group moves again from the image side to the object side.
  • a zoom lens is disclosed that moves to the surface side and wide-angle end force zooms to the telephoto end and corrects image plane fluctuations associated with zooming.
  • the conventional zoom lens as described above can be reduced in size and thickness to some extent by devising the lens driving method, but it is necessary to move the lens mechanically. It was necessary to secure a moving space, and the actual limit of the lens barrel thickness was about 10 mm. For this reason, there is a problem that the degree of freedom in the design of the appearance of mobile phones and the like is limited, and it is still necessary to avoid protruding the lens part. The current situation is that the company relies on the system. In addition, as the number of effective pixels of a camera increases further, it becomes increasingly important to fit the lens unit in a small housing.
  • Patent Document 1 JP 2004-258111 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-212737
  • the present invention is used in a lens system of a camera that is mounted on a device such as a mobile phone, and obtains an optical zoom function that is smaller and thinner and lighter than conventional ones.
  • An object of the present invention is to provide a novel liquid crystal element that can be used.
  • the present invention provides, as a first invention, an optical zoom system that is arranged with a lens on an optical axis and forms a refractive index distribution by applying a voltage to form an optical lens.
  • a liquid crystal element that exhibits a function of a liquid crystal comprising a liquid crystal and a plurality of electrodes facing each other with the liquid crystal interposed therebetween, so that the alignment state of the liquid crystal changes concentrically around the optical axis when a voltage is applied.
  • a liquid crystal element configured as described above is provided.
  • the second invention is a liquid crystal element that is arranged with a lens on an optical axis to constitute an optical zoom system, forms a refractive index distribution by applying a voltage, and exhibits an optical zoom function. And a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and at least one of the electrodes has a radius when a plurality of non-electrode portions having no electrode material are concentrically divided on the electrodes.
  • a liquid crystal element that is formed in an arrangement pattern in which the size and / or the arrangement interval are changed along the direction, and that the liquid crystal is non-uniformly aligned inside the non-electrode portion when a voltage is applied.
  • an electric field is formed in the central portion of the plurality of non-electrode portions that is weak in the direction perpendicular to the electrode, and the electric field is inclined in the direction where the electric field is inclined at the end portion of the non-electrode portion. Therefore, the liquid crystal molecules are non-uniformly aligned along the electric field distribution, so that the refractive effect (lens effect) of the light whose refractive index continuously changes from the center to the periphery of the non-electrode part is obtained. can get. Since the non-electrode portion is not enlarged and the arrangement interval is changed concentrically on the electrode, a predetermined refractive index distribution is given to the entire element, the focal point moves, and the optical zoom function is exhibited.
  • the third invention is a liquid crystal element that is arranged together with a lens on an optical axis to constitute an optical zoom system, and that forms a refractive index distribution by applying a voltage to exert an optical zoom function. And a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and at least one of the electrodes has a radius when a plurality of non-electrode portions having no electrode material are concentrically divided on the electrodes. It is formed with an arrangement pattern in which the size and / or arrangement interval is changed along the direction, and the liquid crystal is non-uniformly oriented when applying voltage inside the non-electrode part, and different voltages are applied.
  • a liquid crystal element in which a plurality of linear electrodes are arranged in an annular shape at a predetermined interval along the arrangement pattern changing concentrically.
  • the arrangement interval of the plurality of non-electrode parts is irregular in each concentrically divided region on the electrode. It is characterized by being.
  • the spacing between adjacent non-electrode parts is irregular (random).
  • the fifth invention is characterized in that in the liquid crystal element according to the second invention or the third invention, the shape of the non-electrode portion is a circle or a pit shape.
  • the shape of the non-electrode portion is optimized with respect to the light beam passing through the element.
  • the pit shape means a shape in which one axis is longer than the other axis perpendicular thereto, for example, the longer axis is formed parallel to the rubbing direction of the liquid crystal or perpendicular to the rubbing direction. can do.
  • an optical zoom system is configured by being arranged together with a lens on the optical axis.
  • a liquid crystal element that forms a refractive index distribution and exhibits an optical zoom function, and includes a liquid crystal and a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and at least one of the plurality of electrodes
  • a plurality of linear electrodes for applying different voltages are concentrically arranged at predetermined intervals with the optical axis as a center, and when the voltage is applied to the plurality of linear electrodes, the linear electrodes
  • the arranged electrode acts as a resistance film, causes a voltage drop between the plurality of linear electrodes, and the alignment state of the liquid crystal changes concentrically around the optical axis.
  • a liquid crystal element configured.
  • the applied voltage continuously changes between the plurality of linear electrodes, and the alignment state of the liquid crystal changes according to the voltage value.
  • a distribution is formed and the optical zoom function is exhibited.
  • the electrode on which the plurality of linear electrodes are arranged is constituted by a plurality of region covers having different resistance values. It is characterized by.
  • the voltage drop between the plurality of linear electrodes is curved.
  • an eighth invention is the liquid crystal element according to any one of the first, third, sixth, and seventh inventions, wherein an outside of a region through which a light beam passes when an optical zoom system is configured. It is characterized by shading.
  • the optical zoom system is constituted by two liquid crystal elements stacked in the thickness direction and arranged with a lens on the optical axis, and a refractive index distribution is formed by applying a voltage.
  • the segment electrode includes a plurality of non-electrode portions where no electrode material is present.
  • the segment electrode has a size or a disposition interval along a radial direction when the segment electrode is divided into concentric circles, or an arrangement interval thereof.
  • Each of the pair of substrates is provided with a plurality of holes in the thickness direction, and the holes are provided with terminals connected to either the common electrode or the segment electrode.
  • One of them provides a liquid crystal element having a double cell structure in which an injection port for injecting liquid crystal is formed.
  • the terminals for connecting to the common electrode and the segment electrode and the liquid crystal injection hole are arranged on the surface of the substrate.
  • the liquid crystal molecules are non-uniformly oriented inside the plurality of formed non-electrode portions, the light refraction effect (lens effect) in which the refractive index changes from the center to the periphery of the non-electrode portions is obtained.
  • the focal point moves and the optical zoom function is exhibited.
  • the tenth aspect of the invention is a liquid crystal element having a double cell structure according to the ninth aspect of the invention, wherein the alignment direction of the liquid crystal when no voltage is applied is orthogonal between the two liquid crystal elements.
  • an eleventh aspect of the invention is the liquid crystal element having a double cell structure according to the ninth aspect of the invention, wherein the substrate is formed in a quadrangular shape, and the liquid crystal is sealed along a circular region through which the light flux of the substrate passes.
  • a liquid crystal injection port and a terminal are provided in the vicinity of the corner portion other than the circular region.
  • the twelfth aspect of the invention is the liquid crystal element having a double cell structure according to the tenth aspect of the invention, wherein the base plate is formed in a square shape, and the liquid crystal is shown along a circular region through which the light flux of the substrate passes.
  • the liquid crystal injection port and the terminal are provided in the vicinity of the corner portion other than the circular region.
  • the vicinity of the corner portion of the substrate is effectively used as a space for forming a hole, and the weight balance of the element is improved.
  • the liquid crystal expands or contracts, the whole is uniformly deformed, so that the optical zoom function is stable.
  • the thirteenth invention is a liquid crystal having a double cell structure according to any of the ninth to eleventh inventions.
  • the terminals connected to the common electrode of each stacked liquid crystal element, the terminals connected to the segment electrode of one liquid crystal element, and the terminals connected to the segment electrode of the other liquid crystal element are thick. It is characterized by being connected to each other in the vertical direction and integrated into terminals provided on one substrate located outside the liquid crystal element having a double cell structure.
  • the fourteenth aspect of the invention is the liquid crystal element having a double cell structure according to the twelfth aspect of the invention, wherein the terminals connected to the common electrode of each of the stacked liquid crystal elements, the segment electrode of one liquid crystal element The terminals connected to each other and the terminals connected to the segment electrode of the other liquid crystal element are connected to each other in the thickness direction and provided on the outermost substrate of the liquid crystal element having a double cell structure. It is characterized by being aggregated in each terminal.
  • the terminals for driving the elements are collectively arranged on one substrate.
  • the fifteenth aspect of the invention is the liquid crystal element having a double cell structure according to the fourteenth aspect of the invention, wherein the terminal connected to the segment electrode of one liquid crystal element and the segment electrode of the other liquid crystal element are connected.
  • the terminal to be connected is provided in the vicinity of the corner located diagonally to the rectangular substrate, and the terminal connected to the common electrode and the liquid crystal injection port are provided in the vicinity of the remaining corner. To do.
  • the position of each terminal is set in consideration of the efficiency in manufacturing the element.
  • the sixteenth invention shields the outside of the region through which the light beam passes when the optical zoom system is configured in the double cell structure liquid crystal element according to any one of the ninth to twelfth inventions. It is characterized by that.
  • the seventeenth invention is a method of manufacturing a liquid crystal element having a double cell structure according to the fifteenth invention, wherein a terminal and an injection port corresponding to a large number of liquid crystal elements with respect to a base substrate.
  • a step of forming a segment electrode, a step of forming a segment electrode, a terminal on which the terminal, the injection port, and the segment electrode are formed.
  • the process of injecting liquid crystal from the injection port after the combination, and the group in which a large number of liquid crystal elements manufactured through the above processes are arranged
  • a double cell comprising: a step of stacking another set obtained through the same steps by turning it over and rotating it 90 degrees; and a step of dividing the liquid crystal element into individual double cell structures. It is a manufacturing method of the liquid crystal element of a structure.
  • the eighteenth invention is a method of manufacturing a liquid crystal element having a double cell structure according to the fifteenth invention, wherein a terminal corresponding to a large number of liquid crystal elements is provided on a base material. And a step of forming a segment electrode, a step of combining the terminal and the substrate on which the segment electrode is formed with a terminal and an additional inlet at opposite positions and combining another substrate on which a common electrode is formed, After the process of injecting the liquid crystal from the injection port and the group in which a large number of liquid crystal elements manufactured through the above processes are arranged, another group obtained through the same processes is turned over and rotated 90 degrees. And a step of laminating and then dividing the liquid crystal element into individual double cell structure liquid crystal elements.
  • the production of the liquid crystal element having a double cell structure is advanced in the state of the substrate serving as a base material until the final step. Then, the two liquid crystal element forces in which the alignment directions of the liquid crystal are perpendicularly crossed are manufactured by the same process.
  • the nineteenth aspect of the invention is the manufacturing method according to the seventeenth or eighteenth aspect of the invention, wherein a plurality of inspection wirings commonly connected to the respective terminals are formed on the surface of the substrate.
  • the wiring is connected at one or both of the time before the step of laminating another set with respect to the set in which the liquid crystal elements are arranged, or before the step of dividing the liquid crystal elements into individual double-cell liquid crystal elements. It is characterized by performing inspection using it.
  • the light flux is generated in a vacuum. It is characterized by being laminated through a sealing material provided in a closed state so as to surround a circular region that passes therethrough.
  • the two liquid crystal elements are in a vacuum state, and no adhesive is present, so that high light transmittance is maintained.
  • a light beam is emitted in the atmosphere. It is characterized by laminating via a sealing material provided in a partially open state so as to surround a circular region that passes through and an adhesive provided on the inner side of the sealing material.
  • the step of laminating the two liquid crystal elements is efficiently performed in the atmosphere.
  • the liquid crystal element of the present invention forms a plurality of non-electrode portions on an electrode and aligns liquid crystal molecules along a non-uniform electric field distribution formed at the positions of the non-electrode portions. Creates a refraction effect. Thereby, a continuous refractive index distribution can be formed in the entire element. This refractive index distribution can be changed arbitrarily by controlling the alignment state of the liquid crystal by the applied voltage, so the optical zoom function can be achieved by moving the focal point when placed on the optical axis. It can be demonstrated.
  • the present invention eliminates the need for driving the lens in the optical zoom system or requires a minimum amount of driving, thereby providing an unprecedented small and thin optical zoom function, particularly suitable for ultra-small cameras such as mobile phones. Can be used.
  • the liquid crystal element of the present invention changes the size and arrangement interval of the plurality of non-electrode portions according to the position on the electrode, and the plurality of linear electrodes are arranged along the arrangement pattern of the non-electrode portions. It is characterized by being arranged at a predetermined interval. As a result, the refractive index change obtained by the non-electrode part becomes large at a plurality of places where the linear electrodes are disposed, and the refractive index distribution caused by the non-electrode part as a whole is more emphasized.
  • the liquid crystal element of the present invention has a plurality of linear electrodes arranged on a resistive film, and changes the alignment state of the liquid crystals concentrically by using a voltage drop between the linear electrodes.
  • a predetermined refractive index profile can be formed in the element. This refractive index distribution can be arbitrarily controlled by the voltage applied to the linear electrode, and the focus is shifted when it is placed on the optical axis.
  • the optical zoom function can be demonstrated by moving.
  • the liquid crystal element having a double cell structure according to the present invention has a hole in the surface of the substrate and the hole portion is used as a terminal, it is difficult to apply force to the substrate compared to the case where the terminal is provided on the side. Will not be added. Therefore, a thinner substrate can be employed, and as a result, light weight and downsizing of the device can be achieved.
  • the liquid crystal is sandwiched in a circular shape at the center of the quadrangular substrate, and terminals are provided at the corners of the substrate. Therefore, the weight balance of the element is excellent, and even when the liquid crystal expands or contracts due to temperature changes Uniform deformation does not occur and the device performance can be maintained.
  • liquid crystal elements to be stacked can be manufactured in exactly the same process, and by simply turning one over and rotating 90 degrees, a liquid crystal element with a double cell structure in which the liquid crystal alignment directions are orthogonal can be easily manufactured. Can do. Therefore, productivity is extremely high and stable quality can be obtained.
  • FIG. 1 is a diagram schematically showing a usage pattern of a liquid crystal element according to an embodiment (1).
  • FIG. 2 is a plan view of the liquid crystal element according to Embodiment (1).
  • FIG. 3 is an enlarged view of portion A in FIG.
  • FIG. 4 is a cross-sectional view of the liquid crystal element according to Embodiment (1).
  • FIG. 5 is a diagram for explaining a state when a voltage is applied to the liquid crystal element according to the embodiment (1).
  • FIG. 6 is a plan view of a liquid crystal element according to Embodiment (2).
  • FIG. 7 is a plan view of a liquid crystal element according to Embodiment (3).
  • FIG. 8 is a diagram schematically showing a refractive index distribution obtained by the liquid crystal element according to Embodiment (3).
  • FIG. 9 is a diagram for explaining a manufacturing process for the liquid crystal element according to the embodiment (3).
  • FIG. 10 is a plan view of a liquid crystal element according to Embodiment (4).
  • FIG. 11 is a plan view of a liquid crystal element according to Embodiment (5).
  • FIG. 12 is a diagram for explaining a manufacturing process for the liquid crystal element according to the embodiment (5).
  • FIG. 13 is a plan view of a liquid crystal element having a double cell structure according to Embodiment (6).
  • FIG. 14 is a CC cross-sectional view of FIG.
  • FIG. 15 is a sectional view taken along the line DD in FIG.
  • FIG. 16 is a diagram schematically showing a usage pattern of the liquid crystal element having a double cell structure according to Embodiment (6).
  • FIG. 17 is a flowchart showing manufacturing steps of a liquid crystal element having a double cell structure.
  • FIG. 18 is a flowchart showing manufacturing steps of a liquid crystal element having a double cell structure.
  • FIG. 19 is a diagram showing a state of S103 in the S direction of FIG.
  • FIG. 20 is a cross-sectional view of the terminal portion showing the state of SlO 3.
  • FIG. 21 is a diagram showing a state of S106 in the S direction of FIG.
  • FIG. 22 is a diagram showing a state of S in the S direction of FIG.
  • FIG. 23 is a diagram showing a state of S205 in the T direction of FIG.
  • FIG. 24 is a diagram showing a state of S104 in the U direction of FIG.
  • FIG. 25 is a diagram showing a state of S501.
  • FIG. 26 is a diagram showing a state of S305.
  • FIG. 27 is a diagram showing a state of S504.
  • FIG. 28 is a diagram showing another example of the state in S305.
  • FIG. 29 is a plan view and a side view of a liquid crystal element having a double cell structure according to Embodiment (7).
  • FIG. 1 is a diagram schematically showing how the liquid crystal element 1A according to the embodiment (1) is used
  • FIG. 2 is a plan view of the liquid crystal element 1A
  • FIG. 3 is an enlarged view of a portion A in FIG.
  • FIG. 4 is an enlarged view of a cross section of the liquid crystal element 1A.
  • the liquid crystal element 1A is preferably used particularly for a small camera in a mobile phone, a personal digital assistant (PDA) or the like, and with respect to an image plane M provided with a CCD, a CMOS, etc.
  • a lens on the optical axis L [A lens system is arranged together with the lens. Then, by applying a voltage to the element, a refractive index distribution is formed mainly in the surface direction of the element (perpendicular to the optical axis), and the focal point F is moved to the focal point F ′ (or vice versa) to perform optical measurement. It demonstrates the zoom function. Since light incident on the liquid crystal element 1A is polarized, a polarizer can be disposed on the optical axis L as necessary.
  • the configuration of the liquid crystal element 1A will be described in detail.
  • the liquid crystal element 1A includes a liquid crystal 10 and two electrodes 20 and 21 and substrates 30 and 31 facing each other with the liquid crystal 10 interposed therebetween.
  • a plurality of non-electrode portions 201 that do not exist are formed in a hole shape.
  • the antireflection film (AR film) provided on the substrates 30 and 31, the liquid crystal alignment film generally provided between the electrodes 20 and 21 and the liquid crystal 10, the transparent insulating layer, etc. are shown. Is omitted.
  • a lead wire or the like is connected to the electrode 20 and the electrode 21 to apply a voltage.
  • the sizes and arrangement intervals of the plurality of non-electrode portions 201 are continuously changed depending on the position on the electrode 20.
  • the number of non-electrode parts 201 is the force depicted in FIG. 2 for convenience.
  • the non-electrode portion 201 has a large diameter dl along the radial direction R when the electrode 20 is concentrically divided so that the diameter of the non-electrode portion 201 is also small.
  • the continuous pattern is formed so that the arrangement interval d2 is wide and the interval force is also narrow.
  • the state of the electric field E in the vicinity of the non-electrode portion 201 is as shown in FIG. That is, a strong electric field is formed in the direction a perpendicular to the electrode at the part a where the electrode 20 and the electrode 21 are opposed to each other, and the part b which is the central part of the non-electrode portion 201 is also in the direction perpendicular to the electrode. A weak electric field is formed. Then, in the portion c close to the boundary between the non-electrode portion 201 and the electrode 20, the electric field is inclined toward the electrode 20.
  • the liquid crystal molecules are aligned along the electric field E. Therefore, in the part a, the liquid crystal molecules are aligned perpendicular to the electrode, and in the part b. Since the electric field is weak, it remains parallel to the electrode, and the portion c is oriented obliquely. That is, the liquid crystal is in a non-uniform alignment state inside the non-electrode portion 201. At this time, the refractive index with respect to light passing through the element (abnormal light) forms a distribution in which the central force of the non-electrode portion 201 continuously decreases toward the periphery. Will show the effect. Thereby, a phase difference can be given to the light passing therethrough.
  • the alignment state of the liquid crystal molecules changes accordingly.
  • the liquid crystal molecules are vertically aligned even at the center of the non-electrode portion 201, and conversely, the central force of the non-electrode portion 201 also shows a concave lens effect in which the refractive index increases toward the periphery.
  • the refractive index distribution obtained for the entire device can be changed by the applied voltage, the necessary refractive index distribution is calculated for the set focal length, and the voltage is controlled according to the result.
  • the focal length can be changed continuously.
  • the arrangement interval of the non-electrode portions 201 is irregular (random arrangement) in each region (for example, the region X and the region Y) divided concentrically on the electrode 20. That is, as shown in FIG. 3, the arrangement intervals hi and h2 are slightly different. In this way, it is possible to prevent a situation in which the light passing through the adjacent non-electrode parts interferes with each other and the wavefront is disturbed.
  • hi and h2 may be arranged regularly.
  • the electrodes 20 and 21 conventionally known general electrodes can be used. Specifically, an ITO electrode in which an indium oxalate film is formed on transparent substrates 30 and 31 is preferably used.
  • a method for forming the non-electrode portion 201 a method in which the electrode 20 is first formed on the entire surface of the substrate 30 and then a plurality of non-electrode portions 201 are formed in a desired arrangement pattern by a photo process is preferable. Used for. In this way, it is possible to easily create a fine arrangement pattern that changes continuously. Alternatively, a method of performing through a mask when the electrode 20 is vapor-deposited or turned on the substrate 30 may be used.
  • FIG. 6 shows an embodiment (2) of the present invention.
  • This liquid crystal element 1B is the same as the above embodiment.
  • the force that forms a plurality of non-electrode portions 201 on the electrode 20 has the same diameter. Then, from the center of the electrode 20 to the periphery, the arrangement interval of the non-electrode portions 201 is increased and the interval force is continuously changed to a narrow interval. In this way, when the arrangement of the non-electrode parts 201 is made dense, the density of the non-electrode parts 201 is high due to the light refraction effect (lens effect) at each non-electrode part when a voltage is applied. The obtained phase difference differs between the thin region and the thin region, and a predetermined refractive index distribution can be obtained for the entire device.
  • FIGS. 7 to 9 an embodiment (3) of the present invention will be described with reference to FIGS. 7 to 9.
  • a plurality of non-electrode portions 201 are formed on the electrode 20 sandwiching the liquid crystal, and the size and arrangement interval of the non-electrode portions 201 are set in the radial direction R in the same manner as in the embodiment (1). Is continuously changing.
  • the annular linear electrodes 40a to 40d are arranged along the arrangement pattern of the non-electrode portions 201 (pattern changing concentrically). It is characterized by.
  • the linear electrodes 40a to 40d are connected to the terminals Sl and S2, and are configured so that different voltages are applied using the resistors R1 to R3.
  • FIG. 8 schematically shows the refractive index distribution obtained by the liquid crystal element 1C.
  • the liquid crystal is more aligned in the portions s, t, u, and v where the linear electrodes 40a to 40d are disposed.
  • the phase difference is increased by a predetermined amount, and as a result, the refractive index distribution P is emphasized and the refractive index distribution Q is obtained. Therefore, it is possible to make the zoom range wider.
  • the positions where the linear electrodes 40a to 40d are disposed and the voltage value applied to each of them can be determined based on the refractive index distribution P caused by the non-electrode portion 201. That is, it is preferable to set a voltage value proportional to the amount of phase change at each part of the refractive index distribution P.
  • the linear electrode 40a V in FIG. IV for linear electrode 40b (corresponding to u), 0.6V for linear electrode 40c (corresponding to t), and OV for linear electrode 40d (corresponding to s).
  • Resistors R1-R3 can be set so that the applied voltage of Needless to say, the linear electrodes 40a to 40d are not limited to the circuit configuration of FIG.
  • FIG. 9 shows an example of a manufacturing process of the liquid crystal element 1C according to the embodiment (3).
  • an electrode such as ITO (low resistance film 400, several tens of ⁇ ) is formed on a glass substrate 30.
  • an SiO film 50 is formed between the substrate 30 and the low resistance film 400.
  • This film is a passivation film that prevents elution of the sodium content from the substrate 30 and can be provided as necessary.
  • FIGS. 9 (b) and 9 (c) patterning of the low resistance film 400 is performed to form a linear electrode 40a, and an electrode 20 (high resistance) such as ITO is formed thereon. Film, tens to hundreds of k ⁇ ).
  • FIG. 9 (d) by forming a plurality of non-electrode portions 201 at predetermined positions, a target substrate on which the linear electrodes 40a (40b-40d) and the electrodes 20 are formed is obtained. be able to.
  • the linear electrode 40a is extremely fine (several tens / zm) compared to the size of the element, and may be made of an opaque metal other than ITO in some cases.
  • the arrangement pattern of the plurality of non-electrode portions 201 is limited to the above embodiment (1) one (3). Absent. That is, according to the desired refractive index distribution or the like, the size and / or arrangement interval of the non-electrode portion 201 can be appropriately set depending on the position on the electrode 20. Specifically, for example, contrary to FIG. 2, when the size of the non-electrode portion is continuously changed from the central force of the electrode 20 toward the periphery to a small radial force and a large diameter, or contrary to FIG. In addition, there may be mentioned a case in which the arrangement interval of the non-electrode parts is continuously changed from a central force of the electrode 20 and a narrow interval force toward the periphery to a wide interval.
  • the non-electrode part may be formed on both the 1S electrode 20 and the electrode 21 which have formed the non-electrode part 201 only on the electrode 20.
  • the liquid crystal molecules are non-uniformly aligned even in the vicinity of the electrode 21, the obtained lens effect becomes stronger and the optical zoom function can be improved.
  • the electrode 20 can also be composed of several divided electrode forces, each having a plurality of non-electrode portions, and applying different voltages to each electrode to give a more complicated refractive index distribution as a whole. it can.
  • Embodiment (4) of the present invention will be described with reference to FIG.
  • a plurality of linear electrodes 40a to 40d for applying different voltages are concentrically arranged at predetermined intervals around the optical axis.
  • the linear electrodes 40a to 40d in FIG. 10 are disposed on the high resistance film 24.
  • the high resistance film 24 is the same as the electrode 20 in the above embodiment (1) 1 (3). It is composed of ITO and others (unlike the electrode 20, it is called a high resistance film because no voltage is applied).
  • the liquid crystal element 1D when a voltage is applied to the linear electrodes 40a to 40d, a voltage drop is generated because the high resistance film 24 exists between the linear electrodes. For this reason, the liquid crystal is in different alignment states depending on the voltage continuously changing concentrically, and accordingly, a predetermined refractive index distribution is obtained.
  • This refractive index distribution can be controlled arbitrarily by changing the voltage applied to the linear electrodes 40a-40d, so that the desired optical zoom function can be obtained. It becomes.
  • FIG. 11 shows a liquid crystal element according to Embodiment (5).
  • This liquid crystal element 1E has a resistance film in which a plurality of linear electrodes 40a to 40d are arranged in a plurality of regions (high resistance zone 24a, medium resistance zone 24b, low resistance zone 24c) having different resistance values. It is characterized by that.
  • the voltage of the linear electrode 40c drops rapidly due to the high resistance zone 24a, and then enters the middle resistance zone 24b, and the inclination of the voltage drop is small.
  • the low-resistance zone 24c is connected to the central linear electrode 40d with a gradual voltage drop, and as a result, the refractive index distribution can be made more curvilinear.
  • FIG. 12 shows an example of a manufacturing process of the liquid crystal element 1E according to the embodiment (5).
  • a low resistance film 400 severe tens of ⁇
  • ITO is formed on a glass substrate 30.
  • a SiO film 50 is formed between the substrate 30 and the low resistance film 400.
  • a high resistance film 24 (several tens and hundreds of kQ) is formed, and as shown in FIG. 12 (d), pattern jung of the high resistance film 24 is performed, A plurality of non-electrode portions are formed at predetermined positions. Thereby, a plurality of regions having different resistance values can be obtained. That is, the region where the non-electrode portion is formed in a part of the high resistance film becomes the high resistance zone 24a, the region where the uniform high resistance film is formed becomes the medium resistance zone 24b, and the low resistance film is formed in a part. This area becomes the low resistance zone 24c.
  • the plurality of linear electrodes can be disposed on the other substrate side facing each other with the liquid crystal interposed therebetween.
  • the opposing electrodes are not limited to a pair, and more electrodes may be stacked with the liquid crystal sandwiched therebetween.
  • a plurality of liquid crystal elements 1A (two in the figure) can be used in combination.
  • different lens effects reffractive index distribution
  • more complicated optical elements are generated. Function can be obtained.
  • FIG. 13 shows an embodiment of the present invention.
  • FIG. 6 is a plan view of a liquid crystal element having a double cell structure according to (6).
  • 14 is a cross-sectional view taken along the line CC in FIG. 13
  • FIG. 15 is a cross-sectional view taken along the line DD in FIG.
  • the liquid crystal element 1FG having a double cell structure is formed by laminating two liquid crystal elements 1F and 1G having the same component power in the thickness direction through a conductive material 75 and a seal material 71. Is made up of.
  • the liquid crystal element 1F (same for 1G) is roughly configured by sandwiching the liquid crystal 10 between the substrate 33 on which the common electrode 23 is formed and the substrate 32 on which the segment electrode 22 is formed.
  • liquid crystal alignment film a liquid crystal alignment film, a transparent insulating layer, and an antireflection film provided on the substrates 32 and 33 that are generally provided between the common electrode 23 and the liquid crystal 10, and between the segment electrode 22 and the liquid crystal 10. Etc. are not shown. Further, the liquid crystal 10 is sealed inside by a sealing material 70.
  • This double-cell liquid crystal element 1FG has a plurality of non-electrode portions (not shown) formed on the segment electrode 22 in the same manner as in the above embodiments (1) and (3).
  • the size and arrangement interval of the non-electrode parts are changed concentrically. Therefore, as shown in FIG. 16, this element is placed on the optical axis L together with the other lens J, and a voltage is applied between the common electrode 23 and the segment electrode 22, resulting in non-electrode portions.
  • An optical zoom function can be achieved by generating a refractive index profile and changing the focal point F to the focal point F ′ (or vice versa).
  • the configuration of the non-electrode portion and each electrode is in accordance with the description of the above embodiment (1).
  • the alignment directions of the liquid crystal 10 when the voltage is not applied to the liquid crystal elements 1F and 1G are orthogonal to each other.
  • the wavefronts of the different polarization planes Pl and P2 (corresponding to P-polarization and S-polarization) of the light beam passing through the lens system can be similarly changed, and the image quality of the image can be further improved.
  • holes 60A, 60B, and 60C are formed in the thickness direction of the substrate 32, and holes 60D, 60E, and 60F are formed in the substrate 33 as well.
  • terminals 61 A, 61 B, 61 C, 61 D, 61 E, 6 IF for connecting to the common electrode 23 and the segment electrode 22 are provided, respectively. That is, terminals 61A and 61D are connected to segment electrode 22 of liquid crystal element IF, terminals 61B and 61E are connected to common electrode 23, and terminals 61C and 61F are liquid crystal element 1
  • Each is connected to the G segment electrode 22.
  • the opposing terminals (for example, the terminal 61B and the terminal 61E) are connected with a conductive material 75 interposed therebetween.
  • Each terminal is formed by attaching a metal such as Ni-Au along the inner peripheral surface of the hole.
  • the terminals 32 and 33 By arranging the terminals on the surfaces of the substrates 32 and 33 as described above, cracks can be made without applying a biased force to the element as compared with the case where the terminals are arranged in a concentrated manner on the sides of the substrate. Defects such as force are less likely to occur. Therefore, the substrates 32 and 33 can be made thinner (for example, 0.2 mm), and the element can be reduced in weight. Therefore, the entire optical zoom system can be further reduced.
  • an injection port 73 for injecting the liquid crystal 10 between the substrates 32 and 33 is formed on the surface of the substrate 32.
  • the shape of the inlet 73 is circular, elliptical, or the like, and is appropriately sealed with a sealing material 74 after the liquid crystal 10 is injected.
  • the terminals 61A-61F and the liquid crystal injection port 73 are all arranged on the surfaces of the substrates 32 and 33, and the opposing terminals are connected to each other in the thickness direction. Since the driving terminals provided in the liquid crystal element 1F are concentrated, the production efficiency of the element can be increased as will be described later.
  • the holes 60A-60F and the liquid crystal injection port 73 have a rectangular shape other than the circular region (region where the segment electrode 22 and the common electrode 23 are formed) through which the light beam passes. It is formed in the vicinity of the corner portion 32b on the substrate 32 (33) formed in the above.
  • the sealing material 70 is provided in a substantially circular shape so that the liquid crystal 10 is sealed in a circular region through which the light beam passes. In this way, the surplus portion on the substrate 32 through which the light beam does not pass can be used effectively as the position of the terminal or the like, so that the element can be further downsized.
  • the weight balance of the element can be optimized by arranging the terminal or the like in the corner portion 32b. As a result, high-precision driving is possible, and when the liquid crystal expands and contracts due to temperature changes, pressure is applied uniformly to the substrate 32, so that non-uniform deformation does not occur and the device performance is maintained. be able to.
  • each electrode pattern having a closed circular region force is formed.
  • each electrode and each terminal may be connected by a lead wire or the like.
  • Fig. 19 Fig. 22 shows a state seen from the S direction in Fig. 14.
  • holes 60A, 60B, 6OC corresponding to a large number of liquid crystal elements and a liquid crystal injection port 73 are formed at predetermined positions on a substrate 320 as a base material. (S101).
  • an antireflection film (AR film) is formed on the entire surface of the base plate 320 as a base material (S102). terminals 61A, 61B, 61C are provided in the respective holes (S103).
  • the base board 320 is preferably square and arranged.
  • the same number of liquid crystal elements are formed in the vertical and horizontal directions.
  • a transparent insulating layer is laminated on the S direction side as necessary, a liquid crystal alignment film such as PVA is formed, and rubbing is performed (S107). Further, a sealing material 70 for enclosing the liquid crystal is provided outside the segment electrode 22 by printing or the like (S108). This state is shown in FIG.
  • the other substrate (substrate 33 side) to be opposed is positioned at the same position as the above-mentioned substrate 320 with respect to the base substrate 330 as shown in FIG. 23 as viewed from the T direction in FIG.
  • Holes 60D, 61E, 60F are formed (S201), AR film is formed (S202), then terminals 61D, 61E, 61F are provided (S203), electrode material is deposited (S204), patterning To form the common electrode 23 (S205). Further, a liquid crystal alignment film is formed and rubbed (S206), and a conductive material for connecting with each terminal of the substrate 320 to be opposed is provided by printing or the like (S207).
  • the injection port 73 can be formed on the substrate 33 side, or the sealing material 70 can be printed on the substrate 33 side and the conductive material can be printed on the substrate 32 side.
  • the substrate 320 and the substrate 330 on which the above-described terminals and the like are formed are combined so as to face each other (S301). This step is performed by bonding with an adhesive through a spacer.
  • liquid crystal is injected into the sealing material 70 from the injection port 73 (S302) and sealed with a sealing material.
  • the device is inspected for operation (S303).
  • the wiring 77 is formed in advance on the substrate 320 as shown in FIG. 24 (S104)
  • 100% inspection is performed at once using the wiring 77.
  • NG marking is performed for the places that failed the inspection (S304).
  • the sealant 71 and the conductive material 75 are printed in advance between the sets (S305, S401).
  • Each of the sealing material 71 and the conductive material 75 may be provided on the liquid crystal element 1F side or on the opposite liquid crystal element 1G side.
  • the sealing material 71 can be provided in a closed state so as to surround a circular region through which the light beam passes. In this case, it is necessary to perform the operation of stacking the sets in a vacuum so that the stacked state is not impaired by the expansion of the gas confined inside the sealing material 71. It is preferable that the sealing material 71 is closed and the inside is a vacuum because dust or the like does not enter the inside and the light transmittance can be increased.
  • the base material substrate is cut into individual double liquid crystal elements 1FG using a dicer or the like (S504), and after a single product inspection step (S505). Ship (S5 07). Elements that fail the single item inspection are discarded or repaired or moved to the regeneration process (S506).
  • each terminal and electrode, the liquid crystal injection step, and the like are all performed in the state of the base material before dividing into individual elements, so that the production efficiency is very high. High costs can be greatly reduced. In addition, it can easily cope with expansion of production scale.
  • the two liquid crystal elements to be stacked are manufactured in the same process rather than separately, and it is only necessary to turn one side over and rotate it 90 degrees, so the overall production efficiency is greatly improved.
  • the inspection process performed after the liquid crystal has been injected and sealed can be performed in the same state as the base material, which is extremely useful in the industry.
  • the light shielding portion is provided outside the region through which the light beam passes when the optical zoom system is configured (the circular region provided with the segment electrode 22) for the liquid crystal element 1FG having the double cell structure described above. It is characterized by the formation of 32a. In addition, each terminal 61A-61C is excluded.
  • the light shielding portion 32a can be formed by any appropriate means, for example, a method of providing a black coating film on the surface and end face of the substrate 32, or a black sealant when laminating the liquid crystal element 1F and the liquid crystal element 1G. A method of mixing a pigment or the like can be used as appropriate.
  • the light blocking portion 32a In this embodiment (7), irregular reflection of the external force of the element (especially, light incident in the surface direction from the end face of the substrate 32) is blocked by the light blocking portion 32a, so that a good image can be maintained. Can do.
  • the light shielding portion 32a in this embodiment (7) can also be applied to the liquid crystal element according to the above-described embodiments (1) and (5).
  • the four corners of the substrate 32 are cut obliquely. This is preferable because the overall shape of the lens system can be made smaller because it is close to the outer shape (round shape) of other lenses. In addition, there is an advantage that the device can be reduced in weight by the cut amount.
  • the liquid crystal element of the present invention can form a predetermined refractive index distribution, it is not necessary to drive a lens when it is disposed in an optical zoom system, or a minimum drive is required.
  • 'A thin optical zoom function can be provided, and it can be suitably used especially for ultra-small cameras such as mobile phones.

Abstract

A novel liquid crystal element which is used especially in a lens system of a camera mounted in devices such as a cellular phone, and has a small, thin and light optical zoom function compared with the conventional liquid crystal elements. The liquid crystal element constitutes the optical zoom system by arranging it on an optical axis with a lens, and operates the optical zoom function by forming a refractive-index distribution by applying a voltage. The liquid crystal element is provided with a liquid crystal and a plurality of electrodes facing each other with the liquid crystal in between. At least one of the electrodes is provided with a plurality of non-electrode parts where an electrode material does not exist, in an arrangement pattern wherein the size or arrangement intervals or the both are changed along a radius direction when the electrode is concentrically divided. On an inner side of the non-electrode parts, the liquid crystal is nonuniformly oriented when a voltage is applied.

Description

明 細 書  Specification
光学ズーム機能を有する液晶素子、及びその製造方法  Liquid crystal element having optical zoom function and method for manufacturing the same
技術分野  Technical field
[0001] 本発明は、光学ズーム機能に関する。さらに詳しくは、携帯電話機、携帯情報端末 機 (PDA)等における小型のデジタルスチルカメラ、デジタルビデオカメラ等に対して 好適に用いられる光学ズーム機能に関する。  [0001] The present invention relates to an optical zoom function. More specifically, the present invention relates to an optical zoom function suitably used for a small digital still camera, a digital video camera, etc. in a mobile phone, a personal digital assistant (PDA) and the like.
背景技術  Background art
[0002] 近年、超小型カメラを搭載した撮影機能付きの携帯電話機、携帯情報端末機 (PD A)等が一般に普及している。従来の超小型カメラでは、寸法等の制限により単焦点 のレンズ系が一般的であつたが、携帯電話機のカメラ仕様が急速に高画素化し、 10 0— 200万以上の有効画素数が標準的になってきたことに伴って、光学ズーム機能 を搭載することが要求されており、最近では、光学式の小型ズームレンズがいくつか 提案されている。  [0002] In recent years, mobile phones with an imaging function equipped with ultra-small cameras, personal digital assistants (PDAs), and the like have been widely used. Conventional ultra-compact cameras generally have a single-focus lens system due to size limitations, but the camera specifications of mobile phones have rapidly increased in pixel count, and the effective pixel count of 100 to 2 million or more is standard. With this trend, it is required to have an optical zoom function. Recently, several optical compact zoom lenses have been proposed.
[0003] 例えば、(特許文献 1)には、前群レンズ、後群レンズ、 CCD等の撮像素子を光軸 に順に配列し、駆動手段により後群レンズのみをガイドピンの方向(光軸方向)に駆 動させる超小型のレンズ駆動装置が開示されて!、る。  [0003] For example, in (Patent Document 1), an image pickup device such as a front group lens, a rear group lens, and a CCD is sequentially arranged on the optical axis, and only the rear group lens is arranged in the direction of the guide pin (optical axis direction) by the driving means. An ultra-compact lens driving device is disclosed!
また、(特許文献 2)には、物体側力も像面側に向けて順に、全体として負の屈折力 を有する第 1レンズ群と、全体として正の屈折力を有する第 2レンズ群と、全体として 正の屈折力を有する第 3レンズ群とを備え、第 2レンズ群が像面側力 物体側に移動 しかつ第 3レンズ群が像面側カゝら物体側へー且移動した後再び像面側に移動して広 角端力 望遠端への変倍及び変倍に伴う像面変動の補正を行うズームレンズが開示 されている。  In addition, (Patent Document 2) includes a first lens group having negative refractive power as a whole, a second lens group having positive refractive power as a whole, and a whole lens in order toward the image plane side. And a third lens group having a positive refractive power, the second lens group moves to the object side, and the third lens group moves again from the image side to the object side. A zoom lens is disclosed that moves to the surface side and wide-angle end force zooms to the telephoto end and corrects image plane fluctuations associated with zooming.
[0004] 上述のような従来のズームレンズは、レンズの駆動方式を工夫する等してある程度 の小型化 ·薄型化を可能にしたものであるが、機械的にレンズを移動させるためにそ の移動空間を確保する必要があり、実際にはレンズ鏡筒の厚さにして 10mm程度が 限界であった。そのため、レンズ部分の出っ張りを避ける必要力 携帯電話機等の外 観デザインの自由度が制限されてしまう問題があり、実際には依然としてデジタルズ ーム方式に頼っているのが現状である。また、カメラの有効画素数がさらに高くなるに つれ、レンズユニットをいかに小さな筐体に収めるかがますます重要になっている。 [0004] The conventional zoom lens as described above can be reduced in size and thickness to some extent by devising the lens driving method, but it is necessary to move the lens mechanically. It was necessary to secure a moving space, and the actual limit of the lens barrel thickness was about 10 mm. For this reason, there is a problem that the degree of freedom in the design of the appearance of mobile phones and the like is limited, and it is still necessary to avoid protruding the lens part. The current situation is that the company relies on the system. In addition, as the number of effective pixels of a camera increases further, it becomes increasingly important to fit the lens unit in a small housing.
[0005] 特許文献 1:特開 2004-258111号公報  [0005] Patent Document 1: JP 2004-258111 A
特許文献 2 :特開 2004— 212737号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-212737
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] そこで本発明は、上記従来の状況に鑑み、特に携帯電話機等の機器に搭載される カメラのレンズ系に用いられ、従来に比して小型'薄型でかつ軽量な光学ズーム機能 を得ることができる新規な液晶素子を提供することを目的とする。 [0006] In view of the above-described conventional situation, the present invention is used in a lens system of a camera that is mounted on a device such as a mobile phone, and obtains an optical zoom function that is smaller and thinner and lighter than conventional ones. An object of the present invention is to provide a novel liquid crystal element that can be used.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するため、本発明は、第 1発明として、光軸上にレンズとともに配置 して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズ ーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の 電極とを備え、電圧印加時に前記液晶の配向状態が前記光軸を中心として同心状 に変化するように構成した液晶素子を提供するものである。  In order to solve the above-described problems, the present invention provides, as a first invention, an optical zoom system that is arranged with a lens on an optical axis and forms a refractive index distribution by applying a voltage to form an optical lens. A liquid crystal element that exhibits a function of a liquid crystal, comprising a liquid crystal and a plurality of electrodes facing each other with the liquid crystal interposed therebetween, so that the alignment state of the liquid crystal changes concentrically around the optical axis when a voltage is applied. A liquid crystal element configured as described above is provided.
[0008] この構成によれば、同心状に変化する液晶の配向状態に対応して、素子全体に所 定の屈折率分布が与えられ、焦点が移動して光学ズーム機能が発揮される。  [0008] According to this configuration, a predetermined refractive index distribution is given to the entire element corresponding to the alignment state of the liquid crystal changing concentrically, the focal point moves, and the optical zoom function is exhibited.
[0009] また、第 2発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧 を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子で あって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なく とも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分け たときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置 パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向 するように構成した液晶素子を提供する。  [0009] Further, the second invention is a liquid crystal element that is arranged with a lens on an optical axis to constitute an optical zoom system, forms a refractive index distribution by applying a voltage, and exhibits an optical zoom function. And a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and at least one of the electrodes has a radius when a plurality of non-electrode portions having no electrode material are concentrically divided on the electrodes. Provided is a liquid crystal element that is formed in an arrangement pattern in which the size and / or the arrangement interval are changed along the direction, and that the liquid crystal is non-uniformly aligned inside the non-electrode portion when a voltage is applied.
[0010] この構成によれば、複数形成された非電極部位の中心部では電極に対して垂直方 向に弱 、電界が形成され、非電極部位の端の部分では電界が傾 、た方向に形成さ れるため、その電界分布に沿って液晶分子が不均一に配向することで、非電極部位 の中心から周辺にかけて屈折率が連続的に変化する光の屈折効果 (レンズ効果)が 得られる。非電極部位の大きさないし配置間隔は電極上で同心円状に変化させるた め、素子全体として所定の屈折率分布が与えられ、焦点が移動して光学ズーム機能 が発揮される。 [0010] According to this configuration, an electric field is formed in the central portion of the plurality of non-electrode portions that is weak in the direction perpendicular to the electrode, and the electric field is inclined in the direction where the electric field is inclined at the end portion of the non-electrode portion. Therefore, the liquid crystal molecules are non-uniformly aligned along the electric field distribution, so that the refractive effect (lens effect) of the light whose refractive index continuously changes from the center to the periphery of the non-electrode part is obtained. can get. Since the non-electrode portion is not enlarged and the arrangement interval is changed concentrically on the electrode, a predetermined refractive index distribution is given to the entire element, the focal point moves, and the optical zoom function is exhibited.
[0011] また、第 3発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧 を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子で あって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なく とも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分け たときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置 パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向 するように構成するとともに、相異なる電圧を印加する複数本の線状電極を前記同心 円状に変化する配置パターンに沿って所定の間隔で環状に配設した液晶素子を提 供する。  [0011] Further, the third invention is a liquid crystal element that is arranged together with a lens on an optical axis to constitute an optical zoom system, and that forms a refractive index distribution by applying a voltage to exert an optical zoom function. And a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and at least one of the electrodes has a radius when a plurality of non-electrode portions having no electrode material are concentrically divided on the electrodes. It is formed with an arrangement pattern in which the size and / or arrangement interval is changed along the direction, and the liquid crystal is non-uniformly oriented when applying voltage inside the non-electrode part, and different voltages are applied. Provided is a liquid crystal element in which a plurality of linear electrodes are arranged in an annular shape at a predetermined interval along the arrangement pattern changing concentrically.
[0012] この構成によれば、上述のように非電極部位の大きさもしくは配置間隔を同心円状 に変化させることで、所望の屈折率分布が得られるとともに、複数本の線状電極を環 状に配設し所定部位にさらに電圧を印加することによって、上記の屈折率分布がより 強調され、光学ズーム機能が向上する。  [0012] According to this configuration, by changing the size or arrangement interval of the non-electrode portions in a concentric manner as described above, a desired refractive index distribution can be obtained, and a plurality of linear electrodes can be formed in a ring shape. By further applying a voltage to the predetermined portion, the above refractive index distribution is more emphasized and the optical zoom function is improved.
[0013] また、第 4発明は、上記第 2発明又は第 3発明に係る液晶素子において、複数の非 電極部位の配置間隔は、電極上の同心円状に分けられた各領域内において不規則 であることを特徴とする。 [0013] In addition, according to a fourth invention, in the liquid crystal element according to the second invention or the third invention, the arrangement interval of the plurality of non-electrode parts is irregular in each concentrically divided region on the electrode. It is characterized by being.
[0014] この構成によれば、隣接する非電極部位との間隔を不規則(ランダム)にすることで[0014] According to this configuration, the spacing between adjacent non-electrode parts is irregular (random).
、光干渉効果による波面の乱れが防止される。 The wave front disturbance due to the optical interference effect is prevented.
[0015] また、第 5発明は、上記第 2発明又は第 3発明に係る液晶素子において、非電極部 位の形状が円形又はピット形であることを特徴とする。 [0015] Further, the fifth invention is characterized in that in the liquid crystal element according to the second invention or the third invention, the shape of the non-electrode portion is a circle or a pit shape.
[0016] この構成によれば、素子を通過する光束に対して非電極部位の形状が最適化され る。なお、ここでピット形とは、一方の軸がそれに垂直な他方の軸より長い形状を意味 し、例えば長い方の軸を液晶のラビング方向と平行に、あるいはラビング方向と垂直 になるように形成することができる。 [0016] According to this configuration, the shape of the non-electrode portion is optimized with respect to the light beam passing through the element. Here, the pit shape means a shape in which one axis is longer than the other axis perpendicular thereto, for example, the longer axis is formed parallel to the rubbing direction of the liquid crystal or perpendicular to the rubbing direction. can do.
[0017] また、第 6発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧 を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子で あって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記複数の電極 の少なくとも一方には、相異なる電圧を印加する複数本の線状電極を前記光軸を中 心として同心状に所定の間隔で配設し、前記複数本の線状電極に電圧を印加した 時に前記線状電極が配設されている前記電極が抵抗膜として作用し、前記複数本 の線状電極の間で電圧降下を生じて、前記液晶の配向状態が前記光軸を中心とし て同心状に変化するように構成した液晶素子を提供する。 [0017] In the sixth aspect of the invention, an optical zoom system is configured by being arranged together with a lens on the optical axis. Is a liquid crystal element that forms a refractive index distribution and exhibits an optical zoom function, and includes a liquid crystal and a plurality of electrodes facing each other with the liquid crystal interposed therebetween, and at least one of the plurality of electrodes A plurality of linear electrodes for applying different voltages are concentrically arranged at predetermined intervals with the optical axis as a center, and when the voltage is applied to the plurality of linear electrodes, the linear electrodes The arranged electrode acts as a resistance film, causes a voltage drop between the plurality of linear electrodes, and the alignment state of the liquid crystal changes concentrically around the optical axis. Provided is a liquid crystal element configured.
[0018] この構成によれば、複数本の線状電極の間で印加電圧が連続的に変化し、その電 圧値に応じて液晶の配向状態が変化するため、素子全体に所定の屈折率分布が形 成され、光学ズーム機能が発揮される。  [0018] According to this configuration, the applied voltage continuously changes between the plurality of linear electrodes, and the alignment state of the liquid crystal changes according to the voltage value. A distribution is formed and the optical zoom function is exhibited.
[0019] また、第 7発明は、上記第 6発明に係る液晶素子において、複数本の線状電極が 配設される電極は、相異なる抵抗値を有する複数の領域カゝら構成されることを特徴と する。 [0019] Further, according to a seventh aspect of the invention, in the liquid crystal element according to the sixth aspect of the invention, the electrode on which the plurality of linear electrodes are arranged is constituted by a plurality of region covers having different resistance values. It is characterized by.
[0020] この構成によれば、上記第 6発明の作用に加えて、複数本の線状電極の間の電圧 降下が曲線的になる。  [0020] According to this configuration, in addition to the effect of the sixth aspect of the invention, the voltage drop between the plurality of linear electrodes is curved.
[0021] また、第 8発明は、上記第 1一第 3、第 6、第 7発明のいずれかに係る液晶素子にお いて、光学ズーム系を構成した際に光束が通過する領域の外側を遮光することを特 徴とする。  [0021] Further, an eighth invention is the liquid crystal element according to any one of the first, third, sixth, and seventh inventions, wherein an outside of a region through which a light beam passes when an optical zoom system is configured. It is characterized by shading.
[0022] この構成によれば、光束が通過する領域の外側力 の乱反射等が遮られ、像の画 質が安定する。  [0022] According to this configuration, irregular reflection or the like of the external force in the region through which the light beam passes is blocked, and the image quality is stabilized.
[0023] また、第 9発明では、厚さ方向に積層した 2つの液晶素子からなり、光軸上にレンズ とともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形 成して光学ズーム機能を発揮する二重セル構造の液晶素子であって、前記各々の 液晶素子は、一方にコモン電極力 他方にセグメント電極が形成された一対の基板と 、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極には、電極材の存在 しない複数の非電極部位が、前記セグメント電極上を同心円状に分けたときの半径 方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形 成され、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように 構成され、前記一対の基板の各々には厚さ方向に複数の穴が穿たれるとともに前記 穴には前記コモン電極およびセグメント電極のいずれかに接続される端子が設けら れ、前記一対の基板の一方には液晶を注入するための注入口が形成されてなる二 重セル構造の液晶素子を提供する。 [0023] Further, in the ninth invention, the optical zoom system is constituted by two liquid crystal elements stacked in the thickness direction and arranged with a lens on the optical axis, and a refractive index distribution is formed by applying a voltage. A liquid crystal element having a double cell structure that exhibits an optical zoom function, each liquid crystal element having a common electrode force on one side and a pair of substrates on which the segment electrode is formed on the other; The segment electrode includes a plurality of non-electrode portions where no electrode material is present. The segment electrode has a size or a disposition interval along a radial direction when the segment electrode is divided into concentric circles, or an arrangement interval thereof. It is formed with an arrangement pattern in which both are changed, and inside the non-electrode part, the liquid crystal is non-uniformly aligned when a voltage is applied. Each of the pair of substrates is provided with a plurality of holes in the thickness direction, and the holes are provided with terminals connected to either the common electrode or the segment electrode. One of them provides a liquid crystal element having a double cell structure in which an injection port for injecting liquid crystal is formed.
[0024] この構成によれば、コモン電極及びセグメント電極に接続するための端子、並びに 液晶の注入口力 穴を通じて基板の表面上に配置される。  [0024] According to this configuration, the terminals for connecting to the common electrode and the segment electrode and the liquid crystal injection hole are arranged on the surface of the substrate.
また、上述のように、複数形成された非電極部位の内側で液晶分子が不均一に配 向するため、非電極部位の中心から周辺にかけて屈折率が変化する光の屈折効果 ( レンズ効果)を生じ、素子全体として同心円状の屈折率分布が得られる。したがって、 焦点が移動して光学ズーム機能が発揮される。  In addition, as described above, since the liquid crystal molecules are non-uniformly oriented inside the plurality of formed non-electrode portions, the light refraction effect (lens effect) in which the refractive index changes from the center to the periphery of the non-electrode portions is obtained. As a result, a concentric refractive index distribution is obtained for the entire device. Therefore, the focal point moves and the optical zoom function is exhibited.
[0025] また、第 10発明は、上記第 9発明に係る二重セル構造の液晶素子において、電圧 の非印加時における液晶の配向方向が 2つの液晶素子で直交するように構成したこ とを特徴とする。 [0025] The tenth aspect of the invention is a liquid crystal element having a double cell structure according to the ninth aspect of the invention, wherein the alignment direction of the liquid crystal when no voltage is applied is orthogonal between the two liquid crystal elements. Features.
[0026] この構成によれば、異なる偏光 (P偏光及び S偏光)に対して所定の屈折率分布が 与えられる。  [0026] According to this configuration, a predetermined refractive index distribution is given to different polarized light (P-polarized light and S-polarized light).
[0027] また、第 11発明は、上記第 9発明に係る二重セル構造の液晶素子において、基板 が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシー ルされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設け られることを特徴とする。  [0027] Further, an eleventh aspect of the invention is the liquid crystal element having a double cell structure according to the ninth aspect of the invention, wherein the substrate is formed in a quadrangular shape, and the liquid crystal is sealed along a circular region through which the light flux of the substrate passes. In addition, a liquid crystal injection port and a terminal are provided in the vicinity of the corner portion other than the circular region.
[0028] また、第 12発明は、上記第 10発明に係る二重セル構造の液晶素子において、基 板が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシ ールされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設 けられることを特徴とする。  [0028] Further, the twelfth aspect of the invention is the liquid crystal element having a double cell structure according to the tenth aspect of the invention, wherein the base plate is formed in a square shape, and the liquid crystal is shown along a circular region through which the light flux of the substrate passes. The liquid crystal injection port and the terminal are provided in the vicinity of the corner portion other than the circular region.
[0029] 上記第 11及び第 12発明の構成によれば、基板のコーナー部付近が、穴を形成す るスペースとして有効利用されるとともに、素子の重量バランスが改善される。また、 液晶が膨張'収縮する場合に全体が均一に変形するため、光学ズーム機能が安定 する。  [0029] According to the configurations of the eleventh and twelfth inventions, the vicinity of the corner portion of the substrate is effectively used as a space for forming a hole, and the weight balance of the element is improved. In addition, when the liquid crystal expands or contracts, the whole is uniformly deformed, so that the optical zoom function is stable.
[0030] また、第 13発明は、上記第 9一第 11発明のいずれかに係る二重セル構造の液晶 素子において、積層した各々の液晶素子のコモン電極に接続される端子同士、一方 の液晶素子のセグメント電極に接続される端子同士、および他方の液晶素子のセグ メント電極に接続される端子同士が厚さ方向に相互に接続され、二重セル構造の液 晶素子の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特 徴とする。 [0030] Further, the thirteenth invention is a liquid crystal having a double cell structure according to any of the ninth to eleventh inventions. In the element, the terminals connected to the common electrode of each stacked liquid crystal element, the terminals connected to the segment electrode of one liquid crystal element, and the terminals connected to the segment electrode of the other liquid crystal element are thick. It is characterized by being connected to each other in the vertical direction and integrated into terminals provided on one substrate located outside the liquid crystal element having a double cell structure.
[0031] また、第 14発明は、上記第 12発明に係る二重セル構造の液晶素子において、積 層した各々の液晶素子のコモン電極に接続される端子同士、一方の液晶素子のセ グメント電極に接続される端子同士、および他方の液晶素子のセグメント電極に接続 される端子同士が厚さ方向に相互に接続され、二重セル構造の液晶素子の最も外 側である一の基板に設けられた端子にそれぞれ集約されることを特徴とする。  [0031] The fourteenth aspect of the invention is the liquid crystal element having a double cell structure according to the twelfth aspect of the invention, wherein the terminals connected to the common electrode of each of the stacked liquid crystal elements, the segment electrode of one liquid crystal element The terminals connected to each other and the terminals connected to the segment electrode of the other liquid crystal element are connected to each other in the thickness direction and provided on the outermost substrate of the liquid crystal element having a double cell structure. It is characterized by being aggregated in each terminal.
[0032] 上記第 13及び第 14発明の構成によれば、素子を駆動させるための各端子が、一 の基板上に集約配置される。  [0032] According to the configurations of the thirteenth and fourteenth aspects of the present invention, the terminals for driving the elements are collectively arranged on one substrate.
[0033] また、第 15発明は、上記第 14発明に係る二重セル構造の液晶素子において、一 方の液晶素子のセグメント電極に接続される端子と、他方の液晶素子のセグメント電 極に接続される端子とが、四角形状の基板の対角に位置するコーナー部付近に設 けられ、コモン電極に接続される端子と液晶の注入口とが残りのコーナー部付近に 設けられることを特徴とする。  [0033] Further, the fifteenth aspect of the invention is the liquid crystal element having a double cell structure according to the fourteenth aspect of the invention, wherein the terminal connected to the segment electrode of one liquid crystal element and the segment electrode of the other liquid crystal element are connected. The terminal to be connected is provided in the vicinity of the corner located diagonally to the rectangular substrate, and the terminal connected to the common electrode and the liquid crystal injection port are provided in the vicinity of the remaining corner. To do.
[0034] この構成によれば、素子を製造する際の効率を考慮し、各端子の位置が設定され る。  According to this configuration, the position of each terminal is set in consideration of the efficiency in manufacturing the element.
[0035] また、第 16発明は、上記第 9一第 12発明のいずれかに係る二重セル構造の液晶 素子において、光学ズーム系を構成した際に光束が通過する領域の外側を遮光す ることを特徴とする。  [0035] Further, the sixteenth invention shields the outside of the region through which the light beam passes when the optical zoom system is configured in the double cell structure liquid crystal element according to any one of the ninth to twelfth inventions. It is characterized by that.
[0036] この構成によれば、光束が通過する領域の外側力 の乱反射等が遮られ、像の画 質が安定する。  [0036] According to this configuration, irregular reflection or the like of the external force in the region through which the light beam passes is blocked, and the image quality is stabilized.
[0037] また、第 17発明は、上記第 15発明に係る二重セル構造の液晶素子の製造方法で あって、母材となる基板に対し、多数個の液晶素子に対応する端子および注入口を 設ける工程と、セグメント電極を形成する工程と、前記の端子、注入口、およびセグメ ント電極を形成した基板に対し、対向する位置に端子を設けるとともにコモン電極を 形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注 入する工程と、前記各工程を経て製造される多数個の液晶素子が配列した組に対し[0037] Further, the seventeenth invention is a method of manufacturing a liquid crystal element having a double cell structure according to the fifteenth invention, wherein a terminal and an injection port corresponding to a large number of liquid crystal elements with respect to a base substrate. A step of forming a segment electrode, a step of forming a segment electrode, a terminal on which the terminal, the injection port, and the segment electrode are formed. For the process of combining another formed substrate, the process of injecting liquid crystal from the injection port after the combination, and the group in which a large number of liquid crystal elements manufactured through the above processes are arranged
、同様の各工程を経て得られる別の組を裏返しかつ 90度回転させた上で積層させる 工程と、個々の二重セル構造の液晶素子に切り分ける工程と、を有してなる二重セ ル構造の液晶素子の製造方法である。 A double cell comprising: a step of stacking another set obtained through the same steps by turning it over and rotating it 90 degrees; and a step of dividing the liquid crystal element into individual double cell structures. It is a manufacturing method of the liquid crystal element of a structure.
[0038] また、第 18発明は、上記第 15発明に係る二重セル構造の液晶素子の製造方法で あって、母材となる基板に対し、多数個の液晶素子に対応する端子を設ける工程と、 セグメント電極を形成する工程と、前記の端子、およびセグメント電極を形成した基板 に対し、対向する位置に端子とさらに注入口を設けるとともにコモン電極を形成した 別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入するェ 程と、前記各工程を経て製造される多数個の液晶素子が配列した組に対し、同様の 各工程を経て得られる別の組を裏返しかつ 90度回転させた上で積層させる工程と、 個々の二重セル構造の液晶素子に切り分ける工程と、を有してなる二重セル構造の 液晶素子の製造方法である。  [0038] The eighteenth invention is a method of manufacturing a liquid crystal element having a double cell structure according to the fifteenth invention, wherein a terminal corresponding to a large number of liquid crystal elements is provided on a base material. And a step of forming a segment electrode, a step of combining the terminal and the substrate on which the segment electrode is formed with a terminal and an additional inlet at opposite positions and combining another substrate on which a common electrode is formed, After the process of injecting the liquid crystal from the injection port and the group in which a large number of liquid crystal elements manufactured through the above processes are arranged, another group obtained through the same processes is turned over and rotated 90 degrees. And a step of laminating and then dividing the liquid crystal element into individual double cell structure liquid crystal elements.
[0039] 上記第 17及び第 18発明の構成によれば、二重セル構造の液晶素子の製造が、最 終工程まで母材となる基板の状態のまま進められる。そして、液晶の配向方向が直 交している 2つの液晶素子力 同一の工程によって製造される。  [0039] According to the configurations of the seventeenth and eighteenth aspects of the invention, the production of the liquid crystal element having a double cell structure is advanced in the state of the substrate serving as a base material until the final step. Then, the two liquid crystal element forces in which the alignment directions of the liquid crystal are perpendicularly crossed are manufactured by the same process.
[0040] また、第 19発明は、上記第 17又は第 18発明に係る製造方法において、基板の表 面には、それぞれの端子に共通して接続される検査用の配線を形成し、多数個の液 晶素子が配列した組に対して別の組を積層させる工程の前、もしくは個々の二重セ ル構造の液晶素子に切り分ける工程の前のいずれか一方又は両方の時点で前記配 線を利用して検査を行うことを特徴とする。  [0040] The nineteenth aspect of the invention is the manufacturing method according to the seventeenth or eighteenth aspect of the invention, wherein a plurality of inspection wirings commonly connected to the respective terminals are formed on the surface of the substrate. The wiring is connected at one or both of the time before the step of laminating another set with respect to the set in which the liquid crystal elements are arranged, or before the step of dividing the liquid crystal elements into individual double-cell liquid crystal elements. It is characterized by performing inspection using it.
[0041] この構成によれば、個々の素子に分ける前の母材の状態で、素子の動作確認が一 度に行われる。 [0041] According to this configuration, the operation of the element is checked at once in the state of the base material before being divided into individual elements.
[0042] また、第 20発明は、上記第 17又は第 18発明に係る製造方法において、多数個の 液晶素子が配列した組に対して別の組を積層させる際に、真空中で、光束が通過す る円形領域を囲むように閉じた状態で設けられるシール材を介して積層させることを 特徴とする。 [0043] この構成によれば、 2つの液晶素子の間が真空状態となり、接着剤が存在しないの で、高い光透過率が維持される。 [0042] In addition, in the twentieth invention, in the manufacturing method according to the seventeenth or eighteenth invention, when another set is stacked on the set in which a large number of liquid crystal elements are arranged, the light flux is generated in a vacuum. It is characterized by being laminated through a sealing material provided in a closed state so as to surround a circular region that passes therethrough. [0043] According to this configuration, the two liquid crystal elements are in a vacuum state, and no adhesive is present, so that high light transmittance is maintained.
[0044] また、第 21発明は、上記第 17又は第 18発明に係る製造方法において、多数個の 液晶素子が配列した組に対して別の組を積層させる際に、大気中で、光束が通過す る円形領域を囲むように一部開 、た状態で設けられるシール材と前記シール材の内 側に設けられる接着剤とを介して積層させることを特徴とする。 [0044] In addition, in the twenty-first invention, in the manufacturing method according to the seventeenth or eighteenth invention, when another set is stacked on a set in which a large number of liquid crystal elements are arranged, a light beam is emitted in the atmosphere. It is characterized by laminating via a sealing material provided in a partially open state so as to surround a circular region that passes through and an adhesive provided on the inner side of the sealing material.
[0045] この構成によれば、 2つの液晶素子を積層させる工程が、大気中で効率的に行わ れる。この場合、接着剤は、屈折率が基板と近いものを選択することが好ましい。 発明の効果 [0045] According to this configuration, the step of laminating the two liquid crystal elements is efficiently performed in the atmosphere. In this case, it is preferable to select an adhesive having a refractive index close to that of the substrate. The invention's effect
[0046] 本発明の液晶素子は、電極に複数の非電極部位を形成し、その非電極部位の位 置に形成される不均一な電界分布に沿って液晶分子を配向させることで、光の屈折 効果を生じさせる。これにより、素子全体に連続的な屈折率分布を形成することがで きる。この屈折率分布は、印加電圧により液晶の配向状態を制御することで任意に変 ィ匕させることが可能であるため、光軸上に配置した場合に焦点を移動させて光学ズ ーム機能を発揮することができる。  [0046] The liquid crystal element of the present invention forms a plurality of non-electrode portions on an electrode and aligns liquid crystal molecules along a non-uniform electric field distribution formed at the positions of the non-electrode portions. Creates a refraction effect. Thereby, a continuous refractive index distribution can be formed in the entire element. This refractive index distribution can be changed arbitrarily by controlling the alignment state of the liquid crystal by the applied voltage, so the optical zoom function can be achieved by moving the focal point when placed on the optical axis. It can be demonstrated.
本発明により、光学ズーム系におけるレンズの駆動が不要となり、もしくは最小限の 駆動で済むため、従来にない小型'薄型の光学ズーム機能を提供でき、特に携帯電 話機等の超小型カメラ用として好適に利用することができる。  The present invention eliminates the need for driving the lens in the optical zoom system or requires a minimum amount of driving, thereby providing an unprecedented small and thin optical zoom function, particularly suitable for ultra-small cameras such as mobile phones. Can be used.
[0047] また、本発明の液晶素子は、複数の非電極部位の大きさや配置間隔を電極上の位 置によって変化させるとともに、その非電極部位の配置パターンに沿って複数本の線 状電極を所定の間隔で配設したことを特徴とする。これにより、非電極部位によって 得られる屈折率変化が、線状電極が配設されている複数箇所において大きくなり、全 体として非電極部位に起因する屈折率分布がより強調された状態を得ることができる  [0047] In addition, the liquid crystal element of the present invention changes the size and arrangement interval of the plurality of non-electrode portions according to the position on the electrode, and the plurality of linear electrodes are arranged along the arrangement pattern of the non-electrode portions. It is characterized by being arranged at a predetermined interval. As a result, the refractive index change obtained by the non-electrode part becomes large at a plurality of places where the linear electrodes are disposed, and the refractive index distribution caused by the non-electrode part as a whole is more emphasized. Can
[0048] また、本発明の液晶素子は、抵抗膜上に複数本の線状電極を配設し、線状電極の 間の電圧降下を利用して液晶の配向状態を同心状に変化させるため、素子に所定 の屈折率分布を形成することができる。この屈折率分布は、線状電極に対する印加 電圧によって任意に制御することが可能であり、光軸上に配置した場合に焦点を移 動させて光学ズーム機能を発揮することができる。 [0048] In addition, the liquid crystal element of the present invention has a plurality of linear electrodes arranged on a resistive film, and changes the alignment state of the liquid crystals concentrically by using a voltage drop between the linear electrodes. A predetermined refractive index profile can be formed in the element. This refractive index distribution can be arbitrarily controlled by the voltage applied to the linear electrode, and the focus is shifted when it is placed on the optical axis. The optical zoom function can be demonstrated by moving.
[0049] さらに、本発明に係る二重セル構造の液晶素子は、基板の表面に穴を穿ち、その 穴の部分を端子としたため、端子を側方に設ける場合に比べて基板に無理な力が加 わることがない。したがって、より薄い基板を採用することができ、結果として素子の軽 量ィ匕 ·小型化を達成することができる。  [0049] Furthermore, since the liquid crystal element having a double cell structure according to the present invention has a hole in the surface of the substrate and the hole portion is used as a terminal, it is difficult to apply force to the substrate compared to the case where the terminal is provided on the side. Will not be added. Therefore, a thinner substrate can be employed, and as a result, light weight and downsizing of the device can be achieved.
[0050] また、四角形状の基板の中央部に液晶を円形に挟み込み、その基板のコーナー部 に端子等を設けたため、素子の重量バランスに優れ、温度変化によって液晶が膨張 •収縮した場合でも不均一な変形が起こらず、素子の性能を維持することができる。  [0050] In addition, the liquid crystal is sandwiched in a circular shape at the center of the quadrangular substrate, and terminals are provided at the corners of the substrate. Therefore, the weight balance of the element is excellent, and even when the liquid crystal expands or contracts due to temperature changes Uniform deformation does not occur and the device performance can be maintained.
[0051] そして、本発明に係る二重セル構造の液晶素子の製造方法によれば、端子を形成 する工程や、液晶を注入する工程等が、全て個々の素子に切り分ける前の母材の状 態で行われるため、生産効率が向上し、コストを大幅に低減することができる。  [0051] Then, according to the method for manufacturing a liquid crystal element having a double cell structure according to the present invention, the process of forming the terminal, the process of injecting the liquid crystal, etc. Therefore, the production efficiency can be improved and the cost can be greatly reduced.
また、各素子を検査する際にも、母材の状態で行うことができるため、高い効率を達 成することができる。  In addition, when inspecting each element, since it can be performed in the state of the base material, high efficiency can be achieved.
さらに、積層させる 2つの液晶素子を、全く同一の工程で製造でき、一方を裏返して かつ 90度回転させるだけで、液晶の配向方向が直交した二重セル構造の液晶素子 を容易に作製することができる。したがって、生産性は極めて高ぐ安定した品質を得 ることがでさる。  In addition, two liquid crystal elements to be stacked can be manufactured in exactly the same process, and by simply turning one over and rotating 90 degrees, a liquid crystal element with a double cell structure in which the liquid crystal alignment directions are orthogonal can be easily manufactured. Can do. Therefore, productivity is extremely high and stable quality can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0052] [図 1]実施の形態(1)に係る液晶素子の使用形態を模式的に示す図である。 FIG. 1 is a diagram schematically showing a usage pattern of a liquid crystal element according to an embodiment (1).
[図 2]実施の形態(1)に係る液晶素子の平面図である。  FIG. 2 is a plan view of the liquid crystal element according to Embodiment (1).
[図 3]図 1の A部分の拡大図である。  FIG. 3 is an enlarged view of portion A in FIG.
[図 4]実施の形態(1)に係る液晶素子の断面図である。  FIG. 4 is a cross-sectional view of the liquid crystal element according to Embodiment (1).
[図 5]実施の形態(1)に係る液晶素子の電圧印加時の状態を説明する図である。  FIG. 5 is a diagram for explaining a state when a voltage is applied to the liquid crystal element according to the embodiment (1).
[図 6]実施の形態(2)に係る液晶素子の平面図である。  FIG. 6 is a plan view of a liquid crystal element according to Embodiment (2).
[図 7]実施の形態(3)に係る液晶素子の平面図である。  FIG. 7 is a plan view of a liquid crystal element according to Embodiment (3).
[図 8]実施の形態(3)に係る液晶素子によって得られる屈折率分布を模式的に示す 図である。  FIG. 8 is a diagram schematically showing a refractive index distribution obtained by the liquid crystal element according to Embodiment (3).
[図 9]実施の形態(3)に係る液晶素子の製造過程を説明する図である。 [図 10]実施の形態 (4)に係る液晶素子の平面図である。 FIG. 9 is a diagram for explaining a manufacturing process for the liquid crystal element according to the embodiment (3). FIG. 10 is a plan view of a liquid crystal element according to Embodiment (4).
[図 11]実施の形態(5)に係る液晶素子の平面図である。  FIG. 11 is a plan view of a liquid crystal element according to Embodiment (5).
[図 12]実施の形態(5)に係る液晶素子の製造過程を説明する図である。  FIG. 12 is a diagram for explaining a manufacturing process for the liquid crystal element according to the embodiment (5).
[図 13]実施の形態(6)に係る二重セル構造の液晶素子の平面図である。  FIG. 13 is a plan view of a liquid crystal element having a double cell structure according to Embodiment (6).
[図 14]図 13の C C断面図である。  FIG. 14 is a CC cross-sectional view of FIG.
[図 15]図 13の D— D断面図である。  FIG. 15 is a sectional view taken along the line DD in FIG.
[図 16]実施の形態 (6)に係る二重セル構造の液晶素子の使用形態を模式的に示す 図である。  FIG. 16 is a diagram schematically showing a usage pattern of the liquid crystal element having a double cell structure according to Embodiment (6).
[図 17]二重セル構造の液晶素子の製造工程を示すフローチャートである。  FIG. 17 is a flowchart showing manufacturing steps of a liquid crystal element having a double cell structure.
[図 18]二重セル構造の液晶素子の製造工程を示すフローチャートである。  FIG. 18 is a flowchart showing manufacturing steps of a liquid crystal element having a double cell structure.
[図 19]図 14の S方向における S103の状態を示す図である。  FIG. 19 is a diagram showing a state of S103 in the S direction of FIG.
[図 20]SlO3の状態を示す端子部分の断面図である。  FIG. 20 is a cross-sectional view of the terminal portion showing the state of SlO 3.
[図 21]図 14の S方向における S106の状態を示す図である。  FIG. 21 is a diagram showing a state of S106 in the S direction of FIG.
[図 22]図 14の S方向における S 108の状態を示す図である。  FIG. 22 is a diagram showing a state of S in the S direction of FIG.
[図 23]図 14の T方向における S205の状態を示す図である。  FIG. 23 is a diagram showing a state of S205 in the T direction of FIG.
[図 24]図 14の U方向における S104の状態を示す図である。  FIG. 24 is a diagram showing a state of S104 in the U direction of FIG.
[図 25]S501の状態を示す図である。  FIG. 25 is a diagram showing a state of S501.
[図 26]S305の状態を示す図である。  FIG. 26 is a diagram showing a state of S305.
[図 27]S504の状態を示す図である。  FIG. 27 is a diagram showing a state of S504.
[図 28]S305の状態の別の例を示す図である。  FIG. 28 is a diagram showing another example of the state in S305.
[図 29]実施の形態(7)に係る二重セル構造の液晶素子の平面図及び側面図である 符号の説明  FIG. 29 is a plan view and a side view of a liquid crystal element having a double cell structure according to Embodiment (7).
1A-1G 液晶素子  1A-1G LCD element
1FG 二重セル構造の液晶素子  1FG Double-cell liquid crystal device
10 液晶  10 LCD
20、 21 電極  20, 21 electrodes
22 セグメント電極 23 コモン電極 24 高抵抗膜 22 segment electrode 23 Common electrode 24 High resistance film
24a 高抵抗ゾーン 24b 中抵抗ゾーン 24c 低抵抗ゾーン 201 非電極部位 30、 31、 32、 33 基板 32a 遮光部 24a High resistance zone 24b Medium resistance zone 24c Low resistance zone 201 Non-electrode part 30, 31, 32, 33 Substrate 32a Light shielding part
32b コーナー部 320 母材となる基板 330 母材となる基板 40a— 40d 線状電極 400 低抵抗膜 400a 低抵抗膜 50 SiO膜 32b Corner 320 Substrate as substrate 330 Substrate as substrate 40a-40d Linear electrode 400 Low resistance film 400a Low resistance film 50 SiO film
2 2
60A— 60F 穴 61A— 61F 端子60A— 60F hole 61A— 61F terminal
70、 71、 71A 70, 71, 71A
72 接着剤  72 Adhesive
73 注入口  73 Inlet
74 封止材  74 Sealant
75 導通材  75 Conductive material
76 マスク  76 Mask
77 配線  77 Wiring
E 電界  E electric field
F、 F' 焦点  F, F 'focus
J レンズ J lens
L 光軸 M 像面 L Optical axis M Image plane
Pl、 P2 偏光面  Pl, P2 polarization plane
Rl— R3 抵抗  Rl—R3 resistance
S1、S2 端子  S1, S2 terminals
P、 Q 屈折率分布  P, Q Refractive index distribution
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0054] 以下、本発明を詳細に説明する。なお、以下の実施形態において、同一の構成要 素には同じ符号を付して説明を省略している。  [0054] Hereinafter, the present invention will be described in detail. In the following embodiments, the same components are denoted by the same reference numerals and description thereof is omitted.
[0055] まず、本発明の実施の形態(1)を図 1一 5に示す。図 1は、この実施の形態(1)に係 る液晶素子 1Aの使用形態を模式的に示す図であり、図 2は液晶素子 1Aの平面図、 図 3は図 2の A部分の拡大図、そして図 4は液晶素子 1Aの断面を拡大した図である。  First, an embodiment (1) of the present invention is shown in FIG. FIG. 1 is a diagram schematically showing how the liquid crystal element 1A according to the embodiment (1) is used, FIG. 2 is a plan view of the liquid crystal element 1A, and FIG. 3 is an enlarged view of a portion A in FIG. FIG. 4 is an enlarged view of a cross section of the liquid crystal element 1A.
[0056] 図 1に示すように、液晶素子 1Aは、特に携帯電話機や携帯情報端末機 (PDA)等 における小型のカメラについて好適に用いられ、 CCD、 CMOS等が備えられる像面 Mに対し、光軸 L上にレンズ: [とともに配置してレンズ系を構成するものである。そして 、素子に電圧を印加することにより、主に素子の面方向(光軸に対して垂直方向)に 屈折率分布を形成し、焦点 Fを焦点 F' (あるいはその逆)へ移動させて光学ズーム機 能を発揮するものである。なお、液晶素子 1Aに入射する光を偏光状態とするため、 必要に応じて偏光子を光軸 L上に配設することができる。以下、液晶素子 1Aの構成 について詳述する。  [0056] As shown in FIG. 1, the liquid crystal element 1A is preferably used particularly for a small camera in a mobile phone, a personal digital assistant (PDA) or the like, and with respect to an image plane M provided with a CCD, a CMOS, etc. A lens on the optical axis L: [A lens system is arranged together with the lens. Then, by applying a voltage to the element, a refractive index distribution is formed mainly in the surface direction of the element (perpendicular to the optical axis), and the focal point F is moved to the focal point F ′ (or vice versa) to perform optical measurement. It demonstrates the zoom function. Since light incident on the liquid crystal element 1A is polarized, a polarizer can be disposed on the optical axis L as necessary. Hereinafter, the configuration of the liquid crystal element 1A will be described in detail.
[0057] 液晶素子 1Aは、図 4に示すように、液晶 10と、その液晶 10を挟んで対向する 2つ の電極 20、 21、及び基板 30、 31とを備え、電極 20には電極材の存在しない複数の 非電極部位 201が穴状に形成されている。なお、図 4において、基板 30、 31上に設 けられる反射防止膜 (AR膜)や、電極 20、 21と液晶 10との間に一般的に設けられる 液晶配向膜、透明絶縁層等は図示を省略している。また、電極 20及び電極 21には 電圧を印加するためリード線等が接続されている。  As shown in FIG. 4, the liquid crystal element 1A includes a liquid crystal 10 and two electrodes 20 and 21 and substrates 30 and 31 facing each other with the liquid crystal 10 interposed therebetween. A plurality of non-electrode portions 201 that do not exist are formed in a hole shape. In FIG. 4, the antireflection film (AR film) provided on the substrates 30 and 31, the liquid crystal alignment film generally provided between the electrodes 20 and 21 and the liquid crystal 10, the transparent insulating layer, etc. are shown. Is omitted. Further, a lead wire or the like is connected to the electrode 20 and the electrode 21 to apply a voltage.
[0058] 図 2に示すように、複数の非電極部位 201は、電極 20上の位置によって大きさ及び 配置間隔を連続的に変化させている。なお、非電極部位 201の数は、図 2では便宜 上少なく描いている力 実際には図 3に示すように多数の非電極部位 201が微細に 形成されている。そして、この実施の形態(1)では、電極 20上を同心円状に分けたと きの半径方向 Rに沿って、非電極部位 201の大きさ dlが大きい径カも小さい径となる ように、また、配置間隔 d2が広い間隔力も狭い間隔となるように連続的なパターンを 形成している。 As shown in FIG. 2, the sizes and arrangement intervals of the plurality of non-electrode portions 201 are continuously changed depending on the position on the electrode 20. Note that the number of non-electrode parts 201 is the force depicted in FIG. 2 for convenience. Actually, as shown in FIG. Is formed. Then, in this embodiment (1), the non-electrode portion 201 has a large diameter dl along the radial direction R when the electrode 20 is concentrically divided so that the diameter of the non-electrode portion 201 is also small. The continuous pattern is formed so that the arrangement interval d2 is wide and the interval force is also narrow.
[0059] 電極 20、 21間に電圧を印加した場合、非電極部位 201の近傍での電界 Eの状態 は図 5に示すようになる。すなわち、電極 20と電極 21とが対向している部分 aでは、 電極に垂直な方向へ強 ヽ電界が形成され、非電極部位 201の中心部である部分 b では、やはり電極に垂直な方向へ弱い電界が形成される。そして、非電極部位 201と 電極 20との境界に近い部分 cでは、電極 20へ向かって電界が傾いた状態となる。  [0059] When a voltage is applied between the electrodes 20 and 21, the state of the electric field E in the vicinity of the non-electrode portion 201 is as shown in FIG. That is, a strong electric field is formed in the direction a perpendicular to the electrode at the part a where the electrode 20 and the electrode 21 are opposed to each other, and the part b which is the central part of the non-electrode portion 201 is also in the direction perpendicular to the electrode. A weak electric field is formed. Then, in the portion c close to the boundary between the non-electrode portion 201 and the electrode 20, the electric field is inclined toward the electrode 20.
[0060] すると、液晶 10の誘電異方性が正である場合には、液晶分子が電界 Eに沿って配 向するため、部分 aでは液晶分子が電極に対して垂直に並び、部分 bでは電界が弱 いため電極に平行な状態のままとなり、部分 cでは斜めに配向することになる。すなわ ち、非電極部位 201の内側において液晶が不均一な配向状態となる。このとき、素子 を通過する光 (異常光)に対する屈折率は、非電極部位 201の中心力も周辺へ向か つて連続的に小さくなる分布を形成するため、非電極部位 201の部分においては凸 レンズの効果を示すことになる。これにより、通過する光に位相差を与えることができ る。  [0060] Then, when the dielectric anisotropy of the liquid crystal 10 is positive, the liquid crystal molecules are aligned along the electric field E. Therefore, in the part a, the liquid crystal molecules are aligned perpendicular to the electrode, and in the part b. Since the electric field is weak, it remains parallel to the electrode, and the portion c is oriented obliquely. That is, the liquid crystal is in a non-uniform alignment state inside the non-electrode portion 201. At this time, the refractive index with respect to light passing through the element (abnormal light) forms a distribution in which the central force of the non-electrode portion 201 continuously decreases toward the periphery. Will show the effect. Thereby, a phase difference can be given to the light passing therethrough.
したがって、図 2のように、非電極部位 201の大きさ及び配置間隔を電極上の位置 によって連続的に変化させた場合、それぞれの位置で得られる位相差は異なるため 、素子全体として所定の屈折率分布を得ることができ、その結果レンズ系の焦点距離 を変化させ、光学ズーム機能を得ることが可能となる。  Therefore, as shown in FIG. 2, when the size and arrangement interval of the non-electrode portion 201 are continuously changed depending on the position on the electrode, the phase difference obtained at each position is different. A rate distribution can be obtained, and as a result, the focal length of the lens system can be changed to obtain an optical zoom function.
[0061] なお、印加する電圧を変化させた場合、それに応じて液晶分子の配向状態が変化 する。例えば、電圧を大きくした場合には、非電極部位 201の中心でも液晶分子が 垂直に配向するため、逆に、非電極部位 201の中心力も周辺にかけて屈折率が大き くなる凹レンズ効果を示すようになる。すなわち、印加する電圧によって、素子全体で 得られる屈折率分布を変化させることができるため、設定された焦点距離に対して必 要な屈折率分布を計算し、その結果に応じて電圧を制御することで焦点距離を連続 的〖こ変ィ匕させることができる。 [0062] さらに、非電極部位 201の配置間隔は、電極 20上の同心円状に分けられた各領域 内(例えば領域 X、領域 Y)で不規則 (ランダム配置)とすることが好ましい。すなわち、 図 3に示すように、配置間隔 hiと h2とが若干異なるようにする。このようにすると、隣 接する非電極部位をそれぞれ通過する光が互いに干渉し合って波面が乱れるような 事態を防止することができる。 [0061] When the voltage to be applied is changed, the alignment state of the liquid crystal molecules changes accordingly. For example, when the voltage is increased, the liquid crystal molecules are vertically aligned even at the center of the non-electrode portion 201, and conversely, the central force of the non-electrode portion 201 also shows a concave lens effect in which the refractive index increases toward the periphery. Become. In other words, since the refractive index distribution obtained for the entire device can be changed by the applied voltage, the necessary refractive index distribution is calculated for the set focal length, and the voltage is controlled according to the result. Thus, the focal length can be changed continuously. Furthermore, it is preferable that the arrangement interval of the non-electrode portions 201 is irregular (random arrangement) in each region (for example, the region X and the region Y) divided concentrically on the electrode 20. That is, as shown in FIG. 3, the arrangement intervals hi and h2 are slightly different. In this way, it is possible to prevent a situation in which the light passing through the adjacent non-electrode parts interferes with each other and the wavefront is disturbed.
なお、光の波長と配置間隔との関係で干渉効果がほとんど無いと見込まれる場合 には、 hiと h2とを同一にして規則的に配置しても構わない。  If it is expected that there is almost no interference effect due to the relationship between the wavelength of light and the arrangement interval, hi and h2 may be arranged regularly.
[0063] 電極 20、 21としては、従来知られた一般的な電極を用いることができる。具体的に は、透明な基板 30、 31に対してインジゥムースズ酸ィ匕膜を形成した ITO電極が好適 に用いられる。  [0063] As the electrodes 20 and 21, conventionally known general electrodes can be used. Specifically, an ITO electrode in which an indium oxalate film is formed on transparent substrates 30 and 31 is preferably used.
[0064] また、非電極部位 201を形成する方法としては、まず基板 30上の全面に電極 20を 形成した後に、フォトプロセスによって複数の非電極部位 201を所望の配置パターン で形成する方法が好適に用いられる。このようにすると、連続的に変化する微細な配 置パターンを容易に作り出すことができる。あるいは、基板 30に電極 20を蒸着、めつ き等する際にマスクを介して行う方法を用いても良い。  [0064] Further, as a method for forming the non-electrode portion 201, a method in which the electrode 20 is first formed on the entire surface of the substrate 30 and then a plurality of non-electrode portions 201 are formed in a desired arrangement pattern by a photo process is preferable. Used for. In this way, it is possible to easily create a fine arrangement pattern that changes continuously. Alternatively, a method of performing through a mask when the electrode 20 is vapor-deposited or turned on the substrate 30 may be used.
[0065] 図 6には、本発明の実施の形態(2)を示す。この液晶素子 1Bは、上記実施の形態  FIG. 6 shows an embodiment (2) of the present invention. This liquid crystal element 1B is the same as the above embodiment.
(1)と同様に、電極 20に複数の非電極部位 201を形成している力 非電極部位 201 の大きさを同径としている。そして、電極 20の中心から周辺に向かって、非電極部位 201の配置間隔を広 、間隔力も狭い間隔へと連続的に変化させて 、る。このように、 非電極部位 201の配置に疎密を持たせた場合には、電圧印加時に個々の非電極部 位における光の屈折効果 (レンズ効果)によって、非電極部位 201の密度が濃い領 域と薄い領域とでは得られる位相差が異なり、素子全体として所定の屈折率分布を 得ることができる。  As in (1), the force that forms a plurality of non-electrode portions 201 on the electrode 20 has the same diameter. Then, from the center of the electrode 20 to the periphery, the arrangement interval of the non-electrode portions 201 is increased and the interval force is continuously changed to a narrow interval. In this way, when the arrangement of the non-electrode parts 201 is made dense, the density of the non-electrode parts 201 is high due to the light refraction effect (lens effect) at each non-electrode part when a voltage is applied. The obtained phase difference differs between the thin region and the thin region, and a predetermined refractive index distribution can be obtained for the entire device.
[0066] 次に、本発明の実施の形態(3)について図 7—図 9に基づき説明する。図 7の液晶 素子 1Cは、上記実施の形態(1)と同様に、液晶を挟む電極 20に複数の非電極部位 201を形成し、その非電極部位 201の大きさ及び配置間隔を半径方向 Rへ連続的に 変化させている。そして、この実施の形態(3)では、非電極部位 201の配置パターン (同心円状に変化するパターン)に沿って環状の線状電極 40a— 40dを配設したこと を特徴としている。 Next, an embodiment (3) of the present invention will be described with reference to FIGS. 7 to 9. In the liquid crystal element 1C of FIG. 7, a plurality of non-electrode portions 201 are formed on the electrode 20 sandwiching the liquid crystal, and the size and arrangement interval of the non-electrode portions 201 are set in the radial direction R in the same manner as in the embodiment (1). Is continuously changing. In this embodiment (3), the annular linear electrodes 40a to 40d are arranged along the arrangement pattern of the non-electrode portions 201 (pattern changing concentrically). It is characterized by.
[0067] 線状電極 40a— 40dは、端子 Sl、 S2に接続されており、抵抗 R1— R3を利用して 相異なる電圧が印加されるように構成されて ヽる。  [0067] The linear electrodes 40a to 40d are connected to the terminals Sl and S2, and are configured so that different voltages are applied using the resistors R1 to R3.
この液晶素子 1Cによって得られる屈折率分布を、図 8に模式的に示す。図 8に示 すように、非電極部位 201のレンズ効果によって屈折率分布 Pが得られるとき、線状 電極 40a— 40dが配設された部位 s、 t、 u、 vにおいて液晶がより配向し、それによつ て位相差が所定量だけ引き上げられ、結果として屈折率分布 Pが強調された屈折率 分布 Qの状態となる。したがって、ズームレンジをより広くすることが可能となる。ここで 、線状電極 40a— 40dの配設する位置、及びそれぞれに印加する電圧値は、非電極 部位 201に起因する屈折率分布 Pに基づいて決定することができる。すなわち、屈折 率分布 Pの各部位における位相変化量に比例した電圧値を設定することが好ましぐ 例えば端子 Sl、 S2間に IVの電圧を印加する場合、線状電極 40a (図 8の Vに相当 する)には IV、線状電極 40b (uに相当)には 0. 6V、線状電極 40c (tに相当)には 0 . IV、線状電極 40d (sに相当)には OV、の印加電圧となるように抵抗 R1— R3を設 定することができる。なお、線状電極 40a— 40dについては、図 7の回路構成に限定 されないことは無論である。  FIG. 8 schematically shows the refractive index distribution obtained by the liquid crystal element 1C. As shown in FIG. 8, when the refractive index distribution P is obtained by the lens effect of the non-electrode portion 201, the liquid crystal is more aligned in the portions s, t, u, and v where the linear electrodes 40a to 40d are disposed. As a result, the phase difference is increased by a predetermined amount, and as a result, the refractive index distribution P is emphasized and the refractive index distribution Q is obtained. Therefore, it is possible to make the zoom range wider. Here, the positions where the linear electrodes 40a to 40d are disposed and the voltage value applied to each of them can be determined based on the refractive index distribution P caused by the non-electrode portion 201. That is, it is preferable to set a voltage value proportional to the amount of phase change at each part of the refractive index distribution P. For example, when an IV voltage is applied between the terminals Sl and S2, the linear electrode 40a (V in FIG. IV for linear electrode 40b (corresponding to u), 0.6V for linear electrode 40c (corresponding to t), and OV for linear electrode 40d (corresponding to s). Resistors R1-R3 can be set so that the applied voltage of Needless to say, the linear electrodes 40a to 40d are not limited to the circuit configuration of FIG.
[0068] 図 9には、実施の形態(3)に係る液晶素子 1Cの製造過程の一例を示す。まず、図 9 (a)に示すように、ガラスの基板 30上に ITO等の電極 (低抵抗膜 400、数一数十 Ω )を形成する。なお、この例では基板 30と低抵抗膜 400との間に SiO膜 50を形成し  FIG. 9 shows an example of a manufacturing process of the liquid crystal element 1C according to the embodiment (3). First, as shown in FIG. 9A, an electrode such as ITO (low resistance film 400, several tens of Ω) is formed on a glass substrate 30. In this example, an SiO film 50 is formed between the substrate 30 and the low resistance film 400.
2  2
ている。この膜は、基板 30からのナトリウム分の溶出を防ぐパッシベーシヨン膜であり 、必要に応じて設けることができる。  ing. This film is a passivation film that prevents elution of the sodium content from the substrate 30 and can be provided as necessary.
[0069] 続、て、図 9 (b) (c)に示すように、低抵抗膜 400のパターンユングを行って線状電 極 40aを形成し、その上に ITO等の電極 20 (高抵抗膜、数十一数百 k Ω )を形成する 。そして、図 9 (d)に示すように、所定の位置に複数の非電極部位 201を形成すること により、線状電極 40a (40b— 40d)と電極 20とが形成された目的の基板を得ることが できる。なお、線状電極 40aは、素子の大きさに比べて極細(数一数十/ z m程度)で あるため、場合によっては ITO以外の不透明な金属で構成しても良い。  Subsequently, as shown in FIGS. 9 (b) and 9 (c), patterning of the low resistance film 400 is performed to form a linear electrode 40a, and an electrode 20 (high resistance) such as ITO is formed thereon. Film, tens to hundreds of kΩ). Then, as shown in FIG. 9 (d), by forming a plurality of non-electrode portions 201 at predetermined positions, a target substrate on which the linear electrodes 40a (40b-40d) and the electrodes 20 are formed is obtained. be able to. Note that the linear electrode 40a is extremely fine (several tens / zm) compared to the size of the element, and may be made of an opaque metal other than ITO in some cases.
[0070] 複数の非電極部位 201の配置パターンは、上記実施の形態(1)一 (3)に限定され ない。すなわち、所望の屈折率分布等に応じて、非電極部位 201の大きさもしくは配 置間隔又はその両方を電極 20上の位置によって適宜設定することができる。具体的 には、例えば、図 2とは逆に非電極部位の大きさを電極 20の中心力も周辺に向かつ て小さい径力 大きい径へと連続的に変化させる場合、あるいは図 6とは逆に、非電 極部位の配置間隔を電極 20の中心力も周辺に向かって狭い間隔力も広い間隔へと 連続的に変化させる場合等が挙げられる。 [0070] The arrangement pattern of the plurality of non-electrode portions 201 is limited to the above embodiment (1) one (3). Absent. That is, according to the desired refractive index distribution or the like, the size and / or arrangement interval of the non-electrode portion 201 can be appropriately set depending on the position on the electrode 20. Specifically, for example, contrary to FIG. 2, when the size of the non-electrode portion is continuously changed from the central force of the electrode 20 toward the periphery to a small radial force and a large diameter, or contrary to FIG. In addition, there may be mentioned a case in which the arrangement interval of the non-electrode parts is continuously changed from a central force of the electrode 20 and a narrow interval force toward the periphery to a wide interval.
[0071] なお、上記各実施の形態では、電極 20にのみに非電極部位 201を形成していた 1S 電極 20と電極 21の両方に非電極部位を形成しても良い。この場合、電極 21の 近傍でも液晶分子が不均一に配向するため、得られるレンズ効果がより強くなり、光 学ズーム機能を向上させることができる。  In each of the above-described embodiments, the non-electrode part may be formed on both the 1S electrode 20 and the electrode 21 which have formed the non-electrode part 201 only on the electrode 20. In this case, since the liquid crystal molecules are non-uniformly aligned even in the vicinity of the electrode 21, the obtained lens effect becomes stronger and the optical zoom function can be improved.
また、電極 20を、分割された幾つかの電極力も構成し、それぞれに複数の非電極 部位を形成し、各電極に異なる電圧を印加することによって全体としてさらに複雑な 屈折率分布を与えることもできる。  In addition, the electrode 20 can also be composed of several divided electrode forces, each having a plurality of non-electrode portions, and applying different voltages to each electrode to give a more complicated refractive index distribution as a whole. it can.
[0072] また、上記実施の形態(1)一 (3)では、複数の非電極部位 201の形状が円形の場 合について説明したが、これに限定されず、例えば発生する収差の種類や、ラビング 方向等を考慮して、別の形状にすることができる。具体的には、ピット形状、楕円形状 、半円形状等が挙げられる。  [0072] Further, in the above embodiment (1) -1 (3), the case where the shape of the plurality of non-electrode portions 201 is circular has been described. However, the present invention is not limited to this. For example, Considering the rubbing direction, etc., other shapes can be used. Specific examples include a pit shape, an elliptical shape, and a semicircular shape.
[0073] 次に、本発明の実施の形態 (4)について図 10に基づき説明する。図 10の液晶素 子 1Dでは、上記実施の形態(3)と同様に、相異なる電圧を印加する複数本の線状 電極 40a— 40dを、光軸を中心として同心状に所定の間隔で配設している。ここで図 10の線状電極 40a— 40dは高抵抗膜 24に配設されて 、るが、この高抵抗膜 24は、 上記実施の形態(1)一(3)における電極 20と同じであり、 ITO等カゝら構成されている (電極 20と異なり、電圧を印加しな 、ため高抵抗膜と呼んで 、る)。  Next, Embodiment (4) of the present invention will be described with reference to FIG. In the liquid crystal element 1D of FIG. 10, as in the above-described embodiment (3), a plurality of linear electrodes 40a to 40d for applying different voltages are concentrically arranged at predetermined intervals around the optical axis. Has been established. Here, the linear electrodes 40a to 40d in FIG. 10 are disposed on the high resistance film 24. However, the high resistance film 24 is the same as the electrode 20 in the above embodiment (1) 1 (3). It is composed of ITO and others (unlike the electrode 20, it is called a high resistance film because no voltage is applied).
[0074] 上記の液晶素子 1Dにおいて、線状電極 40a— 40dに電圧を印加すると、各線状 電極の間には高抵抗膜 24があるために電圧降下を生ずる。そのため、液晶は、同心 状に連続的に変化する電圧に応じて異なる配向状態となり、それに伴って所定の屈 折率分布が得られることとなる。この屈折率分布は線状電極 40a— 40dに印加する 電圧を変えることで任意に制御できるため、目的の光学ズーム機能を得ることが可能 となる。 In the liquid crystal element 1D, when a voltage is applied to the linear electrodes 40a to 40d, a voltage drop is generated because the high resistance film 24 exists between the linear electrodes. For this reason, the liquid crystal is in different alignment states depending on the voltage continuously changing concentrically, and accordingly, a predetermined refractive index distribution is obtained. This refractive index distribution can be controlled arbitrarily by changing the voltage applied to the linear electrodes 40a-40d, so that the desired optical zoom function can be obtained. It becomes.
[0075] 図 11には、実施の形態(5)に係る液晶素子を示す。この液晶素子 1Eは、複数本の 線状電極 40a— 40dが配設される抵抗膜を、異なる抵抗値を有する複数の領域 (高 抵抗ゾーン 24a、中抵抗ゾーン 24b、低抵抗ゾーン 24c)カゝら構成したことを特徴とし ている。  FIG. 11 shows a liquid crystal element according to Embodiment (5). This liquid crystal element 1E has a resistance film in which a plurality of linear electrodes 40a to 40d are arranged in a plurality of regions (high resistance zone 24a, medium resistance zone 24b, low resistance zone 24c) having different resistance values. It is characterized by that.
このよう〖こすると、例えば線状電極 40cの内側では、線状電極 40cの電圧が高抵抗 ゾーン 24aのために急激に降下し、続いて中抵抗ゾーン 24bに入って電圧降下の傾 きが小さくなり、最後に低抵抗ゾーン 24cによって電圧降下がゆるやかになりつつ中 心の線状電極 40dに接続されることとなり、結果として屈折率分布をより曲線的にす ることがでさる。  In this case, for example, on the inner side of the linear electrode 40c, the voltage of the linear electrode 40c drops rapidly due to the high resistance zone 24a, and then enters the middle resistance zone 24b, and the inclination of the voltage drop is small. Finally, the low-resistance zone 24c is connected to the central linear electrode 40d with a gradual voltage drop, and as a result, the refractive index distribution can be made more curvilinear.
[0076] 図 12には、実施の形態(5)に係る液晶素子 1Eの製造過程の一例を示す。まず、 図 12 (a)に示すように、ガラスの基板 30上に ITO等の低抵抗膜 400 (数一数十 Ω ) を形成する。なお、この例では基板 30と低抵抗膜 400との間に SiO膜 50を形成して  FIG. 12 shows an example of a manufacturing process of the liquid crystal element 1E according to the embodiment (5). First, as shown in FIG. 12A, a low resistance film 400 (several tens of Ω) such as ITO is formed on a glass substrate 30. In this example, a SiO film 50 is formed between the substrate 30 and the low resistance film 400.
2  2
いる。続いて、図 12 (b)に示すように、低抵抗膜 400のパターンユングを行って、線 状電極 40aと、微細な複数の低抵抗膜 400aとを形成する。  Yes. Subsequently, as shown in FIG. 12B, patterning of the low resistance film 400 is performed to form a linear electrode 40a and a plurality of fine low resistance films 400a.
次に、図 12 (c)に示すように、高抵抗膜 24 (数十一数百 k Q )を形成し、図 12 (d)に 示すように、高抵抗膜 24のパターンユングを行い、所定の位置に複数の非電極部位 を形成する。これにより、抵抗値の異なる複数の領域を得ることができる。すなわち、 高抵抗膜の一部に非電極部位が形成された領域が高抵抗ゾーン 24aとなり、均一な 高抵抗膜が形成された領域が中抵抗ゾーン 24bとなり、一部に低抵抗膜が形成され た領域が低抵抗ゾーン 24cとなる。  Next, as shown in FIG. 12 (c), a high resistance film 24 (several tens and hundreds of kQ) is formed, and as shown in FIG. 12 (d), pattern jung of the high resistance film 24 is performed, A plurality of non-electrode portions are formed at predetermined positions. Thereby, a plurality of regions having different resistance values can be obtained. That is, the region where the non-electrode portion is formed in a part of the high resistance film becomes the high resistance zone 24a, the region where the uniform high resistance film is formed becomes the medium resistance zone 24b, and the low resistance film is formed in a part. This area becomes the low resistance zone 24c.
[0077] 上記実施の形態 (4) (5)にお 、て、複数本の線状電極は、液晶を挟んで対向する 他方の基板側にも併せて配設することができる。  In the above embodiments (4) and (5), the plurality of linear electrodes can be disposed on the other substrate side facing each other with the liquid crystal interposed therebetween.
[0078] また、上記実施の形態(1)一(5)において、対向する電極は一対とは限らず、それ 以上の電極が液晶を挟みつつ積層していても良い。例えば、図 1に示すように、複数 の液晶素子 1A (図では 2つ)を組み合わせて用いることができる。この場合、それぞ れの液晶素子 1Aについて非電極部位の配置パターンを変えたり、印加電圧を異な るようにすることで、相異なるレンズ効果 (屈折率分布)を生じさせ、より複雑な光学ズ ーム機能を得ることができる。 In Embodiments (1) and (5) above, the opposing electrodes are not limited to a pair, and more electrodes may be stacked with the liquid crystal sandwiched therebetween. For example, as shown in FIG. 1, a plurality of liquid crystal elements 1A (two in the figure) can be used in combination. In this case, by changing the arrangement pattern of the non-electrode part or changing the applied voltage for each liquid crystal element 1A, different lens effects (refractive index distribution) are generated, and more complicated optical elements are generated. Function can be obtained.
[0079] 次に、本発明の実施の形態(6)について説明する。図 13は、本発明の実施の形態  Next, the embodiment (6) of the present invention will be described. FIG. 13 shows an embodiment of the present invention.
(6)に係る二重セル構造の液晶素子の平面図である。また、図 14は図 13の C C断 面図であり、図 15は図 13の D— D断面図を表している。図 13—図 15に示すように、 二重セル構造の液晶素子 1FGは、同一の構成力もなる 2つの液晶素子 1F、 1Gを、 導通材 75及びシール材 71を介して厚さ方向に積層させることにより構成されている 。そして、液晶素子 1F (1Gも同様)は、コモン電極 23が形成された基板 33と、セグメ ント電極 22が形成された基板 32とで液晶 10を挟み込むことにより概略構成されてい る。なお、コモン電極 23と液晶 10との間、及びセグメント電極 22と液晶 10との間に一 般的に設けられる液晶配向膜、透明絶縁層や、基板 32、 33上に設けられる反射防 止膜等は図示を省略している。また、液晶 10はシール材 70によって内側に封入され ている。  FIG. 6 is a plan view of a liquid crystal element having a double cell structure according to (6). 14 is a cross-sectional view taken along the line CC in FIG. 13, and FIG. 15 is a cross-sectional view taken along the line DD in FIG. As shown in Fig. 13 to Fig. 15, the liquid crystal element 1FG having a double cell structure is formed by laminating two liquid crystal elements 1F and 1G having the same component power in the thickness direction through a conductive material 75 and a seal material 71. Is made up of. The liquid crystal element 1F (same for 1G) is roughly configured by sandwiching the liquid crystal 10 between the substrate 33 on which the common electrode 23 is formed and the substrate 32 on which the segment electrode 22 is formed. Note that a liquid crystal alignment film, a transparent insulating layer, and an antireflection film provided on the substrates 32 and 33 that are generally provided between the common electrode 23 and the liquid crystal 10, and between the segment electrode 22 and the liquid crystal 10. Etc. are not shown. Further, the liquid crystal 10 is sealed inside by a sealing material 70.
[0080] この二重セル構造の液晶素子 1FGは、上記実施の形態(1)一(3)と同様に、セグメ ント電極 22上に複数の非電極部位(図示せず)を形成し、その非電極部位の大きさ 及び配置間隔を同心円状に変化させている。したがって、図 16に示すように、この素 子を他のレンズ Jとともに光軸 L上に配置し、コモン電極 23とセグメント電極 22との間 に電圧を印加することにより、非電極部位に起因する屈折率分布を生じさせ、焦点 F を焦点 F' (あるいはその逆)へ変化させて光学ズーム機能を発揮することができる。 非電極部位や各電極の構成にっ ヽては上記実施の形態(1)の説明に準ずる。  This double-cell liquid crystal element 1FG has a plurality of non-electrode portions (not shown) formed on the segment electrode 22 in the same manner as in the above embodiments (1) and (3). The size and arrangement interval of the non-electrode parts are changed concentrically. Therefore, as shown in FIG. 16, this element is placed on the optical axis L together with the other lens J, and a voltage is applied between the common electrode 23 and the segment electrode 22, resulting in non-electrode portions. An optical zoom function can be achieved by generating a refractive index profile and changing the focal point F to the focal point F ′ (or vice versa). The configuration of the non-electrode portion and each electrode is in accordance with the description of the above embodiment (1).
[0081] また、特にこの実施の形態(6)では、液晶素子 1F、 1Gの、電圧の非印加時におけ る液晶 10の配向方向を直交させている。これにより、レンズ系を通過する光束の、異 なる偏光面 Pl、 P2 (P偏光、 S偏光に対応する)の波面を同様に変化させ、像の画質 をより高めることができる。  Further, particularly in this embodiment (6), the alignment directions of the liquid crystal 10 when the voltage is not applied to the liquid crystal elements 1F and 1G are orthogonal to each other. As a result, the wavefronts of the different polarization planes Pl and P2 (corresponding to P-polarization and S-polarization) of the light beam passing through the lens system can be similarly changed, and the image quality of the image can be further improved.
[0082] そして、この実施の形態(6)では、基板 32の厚さ方向に穴 60A、 60B、 60Cと、同 様に基板 33にも穴 60D、 60E、 60Fとが穿たれている。それぞれの穴にはコモン電 極 23、及びセグメント電極 22へ接続するための端子 61 A、 61B、 61C、 61D、 61E 、 6 IFがそれぞれ設けられている。すなわち、端子 61A、 61Dが液晶素子 IFのセグ メント電極 22へ、端子 61B、 61Eがコモン電極 23へ、端子 61C、 61Fが液晶素子 1 Gのセグメント電極 22へそれぞれ接続されている。対向する端子間(例えば、端子 61 Bと端子 61E)は、導通材 75を介在させて接続している。なお、各端子は、穴の内周 面に沿って Ni— Au等の金属をめつきする等して形成される。 In this embodiment (6), holes 60A, 60B, and 60C are formed in the thickness direction of the substrate 32, and holes 60D, 60E, and 60F are formed in the substrate 33 as well. In each hole, terminals 61 A, 61 B, 61 C, 61 D, 61 E, 6 IF for connecting to the common electrode 23 and the segment electrode 22 are provided, respectively. That is, terminals 61A and 61D are connected to segment electrode 22 of liquid crystal element IF, terminals 61B and 61E are connected to common electrode 23, and terminals 61C and 61F are liquid crystal element 1 Each is connected to the G segment electrode 22. The opposing terminals (for example, the terminal 61B and the terminal 61E) are connected with a conductive material 75 interposed therebetween. Each terminal is formed by attaching a metal such as Ni-Au along the inner peripheral surface of the hole.
[0083] 上記のように各端子を基板 32、 33の面上に配置することにより、基板の側方に端 子を集約配置する場合に比べて、素子に偏った力が加わることなぐ割れ'力ケ等の 不良が生じにくくなる。したがって、基板 32、 33をより薄く(例えば 0. 2mm)すること が可能となり、素子を軽量ィ匕することができる。そのため、光学ズーム系全体をより小 さくすることができる。 [0083] By arranging the terminals on the surfaces of the substrates 32 and 33 as described above, cracks can be made without applying a biased force to the element as compared with the case where the terminals are arranged in a concentrated manner on the sides of the substrate. Defects such as force are less likely to occur. Therefore, the substrates 32 and 33 can be made thinner (for example, 0.2 mm), and the element can be reduced in weight. Therefore, the entire optical zoom system can be further reduced.
[0084] また、この実施の形態(6)では、基板 32、 33間に液晶 10を注入するための注入口 73が、基板 32の面上に形成されている。注入口 73の形状は円形、楕円形等であり 、液晶 10を注入した後に封止材 74により適宜封止される。  Further, in this embodiment (6), an injection port 73 for injecting the liquid crystal 10 between the substrates 32 and 33 is formed on the surface of the substrate 32. The shape of the inlet 73 is circular, elliptical, or the like, and is appropriately sealed with a sealing material 74 after the liquid crystal 10 is injected.
特に、図 13の例では、端子 61A—61F、及び液晶の注入口 73の全てが、基板 32 、 33の面上に配置され、対向する端子同士が厚さ方向に相互に接続され、上側の液 晶素子 1Fに設けられた駆動用の各端子に集約されているため、後述するように素子 の生産効率を高めることができる。  In particular, in the example of FIG. 13, the terminals 61A-61F and the liquid crystal injection port 73 are all arranged on the surfaces of the substrates 32 and 33, and the opposing terminals are connected to each other in the thickness direction. Since the driving terminals provided in the liquid crystal element 1F are concentrated, the production efficiency of the element can be increased as will be described later.
[0085] さらに、図 13の例では、穴 60A— 60F、及び液晶の注入口 73を、光束が通過する 円形領域 (セグメント電極 22、及びコモン電極 23が形成された領域)以外の、四角形 状に形成された基板 32 (33)上のコーナー部 32b付近に形成している。また、シール 材 70を略円形に設け、光束が通過する円形領域内に液晶 10をシールするようにし ている。このようにすると、光束が通過しない基板 32上の余剰部分を、端子等の位置 として有効に利用することができるため、素子をより小型化することができる。また、端 子等をコーナー部 32bに配置することにより、素子の重量バランスを最適化すること ができる。その結果、高精度な駆動が可能となり、また、温度変化によって液晶が膨 張'収縮した場合に、基板 32に対し均等に圧力が加わるため不均一な変形が起こら ず、素子の性能を維持することができる。  Further, in the example of FIG. 13, the holes 60A-60F and the liquid crystal injection port 73 have a rectangular shape other than the circular region (region where the segment electrode 22 and the common electrode 23 are formed) through which the light beam passes. It is formed in the vicinity of the corner portion 32b on the substrate 32 (33) formed in the above. In addition, the sealing material 70 is provided in a substantially circular shape so that the liquid crystal 10 is sealed in a circular region through which the light beam passes. In this way, the surplus portion on the substrate 32 through which the light beam does not pass can be used effectively as the position of the terminal or the like, so that the element can be further downsized. In addition, the weight balance of the element can be optimized by arranging the terminal or the like in the corner portion 32b. As a result, high-precision driving is possible, and when the liquid crystal expands and contracts due to temperature changes, pressure is applied uniformly to the substrate 32, so that non-uniform deformation does not occur and the device performance is maintained. be able to.
[0086] また、図 13の例では、セグメント電極 22のパターンを、端子 61 Aに直接接続するよ うに形成している力 この他にも、例えば、閉じた円形領域力もなる各電極パターンを 形成した後に、それぞれの電極と各端子とをリード線等で接続しても良い。 [0087] 次に、上述の図 13の例に係る二重セル構造の液晶素子 1FGの製造方法を図 17 一図 28に基づき説明する。 In addition, in the example of FIG. 13, the force for forming the pattern of the segment electrode 22 to be directly connected to the terminal 61 A. In addition to this, for example, each electrode pattern having a closed circular region force is formed. After that, each electrode and each terminal may be connected by a lead wire or the like. Next, a method for manufacturing the liquid crystal element 1FG having the double cell structure according to the example of FIG. 13 will be described with reference to FIG. 17 and FIG.
[0088] まず、液晶補正素子 1Fにおける基板 32の加工工程について順に説明する。図 19 一図 22は、図 14の S方向から見た状態を示している。最初に、図 17及び図 19に示 すように、母材となる基板 320に、多数個の液晶素子に対応させた穴 60A、 60B、 6 OCと、液晶の注入口 73とを所定の位置に形成する(S101)。続いて、母材となる基 板 320の全面に反射防止膜 (AR膜)を形成し (S102)た後、それぞれの穴に端子 6 1A、 61B、 61Cを設ける(S103)。なお、後述するように端子 61A— 61Cは、基板 3 20を裏返しかつ 90度回転させた場合に端子同士が重なり合う必要があるため、母材 となる基板 320は好ましくは正方形であり、また配列する多数個の液晶素子は縦横で 同数形成されている。なお、各端子 (例えば端子 61A)を設ける際には、図 20に示す ように、穴 60A以外の部分にマスク 76を形成した上で、端子 61 Aとなる金属をめつき 等により形成した後、マスク 76を除去することにより好適に行われる。  First, processing steps of the substrate 32 in the liquid crystal correction element 1F will be described in order. Fig. 19 Fig. 22 shows a state seen from the S direction in Fig. 14. First, as shown in FIG. 17 and FIG. 19, holes 60A, 60B, 6OC corresponding to a large number of liquid crystal elements and a liquid crystal injection port 73 are formed at predetermined positions on a substrate 320 as a base material. (S101). Subsequently, after forming an antireflection film (AR film) on the entire surface of the base plate 320 as a base material (S102), terminals 61A, 61B, 61C are provided in the respective holes (S103). As will be described later, since the terminals 61A-61C need to overlap each other when the board 320 is turned upside down and rotated 90 degrees, the base board 320 is preferably square and arranged. The same number of liquid crystal elements are formed in the vertical and horizontal directions. When providing each terminal (for example, the terminal 61A), as shown in FIG. 20, after forming a mask 76 in a portion other than the hole 60A and then forming a metal to be the terminal 61A by bonding or the like. This is preferably done by removing the mask 76.
[0089] 続いて、図 14の U方向から見た側に対し、後述するような検査に用いる配線を形成 した後(S104)、所定の位置に電極材を蒸着等によって形成し (S105)、エッチング 等によるパターンユングを行ってセグメント電極 22を作製する(S106)。この状態を 図 21に示す。なお、上述の端子を設ける工程と、検査に用いる配線を形成する工程 とは前後しても良い。  Subsequently, after forming a wiring used for inspection as described later on the side viewed from the U direction in FIG. 14 (S104), an electrode material is formed at a predetermined position by vapor deposition or the like (S105), Pattern electrodes such as etching are performed to produce segment electrodes 22 (S106). This state is shown in Fig. 21. Note that the above-described step of providing the terminal and the step of forming the wiring used for the inspection may be mixed.
[0090] 次に、 S方向の側に透明絶縁層を必要に応じて積層させ、 PVA等の液晶配向膜を 形成し、ラビングを行う(S 107)。さらに液晶を封入するためのシール材 70を、印刷 等によりセグメント電極 22の外側に設ける(S108)。この状態を図 22に示す。  [0090] Next, a transparent insulating layer is laminated on the S direction side as necessary, a liquid crystal alignment film such as PVA is formed, and rubbing is performed (S107). Further, a sealing material 70 for enclosing the liquid crystal is provided outside the segment electrode 22 by printing or the like (S108). This state is shown in FIG.
[0091] 一方、対向させる別の基板 (基板 33側)については、図 14の T方向から見た図 23 に示すように、母材となる基板 330に対して上記の基板 320と同じ位置に穴 60D、 6 1E、 60Fを形成し(S201)、 AR膜を形成し(S202)た後、端子 61D、 61E、 61Fを 設け(S203)、電極材の蒸着等を行い(S204)、パターンニングを行ってコモン電極 23を形成する(S205)。また、液晶配向膜を形成してラビングを行い(S206)、対向 させる基板 320の各端子同士と接続するための導通材を印刷等により設ける(S207 On the other hand, the other substrate (substrate 33 side) to be opposed is positioned at the same position as the above-mentioned substrate 320 with respect to the base substrate 330 as shown in FIG. 23 as viewed from the T direction in FIG. Holes 60D, 61E, 60F are formed (S201), AR film is formed (S202), then terminals 61D, 61E, 61F are provided (S203), electrode material is deposited (S204), patterning To form the common electrode 23 (S205). Further, a liquid crystal alignment film is formed and rubbed (S206), and a conductive material for connecting with each terminal of the substrate 320 to be opposed is provided by printing or the like (S207).
) o なお、場合によっては、注入口 73を基板 33側に形成したり、あるいはシール材 70 を基板 33側に、導通材を基板 32側に印刷することも可能である。 ) o In some cases, the injection port 73 can be formed on the substrate 33 side, or the sealing material 70 can be printed on the substrate 33 side and the conductive material can be printed on the substrate 32 side.
[0092] そして、上記のような端子等を形成した基板 320と基板 330とを、対向させて組み 合わせる(S301)。この工程は、スぺーサを介して接着剤で貼り合わせる等して行わ れる。 Then, the substrate 320 and the substrate 330 on which the above-described terminals and the like are formed are combined so as to face each other (S301). This step is performed by bonding with an adhesive through a spacer.
続いて、注入口 73からシール材 70の内側へ液晶を注入し(S302)、封止材によつ て封止する。そして、母材となる基板 320上に配列した各端子を使用して、素子の動 作検査を行う(S303)。このとき、基板 320上〖こは、図 24に示すように予め配線 77を 形成している(S104)ため、その配線 77を利用して全数検査が一度に行われる。検 查の結果不合格であった箇所にっ ヽては NGマーキングを行う(S304)。  Subsequently, liquid crystal is injected into the sealing material 70 from the injection port 73 (S302) and sealed with a sealing material. Then, using the terminals arranged on the substrate 320 as the base material, the device is inspected for operation (S303). At this time, since the wiring 77 is formed in advance on the substrate 320 as shown in FIG. 24 (S104), 100% inspection is performed at once using the wiring 77. NG marking is performed for the places that failed the inspection (S304).
[0093] 以上の各工程 (S101— S303)を経て、液晶素子 1Fが多数個配列した組が得られ る。そして、この組に対し、同様の各工程(S101— S303)を経て製造された別の組( 液晶素子 1Gが配列している)を積層させる(S501)。このとき、図 25に示すように、 別の組を Z方向に裏返し、かつ X方向に 90度回転させた状態にして、液晶素子 1Fが 配列する組の基板 330側と、液晶素子 1Gが配列する組の基板 330側とを積層させ ることにより、コモン端子同士、対応するセグメント端子同士が組み合わされ、なおか つ液晶の配向方向が直交した状態が得られることになる。  [0093] Through the above steps (S101 to S303), a set in which a large number of liquid crystal elements 1F are arranged is obtained. Then, another set (the liquid crystal elements 1G are arranged) manufactured through the same steps (S101 to S303) is stacked on this set (S501). At this time, as shown in FIG. 25, another set is turned upside down in the Z direction and rotated 90 degrees in the X direction, and the substrate 330 side of the set in which the liquid crystal element 1F is arranged and the liquid crystal element 1G are arranged By laminating the substrate 330 side of the set, the common terminals and the corresponding segment terminals are combined, and the liquid crystal alignment direction is orthogonal.
[0094] また、組同士を積層させる際には、組の間に予めシール材 71及び導通材 75を印 刷等しておく(S305、 S401)。このシール材 71及び導通材 75は、それぞれ液晶素 子 1F側に設けても良いし、反対の液晶素子 1G側に設けても良い。  [0094] When the sets are stacked, the sealant 71 and the conductive material 75 are printed in advance between the sets (S305, S401). Each of the sealing material 71 and the conductive material 75 may be provided on the liquid crystal element 1F side or on the opposite liquid crystal element 1G side.
[0095] シール材 71は、図 26に示すように、光束が通過する円形領域を囲むように閉じた 状態で設けることができる。この場合、シール材 71の内側に閉じ込められる気体の膨 張によって積層状態が損なわれないように、組同士を積層させる作業は真空中で行 う必要がある。シール材 71が閉じた状態でかつ内側が真空であると、ゴミ等が内部に 侵入せず、光透過率を高くできるため好ましい。  As shown in FIG. 26, the sealing material 71 can be provided in a closed state so as to surround a circular region through which the light beam passes. In this case, it is necessary to perform the operation of stacking the sets in a vacuum so that the stacked state is not impaired by the expansion of the gas confined inside the sealing material 71. It is preferable that the sealing material 71 is closed and the inside is a vacuum because dust or the like does not enter the inside and the light transmittance can be increased.
[0096] そして、組同士を積層させた後、母材となる基板 320上に配列した各端子を使用し て、二重セル構造の液晶素子の動作検査を行う(S502)。このときも、上述の場合と 同様に基板 320上に形成した配線 77を利用して全数検査を一度に行うことができる 。検査の結果不合格であった箇所については NGマーキングを行う(S503)。 [0096] Then, after the sets are stacked, the operation of the liquid crystal element having a double cell structure is tested using the terminals arranged on the base substrate 320 (S502). At this time, as in the case described above, 100% inspection can be performed at once using the wiring 77 formed on the substrate 320. . NG marking is performed for the parts that failed the inspection (S503).
[0097] 最後に、図 27に示すように、母材となる基板を、ダイサ一等を用いて個々の二重液 晶素子 1FGに切り分け(S504)、単品の検査工程 (S505)を経た後に出荷する(S5 07)。なお、単品の検査において不合格となった素子は、廃棄又は修理するか、又 は再生工程に移される (S506)。 [0097] Finally, as shown in FIG. 27, the base material substrate is cut into individual double liquid crystal elements 1FG using a dicer or the like (S504), and after a single product inspection step (S505). Ship (S5 07). Elements that fail the single item inspection are discarded or repaired or moved to the regeneration process (S506).
[0098] なお、組同士を積層させる際、図 26で示したシール材 71に代わって、図 28に示す ような、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール 材 71 Aを介在させても良い。この場合は、シール材 71Aの内側に接着剤 72を設け、 この接着剤 72により組同士を接着させる。図 28の例では、組同士を積層させる作業 を大気中で行うことができるため、生産効率が高いという利点がある。 [0098] When the pairs are stacked, instead of the sealing material 71 shown in FIG. 26, as shown in FIG. 28, a seal provided in a partially opened state so as to surround a circular region through which the light beam passes. Material 71 A may be interposed. In this case, an adhesive 72 is provided on the inner side of the sealing material 71A, and the pair is bonded by the adhesive 72. The example in FIG. 28 has the advantage of high production efficiency because the work of stacking pairs can be performed in the atmosphere.
[0099] 以上のような製造方法によれば、各端子や電極の形成、及び液晶の注入工程等が 、個々の素子に切り分ける前の母材の状態で全て行われるため、生産効率が非常に 高ぐコストも大幅に低減することができる。また、生産規模の拡大にも容易に対応可 能である。 [0099] According to the manufacturing method as described above, the formation of each terminal and electrode, the liquid crystal injection step, and the like are all performed in the state of the base material before dividing into individual elements, so that the production efficiency is very high. High costs can be greatly reduced. In addition, it can easily cope with expansion of production scale.
特に、積層させる 2つの液晶素子が、別々に作るのではなく同一の工程で製造され 、片方を裏返して 90度回転させるだけで良いので、全体の生産効率は大きく向上す る。  In particular, the two liquid crystal elements to be stacked are manufactured in the same process rather than separately, and it is only necessary to turn one side over and rotate it 90 degrees, so the overall production efficiency is greatly improved.
さらに、液晶を注入 '封止した後に行われる検査工程も、母材の状態で一斉に行え るため、産業上極めて有用である。  Furthermore, the inspection process performed after the liquid crystal has been injected and sealed can be performed in the same state as the base material, which is extremely useful in the industry.
[0100] 次に、本発明の実施の形態(7)について図 29に基づき説明する。図 29の例は、上 述の二重セル構造の液晶素子 1FGに対し、光学ズーム系を構成した際に光束が通 過する領域 (セグメント電極 22が設けられた円形領域)の外側に遮光部 32aを形成し たことを特徴としている。なお、各端子 61 A— 61Cの部分は除いている。遮光部 32a は、適宜手段により形成することができ、例えば、基板 32の表面及び端面に黒色系 の塗膜を設ける方法や、液晶素子 1Fと液晶素子 1Gとを積層させる際のシール材に 黒色顔料を混入する方法等を適宜用いることができる。  Next, the embodiment (7) of the present invention will be described with reference to FIG. In the example of FIG. 29, the light shielding portion is provided outside the region through which the light beam passes when the optical zoom system is configured (the circular region provided with the segment electrode 22) for the liquid crystal element 1FG having the double cell structure described above. It is characterized by the formation of 32a. In addition, each terminal 61A-61C is excluded. The light shielding portion 32a can be formed by any appropriate means, for example, a method of providing a black coating film on the surface and end face of the substrate 32, or a black sealant when laminating the liquid crystal element 1F and the liquid crystal element 1G. A method of mixing a pigment or the like can be used as appropriate.
[0101] この実施の形態(7)によれば、遮光部 32aによって素子外部力 の乱反射 (特に、 基板 32の端面から面方向に入射する光)が遮られるため、良好な像を維持すること ができる。なお、この実施の形態(7)における遮光部 32aは、上述の実施の形態(1) 一 (5)に係る液晶素子に対して適用することもできる。 [0101] According to this embodiment (7), irregular reflection of the external force of the element (especially, light incident in the surface direction from the end face of the substrate 32) is blocked by the light blocking portion 32a, so that a good image can be maintained. Can do. The light shielding portion 32a in this embodiment (7) can also be applied to the liquid crystal element according to the above-described embodiments (1) and (5).
また、図 29の例では、基板 32の四隅を斜めにカットしている。このようにすると、他 のレンズの外形状 (丸形状)に近くなるため、レンズ系全体をより小さくすることができ 好ましい。また、カットした分だけ素子を軽量ィ匕できる利点もある。  In the example of FIG. 29, the four corners of the substrate 32 are cut obliquely. This is preferable because the overall shape of the lens system can be made smaller because it is close to the outer shape (round shape) of other lenses. In addition, there is an advantage that the device can be reduced in weight by the cut amount.
産業上の利用可能性 Industrial applicability
本発明の液晶素子は、所定の屈折率分布を形成することができるため、光学ズー ム系に配設した場合にレンズの駆動が不要となり、もしくは最小限の駆動で済むため 、従来にない小型'薄型の光学ズーム機能を提供でき、特に携帯電話機等の超小型 カメラ用として好適に利用することができる。  Since the liquid crystal element of the present invention can form a predetermined refractive index distribution, it is not necessary to drive a lens when it is disposed in an optical zoom system, or a minimum drive is required. 'A thin optical zoom function can be provided, and it can be suitably used especially for ultra-small cameras such as mobile phones.

Claims

請求の範囲 The scope of the claims
[1] 光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより 屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記 液晶を挟んで対向する複数の電極とを備え、電圧印加時に前記液晶の配向状態が 前記光軸を中心として同心状に変化するように構成してなる液晶素子。  [1] A liquid crystal element that is arranged together with a lens on an optical axis to form an optical zoom system and forms a refractive index distribution by applying a voltage to exert an optical zoom function. The liquid crystal and the liquid crystal A liquid crystal element comprising a plurality of electrodes opposed to each other, wherein the alignment state of the liquid crystal changes concentrically around the optical axis when a voltage is applied.
[2] 光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより 屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記 液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材 の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に 沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前 記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成してな る液晶素子。  [2] A liquid crystal element that is arranged together with a lens on an optical axis to constitute an optical zoom system and forms a refractive index distribution by applying a voltage to exert an optical zoom function. The liquid crystal and the liquid crystal A plurality of non-electrode portions that do not have electrode material in at least one of the electrodes, and are sized or arranged along a radial direction when the electrodes are divided concentrically. A liquid crystal element, which is formed in an arrangement pattern in which the interval or both are changed, and is configured such that the liquid crystal is non-uniformly aligned when a voltage is applied inside the non-electrode portion.
[3] 光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより 屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記 液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材 の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に 沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前 記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成すると ともに、相異なる電圧を印加する複数本の線状電極を前記同心円状に変化する配置 パターンに沿って所定の間隔で環状に配設してなる液晶素子。  [3] A liquid crystal element that is arranged together with a lens on an optical axis to form an optical zoom system and forms a refractive index distribution by applying a voltage to exhibit an optical zoom function. The liquid crystal and the liquid crystal A plurality of non-electrode portions that do not have electrode material in at least one of the electrodes, and are sized or arranged along a radial direction when the electrodes are divided concentrically. A plurality of linear electrodes that are formed in an arrangement pattern in which the interval or both are changed and the liquid crystal is non-uniformly oriented when a voltage is applied inside the non-electrode portion and different voltages are applied. Are arranged in a ring at predetermined intervals along the concentrically arranged arrangement pattern.
[4] 請求項 2又は 3記載の液晶素子にぉ 、て、複数の非電極部位の配置間隔は、電極 上の同心円状に分けられた各領域内において不規則であることを特徴とする液晶素 子。  [4] The liquid crystal element according to claim 2 or 3, wherein the intervals between the plurality of non-electrode portions are irregular in each of the concentrically divided regions on the electrode. Element.
[5] 請求項 2又は 3記載の液晶素子において、非電極部位の形状が円形又はピット形 であることを特徴とする液晶素子。  5. The liquid crystal element according to claim 2 or 3, wherein the non-electrode portion has a circular shape or a pit shape.
[6] 光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより 屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記 液晶を挟んで対向する複数の電極とを備え、前記複数の電極の少なくとも一方には 、相異なる電圧を印加する複数本の線状電極を前記光軸を中心として同心状に所 定の間隔で配設し、前記複数本の線状電極に電圧を印加した時に前記線状電極が 配設されて 、る前記電極が抵抗膜として作用し、前記複数本の線状電極の間で電 圧降下を生じて、前記液晶の配向状態が前記光軸を中心として同心状に変化するよ うに構成してなる液晶素子。 [6] A liquid crystal element that is arranged together with a lens on an optical axis to form an optical zoom system and forms a refractive index distribution by applying a voltage to exert an optical zoom function. The liquid crystal and the liquid crystal A plurality of electrodes facing each other, and at least one of the plurality of electrodes A plurality of linear electrodes for applying different voltages are arranged concentrically at predetermined intervals around the optical axis, and when the voltage is applied to the plurality of linear electrodes, the linear electrodes The electrode acts as a resistance film, causes a voltage drop between the plurality of linear electrodes, and the alignment state of the liquid crystal changes concentrically around the optical axis. A liquid crystal element configured as described above.
[7] 請求項 6記載の液晶素子にお 、て、複数本の線状電極が配設される電極は、相異 なる抵抗値を有する複数の領域力 構成されることを特徴とする液晶素子。  [7] The liquid crystal element according to claim 6, wherein the electrode on which the plurality of linear electrodes are arranged includes a plurality of region forces having different resistance values. .
[8] 請求項 1一 3、 6、 7のいずれか記載の液晶素子において、光学ズーム系を構成し た際に光束が通過する領域の外側を遮光することを特徴とする液晶素子。  [8] The liquid crystal device according to any one of claims 11, 3, 6, and 7, wherein the outside of the region through which the light beam passes is shielded when an optical zoom system is configured.
[9] 厚さ方向に積層した 2つの液晶素子からなり、光軸上にレンズとともに配置して光学 ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能 を発揮する二重セル構造の液晶素子であって、前記各々の液晶素子は、一方にコ モン電極が、他方にセグメント電極が形成された一対の基板と、前記一対の基板に 挟まれた液晶とを備え、前記セグメント電極には、電極材の存在しない複数の非電極 部位が、前記セグメント電極上を同心円状に分けたときの半径方向に沿って大きさも しくは配置間隔又はその両方を変化させた配置パターンで形成され、前記非電極部 位の内側では電圧印加時に液晶が不均一に配向するように構成され、前記一対の 基板の各々には厚さ方向に複数の穴が穿たれるとともに前記穴には前記コモン電極 およびセグメント電極の!/、ずれかに接続される端子が設けられ、前記一対の基板の 一方には液晶を注入するための注入口が形成されてなる二重セル構造の液晶素子  [9] Consists of two liquid crystal elements stacked in the thickness direction, and is arranged with a lens on the optical axis to form an optical zoom system. By applying a voltage, a refractive index distribution is formed to demonstrate the optical zoom function. Each of the liquid crystal elements includes a pair of substrates having a common electrode formed on one side and a segment electrode formed on the other side, and a liquid crystal sandwiched between the pair of substrates. In the segment electrode, a plurality of non-electrode portions where no electrode material is present are changed in size and / or arrangement interval along the radial direction when the segment electrode is divided concentrically. It is formed in an arrangement pattern, and is configured such that liquid crystals are non-uniformly oriented when a voltage is applied inside the non-electrode portion, and each of the pair of substrates is provided with a plurality of holes in the thickness direction and Before the hole The common electrodes and the segment electrodes! /, Provided terminal connected to or deviation, the liquid crystal device of a double cell structure inlet for injecting liquid crystal is formed on one of said pair of substrates
[10] 請求項 9記載の二重セル構造の液晶素子において、電圧の非印加時における液 晶の配向方向が 2つの液晶素子で直交するように構成したことを特徴とする二重セル 構造の液晶素子。 [10] The liquid crystal device having a double cell structure according to claim 9, wherein the alignment direction of the liquid crystal when no voltage is applied is perpendicular to the two liquid crystal devices. Liquid crystal element.
[11] 請求項 9記載の二重セル構造の液晶素子において、基板が四角形状に形成され、 前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以 外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする二 重セル構造の液晶素子。 [11] The liquid crystal element having a double cell structure according to claim 9, wherein the substrate is formed in a square shape, the liquid crystal is sealed along a circular region through which the light flux of the substrate passes, and a corner portion other than the circular region. A liquid crystal element having a double cell structure, characterized in that a liquid crystal inlet and a terminal are provided in the vicinity.
[12] 請求項 10記載の二重セル構造の液晶素子において、基板が四角形状に形成され 、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域 以外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする 二重セル構造の液晶素子。 12. The liquid crystal element having a double cell structure according to claim 10, wherein the substrate is formed in a square shape, the liquid crystal is sealed along a circular region through which the light flux of the substrate passes, and near the corner portion other than the circular region And a liquid crystal injection port and a terminal. A liquid crystal element having a double cell structure.
[13] 請求項 9一 11のいずれか記載の二重セル構造の液晶素子において、積層した各 々の液晶素子のコモン電極に接続される端子同士、一方の液晶素子のセグメント電 極に接続される端子同士、および他方の液晶素子のセグメント電極に接続される端 子同士が厚さ方向に相互に接続され、二重セル構造の液晶素子の外側に位置する 一の基板に設けられた端子にそれぞれ集約されることを特徴とする二重セル構造の 液晶素子。  [13] In the liquid crystal element having a double cell structure according to any one of claims 9-11, terminals connected to a common electrode of each of the stacked liquid crystal elements are connected to a segment electrode of one liquid crystal element. Terminals connected to the segment electrodes of the other liquid crystal element are connected to each other in the thickness direction, and the terminals provided on one substrate located outside the liquid crystal element having a double cell structure are connected to each other. A liquid crystal device with a double-cell structure, characterized by being integrated.
[14] 請求項 12記載の二重セル構造の液晶素子において、積層した各々の液晶素子の コモン電極に接続される端子同士、一方の液晶素子のセグメント電極に接続される 端子同士、および他方の液晶素子のセグメント電極に接続される端子同士が厚さ方 向に相互に接続され、二重セル構造の液晶素子の最も外側である一の基板に設け られた端子にそれぞれ集約されることを特徴とする二重セル構造の液晶素子。  [14] The liquid crystal element having a double cell structure according to claim 12, wherein the terminals connected to the common electrode of each of the stacked liquid crystal elements, the terminals connected to the segment electrode of one liquid crystal element, and the other The terminals connected to the segment electrodes of the liquid crystal element are connected to each other in the thickness direction and are aggregated into terminals provided on one substrate, which is the outermost side of the liquid crystal element having a double cell structure. A liquid crystal element having a double cell structure.
[15] 請求項 14記載の二重セル構造の液晶素子において、一方の液晶素子のセグメン ト電極に接続される端子と、他方の液晶素子のセグメント電極に接続される端子とが 、四角形状の基板の対角に位置するコーナー部付近に設けられ、コモン電極に接続 される端子と液晶の注入口とが残りのコーナー部付近に設けられることを特徴とする 二重セル構造の液晶素子。  [15] The liquid crystal element having a double cell structure according to claim 14, wherein the terminal connected to the segment electrode of one liquid crystal element and the terminal connected to the segment electrode of the other liquid crystal element have a rectangular shape. A double-cell liquid crystal element, characterized in that it is provided in the vicinity of a corner located on the opposite side of the substrate, and a terminal connected to the common electrode and a liquid crystal injection port are provided in the vicinity of the remaining corner.
[16] 請求項 9一 12のいずれか記載の二重セル構造の液晶素子において、光学ズーム 系を構成した際に光束が通過する領域の外側を遮光することを特徴とする二重セル 構造の液晶素子。  [16] The liquid crystal device having a double cell structure according to any one of claims 9-11, wherein the outside of the region through which the light beam passes is shielded when the optical zoom system is configured. Liquid crystal element.
[17] 請求項 15記載の二重セル構造の液晶素子の製造方法であって、母材となる基板 に対し、多数個の液晶素子に対応する端子および注入口を設ける工程と、セグメント 電極を形成する工程と、前記の端子、注入口、およびセグメント電極を形成した基板 に対し、対向する位置に端子を設けるとともにコモン電極を形成した別の基板を組み 合わせる工程と、組み合わせた後に注入ロカゝら液晶を注入する工程と、前記各工程 を経て製造される多数個の液晶素子が配列した組に対し、同様の各工程を経て得ら れる別の組を裏返しかつ 90度回転させた上で積層させる工程と、個々の二重セル構 造の液晶素子に切り分ける工程と、を有してなる二重セル構造の液晶素子の製造方 法。 [17] The method for manufacturing a liquid crystal element having a double cell structure according to claim 15, wherein a step of providing terminals and injection holes corresponding to a large number of liquid crystal elements on a base substrate is provided; A step of forming the terminal, an injection port, and a segment electrode, and a step of combining another substrate on which a terminal is provided and a common electrode are formed on the substrate on which the common electrode is formed. A step of injecting liquid crystal and each of the steps For a group in which a large number of liquid crystal elements manufactured through the steps are arranged, another group obtained through the same steps is turned over, rotated 90 degrees, and stacked. A method of manufacturing a liquid crystal element having a double cell structure.
[18] 請求項 15記載の二重セル構造の液晶素子の製造方法であって、母材となる基板 に対し、多数個の液晶素子に対応する端子を設ける工程と、セグメント電極を形成す る工程と、前記の端子、およびセグメント電極を形成した基板に対し、対向する位置 に端子とさらに注入口を設けるとともにコモン電極を形成した別の基板を組み合わせ る工程と、組み合わせた後に注入ロカゝら液晶を注入する工程と、前記各工程を経て 製造される多数個の液晶素子が配列した組に対し、同様の各工程を経て得られる別 の組を裏返しかつ 90度回転させた上で積層させる工程と、個々の二重セル構造の 液晶素子に切り分ける工程と、を有してなる二重セル構造の液晶素子の製造方法。  [18] The method of manufacturing a liquid crystal element having a double cell structure according to claim 15, wherein a step corresponding to a large number of liquid crystal elements is provided on a substrate serving as a base material, and a segment electrode is formed. A step in which the terminal and the substrate on which the segment electrode is formed are provided with a terminal and another injection port at a position facing each other, and another substrate on which the common electrode is formed, and after the combination, For the group in which the liquid crystal is injected and the group in which a large number of liquid crystal elements manufactured through the above steps are arranged, another group obtained through the same steps is turned over and rotated by 90 degrees and stacked. A process for producing a liquid crystal element having a double cell structure, comprising: a step of dividing the liquid crystal element into individual liquid crystal elements having a double cell structure.
[19] 請求項 17又は 18記載の製造方法において、基板の表面には、それぞれの端子に 共通して接続される検査用の配線を形成し、多数個の液晶素子が配列した組に対し て別の組を積層させる工程の前、もしくは個々の二重セル構造の液晶素子に切り分 ける工程の前のいずれか一方又は両方の時点で前記配線を利用して検査を行うこと を特徴とする二重セル構造の液晶素子の製造方法。  [19] In the manufacturing method according to claim 17 or 18, for a set in which a test wiring connected in common to each terminal is formed on the surface of the substrate and a plurality of liquid crystal elements are arranged. Inspection is performed using the wiring at one or both times before the step of laminating another set or before the step of dividing into individual liquid crystal elements having a double cell structure. A method of manufacturing a liquid crystal element having a double cell structure.
[20] 請求項 17又は 18記載の製造方法において、多数個の液晶素子が配列した組に 対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むように 閉じた状態で設けられるシール材を介して積層させることを特徴とする二重セル構造 の液晶素子の製造方法。  [20] In the manufacturing method according to claim 17 or 18, when another set is stacked on a set in which a large number of liquid crystal elements are arranged, the set is closed so as to surround a circular region through which a light beam passes in a vacuum. A method for producing a liquid crystal element having a double cell structure, characterized in that the liquid crystal element is laminated through a sealing material provided in a closed state.
[21] 請求項 17又は 18記載の製造方法において、多数個の液晶素子が配列した組に 対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むように 一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着剤と を介して積層させることを特徴とする二重セル構造の液晶素子の製造方法。  [21] In the manufacturing method according to claim 17 or 18, when another set is stacked on the set in which a large number of liquid crystal elements are arranged, the circular region through which the light beam passes is surrounded in the atmosphere. A method for producing a liquid crystal element having a double cell structure, comprising: a sealing material provided in a partially opened state; and an adhesive provided inside the sealing material.
PCT/JP2004/014079 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same WO2006035482A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020077005072A KR101073657B1 (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same
CNB2004800440839A CN100437219C (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same
PCT/JP2004/014079 WO2006035482A1 (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same
JP2006537576A JP4532500B2 (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014079 WO2006035482A1 (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2006035482A1 true WO2006035482A1 (en) 2006-04-06

Family

ID=36118634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014079 WO2006035482A1 (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP4532500B2 (en)
KR (1) KR101073657B1 (en)
CN (1) CN100437219C (en)
WO (1) WO2006035482A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006035482A1 (en) * 2004-09-27 2008-05-15 株式会社びにっと Liquid crystal device having optical zoom function and method of manufacturing the same
JP2011180373A (en) * 2010-03-01 2011-09-15 Akita Prefecture Low-voltage drive liquid crystal lens
JP2012137682A (en) * 2010-12-27 2012-07-19 Akita Prefecture Liquid crystal optical device
CN109752906A (en) * 2017-11-07 2019-05-14 三星电子株式会社 Light supply apparatus, first projector and object recognition equipment and electronic device including it
WO2023153064A1 (en) * 2022-02-14 2023-08-17 株式会社ジャパンディスプレイ Light control device and panel unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101951320B1 (en) 2012-02-07 2019-02-22 삼성전자주식회사 Varifocal lens
CN104062828B (en) * 2013-03-18 2018-08-31 鸿富锦精密工业(深圳)有限公司 Camera module
KR102610633B1 (en) * 2021-03-15 2023-12-06 호서대학교 산학협력단 Wiring structure for Fresnel lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553089A (en) * 1991-08-27 1993-03-05 Hitachi Ltd Focusing mechanism
JPH05100201A (en) * 1991-10-09 1993-04-23 Seiko Epson Corp Variable focus lens
JP2002109776A (en) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd Optical element, optical head, optical recording/ reproducing apparatus, and optical recording/ reproducing method
JP2003315650A (en) * 2002-04-26 2003-11-06 Olympus Optical Co Ltd Optical device
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292326A (en) * 2004-03-31 2005-10-20 Binit:Kk Liquid crystal element
CN100437219C (en) * 2004-09-27 2008-11-26 碧理科技有限公司 Liquid crystal element having optical zoom function and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553089A (en) * 1991-08-27 1993-03-05 Hitachi Ltd Focusing mechanism
JPH05100201A (en) * 1991-10-09 1993-04-23 Seiko Epson Corp Variable focus lens
JP2002109776A (en) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd Optical element, optical head, optical recording/ reproducing apparatus, and optical recording/ reproducing method
JP2003315650A (en) * 2002-04-26 2003-11-06 Olympus Optical Co Ltd Optical device
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006035482A1 (en) * 2004-09-27 2008-05-15 株式会社びにっと Liquid crystal device having optical zoom function and method of manufacturing the same
JP4532500B2 (en) * 2004-09-27 2010-08-25 株式会社びにっと Liquid crystal element having optical zoom function and method for manufacturing the same
JP2011180373A (en) * 2010-03-01 2011-09-15 Akita Prefecture Low-voltage drive liquid crystal lens
JP2012137682A (en) * 2010-12-27 2012-07-19 Akita Prefecture Liquid crystal optical device
CN109752906A (en) * 2017-11-07 2019-05-14 三星电子株式会社 Light supply apparatus, first projector and object recognition equipment and electronic device including it
CN109752906B (en) * 2017-11-07 2022-03-11 三星电子株式会社 Light source device, meta-projector, and object recognition device and electronic device including the same
WO2023153064A1 (en) * 2022-02-14 2023-08-17 株式会社ジャパンディスプレイ Light control device and panel unit

Also Published As

Publication number Publication date
JP4532500B2 (en) 2010-08-25
KR20070057163A (en) 2007-06-04
CN101027601A (en) 2007-08-29
CN100437219C (en) 2008-11-26
JPWO2006035482A1 (en) 2008-05-15
KR101073657B1 (en) 2011-10-14

Similar Documents

Publication Publication Date Title
US8493658B2 (en) Polarizer and display device including polarizer
JP2008090259A (en) Imaging lens device
JP2008216626A (en) Variable focal lens
JP4532500B2 (en) Liquid crystal element having optical zoom function and method for manufacturing the same
US8760604B2 (en) Polarizing element, liquid crystal device, and electronic apparatus
JP5647887B2 (en) Multi-structure liquid crystal optical element and manufacturing method thereof
JP5491903B2 (en) Multi-layer structure liquid crystal optical element and manufacturing method thereof
KR100803340B1 (en) Double liquid-crystal aberration correcting element and its manufacturing method
WO2016185873A1 (en) Liquid crystal display device
JP4868219B2 (en) Liquid crystal display element, electronic device, and method for manufacturing liquid crystal display element
JP2011175104A (en) Liquid crystal optical element having multilayer structure, and method for manufacturing liquid crystal lens
JP4008945B2 (en) Liquid crystal aberration correction element and manufacturing method thereof
JP2011164427A (en) Multilayered liquid crystal optical element and liquid crystal lens using the same
US10180593B2 (en) Display device
CN101261407B (en) Liquid crystal element possessing optical zooming function and method of manufacture
KR20160085970A (en) Liquid crystal display
JP2014010210A (en) Liquid crystal device, manufacturing method of liquid crystal device, and electronic apparatus
JP2007206300A (en) Imaging structure for camera
JP2013050590A (en) Liquid crystal device, method for manufacturing liquid crystal device, and electronic equipment
JP2022190311A (en) Electro-optical device, method for manufacturing electro-optical device, and electronic apparatus
JP2013160975A (en) Liquid crystal device, manufacturing method of the same and electronic apparatus
JP2013015616A (en) Phase compensation element and manufacturing method thereof, liquid crystal device, and electronic apparatus
JP2012093576A (en) Liquid crystal optical element
JP2009069245A (en) Method of manufacturing liquid crystal device and electronic apparatus
JP2008076623A (en) Liquid crystal lens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006537576

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077005072

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200480044083.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04788175

Country of ref document: EP

Kind code of ref document: A1