WO2006030656A1 - Method for purifying ethyl chloride and method for producing fluoroethane using same - Google Patents

Method for purifying ethyl chloride and method for producing fluoroethane using same Download PDF

Info

Publication number
WO2006030656A1
WO2006030656A1 PCT/JP2005/016155 JP2005016155W WO2006030656A1 WO 2006030656 A1 WO2006030656 A1 WO 2006030656A1 JP 2005016155 W JP2005016155 W JP 2005016155W WO 2006030656 A1 WO2006030656 A1 WO 2006030656A1
Authority
WO
WIPO (PCT)
Prior art keywords
stabilizer
chloride
ethyl chloride
chlorinated
chill
Prior art date
Application number
PCT/JP2005/016155
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromoto Ohno
Yukio Nishiyama
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to JP2006535726A priority Critical patent/JP4953819B2/en
Publication of WO2006030656A1 publication Critical patent/WO2006030656A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids

Definitions

  • the present invention relates to a method for purifying chlorinated chlor and a fluorochemical using the method.
  • the present invention relates to a method for producing ethane.
  • Examples of methods for producing ethyl chloride include (1) a method in which hydrogen chloride is blown into a mixture of ethyl alcohol and zinc chloride when heated, and (2) a method in which aluminum chloride is used as a catalyst. Methods for adding chlorine to water .. Elementary chemicals (Chemical Dictionary 1 (Kyoritsu Shuppan)) are known.
  • a stabilizer is generally added, and a stabilizer of about several hundred mass ppm is added.
  • chloro chloride is hydrolyzed by moisture and alcohol.
  • fluoroeluene (CH 3 CH 2 F) produced using chlorinated chill as a raw material is attracting attention as a low-temperature refrigerant, for example, as an etching gas.
  • Chlorofluorocarbons CFCs
  • Hydrok ⁇ ⁇ Saturated and unsaturated compounds such as Fluorocarbons (HCFCs) are produced, and separation and purification are extremely difficult. .
  • the above method (2) uses flammable and explosive range ethylene as a raw material, so that the equipment cost for ensuring safety is large and has an economic problem.
  • the method of reacting chloro chloride and hydrogen fluoride as raw materials in the presence of a fluorination catalyst is, for example, when a catalyst mainly composed of trivalent dimethyl oxide is used. Acetylene and ethylene are produced by reactions, etc., and there are problems in safety and economics, leaving technical issues.
  • ethyl chloride which is one of the reaction raw materials, contains a stabilizer to suppress the generation of acid content.
  • stabilizers compounds having a single-mouth group include, for example, nitromethane, nitroen, cresol, nitrotoluene, and two-hole fenol.
  • stabilizers and moisture contained in ethyl chloride are undesirable because, for example, they cause deterioration in the activity of the fluorination catalyst used in the production of fluorethan and shorten the catalyst life. It is desirable not to be included.
  • the stabilizer may be removed before the reaction.
  • the conventional removal method such as fractional distillation has a problem that the operation is complicated and a large amount of cost is required.
  • the present invention has been made under such a background, and it is possible to remove stabilizers and moisture contained in chlorinated chill, which is easy to operate and industrially feasible. It is an object of the present invention to provide a purification method and a method for producing fluoroethane using the chlorinated chill obtained by this purification method.
  • a crude chlorinated chill containing a stabilizer and water or moisture has a mean pore diameter in the range of 3 to 11 A and / or a mean pore diameter. It has been found that the stabilizer and / or water content can be reduced by contacting in a liquid phase with a carbonaceous adsorbent having a range of 3.4 to 11 A.
  • the economy has advantages such as efficient and long catalyst life.
  • the present inventors have found that a typical method for producing fluoretane can be obtained, and have completed the present invention.
  • this invention consists of a matter shown by the following [1]-[14], for example.
  • a method for purifying chlorinated chloride which is characterized by bringing the carbonaceous adsorbent into contact with a liquid phase and reducing the stabilizer and / or moisture contained in the crude ethyl chloride.
  • the pressure at which the stabilizer and / or crude chlorinated chill containing water is brought into contact with the zeolite and / or the carbonaceous adsorbent is in the range of 0 to IMP a.
  • a stabilizer obtained by the purification method according to any one of the above [1] to [7] and Z or chilled chilled chloride with reduced moisture are used as raw materials.
  • step (2) is performed using chlorinated chill reduced to 20 mass pPm or less.
  • the fluorination catalyst used in the step (2) is Cu, M n
  • the fluorination catalyst used in the step (2) is a supported catalyst supported on activated carbon, according to any one of the above [9] to [13] Fluoroe evening production method.
  • the present invention it is possible to efficiently remove a stabilizer and moisture from a stabilizer and / or water-containing chlorinated chloride by a simple method, prevent deterioration of the catalyst, etc., and economically produce fluoretane.
  • the obtained fluorethan can be used as a low temperature refrigerant or etching gas.
  • the present inventor obtained an average of chlorinated chills containing stabilizers.
  • the amount of stabilizer can be reduced by contacting the zeolite with a pore size of 3 to 11 A and / or a carbonaceous adsorbent with an average pore size of 3.4 to 11 A in the liquid phase. I found out that I can do it.
  • the zeolite used in the method for purifying chlorinated chloride according to the present invention should have an average pore diameter of 3 to 11 A, preferably 3.4 to 10 A. Zeolite ⁇ with an average pore size greater than 11 A increases the adsorption amount of chlorinated chloride, and zeolite with an average pore size less than 3 A has a smaller ability to adsorb stabilizers. Yes.
  • the zeolite has a Si (silica) A 1 (aluminum) ratio of 2 or less, and when the S i ZA l ratio is greater than 2, the stabilizer may not be selectively adsorbed.
  • Zeolites include molecular sieves 4 A (MS—4 A), molecular sieves 5 A (MS—5 A), molecular sieves 1 OA (MS— 1 OA) and molecular sieves 1 3 X (S-1 3 X) is preferably at least one selected from the group consisting of
  • the water content in ethyl chloride can be reduced at the same time. When heated while containing water, hydrolysis occurs, so it is preferable to reduce the water content.
  • the water content in ethyl chloride is preferably 20 mass ppm or less.
  • Carbonaceous adsorbents preferably have an average pore diameter of 3.4 to 11 A, and carbonaceous adsorbents with an average pore diameter greater than 11 A increase the amount of adsorption of chlorinated chloro chloride.
  • a carbonaceous adsorbent with a pore size smaller than 3.4 A is not preferred because it reduces the ability to adsorb stabilizers.
  • molecular sieve force 1 Bon 4 A and Z or molecular sieve carbon 5 A is preferable.
  • the zeolite and the carbonaceous adsorbent are not particularly limited, but considering that the moisture in the ethyl chloride is also reduced, the mixing ratio is preferably a ratio rich in zeolite.
  • the adsorbent is preferably distributed continuously on a fixed bed, and the liquid-based space velocity (LHSV) Can be selected appropriately depending on the stabilizer concentration and the amount of chlorinated chill.
  • LHSV liquid-based space velocity
  • the range of 1 to 80 H r -1 is preferable.
  • two adsorption towers may be provided, and two towers may be switched to perform continuous purification.
  • the treatment temperature when purifying chloro chloride in the liquid phase is preferably in the range of 120 to + 60 ° C, more preferably in the range of 0 to 50 ° C. If the treatment temperature is higher than 60 ° C, the equipment cost may increase in terms of the heating and pressure resistance of the equipment, decomposition reactions, etc. may occur. This is not preferable.
  • the pressure is preferably in the range of 0 to I M Pa, more preferably in the range of 0 to 0.6 M Pa. When the pressure is greater than 1 M Pa, it is not economical in terms of the pressure resistance of the equipment.
  • the stabilizer and Z or moisture contained in the ethyl chloride can be reduced.
  • the purification method of the present invention is particularly preferably used when the stabilizer is a compound having a nitro group or a hydroxyl group, and examples of the compound having a nitro group include nitromethane, nitrogen, and nitrogen. Examples thereof include resole, nitrotoluene and nitrophenol. Examples of the compound having a hydroxyl group include phenol, cresol, 2,6-dibutyl-p-cresol and aminomethylphenol.
  • the chlorinated chill containing a stabilizer is brought into contact with the above zeolite and / or the above carbonaceous adsorbent in the liquid phase under the above conditions, and the total amount of the stabilizer is reduced to 20 mass ppm or less. You can get a chill.
  • the salt is reduced to 10 mass ppm or less in the total amount of the stabilizer, and further reduced to 5 ppm or less in the total amount of the stabilizer. It is also possible to obtain a chemical ester.
  • the method for producing fluoretane of the present invention comprises the following three steps:
  • the ethyl chloride obtained through the step (1) is preferably a chloride chill in which the total amount of the compound having a nitro group or a hydroxyl group is reduced to 20 mass ppm or less, and more preferably The total amount of the compound having a nitro group or a hydroxyl group is preferably reduced to 10 mass ppm or less, and particularly preferably the total amount of the compound having a nitro group or a hydroxyl group is reduced to 5 mass ppm or less. Good to have. Producing fluoretane from chlorinated chills with the total amount of compounds having a nitro group and a hydroxyl group reduced to 20 mass ppm or less can increase the life of the catalyst used in the production process and increase efficiency. It is possible to produce a mixture mainly containing fluoretane, both economically and economically.
  • the catalyst used in the manufacturing process is at least selected from the group consisting of Cu, Mn, Zn, Pb, Ag, Bi, Co, Fe, Ni and the same.
  • Fluorination catalysts containing one element which are preferably supported catalysts or bulk catalysts, for example generally halogen exchange reactions
  • the main component is lumped chromic oxide, which is the catalyst used for this purpose.
  • a type catalyst or a supported catalyst for example, one using alumina, aluminum fluoride, etc. as a carrier
  • acetylene or ethylene is produced by the dehalogenation reaction or dehydrogenation reaction as described above.
  • the metal loading is preferably 1% by mass or more.
  • activated carbon is impregnated with an aqueous solution of cobalt chloride, dried, heat-treated in an inert gas, and then reacted. It is preferable to activate with hydrogen fluoride before carrying out.
  • the reaction temperature is preferably from 100 to 350 ° C, more preferably from 150 to 300 ° C. When the reaction temperature is higher than 350 ° C, the amount of acetylene or the like that is a by-product may increase, and when it is lower than 100 ° C, the target reaction may not proceed.
  • the reaction pressure is preferably 0 to 1 MPa, and if it exceeds IMP a, equipment costs such as the pressure resistance of the apparatus increase, which is not economical.
  • the molar ratio of hydrogen fluoride to acetyl chloride is preferably 3 to 20; if it exceeds 20, it is not economical due to the increased amount of hydrogen fluoride. It is not economical because its life is short.
  • the mixture containing fluorethane obtained in the above reaction step is led to a distillation purification step, and at least 90% or more of hydrogen chloride and fluorethane are separated from the top of the column as a low boiling fraction in the distillation purification step. At least 95% of the unreacted hydrogen fluoride and acetyl chloride are separated from the bottom as a high boiling fraction. Hydrogen chloride and fluoretane separated from the top of the column are separated in a separate distillation tower, hydrogen chloride is used for other purposes, and the target fluoretane is purified and recovered as a product.
  • a commercially available chlorinated chill was analyzed with a gas chromatograph (column: complete set of pills / FID).
  • nitrogen (CH 3 N 0 2 ) contained 2 1 2 mass ppm, and a moisture meter The moisture content was analyzed by Sha type 1) and found to contain 52 mass ppm, and the purity of the salt chill was 99.95 mass%.
  • Activated carbon (Kuraray Chemical Co., Ltd., Kuraray Call 4 GA) is used as the catalyst carrier.
  • Ferric chloride (FeCl 3 '6 H 2 0) 3 2. Add 58.5 g of pure water to 7 g and heat to 50-60 ° C in a hot water bath to dissolve The solution was cooled to room temperature. To this, 57.977 g of the activated carbon that had been vacuum-dried at 120 ° C. for 3 hours as a pretreatment was crushed to absorb the entire amount of the solution. The wet activated carbon was then dried on a hot water bath at 90 and dried. Thereafter, the dried catalyst was dried in a dryer at 100 ° C. for 3 hours. Next, the catalyst was charged into an Inconel reactor, and the temperature was maintained at 230 ° C. while flowing nitrogen gas, and diluted with nitrogen. The catalyst was prepared by fluorination treatment (activation of the catalyst) under a hydrogen fluoride (HF) stream and then under a 100% hydrogen fluoride stream.
  • HF hydrogen fluoride
  • Activated carbon (Kuraray Chemical Co., Ltd., Kuraray Call 4 GA) is used as the catalyst carrier.
  • nitromethane which is a stabilizer in ethyl chloride, was reduced to 2 mass ppm, and the water content was 2 mass ppm or less.
  • a carbonaceous adsorbent [ 20 g of molecular sieve carbon 5 A (manufactured by Takeda Pharmaceutical Co., Ltd .: average pore diameter 5 A)] is filled, vacuum dried, and the chilled chill shown in raw material example 2 is cooled while cooling the cylinder. 80 g was charged and stirred occasionally while maintaining the temperature at 23 ° C. (room temperature). After about 5 hours, a part of the liquid phase was taken and analyzed by gas chromatography.
  • Example 2 The same operation and conditions as in Example 2 except that 20 g of carbonaceous adsorbent [activated carbon: granular white sword KL (manufactured by Takeda Pharmaceutical Co., Ltd .: average pore diameter 3 5 A)] was used as the adsorbent. Processed and analyzed.
  • carbonaceous adsorbent activated carbon: granular white sword KL (manufactured by Takeda Pharmaceutical Co., Ltd .: average pore diameter 3 5 A)
  • cresol a stabilizer in ethyl chloride
  • Example 5 The reaction was carried out under the same procedures and conditions as in Example 5 except that 80 ml of the catalyst shown in Catalyst Example 2 was charged as the catalyst. After the reaction started, the outlet gas was washed with an alkaline aqueous solution about 5 hours later. Analyzed by totography. The results are shown below.
  • Inconel 60 inch reactor with inner diameter 1 inch and length lm is filled with 60 ml of the catalyst shown in Catalyst Example 1, at a temperature of 180 ° and a pressure of 0.2 MPa while flowing nitrogen gas. Then, HF was supplied at 5 5. 3 8 NL / hr, and the supply of nitrogen gas was stopped. Thereafter, ethyl chloride (stabilizer: containing 2 1 2 mass ppm) shown in Raw Material Example 1 was fed at 4.6 2 N L / hr to start the reaction. About 6 hours after the start of the reaction, the outlet gas was washed with an alkaline aqueous solution and analyzed by gas chromatography. The results are shown below.
  • the present invention is industrially useful because it enables economical production of high-purity fluoretane and uses the obtained fluoretane as a low-temperature refrigerant as an etching gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a method for purifying ethyl chloride wherein a crude ethyl chloride containing a stabilizer and/or moisture is brought into contact with a zeolite having an average pore size of 3-11 Å and/or a carbonaceous material adsorbent having an average pore size of 3.4-11 Å in a liquid phase for reducing the stabilizer and/or moisture contained in the crude ethyl chloride. Also disclosed is a method for producing fluoroethane by using ethyl chloride obtained by such a purification method. The purification method enables to remove stabilizers and moisture contained in ethyl chloride, and can be performed commercially since operations of the process are easy to do.

Description

塩化工チルの精製方法およびそれを用いるフルォロェタンの製造方 法 Method for purifying chlorinated chill and method for producing fluoretane using the same
技術分野 Technical field
本発明は塩化工チルの精製方法およびその方法を用いるフルォロ 明  The present invention relates to a method for purifying chlorinated chlor and a fluorochemical using the method.
エタンの製造方法に関する。 The present invention relates to a method for producing ethane.
背景技術 書 Technical background
塩化ェチル (C H3 C H2 C 1 ) の製造方法としては、 例えば、 ( 1 ) エチルアルコールと塩化亜鉛の混合物に塩化水素を熱時吹き込 む方法や、 ( 2 ) 塩化アルミニウムを触媒と してエチレンに塩化水.. 素を付加する方法 (化学大辞典 1 (共立出版) ) 等が知られている Examples of methods for producing ethyl chloride (CH 3 CH 2 C 1) include (1) a method in which hydrogen chloride is blown into a mixture of ethyl alcohol and zinc chloride when heated, and (2) a method in which aluminum chloride is used as a catalyst. Methods for adding chlorine to water .. Elementary chemicals (Chemical Dictionary 1 (Kyoritsu Shuppan)) are known.
また、 例えば、 粗塩化工チルの精製方法としては、 粗塩化ェチル を濃硫酸および水で洗浄後、 アルコールに吸収させ、 これを微熱す ると容易に塩化工チルが離脱し、 これを濃硫酸で乾燥して塩化ェチ ルを得る方法 (化学大辞典 1 (共立出版) ) 等が知られている。 For example, as a method for purifying crude chlorinated chill, after washing the crude ethyl chloride with concentrated sulfuric acid and water and absorbing it into alcohol, and slightly heating it, the chlorinated chill is easily released, and this is concentrated with concentrated sulfuric acid. There are known methods for drying to obtain ethyl chloride (Chemical Dictionary 1 (Kyoritsu Shuppan)).
得られた塩化工チルは安定性や品質を確保するため、 一般的には 安定剤が添加され、 安定剤が数百質量 p p m程度添加される。 また 、 塩化工チルは水分やアルコールにより加水分解されることが知ら れている。  In order to ensure the stability and quality of the obtained chilled chill, a stabilizer is generally added, and a stabilizer of about several hundred mass ppm is added. In addition, it is known that chloro chloride is hydrolyzed by moisture and alcohol.
ところで、 例えば、 塩化工チルを原料と して製造されるフルォロ ェ夕ン (C H3 C H2 F) は、 例えば、 低温用冷媒ゃエッチングガス として注目されている。 By the way, for example, fluoroeluene (CH 3 CH 2 F) produced using chlorinated chill as a raw material is attracting attention as a low-temperature refrigerant, for example, as an etching gas.
フルォロェタンの製造方法としては、 従来より次のような方法が 知られている。 As a method for producing fluoretane, the following methods have been conventionally used. Are known.
( 1 ) 塩素化フッ素化炭化水素を触媒の存在下、 水素で還元して 製造する方法 (特開平 7 — 1 2 6 1 9 7号) 等、 ( 2 ) エチレンに フッ化水素を付加する方法 (化学大辞典 7 (共立出版) ) 等が知ら れている。 一方 、 塩化ェチルとフッ化水素を気相でフッ素化触媒を 用いるフルォロェ夕ンの製造法に関しては殆ど知られていない 例えば、 上記 ( 1 ) を用いる製造方法は、 原料である塩素化フッ 素化炭化水素と水素の反応による過剰水素化反応や分解反応によ り (1) A method for producing chlorinated fluorinated hydrocarbons by reducing them with hydrogen in the presence of a catalyst (Japanese Patent Laid-Open No. 7-1 2 6 1 9 7), etc. (2) A method for adding hydrogen fluoride to ethylene (Chemical Dictionary 7 (Kyoritsu Publishing)) is known. On the other hand, little is known about the production method of fluoroeluene using fluorination catalyst in the gas phase with ethyl chloride and hydrogen fluoride. For example, the production method using the above (1) is chlorinated fluorination. By excessive hydrogenation reaction or decomposition reaction by reaction of hydrocarbon and hydrogen
、 八イ ドロカ一ボン ( H C ) 類 、 八ィ ドロク ロ口カーボン ( H C C, Eight dragon bonbon (HC) class, eight dragon carbon (HCC)
) 類、 クロロフルォロカーボン ( C F C ) 類、 ハイ ドロク □ □フル ォロカ一ボン ( H C F C ) 類等の飽和化合物や不飽和化合物等の様 々な不純物が生成し、 分離精製が極めて困難である。 ), Chlorofluorocarbons (CFCs), Hydrok □ □ Saturated and unsaturated compounds such as Fluorocarbons (HCFCs) are produced, and separation and purification are extremely difficult. .
上記 ( 2 ) の方法は引火性、 爆発範囲を有するエチレンを原料と するため、 安全性を確保するための設備費が多額になり、 経済的な 問題を有する。  The above method (2) uses flammable and explosive range ethylene as a raw material, so that the equipment cost for ensuring safety is large and has an economic problem.
また、 原料として塩化工チルとフッ化水素をフッ素化触媒の存在 下で反応させる方法は、 例えば、 三価の酸化ク Dムを主成分とする 触媒を用いた場合、 脱ハロゲン反応や脱水素反応等によりァセチレ ンゃェチレン等が生成し、 安全性や経済性に問 があり 、 技術的課 題を残している。  In addition, the method of reacting chloro chloride and hydrogen fluoride as raw materials in the presence of a fluorination catalyst is, for example, when a catalyst mainly composed of trivalent dimethyl oxide is used. Acetylene and ethylene are produced by reactions, etc., and there are problems in safety and economics, leaving technical issues.
前述のごとく、 反応原料の 1 つである塩化ェチル中には分 る酸分発生等を抑えるために安定剤が含まれる。 例えば 、 安定剤と しては、 一卜口基を有する化合物として 、 ニ トロメタン 、 ニ トロェ 夕ン 、 一卜 □ク レゾール、 ニ トロ トルェン 、 二 卜口フエノール等が As described above, ethyl chloride, which is one of the reaction raw materials, contains a stabilizer to suppress the generation of acid content. For example, as stabilizers, compounds having a single-mouth group include, for example, nitromethane, nitroen, cresol, nitrotoluene, and two-hole fenol.
、 また水酸基を有する化合物と しては、 フエノ一ル、 ク レゾ一ル、In addition, as the compound having a hydroxyl group, phenol, cresol,
2 , 6 一ン ―ブチルー p —ク レゾ —ル、 ァミ ノメチルフェノール等 が挙げられ 、 これらの安定剤が含まれない場合は、 塩化ェチルは安 定性に欠け、 分解による酸分の発生等が進行し、 また含有される水 分により加水分解が生じる。 2, 6-butyl-p-cresol, aminomethylphenol, etc. If these stabilizers are not included, It lacks qualitative properties, and the generation of acid content due to decomposition proceeds, and hydrolysis occurs due to the contained water.
しかしながら、 塩化ェチル中に含まれる安定剤や水分は、 例えば 、 フルォロェタンを製造する際に用いられるフッ素化触媒の活性劣 化の原因となり、 触媒寿命が短くなる等の故に好ましくなく、 安定 剤や水分が含まれないことが望ましい。  However, stabilizers and moisture contained in ethyl chloride are undesirable because, for example, they cause deterioration in the activity of the fluorination catalyst used in the production of fluorethan and shorten the catalyst life. It is desirable not to be included.
そこで、 反応前に安定剤を除去すればよいが、 例えば従来の分別 蒸留等による除去方法では、 操作が煩雑であり、 多額の費用を要す るという問題がある。 発明の開不  Therefore, the stabilizer may be removed before the reaction. However, the conventional removal method such as fractional distillation has a problem that the operation is complicated and a large amount of cost is required. Inexpensive invention
本発明は 、 このような背景の下になされたものであつて、 塩化工 チル中に含まれる安定剤や水分を除去することができ 、 操作が容易 で工業的に実施可能な塩化工チルの精製方法と 、 この精製方法によ り得られた塩化工チルを用いるフルォロエタンの製造方法を提供す ることを課題とする。  The present invention has been made under such a background, and it is possible to remove stabilizers and moisture contained in chlorinated chill, which is easy to operate and industrially feasible. It is an object of the present invention to provide a purification method and a method for producing fluoroethane using the chlorinated chill obtained by this purification method.
本発明者は、 前記の課題を解決すべく鋭意検討した結果、 安定剤 およびノまたは水分を含む粗塩化工チルを平均細孔径が 3〜 1 1 A の範囲であるゼォライ トおよび/または平均細孔径が 3 . 4〜 1 1 Aの範囲である炭素質吸着剤と液相で接触させることにより、 含ま れる安定剤および/または水分を低減することができることを見出 した。 さ らに、 安定剤が低減された塩化工チルをフッ化水素と気相 でフッ素化触媒の存在下に反応させることにより、 効率的な、 かつ 、 触媒寿命を長くする等の利点を有する経済的なフルォロェタンの 製造方法が得られることを見出し、 本発明を完成するに至った。  As a result of intensive studies to solve the above-mentioned problems, the present inventor has determined that a crude chlorinated chill containing a stabilizer and water or moisture has a mean pore diameter in the range of 3 to 11 A and / or a mean pore diameter. It has been found that the stabilizer and / or water content can be reduced by contacting in a liquid phase with a carbonaceous adsorbent having a range of 3.4 to 11 A. In addition, by reacting hydrogen chloride with a reduced stabilizer with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst, the economy has advantages such as efficient and long catalyst life. The present inventors have found that a typical method for producing fluoretane can be obtained, and have completed the present invention.
よって、 本発明は、 例えば、 以下の [ 1 ] 〜 [ 1 4 ] に示される 事項からなる。 C 1 ] 安定剤および zまたは水分を含む粗塩化工チルを平均細孔 径が 3〜 1 1 Aの範囲であるゼォライ トおよび/ "または平均細孔径 が 3. 4〜 1 1 Aの範囲である炭素質吸着剤と液相で接触させ、 粗 塩化ェチル中に含まれる安定剤および/水分を低減させることを特 徴とする塩化工チルの精製方法。 Therefore, this invention consists of a matter shown by the following [1]-[14], for example. C 1] Stabilizer and z or moisture-containing crude chlorinated chlorinated zeolite with an average pore size ranging from 3 to 11 A and / or an average pore size ranging from 3.4 to 11 A A method for purifying chlorinated chloride, which is characterized by bringing the carbonaceous adsorbent into contact with a liquid phase and reducing the stabilizer and / or moisture contained in the crude ethyl chloride.
[ 2 ] 前記安定剤がニ トロ基または水酸基を有する化合物である 上記 [ 1 ] に記載の塩化工チルの精製方法。  [2] The method for purifying acetyl chloride according to the above [1], wherein the stabilizer is a compound having a nitro group or a hydroxyl group.
[ 3 ] 前記ゼォライ トのシリカ アルミニウム ( S i ZA l ) 比 が 2以下である上記 [ 1 ] または [ 2 ] に記載の塩化工チルの精製 方法。  [3] The method for purifying chlorinated chill according to the above [1] or [2], wherein the zeolite has a silica-aluminum (SiZAl) ratio of 2 or less.
[ 4 ] 前記ゼォライ トが、 モレキュラーシーブス 4 A、 モレキュ ラーシーブス 5 A、 モレキュラーシ一ブス 1 O Aおよびモレキユラ ーシーブス 1 3 Xからなる群より選ばれる少なく とも 1種である上 記 [ 1 ] 〜 [ 3 ] のいずれかに記載の塩化工チルの精製方法。  [4] The above [1] to [3], wherein the zeolite is at least one selected from the group consisting of molecular sieves 4 A, molecular sieves 5 A, molecular sieves 1 OA and molecular sieves 1 3 X. ] The refinement | purification method of chlorinated chill in any one of.
[ 5 ] 前記炭素質吸着剤が、 モレキュラーシービングカーボン 4 Aおよび またはモレキュラーシービングカーボン 5 Aである上記 [ 1 ] または [ 2 ] に記載の塩化工チルの精製方法。  [5] The method for purifying chlorinated chill according to the above [1] or [2], wherein the carbonaceous adsorbent is molecular sieve carbon 4A and / or molecular sieve carbon 5A.
[ 6 ] 安定剤および Zまたは水分を含む粗塩化工チルを前記ゼォ ライ トおよび または炭素質吸着剤と接触させる温度が一 2 0〜十 6 0での範囲である上記 [ 1 ] 〜 [ 5 ] のいずれかに記載の塩化工 チルの精製方法。  [6] The above [1] to [5], wherein the temperature at which the stabilizer and the crude chlorinated chill containing Z or moisture are brought into contact with the zeolite and / or the carbonaceous adsorbent is in the range of 120 to 60. ] The refinement | purification method of the chloride chloride in any one of.
[ 7 ] 安定剤および または水分を含む粗塩化工チルを前記ゼォ ライ トおよび または炭素質吸着剤と接触させる圧力が 0〜 I M P aの範囲である上記 [ 1 ] 〜 [ 6 ] のいずれかに記載の塩化ェチル の精製方法。  [7] In any one of the above [1] to [6], the pressure at which the stabilizer and / or crude chlorinated chill containing water is brought into contact with the zeolite and / or the carbonaceous adsorbent is in the range of 0 to IMP a. The method for purifying ethyl chloride as described.
[ 8 ] 上記 [ 1 ] 〜 [ 7 ] のいずれかに記載の精製方法により得 られる安定剤および Zまたは水分が低減された塩化工チルを原料と して用いることを特徴とするフルォロェタンの製造方法。 [8] A stabilizer obtained by the purification method according to any one of the above [1] to [7] and Z or chilled chilled chloride with reduced moisture are used as raw materials. A method for producing fluoretane, characterized by being used as
[ 9 ] 次の 3つの工程を含むことを特徴とするフルォロェタンの 製造方法。  [9] A method for producing fluoretane, comprising the following three steps.
( 1 ) 上記 [ 1 ] 〜 [ 7 ] のいずれかに記載の精製方法により粗 塩化ェチル中の安定剤およびノまたは水分を低減する工程、  (1) A step of reducing stabilizer and moisture or moisture in the crude ethyl chloride by the purification method according to any one of [1] to [7] above,
( 2 ) ( 1 ) の工程を経た塩化ェチルを、 フッ素化触媒の存在下 に、 気相で 、 フッ化水素と反応させて主としてフルォロェタンを得 る工程、  (2) a step of mainly obtaining fluorethane by reacting ethyl chloride which has undergone the step of (1) with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst,
( 3 ) ( 2 ) で得られたフルォロェ夕ンを含む混合ガスを分離し (3) The mixed gas containing the fluoroeluene obtained in (2) is separated.
、 未反応物の少なく とも一部を反応工程 ( 2 ) に循環する工程。 The step of circulating at least a part of the unreacted material to the reaction step (2).
[ 1 0 ] 記 ( 1 ) の工程を経て塩化ェチル中に含まれる安定剤 の総量が 2 0質量 p p m以下に低減された塩化工チルを用いて工程 [1 0] A process using chlorinated chill in which the total amount of the stabilizer contained in the ethyl chloride is reduced to 20 mass ppm or less through the process of (1)
( 2 ) を行な Ό上記 [ 9 ] に記載のフルォロェタンの製造方法。 (2) A process for producing fluoretane as described in [9] above.
[ 1 1 ] 前記 ( 1 ) の工程を経て塩化ェチル中に含まれる安定剤 の総量が 1 0質量 p p m以下に低減された塩化工チルを用いる上記 [11] The above using chlorinated chill wherein the total amount of the stabilizer contained in the ethyl chloride after the step (1) is reduced to 10 mass ppm or less.
[ 1 0 ] に記載のフルォロェ夕ンの製造方法。 [10] The method for producing a fluoroelune according to [1 0].
 ,
[ 1 2 ] 記 ( 1 ) の工程を経て塩化ェチル中に含まれる水分が [1 2] After the process of (1), the moisture contained in the ethyl chloride
2 0質量 p P m以下に低減された塩化工チルを用いて工程 ( 2 ) を 行なう上記 [ 9 ] 〜 [ 1 1 ] のいずれかに記載のフルォロェタンの 製造方法。 The method for producing fluoretane according to any one of the above [9] to [11], wherein the step (2) is performed using chlorinated chill reduced to 20 mass pPm or less.
[ 1 3 ] 前記 ( 2 ) に用いる工程のフッ素化触媒が、 C u、 M n [1 3] The fluorination catalyst used in the step (2) is Cu, M n
、 Z ΙΊ 、 P b 、 A g、 B i 、 C o、 F e、 N i および Cからなる群 より選ばれる少なく とも 1種の元素を含み、 反応温度が 1 0 0〜 3 0 0 °Cの範囲である上記 [ 9 ] 〜 [ 1 2 ] のいずれかに記載のフル ォロエタンの製造方法。 , Z 、, Pb, Ag, Bi, Co, Fe, Ni, and C, containing at least one element selected from the group consisting of a reaction temperature of 100 to 300 ° C The method for producing fluoroethane as described in any one of [9] to [12] above, which is in the range of
[ 1 4 ] 前記 ( 2 ) の工程に用いるフッ素化触媒が活性炭に担持 された担持型触媒である上記 [ 9 ] 〜 [ 1 3 ] のいずれかに記載の フルォロェ夕ンの製造方法。 [14] The fluorination catalyst used in the step (2) is a supported catalyst supported on activated carbon, according to any one of the above [9] to [13] Fluoroe evening production method.
本発明によれば、 安定剤および/または水分を含む塩化工チルか ら簡便な方法で効率よく安定剤および水分を除去し、 触媒の劣化等 を防止して、 経済的にフルォロェタンを製造することができ、 得ら れたフルォロェタンは低温用冷媒ゃエッチングガスと して使用する ことができる。 発明を実施するための最良の形態  According to the present invention, it is possible to efficiently remove a stabilizer and moisture from a stabilizer and / or water-containing chlorinated chloride by a simple method, prevent deterioration of the catalyst, etc., and economically produce fluoretane. The obtained fluorethan can be used as a low temperature refrigerant or etching gas. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい態様について詳しく説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail.
前述したように、 塩化工チルの製造方法としては、 例えば、 ( 1 ) エチルアルコールと塩化亜鉛の混合物に塩化水素を熱時吹き込む 方法や、 ( 2 ) 塩化アルミニウムを触媒と してエチレンに塩化水素 を付加する方法等が知られているが、 前述の理由等により数百質量 P p m程度の安定剤が含まれており、 安定剤は微量であっても触媒 活性劣化原因となるため、 フッ素化反応を行なう前にこれをできる 限り低減することが望ましい。  As described above, for example, (1) a method in which hydrogen chloride is blown into a mixture of ethyl alcohol and zinc chloride when heated, and (2) hydrogen chloride into ethylene using aluminum chloride as a catalyst. However, for the reasons mentioned above, a stabilizer of about several hundred mass P pm is included. It is desirable to reduce this as much as possible before conducting the reaction.
本発明者は、 操作が容易で経済的で工業的に実施可能である塩化 ェチル中に含まれる安定剤を低減する方法を開発すべく鋭意検討し た結果、 安定剤を含む塩化工チルを平均細孔径が 3 〜 1 1 Aである ゼォライ トおよび または平均細孔径が 3 . 4〜 1 1 Aである炭素 質吸着剤と液相で接触させることにより、 安定剤の量を低減するこ とができることを見出した。  As a result of intensive studies to develop a method for reducing stabilizers contained in cetyl chloride that is easy to operate, economical, and industrially feasible, the present inventor obtained an average of chlorinated chills containing stabilizers. The amount of stabilizer can be reduced by contacting the zeolite with a pore size of 3 to 11 A and / or a carbonaceous adsorbent with an average pore size of 3.4 to 11 A in the liquid phase. I found out that I can do it.
本発明の塩化工チルの精製方法に用いられるゼォライ トは、 3 〜 1 1 Aの平均細孔径、 好ましく は 3 . 4 〜 1 0 Aの平均細孔径を有 するものであるのがよい。 平均細孔径が 1 1 Aより大きいゼォライ 卜では、 塩化工チルの吸着量が多くなり、 平均細孔径が 3 Aより小 さいゼォライ トは安定剤を吸着する能力が小さくなり、 好ましくな い。 The zeolite used in the method for purifying chlorinated chloride according to the present invention should have an average pore diameter of 3 to 11 A, preferably 3.4 to 10 A. Zeolite 卜 with an average pore size greater than 11 A increases the adsorption amount of chlorinated chloride, and zeolite with an average pore size less than 3 A has a smaller ability to adsorb stabilizers. Yes.
また、 ゼォライ トの S i (シリカ) A 1 (アルミニウム) 比は 2以下であることが好ま しく、 S i ZA l 比が 2より大きい場合に は、 安定剤が選択的に吸着されないことがある。 ゼォライ トと して は、 モレキュラーシーブス 4 A (M S— 4 A) 、 モレキュラーシー ブス 5 A (M S— 5 A) 、 モレキュラーシーブス 1 O A (M S— 1 O A) およびモレキュラーシーブス 1 3 X ( S - 1 3 X) からな る群より選ばれる少なく とも 1種であるのが好ましい。 これらのゼ ォライ トを用いることにより、 塩化ェチル中の水分も同時に低減す ることができる。 水分を含有するまま加熱すると加水分解を起こす ため、 水分も低減することが好ましく、 具体的には塩化ェチル中の 水分は 2 0質量 p p m以下が好ましい。  In addition, it is preferable that the zeolite has a Si (silica) A 1 (aluminum) ratio of 2 or less, and when the S i ZA l ratio is greater than 2, the stabilizer may not be selectively adsorbed. . Zeolites include molecular sieves 4 A (MS—4 A), molecular sieves 5 A (MS—5 A), molecular sieves 1 OA (MS— 1 OA) and molecular sieves 1 3 X (S-1 3 X) is preferably at least one selected from the group consisting of By using these zeolites, the water content in ethyl chloride can be reduced at the same time. When heated while containing water, hydrolysis occurs, so it is preferable to reduce the water content. Specifically, the water content in ethyl chloride is preferably 20 mass ppm or less.
炭素質吸着剤は、 3. 4〜 1 1 Aの平均細孔径を有するものがよ く、 平均細孔径が 1 1 Aより大きい炭素質吸着剤は、 塩化工チルの 吸着量が多くなり、 平均細孔径が 3. 4 Aより小さい炭素質吸着剤 は安定剤を吸着する能力が小さくなり、 好ましくない。 炭素質吸着 剤としては、 モレキュラーシービング力一ボン 4 Aおよび Zまたは モレキュラーシービングカーボン 5 Aが好ましい。  Carbonaceous adsorbents preferably have an average pore diameter of 3.4 to 11 A, and carbonaceous adsorbents with an average pore diameter greater than 11 A increase the amount of adsorption of chlorinated chloro chloride. A carbonaceous adsorbent with a pore size smaller than 3.4 A is not preferred because it reduces the ability to adsorb stabilizers. As the carbonaceous adsorbent, molecular sieve force 1 Bon 4 A and Z or molecular sieve carbon 5 A is preferable.
吸着剤の再生を考慮するとゼォライ 卜と炭素質吸着剤はそれぞれ 単独で使用することが好ましいが、 混合して使用することもできる 。 ゼォライ トと炭素質吸着剤を混合する割合は、 特に制限はないが 、 塩化ェチル中の水分をも低減することを考慮すると、 混合比はゼ ォライ 卜に富む比率が好ましい。  Considering regeneration of the adsorbent, it is preferable to use the zeolite and the carbonaceous adsorbent alone, but they can also be used in combination. The mixing ratio of the zeolite and the carbonaceous adsorbent is not particularly limited, but considering that the moisture in the ethyl chloride is also reduced, the mixing ratio is preferably a ratio rich in zeolite.
安定剤を含む塩化ェチルを、 ゼォライ 卜および または炭素質吸 着剤と液相で接触させる方法としては、 回分式または連続式の公知 の方法を用いることができる。 工業的には吸着剤を固定床にて連続 的に流通させる方法が好ましく、 液体基準の空間速度 (L H S V) は安定剤の濃度および塩化工チルの処理量により適宣選択できるがAs a method of bringing ethyl chloride containing a stabilizer into contact with zeolite and / or a carbonaceous adsorbent in a liquid phase, a known batch or continuous method can be used. Industrially, the adsorbent is preferably distributed continuously on a fixed bed, and the liquid-based space velocity (LHSV) Can be selected appropriately depending on the stabilizer concentration and the amount of chlorinated chill.
、 通常は 1 〜 8 0 H r — 1 の範囲が好ましい。 また、 塩化工チル中 の安定剤を低減する方法を工業的に実施するためには、 吸着塔を 2 塔設け、 2塔を切り替えて連続的に精製を行なう方法を用いてもよ い。 Usually, the range of 1 to 80 H r -1 is preferable. In addition, in order to industrially implement a method for reducing the stabilizer in chloro chloride, two adsorption towers may be provided, and two towers may be switched to perform continuous purification.
塩化工チルを液相で精製する際の処理温度としては、 一 2 0〜 + 6 0 °Cの範囲が好ましく、 0〜 5 0 °Cの範囲がより好ましい。 処理 温度が 6 0 °Cより高いと、 装置の加熱や耐圧等の点で設備費が増大 することや分解反応等が起こることがあり、 — 2 0でより低い温度 では、 冷却設備等が必要となることがあり、 好ましくない。 また、 圧力は 0〜 I M P aの範囲が好ましく、 より好ましく は 0〜 0 . 6 M P aの範囲がよい。 圧力が 1 M P aより大きい場合には、 設備の 耐圧等の点で経済的でない。  The treatment temperature when purifying chloro chloride in the liquid phase is preferably in the range of 120 to + 60 ° C, more preferably in the range of 0 to 50 ° C. If the treatment temperature is higher than 60 ° C, the equipment cost may increase in terms of the heating and pressure resistance of the equipment, decomposition reactions, etc. may occur. This is not preferable. The pressure is preferably in the range of 0 to I M Pa, more preferably in the range of 0 to 0.6 M Pa. When the pressure is greater than 1 M Pa, it is not economical in terms of the pressure resistance of the equipment.
以上に説明したように、 本発明の精製方法を用いることにより、 塩化ェチル中に含まれる安定剤および Zまたは水分を低減すること ができる。 本発明の精製方法は、 特に、 安定剤がニ トロ基または水 酸基を有する化合物である場合に好ましく用いられ、 ニ トロ基を有 する化合物としては、 ニ トロメタン、 ニ トロェ夕ン、 ニ トロク レゾ —ル、 ニ トロ トルエンおよびニ トロフエノール等が挙げられる。 ま た、 水酸基を有する化合物としては、 フエノール、 ク レゾール、 2 , 6 —ジ一ブチルー p —ク レゾールおよびアミ ノメチルフエノール 等が挙げられる。  As described above, by using the purification method of the present invention, the stabilizer and Z or moisture contained in the ethyl chloride can be reduced. The purification method of the present invention is particularly preferably used when the stabilizer is a compound having a nitro group or a hydroxyl group, and examples of the compound having a nitro group include nitromethane, nitrogen, and nitrogen. Examples thereof include resole, nitrotoluene and nitrophenol. Examples of the compound having a hydroxyl group include phenol, cresol, 2,6-dibutyl-p-cresol and aminomethylphenol.
安定剤を含む塩化工チルを前記のゼォライ 卜および/または前記 の炭素質吸着剤と液相で、 前記の条件下で接触させ、 安定剤の総量 が 2 0質量 p p m以下に低減された塩化工チルを得ることができる 。 好ましく は、 安定剤の総量が 1 0質量 p p m以下に低減された塩 化工チル、 さ らに安定剤の総量が 5質量 p p m以下に低減された塩 化ェチルを得ることも可能である。 The chlorinated chill containing a stabilizer is brought into contact with the above zeolite and / or the above carbonaceous adsorbent in the liquid phase under the above conditions, and the total amount of the stabilizer is reduced to 20 mass ppm or less. You can get a chill. Preferably, the salt is reduced to 10 mass ppm or less in the total amount of the stabilizer, and further reduced to 5 ppm or less in the total amount of the stabilizer. It is also possible to obtain a chemical ester.
次に、 本発明のフルォロェタンの製造方法について説明する。 本発明のフルォロェタンの製造方法は 、 次の 3つの工程を含むこ とを特徴とする  Next, the manufacturing method of the fluoretane of this invention is demonstrated. The method for producing fluoretane of the present invention comprises the following three steps:
( 1 ) 前記の精製方法により粗塩化工チル中の安定剤および/ま たは水分を低減する工程、  (1) a step of reducing the stabilizer and / or moisture in the crude chlorinated chill by the above purification method;
( 2 ) ( 1 ) の工程を経た塩化ェチルを、 フッ素化触媒の存在下 に 、 気相で、 フッ化水素と反応させて主としてフルォロェタンを得 る工程、  (2) a step of reacting ethyl chloride which has undergone the step of (1) with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst to mainly obtain fluorethane.
( 3 ) ( 2 ) で得られたフルォロェ夕ンを含む混合ガスを分離し (3) The mixed gas containing the fluoroeluene obtained in (2) is separated.
、 未反応物の少なく とも一部を反応工程 ( 2 ) に循環する工程。 The step of circulating at least a part of the unreacted material to the reaction step (2).
( 1 ) の工程を経て得られた塩化ェチルは、 前記ニ トロ基または 水酸基を有する化合物の総量が 2 0質量 p p m以下に低減された塩 化工チルであることが好ましく、 さ らに好ましく は前記ニ トロ基ま たは水酸基を有する化合物の総量が 1 0質量 p p m以下に低減され ていることがよく、 特に好ましく は前記ニ トロ基または水酸基を有 する化合物の総量が 5質量 p p m以下に低減されていることがよい 。 ニ トロ基および水酸基を有する化合物の総量が 2 0質量 p p m以 下に低減された塩化工チルを原料と してフルォロェタンを製造する と、 製造工程で使用する触媒の長寿命化が図れ、 より効率的かつ経 済的に主と してフルォロェタンを含む混合物を製造することができ る。  The ethyl chloride obtained through the step (1) is preferably a chloride chill in which the total amount of the compound having a nitro group or a hydroxyl group is reduced to 20 mass ppm or less, and more preferably The total amount of the compound having a nitro group or a hydroxyl group is preferably reduced to 10 mass ppm or less, and particularly preferably the total amount of the compound having a nitro group or a hydroxyl group is reduced to 5 mass ppm or less. Good to have. Producing fluoretane from chlorinated chills with the total amount of compounds having a nitro group and a hydroxyl group reduced to 20 mass ppm or less can increase the life of the catalyst used in the production process and increase efficiency. It is possible to produce a mixture mainly containing fluoretane, both economically and economically.
製造ェ程で使用する触媒は、 C u 、 M n 、 Z n 、 P b 、 A g 、 B i 、 C o 、 F e 、 N i およびじからなる群より選ばれる少なく とも The catalyst used in the manufacturing process is at least selected from the group consisting of Cu, Mn, Zn, Pb, Ag, Bi, Co, Fe, Ni and the same.
1種の元素を含むフッ素化触媒であつて、 これらは担持型触媒また は塊状型触媒であるのが好ましい 例えば、 一般にハロゲン交換反 Fluorination catalysts containing one element, which are preferably supported catalysts or bulk catalysts, for example generally halogen exchange reactions
 Two
応に用いられる触媒である 価の酸化ク ロムを主成分とする塊状 型触媒や担持型触媒 (例えば、 担体としてアルミナ、 フッ化アルミ 等を用いたもの) を本反応に用いた場合、 前述のごとく脱ハロゲン 反応や脱水素反応等によりアセチレンやエチレンが生成し、 安全性 や経済上の問題があるため、 好ましくない。 本発明では、 特に活性 炭を担体に用いてこれに上記の金属を担持した担持型触媒を用いる のが好ましく、 金属の担持率としては 1 質量%以上が好ましい。 か かる触媒の調製例としては、 通常の方法が適用できるが、 一例を示 すと、 活性炭に塩化コバルト水溶液を含浸したのち、 乾燥し、 不活 性ガス中で熱処理を行なって調製し、 反応を行なう前にフッ化水素 で活性化するのが好ましい。 反応温度は 1 0 0〜 3 5 0 °Cが好まし く 、 1 5 0〜 3 0 0 °Cがより好ましい。 反応温度が 3 5 0 °Cより高 いと副生物であるアセチレン等の生成量が増大することがあり、 1 0 0 °Cより低いと目的とする反応が進行しないことがある。 反応圧 力は 0〜 1 M P aが好ましく 、 I M P a を超えると装置の耐圧等の 設備費増大で経済的でない。 フッ化水素と塩化工チルのモル比 (H F / C H 3 C H 2 C 1 ) は 3〜 2 0が好ましく、 2 0 を超えると循環 フッ化水素が多くなつて経済的でなく、 3未満では触媒寿命が短く なつて経済的でない。 The main component is lumped chromic oxide, which is the catalyst used for this purpose. When a type catalyst or a supported catalyst (for example, one using alumina, aluminum fluoride, etc. as a carrier) is used in this reaction, acetylene or ethylene is produced by the dehalogenation reaction or dehydrogenation reaction as described above. This is not desirable because of problems in terms of sex and economy. In the present invention, it is particularly preferable to use a supported catalyst in which activated charcoal is used as a carrier and the above-mentioned metal is supported thereon, and the metal loading is preferably 1% by mass or more. As an example of preparing such a catalyst, the usual method can be applied. For example, activated carbon is impregnated with an aqueous solution of cobalt chloride, dried, heat-treated in an inert gas, and then reacted. It is preferable to activate with hydrogen fluoride before carrying out. The reaction temperature is preferably from 100 to 350 ° C, more preferably from 150 to 300 ° C. When the reaction temperature is higher than 350 ° C, the amount of acetylene or the like that is a by-product may increase, and when it is lower than 100 ° C, the target reaction may not proceed. The reaction pressure is preferably 0 to 1 MPa, and if it exceeds IMP a, equipment costs such as the pressure resistance of the apparatus increase, which is not economical. The molar ratio of hydrogen fluoride to acetyl chloride (HF / CH 3 CH 2 C 1) is preferably 3 to 20; if it exceeds 20, it is not economical due to the increased amount of hydrogen fluoride. It is not economical because its life is short.
前記の反応工程で得られたフルォロェタンを含む混合物は蒸留精 製工程に導かれ、 蒸留精製工程では主として塩化水素とフルォロェ タンの少なく とも 9 0 %以上が低沸留分と して塔頂から分離され、 主として未反応のフッ化水素と塩化工チルの少なく とも 9 5 %が高 沸留分として塔底から分離される。 塔頂から分離された塩化水素と フルォロェタンは別の蒸留塔にて分離され、 塩化水素は別の用途で 使用され、 目的物のフルォロェタンは精製され、 製品として回収さ れる。 フルォロェタンの精製には、 例えば、 モレキュラーシ一ブス や炭素質吸着剤を用いて水分や微量の有機不純物等を除去する工程 を設けるのが好ましい。 一方、 塔底から分離されたフッ化水素と塩 化工チルの少なく とも一部はそのまま反応工程に循環して再利用す るのが経済的である。 The mixture containing fluorethane obtained in the above reaction step is led to a distillation purification step, and at least 90% or more of hydrogen chloride and fluorethane are separated from the top of the column as a low boiling fraction in the distillation purification step. At least 95% of the unreacted hydrogen fluoride and acetyl chloride are separated from the bottom as a high boiling fraction. Hydrogen chloride and fluoretane separated from the top of the column are separated in a separate distillation tower, hydrogen chloride is used for other purposes, and the target fluoretane is purified and recovered as a product. For purification of fluoretane, for example, a process of removing moisture, trace organic impurities, etc. using molecular sieves or carbonaceous adsorbents. Is preferably provided. On the other hand, it is economical to recycle and reuse at least a part of the hydrogen fluoride and chloride chill separated from the tower bottom as they are in the reaction process.
以下、 実施例および比較例により本発明をより詳細に説明するが 、 本発明はこれらの実施例に限定されるものではない。  EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.
原料例 1  Raw material example 1
市販の塩化工チルをガスクロマ トグラフ (カラム : キヤビラリ一 式/ F I D) で分析したところ、 安定剤と してニ トロメタン (C H 3 N 02) が 2 1 2質量 p p m含まれ、 また水分計 (カールフイ シャ 一型) にて水分を分析したところ 5 2質量 p p m含まれており、 塩 化工チルの純度は 9 9. 9 5質量%であった。 A commercially available chlorinated chill was analyzed with a gas chromatograph (column: complete set of pills / FID). As a stabilizer, nitrogen (CH 3 N 0 2 ) contained 2 1 2 mass ppm, and a moisture meter The moisture content was analyzed by Sha type 1) and found to contain 52 mass ppm, and the purity of the salt chill was 99.95 mass%.
原料例 2  Raw material example 2
市販の塩化工チルを原料例 1 と同様にして分析したところ、 安定 剤としてク レゾールが含まれ、 その含有量は 1 3 8質量 p p mであ り、 また水分が 5 9質量 p p m含まれており、 塩化工チルの純度は 9 9. 9 6質量%であった。  Analysis of commercially available chloro chloride in the same manner as in raw material example 1 revealed that cresol was included as a stabilizer, its content was 1 38 mass ppm, and moisture was 59 mass ppm. The purity of chlorinated chill was 99.96 mass%.
触媒例 1  Catalyst example 1
触媒担体として、 活性炭 (クラレケミカル (株) 製、 クラレコー ル 4 G A) を使用。  Activated carbon (Kuraray Chemical Co., Ltd., Kuraray Call 4 GA) is used as the catalyst carrier.
塩化第 2鉄 ( F e C l 3 ' 6 H20) 3 2. 0 7 gに純水 2 8. 5 gを加えて、 湯浴上で 5 0〜 6 0 °Cに加熱して溶解し、 溶液を室温 まで冷却した。 これに、 前処理として 1 2 0 °Cで 3時間真空乾燥処 理を行なった前記の活性炭 5 7. 9 7 gを浸潰して、 活性炭に前記 の溶液を全量吸収させた。 次いで、 濡れた状態の活性炭を 9 0での 湯浴上で乾燥し、 乾固した。 その後、 乾固した触媒を乾燥器中で 1 0 0 °Cで 3時間乾燥した。 次に、 触媒をイ ンコネル製反応器に充填 し、 窒素ガスを流しながら温度を 2 3 0 °Cに保持し、 窒素希釈した フッ化水素 ( H F ) 気流下で、 次いで 1 0 0 %フッ化水素気流下で フッ素化処理 (触媒の活性化) を行い、 触媒の調製を行った。 Ferric chloride (FeCl 3 '6 H 2 0) 3 2. Add 58.5 g of pure water to 7 g and heat to 50-60 ° C in a hot water bath to dissolve The solution was cooled to room temperature. To this, 57.977 g of the activated carbon that had been vacuum-dried at 120 ° C. for 3 hours as a pretreatment was crushed to absorb the entire amount of the solution. The wet activated carbon was then dried on a hot water bath at 90 and dried. Thereafter, the dried catalyst was dried in a dryer at 100 ° C. for 3 hours. Next, the catalyst was charged into an Inconel reactor, and the temperature was maintained at 230 ° C. while flowing nitrogen gas, and diluted with nitrogen. The catalyst was prepared by fluorination treatment (activation of the catalyst) under a hydrogen fluoride (HF) stream and then under a 100% hydrogen fluoride stream.
触媒例 2  Catalyst example 2
触媒担体と して、 活性炭 (クラレケミカル (株) 製、 クラレコー ル 4 G A) を使用。  Activated carbon (Kuraray Chemical Co., Ltd., Kuraray Call 4 GA) is used as the catalyst carrier.
塩化第 2鉄 ( F e C l 3 * .6 H2〇) 2 4. 2 8 gと塩化第 2銅 ( C u C 1 2 ) 8. 1 2 gに純水 2 8. 5 gを加えて、 湯浴上で 5 0 〜 6 0 °Cに加熱して溶解し、 溶液を室温まで冷却した。 これに、 触 媒例 1 に示した前処理を施した活性炭 5 7. 9 7 gを浸潰して、 活 性炭に前記の溶液を全量吸収させた。 次いで、 濡れた状態の活性炭 を 9 0 °Cの湯浴上で乾燥し、 乾固した。 その後、 乾固した触媒を乾 燥器中で 1 0 0 °Cで 3時間乾燥した。 次に、 触媒をイ ンコネル製反 応器に充填し、 触媒例 1 と同一の条件および操作で触媒の活性化を 行い、 触媒の調製を行った。 Add 28.5 g of pure water to ferric chloride (FeCl 3 * .6 H 2 0) 2 4. 28 g and cupric chloride (Cu C 1 2 ) 8.1 2 g The solution was heated to 50 to 60 ° C. on a hot water bath to dissolve, and the solution was cooled to room temperature. To this, 57.977 g of the activated carbon which had been subjected to the pretreatment shown in Catalyst Example 1 was crushed, and the activated charcoal absorbed the entire amount of the solution. Next, the activated carbon in a wet state was dried on a 90 ° C. hot water bath and dried. Thereafter, the dried catalyst was dried in a dryer at 100 ° C. for 3 hours. Next, the catalyst was filled in an Inconel reactor, and the catalyst was activated under the same conditions and operation as in Catalyst Example 1 to prepare a catalyst.
実施例 1  Example 1
内容積 2 0 0 m l のステンレス製シリ ンダーに、 ゼォライ ト [モ レキユラーシーブス 5 A (ユニオン昭和 (株) 製 : 平均細孔径 4. 2人、 S i ZA 1 比 = 1 ) ] を 3 0 g充填し、 真空乾燥後、 シリ ン ダーを冷却しながら、 原料例 1 に示した塩化工チルを 1 0 0 g充填 し、 温度を 2 3 °C (室温) に保ちながら時々撹拌し、 約 6時間後に 液相の一部を採取し、 前記のガスク ロマ トグラフィーおよび水分計 にて分析した。  Zeolite [Molecular Sieves 5 A (manufactured by Union Showa Co., Ltd .: average pore size 4.2, Si ZA 1 ratio = 1)] on a stainless steel cylinder with an internal volume of 200 ml After filling with vacuum and vacuum drying, while cooling the cylinder, it was charged with 100 g of chlorinated chill shown in Raw material example 1 and stirred occasionally while maintaining the temperature at 23 ° C (room temperature). After 6 hours, a part of the liquid phase was collected and analyzed with the gas chromatography and moisture meter.
その結果、 塩化ェチル中の安定剤であるニ トロメタンは 2質量 p p mに低減され、 また含まれる水分は 2質量 p p m以下であること が認められた。  As a result, it was confirmed that nitromethane, which is a stabilizer in ethyl chloride, was reduced to 2 mass ppm, and the water content was 2 mass ppm or less.
実施例 2  Example 2
内容積 2 0 0 m l のステンレス製シリ ンダーに、 炭素質吸着剤 [ モレキュラーシービングカーボン 5 A (武田薬品工業 (株) 製 : 平 均細孔径 5 A) ] を 2 0 g充填し、 真空乾燥後、 シリ ンダーを冷却 しながら原料例 2 に示した塩化工チルを 8 0 g充填し、 温度を 2 3 °C (室温) に保ちながら時々撹拌し、 約 5時間後に液相の一部を採 取し、 前記のガスクロマ トグラフィーにて分析した。 To a 200 ml stainless steel cylinder, add a carbonaceous adsorbent [ 20 g of molecular sieve carbon 5 A (manufactured by Takeda Pharmaceutical Co., Ltd .: average pore diameter 5 A)] is filled, vacuum dried, and the chilled chill shown in raw material example 2 is cooled while cooling the cylinder. 80 g was charged and stirred occasionally while maintaining the temperature at 23 ° C. (room temperature). After about 5 hours, a part of the liquid phase was taken and analyzed by gas chromatography.
その結果、 塩化ェチル中の安定剤であるク レゾールは 3質量 p p mに低減されたことが認められた。  As a result, it was confirmed that cresol, a stabilizer in ethyl chloride, was reduced to 3 mass ppm.
実施例 3  Example 3
内容積 2 0 0 m l のステンレス製シリ ンダーに、 ゼォライ ト [モ レキユラーシーブス 1 3 X (ユニオン昭和 (株) 製 : 平均細孔径 1 0 人、 S i ZA l 比 = 0. 8 1 ) ] 1 5 g と実施例 2 に記載したモ レキユラーシービングカーボン 5 Aを 1 0 g混合して充填し、 真空 乾燥後、 シリ ンダーを冷却しながら原料例 1 に示した塩化工チルを 1 0 0 g充填し、 温度を 2 4で (室温) に保ちながら時々撹拌し、 約 6時間後に液相の一部を採取し、 前記のガスクロマ トグラフィー にて分析した。  Zeolite [Molecular Sieves 13 X (Made by Union Showa Co., Ltd .: average pore size 10 people, Si ZA l ratio = 0.81)] in a stainless steel cylinder with an internal volume of 200 ml 1 5 g and 10 g of the molecular sieve carbon 5 A described in Example 2 were mixed and filled. After vacuum drying, the chloride chill shown in Example 1 of raw material was cooled while cooling the cylinder. The mixture was charged with 0 g, stirred occasionally while maintaining the temperature at 24 (room temperature), and after about 6 hours, a part of the liquid phase was collected and analyzed by the gas chromatography.
その結果、 塩化ェチル中の安定剤であるニトロメタンは 3質量 p p mに低減されたことが認められた。  As a result, it was confirmed that nitromethane, a stabilizer in ethyl chloride, was reduced to 3 mass ppm.
比較例 1  Comparative Example 1
吸着剤として炭素質吸着剤 [活性炭 : 粒状白さぎ K L (武田薬品 工業 (株) 製 : 平均細孔径 3 5 A) ] を 2 0 g充填した以外は実施 例 2 と同一の操作および条件で処理し、 分析を行った。  The same operation and conditions as in Example 2 except that 20 g of carbonaceous adsorbent [activated carbon: granular white sword KL (manufactured by Takeda Pharmaceutical Co., Ltd .: average pore diameter 3 5 A)] was used as the adsorbent. Processed and analyzed.
その結果、 塩化ェチル中の安定剤であるク レゾ一ルは 1 2 8質量 p p mであり、 低減効果はほとんど認められなかった。  As a result, cresol, a stabilizer in ethyl chloride, had a mass of 1 28 mass pm, and almost no reduction effect was observed.
実施例 4  Example 4
内容積 2 Lのステンレス製シリ ンダーに前記のモレキュラーシ一 ブス 1 3 Xを 1 . 9 L充填し、 原料例 1 に示した塩化工チルを 2 3 で、 圧力 0. 2 M P aの条件下に液相で 2 L / h rの線速で連続供 給した。 供給開始後、 約 3時間後の出口液中の分析を行ったところ 、 安定剤であるニ トロメタンは 2質量 p p mに低減され、 水分も 2 質量 P P m以下であった。 この出口液を別容器に捕集した。 Fill the stainless steel cylinder with an internal volume of 2 L with 1.9 L of the above molecular sieve 1 3 X, and add 2 3 3 Then, continuous supply was performed at a linear velocity of 2 L / hr in the liquid phase under a pressure of 0.2 MPa. When analysis was performed in the outlet liquid about 3 hours after the start of supply, the stability of nitromethane was reduced to 2 mass ppm, and the water content was 2 mass PPm or less. This exit liquid was collected in a separate container.
実施例 5  Example 5
内径 1イ ンチ、 長さ l mのイ ンコネル 6 0 0型反応器に触媒例 1 で示した触媒 6 0 m l を充填し、 窒素ガスを流しながら温度 1 8 0 °C、 圧力 0. 2 M P aに保持し、 次ぃでH Fを 5 5. 3 8 N L / h rで供給し、 窒素ガスの供給を停止した。 その後、 実施例 4で得ら れた塩化工チルを 4. 6 2 N LZ h rで供給し、 反応を開始した。 反応開始後、 約 6時間後に出口ガス中の酸分をアルカ リ水溶液で洗 浄し、 ガスクロマ トグラフィーにて分析した。 結果を下記に示す。 C H3 C H2 F 1 9. 2 2 4 7 C H≡ C H 0. 0 5 2 6 C H3 C H2 C 1 8 0. 7 1 7 5 その他 0. 0 0 5 2 Inconel with a diameter of 1 inch and a length of lm is filled with 60 ml of the catalyst shown in Catalyst Example 1, and the temperature is 180 ° C and the pressure is 0.2 MPa while flowing nitrogen gas. Then, HF was supplied at 5 5. 3 8 NL / hr, and the supply of nitrogen gas was stopped. Thereafter, the chilled chilly chloride obtained in Example 4 was supplied at 4.6 2 N LZ hr to start the reaction. About 6 hours after the start of the reaction, the acid content in the outlet gas was washed with an alkaline aqueous solution and analyzed by gas chromatography. The results are shown below. CH 3 CH 2 F 1 9. 2 2 4 7 CH≡ CH 0. 0 5 2 6 CH 3 CH 2 C 1 8 0. 7 1 7 5 Other 0. 0 0 5 2
(単位 : v o 1 % ) その後、 反応を継続し、 約 1 0 0時間後および 2 0 0時間後に前 記と同様に分析したところ、 塩化工チルの転化率、 フルォロェタン の収率、 選択率ともほとんど上記の結果と変わらず、 触媒の劣化は ほとんど認められなかつた。  (Unit: vo 1%) After that, the reaction was continued and analyzed in the same manner as described above after about 100 hours and 20:00 hours. As a result, conversion of chlorinated chill, yield of fluoretane, and selectivity were both Almost the same result as above, almost no deterioration of the catalyst was observed.
実施例 6  Example 6
触媒として触媒例 2で示した触媒 8 0 m l を充填した以外は実施 例 5 と同一の操作および条件で反応を行い、 反応開始後、 約 5時間 後に出口ガスをアルカ リ水溶液で洗浄し、 ガスクロマ トグラフィー にて分析した。 結果を下記に示す。  The reaction was carried out under the same procedures and conditions as in Example 5 except that 80 ml of the catalyst shown in Catalyst Example 2 was charged as the catalyst. After the reaction started, the outlet gas was washed with an alkaline aqueous solution about 5 hours later. Analyzed by totography. The results are shown below.
C H3 C H2 F 1 9. 4 2 6 1 C H≡ C H 0. 0 4 8 7 C H3 C H2 C 1 8 0. 5 1 9 7 その他 0. 0 0 5 5 CH 3 CH 2 F 1 9. 4 2 6 1 CH≡ CH 0. 0 4 8 7 CH 3 CH 2 C 1 8 0. 5 1 9 7 Other 0. 0 0 5 5
(単位 : v o 1 % ) 比較例 2 (Unit: vo 1%) Comparative Example 2
内径 1イ ンチ、 長さ l mのイ ンコネル 6 0 0型反応器に触媒例 1 で示した触媒 6 0 m l を充填し、 窒素ガスを流しながら温度 1 8 0 で、 圧力 0. 2 M P aに保持し、 次ぃでH Fを 5 5. 3 8 N L / h rで供給し、 窒素ガスの供給を停止した。 その後、 原料例 1で示し た塩化ェチル (安定剤 : 2 1 2質量 p p m含有) を 4. 6 2 N L / h r で供給し、 反応を開始した。 反応開始後、 約 6時間後に出口ガ スをアルカ リ水溶液で洗浄し、 ガスクロマ トグラフィ一にて分析し た。 結果を下記に示す。  Inconel 60 inch reactor with inner diameter 1 inch and length lm is filled with 60 ml of the catalyst shown in Catalyst Example 1, at a temperature of 180 ° and a pressure of 0.2 MPa while flowing nitrogen gas. Then, HF was supplied at 5 5. 3 8 NL / hr, and the supply of nitrogen gas was stopped. Thereafter, ethyl chloride (stabilizer: containing 2 1 2 mass ppm) shown in Raw Material Example 1 was fed at 4.6 2 N L / hr to start the reaction. About 6 hours after the start of the reaction, the outlet gas was washed with an alkaline aqueous solution and analyzed by gas chromatography. The results are shown below.
C H3 C H2 F 1 9. 0 8 7 8 C H≡ C H 0. 0 5 4 6 C H3 C H2 C 1 8 0. 8 4 6 8 その他 0. 0 1 0 8 CH 3 CH 2 F 1 9. 0 8 7 8 CH≡ CH 0. 0 5 4 6 CH 3 CH 2 C 1 8 0. 8 4 6 8 Other 0. 0 1 0 8
(単位 : v o 1 %) さ らに反応を継続し、 約 1 0 0時間後に前記と同様に分析した。 結果を下記に示す。  (Unit: v o 1%) Further, the reaction was continued and analyzed in the same manner as described above after about 100 hours. The results are shown below.
C H 3 H 2 F 1 5 7 5 6 8 C H≡ C H 0. 0 4 7 8 C H 3 H 2 F 1 5 7 5 6 8 C H≡ C H 0. 0 4 7 8
C H 3 H 2 C 1 8 4 . 1 7 9 2 その他 0. 0 1 6 2 C H 3 H 2 C 1 8 4. 1 7 9 2 Other 0. 0 1 6 2
(単位 : V o 1 % ) 上記の結果から明らかなように、 触媒には安定剤による劣化が認 められる 産業上の利用可能性  (Unit: V o 1%) As can be seen from the above results, the catalyst is subject to degradation by stabilizers Industrial applicability
本発明は、 高純度のフルォロェタンを経済的に製造し、 得られた フルォロェタンを低温用冷媒ゃエッチングガスとして使用すること を可能にするので、 産業上有用である。  INDUSTRIAL APPLICABILITY The present invention is industrially useful because it enables economical production of high-purity fluoretane and uses the obtained fluoretane as a low-temperature refrigerant as an etching gas.

Claims

1 . 安定剤および または水分を含む粗塩化工チルを平均細孔径 が 3 〜 1 1 Aの範囲であるゼォライ トおよび Zまたは平均細孔径が1. Stabilizer and / or crude chlorinated chill containing water with an average pore size in the range of 3 to 11 A zeolite and Z or average pore size
3 . 4〜 1 1 Aの範囲である炭素質吸着剤と液相で接触させ、 粗塩 化工チル中に含まれる安定剤および または水分を低減させること 請 3.4 Contact with a carbonaceous adsorbent in the range of 4 to 11 A in the liquid phase to reduce the stabilizer and / or moisture contained in the crude salt chill.
を特徴とする塩化ェチルの精製方法。 A method for purifying ethyl chloride characterized by the following.
2 . 前記安定剤が二 ト □基または水酸基を有する化合物である請 求項 1 に記載の塩化工チルの精製方法。  2. The method for purifying chlorinated acetyl chloride according to claim 1, wherein the stabilizer is a compound having a 2 □□ group or a hydroxyl group.
3 . 前記ゼォライ トのンリカ/アルミニゥム ( S i Z A 1 ) 比が 3. The ratio of zeolite to aluminum / aluminum (S i Z A 1) ratio is
2以下である請求項 1 または 2 に記載の塩囲化ェチルの精製方法。 The method for purifying a salted ethyl ester according to claim 1 or 2, which is 2 or less.
4 . 前記ゼォライ トが 、 モレキュラーシ一ブス 4 A、 モレキユラ 4. The zeolite is molecular sieve 4 A, molecular
—シーブス 5 A、 モレキュラーシ一ブス 1 0 Aおよびモレキユラ一 シ一ブス 1 3 Xからなる群より選ばれる少なく とも 1種である請求 項 1 〜 3のいずれかに記載の塩化工チルの精製方法。 The method for purifying chlorinated chill according to any one of claims 1 to 3, wherein the purification method is at least one selected from the group consisting of Sieves 5A, Molecular Sieves 10A, and Molecular Sieves 13X. .
5 . 前記灰素質吸着剤が 、 モレ千ユラーシ一ビング力一ボン 4 A および Zまたはモレキュラーシービングカーボン 5 Aである請求項 5. The argillaceous adsorbent is molecular thousand scrubbing force bon 4 A and Z or molecular sieving carbon 5 A.
1 または 2 に記載の塩化ェチルの精製方法。 The method for purifying ethyl chloride according to 1 or 2.
6 . 安定剤および または水分を含む粗塩化工チルを前記ゼオラ ィ トおよび Zまたは炭素質吸着剤と接触させる温度が一 2 0 〜十 6 o °cの範囲である請求項 1 〜 5のいずれかに記載の塩化ェチルの精 製方法。  6. The temperature at which the crude chilled chloride containing stabilizer and / or moisture is brought into contact with the zeolite and Z or the carbonaceous adsorbent is in a range of 120 to 10 ° C. 2. A method for purifying ethyl chloride as described in 1.
7 . 安定剤および または水分を含む粗塩化工チルを前記ゼオラ ィ 卜および/または炭素質吸着剤と接触させる圧力が 0 〜 : 1 M P a の範囲である請求項 1 6のいずれかに記載の塩化ェチルの精製方 ii-。  7. The chlorination according to claim 16, wherein the pressure at which the crude chlorinated chill containing a stabilizer and / or water is brought into contact with the zeolite soot and / or the carbonaceous adsorbent is in a range of 0 to 1 MPa. Ethyl purification method ii-.
8 . 請求項 1 〜 7 のいずれかに記載の精製方法により得られる安 定剤および Zまたは水分が低減された塩化工チルを原料として用い ることを特徴とするフルォロェタンの製造方法。 8. A cheaper product obtained by the purification method according to any one of claims 1 to 7. A method for producing fluoretane, characterized in that it uses as a raw material a fixed agent and Z or chilled chilled chlorine.
9. 次の 3つの工程を含むことを特徴とするフルォロェタンの製 造方法。  9. A process for producing Fluoroetane, which comprises the following three steps.
( 1 ) 請求項 1〜 7のいずれかに記載の精製方法により粗塩化工 チル中の安定剤および または水分を低減する工程、  (1) A step of reducing the stabilizer and / or moisture in the crude chloride by the purification method according to any one of claims 1 to 7,
( 2 ) ( 1 ) の工程を経た塩化ェチルを、 フッ素化触媒の存在下 に 、 気相で、 フッ化水素と反応させて主としてフルォロェタンを得 る工程、  (2) a step of reacting ethyl chloride which has undergone the step of (1) with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst to mainly obtain fluorethane.
( 3 ) ( 2 ) で得られたフルォロェ夕ンを含む混合ガスを分離し (3) The mixed gas containing the fluoroeluene obtained in (2) is separated.
、 未反応物の少なく とも一部を反応工程 ( 2 ) に循環する工程。 The step of circulating at least a part of the unreacted material to the reaction step (2).
1 0. 前記 ( 1 ) の工程を経て塩化ェチル中に含まれる安定剤の 量が 2 0質量 ρ ρ m以下に低減された塩化工チルを用いて工程 ( 10. Process using the chlorinated chill in which the amount of the stabilizer contained in the ethyl chloride after the step (1) is reduced to 20 mass ρ ρ m or less.
2 ) を行う請求項 9 に記載のフルォロェ夕ンの製造方法。 The method for producing a fluore evening according to claim 9, wherein 2) is performed.
1 1. 前記 ( 1 ) の工程を経て塩化ェチル中に含まれる安定剤の 総量が 1 0質量 ρ ρ m以下に低減された塩化工チルを用いる請求項 1 1. The method according to claim 1, wherein the total amount of the stabilizer contained in the ethyl chloride after the step (1) is reduced to 10 mass ρ ρ m or less.
1 0に記載のフルォ □ェ夕ンの製造方法。 10. A method for producing Fluoro □ evening described in 10.
1 2. 前記 ( 1 ) の工程を経て塩化ェチル中に含まれる水分が 2 1 2. After the process (1), the moisture contained in ethyl chloride is 2
0質量 P p m以下に低減された塩化工チルを用いて工程 ( 2 ) を行 う請求項 9〜 1 1のいずれかに記載のフルォロェタンの製造方法。 The method for producing fluoretane according to any one of claims 9 to 11, wherein the step (2) is carried out using chlorinated chill reduced to 0 mass Ppm or less.
1 3. 前記 ( 2 ) の工程に用いるフッ素化触媒が、 C u、 M n、 1 3. The fluorination catalyst used in the step (2) is Cu, Mn,
Ζ n、 P b、 A g、 B i 、 C o、 F e、 N i および Cからなる群よ群 A group consisting of n, P b, A g, B i, Co, Fe, N i and C
Ό選ばれる少なく とち 1種の元素を含み、 反応温度が 1 0 0〜 3 0含 み Contains at least one element selected, and the reaction temperature ranges from 100 to 30
0 °Cの範囲である請求項 9〜 1 2のいずれかに記載のフルォロェ夕 ンの製造方法。 The method for producing a fluoroeluent according to any one of claims 9 to 12, which is in the range of 0 ° C.
1 4. 前記 ( 2 ) の工程に用いるフッ素化触媒が活性炭に担持さ れた担持型触媒である請求項 9〜 1 3のいずれかに記載のフルォロ エタンの製造方法。 1 4. The fluoro catalyst according to any one of claims 9 to 13, wherein the fluorination catalyst used in the step (2) is a supported catalyst supported on activated carbon. A method for producing ethane.
PCT/JP2005/016155 2004-09-16 2005-08-29 Method for purifying ethyl chloride and method for producing fluoroethane using same WO2006030656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535726A JP4953819B2 (en) 2004-09-16 2005-08-29 Method for purifying ethyl chloride and method for producing fluoroethane using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-269668 2004-09-16
JP2004269668 2004-09-16

Publications (1)

Publication Number Publication Date
WO2006030656A1 true WO2006030656A1 (en) 2006-03-23

Family

ID=36059911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016155 WO2006030656A1 (en) 2004-09-16 2005-08-29 Method for purifying ethyl chloride and method for producing fluoroethane using same

Country Status (3)

Country Link
JP (1) JP4953819B2 (en)
TW (1) TW200616930A (en)
WO (1) WO2006030656A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105594A (en) * 2018-05-07 2020-12-18 大金工业株式会社 Process for producing 1, 2-difluoroethylene and/or 1,1, 2-trifluoroethane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062652A (en) * 2020-09-11 2020-12-11 浙江嘉华化工有限公司 Method for refining chloroethane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504138A (en) * 1990-02-15 1993-07-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Halogen exchange fluorination
JPH05506017A (en) * 1990-03-20 1993-09-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Halogen exchange fluorination
JPH05286875A (en) * 1992-04-13 1993-11-02 Showa Denko Kk Method for removing stabilizer in trichloroethylene
JPH08310980A (en) * 1995-05-18 1996-11-26 Showa Denko Kk Halogenated hydrocarbon for fluorination reaction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2458819A (en) * 1944-09-23 1949-01-11 Standard Oil Dev Co Purifying alkyl halides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504138A (en) * 1990-02-15 1993-07-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Halogen exchange fluorination
JPH05506017A (en) * 1990-03-20 1993-09-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Halogen exchange fluorination
JPH05286875A (en) * 1992-04-13 1993-11-02 Showa Denko Kk Method for removing stabilizer in trichloroethylene
JPH08310980A (en) * 1995-05-18 1996-11-26 Showa Denko Kk Halogenated hydrocarbon for fluorination reaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105594A (en) * 2018-05-07 2020-12-18 大金工业株式会社 Process for producing 1, 2-difluoroethylene and/or 1,1, 2-trifluoroethane
CN112105594B (en) * 2018-05-07 2023-08-25 大金工业株式会社 Process for producing 1, 2-difluoroethylene and/or 1, 2-trifluoroethane

Also Published As

Publication number Publication date
JPWO2006030656A1 (en) 2008-05-15
JP4953819B2 (en) 2012-06-13
TW200616930A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
EP2496541B1 (en) Integrated process for fluoro-olefin production
EP2665696B1 (en) Methods of making 2,3,3,3-tetrafluoro-2-propene
JP2017036283A (en) Method for producing trans-1,3,3,3-tetrafluoro-propene
US20110077366A1 (en) Process for the manufacture of at least one ethylene derivative compound
US7208644B2 (en) Production and use of hexafluoroethane
KR20110022591A (en) Process for the manufacture of at least one ethylene derivative compound
JP2003533447A (en) Removal of (hydro) haloalkene impurities from product streams
KR960004870B1 (en) Process for the purification of 1,1,1,2-tetrafluoroethane
JP3516322B2 (en) Method for dehydrating 1,1,1,3,3-pentafluoropropane
JP2021504365A (en) High-purity 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244BB) manufacturing process
WO2006030656A1 (en) Method for purifying ethyl chloride and method for producing fluoroethane using same
JP7487195B2 (en) Process for neutralizing and removing HF from crude streams containing hydrochlorofluoroolefins - Patent Application 20070229633
KR100854983B1 (en) Method for purification of 1,1-dichloroethane and process for production of 1,1-difluoroethane using this method
KR100839063B1 (en) Purification method of, 1,1-difluoroethane
JPH0247967B2 (en)
WO2014185321A1 (en) Purification method for dichloromethane, and production method for difluoromethane using said purification method
JP4785532B2 (en) Production method of hydrofluorocarbon, its product and its use
JP2703188B2 (en) Method for purifying 1,1,1,2-tetrafluoroethane
CN100455555C (en) Purification method of, 1, 1-difluoroethane
JP4022974B2 (en) Method for producing chlorinated aromatic hydrocarbons
JP3822981B2 (en) Method for producing high purity carbon monoxide
JPH0499737A (en) Purification of 1,1-dichloro-1-fluoroethane
JP2005336164A (en) Method for purification of 1, 1-dichloroethane and process for production of 1, 1-difluoroethane using the method
JP5105672B2 (en) Method for purifying tetrachloroethylene and method for producing pentafluoroethane using the method
CN117425639A (en) Process for producing trifluoroethylene and recycling chlorotrifluoroethylene streams

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535726

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase