WO2006034977A1 - Procede pour determiner et specifier des parametres d'un appareil de commande electronique moteur et positionneur triphase a parametrage automatique associe, en particulier demarreur progressif - Google Patents

Procede pour determiner et specifier des parametres d'un appareil de commande electronique moteur et positionneur triphase a parametrage automatique associe, en particulier demarreur progressif Download PDF

Info

Publication number
WO2006034977A1
WO2006034977A1 PCT/EP2005/054701 EP2005054701W WO2006034977A1 WO 2006034977 A1 WO2006034977 A1 WO 2006034977A1 EP 2005054701 W EP2005054701 W EP 2005054701W WO 2006034977 A1 WO2006034977 A1 WO 2006034977A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting
ignition angle
self
voltage
angle
Prior art date
Application number
PCT/EP2005/054701
Other languages
German (de)
English (en)
Inventor
Gerd Griepentrog
Diethard Runggaldier
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2006034977A1 publication Critical patent/WO2006034977A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • H02P1/28Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor by progressive increase of voltage applied to primary circuit of motor

Definitions

  • the invention relates to a method for determining and presetting parameters of an electronic engine control device for starting and stopping three-phase asynchronous machines according to the preamble of claim 1.
  • the invention also relates to an associated self-variable rotary current controller, who works with such a method.
  • a soft starter Especially for the start-up and / or discharge of motors, in particular of three-phase asynchronous machines, usable three-phase controller are also referred to in practice as a soft starter ("soft starter"). They serve to gently start the machine by, for example, lowering the terminal voltage of the machine by means of a phase cut of the mains voltage, thus reducing mains currents and torques during startup.
  • a three-phase controller can be operated either with power semiconductors, for example with thyristor circuits that re al are the flow control valves.
  • start voltage the starting voltage
  • ramp time the so-called called ramp time
  • the object of the invention is therefore to admit an improved method for setting the parameters for a soft starter and to provide the associated soft starter.
  • control of the soft starter determines the necessary parameters itself and adjusts them in such a way that the boundary conditions specified by the user or by the process are adhered to.
  • the invention specifically relates to the manner of determining the starting voltage for the three-phase controller based on a detection of the start of movement of the asynchronous machine via the induced EMF. This is done by software via a given algorithm. Likewise, the determination of the parameters for the startup time. In detail, the minimum voltage or the associated starting ignition angle ⁇ s for starting the asynchronous machine is determined for the self-parameterization. This is done by stepwise increasing the voltage or decreasing the Zündwin- cle, separation of the asynchronous machine from the network and Feststel ⁇ ment of a rotational movement by evaluating the EMF.
  • a control variable for example a current limit value, a ramp time or a
  • Torque limit set by iterating so was ⁇ that the required by the user and / or the process startup time of the asynchronous machine is reached up to the target speed.
  • An inventive three-phase controller esp. Soft starter, for starting three-phase asynchronous machines, the th ⁇ auf ⁇ a thyristors Thy ⁇ ristor facedung with pairs, the firing angle of the thyristors represent the determination parameters for the three-phase controller, has suitable means for self-parameterization of the firing angle of These are essentially realized in software by a program for a computer or for the microcontroller usually present in the three-phase controller.
  • FIGS. 2 and 3 show the currents and the terminal voltages during an ignition interruption on the basis of two sub-figures;
  • Figure 4 and 5 based on two sub-figures the course of the three terminal voltages and the Summenklemmenspan ⁇ voltage U ⁇ after switching off the stator at a speed of 10 min "1 and 100 min " 1
  • Figure 6 shows the scheme of changing the ignition angle to Be ⁇ mood of the starting ignition angle
  • FIG. 7 shows the influence of the lowering of the ignition angle ⁇ on the starting time for different drive loads, as in FIGS. 8 and 9 in two subfigures the starting of a 30 kW
  • FIG. 10 shows a block diagram of a thyristor Drehstrom ⁇ stellers with microcontroller
  • FIG. 11 shows a first possibility for determining the starting voltage / ignition angle
  • FIG. 12 shows the associated flowchart
  • FIG. 13 shows a second possibility for determining the starting voltage / ignition angle
  • FIG. 14 shows the associated flow chart
  • Figure 15 shows the possibility of specifying boundary conditions when starting the machine and Figure 16 shows the associated flowchart.
  • Soft starters are used for starting and stopping, in particular, asynchronous machines (ASM).
  • Soft starters currently used in practice have a thyristor control with two antiparallel thyristors for each phase.
  • the effective voltage is ensured by a phase angle method, wherein substantially the firing angle or ignition timing of the individual thyristor pairs.
  • the firing angle ⁇ of the individual thyristor is used in the thyristor-controlled soft starter.
  • the angle ⁇ is defined as the time between the last current zero crossing of the current through the thyristor and the re-ignition of the thyristor, whereby a renewed current flow is initiated.
  • the ignition in the soft starter is started by a separate ignition angle control set for all 3 thyristor pairs, on the basis of which the so-called initial ignition angle ⁇ A can be determined. For 3-phase starters this is approx. 65 ° independent of the motor size.
  • Start firing angle ⁇ s which determines the starting voltage (start voltage)
  • the starting ignition angle ⁇ s is achieved starting from the initial ignition angle ⁇ A after the first ignition by decrementing with a comparatively large step size of typically 5 ° / mains period.
  • An optimum setting of the starting ignition angle is given when the engine applies a torque equivalent to the load at this ignition angle and thus begins the rotary movement.
  • the starting ignition angle is particular load moment at a standstill - the so-called Losbrechmo ⁇ ment - dependent.
  • the ignition angle is guided during the actual start-up against the value 0 °.
  • This course may be a ramp in the simplest case, but may also follow a more complicated function as a result of various demands on the starting procedure. These requirements can be:
  • Compliance with the secondary condition means that the current or torque limit that is not to be exceeded is selected so that the ramp-up time desired by the user is reached.
  • FIG. 1 shows the typical dependence of starting torque M A and effective starting current I A on the ignition angle. While the basic form of this curve is almost identical for all ASMs, the scaling can vary somewhat depending on the size of the machine and the design of the current displacement rotor. If the necessary starting torque were known, the starting firing angle ⁇ s could be read directly from FIG. 1 with the graphs 11 for the normalized starting torque M A / M N and 12 for the normalized starting current I A / I N. Since the starting torque is generally not known, the incipient rotating movement must be determined in another way. For this purpose, the procedure is as follows:
  • the induced voltage at the terminals of the ASM is known in the case of a currentless stator as follows:
  • the time constant ⁇ 2h results from the ratio of the main inductance L h and the rotor resistance R ⁇ 2. Since these processes occur comparatively slowly, the currents can almost be regarded as direct currents, which is why they are essentially only due to the rotational movement of the rotor induce a voltage in the stator (2nd summand in equation 2).
  • FIGS. 4 and 5 Soft starters during such an interruption are shown by way of example in FIGS. 4 and 5.
  • the graphs 41 and 51, 42 and 52 and 43 and 53 the terminal voltages.
  • the graph 50 ver ⁇ in the period in which the ASM is disconnected from the grid, a quick drop to zero and thus the indication that the ASM has not yet rotated.
  • the sum terminal voltage determined according to Eq. 3 can also be averaging - e.g. a known "running average" - be subjected.
  • This threshold value for U 2 T ⁇ is preferably (5V) 2 for a machine for operation on the 230/400 V network.
  • Figures 4 and 5 show by way of illustration the course of the three terminal voltages U ⁇ i- T2 , U T2 - T3 U U T3 - TI according to the graphs 22 to 24 and 32 to 34 and the sum-terminal voltage U ⁇ 20 and 30 times at a speed of 10 min "1 (corresponds to standstill) and continues at 100 min " 1 . With 21 and 31, the times for the extinction of the current at 22.8 ms and 26.2 ms registered.
  • the ignition angle can now be lowered relatively rapidly with an increased rate ⁇ 2 / T per mains period up to the angle ⁇ S i. Subsequently, a slow decrease with ⁇ i / T occurs again up to the ignition angle oisi, which in turn is followed by the evaluation of the terminal voltages. In this way, it is continued until an initial rotational movement is detected by the evaluation of the terminal voltages. The last value for ⁇ s is then used as the starting ignition angle.
  • the following values can serve as preferred values for the reduction of the ignition angle ⁇ : Aa 1 Zi -0.2 ° / network period - ⁇ 2 / T 5 ° / network period
  • FIG. 11 The resulting course of the ignition angle ⁇ during the determination of ⁇ s is shown in FIG.
  • Figures 11 and 12 include a detailed description of the method.
  • FIGS. 13 and 14 a modified form of determining the starting ignition angle ⁇ s is proposed. Overall, the determination of the starting firing angle ⁇ s with the method described here is concluded within a maximum of 8 seconds.
  • ⁇ s and ⁇ S i are not constants in the above considerations, but change from one start attempt to the next.
  • the size ⁇ S i corresponds to the values OtT 1 from FIG. 6.
  • the individual start attempts are shown separately in the diagrams of FIGS. 11 and 13, so that indexing can be dispensed with.
  • a further improvement of said method results when the torque from current and voltage is simultaneously calculated, which is described in detail in EP 1 116 014 B1.
  • the torque can be continuously determined.
  • the soft starter is able to set the ignition angle relatively quickly so that the breakaway torque is applied by the asynchronous machine (ASM).
  • ASM asynchronous machine
  • Said process for determining the starting ignition angle ⁇ s is performed only once during commissioning in a teach-in run or after changes to the driven load. This process can be initiated either manually or via a fieldbus system. Subsequently, by storing in a non-volatile memory, eg E 2 PROM, the determined starting ignition angle ⁇ s for each further start immediately available.
  • a non-volatile memory eg E 2 PROM
  • Another aspect of the method according to the application is the determination of the ramp time.
  • the correct parameterization of the soft starter it is essential for the correct parameterization of the soft starter to achieve a desired startup to recognize the startup of the ASM - ie the achievement of the rated speed.
  • the most characteristic feature of a successful run-up is the significant reduction of the phase shift ⁇ between current and voltage. On the basis of this feature already proven procedures with associated software implementations exist. If a current measurement is available, the startup can also be detected via the current reduction.
  • the ignition angle should be reduced immediately to 0 ° to avoid further network harmonics, since the startup process is completed anyway and therefore further influencing is impossible.
  • the user simply selects a be ⁇ agreed starting time T n in such a way in which the drive from standstill up to the rated speed to accelerate.
  • Other boundary conditions such as limiting the current or influencing the torque are initially ignored, so that this method can also be used, for example, in soft starters without current measurement.
  • the parameterizations of the soft starter required by the user are thus reduced to the determination of the desired startup time.
  • the previously determined starting ignition angle ⁇ s here is 50 °.
  • FIG. 7 shows, as a solid line 70, the "ideal start-up time" as the period in which the ignition angle ⁇ reaches the value 0 ° for the selected depression.
  • T mains period (0.02 s at 50 Hz).
  • the exponent ⁇ should preferably have values in the range 1.5... 2. Smaller exponents slow down the convergence of the process, and larger exponents can make the process unstable, depending on the load moment.
  • the method thus described determines in most cases with three starts the ignition angle reduction ⁇ i iteratively so that the actual start-up time of the desired up to ⁇ 5%.
  • FIG. 7 the starting times for different boundary conditions are plotted as a function of the ignition angle.
  • graph 70 shows the ideal course
  • graphs 71 to 73 the curves with values of 30 Nm & 0.1 kgm 2 (curve 71), 30 Nm & l kgm 2 (curve 72), 100 Nm & 0 , 1 kgm 2 (curve 73), ie for different starting torques.
  • Another advantage of the method described is that the reduction of the ignition angle is automatically adjusted even when changing the mains voltage so that the ge desired start-up time is reached.
  • a further development of the method consists in that, during startup, a specific current rms value of the motor I ⁇ or a specific torque M limit are not exceeded. This limit value of the current or the torque must now be selected by an algorithm of the self-parameterization in such a way that the start-up time T to is desired by the user.
  • the ignition angle is usually not performed on a ramp against the value 0 but adjusted by a known regulator so that the selected limit of the current or torque is maintained.
  • the maintenance of the desired starting time T an should therefore be effected indirectly via the selection of the relevant limit value within the scope of self-parameterization, with the advantage that certain upper limits for current or torque are not exceeded at the same time.
  • the procedure of determining the mentioned limit values is in principle analogous to the determination of the reduction ⁇ .i, by first according to Eq. 4, an initial value for the depression ⁇ .i is determined. During a first startup with the so determined lowering then the maximum value of current or torque is determined. This value serves as the first limit! ⁇ 0> Limit or M ⁇ 0) Limit for further iterations. Subsequently, analogously to Eq. 5 shows an iterative improvement of this value according to Eq. 6 made.
  • Plotted over the time t as abscissa are the graphs 81 and 82 or 91 and 92 for ⁇ and ⁇ as the left ordinate and the graphs 83 to 85 or 93 to 95 for n / 10, m and I rms according to the right ordinate.
  • a three-phase asynchronous machine 2 is connected to the phases L1, L2 and L3 of a three-phase network via a three-phase motor control unit 1, which is also referred to as a three-phase transformer.
  • each of the phases L1, L2, L3 is assigned a valve arrangement 3, 3 ', 3''.
  • the ignition electrodes of the thyristors 4, 4 ' are connected to a control device, from which the ignition signals required to ignite the thyristors 4, 4' are provided in a predetermined time sequence at the intended phase angle angles.
  • the voltage is measured in each case and stored in a computer unit according to Eq. 3 the sum voltage
  • control device for controlling the phase angle is activated for the purpose of soft-running the asynchronous machine 2.
  • the entire measuring and control device is advantageously implemented by a computer or a microcontroller 5.
  • the microcontroller 5 comprises the calculation of the sum voltage in the unit 6, the algorithm for determining the starting voltage in unit 7 and a unit 8 for valve control.
  • the microcontroller 5 is used in particular to process a stored program, so that the self-parameterization can be done by software.
  • FIGS. 11/12 and 13/14 two alternative methods are provided for determining the starting voltage or the starting ignition angle ⁇ s, which is decisive for the thyristor-controlled three-phase current controller.
  • FIGS. 11 and 13 each show several start attempts.
  • the time t is plotted as the abscissa and the starting angle ⁇ or the starting voltage U as the ordinate.
  • Three starting attempts are shown:
  • the same starting angle ⁇ A is used in each case in accordance with graph 111, 111 ⁇ or 111 ⁇ ⁇ .
  • the first attempt is made in several equiva- shut down the distal steps ⁇ c ⁇ 2 to a predetermined starting angle ⁇ s . From there, a ramp with a step width of .DELTA. ⁇ i / network period for a certain time t ⁇ Vietnamese ⁇ drive. Subsequently, the three-phase controller is disconnected from the grid and determined by means of the EMF whether an induction voltage is induced, ie a start has taken place. If this is the case, the angle ⁇ s is stored as the starting voltage angle.
  • FIG. 12 The latter is illustrated in FIG. 12 with reference to a flowchart which runs through the positions 121 (start) to 135 (end).
  • the rectangles characterize command functions, the circles link functions and the diamond decision functions.
  • the program engineering procedure with the positions 121 to 135 is self-explanatory due to its designations. It is essential that with this sequence routine, a suitable starting ignition angle ⁇ s and thus the necessary initial voltage U A can be determined and stored, with which a start of the asynchronous machine 2 can be successfully carried out.
  • FIGS. 13 and 14 the procedure according to FIGS. 11 and 12 is modified to the extent that in each case not the individual start attempts are based on the same starting ignition angle ⁇ A , but on a given starting angle ⁇ s which, in turn, in steps .DELTA.al the ignition angle according to the graphs 131, 131 'or 131''abge- is lowered.
  • the test or determination of the EMF takes place in the same way as in FIG. 11/12. This is illustrated by the flowchart according to FIG. 14 with the positions 221 to 232. For the sequence program, what has been said corresponding to FIG. 12 applies.
  • suitable curves 152, 152 ⁇ or 152 ⁇ ⁇ and the associated currents can be read from the graph.
  • the procedure according to FIGS. 13/14 is in itself simpler than the procedure according to FIGS. 11/12.
  • transient events can lead to disruptions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)

Abstract

Des "démarreurs progressifs" comme positionneurs triphasés spécifiques servent au démarrage et à l'arrêt de machines, en particulier de machines asynchrones triphasées. Au démarrage, la tension aux bornes de la machine est abaissée par un redressement à l'entrée des phases de la tension de secteur et, en particulier pendant le démarrage, les courants de secteur et les couples de rotation sont réduits. Selon l'invention, les paramètres de réglage du démarreur progressif sont définis et réglés par une commande par un paramétrage automatique, de sorte que les contraintes spécifiées sont respectées.
PCT/EP2005/054701 2004-09-28 2005-09-20 Procede pour determiner et specifier des parametres d'un appareil de commande electronique moteur et positionneur triphase a parametrage automatique associe, en particulier demarreur progressif WO2006034977A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004046966.0 2004-09-28
DE200410046966 DE102004046966A1 (de) 2004-09-28 2004-09-28 Verfahren zur Ermittlung und Vorgabe von Parametern eines elektronischen Motorsteuergerätes und zugehöriger selbstparametrierender Drehstromsteller, insbesondere Sanftstarter

Publications (1)

Publication Number Publication Date
WO2006034977A1 true WO2006034977A1 (fr) 2006-04-06

Family

ID=35462332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054701 WO2006034977A1 (fr) 2004-09-28 2005-09-20 Procede pour determiner et specifier des parametres d'un appareil de commande electronique moteur et positionneur triphase a parametrage automatique associe, en particulier demarreur progressif

Country Status (2)

Country Link
DE (1) DE102004046966A1 (fr)
WO (1) WO2006034977A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028798A1 (fr) * 2006-09-06 2008-03-13 Siemens Aktiengesellschaft Procédé d'exploitation d'un système de moteur, de même que système de moteur
EP2009973A2 (fr) 2007-06-29 2008-12-31 Andreas Siemes Dispositif pour le contrôle d'un démarrage ou d'un arrêt doux de moteurs triphasés, le démarrage progressif
CN101860285A (zh) * 2010-05-11 2010-10-13 宁波高新区宁变电力设备有限公司 一种用于大功率电机软起动的自耦变压器装置及起动方法
FR2980058A1 (fr) * 2011-09-13 2013-03-15 Schneider Electric Ind Sas Procede de commande d'un interrupteur commande pilotant l'alimentation d'un moteur electrique
CN104638985A (zh) * 2015-02-14 2015-05-20 合肥誉联信息科技有限公司 基于单片机的异步电动机软启动器
WO2018072810A1 (fr) * 2016-10-17 2018-04-26 Siemens Aktiengesellschaft Procédé d'orientation d'une machine triphasée à démarrage progressif et machine triphasée
WO2020064099A1 (fr) * 2018-09-26 2020-04-02 Siemens Aktiengesellschaft Procédé pour maintenir la position de rotation d'un rotor, sollicité par un couple extérieur, d'une machine à courant triphasé à excitation doté d'un démarreur progressif et machine à courant triphasé
CN112740535A (zh) * 2018-09-26 2021-04-30 西门子股份公司 借助调节器级联对具有软起动器的永磁激励的三相电机进行转速调节的方法和三相电机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035858A1 (de) * 2006-08-01 2007-10-18 Siemens Ag Anordnung mit einer Arbeitsmaschine und einer elektrischen Antriebsmaschine für die Arbeitsmaschine
DE102011085859A1 (de) * 2011-11-07 2013-05-08 Siemens Aktiengesellschaft Verfahren und Anordnung zum Betrieb von Synchronmotoren
US9160257B2 (en) * 2013-12-23 2015-10-13 Eaton Corporation Soft starter system and method of operating same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0092370A1 (fr) * 1982-04-16 1983-10-26 Conder International PLC Régulateur pour moteurs à courant alternatif
US5569986A (en) * 1994-04-29 1996-10-29 Rieter Ingolstadt Spinnereimaschinenbau Ag Soft start control apparatus for drive motors of a rotor spinning machine
US6559619B1 (en) * 2000-07-25 2003-05-06 Daniel G. Bach Energy management controller
US20040012351A1 (en) * 2000-11-20 2004-01-22 Bertil Ohlsson Rotary machine control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH573187A5 (fr) * 1974-06-27 1976-02-27 Sprecher & Schuh Ag
DE4312549C2 (de) * 1993-04-17 1995-04-13 Licentia Gmbh Verfahren zur Drehmomentbegrenzung beim Sanftanlauf von Drehstromasynchronmotoren
DE19843134A1 (de) * 1998-09-21 2000-03-30 Siemens Ag Verfahren und Einrichtung zum Bestimmen des Drehmomentes einer Induktionsmaschine
WO2001014897A1 (fr) * 1999-08-24 2001-03-01 Siemens Aktiengesellschaft Procede et dispositif pour mesurer la resistance ohmique du circuit de stator d'une machine a induction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0092370A1 (fr) * 1982-04-16 1983-10-26 Conder International PLC Régulateur pour moteurs à courant alternatif
US5569986A (en) * 1994-04-29 1996-10-29 Rieter Ingolstadt Spinnereimaschinenbau Ag Soft start control apparatus for drive motors of a rotor spinning machine
US6559619B1 (en) * 2000-07-25 2003-05-06 Daniel G. Bach Energy management controller
US20040012351A1 (en) * 2000-11-20 2004-01-22 Bertil Ohlsson Rotary machine control

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028798A1 (fr) * 2006-09-06 2008-03-13 Siemens Aktiengesellschaft Procédé d'exploitation d'un système de moteur, de même que système de moteur
US8154232B2 (en) 2006-09-06 2012-04-10 Siemens Aktiengesellschaft Method for operating a motor system, and a motor system
EP2009973A2 (fr) 2007-06-29 2008-12-31 Andreas Siemes Dispositif pour le contrôle d'un démarrage ou d'un arrêt doux de moteurs triphasés, le démarrage progressif
DE102007030344A1 (de) 2007-06-29 2009-01-02 Andreas Siemes Einrichtung für die Kontrolle eines sanften Anlaufs oder Auslaufs von Drehstrommotoren, - sog. Soft Starter
DE102007030344B4 (de) * 2007-06-29 2009-10-15 Andreas Siemes Einrichtung für die Kontrolle eines sanften Anlaufs oder Auslaufs von Drehstrommotoren, - sog. Soft-Starter
US7948203B2 (en) 2007-06-29 2011-05-24 Andreas Siemes Device for the control of a smooth starting or ending of a three phase current motor, so-called soft starter
CN101860285A (zh) * 2010-05-11 2010-10-13 宁波高新区宁变电力设备有限公司 一种用于大功率电机软起动的自耦变压器装置及起动方法
WO2013038094A3 (fr) * 2011-09-13 2013-06-13 Schneider Electric Industries Sas Procede de commande d'un interrupteur commande pilotant l'alimentation d'un moteur electrique
FR2980058A1 (fr) * 2011-09-13 2013-03-15 Schneider Electric Ind Sas Procede de commande d'un interrupteur commande pilotant l'alimentation d'un moteur electrique
CN103814516A (zh) * 2011-09-13 2014-05-21 施耐德电器工业公司 用于控制操作电动机的电源的受控开关的方法
US9473062B2 (en) 2011-09-13 2016-10-18 Schneider Electric Industries Sas Method for controlling a controlled switch operating the power supply of an electric motor
CN104638985A (zh) * 2015-02-14 2015-05-20 合肥誉联信息科技有限公司 基于单片机的异步电动机软启动器
WO2018072810A1 (fr) * 2016-10-17 2018-04-26 Siemens Aktiengesellschaft Procédé d'orientation d'une machine triphasée à démarrage progressif et machine triphasée
CN109997306A (zh) * 2016-10-17 2019-07-09 西门子股份公司 用软启动使三相电机对准的方法和三相电机
US10862416B2 (en) 2016-10-17 2020-12-08 Siemens Aktiengesellschaft Method for aligning a three-phase machine having soft start and three-phase machine
CN109997306B (zh) * 2016-10-17 2022-05-17 西门子股份公司 用软启动使三相电机对准的方法和三相电机
WO2020064099A1 (fr) * 2018-09-26 2020-04-02 Siemens Aktiengesellschaft Procédé pour maintenir la position de rotation d'un rotor, sollicité par un couple extérieur, d'une machine à courant triphasé à excitation doté d'un démarreur progressif et machine à courant triphasé
CN112740541A (zh) * 2018-09-26 2021-04-30 西门子股份公司 保持具有软起动器的永磁激励的三相电机的施加有外部转矩的转子的旋转位置的方法和三相电机
CN112740535A (zh) * 2018-09-26 2021-04-30 西门子股份公司 借助调节器级联对具有软起动器的永磁激励的三相电机进行转速调节的方法和三相电机

Also Published As

Publication number Publication date
DE102004046966A1 (de) 2006-04-13

Similar Documents

Publication Publication Date Title
WO2006034977A1 (fr) Procede pour determiner et specifier des parametres d'un appareil de commande electronique moteur et positionneur triphase a parametrage automatique associe, en particulier demarreur progressif
DE3215596A1 (de) Ventilaktuator
EP2505828A1 (fr) Procédé de fonctionnement d'une éolienne
DE10136974A1 (de) Verfahren zum Betreiben einer Windenergieanlage
EP1708354B1 (fr) Moteur submersible
DE19701856A1 (de) Elektronische Anlauf und Betriebssteuerung für einen Einphasen-Synchronmotor
CH621656A5 (fr)
EP0397818B1 (fr) Procede et dispositif pour modifier la valeur effective de la vitesse de rotation d'un moteur asynchrone polyphase et systeme de moteurs convenant pour la mise en uvre de ce procede
WO2006015952A1 (fr) Procede permettant de faire fonctionner un regulateur de courant triphase/biphase
DE19532477A1 (de) Verfahren zum Anlassen einer Asynchronmaschine
EP0771065A1 (fr) Procédé pour le démarrage d'un entraînement électrique à vitesse de rotation variable
AT515058B1 (de) Verfahren zum Betreiben eines mit einem Energieversorgungsnetz verbundenen Generators
EP2192685A1 (fr) Dispositif et procédé d'autoparamétrage d'un appareil de commande de moteur électronique
EP3629468B1 (fr) Procédé de fonctionnement d'une machine triphasée
EP1443635B1 (fr) Procédé de contrôle d'un angle d'allumage et moteur électrique alimenté en courant monophasé
DE19919752C1 (de) Verfahren zum Zuschalten eines Umrichters an einen Asynchronmotor
WO1995020839A1 (fr) Procede avec commande de retard de phase pour arreter en douceur un dispositif d'entrainement
DE10014174A1 (de) Bremsmodul
DE4008002C2 (de) Verfahren und Vorrichtung zur Steuerung eines motorbetriebenen Stellantriebes
EP1142098B1 (fr) Procede et dispositif pour commander le ralentissement d'un moteur asynchrone
EP0666639A1 (fr) Procédé et dispositif de démarrage d'une machine synchrone monophasée
DE102016207333A1 (de) Verfahren und Vorrichtung zur Regelung einer elektrischen Maschine während eines Impulsstartes eines Verbrennungsmotors
WO2019052639A1 (fr) Fonctionnement d'une machine synchrone à excitation permanente
EP3449565A1 (fr) Procédé pour sélectionner un convertisseur de fréquence pour une unité à compresseur frigorifique
WO2020151842A1 (fr) Procédé d'optimisation de rendement d'une machine commutée électriquement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase