JPWO2006035482A1 - Liquid crystal device having optical zoom function and method of manufacturing the same - Google Patents

Liquid crystal device having optical zoom function and method of manufacturing the same Download PDF

Info

Publication number
JPWO2006035482A1
JPWO2006035482A1 JP2006537576A JP2006537576A JPWO2006035482A1 JP WO2006035482 A1 JPWO2006035482 A1 JP WO2006035482A1 JP 2006537576 A JP2006537576 A JP 2006537576A JP 2006537576 A JP2006537576 A JP 2006537576A JP WO2006035482 A1 JPWO2006035482 A1 JP WO2006035482A1
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
crystal element
cell structure
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006537576A
Other languages
Japanese (ja)
Other versions
JP4532500B2 (en
Inventor
信義 中川
信義 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BINIT CORPORATION
Original Assignee
BINIT CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BINIT CORPORATION filed Critical BINIT CORPORATION
Publication of JPWO2006035482A1 publication Critical patent/JPWO2006035482A1/en
Application granted granted Critical
Publication of JP4532500B2 publication Critical patent/JP4532500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Abstract

特に携帯電話機等の機器に搭載されるカメラのレンズ系に用いられ、従来に比して小型・薄型でかつ軽量な光学ズーム機能を得ることができる新規な液晶素子を提供することを目的とする。この課題を解決するため、本発明の液晶素子は、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成したことを特徴とする。In particular, it is an object of the present invention to provide a novel liquid crystal element which is used in a lens system of a camera mounted on a device such as a mobile phone and which can obtain an optical zoom function which is smaller, thinner and lighter than conventional ones. .. In order to solve this problem, a liquid crystal element of the present invention is a liquid crystal that is arranged with a lens on an optical axis to form an optical zoom system, and forms a refractive index distribution by applying a voltage to exhibit an optical zoom function. An element, comprising a liquid crystal and a plurality of electrodes facing each other with the liquid crystal sandwiched therebetween, and a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes is concentrically divided on the electrode. When the voltage is applied, the liquid crystal is formed in an arrangement pattern in which the size or the arrangement interval or both are changed along the radial direction, and the liquid crystal is non-uniformly aligned when a voltage is applied. To do.

Description

本発明は、光学ズーム機能に関する。さらに詳しくは、携帯電話機、携帯情報端末機(PDA)等における小型のデジタルスチルカメラ、デジタルビデオカメラ等に対して好適に用いられる光学ズーム機能に関する。   The present invention relates to an optical zoom function. More specifically, the present invention relates to an optical zoom function suitably used for small digital still cameras, digital video cameras and the like in mobile phones, personal digital assistants (PDAs) and the like.

近年、超小型カメラを搭載した撮影機能付きの携帯電話機、携帯情報端末機(PDA)等が一般に普及している。従来の超小型カメラでは、寸法等の制限により単焦点のレンズ系が一般的であったが、携帯電話機のカメラ仕様が急速に高画素化し、100〜200万以上の有効画素数が標準的になってきたことに伴って、光学ズーム機能を搭載することが要求されており、最近では、光学式の小型ズームレンズがいくつか提案されている。   2. Description of the Related Art In recent years, mobile phones with a photographing function, personal digital assistants (PDAs), etc., equipped with an ultra-small camera, have become widespread. In conventional miniature cameras, a single focus lens system was generally used due to size restrictions, but the camera specifications for mobile phones rapidly increased in number of pixels, and an effective pixel number of 1 to 2 million or more was standard. Along with this, it is required to have an optical zoom function, and recently, some optical compact zoom lenses have been proposed.

例えば、(特許文献1)には、前群レンズ、後群レンズ、CCD等の撮像素子を光軸に順に配列し、駆動手段により後群レンズのみをガイドピンの方向(光軸方向)に駆動させる超小型のレンズ駆動装置が開示されている。
また、(特許文献2)には、物体側から像面側に向けて順に、全体として負の屈折力を有する第1レンズ群と、全体として正の屈折力を有する第2レンズ群と、全体として正の屈折力を有する第3レンズ群とを備え、第2レンズ群が像面側から物体側に移動しかつ第3レンズ群が像面側から物体側へ一旦移動した後再び像面側に移動して広角端から望遠端への変倍及び変倍に伴う像面変動の補正を行うズームレンズが開示されている。
For example, in (Patent Document 1), a front lens group, a rear lens group, and an image pickup device such as a CCD are arranged in order on an optical axis, and only a rear lens group is driven by a driving unit in the direction of a guide pin (optical axis direction). An ultra-compact lens driving device is disclosed.
Further, in (Patent Document 2), in order from the object side to the image plane side, a first lens group having a negative refracting power as a whole, a second lens group having a positive refracting power as a whole, and And a third lens group having a positive refractive power, the second lens group moves from the image plane side to the object side, and the third lens group once moves from the image plane side to the object side and then again to the image plane side. There is disclosed a zoom lens that moves to the zoom position to perform zooming from the wide-angle end to the telephoto end and corrects an image plane variation due to zooming.

上述のような従来のズームレンズは、レンズの駆動方式を工夫する等してある程度の小型化・薄型化を可能にしたものであるが、機械的にレンズを移動させるためにその移動空間を確保する必要があり、実際にはレンズ鏡筒の厚さにして10mm程度が限界であった。そのため、レンズ部分の出っ張りを避ける必要から携帯電話機等の外観デザインの自由度が制限されてしまう問題があり、実際には依然としてデジタルズーム方式に頼っているのが現状である。また、カメラの有効画素数がさらに高くなるにつれ、レンズユニットをいかに小さな筐体に収めるかがますます重要になっている。   The conventional zoom lens as described above can be downsized and thinned to some extent by devising the lens drive method, etc., but secures a movement space for mechanically moving the lens. However, in practice, the thickness of the lens barrel is limited to about 10 mm. Therefore, there is a problem that the degree of freedom in the external design of the mobile phone or the like is limited because it is necessary to avoid the protrusion of the lens portion, and in reality, the digital zoom method is still used. Also, as the number of effective pixels of the camera becomes higher, it becomes more and more important how to house the lens unit in a small housing.

特開2004−258111号公報JP, 2004-258111, A 特開2004−212737号公報JP 2004-212737 A

そこで本発明は、上記従来の状況に鑑み、特に携帯電話機等の機器に搭載されるカメラのレンズ系に用いられ、従来に比して小型・薄型でかつ軽量な光学ズーム機能を得ることができる新規な液晶素子を提供することを目的とする。   Therefore, in view of the conventional situation described above, the present invention is used for a lens system of a camera mounted on a device such as a mobile phone, and can obtain an optical zoom function which is smaller, thinner, and lighter than conventional ones. It is an object to provide a new liquid crystal element.

上記課題を解決するため、本発明は、第1発明として、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、電圧印加時に前記液晶の配向状態が前記光軸を中心として同心状に変化するように構成した液晶素子を提供するものである。   In order to solve the above problems, the present invention provides, as a first invention, an optical zoom system by arranging a lens along an optical axis together with an optical zoom system to form a refractive index distribution by applying voltage. A liquid crystal element having a liquid crystal and a plurality of electrodes facing each other with the liquid crystal sandwiched therebetween, and configured so that the alignment state of the liquid crystal changes concentrically around the optical axis when a voltage is applied. Is provided.

この構成によれば、同心状に変化する液晶の配向状態に対応して、素子全体に所定の屈折率分布が与えられ、焦点が移動して光学ズーム機能が発揮される。   According to this configuration, a predetermined refractive index distribution is given to the entire element in accordance with the alignment state of the liquid crystal that changes concentrically, and the focal point moves to exert the optical zoom function.

また、第2発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成した液晶素子を提供する。   Further, in the second invention, a liquid crystal element is arranged on the optical axis together with a lens to form an optical zoom system, and a refractive index distribution is formed by applying a voltage to exhibit an optical zoom function. , A plurality of electrodes facing each other across the liquid crystal, a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes, along a radial direction when the electrodes are concentrically divided. Provided is a liquid crystal element which is formed in an arrangement pattern in which the size and/or the arrangement interval are changed, and in which the liquid crystal is nonuniformly aligned when a voltage is applied inside the non-electrode portion.

この構成によれば、複数形成された非電極部位の中心部では電極に対して垂直方向に弱い電界が形成され、非電極部位の端の部分では電界が傾いた方向に形成されるため、その電界分布に沿って液晶分子が不均一に配向することで、非電極部位の中心から周辺にかけて屈折率が連続的に変化する光の屈折効果(レンズ効果)が得られる。非電極部位の大きさないし配置間隔は電極上で同心円状に変化させるため、素子全体として所定の屈折率分布が与えられ、焦点が移動して光学ズーム機能が発揮される。   According to this structure, a weak electric field is formed in the central portion of the plurality of non-electrode portions in the direction perpendicular to the electrodes, and an electric field is formed in the inclined direction at the end portions of the non-electrode portions. Since the liquid crystal molecules are non-uniformly aligned along the electric field distribution, a light refraction effect (lens effect) in which the refractive index continuously changes from the center to the periphery of the non-electrode portion can be obtained. Since the size of the non-electrode portion or the arrangement interval is changed concentrically on the electrode, a predetermined refractive index distribution is given to the entire element, and the focus moves to exert the optical zoom function.

また、第3発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成するとともに、相異なる電圧を印加する複数本の線状電極を前記同心円状に変化する配置パターンに沿って所定の間隔で環状に配設した液晶素子を提供する。   According to the third aspect of the invention, the liquid crystal element is arranged on the optical axis together with a lens to form an optical zoom system, and a refractive index distribution is formed by applying a voltage to exhibit an optical zoom function. , A plurality of electrodes facing each other across the liquid crystal, a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes, along a radial direction when the electrodes are concentrically divided. It is formed by an arrangement pattern in which the size and/or the arrangement interval are changed, and the inside of the non-electrode portion is configured so that the liquid crystal is non-uniformly aligned when a voltage is applied. Provided is a liquid crystal element in which linear electrodes are annularly arranged at a predetermined interval along the arrangement pattern that changes concentrically.

この構成によれば、上述のように非電極部位の大きさもしくは配置間隔を同心円状に変化させることで、所望の屈折率分布が得られるとともに、複数本の線状電極を環状に配設し所定部位にさらに電圧を印加することによって、上記の屈折率分布がより強調され、光学ズーム機能が向上する。   According to this configuration, by changing the size or the arrangement interval of the non-electrode parts in a concentric manner as described above, a desired refractive index distribution can be obtained, and a plurality of linear electrodes are arranged in an annular shape. By further applying a voltage to the predetermined portion, the above refractive index distribution is further emphasized and the optical zoom function is improved.

また、第4発明は、上記第2発明又は第3発明に係る液晶素子において、複数の非電極部位の配置間隔は、電極上の同心円状に分けられた各領域内において不規則であることを特徴とする。   The fourth invention is that in the liquid crystal element according to the second invention or the third invention, the arrangement intervals of the plurality of non-electrode portions are irregular in each concentric region on the electrode. Characterize.

この構成によれば、隣接する非電極部位との間隔を不規則(ランダム)にすることで、光干渉効果による波面の乱れが防止される。   According to this configuration, the distance between the adjacent non-electrode portions is irregular (random), so that the disturbance of the wavefront due to the optical interference effect is prevented.

また、第5発明は、上記第2発明又は第3発明に係る液晶素子において、非電極部位の形状が円形又はピット形であることを特徴とする。   Further, a fifth invention is characterized in that, in the liquid crystal element according to the second invention or the third invention, the non-electrode portion has a circular shape or a pit shape.

この構成によれば、素子を通過する光束に対して非電極部位の形状が最適化される。なお、ここでピット形とは、一方の軸がそれに垂直な他方の軸より長い形状を意味し、例えば長い方の軸を液晶のラビング方向と平行に、あるいはラビング方向と垂直になるように形成することができる。   According to this structure, the shape of the non-electrode portion is optimized for the light flux passing through the element. Here, the pit shape means a shape in which one axis is longer than the other axis perpendicular to it, and for example, the longer axis is formed parallel to the rubbing direction of the liquid crystal or perpendicular to the rubbing direction. can do.

また、第6発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記複数の電極の少なくとも一方には、相異なる電圧を印加する複数本の線状電極を前記光軸を中心として同心状に所定の間隔で配設し、前記複数本の線状電極に電圧を印加した時に前記線状電極が配設されている前記電極が抵抗膜として作用し、前記複数本の線状電極の間で電圧降下を生じて、前記液晶の配向状態が前記光軸を中心として同心状に変化するように構成した液晶素子を提供する。   According to the sixth aspect of the invention, the liquid crystal element is arranged on the optical axis together with a lens to form an optical zoom system, and a refractive index distribution is formed by applying a voltage to exhibit an optical zoom function. , A plurality of electrodes facing each other with the liquid crystal interposed therebetween, and a plurality of linear electrodes applying different voltages to at least one of the plurality of electrodes concentrically with respect to the optical axis at predetermined intervals. The linear electrodes are arranged to act as a resistance film when a voltage is applied to the plurality of linear electrodes, and a voltage drop occurs between the plurality of linear electrodes. Provided is a liquid crystal element configured so that the alignment state of the liquid crystal changes concentrically around the optical axis.

この構成によれば、複数本の線状電極の間で印加電圧が連続的に変化し、その電圧値に応じて液晶の配向状態が変化するため、素子全体に所定の屈折率分布が形成され、光学ズーム機能が発揮される。   According to this configuration, the applied voltage is continuously changed between the plurality of linear electrodes, and the alignment state of the liquid crystal is changed according to the voltage value, so that a predetermined refractive index distribution is formed over the entire element. , Optical zoom function is demonstrated.

また、第7発明は、上記第6発明に係る液晶素子において、複数本の線状電極が配設される電極は、相異なる抵抗値を有する複数の領域から構成されることを特徴とする。   A seventh invention is characterized in that, in the liquid crystal element according to the sixth invention, the electrode on which the plurality of linear electrodes are arranged is composed of a plurality of regions having different resistance values.

この構成によれば、上記第6発明の作用に加えて、複数本の線状電極の間の電圧降下が曲線的になる。   According to this structure, in addition to the operation of the sixth invention, the voltage drop between the plurality of linear electrodes becomes curved.

また、第8発明は、上記第1〜第3、第6、第7発明のいずれかに係る液晶素子において、光学ズーム系を構成した際に光束が通過する領域の外側を遮光することを特徴とする。   In addition, an eighth invention is characterized in that, in the liquid crystal element according to any one of the first to third, sixth, and seventh inventions, when the optical zoom system is configured, the outside of a region through which a light beam passes is shielded. And

この構成によれば、光束が通過する領域の外側からの乱反射等が遮られ、像の画質が安定する。   According to this structure, diffused reflection from the outside of the region through which the light flux passes is blocked, and the image quality of the image is stabilized.

また、第9発明では、厚さ方向に積層した2つの液晶素子からなり、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する二重セル構造の液晶素子であって、前記各々の液晶素子は、一方にコモン電極が、他方にセグメント電極が形成された一対の基板と、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極には、電極材の存在しない複数の非電極部位が、前記セグメント電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成され、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成され、前記一対の基板の各々には厚さ方向に複数の穴が穿たれるとともに前記穴には前記コモン電極およびセグメント電極のいずれかに接続される端子が設けられ、前記一対の基板の一方には液晶を注入するための注入口が形成されてなる二重セル構造の液晶素子を提供する。   Further, in the ninth invention, it is composed of two liquid crystal elements laminated in the thickness direction, and is arranged with a lens on the optical axis to form an optical zoom system, and a refractive index distribution is formed by applying a voltage to form an optical zoom system. A liquid crystal element having a double cell structure that exhibits a zoom function, wherein each of the liquid crystal elements is sandwiched between a pair of substrates having a common electrode formed on one side and a segment electrode formed on the other side, and the pair of substrates. And a plurality of non-electrode portions where no electrode material is present in the segment electrode, the size and/or the arrangement interval of the segment electrode being changed along the radial direction when the segment electrode is concentrically divided. The liquid crystal is arranged in a non-uniform manner when the voltage is applied inside the non-electrode portion, and a plurality of holes are formed in the thickness direction in each of the pair of substrates. A liquid crystal device having a double cell structure in which a terminal connected to either the common electrode or the segment electrode is provided in the hole, and an injection port for injecting liquid crystal is formed in one of the pair of substrates. I will provide a.

この構成によれば、コモン電極及びセグメント電極に接続するための端子、並びに液晶の注入口が、穴を通じて基板の表面上に配置される。
また、上述のように、複数形成された非電極部位の内側で液晶分子が不均一に配向するため、非電極部位の中心から周辺にかけて屈折率が変化する光の屈折効果(レンズ効果)を生じ、素子全体として同心円状の屈折率分布が得られる。したがって、焦点が移動して光学ズーム機能が発揮される。
According to this structure, the terminals for connecting to the common electrodes and the segment electrodes, and the liquid crystal inlet are arranged on the surface of the substrate through the holes.
Further, as described above, since the liquid crystal molecules are non-uniformly aligned inside the plurality of non-electrode portions, a light refraction effect (lens effect) in which the refractive index changes from the center to the periphery of the non-electrode portion is generated. A concentric refractive index distribution is obtained for the entire device. Therefore, the focus moves and the optical zoom function is exerted.

また、第10発明は、上記第9発明に係る二重セル構造の液晶素子において、電圧の非印加時における液晶の配向方向が2つの液晶素子で直交するように構成したことを特徴とする。   A tenth aspect of the invention is characterized in that, in the liquid crystal element having the double cell structure according to the ninth aspect, the alignment directions of the liquid crystal when no voltage is applied are orthogonal to each other in the two liquid crystal elements.

この構成によれば、異なる偏光(P偏光及びS偏光)に対して所定の屈折率分布が与えられる。   According to this configuration, a predetermined refractive index distribution is given to different polarized lights (P polarized light and S polarized light).

また、第11発明は、上記第9発明に係る二重セル構造の液晶素子において、基板が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする。   An eleventh aspect of the invention is a liquid crystal device having a double cell structure according to the ninth aspect, wherein the substrate is formed in a quadrangular shape, and the liquid crystal is sealed along a circular region through which the light flux of the substrate passes, the circular region. A liquid crystal injection port and a terminal are provided in the vicinity of the other corners.

また、第12発明は、上記第10発明に係る二重セル構造の液晶素子において、基板が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする。   A twelfth aspect of the invention is a liquid crystal device having a double cell structure according to the tenth aspect of the invention, wherein the substrate is formed in a rectangular shape, and the liquid crystal is sealed along a circular area through which the light flux of the substrate passes, and the circular area is formed. A liquid crystal injection port and a terminal are provided in the vicinity of the other corners.

上記第11及び第12発明の構成によれば、基板のコーナー部付近が、穴を形成するスペースとして有効利用されるとともに、素子の重量バランスが改善される。また、液晶が膨張・収縮する場合に全体が均一に変形するため、光学ズーム機能が安定する。   According to the eleventh and twelfth aspects of the invention, the vicinity of the corner of the substrate is effectively used as a space for forming a hole, and the weight balance of the element is improved. Further, when the liquid crystal expands and contracts, the entire liquid crystal is uniformly deformed, so that the optical zoom function is stabilized.

また、第13発明は、上記第9〜第11発明のいずれかに係る二重セル構造の液晶素子において、積層した各々の液晶素子のコモン電極に接続される端子同士、一方の液晶素子のセグメント電極に接続される端子同士、および他方の液晶素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重セル構造の液晶素子の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特徴とする。   A thirteenth invention is a liquid crystal element having a double cell structure according to any one of the ninth to eleventh inventions, wherein terminals connected to a common electrode of each of the laminated liquid crystal elements are connected to each other, and a segment of one of the liquid crystal elements is connected. The terminals connected to the electrodes and the terminals connected to the segment electrodes of the other liquid crystal element are connected to each other in the thickness direction, and are provided on one substrate located outside the liquid crystal element of the double cell structure. It is characterized by being integrated into each terminal.

また、第14発明は、上記第12発明に係る二重セル構造の液晶素子において、積層した各々の液晶素子のコモン電極に接続される端子同士、一方の液晶素子のセグメント電極に接続される端子同士、および他方の液晶素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重セル構造の液晶素子の最も外側である一の基板に設けられた端子にそれぞれ集約されることを特徴とする。   A fourteenth aspect of the invention is a liquid crystal element having a double cell structure according to the twelfth aspect, wherein terminals connected to a common electrode of each of the stacked liquid crystal elements and terminals connected to a segment electrode of one of the liquid crystal elements. The terminals connected to each other and the segment electrodes of the other liquid crystal element are connected to each other in the thickness direction, and are gathered to the terminals provided on the outermost one substrate of the liquid crystal element having the double cell structure. It is characterized by

上記第13及び第14発明の構成によれば、素子を駆動させるための各端子が、一の基板上に集約配置される。   According to the configurations of the thirteenth and fourteenth inventions, the terminals for driving the elements are collectively arranged on one substrate.

また、第15発明は、上記第14発明に係る二重セル構造の液晶素子において、一方の液晶素子のセグメント電極に接続される端子と、他方の液晶素子のセグメント電極に接続される端子とが、四角形状の基板の対角に位置するコーナー部付近に設けられ、コモン電極に接続される端子と液晶の注入口とが残りのコーナー部付近に設けられることを特徴とする。   A fifteenth aspect of the invention is a liquid crystal element having a double cell structure according to the fourteenth aspect, wherein a terminal connected to the segment electrode of one liquid crystal element and a terminal connected to the segment electrode of the other liquid crystal element are provided. It is characterized in that it is provided in the vicinity of a corner portion diagonally located on the rectangular substrate, and the terminal connected to the common electrode and the liquid crystal inlet are provided in the vicinity of the remaining corner portion.

この構成によれば、素子を製造する際の効率を考慮し、各端子の位置が設定される。   According to this configuration, the position of each terminal is set in consideration of efficiency in manufacturing the element.

また、第16発明は、上記第9〜第12発明のいずれかに係る二重セル構造の液晶素子において、光学ズーム系を構成した際に光束が通過する領域の外側を遮光することを特徴とする。   A sixteenth aspect of the invention is characterized in that, in the double-cell structure liquid crystal element according to any of the ninth to twelfth aspects of the invention, when the optical zoom system is configured, the light is shielded outside the region through which the light flux passes. To do.

この構成によれば、光束が通過する領域の外側からの乱反射等が遮られ、像の画質が安定する。   According to this structure, diffused reflection from the outside of the region through which the light flux passes is blocked, and the image quality of the image is stabilized.

また、第17発明は、上記第15発明に係る二重セル構造の液晶素子の製造方法であって、母材となる基板に対し、多数個の液晶素子に対応する端子および注入口を設ける工程と、セグメント電極を形成する工程と、前記の端子、注入口、およびセグメント電極を形成した基板に対し、対向する位置に端子を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重セル構造の液晶素子に切り分ける工程と、を有してなる二重セル構造の液晶素子の製造方法である。   A seventeenth aspect of the invention is a method of manufacturing a liquid crystal device having a double cell structure according to the fifteenth aspect of the invention, wherein a step of providing terminals and injection ports corresponding to a large number of liquid crystal elements on a substrate as a base material. And a step of forming a segment electrode, and a step of providing another terminal having a common electrode with a terminal provided at a position facing the substrate having the terminals, the injection port, and the segment electrode formed thereon. After the step of injecting the liquid crystal from the injection port and the group in which a large number of liquid crystal elements manufactured through the above steps are arranged, another group obtained through the same steps is turned over and rotated by 90 degrees. A method of manufacturing a liquid crystal element having a double cell structure, comprising the steps of stacking layers above and dividing into individual liquid crystal elements having a double cell structure.

また、第18発明は、上記第15発明に係る二重セル構造の液晶素子の製造方法であって、母材となる基板に対し、多数個の液晶素子に対応する端子を設ける工程と、セグメント電極を形成する工程と、前記の端子、およびセグメント電極を形成した基板に対し、対向する位置に端子とさらに注入口を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重セル構造の液晶素子に切り分ける工程と、を有してなる二重セル構造の液晶素子の製造方法である。   An eighteenth invention is a method for manufacturing a liquid crystal device having a double cell structure according to the fifteenth invention, which comprises a step of providing terminals corresponding to a large number of liquid crystal devices on a substrate as a base material, and a segment. The step of forming electrodes, the step of forming terminals and injection ports at the positions facing each other with respect to the substrate on which the terminals and the segment electrodes are formed, and the step of combining another substrate on which common electrodes are formed, After injecting liquid crystal from the inlet and a set in which a large number of liquid crystal elements manufactured through the above steps are arranged, another set obtained through the same steps is turned over and rotated by 90 degrees. It is a method for manufacturing a liquid crystal device having a double cell structure, which includes a step of laminating and a step of cutting into individual liquid crystal elements having a double cell structure.

上記第17及び第18発明の構成によれば、二重セル構造の液晶素子の製造が、最終工程まで母材となる基板の状態のまま進められる。そして、液晶の配向方向が直交している2つの液晶素子が、同一の工程によって製造される。   According to the configurations of the seventeenth and eighteenth inventions, the production of the liquid crystal device having the double cell structure can be continued until the final step in the state of the substrate serving as the base material. Then, two liquid crystal elements in which the liquid crystal alignment directions are orthogonal to each other are manufactured by the same process.

また、第19発明は、上記第17又は第18発明に係る製造方法において、基板の表面には、それぞれの端子に共通して接続される検査用の配線を形成し、多数個の液晶素子が配列した組に対して別の組を積層させる工程の前、もしくは個々の二重セル構造の液晶素子に切り分ける工程の前のいずれか一方又は両方の時点で前記配線を利用して検査を行うことを特徴とする。   The nineteenth invention is the manufacturing method according to the seventeenth or eighteenth invention, wherein wiring for inspection commonly connected to each terminal is formed on the surface of the substrate, and a large number of liquid crystal elements are provided. Before the step of stacking another set with respect to the arranged set, or the step of cutting into individual double-cell structure liquid crystal elements, either or both of them are to be inspected using the wiring. Is characterized by.

この構成によれば、個々の素子に分ける前の母材の状態で、素子の動作確認が一度に行われる。   According to this structure, the operation of the elements is checked at once in the state of the base material before being divided into the individual elements.

また、第20発明は、上記第17又は第18発明に係る製造方法において、多数個の液晶素子が配列した組に対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むように閉じた状態で設けられるシール材を介して積層させることを特徴とする。   The twentieth invention is a manufacturing method according to the seventeenth invention or the eighteenth invention, wherein a circular shape through which a light flux passes in a vacuum when another set is laminated on a set in which a large number of liquid crystal elements are arranged. It is characterized in that the layers are laminated via a sealing material provided in a closed state so as to surround the region.

この構成によれば、2つの液晶素子の間が真空状態となり、接着剤が存在しないので、高い光透過率が維持される。   According to this configuration, the space between the two liquid crystal elements is in a vacuum state and no adhesive is present, so that high light transmittance is maintained.

また、第21発明は、上記第17又は第18発明に係る製造方法において、多数個の液晶素子が配列した組に対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着剤とを介して積層させることを特徴とする。   The twenty-first invention is the manufacturing method according to the seventeenth or eighteenth invention, wherein a circular shape through which a light flux passes in the atmosphere when another set is laminated on a set in which a large number of liquid crystal elements are arranged. It is characterized in that the layers are laminated with a sealing material provided so as to partially surround the area and provided with an adhesive provided inside the sealing material.

この構成によれば、2つの液晶素子を積層させる工程が、大気中で効率的に行われる。この場合、接着剤は、屈折率が基板と近いものを選択することが好ましい。   According to this configuration, the step of stacking the two liquid crystal elements is efficiently performed in the atmosphere. In this case, it is preferable to select an adhesive having a refractive index close to that of the substrate.

本発明の液晶素子は、電極に複数の非電極部位を形成し、その非電極部位の位置に形成される不均一な電界分布に沿って液晶分子を配向させることで、光の屈折効果を生じさせる。これにより、素子全体に連続的な屈折率分布を形成することができる。この屈折率分布は、印加電圧により液晶の配向状態を制御することで任意に変化させることが可能であるため、光軸上に配置した場合に焦点を移動させて光学ズーム機能を発揮することができる。
本発明により、光学ズーム系におけるレンズの駆動が不要となり、もしくは最小限の駆動で済むため、従来にない小型・薄型の光学ズーム機能を提供でき、特に携帯電話機等の超小型カメラ用として好適に利用することができる。
The liquid crystal element of the present invention produces a refraction effect of light by forming a plurality of non-electrode parts on electrodes and orienting the liquid crystal molecules along the nonuniform electric field distribution formed at the positions of the non-electrode parts. Let Thereby, a continuous refractive index distribution can be formed in the entire element. Since this refractive index distribution can be changed arbitrarily by controlling the alignment state of the liquid crystal by the applied voltage, it is possible to perform the optical zoom function by moving the focus when placed on the optical axis. it can.
According to the present invention, it is possible to provide a compact and thin optical zoom function which has not been available in the past, because it is not necessary to drive the lens in the optical zoom system or a minimum drive is required, and it is particularly suitable for an ultra-small camera such as a mobile phone. Can be used.

また、本発明の液晶素子は、複数の非電極部位の大きさや配置間隔を電極上の位置によって変化させるとともに、その非電極部位の配置パターンに沿って複数本の線状電極を所定の間隔で配設したことを特徴とする。これにより、非電極部位によって得られる屈折率変化が、線状電極が配設されている複数箇所において大きくなり、全体として非電極部位に起因する屈折率分布がより強調された状態を得ることができる。   Further, in the liquid crystal element of the present invention, the size and arrangement interval of the plurality of non-electrode portions are changed according to the position on the electrode, and the plurality of linear electrodes are arranged at predetermined intervals along the arrangement pattern of the non-electrode portions. It is characterized in that it is provided. As a result, the change in the refractive index obtained by the non-electrode portion becomes large at a plurality of places where the linear electrodes are arranged, and the refractive index distribution due to the non-electrode portion is more emphasized as a whole. it can.

また、本発明の液晶素子は、抵抗膜上に複数本の線状電極を配設し、線状電極の間の電圧降下を利用して液晶の配向状態を同心状に変化させるため、素子に所定の屈折率分布を形成することができる。この屈折率分布は、線状電極に対する印加電圧によって任意に制御することが可能であり、光軸上に配置した場合に焦点を移動させて光学ズーム機能を発揮することができる。   In addition, the liquid crystal element of the present invention has a plurality of linear electrodes arranged on the resistance film, and the alignment state of the liquid crystal is changed concentrically by utilizing the voltage drop between the linear electrodes. A predetermined refractive index distribution can be formed. This refractive index distribution can be arbitrarily controlled by the voltage applied to the linear electrode, and when it is arranged on the optical axis, the focal point can be moved to exert the optical zoom function.

さらに、本発明に係る二重セル構造の液晶素子は、基板の表面に穴を穿ち、その穴の部分を端子としたため、端子を側方に設ける場合に比べて基板に無理な力が加わることがない。したがって、より薄い基板を採用することができ、結果として素子の軽量化・小型化を達成することができる。   Further, in the liquid crystal element of the double cell structure according to the present invention, since a hole is formed in the surface of the substrate and the hole portion is used as a terminal, an unreasonable force is applied to the substrate as compared with the case where the terminal is provided on the side. There is no. Therefore, a thinner substrate can be adopted, and as a result, the weight and size of the element can be reduced.

また、四角形状の基板の中央部に液晶を円形に挟み込み、その基板のコーナー部に端子等を設けたため、素子の重量バランスに優れ、温度変化によって液晶が膨張・収縮した場合でも不均一な変形が起こらず、素子の性能を維持することができる。   In addition, since the liquid crystal is sandwiched in the center of the quadrangular substrate and terminals are provided at the corners of the substrate, the weight balance of the element is excellent, and even if the liquid crystal expands or contracts due to temperature change, it will be deformed unevenly. Does not occur, and the performance of the device can be maintained.

そして、本発明に係る二重セル構造の液晶素子の製造方法によれば、端子を形成する工程や、液晶を注入する工程等が、全て個々の素子に切り分ける前の母材の状態で行われるため、生産効率が向上し、コストを大幅に低減することができる。
また、各素子を検査する際にも、母材の状態で行うことができるため、高い効率を達成することができる。
さらに、積層させる2つの液晶素子を、全く同一の工程で製造でき、一方を裏返してかつ90度回転させるだけで、液晶の配向方向が直交した二重セル構造の液晶素子を容易に作製することができる。したがって、生産性は極めて高く、安定した品質を得ることができる。
Further, according to the method for manufacturing a liquid crystal element having a double cell structure according to the present invention, the step of forming terminals, the step of injecting liquid crystal, etc. are all performed in the state of the base material before being cut into individual elements. Therefore, the production efficiency can be improved and the cost can be significantly reduced.
Further, when each element is inspected, it can be performed in the state of the base material, so that high efficiency can be achieved.
Furthermore, two liquid crystal elements to be laminated can be manufactured in exactly the same process, and by simply turning one side over and rotating it by 90 degrees, a liquid crystal element having a double cell structure in which liquid crystal alignment directions are orthogonal can be easily produced. You can Therefore, productivity is extremely high and stable quality can be obtained.

実施の形態(1)に係る液晶素子の使用形態を模式的に示す図である。It is a figure which shows typically the usage pattern of the liquid crystal element which concerns on Embodiment (1). 実施の形態(1)に係る液晶素子の平面図である。3 is a plan view of the liquid crystal element according to the embodiment (1). FIG. 図1のA部分の拡大図である。It is an enlarged view of the A portion of FIG. 実施の形態(1)に係る液晶素子の断面図である。3 is a cross-sectional view of the liquid crystal element according to the embodiment (1). FIG. 実施の形態(1)に係る液晶素子の電圧印加時の状態を説明する図である。It is a figure explaining the state at the time of voltage application of the liquid crystal element concerning Embodiment (1). 実施の形態(2)に係る液晶素子の平面図である。FIG. 6 is a plan view of a liquid crystal element according to an embodiment (2). 実施の形態(3)に係る液晶素子の平面図である。6 is a plan view of a liquid crystal element according to Embodiment (3). FIG. 実施の形態(3)に係る液晶素子によって得られる屈折率分布を模式的に示す図である。It is a figure which shows typically the refractive index distribution obtained by the liquid crystal element which concerns on Embodiment (3). 実施の形態(3)に係る液晶素子の製造過程を説明する図である。It is a figure explaining the manufacturing process of the liquid crystal element which concerns on Embodiment (3). 実施の形態(4)に係る液晶素子の平面図である。FIG. 6 is a plan view of a liquid crystal element according to an embodiment (4). 実施の形態(5)に係る液晶素子の平面図である。It is a plan view of a liquid crystal element according to an embodiment (5). 実施の形態(5)に係る液晶素子の製造過程を説明する図である。It is a figure explaining the manufacturing process of the liquid crystal element which concerns on Embodiment (5). 実施の形態(6)に係る二重セル構造の液晶素子の平面図である。It is a plan view of a liquid crystal element having a double cell structure according to an embodiment (6). 図13のC−C断面図である。It is CC sectional drawing of FIG. 図13のD−D断面図である。FIG. 14 is a cross-sectional view taken along the line DD of FIG. 13. 実施の形態(6)に係る二重セル構造の液晶素子の使用形態を模式的に示す図である。It is a figure which shows typically the usage mode of the liquid crystal element of the double cell structure which concerns on Embodiment (6). 二重セル構造の液晶素子の製造工程を示すフローチャートである。7 is a flowchart showing a manufacturing process of a liquid crystal device having a double cell structure. 二重セル構造の液晶素子の製造工程を示すフローチャートである。7 is a flowchart showing a manufacturing process of a liquid crystal device having a double cell structure. 図14のS方向におけるS103の状態を示す図である。It is a figure which shows the state of S103 in the S direction of FIG. S103の状態を示す端子部分の断面図である。It is sectional drawing of a terminal part which shows the state of S103. 図14のS方向におけるS106の状態を示す図である。It is a figure which shows the state of S106 in the S direction of FIG. 図14のS方向におけるS108の状態を示す図である。It is a figure which shows the state of S108 in the S direction of FIG. 図14のT方向におけるS205の状態を示す図である。It is a figure which shows the state of S205 in the T direction of FIG. 図14のU方向におけるS104の状態を示す図である。It is a figure which shows the state of S104 in the U direction of FIG. S501の状態を示す図である。It is a figure which shows the state of S501. S305の状態を示す図である。It is a figure which shows the state of S305. S504の状態を示す図である。It is a figure which shows the state of S504. S305の状態の別の例を示す図である。It is a figure which shows another example of the state of S305. 実施の形態(7)に係る二重セル構造の液晶素子の平面図及び側面図である。9A and 9B are a plan view and a side view of a liquid crystal element having a double cell structure according to an embodiment (7).

符号の説明Explanation of symbols

1A〜1G 液晶素子
1FG 二重セル構造の液晶素子
10 液晶
20、21 電極
22 セグメント電極
23 コモン電極
24 高抵抗膜
24a 高抵抗ゾーン
24b 中抵抗ゾーン
24c 低抵抗ゾーン
201 非電極部位
30、31、32、33 基板
32a 遮光部
32b コーナー部
320 母材となる基板
330 母材となる基板
40a〜40d 線状電極
400 低抵抗膜
400a 低抵抗膜
50 SiO
60A〜60F 穴
61A〜61F 端子
70、71、71A シール材
72 接着剤
73 注入口
74 封止材
75 導通材
76 マスク
77 配線
E 電界
F、F’ 焦点
J レンズ
L 光軸
M 像面
P1、P2 偏光面
R1〜R3 抵抗
S1、S2 端子
P、Q 屈折率分布
1A to 1G Liquid crystal element 1FG Liquid crystal element 10 with double cell structure Liquid crystal 20, 21 Electrode 22 Segment electrode 23 Common electrode 24 High resistance film 24a High resistance zone 24b Medium resistance zone 24c Low resistance zone 201 Non-electrode parts 30, 31, 32 , 33 substrate 32a light-shielding portion 32b corner portion 320 base material substrate 330 base material substrate 40a to 40d linear electrode 400 low resistance film 400a low resistance film 50 SiO 2 films 60A to 60F holes 61A to 61F terminals 70, 71 , 71A Seal material 72 Adhesive 73 Injection port 74 Sealant 75 Conductive material 76 Mask 77 Wiring E Electric field F, F'Focus J Lens L Optical axis M Image planes P1, P2 Polarization planes R1 to R3 Resistors S1, S2 Terminal P , Q Refractive index distribution

以下、本発明を詳細に説明する。なお、以下の実施形態において、同一の構成要素には同じ符号を付して説明を省略している。   Hereinafter, the present invention will be described in detail. In addition, in the following embodiments, the same components are denoted by the same reference numerals and description thereof is omitted.

まず、本発明の実施の形態(1)を図1〜5に示す。図1は、この実施の形態(1)に係る液晶素子1Aの使用形態を模式的に示す図であり、図2は液晶素子1Aの平面図、図3は図2のA部分の拡大図、そして図4は液晶素子1Aの断面を拡大した図である。   First, an embodiment (1) of the present invention is shown in FIGS. FIG. 1 is a diagram schematically showing a usage pattern of a liquid crystal element 1A according to this embodiment (1), FIG. 2 is a plan view of the liquid crystal element 1A, and FIG. 3 is an enlarged view of a portion A of FIG. 4 is an enlarged view of the cross section of the liquid crystal element 1A.

図1に示すように、液晶素子1Aは、特に携帯電話機や携帯情報端末機(PDA)等における小型のカメラについて好適に用いられ、CCD、CMOS等が備えられる像面Mに対し、光軸L上にレンズJとともに配置してレンズ系を構成するものである。そして、素子に電圧を印加することにより、主に素子の面方向(光軸に対して垂直方向)に屈折率分布を形成し、焦点Fを焦点F’(あるいはその逆)へ移動させて光学ズーム機能を発揮するものである。なお、液晶素子1Aに入射する光を偏光状態とするため、必要に応じて偏光子を光軸L上に配設することができる。以下、液晶素子1Aの構成について詳述する。   As shown in FIG. 1, the liquid crystal element 1A is preferably used particularly for a small camera such as a mobile phone or a personal digital assistant (PDA), and an optical axis L with respect to an image plane M provided with CCD, CMOS or the like. The lens system is arranged on the upper side together with the lens J. Then, by applying a voltage to the element, a refractive index distribution is formed mainly in the surface direction of the element (perpendicular to the optical axis), and the focal point F is moved to the focal point F′ (or vice versa) to perform optical conversion. It has a zoom function. Since the light incident on the liquid crystal element 1A is polarized, a polarizer can be arranged on the optical axis L as necessary. Hereinafter, the configuration of the liquid crystal element 1A will be described in detail.

液晶素子1Aは、図4に示すように、液晶10と、その液晶10を挟んで対向する2つの電極20、21、及び基板30、31とを備え、電極20には電極材の存在しない複数の非電極部位201が穴状に形成されている。なお、図4において、基板30、31上に設けられる反射防止膜(AR膜)や、電極20、21と液晶10との間に一般的に設けられる液晶配向膜、透明絶縁層等は図示を省略している。また、電極20及び電極21には電圧を印加するためリード線等が接続されている。   As shown in FIG. 4, the liquid crystal element 1A includes a liquid crystal 10, two electrodes 20 and 21 facing each other with the liquid crystal 10 sandwiched therebetween, and substrates 30 and 31, and a plurality of electrodes 20 having no electrode material. The non-electrode part 201 is formed in a hole shape. In FIG. 4, an antireflection film (AR film) provided on the substrates 30 and 31, a liquid crystal alignment film generally provided between the electrodes 20 and 21 and the liquid crystal 10, a transparent insulating layer and the like are shown. Omitted. Further, a lead wire or the like is connected to the electrodes 20 and 21 to apply a voltage.

図2に示すように、複数の非電極部位201は、電極20上の位置によって大きさ及び配置間隔を連続的に変化させている。なお、非電極部位201の数は、図2では便宜上少なく描いているが、実際には図3に示すように多数の非電極部位201が微細に形成されている。そして、この実施の形態(1)では、電極20上を同心円状に分けたときの半径方向Rに沿って、非電極部位201の大きさd1が大きい径から小さい径となるように、また、配置間隔d2が広い間隔から狭い間隔となるように連続的なパターンを形成している。   As shown in FIG. 2, the plurality of non-electrode portions 201 continuously change in size and arrangement interval depending on the position on the electrode 20. Note that the number of non-electrode portions 201 is illustrated small in FIG. 2 for convenience, but in reality, many non-electrode portions 201 are finely formed as shown in FIG. In this embodiment (1), the size d1 of the non-electrode portion 201 is changed from a large diameter to a small diameter along the radial direction R when the electrode 20 is divided into concentric circles. A continuous pattern is formed such that the arrangement interval d2 is changed from a wide interval to a narrow interval.

電極20、21間に電圧を印加した場合、非電極部位201の近傍での電界Eの状態は図5に示すようになる。すなわち、電極20と電極21とが対向している部分aでは、電極に垂直な方向へ強い電界が形成され、非電極部位201の中心部である部分bでは、やはり電極に垂直な方向へ弱い電界が形成される。そして、非電極部位201と電極20との境界に近い部分cでは、電極20へ向かって電界が傾いた状態となる。   When a voltage is applied between the electrodes 20 and 21, the state of the electric field E near the non-electrode portion 201 is as shown in FIG. That is, in the portion a where the electrode 20 and the electrode 21 face each other, a strong electric field is formed in the direction perpendicular to the electrode, and in the portion b which is the central portion of the non-electrode portion 201, the electric field is also weak in the direction perpendicular to the electrode. An electric field is created. Then, in the portion c near the boundary between the non-electrode portion 201 and the electrode 20, the electric field is inclined toward the electrode 20.

すると、液晶10の誘電異方性が正である場合には、液晶分子が電界Eに沿って配向するため、部分aでは液晶分子が電極に対して垂直に並び、部分bでは電界が弱いため電極に平行な状態のままとなり、部分cでは斜めに配向することになる。すなわち、非電極部位201の内側において液晶が不均一な配向状態となる。このとき、素子を通過する光(異常光)に対する屈折率は、非電極部位201の中心から周辺へ向かって連続的に小さくなる分布を形成するため、非電極部位201の部分においては凸レンズの効果を示すことになる。これにより、通過する光に位相差を与えることができる。
したがって、図2のように、非電極部位201の大きさ及び配置間隔を電極上の位置によって連続的に変化させた場合、それぞれの位置で得られる位相差は異なるため、素子全体として所定の屈折率分布を得ることができ、その結果レンズ系の焦点距離を変化させ、光学ズーム機能を得ることが可能となる。
Then, when the dielectric anisotropy of the liquid crystal 10 is positive, the liquid crystal molecules are aligned along the electric field E, so that the liquid crystal molecules are aligned perpendicular to the electrodes in the portion a and the electric field is weak in the portion b. It remains parallel to the electrodes, and is obliquely oriented in the portion c. That is, the liquid crystal becomes non-uniformly aligned inside the non-electrode portion 201. At this time, the refractive index for light (extraordinary light) that passes through the element forms a distribution that continuously decreases from the center of the non-electrode portion 201 to the periphery, so that the effect of the convex lens is present in the non-electrode portion 201. Will be shown. Thereby, a phase difference can be given to the passing light.
Therefore, as shown in FIG. 2, when the size and the arrangement interval of the non-electrode portions 201 are continuously changed depending on the positions on the electrodes, the phase difference obtained at each position is different, so that the entire element has a predetermined refraction. The ratio distribution can be obtained, and as a result, the focal length of the lens system can be changed and the optical zoom function can be obtained.

なお、印加する電圧を変化させた場合、それに応じて液晶分子の配向状態が変化する。例えば、電圧を大きくした場合には、非電極部位201の中心でも液晶分子が垂直に配向するため、逆に、非電極部位201の中心から周辺にかけて屈折率が大きくなる凹レンズ効果を示すようになる。すなわち、印加する電圧によって、素子全体で得られる屈折率分布を変化させることができるため、設定された焦点距離に対して必要な屈折率分布を計算し、その結果に応じて電圧を制御することで焦点距離を連続的に変化させることができる。   When the applied voltage is changed, the alignment state of the liquid crystal molecules is changed accordingly. For example, when the voltage is increased, the liquid crystal molecules are vertically aligned even in the center of the non-electrode portion 201, and conversely, a concave lens effect that the refractive index increases from the center to the periphery of the non-electrode portion 201 is exhibited. .. That is, since the refractive index distribution obtained in the entire element can be changed by the applied voltage, calculate the necessary refractive index distribution for the set focal length and control the voltage according to the result. The focal length can be changed continuously with.

さらに、非電極部位201の配置間隔は、電極20上の同心円状に分けられた各領域内(例えば領域X、領域Y)で不規則(ランダム配置)とすることが好ましい。すなわち、図3に示すように、配置間隔h1とh2とが若干異なるようにする。このようにすると、隣接する非電極部位をそれぞれ通過する光が互いに干渉し合って波面が乱れるような事態を防止することができる。
なお、光の波長と配置間隔との関係で干渉効果がほとんど無いと見込まれる場合には、h1とh2とを同一にして規則的に配置しても構わない。
Furthermore, it is preferable that the arrangement intervals of the non-electrode portions 201 be irregular (random arrangement) within each of the concentrically divided regions on the electrode 20 (for example, the region X and the region Y). That is, as shown in FIG. 3, the arrangement intervals h1 and h2 are made slightly different. By doing so, it is possible to prevent a situation in which lights passing through the adjacent non-electrode portions interfere with each other to disturb the wavefront.
When it is expected that there is almost no interference effect due to the relationship between the wavelength of light and the arrangement interval, h1 and h2 may be the same and arranged regularly.

電極20、21としては、従来知られた一般的な電極を用いることができる。具体的には、透明な基板30、31に対してインジウム−スズ酸化膜を形成したITO電極が好適に用いられる。   As the electrodes 20 and 21, a conventionally known general electrode can be used. Specifically, an ITO electrode having an indium-tin oxide film formed on the transparent substrates 30 and 31 is preferably used.

また、非電極部位201を形成する方法としては、まず基板30上の全面に電極20を形成した後に、フォトプロセスによって複数の非電極部位201を所望の配置パターンで形成する方法が好適に用いられる。このようにすると、連続的に変化する微細な配置パターンを容易に作り出すことができる。あるいは、基板30に電極20を蒸着、めっき等する際にマスクを介して行う方法を用いても良い。   As a method of forming the non-electrode portions 201, a method of first forming the electrodes 20 on the entire surface of the substrate 30 and then forming a plurality of non-electrode portions 201 in a desired arrangement pattern by a photo process is preferably used. .. By doing so, it is possible to easily create a fine arrangement pattern that continuously changes. Alternatively, a method may be used in which the electrode 20 is vapor-deposited or plated on the substrate 30 through a mask.

図6には、本発明の実施の形態(2)を示す。この液晶素子1Bは、上記実施の形態(1)と同様に、電極20に複数の非電極部位201を形成しているが、非電極部位201の大きさを同径としている。そして、電極20の中心から周辺に向かって、非電極部位201の配置間隔を広い間隔から狭い間隔へと連続的に変化させている。このように、非電極部位201の配置に疎密を持たせた場合には、電圧印加時に個々の非電極部位における光の屈折効果(レンズ効果)によって、非電極部位201の密度が濃い領域と薄い領域とでは得られる位相差が異なり、素子全体として所定の屈折率分布を得ることができる。   FIG. 6 shows an embodiment (2) of the present invention. In the liquid crystal element 1B, a plurality of non-electrode portions 201 are formed on the electrode 20 as in the above-described embodiment (1), but the non-electrode portions 201 have the same diameter. Then, the arrangement intervals of the non-electrode portions 201 are continuously changed from a wide interval to a narrow interval from the center of the electrode 20 toward the periphery. As described above, when the non-electrode portions 201 are arranged in a dense and dense manner, due to the refraction effect (lens effect) of light in each non-electrode portion when a voltage is applied, the non-electrode portions 201 are dense and thin. The obtained phase difference is different from that of the region, and a predetermined refractive index distribution can be obtained in the entire device.

次に、本発明の実施の形態(3)について図7〜図9に基づき説明する。図7の液晶素子1Cは、上記実施の形態(1)と同様に、液晶を挟む電極20に複数の非電極部位201を形成し、その非電極部位201の大きさ及び配置間隔を半径方向Rへ連続的に変化させている。そして、この実施の形態(3)では、非電極部位201の配置パターン(同心円状に変化するパターン)に沿って環状の線状電極40a〜40dを配設したことを特徴としている。   Next, an embodiment (3) of the present invention will be described with reference to FIGS. In the liquid crystal element 1C of FIG. 7, a plurality of non-electrode portions 201 are formed on the electrodes 20 sandwiching the liquid crystal, and the size and arrangement interval of the non-electrode portions 201 are set in the radial direction R, as in the above-described embodiment (1). Is changing continuously. The present embodiment (3) is characterized in that the annular linear electrodes 40a to 40d are arranged along the arrangement pattern of the non-electrode portions 201 (the pattern changing concentrically).

線状電極40a〜40dは、端子S1、S2に接続されており、抵抗R1〜R3を利用して相異なる電圧が印加されるように構成されている。
この液晶素子1Cによって得られる屈折率分布を、図8に模式的に示す。図8に示すように、非電極部位201のレンズ効果によって屈折率分布Pが得られるとき、線状電極40a〜40dが配設された部位s、t、u、vにおいて液晶がより配向し、それによって位相差が所定量だけ引き上げられ、結果として屈折率分布Pが強調された屈折率分布Qの状態となる。したがって、ズームレンジをより広くすることが可能となる。ここで、線状電極40a〜40dの配設する位置、及びそれぞれに印加する電圧値は、非電極部位201に起因する屈折率分布Pに基づいて決定することができる。すなわち、屈折率分布Pの各部位における位相変化量に比例した電圧値を設定することが好ましく、例えば端子S1、S2間に1Vの電圧を印加する場合、線状電極40a(図8のvに相当する)には1V、線状電極40b(uに相当)には0.6V、線状電極40c(tに相当)には0.1V、線状電極40d(sに相当)には0V、の印加電圧となるように抵抗R1〜R3を設定することができる。なお、線状電極40a〜40dについては、図7の回路構成に限定されないことは無論である。
The linear electrodes 40a to 40d are connected to the terminals S1 and S2, and are configured to apply different voltages by using the resistors R1 to R3.
The refractive index distribution obtained by this liquid crystal element 1C is schematically shown in FIG. As shown in FIG. 8, when the refractive index distribution P is obtained by the lens effect of the non-electrode portion 201, the liquid crystal is more aligned in the portions s, t, u, v where the linear electrodes 40a to 40d are arranged, As a result, the phase difference is increased by a predetermined amount, and as a result, the refractive index distribution Q is emphasized and the refractive index distribution Q is obtained. Therefore, it becomes possible to widen the zoom range. Here, the positions at which the linear electrodes 40a to 40d are arranged and the voltage value applied to each can be determined based on the refractive index distribution P caused by the non-electrode portion 201. That is, it is preferable to set a voltage value proportional to the amount of phase change in each part of the refractive index distribution P. For example, when a voltage of 1 V is applied between the terminals S1 and S2, the linear electrode 40a (v in FIG. 1 V for the linear electrode 40b (corresponding to u), 0.6 V for the linear electrode 40b (corresponding to u), 0.1 V for the linear electrode 40c (corresponding to t), and 0 V for the linear electrode 40d (corresponding to s). The resistors R1 to R3 can be set so that the applied voltage becomes. Needless to say, the linear electrodes 40a to 40d are not limited to the circuit configuration shown in FIG.

図9には、実施の形態(3)に係る液晶素子1Cの製造過程の一例を示す。まず、図9(a)に示すように、ガラスの基板30上にITO等の電極(低抵抗膜400、数〜数十Ω)を形成する。なお、この例では基板30と低抵抗膜400との間にSiO膜50を形成している。この膜は、基板30からのナトリウム分の溶出を防ぐパッシベーション膜であり、必要に応じて設けることができる。FIG. 9 shows an example of a manufacturing process of the liquid crystal element 1C according to Embodiment (3). First, as shown in FIG. 9A, electrodes such as ITO (low resistance film 400, several to several tens of Ω) are formed on a glass substrate 30. In this example, the SiO 2 film 50 is formed between the substrate 30 and the low resistance film 400. This film is a passivation film that prevents elution of sodium from the substrate 30, and can be provided as necessary.

続いて、図9(b)(c)に示すように、低抵抗膜400のパターンニングを行って線状電極40aを形成し、その上にITO等の電極20(高抵抗膜、数十〜数百kΩ)を形成する。そして、図9(d)に示すように、所定の位置に複数の非電極部位201を形成することにより、線状電極40a(40b〜40d)と電極20とが形成された目的の基板を得ることができる。なお、線状電極40aは、素子の大きさに比べて極細(数〜数十μm程度)であるため、場合によってはITO以外の不透明な金属で構成しても良い。   Subsequently, as shown in FIGS. 9B and 9C, the low-resistance film 400 is patterned to form a linear electrode 40a, and an electrode 20 such as ITO (high-resistance film, several tens or more) is formed thereon. A few hundred kΩ). Then, as shown in FIG. 9D, a plurality of non-electrode portions 201 are formed at predetermined positions to obtain a target substrate on which the linear electrodes 40a (40b to 40d) and the electrode 20 are formed. be able to. Since the linear electrode 40a is extremely thin (several to several tens of μm) as compared with the size of the element, it may be made of an opaque metal other than ITO in some cases.

複数の非電極部位201の配置パターンは、上記実施の形態(1)〜(3)に限定されない。すなわち、所望の屈折率分布等に応じて、非電極部位201の大きさもしくは配置間隔又はその両方を電極20上の位置によって適宜設定することができる。具体的には、例えば、図2とは逆に非電極部位の大きさを電極20の中心から周辺に向かって小さい径から大きい径へと連続的に変化させる場合、あるいは図6とは逆に、非電極部位の配置間隔を電極20の中心から周辺に向かって狭い間隔から広い間隔へと連続的に変化させる場合等が挙げられる。   The arrangement pattern of the plurality of non-electrode parts 201 is not limited to the above-mentioned embodiments (1) to (3). That is, the size and/or arrangement interval of the non-electrode portions 201 or both of them can be appropriately set depending on the position on the electrode 20 according to a desired refractive index distribution and the like. Specifically, for example, when the size of the non-electrode portion is continuously changed from the small diameter to the large diameter from the center to the periphery of the electrode 20 contrary to FIG. 2, or contrary to FIG. The case where the arrangement interval of the non-electrode portions is continuously changed from the narrow interval to the wide interval from the center of the electrode 20 to the periphery is mentioned.

なお、上記各実施の形態では、電極20にのみに非電極部位201を形成していたが、電極20と電極21の両方に非電極部位を形成しても良い。この場合、電極21の近傍でも液晶分子が不均一に配向するため、得られるレンズ効果がより強くなり、光学ズーム機能を向上させることができる。
また、電極20を、分割された幾つかの電極から構成し、それぞれに複数の非電極部位を形成し、各電極に異なる電圧を印加することによって全体としてさらに複雑な屈折率分布を与えることもできる。
Although the non-electrode portion 201 is formed only on the electrode 20 in each of the above-described embodiments, the non-electrode portion may be formed on both the electrode 20 and the electrode 21. In this case, since the liquid crystal molecules are non-uniformly aligned even near the electrode 21, the obtained lens effect becomes stronger and the optical zoom function can be improved.
Further, the electrode 20 may be composed of several divided electrodes, a plurality of non-electrode portions may be formed in each electrode, and different voltages may be applied to the electrodes to give a more complicated refractive index distribution as a whole. it can.

また、上記実施の形態(1)〜(3)では、複数の非電極部位201の形状が円形の場合について説明したが、これに限定されず、例えば発生する収差の種類や、ラビング方向等を考慮して、別の形状にすることができる。具体的には、ピット形状、楕円形状、半円形状等が挙げられる。   In addition, in the above-described Embodiments (1) to (3), the case where the plurality of non-electrode portions 201 has a circular shape has been described, but the present invention is not limited to this. For example, the type of generated aberration, the rubbing direction, etc. Other shapes can be taken into consideration. Specific examples include a pit shape, an elliptical shape, and a semicircular shape.

次に、本発明の実施の形態(4)について図10に基づき説明する。図10の液晶素子1Dでは、上記実施の形態(3)と同様に、相異なる電圧を印加する複数本の線状電極40a〜40dを、光軸を中心として同心状に所定の間隔で配設している。ここで図10の線状電極40a〜40dは高抵抗膜24に配設されているが、この高抵抗膜24は、上記実施の形態(1)〜(3)における電極20と同じであり、ITO等から構成されている(電極20と異なり、電圧を印加しないため高抵抗膜と呼んでいる)。   Next, an embodiment (4) of the present invention will be described with reference to FIG. In the liquid crystal element 1D of FIG. 10, as in the above-described embodiment (3), a plurality of linear electrodes 40a to 40d to which different voltages are applied are arranged concentrically around the optical axis at predetermined intervals. is doing. Here, the linear electrodes 40a to 40d of FIG. 10 are provided on the high resistance film 24, but the high resistance film 24 is the same as the electrode 20 in the above-described embodiments (1) to (3), It is made of ITO or the like (unlike the electrode 20, it is called a high resistance film because no voltage is applied).

上記の液晶素子1Dにおいて、線状電極40a〜40dに電圧を印加すると、各線状電極の間には高抵抗膜24があるために電圧降下を生ずる。そのため、液晶は、同心状に連続的に変化する電圧に応じて異なる配向状態となり、それに伴って所定の屈折率分布が得られることとなる。この屈折率分布は線状電極40a〜40dに印加する電圧を変えることで任意に制御できるため、目的の光学ズーム機能を得ることが可能となる。   In the liquid crystal element 1D, when a voltage is applied to the linear electrodes 40a to 40d, a voltage drop occurs due to the high resistance film 24 between the linear electrodes. Therefore, the liquid crystal has different alignment states depending on the voltage that continuously changes concentrically, and accordingly, a predetermined refractive index distribution is obtained. Since this refractive index distribution can be arbitrarily controlled by changing the voltage applied to the linear electrodes 40a to 40d, it is possible to obtain the desired optical zoom function.

図11には、実施の形態(5)に係る液晶素子を示す。この液晶素子1Eは、複数本の線状電極40a〜40dが配設される抵抗膜を、異なる抵抗値を有する複数の領域(高抵抗ゾーン24a、中抵抗ゾーン24b、低抵抗ゾーン24c)から構成したことを特徴としている。
このようにすると、例えば線状電極40cの内側では、線状電極40cの電圧が高抵抗ゾーン24aのために急激に降下し、続いて中抵抗ゾーン24bに入って電圧降下の傾きが小さくなり、最後に低抵抗ゾーン24cによって電圧降下がゆるやかになりつつ中心の線状電極40dに接続されることとなり、結果として屈折率分布をより曲線的にすることができる。
FIG. 11 shows a liquid crystal element according to Embodiment (5). In this liquid crystal element 1E, a resistance film on which a plurality of linear electrodes 40a to 40d are arranged is composed of a plurality of regions (high resistance zone 24a, medium resistance zone 24b, low resistance zone 24c) having different resistance values. It is characterized by doing.
By doing so, for example, inside the linear electrode 40c, the voltage of the linear electrode 40c sharply drops due to the high resistance zone 24a, and then enters the middle resistance zone 24b, and the slope of the voltage drop becomes small. Finally, the low resistance zone 24c allows the voltage drop to be moderated and the voltage to be connected to the central linear electrode 40d, and as a result, the refractive index distribution can be made more curved.

図12には、実施の形態(5)に係る液晶素子1Eの製造過程の一例を示す。まず、図12(a)に示すように、ガラスの基板30上にITO等の低抵抗膜400(数〜数十Ω)を形成する。なお、この例では基板30と低抵抗膜400との間にSiO膜50を形成している。続いて、図12(b)に示すように、低抵抗膜400のパターンニングを行って、線状電極40aと、微細な複数の低抵抗膜400aとを形成する。
次に、図12(c)に示すように、高抵抗膜24(数十〜数百kΩ)を形成し、図12(d)に示すように、高抵抗膜24のパターンニングを行い、所定の位置に複数の非電極部位を形成する。これにより、抵抗値の異なる複数の領域を得ることができる。すなわち、高抵抗膜の一部に非電極部位が形成された領域が高抵抗ゾーン24aとなり、均一な高抵抗膜が形成された領域が中抵抗ゾーン24bとなり、一部に低抵抗膜が形成された領域が低抵抗ゾーン24cとなる。
FIG. 12 shows an example of a manufacturing process of the liquid crystal element 1E according to the embodiment (5). First, as shown in FIG. 12A, a low resistance film 400 (several to several tens Ω) such as ITO is formed on a glass substrate 30. In this example, the SiO 2 film 50 is formed between the substrate 30 and the low resistance film 400. Subsequently, as shown in FIG. 12B, the low resistance film 400 is patterned to form the linear electrode 40a and a plurality of fine low resistance films 400a.
Next, as shown in FIG. 12C, a high resistance film 24 (several tens to several hundreds kΩ) is formed, and as shown in FIG. A plurality of non-electrode parts are formed at the positions. This makes it possible to obtain a plurality of regions having different resistance values. That is, the region where the non-electrode portion is formed in a part of the high resistance film becomes the high resistance zone 24a, the region where the uniform high resistance film is formed becomes the middle resistance zone 24b, and the low resistance film is formed in a part thereof. The low resistance zone 24c is formed in the region.

上記実施の形態(4)(5)において、複数本の線状電極は、液晶を挟んで対向する他方の基板側にも併せて配設することができる。   In the above-described embodiments (4) and (5), the plurality of linear electrodes can be arranged also on the other substrate side facing each other with the liquid crystal interposed therebetween.

また、上記実施の形態(1)〜(5)において、対向する電極は一対とは限らず、それ以上の電極が液晶を挟みつつ積層していても良い。例えば、図1に示すように、複数の液晶素子1A(図では2つ)を組み合わせて用いることができる。この場合、それぞれの液晶素子1Aについて非電極部位の配置パターンを変えたり、印加電圧を異なるようにすることで、相異なるレンズ効果(屈折率分布)を生じさせ、より複雑な光学ズーム機能を得ることができる。   Further, in the above embodiments (1) to (5), the electrodes facing each other are not limited to one pair, and more electrodes may be stacked while sandwiching the liquid crystal. For example, as shown in FIG. 1, a plurality of liquid crystal elements 1A (two in the figure) can be used in combination. In this case, different liquid crystal elements 1A have different lens effects (refractive index distributions) by changing the arrangement pattern of the non-electrode parts or making the applied voltage different, thereby obtaining a more complicated optical zoom function. be able to.

次に、本発明の実施の形態(6)について説明する。図13は、本発明の実施の形態(6)に係る二重セル構造の液晶素子の平面図である。また、図14は図13のC−C断面図であり、図15は図13のD−D断面図を表している。図13〜図15に示すように、二重セル構造の液晶素子1FGは、同一の構成からなる2つの液晶素子1F、1Gを、導通材75及びシール材71を介して厚さ方向に積層させることにより構成されている。そして、液晶素子1F(1Gも同様)は、コモン電極23が形成された基板33と、セグメント電極22が形成された基板32とで液晶10を挟み込むことにより概略構成されている。なお、コモン電極23と液晶10との間、及びセグメント電極22と液晶10との間に一般的に設けられる液晶配向膜、透明絶縁層や、基板32、33上に設けられる反射防止膜等は図示を省略している。また、液晶10はシール材70によって内側に封入されている。   Next, an embodiment (6) of the present invention will be described. FIG. 13 is a plan view of a liquid crystal element having a double cell structure according to Embodiment (6) of the present invention. 14 is a sectional view taken along line CC of FIG. 13, and FIG. 15 is a sectional view taken along line DD of FIG. As shown in FIGS. 13 to 15, in the liquid crystal element 1FG having a double cell structure, two liquid crystal elements 1F and 1G having the same structure are laminated in the thickness direction with a conductive material 75 and a sealing material 71 interposed therebetween. It is composed of Then, the liquid crystal element 1F (same for 1G) is roughly configured by sandwiching the liquid crystal 10 between the substrate 33 on which the common electrode 23 is formed and the substrate 32 on which the segment electrode 22 is formed. The liquid crystal alignment film, the transparent insulating layer and the antireflection film provided on the substrates 32 and 33, which are generally provided between the common electrode 23 and the liquid crystal 10 and between the segment electrode 22 and the liquid crystal 10, are not included. Illustration is omitted. Further, the liquid crystal 10 is sealed inside by a sealing material 70.

この二重セル構造の液晶素子1FGは、上記実施の形態(1)〜(3)と同様に、セグメント電極22上に複数の非電極部位(図示せず)を形成し、その非電極部位の大きさ及び配置間隔を同心円状に変化させている。したがって、図16に示すように、この素子を他のレンズJとともに光軸L上に配置し、コモン電極23とセグメント電極22との間に電圧を印加することにより、非電極部位に起因する屈折率分布を生じさせ、焦点Fを焦点F’(あるいはその逆)へ変化させて光学ズーム機能を発揮することができる。
非電極部位や各電極の構成については上記実施の形態(1)の説明に準ずる。
In the liquid crystal element 1FG having the double cell structure, a plurality of non-electrode parts (not shown) are formed on the segment electrodes 22 and the non-electrode parts of the non-electrode parts are formed in the same manner as in the above-described embodiments (1) to (3). The size and arrangement interval are changed concentrically. Therefore, as shown in FIG. 16, by disposing this element along with the other lens J on the optical axis L and applying a voltage between the common electrode 23 and the segment electrode 22, refraction caused by the non-electrode portion is caused. An optical zoom function can be exerted by generating a rate distribution and changing the focus F to the focus F′ (or vice versa).
The configuration of the non-electrode portion and each electrode is based on the description of the above embodiment (1).

また、特にこの実施の形態(6)では、液晶素子1F、1Gの、電圧の非印加時における液晶10の配向方向を直交させている。これにより、レンズ系を通過する光束の、異なる偏光面P1、P2(P偏光、S偏光に対応する)の波面を同様に変化させ、像の画質をより高めることができる。   Further, particularly in the present embodiment (6), the alignment directions of the liquid crystal 10 of the liquid crystal elements 1F and 1G when no voltage is applied are orthogonal to each other. As a result, the wavefronts of different polarization planes P1 and P2 (corresponding to P-polarized light and S-polarized light) of the light flux passing through the lens system can be similarly changed, and the image quality of the image can be further improved.

そして、この実施の形態(6)では、基板32の厚さ方向に穴60A、60B、60Cと、同様に基板33にも穴60D、60E、60Fとが穿たれている。それぞれの穴にはコモン電極23、及びセグメント電極22へ接続するための端子61A、61B、61C、61D、61E、61Fがそれぞれ設けられている。すなわち、端子61A、61Dが液晶素子1Fのセグメント電極22へ、端子61B、61Eがコモン電極23へ、端子61C、61Fが液晶素子1Gのセグメント電極22へそれぞれ接続されている。対向する端子間(例えば、端子61Bと端子61E)は、導通材75を介在させて接続している。なお、各端子は、穴の内周面に沿ってNi−Au等の金属をめっきする等して形成される。   In this embodiment (6), holes 60A, 60B and 60C are formed in the thickness direction of the substrate 32, and holes 60D, 60E and 60F are also formed in the substrate 33. Terminals 61A, 61B, 61C, 61D, 61E, and 61F for connecting to the common electrode 23 and the segment electrode 22 are provided in the respective holes, respectively. That is, the terminals 61A and 61D are connected to the segment electrode 22 of the liquid crystal element 1F, the terminals 61B and 61E are connected to the common electrode 23, and the terminals 61C and 61F are connected to the segment electrode 22 of the liquid crystal element 1G. Between the terminals which face each other (for example, the terminal 61B and the terminal 61E), a conductive material 75 is interposed and connected. Each terminal is formed by plating a metal such as Ni-Au along the inner peripheral surface of the hole.

上記のように各端子を基板32、33の面上に配置することにより、基板の側方に端子を集約配置する場合に比べて、素子に偏った力が加わることなく、割れ・カケ等の不良が生じにくくなる。したがって、基板32、33をより薄く(例えば0.2mm)することが可能となり、素子を軽量化することができる。そのため、光学ズーム系全体をより小さくすることができる。   By arranging the terminals on the surfaces of the substrates 32 and 33 as described above, compared to a case where the terminals are collectively arranged on the side of the substrate, a biased force is not applied to the element, and cracks, chips, etc. do not occur. Defects are less likely to occur. Therefore, the substrates 32 and 33 can be made thinner (for example, 0.2 mm), and the element can be made lighter. Therefore, the entire optical zoom system can be made smaller.

また、この実施の形態(6)では、基板32、33間に液晶10を注入するための注入口73が、基板32の面上に形成されている。注入口73の形状は円形、楕円形等であり、液晶10を注入した後に封止材74により適宜封止される。
特に、図13の例では、端子61A〜61F、及び液晶の注入口73の全てが、基板32、33の面上に配置され、対向する端子同士が厚さ方向に相互に接続され、上側の液晶素子1Fに設けられた駆動用の各端子に集約されているため、後述するように素子の生産効率を高めることができる。
Further, in this embodiment (6), an injection port 73 for injecting the liquid crystal 10 between the substrates 32 and 33 is formed on the surface of the substrate 32. The injection port 73 has a circular shape, an elliptical shape, or the like, and is appropriately sealed with a sealing material 74 after the liquid crystal 10 is injected.
In particular, in the example of FIG. 13, the terminals 61A to 61F and the liquid crystal injection port 73 are all arranged on the surfaces of the substrates 32 and 33, and the opposing terminals are connected to each other in the thickness direction. Since the driving terminals provided in the liquid crystal element 1F are integrated, the element production efficiency can be increased as described later.

さらに、図13の例では、穴60A〜60F、及び液晶の注入口73を、光束が通過する円形領域(セグメント電極22、及びコモン電極23が形成された領域)以外の、四角形状に形成された基板32(33)上のコーナー部32b付近に形成している。また、シール材70を略円形に設け、光束が通過する円形領域内に液晶10をシールするようにしている。このようにすると、光束が通過しない基板32上の余剰部分を、端子等の位置として有効に利用することができるため、素子をより小型化することができる。また、端子等をコーナー部32bに配置することにより、素子の重量バランスを最適化することができる。その結果、高精度な駆動が可能となり、また、温度変化によって液晶が膨張・収縮した場合に、基板32に対し均等に圧力が加わるため不均一な変形が起こらず、素子の性能を維持することができる。   Further, in the example of FIG. 13, the holes 60A to 60F and the liquid crystal injection port 73 are formed in a quadrangular shape other than the circular area (the area where the segment electrode 22 and the common electrode 23 are formed) through which the light flux passes. It is formed near the corner 32b on the substrate 32 (33). Further, the sealing material 70 is provided in a substantially circular shape so that the liquid crystal 10 is sealed in the circular area through which the light flux passes. With this configuration, the excess portion of the substrate 32 through which the light flux does not pass can be effectively used as the position of the terminal or the like, and thus the element can be further downsized. Further, by arranging the terminals and the like at the corner portion 32b, the weight balance of the element can be optimized. As a result, highly accurate driving becomes possible, and when the liquid crystal expands/contracts due to temperature change, uniform pressure is applied to the substrate 32 so that non-uniform deformation does not occur and element performance is maintained. You can

また、図13の例では、セグメント電極22のパターンを、端子61Aに直接接続するように形成しているが、この他にも、例えば、閉じた円形領域からなる各電極パターンを形成した後に、それぞれの電極と各端子とをリード線等で接続しても良い。   Further, in the example of FIG. 13, the pattern of the segment electrode 22 is formed so as to be directly connected to the terminal 61A, but in addition to this, for example, after forming each electrode pattern formed of a closed circular region, Each electrode and each terminal may be connected by a lead wire or the like.

次に、上述の図13の例に係る二重セル構造の液晶素子1FGの製造方法を図17〜図28に基づき説明する。   Next, a method of manufacturing the liquid crystal element 1FG having the double cell structure according to the example of FIG. 13 will be described with reference to FIGS.

まず、液晶補正素子1Fにおける基板32の加工工程について順に説明する。図19〜図22は、図14のS方向から見た状態を示している。最初に、図17及び図19に示すように、母材となる基板320に、多数個の液晶素子に対応させた穴60A、60B、60Cと、液晶の注入口73とを所定の位置に形成する(S101)。続いて、母材となる基板320の全面に反射防止膜(AR膜)を形成し(S102)た後、それぞれの穴に端子61A、61B、61Cを設ける(S103)。なお、後述するように端子61A〜61Cは、基板320を裏返しかつ90度回転させた場合に端子同士が重なり合う必要があるため、母材となる基板320は好ましくは正方形であり、また配列する多数個の液晶素子は縦横で同数形成されている。なお、各端子(例えば端子61A)を設ける際には、図20に示すように、穴60A以外の部分にマスク76を形成した上で、端子61Aとなる金属をめっき等により形成した後、マスク76を除去することにより好適に行われる。   First, a process of processing the substrate 32 in the liquid crystal correction element 1F will be sequentially described. 19 to 22 show a state viewed from the S direction in FIG. First, as shown in FIG. 17 and FIG. 19, holes 60A, 60B, and 60C corresponding to a large number of liquid crystal elements and liquid crystal injection holes 73 are formed at predetermined positions in a substrate 320 that is a base material. Yes (S101). Subsequently, after forming an antireflection film (AR film) on the entire surface of the substrate 320 as a base material (S102), terminals 61A, 61B and 61C are provided in the respective holes (S103). As will be described later, since the terminals 61A to 61C need to overlap each other when the substrate 320 is turned upside down and rotated by 90 degrees, the substrate 320 serving as a base material is preferably square, and many terminals are arranged. The same number of liquid crystal elements are formed vertically and horizontally. When providing each terminal (for example, the terminal 61A), as shown in FIG. 20, after forming a mask 76 on a portion other than the hole 60A, a metal to be the terminal 61A is formed by plating or the like, and then a mask is formed. This is preferably done by removing 76.

続いて、図14のU方向から見た側に対し、後述するような検査に用いる配線を形成した後(S104)、所定の位置に電極材を蒸着等によって形成し(S105)、エッチング等によるパターンニングを行ってセグメント電極22を作製する(S106)。この状態を図21に示す。なお、上述の端子を設ける工程と、検査に用いる配線を形成する工程とは前後しても良い。   Subsequently, on the side viewed from the U direction in FIG. 14, after forming a wiring used for an inspection as described later (S104), an electrode material is formed at a predetermined position by vapor deposition or the like (S105), and by etching or the like. Patterning is performed to produce the segment electrode 22 (S106). This state is shown in FIG. Note that the step of providing the terminal and the step of forming the wiring used for the inspection may be performed before or after.

次に、S方向の側に透明絶縁層を必要に応じて積層させ、PVA等の液晶配向膜を形成し、ラビングを行う(S107)。さらに液晶を封入するためのシール材70を、印刷等によりセグメント電極22の外側に設ける(S108)。この状態を図22に示す。   Next, a transparent insulating layer is laminated on the side in the S direction as needed, a liquid crystal alignment film such as PVA is formed, and rubbing is performed (S107). Further, a sealing material 70 for enclosing the liquid crystal is provided outside the segment electrodes 22 by printing or the like (S108). This state is shown in FIG.

一方、対向させる別の基板(基板33側)については、図14のT方向から見た図23に示すように、母材となる基板330に対して上記の基板320と同じ位置に穴60D、61E、60Fを形成し(S201)、AR膜を形成し(S202)た後、端子61D、61E、61Fを設け(S203)、電極材の蒸着等を行い(S204)、パターンニングを行ってコモン電極23を形成する(S205)。また、液晶配向膜を形成してラビングを行い(S206)、対向させる基板320の各端子同士と接続するための導通材を印刷等により設ける(S207)。
なお、場合によっては、注入口73を基板33側に形成したり、あるいはシール材70を基板33側に、導通材を基板32側に印刷することも可能である。
On the other hand, as for another substrate (on the side of the substrate 33) to be opposed, as shown in FIG. 23 viewed from the T direction of FIG. 14, the hole 60D is formed at the same position as the substrate 320 with respect to the substrate 330 which is the base material. After forming 61E and 60F (S201) and forming an AR film (S202), terminals 61D, 61E and 61F are provided (S203), electrode materials are vapor-deposited (S204), and patterning is performed to perform common. The electrode 23 is formed (S205). In addition, a liquid crystal alignment film is formed and rubbing is performed (S206), and a conductive material for connecting the terminals of the substrate 320 facing each other is provided by printing or the like (S207).
In some cases, the injection port 73 may be formed on the substrate 33 side, or the sealing material 70 may be printed on the substrate 33 side and the conductive material may be printed on the substrate 32 side.

そして、上記のような端子等を形成した基板320と基板330とを、対向させて組み合わせる(S301)。この工程は、スペーサを介して接着剤で貼り合わせる等して行われる。
続いて、注入口73からシール材70の内側へ液晶を注入し(S302)、封止材によって封止する。そして、母材となる基板320上に配列した各端子を使用して、素子の動作検査を行う(S303)。このとき、基板320上には、図24に示すように予め配線77を形成している(S104)ため、その配線77を利用して全数検査が一度に行われる。検査の結果不合格であった箇所についてはNGマーキングを行う(S304)。
Then, the substrate 320 and the substrate 330 having the terminals and the like as described above are opposed to each other and combined (S301). This step is performed by bonding with an adhesive via a spacer.
Subsequently, liquid crystal is injected from the injection port 73 into the inside of the sealing material 70 (S302), and is sealed by the sealing material. Then, the operation inspection of the element is performed using each terminal arranged on the substrate 320 which is the base material (S303). At this time, since the wiring 77 is previously formed on the substrate 320 as shown in FIG. 24 (S104), 100% inspection is performed at once using the wiring 77. NG marking is performed on a portion that fails the inspection (S304).

以上の各工程(S101〜S303)を経て、液晶素子1Fが多数個配列した組が得られる。そして、この組に対し、同様の各工程(S101〜S303)を経て製造された別の組(液晶素子1Gが配列している)を積層させる(S501)。このとき、図25に示すように、別の組をZ方向に裏返し、かつX方向に90度回転させた状態にして、液晶素子1Fが配列する組の基板330側と、液晶素子1Gが配列する組の基板330側とを積層させることにより、コモン端子同士、対応するセグメント端子同士が組み合わされ、なおかつ液晶の配向方向が直交した状態が得られることになる。   Through the above steps (S101 to S303), a set in which a large number of liquid crystal elements 1F are arranged is obtained. Then, another set (where the liquid crystal elements 1G are arranged) manufactured through the same steps (S101 to S303) is laminated on this set (S501). At this time, as shown in FIG. 25, another set is turned over in the Z direction and rotated by 90 degrees in the X direction, and the liquid crystal element 1G and the substrate 330 side of the set in which the liquid crystal elements 1F are arranged are arranged. By stacking the substrate 330 side of the set, the common terminals and the corresponding segment terminals are combined with each other, and a state in which the alignment directions of the liquid crystals are orthogonal to each other can be obtained.

また、組同士を積層させる際には、組の間に予めシール材71及び導通材75を印刷等しておく(S305、S401)。このシール材71及び導通材75は、それぞれ液晶素子1F側に設けても良いし、反対の液晶素子1G側に設けても良い。   Further, when stacking the sets, the sealing material 71 and the conductive material 75 are printed in advance between the sets (S305, S401). The sealing material 71 and the conductive material 75 may be provided on the liquid crystal element 1F side or on the opposite liquid crystal element 1G side.

シール材71は、図26に示すように、光束が通過する円形領域を囲むように閉じた状態で設けることができる。この場合、シール材71の内側に閉じ込められる気体の膨張によって積層状態が損なわれないように、組同士を積層させる作業は真空中で行う必要がある。シール材71が閉じた状態でかつ内側が真空であると、ゴミ等が内部に侵入せず、光透過率を高くできるため好ましい。   As shown in FIG. 26, the sealing material 71 can be provided in a closed state so as to surround a circular area through which the light flux passes. In this case, the work of stacking the pairs must be performed in a vacuum so that the stacked state is not impaired by the expansion of the gas trapped inside the sealing material 71. It is preferable that the sealing material 71 is closed and the inside is in vacuum because dust or the like does not enter the inside and the light transmittance can be increased.

そして、組同士を積層させた後、母材となる基板320上に配列した各端子を使用して、二重セル構造の液晶素子の動作検査を行う(S502)。このときも、上述の場合と同様に基板320上に形成した配線77を利用して全数検査を一度に行うことができる。検査の結果不合格であった箇所についてはNGマーキングを行う(S503)。   Then, after stacking the pairs, an operation test of the liquid crystal element having the double cell structure is performed using each terminal arranged on the substrate 320 as a base material (S502). At this time as well, as in the case described above, the wiring 77 formed on the substrate 320 can be used to perform a 100% inspection at one time. NG marking is performed on a portion that fails the inspection (S503).

最後に、図27に示すように、母材となる基板を、ダイサー等を用いて個々の二重液晶素子1FGに切り分け(S504)、単品の検査工程(S505)を経た後に出荷する(S507)。なお、単品の検査において不合格となった素子は、廃棄又は修理するか、又は再生工程に移される(S506)。   Finally, as shown in FIG. 27, the base material substrate is cut into individual double liquid crystal elements 1FG using a dicer or the like (S504), and a single product inspection step (S505) is performed before shipment (S507). .. It should be noted that the element that fails the inspection of the single item is either discarded, repaired, or moved to the recycling step (S506).

なお、組同士を積層させる際、図26で示したシール材71に代わって、図28に示すような、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール材71Aを介在させても良い。この場合は、シール材71Aの内側に接着剤72を設け、この接着剤72により組同士を接着させる。図28の例では、組同士を積層させる作業を大気中で行うことができるため、生産効率が高いという利点がある。   When stacking the pairs, instead of the sealing material 71 shown in FIG. 26, a sealing material 71A provided in a partially opened state so as to surround a circular region through which a light flux passes, as shown in FIG. You may intervene. In this case, an adhesive 72 is provided inside the sealing material 71A, and the sets are adhered to each other by the adhesive 72. In the example of FIG. 28, the work of stacking the sets can be performed in the atmosphere, which has an advantage of high production efficiency.

以上のような製造方法によれば、各端子や電極の形成、及び液晶の注入工程等が、個々の素子に切り分ける前の母材の状態で全て行われるため、生産効率が非常に高く、コストも大幅に低減することができる。また、生産規模の拡大にも容易に対応可能である。
特に、積層させる2つの液晶素子が、別々に作るのではなく同一の工程で製造され、片方を裏返して90度回転させるだけで良いので、全体の生産効率は大きく向上する。
さらに、液晶を注入・封止した後に行われる検査工程も、母材の状態で一斉に行えるため、産業上極めて有用である。
According to the manufacturing method as described above, since the steps of forming each terminal and electrode, and the step of injecting liquid crystal are all performed in the state of the base material before being cut into individual elements, the production efficiency is very high and the cost is high. Can be significantly reduced. Moreover, it is possible to easily cope with the expansion of the production scale.
In particular, two liquid crystal elements to be laminated are not manufactured separately but manufactured in the same process, and it is sufficient to turn over one side and rotate 90 degrees, so that the overall production efficiency is greatly improved.
Further, the inspection process performed after injecting and sealing the liquid crystal can be performed all at once in the state of the base material, which is extremely useful in industry.

次に、本発明の実施の形態(7)について図29に基づき説明する。図29の例は、上述の二重セル構造の液晶素子1FGに対し、光学ズーム系を構成した際に光束が通過する領域(セグメント電極22が設けられた円形領域)の外側に遮光部32aを形成したことを特徴としている。なお、各端子61A〜61Cの部分は除いている。遮光部32aは、適宜手段により形成することができ、例えば、基板32の表面及び端面に黒色系の塗膜を設ける方法や、液晶素子1Fと液晶素子1Gとを積層させる際のシール材に黒色顔料を混入する方法等を適宜用いることができる。   Next, an embodiment (7) of the present invention will be described with reference to FIG. In the example of FIG. 29, with respect to the liquid crystal element 1FG having the double cell structure described above, the light shielding portion 32a is provided outside the region through which the light flux passes when the optical zoom system is configured (the circular region in which the segment electrodes 22 are provided). It is characterized by being formed. The portions of the terminals 61A to 61C are omitted. The light-shielding portion 32a can be formed by an appropriate means, for example, a method of providing a black coating film on the surface and the end surface of the substrate 32, or a black sealing material when laminating the liquid crystal elements 1F and 1G. A method of mixing a pigment or the like can be appropriately used.

この実施の形態(7)によれば、遮光部32aによって素子外部からの乱反射(特に、基板32の端面から面方向に入射する光)が遮られるため、良好な像を維持することができる。なお、この実施の形態(7)における遮光部32aは、上述の実施の形態(1)〜(5)に係る液晶素子に対して適用することもできる。
また、図29の例では、基板32の四隅を斜めにカットしている。このようにすると、他のレンズの外形状(丸形状)に近くなるため、レンズ系全体をより小さくすることができ好ましい。また、カットした分だけ素子を軽量化できる利点もある。
According to this embodiment (7), since the light-shielding portion 32a shields diffused reflection from outside the element (in particular, light incident in the surface direction from the end face of the substrate 32), a good image can be maintained. The light shielding portion 32a in this embodiment (7) can also be applied to the liquid crystal elements according to the above embodiments (1) to (5).
Further, in the example of FIG. 29, the four corners of the substrate 32 are cut obliquely. In this case, the shape is close to the outer shape (round shape) of another lens, which is preferable because the entire lens system can be made smaller. There is also an advantage that the element can be lightened by the amount of cutting.

本発明の液晶素子は、所定の屈折率分布を形成することができるため、光学ズーム系に配設した場合にレンズの駆動が不要となり、もしくは最小限の駆動で済むため、従来にない小型・薄型の光学ズーム機能を提供でき、特に携帯電話機等の超小型カメラ用として好適に利用することができる。   Since the liquid crystal element of the present invention can form a predetermined refractive index distribution, it is not necessary to drive the lens when it is arranged in the optical zoom system, or it can be driven with a minimum, so that it is possible to realize a smaller size than ever before. It can provide a thin optical zoom function, and can be suitably used particularly for an ultra-small camera such as a mobile phone.

【0002】
ーム方式に頼っているのが現状である。また、カメラの有効画素数がさらに高くなるにつれ、レンズユニットをいかに小さな筐体に収めるかがますます重要になっている。
[0005]
【特許文献1】特開2004−258111号公報
【特許文献2】特開2004−212737号公報
【発明の開示】
【発明が解決しようとする課題】
[0006]
そこで本発明は、上記従来の状況に鑑み、特に携帯電話機等の機器に搭載されるカメラのレンズ系に用いられ、従来に比して小型・薄型でかつ軽量な光学ズーム機能を得ることができる新規な液晶素子を提供することを目的とする。
【課題を解決するための手段】
[0007]
上記課題を解決するため、本発明は、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、電圧印加時に前記液晶の配向状態が前記光軸を中心として同心状に変化するように構成した液晶素子を提供するものである。
[0008]
この構成によれば、同心状に変化する液晶の配向状態に対応して、素子全体に所定の屈折率分布が与えられ、焦点が移動して光学ズーム機能が発揮される。
[0009]
第2発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成した液晶素子を提供する。
[0010]
この構成によれば、複数形成された非電極部位の中心部では電極に対して垂直方向に弱い電界が形成され、非電極部位の端の部分では電界が傾いた方向に形成されるため、その電界分布に沿って液晶分子が不均一に配向することで、非電極部位の中心から
[0002]
The current situation is that it relies on the boom system. Also, as the number of effective pixels of the camera becomes higher, it becomes more and more important how to house the lens unit in a small housing.
[0005]
[Patent Document 1] JP-A-2004-258111 [Patent Document 2] JP-A-2004-212737 [Disclosure of the Invention]
[Problems to be Solved by the Invention]
[0006]
Therefore, in view of the conventional situation described above, the present invention is used for a lens system of a camera mounted on a device such as a mobile phone, and can obtain an optical zoom function which is smaller, thinner, and lighter than conventional ones. It is an object to provide a new liquid crystal element.
[Means for Solving the Problems]
[0007]
In order to solve the above-mentioned problems, the present invention is a liquid crystal element that is arranged together with a lens on an optical axis to form an optical zoom system and forms a refractive index distribution by applying a voltage to exert an optical zoom function. And a liquid crystal and a plurality of electrodes facing each other with the liquid crystal sandwiched therebetween, and a liquid crystal element configured so that the alignment state of the liquid crystal changes concentrically around the optical axis when a voltage is applied. is there.
[0008]
According to this configuration, a predetermined refractive index distribution is given to the entire element in accordance with the alignment state of the liquid crystal that changes concentrically, and the focal point moves to exert the optical zoom function.
[0009]
According to a second aspect of the present invention, a liquid crystal element that is arranged on the optical axis together with a lens to form an optical zoom system, forms a refractive index distribution by applying a voltage, and exerts an optical zoom function. A plurality of electrodes facing each other with a liquid crystal sandwiched therebetween, and a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes, and the size along the radial direction when the electrodes are concentrically divided. Alternatively, there is provided a liquid crystal element which is formed by an arrangement pattern in which arrangement intervals or both of them are changed, and in which liquid crystals are non-uniformly aligned when a voltage is applied inside the non-electrode portion.
[0010]
According to this structure, a weak electric field is formed in the central portion of the plurality of non-electrode portions in the direction perpendicular to the electrodes, and an electric field is formed in the inclined direction at the end portions of the non-electrode portions. Since the liquid crystal molecules are non-uniformly aligned along the electric field distribution,

【0003】
周辺にかけて屈折率が連続的に変化する光の屈折効果(レンズ効果)が得られる。非電極部位の大きさないし配置間隔は電極上で同心円状に変化させるため、素子全体として所定の屈折率分布が与えられ、焦点が移動して光学ズーム機能が発揮される。
[0011]
また、第3発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成するとともに、相異なる電圧を印加する複数本の線状電極を前記同心円状に変化する配置パターンに沿って所定の間隔で環状に配設した液晶素子を提供する。
[0012]
この構成によれば、上述のように非電極部位の大きさもしくは配置間隔を同心円状に変化させることで、所望の屈折率分布が得られるとともに、複数本の線状電極を環状に配設し所定部位にさらに電圧を印加することによって、上記の屈折率分布がより強調され、光学ズーム機能が向上する。
[0013]
また、第4発明は、上記第2発明又は第3発明に係る液晶素子において、複数の非電極部位の配置間隔は、電極上の同心円状に分けられた各領域内において不規則であることを特徴とする。
[0014]
この構成によれば、隣接する非電極部位との間隔を不規則(ランダム)にすることで、光干渉効果による波面の乱れが防止される。
[0015]
また、第5発明は、上記第2発明又は第3発明に係る液晶素子において、非電極部位の形状が円形又はピット形であることを特徴とする。
[0016]
この構成によれば、素子を通過する光束に対して非電極部位の形状が最適化される。なお、ここでピット形とは、一方の軸がそれに垂直な他方の軸より長い形状を意味し、例えば長い方の軸を液晶のラビング方向と平行に、あるいはラビング方向と垂直になるように形成することができる。
[0017]
また、第6発明では、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子で
[0003]
A light refraction effect (lens effect) in which the refractive index continuously changes toward the periphery can be obtained. Since the size of the non-electrode portion or the arrangement interval is changed concentrically on the electrode, a predetermined refractive index distribution is given to the entire element, and the focus moves to exert the optical zoom function.
[0011]
According to the third aspect of the invention, the liquid crystal element is arranged on the optical axis together with a lens to form an optical zoom system, and a refractive index distribution is formed by applying a voltage to exhibit an optical zoom function. , A plurality of electrodes facing each other across the liquid crystal, a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes, along a radial direction when the electrodes are concentrically divided. It is formed by an arrangement pattern in which the size and/or the arrangement interval are changed, and the inside of the non-electrode portion is configured so that the liquid crystal is non-uniformly aligned when a voltage is applied. Provided is a liquid crystal element in which linear electrodes are annularly arranged at a predetermined interval along the arrangement pattern that changes concentrically.
[0012]
According to this configuration, by changing the size or the arrangement interval of the non-electrode parts in a concentric manner as described above, a desired refractive index distribution can be obtained, and a plurality of linear electrodes are arranged in an annular shape. By further applying a voltage to the predetermined portion, the above refractive index distribution is further emphasized and the optical zoom function is improved.
[0013]
The fourth invention is that in the liquid crystal element according to the second invention or the third invention, the arrangement intervals of the plurality of non-electrode portions are irregular in each concentric region on the electrode. Characterize.
[0014]
According to this configuration, the distance between the adjacent non-electrode portions is irregular (random), so that the disturbance of the wavefront due to the optical interference effect is prevented.
[0015]
Further, a fifth invention is characterized in that, in the liquid crystal element according to the second invention or the third invention, the non-electrode portion has a circular shape or a pit shape.
[0016]
According to this structure, the shape of the non-electrode portion is optimized for the light flux passing through the element. Here, the pit shape means a shape in which one axis is longer than the other axis perpendicular to it, and for example, the longer axis is formed parallel to the rubbing direction of the liquid crystal or perpendicular to the rubbing direction. can do.
[0017]
Further, in the sixth aspect of the invention, the liquid crystal element is arranged on the optical axis together with the lens to form an optical zoom system, and a refractive index distribution is formed by applying a voltage to exhibit an optical zoom function.

【0004】
あって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つは相異なる抵抗値を有する同心円状の複数の領域から構成され、該電極には、相異なる電圧を印加する複数本の線状電極を前記光軸を中心として同心状に所定の間隔で配設し、前記複数本の線状電極に電圧を印加した時に前記線状電極が配設されている前記電極が抵抗膜として作用し、前記複数本の線状電極の間で電圧降下を生じて、前記液晶の配向状態が前記光軸を中心として同心状に変化するように構成してなる液晶素子を提供する。
[0018]
この構成によれば、複数本の線状電極の間で印加電圧が連続的に変化し、その電圧値に応じて液晶の配向状態が変化するため、素子全体に所定の屈折率分布が形成され、光学ズーム機能が発揮される。
[0019]
また、上記第6発明に係る液晶素子において、複数本の線状電極が配設される抵抗膜は、相異なる抵抗値を有する複数の領域から構成されることを特徴とする。
[0020]
この構成によれば、複数本の線状電極の間の電圧降下が曲線的になる。
[0021]
また、第8発明は、上記第2、第3、第6発明のいずれかに係る液晶素子において、光学ズーム系を構成した際に光束が通過する領域の外側を遮光することを特徴とする。
[0022]
この構成によれば、光束が通過する領域の外側からの乱反射等が遮られ、像の画質が安定する。
[0023]
また、第9発明では、厚さ方向に積層した2つの液晶素子からなり、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する二重セル構造の液晶素子であって、前記各々の液晶素子は、一方にコモン電極が、他方にセグメント電極が形成された一対の基板と、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極には、電極材の存在しない複数の非電極部位が、前記セグメント電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成され、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように
[0004]
A liquid crystal and a plurality of electrodes facing each other with the liquid crystal sandwiched therebetween, at least one of the electrodes being composed of a plurality of concentric circular regions having different resistance values, and the electrodes being different from each other. A plurality of linear electrodes for applying a voltage are arranged concentrically around the optical axis at predetermined intervals, and the linear electrodes are arranged when a voltage is applied to the plurality of linear electrodes. A liquid crystal configured such that the electrode acts as a resistance film, a voltage drop occurs between the plurality of linear electrodes, and the alignment state of the liquid crystal changes concentrically around the optical axis. Provide the element.
[0018]
According to this configuration, the applied voltage is continuously changed between the plurality of linear electrodes, and the alignment state of the liquid crystal is changed according to the voltage value, so that a predetermined refractive index distribution is formed over the entire element. , Optical zoom function is demonstrated.
[0019]
Further, in the liquid crystal element according to the sixth aspect of the invention, the resistance film on which the plurality of linear electrodes are arranged is composed of a plurality of regions having different resistance values.
[0020]
According to this structure, the voltage drop between the plurality of linear electrodes becomes curved.
[0021]
An eighth aspect of the invention is characterized in that, in the liquid crystal element according to any one of the second, third, and sixth aspects of the invention, when the optical zoom system is configured, the outside of a region through which a light beam passes is shielded.
[0022]
According to this configuration, diffused reflection from the outside of the area through which the light flux passes is blocked, and the image quality of the image is stabilized.
[0023]
Further, in the ninth invention, it is composed of two liquid crystal elements laminated in the thickness direction, and is arranged with a lens on the optical axis to form an optical zoom system, and a refractive index distribution is formed by applying a voltage to form an optical zoom system. A liquid crystal element having a double cell structure that exhibits a zoom function, wherein each of the liquid crystal elements is sandwiched between a pair of substrates having a common electrode formed on one side and a segment electrode formed on the other side, and the pair of substrates. And a plurality of non-electrode portions where no electrode material is present in the segment electrode, the size and/or the arrangement interval of the segment electrode being changed along the radial direction when the segment electrode is concentrically divided. The liquid crystal is formed in a disposition pattern so that the liquid crystal is non-uniformly aligned when a voltage is applied inside the non-electrode portion.

Claims (21)

光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、電圧印加時に前記液晶の配向状態が前記光軸を中心として同心状に変化するように構成してなる液晶素子。   A liquid crystal element that is arranged on the optical axis together with a lens to form an optical zoom system, forms a refractive index distribution by applying a voltage, and exerts an optical zoom function. The liquid crystal element faces the liquid crystal with the liquid crystal interposed therebetween. And a plurality of electrodes for controlling the liquid crystal, wherein the alignment state of the liquid crystal changes concentrically around the optical axis when a voltage is applied. 光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成してなる液晶素子。   A liquid crystal element that is arranged on the optical axis together with a lens to form an optical zoom system, forms a refractive index distribution by applying a voltage, and exerts an optical zoom function. The liquid crystal element faces the liquid crystal with the liquid crystal interposed therebetween. And a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes, the size or arrangement interval along the radial direction when the electrodes are divided into concentric circles or A liquid crystal element formed by arranging both of them so that the liquid crystal is nonuniformly aligned when a voltage is applied inside the non-electrode portion. 光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記電極の少なくとも一つには電極材の存在しない複数の非電極部位を、電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成し、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成するとともに、相異なる電圧を印加する複数本の線状電極を前記同心円状に変化する配置パターンに沿って所定の間隔で環状に配設してなる液晶素子。   A liquid crystal element that is arranged on the optical axis together with a lens to form an optical zoom system, forms a refractive index distribution by applying a voltage, and exerts an optical zoom function. The liquid crystal element faces the liquid crystal with the liquid crystal interposed therebetween. And a plurality of non-electrode portions where no electrode material is present in at least one of the electrodes, the size or arrangement interval along the radial direction when the electrodes are divided into concentric circles or Both are formed by changing the arrangement pattern, and the liquid crystal is arranged to be non-uniformly aligned when a voltage is applied inside the non-electrode portion, and a plurality of linear electrodes to which different voltages are applied are formed into the concentric circles. A liquid crystal element which is annularly arranged at a predetermined interval along an arrangement pattern that changes to. 請求項2又は3記載の液晶素子において、複数の非電極部位の配置間隔は、電極上の同心円状に分けられた各領域内において不規則であることを特徴とする液晶素子。   The liquid crystal element according to claim 2 or 3, wherein the arrangement intervals of the plurality of non-electrode portions are irregular in each concentric region on the electrode. 請求項2又は3記載の液晶素子において、非電極部位の形状が円形又はピット形であることを特徴とする液晶素子。   The liquid crystal element according to claim 2 or 3, wherein the non-electrode portion has a circular shape or a pit shape. 光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する液晶素子であって、液晶と、前記液晶を挟んで対向する複数の電極とを備え、前記複数の電極の少なくとも一方には、相異なる電圧を印加する複数本の線状電極を前記光軸を中心として同心状に所定の間隔で配設し、前記複数本の線状電極に電圧を印加した時に前記線状電極が配設されている前記電極が抵抗膜として作用し、前記複数本の線状電極の間で電圧降下を生じて、前記液晶の配向状態が前記光軸を中心として同心状に変化するように構成してなる液晶素子。   A liquid crystal element that is arranged on the optical axis together with a lens to form an optical zoom system, forms a refractive index distribution by applying a voltage, and exerts an optical zoom function. The liquid crystal element faces the liquid crystal with the liquid crystal interposed therebetween. A plurality of electrodes, and at least one of the plurality of electrodes is provided with a plurality of linear electrodes that apply different voltages concentrically around the optical axis at predetermined intervals. When a voltage is applied to the two linear electrodes, the electrodes on which the linear electrodes are arranged act as a resistance film, causing a voltage drop between the plurality of linear electrodes, and thereby aligning the liquid crystal. A liquid crystal element configured so that the state changes concentrically around the optical axis. 請求項6記載の液晶素子において、複数本の線状電極が配設される電極は、相異なる抵抗値を有する複数の領域から構成されることを特徴とする液晶素子。   The liquid crystal element according to claim 6, wherein the electrode on which the plurality of linear electrodes are arranged is composed of a plurality of regions having different resistance values. 請求項1〜3、6、7のいずれか記載の液晶素子において、光学ズーム系を構成した際に光束が通過する領域の外側を遮光することを特徴とする液晶素子。   The liquid crystal element according to any one of claims 1 to 3, 6, and 7, wherein when the optical zoom system is configured, a liquid crystal element is shielded outside a region through which a light beam passes. 厚さ方向に積層した2つの液晶素子からなり、光軸上にレンズとともに配置して光学ズーム系を構成し、電圧を印加することにより屈折率分布を形成して光学ズーム機能を発揮する二重セル構造の液晶素子であって、前記各々の液晶素子は、一方にコモン電極が、他方にセグメント電極が形成された一対の基板と、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極には、電極材の存在しない複数の非電極部位が、前記セグメント電極上を同心円状に分けたときの半径方向に沿って大きさもしくは配置間隔又はその両方を変化させた配置パターンで形成され、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成され、前記一対の基板の各々には厚さ方向に複数の穴が穿たれるとともに前記穴には前記コモン電極およびセグメント電極のいずれかに接続される端子が設けられ、前記一対の基板の一方には液晶を注入するための注入口が形成されてなる二重セル構造の液晶素子。   It is composed of two liquid crystal elements stacked in the thickness direction, and is arranged with a lens on the optical axis to form an optical zoom system. By applying a voltage, a refractive index distribution is formed and the double function is achieved. A liquid crystal element having a cell structure, wherein each of the liquid crystal elements includes a pair of substrates having a common electrode formed on one side and a segment electrode formed on the other side, and a liquid crystal sandwiched between the pair of substrates. In the electrode, a plurality of non-electrode parts where no electrode material is present are formed in an arrangement pattern in which the size or the arrangement interval or both of them are changed along the radial direction when the segment electrode is divided into concentric circles. Inside the non-electrode portion, the liquid crystal is arranged to be non-uniformly aligned when a voltage is applied, and a plurality of holes are formed in each of the pair of substrates in a thickness direction, and the common electrode is formed in the hole. And a terminal connected to any one of the segment electrodes, and an injection port for injecting liquid crystal is formed in one of the pair of substrates, which is a double cell structure liquid crystal element. 請求項9記載の二重セル構造の液晶素子において、電圧の非印加時における液晶の配向方向が2つの液晶素子で直交するように構成したことを特徴とする二重セル構造の液晶素子。   The liquid crystal device of the double cell structure according to claim 9, wherein the liquid crystal alignment directions of the two liquid crystal devices when no voltage is applied are orthogonal to each other. 請求項9記載の二重セル構造の液晶素子において、基板が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする二重セル構造の液晶素子。   The liquid crystal device having a double cell structure according to claim 9, wherein the substrate is formed in a quadrangular shape, the liquid crystal is sealed along a circular region through which a light flux of the substrate passes, and the liquid crystal is provided near a corner portion other than the circular region. A liquid crystal device having a double-cell structure, characterized in that an injection port and a terminal are provided. 請求項10記載の二重セル構造の液晶素子において、基板が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする二重セル構造の液晶素子。   The liquid crystal device having a double cell structure according to claim 10, wherein the substrate is formed in a quadrangular shape, the liquid crystal is sealed along a circular area through which the light flux of the substrate passes, and the liquid crystal is provided near a corner portion other than the circular area. A liquid crystal device having a double-cell structure, characterized in that an injection port and a terminal are provided. 請求項9〜11のいずれか記載の二重セル構造の液晶素子において、積層した各々の液晶素子のコモン電極に接続される端子同士、一方の液晶素子のセグメント電極に接続される端子同士、および他方の液晶素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重セル構造の液晶素子の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特徴とする二重セル構造の液晶素子。   The liquid crystal element having a double cell structure according to any one of claims 9 to 11, wherein terminals connected to a common electrode of each laminated liquid crystal element, terminals connected to a segment electrode of one liquid crystal element, and The terminals connected to the segment electrodes of the other liquid crystal element are connected to each other in the thickness direction, and are integrated into the terminals provided on the one substrate located outside the liquid crystal element of the double cell structure. Characteristic double cell structure liquid crystal element. 請求項12記載の二重セル構造の液晶素子において、積層した各々の液晶素子のコモン電極に接続される端子同士、一方の液晶素子のセグメント電極に接続される端子同士、および他方の液晶素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重セル構造の液晶素子の最も外側である一の基板に設けられた端子にそれぞれ集約されることを特徴とする二重セル構造の液晶素子。   The liquid crystal element having a double cell structure according to claim 12, wherein terminals connected to a common electrode of each laminated liquid crystal element, terminals connected to a segment electrode of one liquid crystal element, and another liquid crystal element of the other liquid crystal element. The terminals connected to the segment electrodes are connected to each other in the thickness direction, and are integrated into the terminals provided on one substrate which is the outermost side of the liquid crystal element having the double cell structure. A liquid crystal device with a cell structure. 請求項14記載の二重セル構造の液晶素子において、一方の液晶素子のセグメント電極に接続される端子と、他方の液晶素子のセグメント電極に接続される端子とが、四角形状の基板の対角に位置するコーナー部付近に設けられ、コモン電極に接続される端子と液晶の注入口とが残りのコーナー部付近に設けられることを特徴とする二重セル構造の液晶素子。   15. The liquid crystal element having a double cell structure according to claim 14, wherein a terminal connected to a segment electrode of one liquid crystal element and a terminal connected to a segment electrode of the other liquid crystal element are diagonal to each other on a rectangular substrate. A liquid crystal element having a double cell structure, characterized in that it is provided in the vicinity of a corner portion located at, and a terminal connected to the common electrode and a liquid crystal inlet are provided in the vicinity of the remaining corner portion. 請求項9〜12のいずれか記載の二重セル構造の液晶素子において、光学ズーム系を構成した際に光束が通過する領域の外側を遮光することを特徴とする二重セル構造の液晶素子。   The liquid crystal element having a double cell structure according to any one of claims 9 to 12, characterized in that the liquid crystal element having a double cell structure shields the outside of a region through which a light flux passes when an optical zoom system is configured. 請求項15記載の二重セル構造の液晶素子の製造方法であって、母材となる基板に対し、多数個の液晶素子に対応する端子および注入口を設ける工程と、セグメント電極を形成する工程と、前記の端子、注入口、およびセグメント電極を形成した基板に対し、対向する位置に端子を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重セル構造の液晶素子に切り分ける工程と、を有してなる二重セル構造の液晶素子の製造方法。   A method of manufacturing a liquid crystal device having a double cell structure according to claim 15, wherein a substrate and a base material are provided with terminals and injection ports corresponding to a large number of liquid crystal devices, and a process of forming segment electrodes. And a step of combining another substrate having a common electrode formed with a terminal provided at a position facing the substrate having the terminals, the injection port, and the segment electrode formed thereon, and injecting liquid crystal from the injection port after the combination. A step, and a step of stacking after turning another set obtained by going through the same steps and rotating by 90 degrees with respect to a set in which a large number of liquid crystal elements manufactured through the above steps are arranged, And a step of dividing into a liquid crystal device having a double cell structure, and a method for manufacturing a liquid crystal device having a double cell structure. 請求項15記載の二重セル構造の液晶素子の製造方法であって、母材となる基板に対し、多数個の液晶素子に対応する端子を設ける工程と、セグメント電極を形成する工程と、前記の端子、およびセグメント電極を形成した基板に対し、対向する位置に端子とさらに注入口を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重セル構造の液晶素子に切り分ける工程と、を有してなる二重セル構造の液晶素子の製造方法。   A method of manufacturing a liquid crystal device having a double cell structure according to claim 15, wherein a substrate corresponding to a large number of liquid crystal devices is provided on a substrate as a base material, a segment electrode is formed, Of the substrate and the substrate on which the segment electrode is formed, a step of combining another substrate on which a terminal and an injection port are provided at a position facing each other and a common electrode is formed, and a step of injecting liquid crystal from the injection port after combination. A step in which another set obtained by going through the same steps is turned upside down and rotated by 90 degrees, and then stacked, with respect to a set in which a large number of liquid crystal elements arranged through the above steps are arranged; A method of manufacturing a liquid crystal device having a double cell structure, which comprises a step of dividing into a liquid crystal device having a heavy cell structure. 請求項17又は18記載の製造方法において、基板の表面には、それぞれの端子に共通して接続される検査用の配線を形成し、多数個の液晶素子が配列した組に対して別の組を積層させる工程の前、もしくは個々の二重セル構造の液晶素子に切り分ける工程の前のいずれか一方又は両方の時点で前記配線を利用して検査を行うことを特徴とする二重セル構造の液晶素子の製造方法。   The manufacturing method according to claim 17 or 18, wherein a wiring for inspection commonly connected to each terminal is formed on the surface of the substrate, and another set is provided for a set in which a large number of liquid crystal elements are arranged. Of the double cell structure, characterized in that the inspection is performed by using the wiring at either or both of the steps before the step of stacking the liquid crystal and the step of dividing the liquid crystal element into individual double cell structures. Liquid crystal device manufacturing method. 請求項17又は18記載の製造方法において、多数個の液晶素子が配列した組に対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むように閉じた状態で設けられるシール材を介して積層させることを特徴とする二重セル構造の液晶素子の製造方法。   The manufacturing method according to claim 17 or 18, wherein, when another set is stacked on a set in which a large number of liquid crystal elements are arranged, the set is closed in a vacuum so as to surround a circular region through which a light beam passes. A method of manufacturing a liquid crystal device having a double cell structure, characterized in that the liquid crystal device is laminated via a sealant provided. 請求項17又は18記載の製造方法において、多数個の液晶素子が配列した組に対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着剤とを介して積層させることを特徴とする二重セル構造の液晶素子の製造方法。   The manufacturing method according to claim 17 or 18, wherein when a plurality of liquid crystal elements are arranged and another set is laminated, a part of the set is opened so as to surround a circular region through which a light flux passes in the atmosphere. A method of manufacturing a liquid crystal element having a double cell structure, which comprises laminating a sealing material provided in a state and an adhesive provided inside the sealing material.
JP2006537576A 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same Expired - Fee Related JP4532500B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014079 WO2006035482A1 (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPWO2006035482A1 true JPWO2006035482A1 (en) 2008-05-15
JP4532500B2 JP4532500B2 (en) 2010-08-25

Family

ID=36118634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006537576A Expired - Fee Related JP4532500B2 (en) 2004-09-27 2004-09-27 Liquid crystal element having optical zoom function and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP4532500B2 (en)
KR (1) KR101073657B1 (en)
CN (1) CN100437219C (en)
WO (1) WO2006035482A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437219C (en) * 2004-09-27 2008-11-26 碧理科技有限公司 Liquid crystal element having optical zoom function and method for manufacturing the same
JP5776135B2 (en) * 2010-03-01 2015-09-09 秋田県 Low voltage liquid crystal lens
JP5906366B2 (en) * 2010-12-27 2016-04-20 秋田県 Liquid crystal optical device
KR101951320B1 (en) 2012-02-07 2019-02-22 삼성전자주식회사 Varifocal lens
CN104062828B (en) * 2013-03-18 2018-08-31 鸿富锦精密工业(深圳)有限公司 Camera module
KR102464368B1 (en) * 2017-11-07 2022-11-07 삼성전자주식회사 Meta projector and electronic apparatus including the same
KR102610633B1 (en) * 2021-03-15 2023-12-06 호서대학교 산학협력단 Wiring structure for Fresnel lens
WO2023153064A1 (en) * 2022-02-14 2023-08-17 株式会社ジャパンディスプレイ Light control device and panel unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553089A (en) * 1991-08-27 1993-03-05 Hitachi Ltd Focusing mechanism
JPH05100201A (en) * 1991-10-09 1993-04-23 Seiko Epson Corp Variable focus lens
JP2002109776A (en) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd Optical element, optical head, optical recording/ reproducing apparatus, and optical recording/ reproducing method
JP2003315650A (en) * 2002-04-26 2003-11-06 Olympus Optical Co Ltd Optical device
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device
JP2005292326A (en) * 2004-03-31 2005-10-20 Binit:Kk Liquid crystal element
WO2006035482A1 (en) * 2004-09-27 2006-04-06 Binit Corporation Liquid crystal element having optical zoom function and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553089A (en) * 1991-08-27 1993-03-05 Hitachi Ltd Focusing mechanism
JPH05100201A (en) * 1991-10-09 1993-04-23 Seiko Epson Corp Variable focus lens
JP2002109776A (en) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd Optical element, optical head, optical recording/ reproducing apparatus, and optical recording/ reproducing method
JP2003315650A (en) * 2002-04-26 2003-11-06 Olympus Optical Co Ltd Optical device
JP2004101885A (en) * 2002-09-10 2004-04-02 Pioneer Electronic Corp Liquid crystal lens and its driving method, and device
JP2005292326A (en) * 2004-03-31 2005-10-20 Binit:Kk Liquid crystal element
WO2006035482A1 (en) * 2004-09-27 2006-04-06 Binit Corporation Liquid crystal element having optical zoom function and method for manufacturing the same

Also Published As

Publication number Publication date
JP4532500B2 (en) 2010-08-25
WO2006035482A1 (en) 2006-04-06
KR20070057163A (en) 2007-06-04
CN101027601A (en) 2007-08-29
CN100437219C (en) 2008-11-26
KR101073657B1 (en) 2011-10-14

Similar Documents

Publication Publication Date Title
US20210116610A1 (en) Camera module including liquid lens, optical device including the same, and method of manufacturing camera module including liquid lens
JP4057597B2 (en) Optical element
US8493658B2 (en) Polarizer and display device including polarizer
US8421989B2 (en) Liquid crystal lens
JP5037149B2 (en) Imaging lens device
JP2008216626A (en) Variable focal lens
JP4532500B2 (en) Liquid crystal element having optical zoom function and method for manufacturing the same
US20130002998A1 (en) Polarizing element, liquid crystal device, and electronic apparatus
JP2007206299A (en) Imaging structure for camera
US10216060B2 (en) Liquid crystal lens and manufacturing method thereof, display device
JP5491903B2 (en) Multi-layer structure liquid crystal optical element and manufacturing method thereof
JP5647887B2 (en) Multi-structure liquid crystal optical element and manufacturing method thereof
KR100803340B1 (en) Double liquid-crystal aberration correcting element and its manufacturing method
JP2011175104A (en) Liquid crystal optical element having multilayer structure, and method for manufacturing liquid crystal lens
JP2003302626A (en) Substrate for electrooptic panel and manufacturing method therefor, electrooptic panel and electronic equipment
CN111090209B (en) Variable-focus liquid crystal lens, driving method of liquid crystal lens and display device
JP2007065151A5 (en)
JP4036230B2 (en) Liquid crystal display panel, electronic equipment and color filter substrate
CN101261407B (en) Liquid crystal element possessing optical zooming function and method of manufacture
KR100761951B1 (en) Liquid crystal aberration correcting element, and production method therefore
JP2007206300A (en) Imaging structure for camera
JP2021135319A (en) Optical substrate, electro-optical device, electronic apparatus, and method for manufacturing optical substrate
JP2021139928A (en) Optical substrate, electro-optical device, electronic device, and method of manufacturing optical substrate
JP5528298B2 (en) Liquid crystal optical element
KR20100098982A (en) Shutter pixel, shutter structure inclduing the shutter pixel and exposure apparatus including the shutter structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees