WO2006032937A1 - Apparatus and process for producing extruded plastic foil hose - Google Patents

Apparatus and process for producing extruded plastic foil hose Download PDF

Info

Publication number
WO2006032937A1
WO2006032937A1 PCT/HU2005/000107 HU2005000107W WO2006032937A1 WO 2006032937 A1 WO2006032937 A1 WO 2006032937A1 HU 2005000107 W HU2005000107 W HU 2005000107W WO 2006032937 A1 WO2006032937 A1 WO 2006032937A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
coolant
foil
external
internal
Prior art date
Application number
PCT/HU2005/000107
Other languages
English (en)
French (fr)
Other versions
WO2006032937B1 (en
Inventor
Antal Pelcz
Tamás ILLÉS
Zoltán Horváth
László SIMON
Original Assignee
Dr-Pack Ii. Kft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from HU0401901A external-priority patent/HUP0401901A2/hu
Priority claimed from HU0402669A external-priority patent/HUP0402669A2/hu
Application filed by Dr-Pack Ii. Kft filed Critical Dr-Pack Ii. Kft
Priority to BRPI0515572-0A priority Critical patent/BRPI0515572A/pt
Priority to JP2007531844A priority patent/JP2008513247A/ja
Priority to EP05792805A priority patent/EP1824657A1/en
Priority to US11/661,807 priority patent/US20080073818A1/en
Publication of WO2006032937A1 publication Critical patent/WO2006032937A1/en
Publication of WO2006032937B1 publication Critical patent/WO2006032937B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • B29C48/9185Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling in the direction of the stream of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/9125Cooling of hollow articles of tubular films internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling

Definitions

  • This invention relates to an apparatus and process for continuous production of extruded plastic foil hose (tubular films) and for cooling and orienting the plastic foil hose just exiting from an extruder die in course of the extrusion of the ther ⁇ moplastic foil.
  • the proposed solution can be used for producing blown (extended) foil hoses (tubular films) from different plastics such as low-density polyethylene's (LDPE) or high-density polyethylene's (HDPE), or even for producing shrink foil.
  • plastic foil hoses may be used e.g. for packaging different products.
  • US-6, 068,462 discloses a device for the continuous production of blown foil hosesi which device is provided with an internal and an external cooling unit adjacent to the drawing aperture of the extruder die.
  • the internal cooling unit is made up of concentric discs, which are provided with groove-like radial air out ⁇ lets along their external perimeter.
  • the external cooling unit also consists of discs, which are provided with annular radial air outlets along their internal pe ⁇ rimeter.
  • the temperature of the melted foil exiting from the ex- truder die is generally between 15O 0 C and 18O 0 C; therefore the non-stabilized foil must be cooled down relatively rapidly, in the first step to approx. 80 0 C to 100 0 C to make it solid, then in the second step to a storage temperature of approx. 2O 0 C to 25 0 C in order to prevent shrinking and to prevent foil layers from sticking together, and all this before rolling up.
  • rapid and even foil cooling cannot always be ensured by the mainly axial air streams exiting through the radial outlets. This poses a particular prob ⁇ lem at higher foil speeds as in such cases there is a relatively shorter time available for the foil cooling.
  • the foil cooling is a criti ⁇ cal phase of the entire foil production technology.
  • the maximum applicable foil speed for traditional cooling technologies is about 120 m/min, which is a hin ⁇ drance to further increases of the foil production.
  • the external cooling device blows in the coolant into a cooling gap only at the bottom, at a part with the smallest diameter of a cooling funnel surrounding the first non-stabilized conical part of the blown foil hose through said cooling channel, where the foil speed is relatively slow, and its diameter is also small.
  • the foil hose progresses up ⁇ wards, it extends nearly parallel with the conical funnel; its diameter continu ⁇ ously increases, its wall thickness becomes smaller, but its progression speed also increases.
  • the foil is very unstable, al ⁇ though actually it is the cooling air flowing at a high speed between the foil and the conical funnel that is intended "to stretch" the blown foil hose out.
  • the maximum applicable foil speed is about 120 m/min, which is a major hindrance to further increasing productivity.
  • the primary object of the invention is to eliminate the deficiencies mentioned above, that is, to provide an improved technology whereby the foil hose exiting from the drawing orifice of the extruder can be cooled down and stabilized more rapidly, evenly and efficiently than by traditional technologies.
  • a further object is to improve the quality of foil products by more rapid, even and efficient cooling.
  • 'quality improvement primarily means a reduction of foil thickness tolerance and a properly oriented texture of the ther ⁇ moplastic material.
  • Another object is to increase the productivity of foil production in general by im ⁇ proving the efficiency of the cooling technology.
  • the primary object is achieved according to the invention by providing an appa ⁇ ratus for continuous manufacturing extruded plastic foil hose, which comprises an extruder die suitable for forming the foil hose by its annular drawing orifice; and an internal and/or an external cooling device surrounding said drawing ori ⁇ fice and at least a portion of the expanded foil hose.
  • Said internal and/or exter- nal cooling device is provided with an inlet for a coolant, preferably cooling air, connected to a coolant supply, and at least one outlet supplying coolant to a main annular gap between the expanded foil hose to be cooled and a annular skirt of said internal and/or said external cooling device.
  • the internal and/or the external cooling device is/are formed as a multiple-stage device - arranged preferably direct on the extruder die co- axially with the drawing orifice -, and having multi-level tangential outlets for the coolant to stabilize a first conical non-stabilized section of said expanded foil hose by internal and/or external spiral coolant stream.
  • the multiple-stage inter ⁇ nal cooling device comprises at least two annular cooling-orienting units being arranged at axial distance from each other, surrounding internally at least partly the non-stabilized section of the foil hose through the main internal annular gap.
  • Each of the internal annular cooling-orienting unit is connected to the coolant supply in such a way to supply the coolant of selectively and individually ad ⁇ justable temperature and/or volume and/or pressure.
  • the multiple-stage exter- nal cooling device if any, comprises at least two annular external cooling units being arranged in axial distance from each other, surrounding externally at least partly the conical non-stabilized section of said expanded foil hose through a main external annular gap.
  • Each external cooling-orientating unit is provided with at least one tangential inlet and is connected to a second coolant supply in such a way to supply the coolant of selectively and individually ad ⁇ justable temperature and/or volume and/or pressure.
  • the apparatus is provided with at least one of said internal multiple-stage cooling device and at least one of said external multiple-stage multi-stage cooling device.
  • each of the external cooling units of said external multi-stage cooling device comprises at least one coolant- distributing ring having at least one conical mantle (baffle) surrounding the main external annular gap/channel. Furthermore, the tangential outlets are formed in said conical mantles, preferably as slots, forming inlets for the coolant around the foil hose.
  • each of the internal annular cooling- orientating units comprises at least one coolant-distributing ring and at least one conical coolant mantle surrounding the main internal annular gap, and be- ing provided with the tangential outlets, preferably slots, forming tangential coolant inlets around the foil hose.
  • the cooling-orientating units and/or the conical coolant directing mantles of the adjacent cooling-orientating units are axially ar ⁇ ranged in such a way to overlap each other, thereby ring-like gaps are created between the adjacent conical mantles.
  • the mutual axial position of the mantles and thereby a flow cross-section of said ring-like gaps can be adjusted.
  • the conical mantle of at least one of said external cooling-orientating unit may be provided with at least one conical extension mantle of relatively smaller di ⁇ ameter, whose relative axial position can be adjusted in relation to the corre- sponding directing mantle.
  • a ring-like gap is formed between the di ⁇ recting mantle and its extension mantle, and the flow cross-section thereof can be easily regulated.
  • the flow cross-section of the ring-like coolant inlet gaps at the cool ⁇ ing units can be adjusted by mutual axial adjustment of the cooling rings and/or their conical directing mantles and/or - at the lowest cooling unit - by mutual ax ⁇ ial adjustment of its cooling ring and a lower neck thereof.
  • the mutual axial position of at least two of the internal cooling-orientating units is adjustable fixed, enabling setting their axial dis ⁇ tances and the flow cross-section of the main internal annular gap around the foil hose.
  • the cooling-orienting units of the internal multi-stage cooling device form a common cooling ring with a com ⁇ mon internal coolant distribution space. These units also have conical man ⁇ tles/baffles and tangential outlets therein form a conical skirt of said cooling ring.
  • the coolant distribution space is also closed by a top cover and a bottom plate.
  • Within the coolant distribution space a built-in fan rotor is embedded ro- tatably and connected to a rotary drive.
  • the conical mantles of the cooling units as well as the cover and the bottom plate jointly constitute a "fan hosing".
  • the integrated cooling ring is provided with an inlet for supplying coolant of prede ⁇ termined temperature.
  • the internal multi-stage cooling device may be arranged at a prede ⁇ termined axial distance from the extruder die.
  • a first cooling device is arranged immediately over the extruder die to cool a first non-stabilized conical section of the foil hose in a predetermined degree, as required.
  • a heating device is located at an axial distance from said cooling devise to heat up and thereby to soften again the foil material being already partially extended and oriented.
  • a second multi-stage foil cooling and orienting device is coaxi- ally arranged for final cooling and stabilizing the foil hose.
  • the above proc- ess may contain an additional step of cutting up the tubular foil hose longitudi ⁇ nally at least at. two places, forming flat foil stripes from the foil hose during or immediately after the final stage of the cooling and stabilizing step.
  • the above process may contain an the additional step of using the tangential coolant flows supplied by the selectively controllable coolant supply of the multiple-stage internal cooling device for blowing up the foil hose and thereby stretching and orienting it in cross direction, too.
  • the process according to the invention may contain the following steps: Cooling first a non-stabilized conical section of the foil hose in a predetermined degree for stabilizing it partly only, then heating up and thereby softening again the foil material. Directly after the heating step, stabiliz ⁇ ing the foil hose completely by using a second multi-stage foil cooling and ori ⁇ enting device according to the invention.
  • the invention based on the recognition that one of the most significant factors from the viewpoint of the thickness tolerance of the foil hose is the evenness of cooling temperature at all times. If the temperature of the melted plastic mate ⁇ rial is not even at the time of exiting from the extruder die, that is, in the upper zone of the extruder die, it would not result in foil of proper thickness tolerance even in case of complete even cooling. On the other hand, thickness tolerance will not be adequate, either, if the melted plastic material of even temperature along the perimeter exits from the die, but it would not be cooled back evenly.
  • the amount of heat transferred during a unit of time depends on the heat-transfer coefficient, the heat-transfer surface, the temperature of the heat-transferring medium, and the temperature of the foil.
  • the heat-transfer surface cannot be altered because certain geometrical conditions and proportions must be complied with in order to obtain a quality product in the course of foil production, for instance; this means that the surface of the foil is given (constant).
  • the heat-transfer coefficient can be changed within limits. In the case of air, this can primarily be influenced by the relative moisture content and flow speed of air (the relative speed differ- ence between the foil and the air).
  • the degree of heat-transfer can be affected considerably by both factors.
  • the heat-transfer coefficient of still dry air is approx. 5 W/m2K, while that of humid, intensively flowing air is approx. 250 W/m2K. Therefore, the quantity of the re ⁇ moved heat can be increased as much as 50 times by the heat-transfer coeffi- cient.
  • the speed of coolant is limited by the strength of the foil hose.
  • the speed of the coolant can be effec- tively increased by introducing coolant flow as a tangential turbulent (spiral) whirl (vortex).
  • the centrifugal force of the coolant vortex rotating in the main cooling gap/channel affecting advantageously the foil hose and the foil hose stability as well.
  • cooling step efficiency, i.e. adequate cooling capacity is also of great importance.
  • the melted plastic material of the blown-up foil hose just exit ⁇ ing from the extruder die is stretched (oriented) in two directions: transversally and longitudinally along the cooling section; and in the meantime, a mesh-like plastic texture is produced therein.
  • the other orientation direction of the foil is longitudinal, which is a consequence of the high-speed pulling-up of the foil in a known manner.
  • the foil In the course of pull- ing-up, the foil also stretches to its multiple, and its molecules are arranged longitudinally.
  • Figure 2 illustrates a cross-section along lines Il - Il in Figure 1 ;
  • Figure 3 shows a vertical cross-section of a second embodiment of the foil apparatus according to the invention
  • Figure 4 illustrates in a diagram the differences of speed vectors at vari ⁇ ous arrangements
  • Figures 5A-5C and 6A-6C show the simplified arrangements of the known cooling device mentioned in the introduction and that of the in ⁇ vention, as illustrated in Figure 3, and their diagrams illustrating speed and temperature differences, respectively;
  • Figure 7 is a cross-section of a detail of the third embodiment of the ap ⁇ paratus according to the invention.
  • Figure 8 is a cross-section along line VIII-VIII in Figure 7;
  • Figure 9 illustrates a cross-section of a detail in Figure 7, namely the in- ternal foil cooling and orienting device
  • Figure 10 is a side view of the solution shown in Figure 9;
  • Figure 11 illustrates an outline of the lateral view of traditional foil pro ⁇ ducing apparatus with internal cooling
  • Figures 12 and 13 are diagrams illustrating speed and temperature dif- ferences in the apparatus according to Figure 11 ;
  • Figure 14 illustrates a simplified lateral view of the embodiment of the apparatus according to the invention as shown in Figure 7;
  • Figures 15 and 16 are diagrams illustrating speed and temperature dif ⁇ ferences in the solution according to Figure 14;
  • Figure 17 illustrates a version of the apparatus according to Figure 7 in a vertical cross-section, which is also equipped with an external cooling device;
  • Figure 18 illustrates a further embodiment of the apparatus according to the invention in a vertical cross-section, where the internal cooling- orientating device is equipped with an internal fan of bottom feed;
  • Figure 19 shows a version of the solution according to Figure 18, where upper coolant feed is applied
  • Figure 20 shows a special embodiment of the apparatus according to the invention, intended for the production of high-density polyethylene foil hoses
  • Figure 21 illustrates a further special embodiment of the apparatus ac ⁇ cording to the invention in a vertical cross-section, intended for produc ⁇ ing shrink foil;
  • Figure 22 illustrates a preferred combined embodiment of the apparatus according to the invention in a vertical cross-section, which is equipped with both a multi-level internal foil cooling-orientation device and a multi ⁇ level external cooling device.
  • the first embodiment of the foil producing appara- tus is equipped with an external foil cooling device 1 for feeding a pressurized coolant, mainly compressed and cooled air to a non- stabilized conical section M of a blown foil hose F just exiting from a drawing orifice H of an extruder die E for continuously extrusion of the foil hose F.
  • the external cooling device 1 is formed as a multi ⁇ stage foil cooling device arranged direct on the extruder die E coaxially with its drawing orifice H; comprising at least two annular external cooling units ar ⁇ ranged in axial distance from each other, that is in a progress direction X of the continuously extruded foil hose F.
  • three external cooling units 2, 3, 4 are applied; these are arranged concentrically with the foil hose F above each other, looking in the direction X, with an axial distance T1 and T2 from each other, respectively.
  • the external cooling units 2, 3, and 4 are fixed in their pre- determined axial position in an adjustable manner to each other and/or to a framework structure of the apparatus (not illustrated separately).
  • the size of the distances T1 and T2 are selected to be 100 mm and 200 mm, respectively, and a height of the entire stabilization and cool ⁇ ing conical section M of the blown foil hose F is selected to be 600 mm.
  • the lower cooling unit 2 is connected directly to the upper part of an extruder die E of the foil producing apparatus, only partially indicated by a thin result line, which has as mentioned above, the circular drawing orifice H.
  • the freshly extruded foil hose F exits through the drawing orifice H continuously, in a known manner, whose melted plastic material (e.g. polyethylene) is in an un- stable plastic state as yet.
  • the cooling units 2, 3, and 4 of the external foil cooling device 1 are substantially of similar design, meaning that each of them consist of a cooling ring having an internal space or canal system (not shown) distributing a coolant flow, and a conical coolant directing mantle.
  • the cooling unit 2 is equipped with a cooling ring 5 and a conical directing man ⁇ tle 6; the cooling unit 3 with a cooling ring 7 and a conical directing mantle 8, and the upper cooling unit 4 with a cooling ring 9 and a conical directing mantle 10.
  • An internal space is provided in each cooling unit 2 to 4, admitting and dis ⁇ tributing the coolant in the cooling rings 5, 7 and 9.
  • FIG. 1 clearly shows that the external cooling units 2, 3, and 4 are arranged concentrically with a theoretical median line K of the drawing orifice H emitting the foil hose F in a way that external conical ring-like coolant channels 11, 12, and 13 are created between their internal surface and an external mantle sur- face of the foil hose F for a coolant, e.g. air, and these together form a continu ⁇ ous external main cooling ring gap G for a spirally whirling coolant flows (desig ⁇ nated by arrow 22) along the height of the stabilizing and cooling section M of the foil hose F.
  • a coolant e.g. air
  • Figure 1 also shows that the adjacent directing mantles 6 and 8, as well as the mantles 8 and 10 are arranged with an axial overlap, and in these overlapping sections, tangential coolant inlet gaps 14 and 15 are created between the cool ⁇ ing rings 5 and 7 and the directing mantles 6 and 8, respectively.
  • the lower external cooling unit 2 has a central neck N coaxial with the conical directing mantle 6, with also a ring-like coolant inlet gap 16 between its conical surface extending upwards and the internal surface of the directing mantle 6.
  • the cross-section of the coolant inlet gap 16 can be controlled by adjusting, e.g. the relative axial position of the neck N and the di ⁇ recting mantle 6 at the lower external cooling unit 2.
  • the flow-through cross-section of the coolant inlet gaps 14 and 15 can be controlled at the cool- ing units 3 and 4, e. g. by adjusting the relative axial position of the coolant rings 7 and 9 and the associated directing mantles 8 and 10, respectively.
  • the axial size of the external directing mantles 6, 8, and 10, overlap ⁇ ping each other, is designated by L1 , L2 and l_3, respectively.
  • the cross-section in Figure 2 shows the structural design of the uppermost cooling unit 4 in more detail; but it is to be noted that the others have similar structure.
  • the cooling ring 9 of he cooling unit 4 has a trapezoidal cross-section welded from a sheet.
  • pressur ⁇ ized tempering coolant e.g. cooling air
  • the conical directing mantle 10 is a continuation, obliquely upwards, of an internal wall 19 of the cooling ring 9.
  • the internal wall 19 of the cooling ring 9 is equipped with perforations 20 lo ⁇ cated with identical interspaces along the perimeter, which in the present case are shaped by U-shaped cuttings of the internal wall 19 and the bending out of the tongues thus produced.
  • perforations 20 lo ⁇ cated with identical interspaces along the perimeter, which in the present case are shaped by U-shaped cuttings of the internal wall 19 and the bending out of the tongues thus produced.
  • special lateral outlet gaps 21 are produced for leading the coolant tangentially to the foil hose F.
  • the tangential lateral out- let gaps 21 lead into the ring-like coolant inlet gap 13 (Fig. 1).
  • the cooling unit 3 in the middle is also of similar design, where (see Fig.1) the tangential lateral outlet gaps 21 lead into the ring-like coolant inlet gap 14.
  • the lateral wall of the cooling ring 5 of the lower cooling unit 2 is similarly equipped with tangential lateral outlet gaps 21 (Fig. 1). Furthermore, cuttings (similar to the cuttings constituting the outlet gaps 21) are provided at a bottom side 23 of the cooling ring 5, constituting lower tangential outlet gaps 24, which latter lead into the ring-like gap 16.
  • the bottom spiral airflows thus generated are required so that the surface of the melted plastic flux is stiffened first and the blown-up foil hose F can be pulled up.
  • the cooling ring 5 of the lower cooling unit 2 is equipped with a cover 25 below its perforated bottom side 23.
  • the pressurized coolant introduced through the tangential inlets 17 and 18 of the external cooling units 2, 3 and 4 is fed into the gaps 14, 15 and 16 through the lateral outlet gaps 21 and the lower outlet gaps 24, thereby the coolant is set in spiral coolant whirling bottom-up motion in the main external ring gap G along the external mantle of the foil hose F (as indicated by thin arrows 22 in
  • air is mainly blown in through the lateral outlet gaps of the external cooling units 2, 3, and 4 as well as through the gap 16 crossing the lower outlet gaps 24 of the lower cooling unit 2, and through the gaps 14 and 15 between the overlapping directing mantles 6 and 8, and 8 and 10, respectively.
  • the spiral tempering coolant flows in the intermediate cooling unit 3 and the upper cooling unit 4 - progressing conically upwards - are intended to satisfy the continuously increasing demand of air and tempering.
  • the lateral outlet gaps of the cooling ring 7 of the intermediate cooling unit 3 and those of the cooling ring 5 of the lower cooling unit 2 are also indicated by 21 in Figure 1.
  • the coolant supply of the cooling units 2, 3, and 4 of the external foil cooling device 1 comes from separate and individually controllable coolant supply HK1 , HK2, and HK3 (Fig.1). This measure enables us to change the temperature and/or pressure and/or quantity of the coolant according to current technological demands se ⁇ lectively and individually at the cooling units 2, 3, and 4.
  • the quantity and temperature of the coolant blown in can be changed in a way that in the meantime they are not changed at the other places, e.g. at the lower cooling unit 2 and/or the interme- diate cooling unit 3. This greatly facilitates the control and the separability of the effects of the intervention.
  • the apparatus according to the invention can supply air in quantities and/or at temperatures individually regulated at the various height levels of the cooling units 2, 3, and 4 of the external cooling device 1 to the ex ⁇ ternal surface of the foil hose F.
  • the invention ensures the temperature and speed difference required for cooling of adequate intensity, actually by blowing in an ever greater quantity of increasingly colder air in a pre ⁇ determined manner, in the most even distribution possible as a result of spiral coolant flows.
  • a further advantage of this arrangement of the external cooling device 1 ac- cording to the invention is that coolant of different quantities and/or pressures and/or temperatures coming from the individually controlled coolant supply HK1 , HK2, and HK3 (Fig. 1) can also be blown in on the basis of the parame ⁇ ters of the coolant already inside the device 1. This means that the temperature of the spiral coolant flows arriving from below is measured, for example in the main external conical ring gap G before the cooling units 3 and 4), then the temperature of the coolant to be fed in there is determined as a function thereof. This way the temperature difference required for appropriate heat transfer can be safely maintained in the system.
  • FIG 3 shows a variant of the external foil cooling device 1 of the apparatus according to the invention which is also equipped with three external cooling units 2, 3, and 4, arranged axially with a distance T1 and T2 between them.
  • the structural design and arrangement substantially correspond to the ones according to Figures 1 and 2. The only difference is that here at an lower cool ⁇ ing unit 2, a conical directing mantle 6 of a cooling ring 5 is equipped with a conical extension mantle 6A of relatively smaller diameter as a continuation thereof, whose relative height position can be adjusted in relation to the direct ⁇ ing mantle 6.
  • the heated air arriving from below is measured by e.g. a heat sensor, and if no sufficient cold air can be mixed to it using the next cooling unit in order to achieve the desired coolant temperature, then the heated air will be led out from the ring gap (and the cooling unit 2) through the gap 26 before it reaches the intermediate cooling unit 3.
  • the intermediate cooling unit 3 is designed in a similar manner.
  • a conical extension mantle 8A of relatively smaller diameter is provided as a continuation of the conical directing mantle 8, and the thus generated outlet gap 27, through which some of the coolant can similarly be led to the external airspace, if nec- essary.
  • the external foil cooling (tempering) device 1 for the apparatus according to the invention can be used for creating a foil cooling 'map' adjusted to the current product.
  • the quantity, speed and temperature of the coolant can be adjusted selectively as required at any height of the external cooling units 2 to 4, i.e. by axial sec ⁇ tions at the blow-ins, namely the tangential inlet gaps 14, 15, and 16.
  • any discretional cooling states can be generated in the knowledge of the pa ⁇ rameters of the plastic flux and taking into consideration the characteristics in ⁇ tended to be achieved of the foil hose F.
  • a further significant advantage of the above embodiment is that the pressurized coolant introduced tangentially in the external cooling units 2 to 4 preserves its angular momentum along the external surface of the foil hose F, meaning that the cooling air progresses tangentially and spirally even when arriving at the foil.
  • the radially introduced air progresses already parallel with the foil as it arrives at the foil because of the diverting ef ⁇ fect of distribution canals.
  • the significance of the air progressing tangentially or at an oblique angle compared to the foil lies in its impact on the heat transfer coefficient.
  • the air may considerably increase the value of the heat transfer coefficient, thereby in ⁇ creasing the efficiency of heat transfer. This is a very important additional effect because today - as already mentioned above - the productivity of the entire foil production and the speed of the applicable foil track is actually hindered by the efficiency and speed of foil cooling.
  • Figure 5A shows a traditional solution, with an external cooling cone HG, a foil hose F and a height of the cooling-stabilizing section M of the foil hose F.
  • a horizontal axis shows the speed difference ( ⁇ v) to be achieved with the traditional solution, while the vertical axis shows the height M of the cooling section; and for the diagram in Figure 5C, the horizontal axis shows the temperature difference ( ⁇ T), while the vertical axis also shows the height M of the cooling section.
  • Figure 6A shows a cross section of the external foil cooling device 1 pertaining to the apparatus according to the invention (see Figure 3), equipped with the external cooling units 2, 3, and 4;
  • Figures 6B and 6C show the speed and tem ⁇ perature differences as a function of the height M of the cooling-stabilizing sec ⁇ tion of the foil hose F.
  • Figures 5B and 5C as well as 6B and 6C also indicate an ideal speed and temperature differences ( ⁇ vi ; ⁇ TJ) to be considered ideal from the viewpoint of cooling, therefore substantial differences between the two de- signs are obvious.
  • the diagram in Figure 5B shows that the speed difference ( ⁇ v) between the air speed (v L ) and the foil speed (VF) is eliminated at approximately a 2/3 part of the height M; moreover, by the time the foil hose F exits from the cooling cone HG, it progresses more quickly than the cooling air going parallel with it.
  • a certain speed would be abso ⁇ lutely necessary from the viewpoint of heat transfer.
  • the flux exits slowly through the drawing orifice of the extruder die; however, the cooling air speed is high here (v L ).
  • the foil accelerates very much while going upward (v F ), but the cooling air slows down due to the extension of the funnel (v L ).
  • the air freshly blown in not only supplements the deficiency of air due to the expansion of space, but it also maintains the temperature difference ( ⁇ T) over a desired level. If the temperature (TL) of the cooling air arriving in a spiral vor ⁇ tex from below to the next cooling unit in the line - i.e. the blow-in level - is al ⁇ ready too high, it can be led out from the cooling unit to the environment imme ⁇ diately before blow-in. Of course, this way a larger amount of cooling air must be supplemented, but in a given case it is certainly an effective and efficient so ⁇ lution for achieving an appropriately selectively controlled foil cooling/tempering effect.
  • the main benefits brought about by tests with the prototypes of the embodi ⁇ ments above of the external foil cooling/tempering device 1 according to the in- vention are as follows: • The foil balloon cools down more rapidly and safely than in the traditional manner to the effect of the cooling air blown in tangentially through the multi-level cooling units and enforced to flow in a spiral manner;
  • the size of the main ring gap G can be main- tained at a permanent value
  • the foil hose is kept highly stable by the cooling air flowing tangentially at a relatively high speed in the external main ring gap G between the foil hose F and the cooling units; this can also be observed from the fact that formerly, when traditional cooling rings were applied, the foil hose was very sensitive to external impacts in the system (e.g.: draught), and it was torn easily.
  • the foil hose does not get unstable, does not start “to swing” and does not get torn even in the case of deliberate external effects (e.g. draught).
  • air was indicated as an example for coolant in the above disclosure, but in a given case it can be any other gaseous agent, such as ni ⁇ trogen, neon, helium, or argon, etc.
  • each of the external cool ⁇ ing units 2 to 4 can be connected to a coolant source of individually controllable pressure and supply volume (e.g. a fan unit associated with a heat exchanger) which can then be controlled selectively from a central control panel (not illus ⁇ trated), e.g. as a function of the control signals of heat sensors, in accordance with current technological parameters and/or producer demands.
  • a coolant source of individually controllable pressure and supply volume e.g. a fan unit associated with a heat exchanger
  • a central control panel not illus ⁇ trated
  • the cooling units 2 to 4 of the external foil tempering de- vice 1 according to the invention must be arranged in the section of height M along the track of the freshly exiting and blown foil hose.
  • the lowermost cooling unit 2 can be cooled by air from the environment.
  • FIGS 7 to 10 illustrate a third embodiment of the apparatus according to the invention for the production of a plastic foil F, whose extruder die E - illustrated only as an outline - with its drawing orifice H is to form the foil hose F.
  • the foil hose F just exiting from the drawing orifice H passes over to a section cylindri- cal at the top after the conically extended and still not stabilized section having a height M.
  • the still melted plastic is actually stabilized along this conical sec ⁇ tion M.
  • the progress direction of pulling upwards of the foil hose F is indicated by 'x', the median line of the drawing orifice H by K, which substantially coin ⁇ cides with the theoretical longitudinal median line of the foil hose F.
  • Figure 7 illustrates the embodiment of the apparatus according to the invention having an internal cooling only, which is designed as a multi-level foil cooling- orienting device 40.
  • this internal foil cooling-orienting de ⁇ vice 40 is arranged in the immediate area of the drawing orifice H.
  • the internal cooling-orienting device 40 is equipped with at least two internal ring-like cooling units, arranged in adjustment to the non-stabilized conical section M of the foil hose F through a cooling main ring gap G.
  • the internal cooling units arranged in axial distance from each other, that is in a progress direction x of the continuously extruded foil hose F.
  • the multi-stage internal cooling-orienting device 40 has four internal cooling units coaxially arranged over each other; out of which a cooling unit 41 is arranged directly over the extruder die E; over this a second cooling unit 42 is arranged with an axial distance T 3 ; over this, a third cooling unit 43 is arranged with an axial distance T 4 , and over this, a topmost fourth cooling unit 44 with an axial distance T 5 is located.
  • Figure 7 shows that the internal cooling units 41 to 44 are of ever larger diame ⁇ ter while going upward, therefore they follow the non-stabilized conical section M of the foil hose F through the main ring gap G with a substantially identical gap size.
  • Each of the cooling units 41 to 44 is connected separately to an inte- grated coolant supply 45 transporting a coolant for each cooling units 41 to 44, of individually controlled pressure and/or temperature and/or quantity, to be de ⁇ tailed below.
  • the cooling units 41 to 44 have at least one coolant distributor, a cooling ring arranged transversally to the progress direction x of the foil hose F.
  • each of the cooling units 41 to 44 has a separate cooling ring 41 A, 42A, 43A, and 44A, respec ⁇ tively, and at least a coolant directing mantle 41 B, 42B, 43B, and 44B, respec ⁇ tively, constituting an external side of the cooling unit and thereby enclosing the main ring gap G from the inside.
  • Each of the internal cooling units 41 to 44 has two inlets displaced at 180° from each other, indicated by reference signs 41 C, 42C 1 43C, and 44C 1 respectively, which, in the present case, are connected to the common, but individually con ⁇ trollable coolant supply 45. Therefore, the temperature and/or pressure and/or quantity of the coolant fed in through them is individually and selectively con- trollable for each cooling units 41 to 44 according to the actual technological demands.
  • each of the cooling rings 41 A to 44A of the cooling units 41 to 44 are equipped with a circular coolant distribution space 41 E, 42E, 43E, and 44E, respectively, each of which are connected to corresponding outlets 41 D, 42D, 43D, and 44D, ensuring tangential coolant flows compared to the foil hose F.
  • the outlets 41 D, 42D, 43D, and 44D are formed as elon ⁇ gated slots.
  • tangential coolant flows are gener ⁇ ated which form a common internal spiral coolant flow 46 in an internal main ring gap G1 , and progress from the bottom to the top along the internal surface of the non-stabilized conical section M of the foil hose F (see Figures 7 and 10), thereby cooling it evenly and effectively.
  • the adjacent cooling units 41 to 44 are fixed overlapping each other, concentrically, and axially adjustably com- pared to each other.
  • ring-like gaps g1 , g2, and g3 with an adjustable flow cross-section are created along the overlapping parts between the adja ⁇ cent conical directing mantles 41 B to 44B, through which controllable tangential coolant flows exit through the outlets 41 D to 44D, as illustrated by arrows with thin result lines.
  • each of the cooling units 41 to 44 can be equipped with a separate coolant supply. In such a case, each of them can convey coolant of individually controllable pressure and/or temperature and/or quantity to the corresponding cooling unit pursuant to the invention.
  • FIG 8 illustrates the structural design of the cooling unit 42 in a cross- section.
  • the outlets 42D ensuring tangential air flows are produced, in the present case, from the parts cut out and bent out from the conical directing mantle 42B.
  • the outlets 42D ensuring the tan- gential flows of the coolant, are provided at identical distances from each other along the perimeter.
  • the outlets 42D ensuring tangential cool ⁇ ant flows can also be constructed in any other way.
  • the structural design is similar.
  • Figure 7 shows that the tangential outlets 41 D are provided with in the lower part, along the pe- rimeter of the cooling ring 41 , so that the foil hose F just exiting from the draw ⁇ ing orifice H receives effective internal cooling flows immediately during and af ⁇ ter its exit.
  • the coolant directing mantles 41 B to 44B of the cooling units 41 to 44 are conical, funnel-like elements, with their bevel-angle in the present case selected as e.g. 60°; however, that in a given case, the bevel-angle of the adjacent directing mantles 41 B to 44B can also be selected as a different value for the lateral stretching and orientation of the non-stabilized conical section M of the foil hose F.
  • the method of fixing of the cooling units 41 to 44 applied in Figure 7 is not pre ⁇ sented in detail; it is only remarked that their relative axial position is adjustable and a discretionary method of fixing can be applied therefore.
  • the cooling units 41 to 44 can be fixed, e.g.
  • Figure 7 does not illustrate a known at least one pair of pinch rollers of the ap ⁇ paratus, which is intended to pull the already stabilized foil hose F upwards in the progress direction x for known rolling and further processing of the stabi ⁇ lized foil hose F. It can be observed from the arrangement according to Figure 7 that the cooling units 41 to 44 can supply tangential coolant flows of previously adjusted quanti ⁇ ties, pressures, and temperatures by height levels to the internal surface of the foil hose F. Naturally, the more cooling units are applied over each other in the foil cooling and orienting device 40, the more even cooling will be.
  • the significance of the multi ⁇ level internal cooling and orienting device 40 actually lies in the fact that it effec ⁇ tively cools the foil hose F where transversal and longitudinal orientation is per ⁇ formed, namely from the exiting flux phase to the end of the stabilization sec- tion M.
  • This arrangement brings about a particular advantage, namely that cool ⁇ ing intensity can be continuously increased from the starting melted flux phase of the plastic material to the completely stabilized and cooled state of the foil, that is, stabilized state of the foil hose.
  • a further substantial advantage of the spiral internal coolant flow 46 generated from tangential air flows is that it drives the foil hose F; therefore the foil hose F can be "supported” and oriented by the regulated spiral air flow 46.
  • Another substantial advantage is that multi-level coolant blow-in eliminates coolant defi ⁇ ciencies in the non-stabilized conical section M of the foil hose F (which is inevi- table in traditional solutions and resulting in weaker cooling).
  • Figures 9 and 10 illustrate the solution according to Figure 7 in a cross-section and in an elevation, respectively.
  • Fig ⁇ ure 10 clearly shows the internal spiral coolant flow 46 progressing from the bottom to the top, generated by the internal foil cooling and orienting device 40 in the internal main ring gap G1 along the internal surface of the foil hose F.
  • Figures 11 to 13 and 14 to 16 illustrate the changes of temperature and speed in an elevation and a diagram, going up- wards along the ring gap, in the entire height of cooling and stabilization section M of the foil hose F, in the case of both the traditional ( Figures 11 to 13) and the multi-level internal cooling device according to the invention ( Figures 14 to 16).
  • Figure 11 shows the traditional internal cooling, with a cooling ring HG, a foil hose F, and a height M of the cooling section.
  • the horizontal axis shows the speed difference ( ⁇ v) to be achieved with this tradi ⁇ tional solution, while the vertical axis shows the height of the cooling section M.
  • the horizontal axis shows the temperature differ ⁇ ence ( ⁇ T), while the vertical axis shows the height M of the cooling section.
  • Figure 14 shows the cooling and orienting device 40 of the apparatus according to the invention (as in Figure 7).
  • Figures 15 and 16 show the speed and tem ⁇ perature differences ( ⁇ v; ⁇ T) as a function of the cooling section M.
  • Figures 12, 13 and 15, 16 also indicate the speed and temperature differences to be con ⁇ sidered ideal from the viewpoint of cooling ( ⁇ VJ ; ⁇ TJ), therefore substantial dif- ferences between the two designs are obvious.
  • the diagram in Figure 12 shows that the speed difference ( ⁇ v) between the air speed (v L ) and the foil speed (v F ) is eliminated at approximately a 2/3 part of the height M.
  • the regulated tangential coolant flow blown in by different levels continuously satisfies the coolant demand arising from the extension of the internal main ring space G1 and some drop in the speed dif ⁇ ference ( ⁇ v) (Fig. 15) and in the temperature difference ( ⁇ T) (Fig. 16) as com- pared to the ideal nominal value ( ⁇ VJ, ⁇ Tj) can only be observed between the two by two respective cooling units of the device 40.
  • the size of the internal main ring gap G1 can be maintained at a permanent value; •
  • the foil hose F is kept highly stable by the coolant flowing tangentially at a relatively high speed in the internal main ring gap G1 between the foil hose F and the cooling units: the foil hose does not get unstable, does not start "to swing” and does not get torn even in the case of deliberate exter ⁇ nal effects (e.g. draught).
  • the internal foil cooling-orienting device according to the invention can also be combined with an external cooling device in a given case, further improving cooling efficiency; an example thereof will be described be ⁇ low.
  • FIG 17 illustrates a preferred embodiment of the foil producing apparatus wherein the internal foil cooling and orienting device 40 according to Figure 7 is combined with a simple external cooling device 47'.
  • This external cooling de ⁇ vice 47' is arranged immediately over the extruder die E and fixed in its posi ⁇ tion.
  • Its structural design theoretically corresponds to that of the internal cooling units 41 to 44, that is, it is equipped with a cooling ring 47A enclosing a distribu- tion ring space, which is provided with two tangential inlets 47C connected to a regulated coolant supply (not illustrated).
  • the external cooling device 47' is equipped with a conical coolant directing mantle 47B which approaches the external surface of the foil hose F from the outside with the external main ring gap G in the section immediately after the exit of the foil.
  • Figure 17 shows that the external cooling ring 47A is equipped with a coolant directing mantle 47B, inlets 47C and tangential outlets 47D along its perimeter at its sides and bottom, whose design corresponds to that of the cooling unit explained in relation to Figure 8. So, the coolant flows exiting through outlets 47D start to move in a tangential vortex along the external mantle of the foil hose F, generating an external cool ⁇ ant flow 48 by going upwards in a spiral fashion.
  • the internal multi-stage cooling device 40 according to the invention can be associated with any of the known external cooling devices, too.
  • Figure 18 shows a further embodiment of the apparatus according to the inven- tion where the design of the internal foil cooling and orienting device is different from the embodiment mentioned above, and the apparatus is also provided with a simple external cooling device 47' (like in Figure 17).
  • the internal foil cooling and orienting device 40' consists of cooling units 41 to 44 arranged at axial distances from each other; therefore their conical mantles are indicated by reference signs 41 B, 42B, 43B, and 44B, and their tangential outlets by 41 D, 42B, and 43D, respectively.
  • 41 B, 42B, 43B, and 44B conical mantles
  • 41 D, 42B, and 43D tangential outlets
  • the directing mantles 41 B to 44B of the cooling units 41 to 44 as well as the cover 51 and the bottom plate 52 jointly constitute a fan cabinet and an integrated cooling ring (50).
  • this fan cabinet/house is provided with an axial inlet 54 to introduce a coolant of regulated temperature.
  • the bottom plate 52 is equipped with additional tangential outlets 55, which latter provide a tangential airflow downwards (indicated by arrows) to cool the inside of the foil hose F just exit ⁇ ing.
  • a shaft 56 of the fan rotor 53 is connected to a 57 rotary drive, which is an electric motor with controllable rpm. Therefore, in Figure 18 the internal fan is used as an internal coolant resource, which distributes the coolant completely evenly along the perimeter, therefore only an external conditioned air source must be connected to its inlet 54 (not il ⁇ lustrated).
  • Figure 19 shows a version of the embodiment according to Figure 18, where a fan rotor 53 is driven at the bottom through a shaft 56 by a rotary drive 57. An ⁇ other difference is that here an upper fun inlet 54' is applied for the coolant. Otherwise, the embodiment according to Figure 19 substantially corresponds to that in Figure 18.
  • the already stabilized foil hose F can be split at the top into two or more strips.
  • internal circulation can be provided for the coolant in the foil hose F (not illustrated separately).
  • Figure 20 shows a further embodiment of the apparatus according to the inven- tion, suitable for producing foil hoses from high-density polyethylene (HDPE).
  • HDPE high-density polyethylene
  • a characteristic of this material is that the material of the foil hose F exiting from the extruder die E is still too strong to be extended and oriented by blowing up.
  • a multi-level internal foil cooling and orienting device 40 (as presented in Figure 7) according to the invention is arranged over the extruder instrument E at an axial distance L in order to elongate first the foil hose F to a required length after exiting through the drawing orifice H, and then using the foil cooling and orienting device 40 for cooling and completely stabiliz ⁇ ing the foil hose F along the stabilizing section M.
  • the value of the distance L was selected as 4 to 5 times the diameter of the foil hose F exiting through the drawing orifice H, which is approx. 400 to 500 mm (in case of a foil hose of 100mm diameter).
  • Figure 21 shows yet another embodiment of the apparatus according to the in- vention, suitable for producing shrink foil of high shrinking capacity.
  • a primary foil cool ⁇ ing and orienting device 40 is arranged immediately over the extruding die E, in order to cool a first section M1 of the foil hose F for partially stabilizing it, to the degree required.
  • an annular heating device 58 is located coaxially, designed to heat up and thereby soften again the foil hose F partially extended and oriented.
  • a second foil cooling and orienting device 40 Di ⁇ rectly above the heating device 58, there is arranged a second foil cooling and orienting device 40", which structurally corresponds substantially to the first foil cooling and orienting device 40.
  • the softened and repeatedly blown-up foil hose F is extended within a second stabilizing section M2 to reach the final diameter in the secondary foil cooling and orienting device 40". At the same time, it is finally stabilized along the sec ⁇ tion M2 by effective cooling.
  • shrink foil with high shrinking capacity can be produced without closing the foil hose F at the top and repeatedly blowing it up at a high productivity rate and yielding good product quality.
  • shrink foils can be applied as fine shrink foils, e.g. as bulk packaging or shrink foil holding drink bottles together.
  • any of the internal foil cooling and ori- enting apparatus 40 and/or 40" can be combined in various ways with tradi ⁇ tional external cooling solutions, including cooling rings, cooling cones, or pref ⁇ erably with any of the external foil cooling devices 1 , 47 according to the inven ⁇ tion, but it can also be applied individually, too.
  • Figure 22 shows a preferred embodiment of the foil producing appara- tus according to the invention where an internal multi-level cooling and orient ⁇ ing device 40 (according to Figure 7) is combined with the external multi-level foil cooling device 1 (as in Figures 1 to 3).
  • Internal cooling units 41 to 44 of the internal foil cooling and orienting device 40 are fixed concentrically, overlap ⁇ ping each other, and in an adjustable manner compared to each other, and they are connected to a common coolant supply 45 (as discussed in connec- tion with Figure 7).
  • ring-like gaps - of adjustable flow cross-section - are created between the conical directing mantles (see Figure 7), through which controllable tangential coolant flows exit as indicated by thin arrows.
  • the external multi-stage foil cooling device 47 consists of three external cool ⁇ ing units 47.1 , 47.2. and 47.3, arranged at axial distances from each other; they (corresponding mainly to the cooling units 2 to 4 according to Figure 1) are connected to a common coolant supply 60 in an individually controllable manner. (The structural design of the lowermost cooling unit 47.1 substantially corresponds to the cooling device presented in Figure 17).
  • Each of the other external cooling units 47.2 and 47.3 are equipped with a coolant distributing ring 47.2A and a cooling ring 47.3A, as well as conical di ⁇ recting mantles 47.2B and 47.3B, arranged in a manner overlapping each other.
  • Each of the cooling units 47.1, 47.2 and 47.3 is equipped with inlets 47.1C to 47.3C and outlets 47.1 D to 47.3D to direct regulated tangential cool ⁇ ant flows to the external surface of the foil hose F, i.e. into a main external ring gap G.
  • the tangential coolant flows form an external spiral air flow 48 together, progressing from the bottom upwards along the external main ring gap G.
  • the multi-level external foil cooling device 47 is not presented in detail as it is iden- tical with the one presented in Figure 1.
  • foil cooling can be improved dramatically by the joint impact of the external and internal spiral coolant flows 46 and 48, respectively.
  • a further advantage of the internal foil cooling and orienting device 40 of the apparatus according to the invention is that it essentially closes the internal space of the foil hose F.
  • the foil hose F is not necessar ⁇ ily required to be flattened, i. e. closed, which is ensured in a traditional case by the pull-up cylinder pair, because the coolant cannot "escape" anyway through the regulated flow cross-section of the internal main ring gap G1. More specifically, only an amount of air equalling to the amount blown in for cooling is removed through the main ring gap G1 , but the foil hose F will stay stable all the time.
  • One of the advantages of this is that the foil hose F can be split into two or more parts, without being closed at the already stabilized cylindrical section, because this procedure is subject to an open foil hose.
  • the internal foil cooling and orienting device 40 ensures several levels of blow-in in the pro ⁇ gress direction x of the foil hose F, thereby the continuously increasing coolant demand is completely satisfied when progressing upwards along the conical non-stabilized section M.
  • the long-standing problem of the prior art has been solved that the air blown in at the bottom slows down and heats up by the extension, and the gap between the balloon and the cone is reduced because 'fresh' air is replaced and/or supplemented in several phases, there ⁇ fore the size of the internal main ring gap G1 will remain the same all the time.
  • the air supply of the cooling units 41 to 44 comes from an independent and controlled coolant supply 45, thus the quantity and temperature of the coolant blown in can be changed at each level that it will not change at any of the other places. This highly facilitates control and the separability of the impact of the intervention.
  • an ever greater quantity of increasingly colder air is required to completely and rapidly cool back the accelerating foil hose F cooling in the meantime while going upwards along the cooling and stabilizing conical section M.
  • This can be achieved by the present invention as coolant can be supplied in quantities, at temperatures, and pressures individually regu- Iated at the various height levels of the cooling device 40 to the foil hose F.
  • a further advantage of the invention is that - as described above - air of differ ⁇ ent quantities and temperatures coming from a controlled source can also be blown in on the basis of the parameters of the air already inside the foil hose F. This means that in a given case, the temperature of the air arriving from below is measured before the blow-in levels, e.g. at the cooling unit 42, then the tem ⁇ perature of the air to be fed in there is determined as a function thereof. This way the temperature difference required for appropriate heat transfer is main ⁇ tained.
  • a discretionary 'cool- ing map' can be created using the technology according to the invention. This means that the quantity, speed, and temperature of the coolant can be ad ⁇ justed selectively as required at any height of the cooling device, i.e. by sec ⁇ tions at the blow-ins. This way any discretional cooling states can be gener ⁇ ated in the knowledge of the parameters of the plastic flux and taking into con- sideration the foil characteristics intended to be achieved.
  • the conical directing mantle helps to guide the coolant accurately, and the foil hose is 'supported' by a regulated coolant flow; • It can be applied in the case of a wide range of basic materials;
  • the multi-level internal cooling and orienting device can be applied individually or in combination with any of the external cooling devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
PCT/HU2005/000107 2004-09-22 2005-09-22 Apparatus and process for producing extruded plastic foil hose WO2006032937A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0515572-0A BRPI0515572A (pt) 2004-09-22 2005-09-22 aparelho e processo para produzir mangueira de folhas de plástico extrusado
JP2007531844A JP2008513247A (ja) 2004-09-22 2005-09-22 押出成形プラスチック・ホイル・ホースを生産するための設備及びプロセス
EP05792805A EP1824657A1 (en) 2004-09-22 2005-09-22 Apparatus and process for producing extruded plastic foil hose
US11/661,807 US20080073818A1 (en) 2004-09-22 2005-09-22 Apparatus and Process for Producing Extruded Plastic Foil Hose

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
HU0401901A HUP0401901A2 (en) 2004-09-22 2004-09-22 Device for cooling plastic foil hose coming out from an extruder
HUP-04-01901 2004-09-22
HU0402669A HUP0402669A2 (en) 2004-12-22 2004-12-22 Apparatus for continuous producing of blown film
HUP-04-02669 2004-12-22

Publications (2)

Publication Number Publication Date
WO2006032937A1 true WO2006032937A1 (en) 2006-03-30
WO2006032937B1 WO2006032937B1 (en) 2006-11-09

Family

ID=89985711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/HU2005/000107 WO2006032937A1 (en) 2004-09-22 2005-09-22 Apparatus and process for producing extruded plastic foil hose

Country Status (4)

Country Link
EP (1) EP1824657A1 (ja)
JP (1) JP2008513247A (ja)
BR (1) BRPI0515572A (ja)
WO (1) WO2006032937A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131319A1 (en) * 2006-05-12 2007-11-22 Husky Injection Molding Systems Ltd. Mold-cooling device having vortex-inducing cooling-fluid chamber
WO2015055169A1 (de) * 2013-10-15 2015-04-23 Reifenhäuser GmbH & Co. KG Maschinenfabrik Blasfolienanlage und verfahren zum betreiben einer blasfolienanlage
ITUB20160797A1 (it) * 2016-02-16 2017-08-16 Syncro S R L Raffreddatore interno della bolla per un impianto di produzione di film soffiati
WO2021255026A1 (de) * 2020-06-15 2021-12-23 Windmöller & Hölscher Kg Blasfolienanlage sowie verfahren zur herstellung schlauchförmiger kunststofffolie

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101897503B1 (ko) * 2018-03-19 2018-09-12 오정균 지퍼 백 제조장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130616A (en) * 1977-03-21 1978-12-19 Imperial Chemical Industries Limited Tubular extrudate
US5102320A (en) * 1989-06-15 1992-04-07 Israel Rom Apparatus for the production of a tubular film from thermoplastic material
US5576029A (en) * 1995-06-02 1996-11-19 Planeta; Mirek Internal cooling air supply assembly
US6068462A (en) * 1997-12-02 2000-05-30 Brampton Engineering, Inc. Apparatus for continuously forming a blown film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130616A (en) * 1977-03-21 1978-12-19 Imperial Chemical Industries Limited Tubular extrudate
US5102320A (en) * 1989-06-15 1992-04-07 Israel Rom Apparatus for the production of a tubular film from thermoplastic material
US5576029A (en) * 1995-06-02 1996-11-19 Planeta; Mirek Internal cooling air supply assembly
US6068462A (en) * 1997-12-02 2000-05-30 Brampton Engineering, Inc. Apparatus for continuously forming a blown film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131319A1 (en) * 2006-05-12 2007-11-22 Husky Injection Molding Systems Ltd. Mold-cooling device having vortex-inducing cooling-fluid chamber
WO2015055169A1 (de) * 2013-10-15 2015-04-23 Reifenhäuser GmbH & Co. KG Maschinenfabrik Blasfolienanlage und verfahren zum betreiben einer blasfolienanlage
US10780622B2 (en) 2013-10-15 2020-09-22 Reifenhäuser Gmbh & Co. Kg Maschinenffabrik Blown film line and method for operating a blown film line
ITUB20160797A1 (it) * 2016-02-16 2017-08-16 Syncro S R L Raffreddatore interno della bolla per un impianto di produzione di film soffiati
WO2021255026A1 (de) * 2020-06-15 2021-12-23 Windmöller & Hölscher Kg Blasfolienanlage sowie verfahren zur herstellung schlauchförmiger kunststofffolie

Also Published As

Publication number Publication date
JP2008513247A (ja) 2008-05-01
EP1824657A1 (en) 2007-08-29
WO2006032937B1 (en) 2006-11-09
BRPI0515572A (pt) 2008-07-29

Similar Documents

Publication Publication Date Title
CA1102062A (en) Apparatus and method for internally cooling a plastic tubular film bubble
EP1824657A1 (en) Apparatus and process for producing extruded plastic foil hose
RU2197157C2 (ru) Установка и способ для расширения табака
JP2008540163A (ja) 熱伝達方法及び装置
CA2251426C (en) Method and apparatus for continuously forming a blown film
RU2410240C2 (ru) Устройство для внутреннего охлаждения экструдированных термопластических труб
EP0180029B1 (en) Method for controlled orientation of extruded resins and product produced
EP0460310A1 (en) Process and apparatus for collecting nonwoven webs
ES2447426T3 (es) Dispositivo de formación de fieltros de fibras
JPS6097822A (ja) ポリスチロール、ポリエチレン等のような発泡熱可塑性合成樹脂の製造装置
CA1274366A (en) Bubble forming and stabilizing device for use in a continuous extrusion process for making a blown film
JPS60143930A (ja) フイルム吹出しヘツドから押出される筒状プラスチツクフイルム用冷却装置
JP2008513247A6 (ja) 押出成形プラスチック・ホイル・ホースを生産するための設備及びプロセス
EP1629141B1 (en) Apparatus and method for controlling airflow in a fiber extrusion system
US4138453A (en) Process for manufacturing blown film sheeting
US11458666B2 (en) Method and apparatus for cooling
US20080073818A1 (en) Apparatus and Process for Producing Extruded Plastic Foil Hose
US5356581A (en) Method for producing pellets from film
CA2591284C (en) Apparatus and method for cooling plastic film tube in blown film process
US20020130446A1 (en) Outside bubble air cooling ring for blown plastic film
US20060202374A1 (en) Method and apparatus for cooling extruded plastic foil hoses
JPH0152171B2 (ja)
JPH0343001Y2 (ja)
JPS62246714A (ja) エア−リング
JPH0513550Y2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005792805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11661807

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007531844

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580031741.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1668/CHENP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005792805

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661807

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0515572

Country of ref document: BR