WO2006030892A1 - Process for production of heterocyclic compounds - Google Patents

Process for production of heterocyclic compounds Download PDF

Info

Publication number
WO2006030892A1
WO2006030892A1 PCT/JP2005/017137 JP2005017137W WO2006030892A1 WO 2006030892 A1 WO2006030892 A1 WO 2006030892A1 JP 2005017137 W JP2005017137 W JP 2005017137W WO 2006030892 A1 WO2006030892 A1 WO 2006030892A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
methyl
cis
dioxane
reaction
Prior art date
Application number
PCT/JP2005/017137
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuji Harabe
Masaru Tanaka
Original Assignee
Nippon Shinyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co., Ltd. filed Critical Nippon Shinyaku Co., Ltd.
Publication of WO2006030892A1 publication Critical patent/WO2006030892A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present invention relates to 2-methyl-c-5- ⁇ 4- [5-methyl-2- (4-methylphenol) -1,3-oxazole-4-yl] butyl ⁇ 1,3 dioxane useful as a medicine —R— 2 It relates to a method for producing rubonic acid (hereinafter NS-220).
  • NS-220 is a blood triglyceride lowering action and low density lipoprotein cholesterol.
  • LDL-C blood glucose-lowering effect
  • HDL-C blood insulin lowering effect
  • arteriosclerosis index a ratio of high-density lipoprotein cholesterol to HDL-C, calculated as (total cholesterol value-HDL-C value) ZHDL-C value.
  • o NS-220 is It is known that it can be produced by the following method (for example, see Patent Document 1). Bre
  • NS-220 is a cis isomer
  • the production intermediate methyl cis-5- (4 chlorobutyl) 2-methyl-1,3 dioxane 2 carboxylate (compound 4) is Compound 4) was produced by resolution by column chromatography.
  • an unnecessary transformer body has to be discarded, and there is a problem in terms of manufacturing efficiency.
  • the use of a purification method based on column chromatography in large-scale synthesis on an industrial scale necessitates the use of a considerable amount of silica gel and solvent, resulting in a rise in production costs and the adverse effect of the used solvent on the environment. Giving and giving. Further, the operation process is complicated and difficult.
  • the raw material compound 13 is chemically unstable, and the compound 13 is not commercially available, and it is necessary to carry out raw material synthesis (3 steps). There is.
  • the above production method C (for example, see Non-Patent Document 4) has a total yield of 18% and is not strong (in the case of Compound 6 ′), and it is difficult to crystallize Compound 6 in the post-reaction treatment. .
  • the above production method D (for example, see Non-Patent Document 5) has a total yield of only 15% (in the case of Compound 6).
  • Non-Patent Documents 6 to 7 uses a metal such as chromium or ruthenium as a reagent, a separate disposal process is required, and the product may contain these metals. is there.
  • Patent Document 1 International Publication No. 01Z90087 Pamphlet
  • Non-patent literature l J. Chem. Soc, 1948, 310-315
  • Non-Patent Document 2 Tetrahedron Lett., 2000, 41, 8969-8972
  • Non-Patent Document 3 J. Am. Chem. Soc, 1991, 113, 2247-2253
  • Non-Patent Document 4 Chem. Lett., 1989, 449-452, 515-518, 569-572
  • Non-Patent Document 5 Chem. Pharm. Bull, 1979, 27, 1181-1185
  • Non-Patent Document 6 TetrahedronLett "1985, 26, 3433-3436
  • Non-Patent Document 7 Syn ⁇ ett., 1999, 10, 1642-1644
  • the main object of the present invention is to provide a novel method for producing NS-220 suitable for mass synthesis on an industrial scale. Means for solving the problem
  • Examples of the present invention include the following methods.
  • Compound 4 which is an important production intermediate of NS-220 can be produced by the following method.
  • compound 4 ′ is hydrolyzed in the presence of a base, so that the trans form is preferentially hydrolyzed (selective hydrolysis). Therefore, by adjusting the amount of the base used, The hydrolysis rate can be controlled, and the compound 4 having a cis Z-trans ratio of 9 Zl to 50 Zl can be easily produced.
  • the solvent that can be used for this selective hydrolysis reaction is not particularly limited as long as it can dissolve the substrate compound 4 ′, but acetonitrile, ⁇ , ⁇ dimethylformamide, toluene, tetrahydrofuran, ⁇ -methyl-2-pyrrolidone. 1,3 dimethyl-2-imidazolidinone, acetone, and methanol are suitable, and acetonitrile, ⁇ , dimethylformamide, and tetrahydrofuran are preferred.
  • the amount of the solvent used in this selective hydrolysis reaction is not particularly limited as long as it dissolves compound 4 ′ as a substrate, but 0.5 to L0 amount (volume) with respect to compound 4 ′ as a substrate. (mL) Z weight (g)) is suitable, and 1 to 5 times the amount is more preferable.
  • the base that can be used for this selective hydrolysis reaction is not particularly limited as long as it is a base used for a usual ester hydrolysis reaction, but sodium hydroxide, potassium hydroxide, lithium hydroxide, hydroxide salt, and the like. Cesium is suitable, and sodium hydroxide and potassium hydroxide are preferred.
  • the hydrolysis rate of compound 4 ′ as a substrate can be controlled. When the hydrolysis rate is low, many unreacted trans isomers remain, and when the hydrolysis rate is high, the yield of compound 4 decreases.
  • the amount of base used varies depending on the cis-Z trans ratio of compound 4 ′, the substrate used, and the type and amount of solvent used. Appropriate, 0.2 to 0.4 times the amount of mono-layered S girls, 0.25 to 0.35 mono-layered amounts of girls! / ⁇ .
  • the reaction temperature of this hydrolysis reaction is not particularly limited as long as it is not higher than the boiling point of the solvent to be used. In general, the range of 0 to 60 ° C is preferable, and the range of 10 to 40 ° C is more preferable. A range of 30 ° C is more preferred.
  • the reaction time of this hydrolysis reaction depends on the concentration of the substrate in the reaction solution, but the range of 30 minutes to 10 hours is preferred, and the range of 1 to 5 hours is more preferred.
  • This ketal exchange reaction is a general reaction and can be carried out by a known method. For example, it can be carried out by adding methyl pyruvate in the presence of boron trifluoride jetyl ether complex.
  • the solvent that can be used in this ketal exchange reaction is not particularly limited as long as it can dissolve compound 21 as a substrate, but toluene and acetonitrile are suitable, and toluene is preferable.
  • Amount of solvent used in this ketal exchange reaction Is not particularly limited as long as it is an amount capable of dissolving compound 21 as a substrate, but 1 to L0 volume (volume (mL) Z weight (g)) is appropriate for compound 21 as substrate. 3 to 5 times the amount is preferable.
  • reaction temperature of this ketal exchange reaction is not particularly limited as long as it is lower than the boiling point of the solvent to be used, but in general, the range of 0 to 60 ° C is preferred, and the range of 20 to 40 ° C is more preferred 2 5 A range of ⁇ 35 ° C. is more preferable.
  • reaction time of this ketal exchange reaction depends on the concentration of the substrate in the reaction solution.
  • concentration of the substrate in the reaction solution The range of 1S 30 minutes to 10 hours is preferred.
  • range of 1 to 5 hours is more preferred.
  • compound 4 can be produced by hydrolysis suitable for mass synthesis on an industrial scale, not by column chromatography. Furthermore, since unnecessary transformer bodies can be reused, the production efficiency can be improved.
  • Compound 5 which is an important production intermediate of NS 220 can be produced by the following method in the same manner as the production method of compound 4 described above.
  • compound 5 ′ is hydrolyzed in the presence of a base, whereby the trans form is preferentially hydrolyzed (selective hydrolysis). Therefore, by adjusting the amount of the base used, The hydrolysis rate can be controlled, and the compound 4 having a cis Z-trans ratio of 9 Zl to 50 Zl can be easily produced.
  • trans-form produced by this selective hydrolysis is high in the proportion of 5- (4-iodobutyl) -2-methyl-1,3 dioxane-2-strong rubonic acid (Compound 22) should be ketal-exchanged.
  • the compound 5 can be obtained again by the similar selective hydrolysis of the regenerated compound 5 ′.
  • NS-220 can be synthesized efficiently.
  • the solvent, amount of solvent, base, amount of base, reaction temperature and reaction time that can be used for this selective hydrolysis reaction, and the amount of solvent, solvent, reaction temperature and reaction time that can be used for this ketal exchange reaction are as follows. This is the same as the production method of Compound 4.
  • compound 5 can be produced in large quantities on an industrial scale regardless of column chromatography. It can be produced by hydrolysis suitable for synthesis. Furthermore, since unnecessary transformer bodies can be reused, the production efficiency can be improved.
  • the condensation reaction of compound 5 'and compound 6 can be carried out in the presence of a base, but as a by-product when an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used as the base. Since water is generated, hydrolysis reaction of the produced compound 7 ′ can be performed simultaneously by adding an excess base and carrying out this reaction.
  • a base such as sodium hydroxide or potassium hydroxide
  • compound 7 ′ is also hydrolyzed in the presence of a base to preferentially hydrolyze the trans isomer (selective hydrolysis). Therefore, by adjusting the amount of base used, The hydrolysis rate can be controlled, and compound 7 having a cis Z-trans ratio of 9Zl to 50Z1 can be produced.
  • the solvent that can be used in this reaction is not particularly limited as long as it can dissolve the compounds 5 ′ and 6 as substrates, but N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl- 2-Imidazolidinone is suitable, and N, N-dimethylformamide is preferred.
  • the amount of the solvent used in this reaction is not particularly limited as long as it dissolves the compound 5 ′ and the compound 6 as the substrate, but is 0.5 to L0 times the compound 5 ′ as the substrate.
  • the amount (capacity (mL) Z weight (g)) is appropriate, and 1 to 5 times the amount is preferable.
  • the base that can be used in this reaction is not particularly limited as long as it is a base used for ordinary condensation reactions and ester hydrolysis reactions, but sodium hydroxide, potassium hydroxide, lithium hydroxide, hydroxide salt, and the like. Cesium and sodium hydride are suitable, sodium hydroxide, potassium hydroxide Um is preferred.
  • the hydrolysis rate of compound 7 ′ can be controlled.
  • an equimolar amount of base is required for the condensation reaction of Compound 5 ′ and Compound 6. Therefore, the amount of base used in this reaction varies depending on the cis-Z trans ratio of compound 7 ′, which is the substrate used, and the type and amount of solvent used. 1.
  • a 6-fold molar amount is appropriate, and 1.1 to 1.4-fold molar amount is preferred.
  • the reaction temperature of this reaction is not particularly limited as long as it is not higher than the boiling point of the solvent to be used. In general, the range of 0 to 60 ° C is suitable, and the range of 10 to 30 ° C is preferable.
  • reaction time of this reaction depends on the concentration of the substrate in the reaction solution, the range of 30 minutes to 10 hours is appropriate, and the range of 1 to 5 hours is preferable.
  • compound 7 can also be produced by hydrolysis suitable for mass synthesis on an industrial scale.
  • this reaction can be carried out simultaneously with the condensation reaction of compound 5 ′ and compound 6, the production process of NS-220 can be reduced by one step, and the production efficiency can be improved. .
  • Compound 6 which is an important production raw material for NS-220, can be produced by the following method.
  • Process 2 6 Acidify 4-methyl N- (2-hydroxypropyl) benzamide (compound 20) by using 2, 2, 6, 6-tetramethyl-1-piveridi-ruoxy radical (hereinafter referred to as TEMPO) and sodium hypochlorite Can be manufactured.
  • TEMPO 2, 2, 6, 6-tetramethyl-1-piveridi-ruoxy radical
  • Step 1 is an amide formation reaction between an acid chloride and an amine and can be produced by a conventional method.
  • the solvent that can be used in the amide formation reaction is not particularly limited as long as it can dissolve the compound 18 as a substrate, but toluene, acetonitrile, N, N dimethylformamide, N-methyl-2-pyrrolidone, 1, 3 Dimethyl-2-imidazolidinone is suitable, and toluene and acetonitrile are preferred.
  • the amount of the solvent used in this amide formation reaction is not particularly limited as long as compound 18 as a substrate is dissolved, but it is 1 to 10 times the amount of compound 18 as a substrate (volume (mL) Z weight ( g)) is suitable, and 3 to 6 times the amount is preferred.
  • the reaction time of the present amide formation reaction depends on the concentration of the substrate in the reaction solution, but is suitably in the range of 30 minutes to 8 hours, preferably in the range of 1 to 4 hours.
  • the reaction temperature of the present amide formation reaction is not particularly limited as long as it is not higher than the boiling point of the solvent to be used. In general, the range of 20 to 60 ° C is appropriate, and the range of 0 to 40 ° C is preferable.
  • the amount of 19 used in this amide formation reaction varies depending on the type and amount of the solvent used, the reaction temperature, and the reaction time, but a 1 to 10-fold molar amount relative to 18 is appropriate. The amount is good.
  • the compound 20 as a substrate may be partially used. Although it does not ask
  • the amount of solvent used in this oxidation reaction is not particularly limited as long as it partially dissolves the compound 20 as a substrate, but it is 1 to 40 times the amount of compound 20 as a substrate (volume (mL) Z Weight (g)) is suitable, 3 to 20 times the amount is preferred.
  • the amount of TEMPO used in this oxidation reaction varies depending on the type and amount of the solvent used, the reaction temperature, and the reaction time, but 0.001 to 2 times the molar amount is preferred with respect to the substrate. It is preferable to mass.
  • reaction temperature of the oxidation reaction in step 2 is suitably in the range of ⁇ 20 to 30 ° C., preferably in the range of ⁇ 10 to 20 ° C., more preferably in the range of 0 to 10 ° C.
  • the reaction time of the oxidation reaction in step 2 is preferably in the range of 30 minutes to 10 hours, more preferably in the range of 1 to 5 hours, although it depends on the concentration of the substrate in the reaction solution.
  • Test Example 1 Methyl cis 5- (4 chlorobutyl) 2 methyl 1.3 dioxane 2 carboxylate Debate
  • Carrier gas Argon gas
  • the cis-to-trans ratio is 9 or more (90% or more of the cis-isomer)
  • the trans-isomer can be removed in the subsequent purification step in each reaction. Therefore, if the hydrolysis rate is controlled to 20% or more, it is possible to produce compound 4 without using conventional column chromatography.
  • compound 5 ′ having a cis / Z trans ratio of 3.6 / 1 synthesized by the method described in Patent Document 1 is dissolved in an equal amount (volume (mL), Z weight (g)) of acetonitrile. Then, sodium hydroxide was added in a molar amount 0.4 times that of Compound 5 'and subjected to hydrolysis at 20 ° C for 2 hours. Thereafter, the hydrolysis rate after the reaction and the cis-Z trans ratio of the unhydrolyzed compound 4 ′ were calculated by gas chromatography (GC). The GC measurement conditions are the same as in Test Example 1. As a result, when the hydrolysis rate was 39.5%, the cis-Z trans ratio of the unreacted compound 4 ′ was 148.9Z1.
  • the production method of Compound 5 using Compound 5 ′ is related to the cis-Z trans ratio by controlling the hydrolysis rate in the same manner as the production method of Compound 4 using Compound 4 ′ of Test Example 1. This manufacturing method can be used.
  • compound 7 ′ synthesized by the method described in Patent Document 1 and having a cis-Z trans ratio of 3.5 / 1 is dissolved in a three-fold amount (volume (mL) Z weight (g)) of solvent. Then, various bases were added in a predetermined molar amount with respect to the compound 4 ′ and subjected to hydrolysis reaction at 10 to 20 ° C. for 2 hours. Thereafter, the hydrolysis rate after the reaction and the cis-Z trans ratio of the unhydrolyzed compound 7 ′ were calculated by HP LC. The results are shown in Table 2.
  • the hydrolysis rate of compound 7 ′ can be controlled by increasing or decreasing the amount of base, as in the case of compound 4 ′ of Test Example 1, by hydrolysis of compound 7 ′. If the hydrolysis rate is controlled, it is possible to produce compound 7 without using conventional column chromatography.
  • TEMPO is a well-known oxidant and has a particularly superior combination of TEMPO and sodium hypochlorite in the oxidation of 4-methyl-N- (2-hydroxypropyl) benzamide.
  • the discovery of a powerful oxidant that could not be conceived has made it possible to easily produce Compound 7 which is an important raw material for producing NS-220, which is useful as a medicine, in high yield.
  • Example 1 Production of NS-220 including the production process of obtaining compound 4 by selective hydrolysis (Step 1) Production of compound 4 by selective hydrolysis
  • the aqueous layer obtained in Step 1 of Example 1 was extracted by adding 128.3 g of concentrated hydrochloric acid and 700 mL of toluene to recover trans-rich compound 21.
  • 15.5 g of methyl pyruvate and 6.9 g of boron trifluoride ether complex were added to 50 mL of the toluene solution of the recovered compound 21 and reacted at 60 ° C for 8 hours. After the reaction, the mixture was washed with 77% 20% aqueous sodium hydroxide solution, 39ml 10% aqueous sodium hydroxide solution and 10ml 10% aqueous sodium chloride solution in this order. The organic layer was concentrated under reduced pressure to obtain 2.4 g of compound 4 ′.
  • Example 3 Production of NS-220 including production process for obtaining compound 7 by selective hydrolysis
  • the compound obtained in Step 1 was mixed with 300.0 g of TEMPO 0.4851 g, sodium odorite 15. 97 g, magnesium sulfate 9.34 g, ethyl acetate 450 ml, water 30 ml, and sodium hypochlorite.
  • Aqueous solution (effective chlorine 5% or more)
  • a solution of 6.52 g of sodium bicarbonate in 222.2 g was dropped at 2 to -10 ° C. After stirring at 0 ° C for 40 minutes, the layers are separated, and the upper layer is a solution in which 2.558 g of rhodium iodide is dissolved in 56.6 g of 1% hydrochloric acid aqueous solution, 10% -Na 2 SO 4 aqueous solution 1
  • the production method according to the present invention is a column chromatograph as compared to the conventional production method. It is useful as a medicine without using a metal compound.
  • NS-220 can be manufactured.

Abstract

The invention aims at providing a process for the production of NS-220 which is suitable for mass production on an industrial scale. The invention is constituted of (1) a process for the production of methyl cis-5-(4-chlorobutyl) -2-methyl-1,3-dioxane-2-carboxylate, characterized by hydrolyzing a cis/trans isomer mixture of methyl 5-(4- chlorobutyl)-2-methyl-1,3-dioxane-2-carboxylate in the presence of a base; (2) a process for the production of 4-methyl-N-(2-oxopropyl)benzamide, characterized by oxidizing 4-methyl-N-(2-hydroxypropyl)benzamide with 2,2,6,6-tetra- methyl-1-piperidinyloxyl radicals and sodium hypochlorite; and so on.

Description

明 細 書  Specification
複素環化合物の製造方法  Method for producing heterocyclic compound
技術分野  Technical field
[0001] 本発明は、医薬として有用な 2—メチルー c— 5—{4— [5—メチルー 2—(4ーメチ ルフエ-ル)ー1, 3—ォキサゾールー 4 ィル]ブチル } 1, 3 ジォキサン—r— 2 一力ルボン酸 (以下、 NS— 220と 、う)の製造方法に関するものである。  [0001] The present invention relates to 2-methyl-c-5- {4- [5-methyl-2- (4-methylphenol) -1,3-oxazole-4-yl] butyl} 1,3 dioxane useful as a medicine —R— 2 It relates to a method for producing rubonic acid (hereinafter NS-220).
[化 1]  [Chemical 1]
Figure imgf000002_0001
Figure imgf000002_0001
NS - 220  NS-220
背景技術 Background art
[0002] NS— 220は、血中トリグリセリドの低下作用、及び低比重リポ蛋白質コレステロール  NS-220 is a blood triglyceride lowering action and low density lipoprotein cholesterol.
(以下、 LDL— Cという)の低下作用を有し、さらに血糖低下作用、血中インスリン低 下作用、又は高比重リポ蛋白質コレステロール (以下、 HDL— Cという)の増加作用 若しくは動脈硬化指数〔非高比重リポ蛋白質コレステロールと HDL-Cの比であり、 ( 総コレステロール値― HDL- C値) ZHDL- C値で算出する。〕低下作用等を有して いる。従って、冠動脈疾患、脳梗塞、高脂血症、動脈硬化症、糖尿病、高血圧、若し くは肥満に対する予防薬又は治療薬として有用である (例えば、特許文献 1参照。 ) o NS— 220は、下記の方法により製造できることが知られている(例えば、特許文献 1参照。)。 Br e(Hereinafter referred to as LDL-C), and also has a blood glucose-lowering effect, blood insulin lowering effect, or high-density lipoprotein cholesterol (hereinafter referred to as HDL-C) increasing effect or arteriosclerosis index [non- This is the ratio of high-density lipoprotein cholesterol to HDL-C, calculated as (total cholesterol value-HDL-C value) ZHDL-C value. ] Has a lowering effect. Therefore, it is useful as a preventive or therapeutic agent for coronary artery disease, cerebral infarction, hyperlipidemia, arteriosclerosis, diabetes, hypertension, or obesity (see, for example, Patent Document 1) o NS-220 is It is known that it can be produced by the following method (for example, see Patent Document 1). Bre
Figure imgf000003_0001
Figure imgf000003_0001
Me  Me
Me  Me
,C02Me 一 6, C0 2 Me One 6
Figure imgf000003_0002
Figure imgf000003_0002
Figure imgf000003_0003
H N
Figure imgf000003_0003
HN
人 o — 220  People o — 220
NS— 220はシス体であるため、製造中間体であるメチル シス一 5— (4 クロロブ チル) 2—メチルー 1, 3 ジォキサン 2 カルボキシレート(化合物 4)は、そのシ ス一トランス混合物 (ィ匕合物 4,)をカラムクロマトグラフィーで分割することにより製造さ れていた。し力しながら、この従来方法では、不要なトランス体は廃棄せざるを得なく 、製造効率の点で問題がある。また、工業スケールでの大量合成において、カラムク 口マトグラフィ一による精製方法を用いることは、相当量のシリカゲル、溶媒を使用せ ざるを得なく、製造原価が高騰するとともに、使用済溶媒が環境に悪影響を与えるこ と〖こなる。更に、操作工程も煩雑であり、困難性も伴う。 Since NS-220 is a cis isomer, the production intermediate methyl cis-5- (4 chlorobutyl) 2-methyl-1,3 dioxane 2 carboxylate (compound 4) is Compound 4) was produced by resolution by column chromatography. However, in this conventional method, an unnecessary transformer body has to be discarded, and there is a problem in terms of manufacturing efficiency. In addition, the use of a purification method based on column chromatography in large-scale synthesis on an industrial scale necessitates the use of a considerable amount of silica gel and solvent, resulting in a rise in production costs and the adverse effect of the used solvent on the environment. Giving and giving. Further, the operation process is complicated and difficult.
[0003] 一方、 NS 220の製造原料である 4ーメチルー N— (2 ォキソプロピル)ベンズァ ミド (化合物 6)は、既知の N—(2 ォキソプロピル)ベンズアミド (ィ匕合物 6' )の製造 方法に準じて製造することができる。しかしながら、下記の通り、いずれの既知の製造 方法も工業スケールでは満足しうるものではない。  [0003] On the other hand, 4-methyl-N— (2oxopropyl) benzamide (Compound 6), which is a raw material for NS 220, is in accordance with the known method for producing N— (2oxopropyl) benzamide (Compound 6 ′). Can be manufactured. However, as described below, none of the known production methods are satisfactory on an industrial scale.
[0004] 化合物 6の製法の公知枝術  [0004] Known branching of compound 6 production method
(1)製法 A (1) Manufacturing method A
Figure imgf000004_0001
Figure imgf000004_0002
Figure imgf000004_0001
Figure imgf000004_0002
上記製法 A (例えば、非特許文献 1〜2参照。)は、原料である化合物 9が非常に高 価であり、トータル収率も 58%しかない。更に、製造中間体である化合物 11の製造 において、後処理に大量の水と塩酸を使用しなければならず、かつ、反応液に水や 塩酸を加えるときに温度調整が必要であり、その操作も煩雑である。 In the above production method A (for example, see Non-Patent Documents 1 and 2), compound 9 as a raw material is very expensive, and the total yield is only 58%. Furthermore, in the production of compound 11, which is a production intermediate, a large amount of water and hydrochloric acid must be used for the post-treatment, and temperature adjustment is necessary when adding water or hydrochloric acid to the reaction solution. Is also cumbersome.
(2)製法 B (2) Manufacturing method B
[化 4] [Chemical 4]
Figure imgf000004_0003
Figure imgf000004_0003
HC1  HC1
13  13
上記製法 B (例えば、非特許文献 3参照。)は、原料である化合物 13が化学的に不 安定であり、また、該化合物 13は市販されておらず、原料合成(3工程)を行う必要が ある。 In the above production method B (for example, see Non-Patent Document 3), the raw material compound 13 is chemically unstable, and the compound 13 is not commercially available, and it is necessary to carry out raw material synthesis (3 steps). There is.
(3)製法 C (3) Manufacturing method C
[化 5] [Chemical 5]
Figure imgf000005_0001
Figure imgf000005_0001
上記製法 C (例えば、非特許文献 4参照。 )は、トータル収率が 18%し力なく(ィ匕合 物 6'の場合)、また、反応後処理において化合物 6の結晶化が困難である。 The above production method C (for example, see Non-Patent Document 4) has a total yield of 18% and is not strong (in the case of Compound 6 ′), and it is difficult to crystallize Compound 6 in the post-reaction treatment. .
(4)製法 D (4) Manufacturing method D
[化 6] [Chemical 6]
Figure imgf000005_0002
Figure imgf000005_0002
6  6
上記製法 D (例えば、非特許文献 5参照。)は、トータル収率が 15%しかない (ィ匕合 物 6,の場合)。 The above production method D (for example, see Non-Patent Document 5) has a total yield of only 15% (in the case of Compound 6).
(4)製法 E (4) Manufacturing method E
[化 7] [Chemical 7]
Figure imgf000006_0001
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0002
上記製法 E (例えば、非特許文献 6〜7参照。)は、試薬にクロムやルテニウム等の 金属を用いるため、別途廃棄処理が必要となり、また、生成物にこれら金属が含有す る可能性がある。 Since the above production method E (for example, see Non-Patent Documents 6 to 7) uses a metal such as chromium or ruthenium as a reagent, a separate disposal process is required, and the product may contain these metals. is there.
上述の通り、 NS 220の重要な製造原料である化合物 6の製造方法にっ 、ても、 工業スケールでは満足しうるものではな 、。  As mentioned above, the production method of compound 6, which is an important raw material for NS 220, is not satisfactory on an industrial scale.
[0009] 特許文献 1:国際公開第 01Z90087号パンフレット [0009] Patent Document 1: International Publication No. 01Z90087 Pamphlet
非特許文献 l :J.Chem. Soc, 1948, 310-315  Non-patent literature l: J. Chem. Soc, 1948, 310-315
非特許文献 2 : Tetrahedron Lett., 2000, 41, 8969-8972  Non-Patent Document 2: Tetrahedron Lett., 2000, 41, 8969-8972
非特許文献 3 : J.Am. Chem. Soc, 1991, 113, 2247-2253  Non-Patent Document 3: J. Am. Chem. Soc, 1991, 113, 2247-2253
非特許文献 4 : Chem. Lett., 1989, 449-452, 515-518,569-572  Non-Patent Document 4: Chem. Lett., 1989, 449-452, 515-518, 569-572
非特許文献 5 : Chem. Pharm. Bull, 1979, 27, 1181-1185  Non-Patent Document 5: Chem. Pharm. Bull, 1979, 27, 1181-1185
非特許文献 6 : TetrahedronLett" 1985, 26, 3433-3436  Non-Patent Document 6: TetrahedronLett "1985, 26, 3433-3436
非特許文献 7 : Syn丄 ett., 1999, 10, 1642-1644  Non-Patent Document 7: Syn 丄 ett., 1999, 10, 1642-1644
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明の主目的は、工業スケールでの大量合成に適した、 NS— 220の新規な製 造方法を提供することにある。 課題を解決するための手段 [0010] The main object of the present invention is to provide a novel method for producing NS-220 suitable for mass synthesis on an industrial scale. Means for solving the problem
本発明者らは、鋭意研究を重ねた結果、 NS— 220の製造中間体であるメチル シ スー5—(4 クロロブチル)ー2—メチルー 1, 3 ジォキサンー2 カルボキシレート (化合物 4)、メチル 5— (4 ョードブチル)—2—メチル—1, 3 ジォキサン— 2— カルボキシレート(化合物 5)及びメチル シス 2—メチルー 5 - {5-[ (4 メチルベ ンゾィル)ァミノ] 6 ォキソヘプチル } 1 , 3 ジォキサン 2 カルボキシレート( 化合物 7)を高純度に製造できる工業的製造方法、及び、 NS— 220の製造原料であ る 4ーメチルー N—(2 ォキソプロピル)ベンズアミド (化合物 6)の工業的製造方法 を見出し、本発明を完成した。  As a result of extensive research, the present inventors have found that methyl cis-5- (4 chlorobutyl) -2-methyl-1,3 dioxane-2 carboxylate (compound 4), methyl 5- (4 tert-butyl) -2-methyl-1,3-dioxane-2-carboxylate (compound 5) and methyl cis 2-methyl-5- {5-[(4 methylbenzoyl) amino] 6 -xoheptyl} 1,3 dioxane 2 carboxy An industrial production method capable of producing a high rate (compound 7) and an industrial production method of 4-methyl-N- (2oxopropyl) benzamide (compound 6), which is a raw material for producing NS-220 Was completed.
本発明としては、例えば以下の方法を挙げることができる。  Examples of the present invention include the following methods.
(1)メチル 5—(4ークロロブチル)ー2—メチルー1, 3 ジォキサン 2 カルボキ シレートのシス トランス混合物 (化合物 4' )を、塩基存在下で加水分解することを特 徴とする、メチル シス一 5— (4—クロロブチル) 2—メチル 1, 3 ジォキサン一 2 カルボキシレート (化合物 4)の製造方法、  (1) Methyl 5- (4-chlorobutyl) -2-methyl-1,3-dioxane 2 Carboxylate cis-trans mixture (compound 4 ') is characterized by hydrolysis in the presence of a base. — (4-chlorobutyl) 2-methyl 1,3 dioxane 1-2 carboxylate (compound 4) production method,
(2)メチル 5— (4 ョードブチル)—2—メチル—1, 3 ジォキサン— 2—カルボキ シレートのシス トランス混合物 (ィ匕合物 5' )を、塩基存在下で加水分解することを特 徴とする、メチル シスー5—(4ーョードブチル)ー2—メチルー1, 3 ジォキサン 2 カルボキシレート (化合物 5)の製造方法、  (2) It is characterized by hydrolyzing a cis-trans mixture (methyl compound 5 ') of methyl 5— (4 tert-butyl) -2-methyl-1,3-dioxane-2-carboxylate in the presence of a base. A process for producing methyl cis-5- (4-iodobutyl) -2-methyl-1,3 dioxane 2 carboxylate (compound 5),
(3)メチル 2—メチルー 5 - {5-[ (4 メチルベンゾィル)ァミノ] 6 ォキソへプチ ル} 1 , 3 ジォキサン 2 カルボキシレートのシス トランス混合物(化合物 7, ) を塩基存在下で加水分解することを特徴とする、メチル シスー2—メチルー 5— — [ (4 メチルベンゾィル)ァミノ] 6 ォキソヘプチル } 1 , 3 ジォキサン一 2 - カルボキシレート (化合物 7)の製造方法、及び  (3) Hydrolysis of a cis-trans mixture (compound 7,) of methyl 2-methyl-5- {5-[(4 methylbenzoyl) amino] 6 oxoheptyl} 1,3 dioxane 2 carboxylate in the presence of a base Methyl cis-2-methyl-5- — [(4 methylbenzoyl) amino] 6 oxoheptyl} 1,3 dioxane 1-carboxylate (compound 7), and
(4) 4ーメチルー N— (2 ヒドロキシプロピル)ベンズアミド(ィ匕合物 20)を 2, 2, 6, 6 —テトラメチル— 1—ピベリジ-ルォキシラジカル及び次亜塩素酸ナトリウムを用いて 酸ィ匕することを特徴とする、 4—メチル N— (2—ォキソプロピル)ベンズアミド (化合 物 6)の製造方法。  (4) Acidify 4-methyl-N— (2 hydroxypropyl) benzamide (compound 20) with 2, 2, 6, 6-tetramethyl-1-piberidi-loxy radical and sodium hypochlorite. A process for producing 4-methyl N- (2-oxopropyl) benzamide (compound 6), characterized in that
発明を実施するための最良の形態 L化合物 4の 1¾告方法 BEST MODE FOR CARRYING OUT THE INVENTION 1¾ Method for L Compound 4
NS— 220の重要な製造中間体である化合物 4は、以下の方法で製造することがで きる。  Compound 4 which is an important production intermediate of NS-220 can be produced by the following method.
[化 8] [Chemical 8]
Figure imgf000008_0001
Figure imgf000008_0001
後述の試験例に示す通り、化合物 4'は、塩基存在下で加水分解することによりトラ ンス体が優先的に加水分解されるため (選択的加水分解)、用いる塩基の量を調節 することにより加水分解率を制御することができ、シス Zトランス比が 9Zl〜50Zlで ある化合物 4を容易に製造することができる。 As shown in the test examples described later, compound 4 ′ is hydrolyzed in the presence of a base, so that the trans form is preferentially hydrolyzed (selective hydrolysis). Therefore, by adjusting the amount of the base used, The hydrolysis rate can be controlled, and the compound 4 having a cis Z-trans ratio of 9 Zl to 50 Zl can be easily produced.
また、本選択的加水分解により生成するトランス体の割合が多い 5—(4 クロロブ チル)ー2—メチルー 1, 3 ジォキサンー2—力ルボン酸(ィ匕合物 21)は、ケタール交 換することにより、化合物 4'に再生することができる。従って、再生した化合物 4'を同 様な選択的加水分解することによりィ匕合物 4を再度得ることができる。  In addition, 5- (4 chlorobutyl) -2-methyl-1,3 dioxane-2-strong rubonic acid (compound 21), which has a high proportion of trans form produced by this selective hydrolysis, must undergo ketal exchange. To regenerate compound 4 ′. Therefore, the compound 4 can be obtained again by the similar selective hydrolysis of the regenerated compound 4 ′.
従来は、カラムクロマトグラフィーにより得られたシス体のみを利用し、不要なトランス 体は廃棄されていたが、選択的加水分解による化合物 4の製造方法は、不要なトラン ス体を再利用することができ、効率よく NS— 220を合成することができる。  Conventionally, only the cis isomer obtained by column chromatography was used and unnecessary trans isomers were discarded. However, in the method for producing Compound 4 by selective hydrolysis, unnecessary trans isomers must be reused. NS-220 can be synthesized efficiently.
本選択的加水分解反応に用いうる溶媒としては、基質である化合物 4'が溶解する ものであれば特に問わないが、ァセトニトリル、 Ν, Ν ジメチルホルムアミド、トルエン 、テトラヒドロフラン、 Ν-メチル -2-ピロリドン、 1, 3 ジメチル一 2—イミダゾリジノン、ァ セトン、メタノールが適当であり、ァセトニトリル、 Ν, Ν ジメチルホルムアミド、テトラヒ ドロフランが好ましい。  The solvent that can be used for this selective hydrolysis reaction is not particularly limited as long as it can dissolve the substrate compound 4 ′, but acetonitrile, Ν, Ν dimethylformamide, toluene, tetrahydrofuran, Ν-methyl-2-pyrrolidone. 1,3 dimethyl-2-imidazolidinone, acetone, and methanol are suitable, and acetonitrile, Ν, dimethylformamide, and tetrahydrofuran are preferred.
本選択的加水分解反応に用いる溶媒の量は、基質である化合物 4'を溶解する量 であれば特に問わないが、基質である化合物 4'に対して 0. 5〜: L0倍量 (容量 (mL) Z重量 (g) )が適当であり、 1〜5倍量がより好ましい。 The amount of the solvent used in this selective hydrolysis reaction is not particularly limited as long as it dissolves compound 4 ′ as a substrate, but 0.5 to L0 amount (volume) with respect to compound 4 ′ as a substrate. (mL) Z weight (g)) is suitable, and 1 to 5 times the amount is more preferable.
本選択的加水分解反応に用いうる塩基としては、通常のエステルの加水分解反応 に用いる塩基であれば特に問わないが、水酸化ナトリウム、水酸ィ匕カリウム、水酸化リ チウム、水酸ィ匕セシウムが適当であり、水酸化ナトリウム、水酸ィ匕カリウムが好ましい。 本加水分解反応に用 、る塩基の量を制御することにより、基質である化合物 4 'の 加水分解率を制御することができる。加水分解率が低いと、未反応のトランス体が多 く残り、加水分解率が高いと化合物 4の収率が低下する。用いる塩基の量は、用いる 基質である化合物 4'のシス Zトランス比や、用いる溶媒の種類、量によっても異なる 力 基質である化合物 4'に対し、 0. 1〜0. 6倍モル量が適当であり、 0. 2〜0. 4倍 モノレ量カ S女子ましく、 0. 25〜0. 35 モノレ量カ り女子まし!/ヽ。  The base that can be used for this selective hydrolysis reaction is not particularly limited as long as it is a base used for a usual ester hydrolysis reaction, but sodium hydroxide, potassium hydroxide, lithium hydroxide, hydroxide salt, and the like. Cesium is suitable, and sodium hydroxide and potassium hydroxide are preferred. By controlling the amount of base used in this hydrolysis reaction, the hydrolysis rate of compound 4 ′ as a substrate can be controlled. When the hydrolysis rate is low, many unreacted trans isomers remain, and when the hydrolysis rate is high, the yield of compound 4 decreases. The amount of base used varies depending on the cis-Z trans ratio of compound 4 ′, the substrate used, and the type and amount of solvent used. Appropriate, 0.2 to 0.4 times the amount of mono-layered S girls, 0.25 to 0.35 mono-layered amounts of girls! / ヽ.
本加水分解反応の反応温度は、用いる溶媒の沸点以下の温度であれば特に問わ ないが、一般に 0〜60°Cの範囲が好ましぐ 10〜40°Cの範囲がより好ましぐ 20〜3 0°Cの範囲がより好ましい。  The reaction temperature of this hydrolysis reaction is not particularly limited as long as it is not higher than the boiling point of the solvent to be used. In general, the range of 0 to 60 ° C is preferable, and the range of 10 to 40 ° C is more preferable. A range of 30 ° C is more preferred.
本加水分解反応の反応時間は、反応溶液中における基質の濃度などにもよるが、 30分〜 10時間の範囲が好ましぐ 1〜5時間の範囲がより好ましい。  The reaction time of this hydrolysis reaction depends on the concentration of the substrate in the reaction solution, but the range of 30 minutes to 10 hours is preferred, and the range of 1 to 5 hours is more preferred.
本ケタール交換反応は一般的な反応であり、公知の方法により行うことができるが、 例えば、三フッ化ホウ素ジェチルエーテルコンプレックス存在下、ピルビン酸メチルを 添カロすること〖こより行うことができる。  This ketal exchange reaction is a general reaction and can be carried out by a known method. For example, it can be carried out by adding methyl pyruvate in the presence of boron trifluoride jetyl ether complex.
本ケタール交換反応に用いうる溶媒としては、基質である化合物 21が溶解するもの であれば特に問わないが、トルエン、ァセトニトリルが適当であり、トルエンが好ましい 本ケタール交換反応に用 、る溶媒の量は、基質である化合物 21を溶解する量であ れば特に問わな 、が、基質である化合物 21に対して 1〜: L0倍量 (容量 (mL) Z重量 (g) )が適当であり、 3〜5倍量が好ましい。  The solvent that can be used in this ketal exchange reaction is not particularly limited as long as it can dissolve compound 21 as a substrate, but toluene and acetonitrile are suitable, and toluene is preferable. Amount of solvent used in this ketal exchange reaction Is not particularly limited as long as it is an amount capable of dissolving compound 21 as a substrate, but 1 to L0 volume (volume (mL) Z weight (g)) is appropriate for compound 21 as substrate. 3 to 5 times the amount is preferable.
本ケタール交換反応の反応温度は、用いる溶媒の沸点以下の温度であれば特に 問わないが、一般に 0〜60°Cの範囲が好ましぐ 20〜40°Cの範囲がより好ましぐ 2 5〜35°Cの範囲がより好ましい。  The reaction temperature of this ketal exchange reaction is not particularly limited as long as it is lower than the boiling point of the solvent to be used, but in general, the range of 0 to 60 ° C is preferred, and the range of 20 to 40 ° C is more preferred 2 5 A range of ˜35 ° C. is more preferable.
本ケタール交換反応の反応時間は、反応溶液中における基質の濃度などにもよる 1S 30分〜 10時間の範囲が好ましぐ 1〜5時間の範囲がより好ましい。 The reaction time of this ketal exchange reaction depends on the concentration of the substrate in the reaction solution. The range of 1S 30 minutes to 10 hours is preferred. The range of 1 to 5 hours is more preferred.
このように、化合物 4は、カラムクロマトグラフィーによらず、工業スケールでの大量 合成に適した加水分解により製造することができる。更に、不要なトランス体を再利用 できることから、製造効率の向上も図ることができる。  Thus, compound 4 can be produced by hydrolysis suitable for mass synthesis on an industrial scale, not by column chromatography. Furthermore, since unnecessary transformer bodies can be reused, the production efficiency can be improved.
II.化合物 5の製造方法  II. Method for producing compound 5
NS 220の重要な製造中間体である化合物 5は、上記化合物 4の製造方法と同 様に、以下の方法で製造することができる。  Compound 5 which is an important production intermediate of NS 220 can be produced by the following method in the same manner as the production method of compound 4 described above.
[化 9]  [Chemical 9]
Figure imgf000010_0001
Figure imgf000010_0001
後述の試験例に示す通り、化合物 5'は、塩基存在下で加水分解することによりトラ ンス体が優先的に加水分解されるため (選択的加水分解)、用いる塩基の量を調節 することにより加水分解率を制御することができ、シス Zトランス比が 9Zl〜50Zlで ある化合物 4を容易に製造することができる。 As shown in the test examples described below, compound 5 ′ is hydrolyzed in the presence of a base, whereby the trans form is preferentially hydrolyzed (selective hydrolysis). Therefore, by adjusting the amount of the base used, The hydrolysis rate can be controlled, and the compound 4 having a cis Z-trans ratio of 9 Zl to 50 Zl can be easily produced.
また、本選択的加水分解により生成するトランス体の割合が多い 5—(4ーョードブ チル)ー2—メチルー 1, 3 ジォキサンー2—力ルボン酸(ィ匕合物 22)は、ケタール交 換することにより、化合物 5'に再生することができる。従って、再生した化合物 5'を同 様な選択的加水分解することによりィ匕合物 5を再度得ることができる。  In addition, the trans-form produced by this selective hydrolysis is high in the proportion of 5- (4-iodobutyl) -2-methyl-1,3 dioxane-2-strong rubonic acid (Compound 22) should be ketal-exchanged. To regenerate compound 5 ′. Therefore, the compound 5 can be obtained again by the similar selective hydrolysis of the regenerated compound 5 ′.
従来は、カラムクロマトグラフィーにより得られたシス体のみを利用し、不要なトランス 体は廃棄されていたが、選択的加水分解による化合物 5の製造方法は、不要なトラン ス体を再利用することができ、効率よく NS— 220を合成することができる。  Previously, only the cis form obtained by column chromatography was used, and the unnecessary trans form was discarded. However, the process for producing Compound 5 by selective hydrolysis involves reusing the unnecessary trans form. NS-220 can be synthesized efficiently.
本選択的加水分解反応に用いうる溶媒、溶媒の量、塩基、塩基の量、反応温度及 び反応時間、並びに、本ケタール交換反応に用いうる溶媒、溶媒の量、反応温度及 び反応時間は、上記化合物 4の製造方法と同様である。  The solvent, amount of solvent, base, amount of base, reaction temperature and reaction time that can be used for this selective hydrolysis reaction, and the amount of solvent, solvent, reaction temperature and reaction time that can be used for this ketal exchange reaction are as follows. This is the same as the production method of Compound 4.
このように、化合物 5は、カラムクロマトグラフィーによらず、工業スケールでの大量 合成に適した加水分解により製造することができる。更に、不要なトランス体を再利用 できることから、製造効率の向上も図ることができる。 In this way, compound 5 can be produced in large quantities on an industrial scale regardless of column chromatography. It can be produced by hydrolysis suitable for synthesis. Furthermore, since unnecessary transformer bodies can be reused, the production efficiency can be improved.
III.化合物 7の製造方法  III. Method for producing Compound 7
NS— 220の重要な製造中間体である化合物 7についても、化合物 4と同様の方法 で製造することができる。  Compound 7, which is an important production intermediate of NS-220, can also be produced in the same manner as compound 4.
[化 10]
Figure imgf000011_0001
[Chemical 10]
Figure imgf000011_0001
5' 6 7  5 '6 7
化合物 5'と化合物 6の縮合反応は塩基存在下で行うことができるが、塩基として、 水酸化ナトリウム、水酸ィ匕カリウムなどのアルカリ金属の水酸ィ匕物を用いる場合は副 生成物として水が生成するため、過剰の塩基を添加して本反応を行うことにより、生 成した化合物 7'の加水分解反応を同時に行うことができる。 The condensation reaction of compound 5 'and compound 6 can be carried out in the presence of a base, but as a by-product when an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used as the base. Since water is generated, hydrolysis reaction of the produced compound 7 ′ can be performed simultaneously by adding an excess base and carrying out this reaction.
後述の試験例に示す通り、化合物 7'についても、塩基存在下で加水分解すること によりトランス体が優先的に加水分解されるため(選択的加水分解)、用いる塩基の 量を調節することにより加水分解率を制御することができ、シス Zトランス比が 9Zl〜 50Z1である化合物 7を製造することができる。  As shown in the test examples described below, compound 7 ′ is also hydrolyzed in the presence of a base to preferentially hydrolyze the trans isomer (selective hydrolysis). Therefore, by adjusting the amount of base used, The hydrolysis rate can be controlled, and compound 7 having a cis Z-trans ratio of 9Zl to 50Z1 can be produced.
本反応に用いうる溶媒としては、基質である化合物 5'及び化合物 6が溶解するもの であれば特に問わないが、 N, N—ジメチルホルムアミド、 N-メチル -2-ピロリドン、 1, 3—ジメチルー 2—イミダゾリジノンが適当であり、 N, N—ジメチルホルムアミドが好ま しい。  The solvent that can be used in this reaction is not particularly limited as long as it can dissolve the compounds 5 ′ and 6 as substrates, but N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl- 2-Imidazolidinone is suitable, and N, N-dimethylformamide is preferred.
本反応に用いる溶媒の量は、基質である化合物 5'及びィ匕合物 6を溶解する量であ れば特に問わないが、基質である化合物 5'に対して 0. 5〜: L0倍量 (容量 (mL)Z重 量 (g) )が適当であり、 1〜5倍量が好ましい。  The amount of the solvent used in this reaction is not particularly limited as long as it dissolves the compound 5 ′ and the compound 6 as the substrate, but is 0.5 to L0 times the compound 5 ′ as the substrate. The amount (capacity (mL) Z weight (g)) is appropriate, and 1 to 5 times the amount is preferable.
本反応に用いうる塩基としては、通常の縮合反応及びエステルの加水分解反応に 用いる塩基であれば特に問わないが、水酸化ナトリウム、水酸ィ匕カリウム、水酸化リチ ゥム、水酸ィ匕セシウム、水素化ナトリウムが適当であり、水酸化ナトリウム、水酸化カリ ゥムが好ましい。 The base that can be used in this reaction is not particularly limited as long as it is a base used for ordinary condensation reactions and ester hydrolysis reactions, but sodium hydroxide, potassium hydroxide, lithium hydroxide, hydroxide salt, and the like. Cesium and sodium hydride are suitable, sodium hydroxide, potassium hydroxide Um is preferred.
本反応に用いる塩基の量を制御することにより、化合物 7'の加水分解率を制御す ることができる。また、化合物 5'と化合物 6の縮合反応に等モル量の塩基が必要であ る。従って、本反応に用いる塩基の量は、用いる基質である化合物 7'のシス Zトラン ス比や、用いる溶媒の種類、量によっても異なるが、基質である化合物 5'に対し、 1. 1〜1. 6倍モル量が適当であり、 1. 1〜1. 4倍モル量が好ましい。  By controlling the amount of base used in this reaction, the hydrolysis rate of compound 7 ′ can be controlled. In addition, an equimolar amount of base is required for the condensation reaction of Compound 5 ′ and Compound 6. Therefore, the amount of base used in this reaction varies depending on the cis-Z trans ratio of compound 7 ′, which is the substrate used, and the type and amount of solvent used. 1. A 6-fold molar amount is appropriate, and 1.1 to 1.4-fold molar amount is preferred.
本反応の反応温度は、用いる溶媒の沸点以下の温度であれば特に問わないが、 一般に 0〜60°Cの範囲が適当であり、 10〜30°Cの範囲が好ましい。  The reaction temperature of this reaction is not particularly limited as long as it is not higher than the boiling point of the solvent to be used. In general, the range of 0 to 60 ° C is suitable, and the range of 10 to 30 ° C is preferable.
本反応の反応時間は、反応溶液中における基質の濃度などにもよるが、 30分〜 1 0時間の範囲が適当であり、 1〜5時間の範囲が好ましい。  Although the reaction time of this reaction depends on the concentration of the substrate in the reaction solution, the range of 30 minutes to 10 hours is appropriate, and the range of 1 to 5 hours is preferable.
このように、化合物 7についても、工業スケールでの大量合成に適した加水分解に より製造することができる。また、本反応は、化合物 5'と化合物 6との縮合反応と同時 に行うことができるため、 NS— 220の製造工程を 1工程削減することができ、製造効 率の向上も図ることができる。  Thus, compound 7 can also be produced by hydrolysis suitable for mass synthesis on an industrial scale. In addition, since this reaction can be carried out simultaneously with the condensation reaction of compound 5 ′ and compound 6, the production process of NS-220 can be reduced by one step, and the production efficiency can be improved. .
IV.化合物 6の製诰方法  IV. Method of making compound 6
NS— 220の重要な製造原料である化合物 6は、以下の方法で製造することができ る。  Compound 6, which is an important production raw material for NS-220, can be produced by the following method.
[化 11]  [Chemical 11]
Figure imgf000012_0001
Figure imgf000012_0001
工程 2 6 2, 2, 6, 6—テトラメチルー 1ーピベリジ-ルォキシラジカル(以下、 TEMPOという )と次亜塩素酸ナトリウムを用いることにより 4—メチル N— (2—ヒドロキシプロピル) ベンズアミド (化合物 20)を酸ィ匕することにより製造することができる。 Process 2 6 Acidify 4-methyl N- (2-hydroxypropyl) benzamide (compound 20) by using 2, 2, 6, 6-tetramethyl-1-piveridi-ruoxy radical (hereinafter referred to as TEMPO) and sodium hypochlorite Can be manufactured.
後述する試験例に示す通り、本製造方法は、以下、 TEMPOと次亜塩素酸ナトリウ ムを用いるため、従来の製法で用いられていた金属化合物を使用しない。また、本製 造方法は、高収率であり、用いる原料が安価で入手可能であるため製造コストが低 減でき、操作も 2工程と短ぐ各反応の後処理も非常に簡単である。 工程 1  As shown in the test examples described later, since this production method uses TEMPO and sodium hypochlorite, the metal compound used in the conventional production method is not used. In addition, this production method has a high yield, the raw materials used are inexpensive and available, and thus the production cost can be reduced, and the post-treatment of each reaction, which requires only two steps, is very simple. Process 1
工程 1は、酸クロリドとァミンとのアミド形成反応であり、常法により製造することがで きる。  Step 1 is an amide formation reaction between an acid chloride and an amine and can be produced by a conventional method.
本アミド形成反応に用いうる溶媒としては、基質である化合物 18が溶解するもので あれば特に問わないが、トルエン、ァセトニトリル、 N, N ジメチルホルムアミド、 N-メ チル- 2-ピロリドン、 1, 3 ジメチルー 2 イミダゾリジノンが適当であり、トルエン、ァ セトニトリルが好ましい。  The solvent that can be used in the amide formation reaction is not particularly limited as long as it can dissolve the compound 18 as a substrate, but toluene, acetonitrile, N, N dimethylformamide, N-methyl-2-pyrrolidone, 1, 3 Dimethyl-2-imidazolidinone is suitable, and toluene and acetonitrile are preferred.
本アミド形成反応に用いる溶媒の量は、基質である化合物 18が溶解する量であれ ば特に問わな 、が、基質である化合物 18に対して 1〜 10倍量 (容量 (mL) Z重量 (g ) )が適当であり、 3〜6倍量が好ましい。  The amount of the solvent used in this amide formation reaction is not particularly limited as long as compound 18 as a substrate is dissolved, but it is 1 to 10 times the amount of compound 18 as a substrate (volume (mL) Z weight ( g)) is suitable, and 3 to 6 times the amount is preferred.
本アミド形成反応の反応時間は、反応溶液中における基質の濃度などにもよるが、 30分〜 8時間の範囲が適当であり、 1〜4時間の範囲が好ましい。  The reaction time of the present amide formation reaction depends on the concentration of the substrate in the reaction solution, but is suitably in the range of 30 minutes to 8 hours, preferably in the range of 1 to 4 hours.
本アミド形成反応の反応温度は、用いる溶媒の沸点以下の温度であれば特に問わ ないが、一般に 20〜60°Cの範囲が適当であり、 0〜40°Cの範囲が好ましい。 本アミド形成反応に用いる 19の量は、用いる溶媒の種類や量、反応温度、反応時 間により異なるが、 18に対して 1〜10倍モル量が適当であり、 1. 5〜5倍モル量が好 ましい。 工程 2  The reaction temperature of the present amide formation reaction is not particularly limited as long as it is not higher than the boiling point of the solvent to be used. In general, the range of 20 to 60 ° C is appropriate, and the range of 0 to 40 ° C is preferable. The amount of 19 used in this amide formation reaction varies depending on the type and amount of the solvent used, the reaction temperature, and the reaction time, but a 1 to 10-fold molar amount relative to 18 is appropriate. The amount is good. Process 2
工程 2の酸ィ匕反応に用いうる溶媒としては、基質である化合物 20が部分的にでも 溶解するものであれば特に問わないが、ァセトニトリル、酢酸ェチル、酢酸イソプロピ ル、トルエンが適当であり、ァセトニトリル、酢酸ェチルが好ましい。 As a solvent that can be used in the acid-acid reaction in step 2, the compound 20 as a substrate may be partially used. Although it does not ask | require especially if it melt | dissolves, Acetonitrile, an ethyl acetate, isopropyl acetate, and toluene are suitable, Acetonitrile and an ethyl acetate are preferable.
本酸化反応に用いる溶媒の量は、基質である化合物 20を部分的にでも溶解する 量であれば特に問わないが、基質である化合物 20に対して 1〜40倍量 (容量 (mL) Z重量 (g) )が適当であり、 3〜20倍量が好ま 、。  The amount of solvent used in this oxidation reaction is not particularly limited as long as it partially dissolves the compound 20 as a substrate, but it is 1 to 40 times the amount of compound 20 as a substrate (volume (mL) Z Weight (g)) is suitable, 3 to 20 times the amount is preferred.
本酸化反応に用いる TEMPOの量は、用いる溶媒の種類や量、反応温度、反応時 間により異なるが、基質に対して 0. 005〜2倍モル量が好ましぐ 0. 1〜1倍モル量 力 り好ましい。  The amount of TEMPO used in this oxidation reaction varies depending on the type and amount of the solvent used, the reaction temperature, and the reaction time, but 0.001 to 2 times the molar amount is preferred with respect to the substrate. It is preferable to mass.
工程 2の酸化反応の反応温度は、一般に— 20〜30°Cの範囲が適当であり、 - 10 〜20°Cの範囲が好ましぐ 0〜10°Cの範囲がより好ましい。  In general, the reaction temperature of the oxidation reaction in step 2 is suitably in the range of −20 to 30 ° C., preferably in the range of −10 to 20 ° C., more preferably in the range of 0 to 10 ° C.
工程 2の酸化反応の反応時間は、反応溶液中における基質の濃度などにもよるが 、 30分〜 10時間の範囲が好ましぐ 1〜5時間の範囲がより好ましい。  The reaction time of the oxidation reaction in step 2 is preferably in the range of 30 minutes to 10 hours, more preferably in the range of 1 to 5 hours, although it depends on the concentration of the substrate in the reaction solution.
実施例 Example
以下に、本発明にかかる試験例及び実施例を掲げて本発明を更に詳しく説明する 試験例 1 メチル シス 5— (4 クロロブチル) 2 メチル 1. 3 ジォキサン 2 カルボキシレート (化合物 4)の製诰方法の枪討  Hereinafter, the present invention will be described in more detail with reference to test examples and examples according to the present invention. Test Example 1 Methyl cis 5- (4 chlorobutyl) 2 methyl 1.3 dioxane 2 carboxylate Debate
シス体とトランス体の加水分解速度の違 、を利用してシス体である化合物 4を効率 よく合成することができるかどうかについて検討した。  We investigated whether it is possible to efficiently synthesize Compound 4 which is a cis form by utilizing the difference in hydrolysis rate between the cis form and the trans form.
具体的には、特許文献 1に記載の方法により合成した、シス Zトランス比が 3. 4/1 の化合物 4'を、等倍量 (容量 (mL)Z重量 (g) )の溶媒に溶解し、各種塩基を化合物 4'に対して所定モル量を加え、 20°Cで 2〜15時間加水分解反応を行った。その後、 反応後の加水分解率及び加水分解されて ヽな ヽィ匕合物 4'のシス Zトランス比をガス クロマトグラフィー(GC)により算出した。その結果を表 1に示す。  Specifically, compound 4 ′ synthesized by the method described in Patent Document 1 and having a cis / Z trans ratio of 3.4 / 1 is dissolved in an equal volume (volume (mL), Z weight (g)) of solvent. Then, various bases were added in a predetermined molar amount with respect to compound 4 ′, and a hydrolysis reaction was performed at 20 ° C. for 2 to 15 hours. Thereafter, the hydrolysis rate after the reaction and the cis-Z trans ratio of the hydrolyzed and complex compound 4 ′ were calculated by gas chromatography (GC). The results are shown in Table 1.
GCの分析条件  GC analysis conditions
装置 : HP 6890 Series  Equipment: HP 6890 Series
カラム : CBP1— S25— 050 (島津株式会社)  Column: CBP1—S25—050 (Shimadzu Corporation)
カラムオーブン温度: 170°C 注入口温度 : 210°C Column oven temperature: 170 ° C Inlet temperature: 210 ° C
検出器温度 : 250°C  Detector temperature: 250 ° C
キヤリャガス :アルゴンガス  Carrier gas: Argon gas
キヤリャガス流:! : 2. OmLZ分  Carrier gas flow:!: 2. OmLZ min
検出器 : FID検出器  Detector: FID detector
[表 1] 塩基の量 加水分解率 [Table 1] Amount of base Hydrolysis rate
未反応化合物 4の 塩基の種類 C化合物 4 ' に 溶媒の種類  Unreacted compound 4 base type C compound 4 'to solvent type
シス Z トランス比 対するモル量)  (Molar amount with respect to cis Z trans ratio)
N a O H 0 . 3 0 D M F 2 8 . 1 1 8 2 Z 1 N a O H 0.30 D M F 2 8. 1 1 8 2 Z 1
N a O H 0 . 3 0 D M I 2 7 . 2 1 7 9ノ 1N a O H 0.30 D M I 2 7. 2 1 7 9 1
N a O H 0 . 3 0 N P 2 7 . 2 1 8 2 / 1N a O H 0.30 N P 2 7. 2 1 8 2/1
N a O H 0 . 3 0 アセ トン 2 8 . 6 2 1 8 / 1N a O H 0 .3 0 Aceton 2 8. 6 2 1 8/1
N a O H 0 . 3 0 T H F 3 1 . 1 2 9 4 / 1N a O H 0. 3 0 T H F 3 1. 1 2 9 4/1
N a O H 0 . 3 0 M e O H 2 9 . 1 2 2 7 Z 1N a O H 0.30 MeO H 2 9. 1 2 2 7 Z 1
N a O H 0 . 3 5 M e C N 3 2 . 5 4 9 7 / 1N a O H 0 .3 5 MeC N 3 2 .5 4 9 7/1
N a O H 0 . 3 0 M e C N 3 0 . 6 2 1 8 Z 1 a O H 0 . 3 0 卜ルェン 3 0 . 6 1 5 9 Z 1N a O H 0 .3 0 Me C N 3 0 .6 2 1 8 Z 1 a O H 0 .3 0 卜 Luen 3 0 .6 1 5 9 Z 1
K O H 0 . 3 5 D M F 3 3 . 6 2 9 0 1K O H 0. 3 5 D M F 3 3. 6 2 9 0 1
K O H 0 . 4 0 M e C N 4 0 . 8 8 6 3 / 1K O H 0. 4 0 Me C N 4 0. 8 8 6 3/1
K O H 0 . 3 5 e C N 3 3 . 2 3 Z 4 / 1K O H 0. 3 5 e C N 3 3. 2 3 Z 4/1
K O H 0 . 2 0 M e C N 2 1 . 8 1 0 0 Z 1K O H 0. 2 0 Me C N 2 1. 8 1 0 0 Z 1
K O H 0 , 4 0 卜ルェン 3 9 . 3 4 4 2 Z 1K O H 0, 40 卜 Luen 3 9. 3 4 4 2 Z 1
L i O H 0 . 3 5 M e C N 3 3 . 4 2 3 5 / 1 し i O H 0 . 3 0 卜ルェン 3 2 . 6 1 1 1 / 1L i O H 0 .3 5 MeC N 3 3. 4 2 3 5/1 and i O H 0 .3 0 卜 3 2. 6 1 1 1/1
C s O H 0 . 2 0 M e C N 2 2 6 9 . 0 / 1 表 1に示す通り、塩基の量を増減することにより、化合物 4'の加水分解率を制御す ることが可能であることを見出した。また、トランス体の加水分解速度は、シス体のカロ 水分解速度に比べ非常に早ぐ加水分解率が 21. 8%であるときに、未反応の化合 物 4'のシス Zトランス比は 10Zl、加水分解率が 40. 8%であるときに、未反応の化 合物 4,のシス Ζトランス比は 86. 3Z1であった。 C s OH 0. 2 0 M e CN 2 2 6 9. 0/1 As shown in Table 1, by increasing or decreasing the amount of base, it is possible you to control the hydrolysis rate of the compound 4 ' I found. In addition, the hydrolysis rate of the trans isomer is very fast compared to the cis isomerization rate of caro water, and the cis-Z trans ratio of the unreacted compound 4 ′ is 10 Zl when the hydrolysis rate is 21.8%. When the hydrolysis rate was 40.8%, the cis-trans ratio of the unreacted compound 4 was 86.3Z1.
シス Ζトランス比が 9以上(シス体が 90%以上)であれば、その後の各反応における 精製工程でトランス体を除去することができる。従って、加水分解率を 20%以上に制 御すれば従来のカラムクロマトグラフィーを用レ、ることなぐ化合物 4を製造することが 可能である。  If the cis-to-trans ratio is 9 or more (90% or more of the cis-isomer), the trans-isomer can be removed in the subsequent purification step in each reaction. Therefore, if the hydrolysis rate is controlled to 20% or more, it is possible to produce compound 4 without using conventional column chromatography.
今回の検討は、シス Ζトランス比が 3. 4Z1の化合物 4'で行った力 上述の通り、 加水分解率を制御することにより、シス Ζトランス比に関係なく、本製造方法を用いる ことができる。 This study is based on the power of cis-to-trans ratio 3.4 with compound 4 '. As described above, this production method is used regardless of the cis-to-trans ratio by controlling the hydrolysis rate. be able to.
[0017] 試験例 2 メチル シス 5—(4ーョードブチル) 2 メチルー 1. 3 ジォキサン  [0017] Test Example 2 Methyl cis 5— (4-iodobutyl) 2 Methyl- 1.3 Dioxane
2 カルボキシレート (化合物 5)の製诰方法の枪討  2 Discussion on the production method of carboxylate (compound 5)
シス体とトランス体の加水分解速度の違いを利用してシス体である化合物 5を効率 よく合成することができるかどうかについて検討した。  We investigated whether it is possible to efficiently synthesize Compound 5 which is a cis form by utilizing the difference in hydrolysis rate between the cis form and the trans form.
具体的には、特許文献 1に記載の方法により合成した、シス Zトランス比が 3. 6/1 の化合物 5'を、等倍量 (容量 (mL)Z重量 (g) )のァセトニトリルに溶解し、水酸化ナ トリウムをィ匕合物 5'に対して 0. 4倍モル量を加え、 20°Cで 2時間加水分解反応を行 つた。その後、反応後の加水分解率及び加水分解されていない化合物 4'のシス Zト ランス比をガスクロマトグラフィー(GC)により算出した。 GCの測定条件は、試験例 1 と同様である。その結果、加水分解率が 39. 5%であるときに、未反応の化合物 4'の シス Zトランス比は 148. 9Z1であった。  Specifically, compound 5 ′ having a cis / Z trans ratio of 3.6 / 1 synthesized by the method described in Patent Document 1 is dissolved in an equal amount (volume (mL), Z weight (g)) of acetonitrile. Then, sodium hydroxide was added in a molar amount 0.4 times that of Compound 5 'and subjected to hydrolysis at 20 ° C for 2 hours. Thereafter, the hydrolysis rate after the reaction and the cis-Z trans ratio of the unhydrolyzed compound 4 ′ were calculated by gas chromatography (GC). The GC measurement conditions are the same as in Test Example 1. As a result, when the hydrolysis rate was 39.5%, the cis-Z trans ratio of the unreacted compound 4 ′ was 148.9Z1.
従って、化合物 5'を用いた化合物 5の製造方法は、試験例 1の化合物 4'を用いた 化合物 4の製造方法と同様、加水分解率を制御することにより、シス Zトランス比に関 係なぐ本製造方法を用いることができる。  Therefore, the production method of Compound 5 using Compound 5 ′ is related to the cis-Z trans ratio by controlling the hydrolysis rate in the same manner as the production method of Compound 4 using Compound 4 ′ of Test Example 1. This manufacturing method can be used.
[0018] 試験例 3 メチル 2 メチルー 5 一「(4 メチルベンゾィル)ァミノ 1 6—ォキ ソヘプチル 1 1. 3 ジォキサン 2 カルボキシレー卜 (化合物 7)の ¾告 法の檢 試験例 1と同様の方法によりィ匕合物 7について検討した。 Test Example 3 Methyl 2 Methyl-5 1 “(4 Methylbenzoyl) amino 1 6-oxoheptyl 1 1.3 Dioxane 2 Carboxylate (Compound 7) The compound 7 was examined.
具体的には、特許文献 1に記載の方法により合成した、シス Zトランス比が 3. 5/1 の化合物 7'を、 3倍量 (容量 (mL)Z重量 (g) )の溶媒に溶解し、各種塩基を化合物 4'に対して所定モル量をカ卩え、 10〜20°Cで 2時間加水分解反応を行った。その後、 反応後の加水分解率及び加水分解されていない化合物 7'のシス Zトランス比を HP LCにより算出した。その結果を表 2に示す。  Specifically, compound 7 ′ synthesized by the method described in Patent Document 1 and having a cis-Z trans ratio of 3.5 / 1 is dissolved in a three-fold amount (volume (mL) Z weight (g)) of solvent. Then, various bases were added in a predetermined molar amount with respect to the compound 4 ′ and subjected to hydrolysis reaction at 10 to 20 ° C. for 2 hours. Thereafter, the hydrolysis rate after the reaction and the cis-Z trans ratio of the unhydrolyzed compound 7 ′ were calculated by HP LC. The results are shown in Table 2.
HPLCの分析条件  HPLC analysis conditions
装置 : Shimadzu LC—10A  Equipment: Shimadzu LC—10A
カラム : COSMOSIL 5C- 18-AR 150 X 4. 6mm (ナカライテスタ株式会 社) カラム温度: 40°C Column: COSMOSIL 5C-18-AR 150 X 4.6 mm (Nakarai Testa Co., Ltd.) Column temperature: 40 ° C
移動層 :ァセトニトリル Z水 Zメタンスルホン酸 = 550Z450Z1  Moving layer: Acetonitrile Z water Z methanesulfonic acid = 550Z450Z1
流速 :1. OmLZ分  Flow rate: 1. OmLZ min
検出器 : UV検出器  Detector: UV detector
測定波長 :254nm  Measurement wavelength: 254nm
[表 2] [Table 2]
Figure imgf000017_0001
表 2に示す通り、化合物 7'の加水分解によっても、試験例 1の化合物 4'の結果と同 様、塩基の量を増減することにより、化合物 7'の加水分解率を制御することができ、 加水分解率を制御すれば従来のカラムクロマトグラフィーを用いることなぐ化合物 7 を製造することが可能である。
Figure imgf000017_0001
As shown in Table 2, the hydrolysis rate of compound 7 ′ can be controlled by increasing or decreasing the amount of base, as in the case of compound 4 ′ of Test Example 1, by hydrolysis of compound 7 ′. If the hydrolysis rate is controlled, it is possible to produce compound 7 without using conventional column chromatography.
試験例 4 4ーメチルー N—(2 ォキソプロピル)ベンズアミド (化合物 6)の製造方 法の枪討  Test Example 4 Review of production method of 4-methyl-N— (2oxopropyl) benzamide (Compound 6)
4 メチル N— (2 ヒドロキシプロピル)ベンズアミドに種々の酸化剤を適用しィ匕 合物 6の製造を検討した。  The production of Compound 6 was studied by applying various oxidizing agents to 4-methyl N- (2 hydroxypropyl) benzamide.
具体的には、金属化合物以外の種々の酸化剤を用いて 4ーメチルー N—(2 ヒド ロキシプロピル)ベンズアミドの酸ィ匕反応を行い、収率を HPLCにより算出した。その 結果を表 3に示す。  Specifically, 4-methyl-N- (2hydroxypropyl) benzamide was subjected to an acid-acid reaction using various oxidizing agents other than metal compounds, and the yield was calculated by HPLC. The results are shown in Table 3.
HPLCの分析条件  HPLC analysis conditions
装置 : Shimadzu LC—10A  Equipment: Shimadzu LC—10A
カラム : COSMOSIL 5C- 18-AR 150 X 4. 6mm (ナカライテスタ株式会 社)  Column: COSMOSIL 5C-18-AR 150 X 4.6 mm (Nakarai Testa Co., Ltd.)
カラム温度: 40°C  Column temperature: 40 ° C
移動層 :ァセトニトリル Z水 Zメタンスルホン酸 =400Z600Zl  Moving bed: Acetonitrile Z water Z methanesulfonic acid = 400Z600Zl
流速 :0. 6mLZ分 検出器 : uv検出器 Flow rate: 0.6mLZ min Detector: UV detector
測定波長 :254nm  Measurement wavelength: 254nm
[表 3] [Table 3]
Figure imgf000018_0001
表 3に示す通り、殆どの酸化剤の組み合わせでは、酸化反応が十分に進行しない 力 TEMPOと次亜塩素酸ナトリウムの組み合わせのみ力 他の酸化剤に比べ、特 段優れていることが分かった。 TEMPOは、公知の酸化剤ではある力 4ーメチルー N- (2—ヒドロキシプロピル)ベンズアミドの酸化反応において、 TEMPOと次亜塩 素酸ナトリウムの組み合わせが特段優れて 、ることは、従来技術からは全く想到し得 ないものであり、力かる酸化剤を見出したことにより、医薬として有用な NS-220の重 要な製造原料である化合物 7を高収率で容易に製造できることが可能となった。
Figure imgf000018_0001
As shown in Table 3, it was found that most of the oxidant combinations are superior in comparison with other oxidants, because only the combination of the power TEMPO and sodium hypochlorite, which does not allow the oxidation reaction to proceed sufficiently. TEMPO is a well-known oxidant and has a particularly superior combination of TEMPO and sodium hypochlorite in the oxidation of 4-methyl-N- (2-hydroxypropyl) benzamide. The discovery of a powerful oxidant that could not be conceived has made it possible to easily produce Compound 7 which is an important raw material for producing NS-220, which is useful as a medicine, in high yield.
実施例 1 選択的加水分解で化合物 4を得る製造工程を含む NS— 220の製造 (工程 1)選択的加水分解による化合物 4の製造  Example 1 Production of NS-220 including the production process of obtaining compound 4 by selective hydrolysis (Step 1) Production of compound 4 by selective hydrolysis
化合物 4' (シス Zトランス = 3Zl)は、特許文献 1記載の方法により製造した。かか る化合物 4'  Compound 4 ′ (cis Z trans = 3Zl) was produced by the method described in Patent Document 1. Such compounds 4 '
700gをァセ卜二トリノレ 700mLに溶解し、水酸ィ匕ナ卜リウム水溶液 195. 8g (99%水 酸化ナトリウム 44. 8g、水 151g)を添カ卩した。 20〜30°Cで 2時間撹拌した後、トル ェン 700mLと水 700mLを添加し、分層した。有機層を減圧濃縮して、化合物 4 (シ ス Zトランス = 98. 4/1. 6)を 441. 4g得た。なお、水層は実施例 2に使用した。 (工程 2)化合物 5の製造 700 g was dissolved in 700 mL of caseinotrinole, and 195.8 g of sodium hydroxide aqueous solution (44.8 g of 99% sodium hydroxide, 151 g of water) was added thereto. After stirring at 20-30 ° C for 2 hours, 700 mL of toluene and 700 mL of water were added and the layers were separated. The organic layer was concentrated under reduced pressure to obtain 441.4 g of compound 4 (Scis Z trans = 98.4 / 1.6). The aqueous layer was used in Example 2. (Step 2) Production of Compound 5
工程 1で得た化合物 4 441gにょう化ナトリウム 442g、アセトン 820mLを添カロ して 15時間還流した。反応後、反応液を減圧濃縮し、残さに水 500mL、トルエン 840mLを添加して分液抽出した。有機層を塩ィ匕ナトリゥム水溶液  To 441 g of the compound 4 obtained in step 1, 442 g of sodium iodide and 820 mL of acetone were added and refluxed for 15 hours. After the reaction, the reaction solution was concentrated under reduced pressure, and 500 mL of water and 840 mL of toluene were added to the residue for separation and extraction. The organic layer is a salt solution
420mLで洗浄後、硫酸マグネシウム 42gで乾燥した。ろ過した後、減圧濃縮して化 合物 5の油状物 559gを得た。 After washing with 420 mL, it was dried with 42 g of magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain 559 g of an oily product of Compound 5.
該油状物 lOOgに n—ヘプタン 500mLを添カ卩し,撹拌下- 26°Cまで冷却した。析 出した結晶をろ過し、室温で減圧乾燥して, 白色結晶の化合物 5を 83. 2gを得た。  To the oily lOOg, 500 mL of n-heptane was added and cooled to −26 ° C. with stirring. The precipitated crystals were filtered and dried under reduced pressure at room temperature to obtain 83.2 g of compound 5 as white crystals.
(工程 3)化合物 7の製造 (Step 3) Production of Compound 7
化合物 4 14. 0g、化合物 6 9. 39g、 DMF 42mlを攪拌しながら、水酸化力リウ ム 2. 97gを 0°C以下で分割添加した。添加後、 20°Cで 2時間攪拌した後、反応液 にトルエン 84ml、水 84mlをカ卩えて分層し、上層を 1%塩酸水溶液 29. 8g、 5% 塩化ナトリウム水溶液 28. Ogで洗浄し、減圧濃縮して液量を調製し、化合物 7のト ルェン溶液 59. 6gを得た。  While stirring Compound 4 14.0 g, Compound 6 9.39 g, and DMF 42 ml, 2.97 g of hydroxylated power lithium was added in portions at 0 ° C. or lower. After the addition, the mixture was stirred at 20 ° C for 2 hours, and then the reaction solution was partitioned with 84 ml of toluene and 84 ml of water, and the upper layer was washed with 29.8 g of 1% aqueous hydrochloric acid and 28. Og of 5% aqueous sodium chloride. The solution was prepared by concentration under reduced pressure to obtain 59.6 g of a toluene solution of compound 7.
(工程 4)化合物 8の製造 (Step 4) Production of Compound 8
工程 3で得られた化合物 7のトルエン溶液 59. 6gを攪拌下、塩ィ匕ォキサリル 6. 2g を滴下した。 50〜55°Cで 1. 5時間攪拌した後、水 4. lml、 15%水酸ィ匕カリウム水 溶液 45. 9gを加えて 2時間攪拌した。分層後、上層を水 17mlで洗浄して化合物 8 のトルエン溶液を得た。  While stirring 69.6 g of the toluene solution of Compound 7 obtained in Step 3, 6.2 g of salted oxalyl was added dropwise. After stirring at 50 to 55 ° C. for 1.5 hours, 4. l ml of water and 45.9 g of a 15% potassium hydroxide aqueous solution were added and stirred for 2 hours. After separation, the upper layer was washed with 17 ml of water to obtain a toluene solution of compound 8.
(工程 5) NS - 220の製造 (Process 5) Manufacture of NS-220
工程 4で得られた化合物 8のトルエン溶液に、水酸ィ匕ナトリウム 3. 27gを水 16ml に溶カゝした溶液、及び、メタノール 6. 3mlを添カ卩した。 50〜55°Cで 3時間攪拌した 後分層し、下層にトルエン 76mlを添加し、濃塩酸 8. 2gで中和して熱時抽出した 。上層を水 15mlで熱時洗浄し、 2°Cまで冷却後晶析し、析出した結晶をろ過、 50°C で減圧乾燥して粗製 NS— 220 (トランス体 0. 1%)を 9. 43g得た。力かる粗製 NS— 220 2. Ogを酢酸イソプロピル 30mlに 72°Cで溶解させ、熱時ろ過した後、ろ液を 1 . 4hかけて 72°Cから 20°Cまで冷却して晶析し、析出した結晶をろ過、 50°Cで減圧 乾燥して目的の NS— 220 1. 53g (卜ランス体く 0. 1%)を得た。なお、 NS— 220 のシス Zトランス比は HPLCにより算出した。 A solution obtained by dissolving 3.27 g of sodium hydroxide in 16 ml of water and 6.3 ml of methanol were added to the toluene solution of compound 8 obtained in Step 4. After stirring at 50 to 55 ° C for 3 hours, the layers were separated, 76 ml of toluene was added to the lower layer, neutralized with 8.2 g of concentrated hydrochloric acid, and extracted while hot. The upper layer was washed with 15 ml of water while hot, crystallized after cooling to 2 ° C, the precipitated crystals were filtered, dried under reduced pressure at 50 ° C, and 9.43 g of crude NS-220 (transformer 0.1%) Obtained. Powerful crude NS— 220 2. Dissolve Og in 30 ml of isopropyl acetate at 72 ° C, filter while hot, cool the filtrate from 72 ° C to 20 ° C over 1.4h, crystallize, filter the precipitated crystals by filtration After drying under reduced pressure at 50 ° C., 1.53 g of target NS-220 (0.1%) was obtained. The cis-Z trans ratio of NS-220 was calculated by HPLC.
HPLCの分析条件  HPLC analysis conditions
装置 : Agilent 1100 Series  Equipment: Agilent 1100 Series
カラム : Cadenza CD— C18 250 X 4. 6mm (インタタト株式会社) カラム温度: 40°C  Column: Cadenza CD—C18 250 X 4.6 mm (Intertat Corporation) Column temperature: 40 ° C
移動層 :ァセトニトリル Z水 Zメタンスルホン酸 = 550Z450Z1  Moving layer: Acetonitrile Z water Z methanesulfonic acid = 550Z450Z1
流速 : 0. 7mLZ分  Flow rate: 0.7 mLZ min
検出器 : UV検出器  Detector: UV detector
測定波長 :240nm  Measurement wavelength: 240nm
[0021] M2 イ^^ 4'の力 t!Tk分解により 成したイ^ ^ )21からイ^^ 4' する 她  [0021] Force of M2 I ^^ 4 'I ^^ 4' from I ^^) 21 made by t! Tk decomposition 她
実施例 1の工程 1で得た水層に、濃塩酸 128. 3g、トルエン 700mLを添カ卩して 抽出し、トランス体リッチな化合物 21を回収した。回収したィ匕合物 21のトルエン溶液 50mLに、ピルビン酸メチル 19. 5g、三フッ化ホウ素エーテルコンプレックス 6. 9g を添加して, 60°Cで 8時間反応した。反応後、 20%水酸ィ匕ナトリウム水溶液 77ml、 10%水酸ィ匕ナトリウム水溶液 39ml、 10%塩化ナトリウム水溶液 10mlで順に洗 浄した。有機層を減圧濃縮して、化合物 4'を 2. 4g得た。  The aqueous layer obtained in Step 1 of Example 1 was extracted by adding 128.3 g of concentrated hydrochloric acid and 700 mL of toluene to recover trans-rich compound 21. 15.5 g of methyl pyruvate and 6.9 g of boron trifluoride ether complex were added to 50 mL of the toluene solution of the recovered compound 21 and reacted at 60 ° C for 8 hours. After the reaction, the mixture was washed with 77% 20% aqueous sodium hydroxide solution, 39ml 10% aqueous sodium hydroxide solution and 10ml 10% aqueous sodium chloride solution in this order. The organic layer was concentrated under reduced pressure to obtain 2.4 g of compound 4 ′.
[0022] 実施例 3 選択的加水分解で化合物 7を得る製造工程を含む NS— 220の製造 [0022] Example 3 Production of NS-220 including production process for obtaining compound 7 by selective hydrolysis
(工程 1)選択的加水分解による化合物 7の製造  (Step 1) Production of compound 7 by selective hydrolysis
シス Zトランス比が 3Z1である化合物 5は、特許文献 1記載の方法により製造した。 力かる化合物 61. lgとィ匕合物 6 34. 4gを DMF 192mlに溶解させ、冷却撹拌下 85%水酸ィ匕カリウム水溶液 13. 6gを添加した。 15°C以下で 4時間 撹拌した後、ト ルェン 385ml、 水 385mlを添カ卩して抽出した。有機層を 1%塩酸水溶液 137 ml、水 128mlで順に洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、一部減圧 濃縮して、化合物 7 (シス Zトランス = 14. 8)のトルエン溶液を得た。 (工程 2)化合物 8の製造 Compound 5 having a cis-Z trans ratio of 3Z1 was produced by the method described in Patent Document 1. Powerful Compound 61.lg and Compound 6 34.4 g were dissolved in 192 ml of DMF, and 13.6 g of 85% aqueous potassium hydroxide solution was added with cooling and stirring. After stirring at 15 ° C or lower for 4 hours, 385 ml of toluene and 385 ml of water were added and extracted. The organic layer was washed successively with 1% aqueous hydrochloric acid solution (137 ml) and water (128 ml) and dried over anhydrous magnesium sulfate. After filtration, the filtrate was partially concentrated under reduced pressure to obtain a toluene solution of compound 7 (cis Z trans = 14.8). (Step 2) Production of Compound 8
工程 1で得られた化合物 8のトルエン溶液を用いて、実施例 1の工程 4の方法と同 様にして、化合物 8のトルエン溶液を得た。  Using the toluene solution of compound 8 obtained in step 1, a toluene solution of compound 8 was obtained in the same manner as in the method of step 4 of Example 1.
(工程 3) NS - 220の製造 (Process 3) Manufacturing NS-220
工程 2で得られた化合物 8のトルエン溶液を用いて、実施例 1の工程 5の方法と同 様にして、精製 NS— 220 21. 5g (トランス体 0. 3%)を得た。  Using a toluene solution of compound 8 obtained in step 2, purified NS-220 21.5 g (trans isomer 0.3%) was obtained in the same manner as in step 5 of Example 1.
[0023] 実施例 4 TEMPO及び次亜塩素酸ナトリウムを用いた化合物 6の製造 Example 4 Production of Compound 6 Using TEMPO and Sodium Hypochlorite
(工程 1)化合物 20の製造  (Step 1) Production of Compound 20
p 卜ノレ才イノレク PU 100. Ogを 1 アミノー 2 プ ノ一ノレ 79. 2g、卜!;ェチノレ ァミン 78. 5g、トルエン 500mlの溶液中に滴下した。 20°Cで 1時間攪拌した後、 水 500mlを添加し、析出した結晶をろ過、 50°Cで減圧乾燥して、白色結晶の化合 物 20 117. 0gを得た。  p 卜 NORE INOREC PU 100. Og was added dropwise to a solution of 1 amino-2 unomonore 79.2 g, 卜!; ethenolamin 78.5 g, toluene 500 ml. After stirring at 20 ° C. for 1 hour, 500 ml of water was added, and the precipitated crystals were filtered and dried under reduced pressure at 50 ° C. to obtain 20117.0 g of a white crystal compound.
(工程 2)化合物 6の製造 (Step 2) Production of Compound 6
工程 1で得たィ匕合物 20 30. 0gに TEMPO 0. 4851g、臭ィ匕ナトリウム 15. 97g 、硫酸マグネシウム 9. 34g、酢酸ェチル 450ml、水 30mlをカ卩え、次亜塩素酸ナ トリウム水溶液 (有効塩素 5%以上) 222. 2gに炭酸水素ナトリウム 6. 52gを溶力し た溶液を 2〜― 10°Cで滴下した。 0°Cで 40分間攪拌した後分層し、上層を、よう化力 リウム 2. 58gを 1%塩酸水溶液 56. 6gに溶解した溶液、 10% -Na S O水溶液 1  The compound obtained in Step 1 was mixed with 300.0 g of TEMPO 0.4851 g, sodium odorite 15. 97 g, magnesium sulfate 9.34 g, ethyl acetate 450 ml, water 30 ml, and sodium hypochlorite. Aqueous solution (effective chlorine 5% or more) A solution of 6.52 g of sodium bicarbonate in 222.2 g was dropped at 2 to -10 ° C. After stirring at 0 ° C for 40 minutes, the layers are separated, and the upper layer is a solution in which 2.558 g of rhodium iodide is dissolved in 56.6 g of 1% hydrochloric acid aqueous solution, 10% -Na 2 SO 4 aqueous solution 1
2 2 3 2 2 3
20ml、炭酸水素ナトリウム水溶液 60ml、塩化ナトリウム水溶液 60mlで洗浄後、 硫酸マグネシウム 6. 00gで乾燥した。ろ過後、減圧濃縮後の残さにシクロへキサン 240mLを添加し、析出した結晶をろ取した。メチル t—ブチルエーテル 30mlで 洗浄、 50°Cで減圧乾燥して、白色結晶の化合物 6 20. 88gを得た(トータル収率 6 6%)。 After washing with 20 ml, sodium bicarbonate aqueous solution 60 ml, sodium chloride aqueous solution 60 ml, it was dried over magnesium sulfate 6.00 g. After filtration, 240 mL of cyclohexane was added to the residue after concentration under reduced pressure, and the precipitated crystals were collected by filtration. Washing with 30 ml of methyl t-butyl ether and drying under reduced pressure at 50 ° C. gave 20.88 g of compound 6 as white crystals (total yield 6 6%).
産業上の利用可能性  Industrial applicability
[0024] 上述の通り、本発明にかかる製造方法は、従来の製法に比べ、カラムクロマトグラフ ィ一による分割を必要とせず、また、金属化合物を用いることなぐ医薬として有用なAs described above, the production method according to the present invention is a column chromatograph as compared to the conventional production method. It is useful as a medicine without using a metal compound.
NS - 220を製造することができる。 NS-220 can be manufactured.

Claims

請求の範囲 The scope of the claims
[1] メチル 5—(4 クロロブチル)ー2—メチルー 1, 3 ジォキサンー2 カルボキシレ ートのシス トランス混合物を、塩基存在下で加水分解することを特徴とする、メチル シス一 5— (4 クロロブチル) 2—メチル 1, 3 ジォキサン一 2—カルボキシレ ートの製造方法。  [1] Methyl 5- (4 chlorobutyl) -2-methyl-1,3-dioxane-2 Carboxylate cis-trans mixture, which is characterized by hydrolysis in the presence of a base. ) A process for producing 2-methyl 1,3 dioxane 1-carboxylate.
[2] 請求項 1記載の製造工程を含む、 2—メチルー c— 5—{4—[5—メチルー 2—(4ーメ チルフエ-ル)ー1, 3—ォキサゾールー 4 ィル]ブチル } 1, 3 ジォキサン r— [2] 2-methyl-c-5- {4- [5-methyl-2- (4-methylphenol) -1,3-oxazol-4-yl] butyl}, comprising the production process according to claim 1 , 3 Dioxane r—
2—力ルボン酸の製造方法。 2—Method for producing strong rubonic acid.
[3] メチル 5—(4 ョードブチル)ー2—メチルー 1, 3 ジォキサンー2 カルボキシレ ートのシス トランス混合物を、塩基存在下で加水分解することを特徴とする、メチル シス 5— (4ーョードブチル)ー2—メチルー 1, 3 ジォキサン 2 カルボキシレ ートの製造方法。 [3] Methyl 5- (4-iodobutyl) -2-methyl-4- (3-iodobutyl) characterized by hydrolyzing a cis-trans mixture of methyl-1,3-dioxane-2 carboxylate in the presence of a base. -2-Method for producing methyl-1,3 dioxane 2 carboxylate.
[4] 請求項 1記載の製造工程を含む、 2—メチルー c— 5—{4—[5—メチルー 2—(4ーメ チルフエ-ル)ー1, 3—ォキサゾールー 4 ィル]ブチル } 1, 3 ジォキサン r— 2—力ルボン酸の製造方法。  [4] 2-Methyl-c-5- {4- [5-Methyl-2- (4-methylphenol) -1,3-oxazole-4-yl] butyl} 1 including the production process according to claim 1 , 3 Dioxane r— 2-Method for producing strong rubonic acid.
[5] メチル 2—メチルー 5— ー[ (4 メチルベンゾィル)ァミノ]ー6 ォキソへプチル} — 1, 3 ジォキサン 2 カルボキシレートのシス トランス混合物を塩基存在下で 加水分解することを特徴とする、メチル シス 2—メチルー 5— [ (4 メチルベ ンゾィル)ァミノ] 6 ォキソヘプチル } 1 , 3 ジォキサン 2 カルボキシレート の製造方法。  [5] Methyl 2-methyl-5-[(4 methylbenzoyl) amino] -6 oxoheptyl} — 1,3 Dioxane 2 Carboxylate is characterized by hydrolyzing a cis-trans mixture in the presence of a base. Cis 2-methyl-5-[(4 methylbenzoyl) amino] 6 -oxoheptyl} 1,3 Dioxane 2 carboxylate production method.
[6] 請求項 3記載の製造工程を含む、 2—メチルー c— 5—{4—[5—メチルー 2—(4ーメ チルフエ-ル)ー1, 3—ォキサゾールー 4 ィル]ブチル } 1, 3 ジォキサン r— 2—力ルボン酸の製造方法。  [6] 2-Methyl-c-5- {4- [5-Methyl-2- (4-methylphenol) -1,3-oxazole-4-yl] butyl} 1 including the production process according to claim 3 , 3 Dioxane r— 2-Method for producing strong rubonic acid.
[7] 4ーメチルー N— (2 ヒドロキシプロピル)ベンズアミドを、 2, 2, 6, 6—テトラメチル — 1—ピベリジ-ルォキシラジカル及び次亜塩素酸ナトリウムを用いて酸ィ匕することを 特徴とする、 4—メチル N— (2—ォキソプロピル)ベンズアミドの製造方法。  [7] It is characterized by acidifying 4-methyl-N— (2 hydroxypropyl) benzamide with 2, 2, 6, 6-tetramethyl — 1-piberidi-loxy radical and sodium hypochlorite. A process for producing 4-methyl N- (2-oxopropyl) benzamide.
[8] 請求項 5記載の製造工程を含む、 2—メチルー c— 5—{4—[5—メチルー 2—(4ーメ チルフエ-ル)ー1, 3—ォキサゾールー 4 ィル]ブチル } 1, 3 ジォキサン r— 2—力ルボン酸の製造方法。 [8] 2-methyl-c-5- {4- [5-methyl-2- (4-methylphenol) -1,3-oxazol-4-yl] butyl} including the production process according to claim 5} 1 , 3 Dioxane r— 2—Method for producing strong rubonic acid.
請求項 1及び 5記載の製造工程を含む、 2—メチルー c 5— {4 [5—メチルー 2— (4 メチルフエニル) 1, 3—ォキサゾールー 4 ィル]ブチル } 1, 3 ジォキサ ンー r 2—力ノレボン酸の製造方法。 2-methyl-c 5— {4 [5-methyl-2- (4 methylphenyl) 1,3-oxazole-4-yl] butyl} 1,3 dioxan r 2—force, including the production process according to claim 1 and 5 A method for producing norebonic acid.
PCT/JP2005/017137 2004-09-17 2005-09-16 Process for production of heterocyclic compounds WO2006030892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004271349 2004-09-17
JP2004-271349 2004-09-17

Publications (1)

Publication Number Publication Date
WO2006030892A1 true WO2006030892A1 (en) 2006-03-23

Family

ID=36060139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017137 WO2006030892A1 (en) 2004-09-17 2005-09-16 Process for production of heterocyclic compounds

Country Status (1)

Country Link
WO (1) WO2006030892A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056031A1 (en) 2014-10-08 2016-04-14 Council Of Scientific & Industrial Research Novel diol compounds synthesis and its use for formal synthesis of (2r, 3 s)-3-hydroxypipecolic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090087A1 (en) * 2000-05-26 2001-11-29 Nippon Shinyaku Co., Ltd. Heterocyclic compounds
JP2002522554A (en) * 1998-08-10 2002-07-23 ベーリンガー インゲルハイム (カナダ) リミテッド Hepatitis C inhibitor tripeptide
JP2002522557A (en) * 1998-08-10 2002-07-23 ベーリンガー インゲルハイム (カナダ) リミテッド Hepatitis C inhibitor peptide
JP2004217608A (en) * 2002-02-13 2004-08-05 Dai Ichi Seiyaku Co Ltd Method for producing (1s,2s)-2-fluorocyclopropanecarboxylic acid derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522554A (en) * 1998-08-10 2002-07-23 ベーリンガー インゲルハイム (カナダ) リミテッド Hepatitis C inhibitor tripeptide
JP2002522557A (en) * 1998-08-10 2002-07-23 ベーリンガー インゲルハイム (カナダ) リミテッド Hepatitis C inhibitor peptide
WO2001090087A1 (en) * 2000-05-26 2001-11-29 Nippon Shinyaku Co., Ltd. Heterocyclic compounds
JP2004217608A (en) * 2002-02-13 2004-08-05 Dai Ichi Seiyaku Co Ltd Method for producing (1s,2s)-2-fluorocyclopropanecarboxylic acid derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUWABARA K.: "A novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-c-5-[4-[5-methyl-2-(4-methylphenyl)-4-oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid (NS-220), potently decreases plasma triglyceride and glucose levels and modifies lipoprotein profiles in KK-Ay mice.", J PHARMACOL EXP THER., vol. 309, no. 3, June 2004 (2004-06-01), pages 970 - 977, XP002995210 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056031A1 (en) 2014-10-08 2016-04-14 Council Of Scientific & Industrial Research Novel diol compounds synthesis and its use for formal synthesis of (2r, 3 s)-3-hydroxypipecolic acid

Similar Documents

Publication Publication Date Title
WO2004099149A1 (en) Processes for producing 3-substituted 2-chloro-5­fluoropyridine or salt thereof
JP2007533727A (en) Method for producing valsartan and its precursor
JP3586288B2 (en) Preparation of biphenyl derivatives
JP4139334B2 (en) New boronate ester
WO2006030892A1 (en) Process for production of heterocyclic compounds
WO2000010986A1 (en) Process for the preparation of (2r, 3s)-3-amino-1,2-oxirane
JP2006519786A (en) Chemical methods for making intermediates to obtain N-formylhydroxylamine compounds
JPH10139768A (en) Production of naphthalene derivative
JP4418430B2 (en) Method for producing sulfonamide-containing indole compound
JP2001302582A (en) Method for producing trifluoromethylphenylacetic acid
JP3823385B2 (en) Process for producing 2,4,5-trifluoro-3-iodobenzoic acid and esters thereof
JP2008007461A (en) Method for producing halogen-containing phenylalanine derivative
JPH06298683A (en) Production of 4-(2-substituted)-phenylbenzyl bromide by photo-reaction
JP3201998B2 (en) Method for producing (S) -benzoxazine derivative and method for racemizing (R) -benzoxazine derivative
JP4060718B2 (en) New production method of enol ether
JP2003137835A (en) Method for producing (r)-3-hydroxy-3-(2-phenyl)hexanoic acid
JP2009143885A (en) Method for producing acetophenone derivative
JP2005097158A (en) Method for producing fluorine-containing organic compound
WO2000053575A1 (en) SYNTHESIS OF α-AMINO-α',α'-DIHALOKETONES AND PROCESS FOR THE PREPARATION OF β-AMINO ACID DERIVATIVES BY THE USE OF THE SAME
JPWO2006049211A1 (en) 2-Aryl-2-fluoroalkanoic acids and esters thereof and methods for producing them
JP4987700B2 (en) Novel 7,7-disubstituted derivatives of (5H, 9H) -6,8-dioxabenzocycloheptene, process for its preparation, its use in the synthesis of non-steroidal vitamin D analogues
JP2023167001A (en) Method for producing 2-methyl-2-phenyl propanoic acid derivative
JP2005015402A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE 3,5-DIHYDRO-4H-DINAPHTHO[2,1-c:1',2'-e]AZEPINE AND OXALATE THEREOF
JP2003160547A (en) cis-AMINOINDANOL DERIVATIVE AND METHOD FOR PRODUCING THE SAME AND METHOD FOR USING THE SAME
FR2863613A1 (en) New 3-substituted hydroxy-phenylboronic acid derivatives, useful in synthesis of non-steroidal Vitamin D3 analogs by Suzuki coupling to trifluoromethylsulfonyloxy-benzene derivative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP