JPH05286875A - Method for removing stabilizer in trichloroethylene - Google Patents

Method for removing stabilizer in trichloroethylene

Info

Publication number
JPH05286875A
JPH05286875A JP4092939A JP9293992A JPH05286875A JP H05286875 A JPH05286875 A JP H05286875A JP 4092939 A JP4092939 A JP 4092939A JP 9293992 A JP9293992 A JP 9293992A JP H05286875 A JPH05286875 A JP H05286875A
Authority
JP
Japan
Prior art keywords
trichlene
stabilizer
reaction
trichloroethylene
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4092939A
Other languages
Japanese (ja)
Other versions
JP3180228B2 (en
Inventor
Kazuari Kaga
一有 加賀
Hiromoto Ono
博基 大野
Yasuaki Morito
康晶 森戸
Hidetoshi Nakayama
秀俊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP09293992A priority Critical patent/JP3180228B2/en
Publication of JPH05286875A publication Critical patent/JPH05286875A/en
Application granted granted Critical
Publication of JP3180228B2 publication Critical patent/JP3180228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To remove a stabilizer which is an aromatic compound having a hydroxyl group from trichloroethylene by bringing trichloroethylene into contact with a molecular sieve. CONSTITUTION:A stabilizer of an aromatic compound (e.g. phenol) having a hydroxyl group in trichloroethylene (trichlene) is removed by bringing the stabilizer into contact with a molecular sieve in a liquid phase. Trichlene is a raw material for producing 1,1,1,2-tetrafluoroethane useful as a substitute refrigerant for chlorofluorocarbon 12 widely used as a refrigerant for a car air conditioner and refrigerant which lately becomes a problem by breakage of ozone layer, etc. By the objective method, lowering of activity of a catalyst used in reaction of trichlene with HF can be prevented and the operation is made easy and industrially practicable, in comparison with a stabilizer removing method by fractional distillation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近時オゾン層破壊等で
問題となっているカーエアコン、冷蔵庫等の冷媒として
広く用いられるフロン−12の代替冷媒として注目され
ている1,1,1,2−テトラフルオロエタン(CF3
・CH2 FまたはHFC−134a)等の製造原料とし
て用いられるトリクロルエチレン(以下、CHCl=C
Cl2またはトリクレンと記す)中の安定剤の除去方法
に関する。
BACKGROUND OF THE INVENTION The present invention has been attracting attention as an alternative refrigerant to Freon-12, which is widely used as a refrigerant for car air conditioners, refrigerators and the like, which has recently become a problem due to ozone depletion. , 2-tetrafluoroethane (CF 3
-Trichlorethylene (hereinafter, CHCl = C) used as a manufacturing raw material such as CH 2 F or HFC-134a)
Cl 2 or trichlene)).

【0002】[0002]

【従来の技術】トリクレンの製造方法は、例えばエチレ
ンと塩素との塩素化反応および熱分解、精製工程等によ
り製造される。製造工程での安定性を確保するため安定
剤の添加が行われ、更に用途により安定性が求められ安
定剤が数百〜数千ppm 添加されるものが一般的であり、
用途としては金属洗浄用あるいは溶剤用が殆どであり、
有機フッ素化合物原料としての用途は、殆どなかった。
2. Description of the Related Art A method for producing trichlene is produced by, for example, a chlorination reaction of ethylene and chlorine, a thermal decomposition and a purification step. Stabilizers are added to ensure stability in the manufacturing process, and stability is generally required depending on the application, and it is common for stabilizers to be added in the range of several hundred to several thousand ppm.
Most of the uses are for metal cleaning or solvents,
There was almost no use as an organic fluorine compound raw material.

【0003】一方、HFC−134aを製造するには、
トリクレンとHFとを反応させる方法が考えられてい
る。この反応は1段では達成できず反応条件が異なる2
段の反応によって行われる。先ずトリクレンとHFを反
応させて1,1,1−トリフルオロ−2−クロロエタン
(以下CF3 CH2 ClまたはHCFC−133aと記
す)を生成せしめる第1段の反応と、HCFC−133
aとHFを反応させてHFC−134aを生成せしめる
第2段の反応が用いられる。これら第1段、第2段の反
応は下記(1)式および(2)式で表される。
On the other hand, in order to produce HFC-134a,
A method of reacting trichlene and HF has been considered. This reaction cannot be achieved in a single step and the reaction conditions are different. 2
It is carried out by the reaction of the stage. First, a reaction of the first stage in which trichlene and HF are reacted to produce 1,1,1-trifluoro-2-chloroethane (hereinafter referred to as CF 3 CH 2 Cl or HCFC-133a), and HCFC-133
A second stage reaction is used in which a and HF are reacted to produce HFC-134a. These first-stage and second-stage reactions are represented by the following equations (1) and (2).

【0004】 CCl2 =CHCl+3HF → CF3 CH2 Cl+2HCl (1) CF3 CH2 Cl+HF → CF3 CH2 F+HCl (2) 上記反応は、例えばアルミナ−クロミア触媒の存在下気
相で行われるが、その反応条件は異なり、(1)式の反
応においては、圧力4kg/cm2 G、温度250℃、
HF/トリクレンのモル比6、(2)式の反応において
は、圧力4kg/cm2 G、温度350℃、HF/HC
FC−133aのモル比4で行われる。
CCl 2 = CHCl + 3HF → CF 3 CH 2 Cl + 2HCl (1) CF 3 CH 2 Cl + HF → CF 3 CH 2 F + HCl (2) The above reaction is carried out in the gas phase in the presence of, for example, an alumina-chromia catalyst. The reaction conditions are different. In the reaction of the formula (1), the pressure is 4 kg / cm 2 G, the temperature is 250 ° C.,
In the reaction of HF / trichlene molar ratio 6, formula (2), pressure 4 kg / cm 2 G, temperature 350 ° C., HF / HC
It is carried out at a molar ratio of FC-133a of 4.

【0005】この工程において特に(1)式の反応原料
の1つであるトリクレン中の安定剤は触媒活性劣化の原
因となり、含有されないことが望ましい。しかしながら
トリクレン中に安定剤が含まれない場合、トリクレンは
安定性に欠け酸分の発生等の副反応が進行するため、有
機フッ素化合物原料としてのトリクレン中にも数十pp
mの分解による酸分等の発生を抑えるための安定剤が含
有されている。
In this step, particularly, the stabilizer in trichlene, which is one of the reaction raw materials of the formula (1), causes deterioration of catalytic activity and is preferably not contained. However, when a stabilizer is not contained in trichlene, trichlene lacks stability and side reactions such as generation of acid components proceed, so that tens of pp is included in trichlene as a raw material for an organic fluorine compound.
It contains a stabilizer for suppressing the generation of acid components due to the decomposition of m.

【0006】安定剤としては、水酸基を有する芳香族化
合物、例えばフェノール、クレゾール等が挙げられ、従
来の除去方法としては分別蒸留等が知られている。
Examples of the stabilizer include aromatic compounds having a hydroxyl group, such as phenol and cresol. As a conventional removal method, fractional distillation and the like are known.

【0007】[0007]

【発明が解決しようとする課題】しかしながら分別蒸留
による安定剤除去方法は、操作が煩雑であり、実に装置
に多額の費用を要するという問題点がある。本発明者ら
は、上記事情に鑑み、操作が容易で工業的に実用可能な
トリクレン中の安定剤の除去方法を開発すべく鋭意検討
した結果、トリクレンをモレキュラシーブスと接触せし
めることにより安定剤が除去できることを見出した。
However, the method of removing the stabilizer by fractional distillation has a problem that the operation is complicated and the apparatus requires a large amount of money. In view of the above circumstances, the present inventors have made earnest studies to develop a method for removing a stabilizer in trichlene which is easy to operate and industrially practical, and the stabilizer is obtained by bringing trichlene into contact with molecular sieves. It was found that it can be removed.

【0008】[0008]

【課題を解決するための手段】CF3 ・CH2 Fの製造
方法としては、トリクレンとHFを反応させる方法が知
られている。反応は例えば、アルミナ−クロシア触媒の
存在下で圧力4kg/cm2 G、温度250℃、HF/
トリクレンのモル比6の反応条件で気相で行われる。反
応原料の1つであるトリクレン中には前記の理由により
安定剤が含有されており、この安定剤は微量であっても
触媒活性劣化の原因となり含有されないことが望まし
い。そのため、分別蒸留等による除去方法が知られてい
るが、操作が煩雑であり、更に装置に多額の費用を要す
るという問題点がある。
As a method for producing CF 3 .CH 2 F, a method of reacting trichlene with HF is known. The reaction is, for example, in the presence of an alumina-crussia catalyst, pressure 4 kg / cm 2 G, temperature 250 ° C., HF /
It is carried out in the gas phase under the reaction conditions of a trichlene molar ratio of 6. A stabilizer is contained in trichlene, which is one of the reaction raw materials, for the above-mentioned reason, and it is desirable that even a small amount of this stabilizer causes deterioration of catalytic activity and is not contained. Therefore, a removal method by fractional distillation or the like is known, but there is a problem that the operation is complicated and the apparatus requires a large amount of cost.

【0009】本発明者らは上記事情に鑑み操作が容易で
安価であり工業的に実用可能なトリクレン中の安定剤の
除去方法を開発すべく鋭意検討した結果、トリクレンを
モレキュラシーブスと接触せしめることにより安定剤が
除去できることを見出した。本発明により使用されるモ
レキュラシーブスは2.5〜4Åの細孔直径を有するも
のが好ましく、これによりトリクレン中の安定剤と同時
に水分が除去できるというメリットが付与される。
In view of the above circumstances, the inventors of the present invention have made earnest studies to develop a method for removing a stabilizer in trichlene which is easy to operate, inexpensive, and industrially practical. As a result, the trichlene is brought into contact with the molecular sieves. It was found that the stabilizer can be removed by. The molecular sieves used in the present invention preferably have a pore diameter of 2.5 to 4Å, which gives an advantage that water can be removed at the same time as the stabilizer in trichlene.

【0010】トリクレンを液相でモレキュラシーブと接
触させるには、回分式、連続式等の公知の方法を用いる
ことができるが、工業的にはモレキュラシーブスを固定
床としてトリクレンを連続的に流通せしめる方法が有利
であり、液体基準の空間速度(LHSV)は安定剤の濃
度および処理するトリクレンの量により適宜選択される
が通常は1〜30Hr-1の範囲が用いられる。また工業
的にトリクレン中の安定剤を除去するには、除去塔を2
塔設け、これを切換える公知の方法により連続的に精製
を行うことができる。以下に本発明を実施例により更に
詳細に説明する。
In order to bring trichlene into contact with the molecular sieve in the liquid phase, a known method such as a batch system or a continuous system can be used, but industrially, the trichlene is continuously circulated with the molecular sieve as a fixed bed. The liquid-based space velocity (LHSV) is appropriately selected depending on the concentration of the stabilizer and the amount of trichlene to be treated, but a range of 1 to 30 Hr -1 is usually used. In addition, in order to industrially remove the stabilizer in trichlene, the removal tower should be 2
Purification can be continuously carried out by a known method in which a column is provided and this is switched. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0011】[0011]

【実施例】【Example】

原料例1:市販のトリクレン(安定剤入り)を分別蒸留
により精製した。これに安定剤(フェノール)を300
重量ppmとなるように加えガスクロマトグラフィーに
より分析(以下分析はすべてガスクロマトグラフィーに
より行う)したところ、フェノール含有量は300重量
ppmであった。
Raw Material Example 1: Commercially available trichlene (containing a stabilizer) was purified by fractional distillation. Stabilizer (phenol) to this 300
When analyzed by gas chromatography such that the weight of the product was adjusted to ppm by weight (all the following analyzes are performed by gas chromatography), the phenol content was 300 ppm by weight.

【0012】実施例1 内容積が2リットルのガラス製容器にゼオライト(ユニ
オン昭和株式会社製、モレキュラシーブス3A)を20
0ml充填し、原料例1のトリクレンを1.8リットル
液状で充填した。時々撹拌し、2時間後液相の一部を採
取し分析したところフェノールは検出されなかった。
Example 1 Zeolite (Molecular Sieves 3A, manufactured by Union Showa Co., Ltd.) was added to a glass container having an internal volume of 2 liters in an amount of 20.
0 ml was filled, and 1.8 liter of the trichlene of the raw material example 1 was filled in a liquid form. After stirring occasionally, 2 hours later, a part of the liquid phase was sampled and analyzed, and no phenol was detected.

【0013】実施例2 内容積が2リットルのガラス製容器に実施例1とは異な
ったゼオライト(ユニオン昭和株式会社製、モレキュラ
シーブス4A)を200ml充填し、原料例1のトリク
レンを1.8リットル液状で充填した。時々撹拌し、2
時間後液相の一部を採取し分析したところフェノールは
検出されなかった。
Example 2 A glass container having an inner volume of 2 liters was filled with 200 ml of zeolite (Molecular Sieves 4A manufactured by Union Showa Co., Ltd.) different from that of Example 1, and 1.8 liters of trichlene of the raw material example 1 were filled. Filled in liquid form. Stir occasionally, 2
After a lapse of time, a part of the liquid phase was collected and analyzed, and no phenol was detected.

【0014】原料例2:原料例1と同様の方法により安
定剤含有量の少ないトリクレンを調製し分析したとこ
ろ、フェノール含有量は15重量ppmであった。
Raw Material Example 2: Trichlorene with a small stabilizer content was prepared and analyzed by the same method as in Raw Material Example 1, and the phenol content was 15 ppm by weight.

【0015】実施例3 内容積5リットルのSUS製容器にモレキュラシーブス
3Aを4.8リットル充填し、原料例2のトリクレンを
10リットル/Hrの流速で連続的に供給した。供給開
始より100時間後、200時間後、400時間後の出
口液を採取し分析を行ったが、いずれもフェノールは検
出されなかった。
Example 3 4.8 liters of Molecular Sieves 3A was filled in a SUS container having an internal volume of 5 liters, and trichlene of Example 2 was continuously supplied at a flow rate of 10 liters / hr. 100 hours, 200 hours, and 400 hours after the start of the supply, the outlet liquid was collected and analyzed, but no phenol was detected.

【0016】実施例4 実施例2の方法で安定剤を完全に除去したトリクレンと
HFとを連続的に反応器に導入することにより反応式
(1)に示した反応を行った。アルミナ−クロミア触媒
の存在下、反応温度250℃、HF/トリクレンのモル
比6、SV1000Hr-1の反応条件で反応開始より2
Hr後のトリクレン転化率99.5%、300Hr後で
トリクレン転化率99.4%であり、触媒活性は低下し
なかった。
Example 4 The reaction represented by the reaction formula (1) was carried out by continuously introducing trichlene and HF from which the stabilizer was completely removed by the method of Example 2. In the presence of an alumina-chromia catalyst, the reaction temperature is 250 ° C., the HF / trichlene molar ratio is 6, and the reaction conditions are SV1000Hr −1.
The conversion of trichlene after Hr was 99.5% and the conversion of trichlene after 300 Hr was 99.4%, and the catalyst activity did not decrease.

【0017】比較例1 原料例1のトリクレンとHFとを反応器に連続的に供給
し、反応式(1)に示した反応を行った。アルミナ−ク
ロミア触媒の存在下、反応温度250℃、HF/トリク
レンのモル比6、SV1000Hr-1の反応条件で反応
開始より2Hr後のトリクレン転化率99.5%、30
0Hr後でトリクレン転化率80.4%であり、触媒活
性が低下した。これにより安定剤が触媒活性低下原因で
あることは明らかである。
Comparative Example 1 The trichlene and HF of the raw material example 1 were continuously supplied to the reactor to carry out the reaction represented by the reaction formula (1). In the presence of an alumina-chromia catalyst, the reaction temperature is 250 ° C., the molar ratio of HF / trichlene is 6, and the reaction condition of SV1000Hr −1 is 29.5 hr after the reaction is started.
After 0 hr, the conversion of trichlene was 80.4%, and the catalytic activity was lowered. From this, it is clear that the stabilizer is the cause of the decrease in catalytic activity.

【0018】[0018]

【発明の効果】以上述べたように、本発明に係わるトリ
クレン中の安定剤の除去方法は、触媒活性を著しく長期
に維持できるため、今後フロン−12等の代替品として
重要なCF3 ・CH2 Fの製造分野に寄与することが極
めて大きい。
INDUSTRIAL APPLICABILITY As described above, the method for removing a stabilizer in trichlene according to the present invention can maintain the catalytic activity for a very long period of time, and hence CF 3 .CH 3 which will be important as a substitute for CFC-12 in the future. it is very large to contribute to the field of manufacturing 2 F.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 秀俊 神奈川県川崎市川崎区扇町5番1号 昭和 電工株式会社化学品研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidetoshi Nakayama 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko Chemicals Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トリクロルエチレン中の水酸基を有する
芳香族化合物である安定剤を、モレキュラシーブスを用
いて除去することを特徴とするトリクロルエチレン中の
安定剤の除去方法。
1. A method for removing a stabilizer in trichlorethylene, which comprises removing the stabilizer which is an aromatic compound having a hydroxyl group in trichlorethylene by using molecular sieves.
JP09293992A 1992-04-13 1992-04-13 Removal method of stabilizer in trichlorethylene Expired - Lifetime JP3180228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09293992A JP3180228B2 (en) 1992-04-13 1992-04-13 Removal method of stabilizer in trichlorethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09293992A JP3180228B2 (en) 1992-04-13 1992-04-13 Removal method of stabilizer in trichlorethylene

Publications (2)

Publication Number Publication Date
JPH05286875A true JPH05286875A (en) 1993-11-02
JP3180228B2 JP3180228B2 (en) 2001-06-25

Family

ID=14068452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09293992A Expired - Lifetime JP3180228B2 (en) 1992-04-13 1992-04-13 Removal method of stabilizer in trichlorethylene

Country Status (1)

Country Link
JP (1) JP3180228B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026619A (en) * 2001-07-06 2003-01-29 Showa Denko Kk Method for purifying tetrachloroethylene and method for producing tetrachloroethylene
WO2003004445A3 (en) * 2001-07-06 2003-08-28 Showa Denko Kk Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
WO2006030656A1 (en) * 2004-09-16 2006-03-23 Showa Denko K.K. Method for purifying ethyl chloride and method for producing fluoroethane using same
WO2014185321A1 (en) * 2013-05-13 2014-11-20 昭和電工株式会社 Purification method for dichloromethane, and production method for difluoromethane using said purification method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026619A (en) * 2001-07-06 2003-01-29 Showa Denko Kk Method for purifying tetrachloroethylene and method for producing tetrachloroethylene
WO2003004445A3 (en) * 2001-07-06 2003-08-28 Showa Denko Kk Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
CN100400484C (en) * 2001-07-06 2008-07-09 昭和电工株式会社 Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
WO2006030656A1 (en) * 2004-09-16 2006-03-23 Showa Denko K.K. Method for purifying ethyl chloride and method for producing fluoroethane using same
JPWO2006030656A1 (en) * 2004-09-16 2008-05-15 昭和電工株式会社 Method for purifying ethyl chloride and method for producing fluoroethane using the same
WO2014185321A1 (en) * 2013-05-13 2014-11-20 昭和電工株式会社 Purification method for dichloromethane, and production method for difluoromethane using said purification method
JP2014221727A (en) * 2013-05-13 2014-11-27 昭和電工株式会社 Dichloromethane purification method and method of producing difluoromethane using the same
CN105209413A (en) * 2013-05-13 2015-12-30 昭和电工株式会社 Purification method for dichloromethane, and production method for difluoromethane using said purification method

Also Published As

Publication number Publication date
JP3180228B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US5763706A (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane and 1,1,1,3,3,3-hexafluoropropane
EP0494994B1 (en) Fluorocarbon purification process
US7208644B2 (en) Production and use of hexafluoroethane
US7084316B2 (en) Process for purifying pentafluoroethane, process for producing the same, and use thereof
US7138553B2 (en) Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
US6274782B1 (en) Method for purifying hexafluoroethane
US6316682B1 (en) Process for preparing 1,1,1,3,3-pentafluoropropane
JPH05286875A (en) Method for removing stabilizer in trichloroethylene
JP2897454B2 (en) Purification method of 1,1,1,2-tetrafluoroethane
US7696392B2 (en) Purification method of 1,1-difluoroethane
KR100482022B1 (en) Process for the purification of saturated hydrofluorocarbons
JP4785532B2 (en) Production method of hydrofluorocarbon, its product and its use
JP4551504B2 (en) Synthesis of 1,1,1-trifluoroethane by fluorination of 1-chloro-1,1-difluoroethane
JPH11228463A (en) Production and purification of 1,1-difluoroethane and product obtained through them
KR100570802B1 (en) Process for the production of fluoroethane and use of the produced fluoroethane
JPH06321819A (en) Removal of stabilizer contained in trichloroethylene
US7074974B2 (en) Process for the production of fluoroethane and use of the same
EP0773207B1 (en) Method of purifying pentafluoroethane
US5744661A (en) Purification of 1, 1-difluoroethane
JPH10287595A (en) Purification of hexafluoroethane
JPH0499737A (en) Purification of 1,1-dichloro-1-fluoroethane
JP3250267B2 (en) Method for purifying 1,1,1,2-tetrafluoroethane
JP4458784B2 (en) Method for producing pentafluoroethane and use thereof
US20040242943A1 (en) Process for the production of fluoroethane and use of the produced fluoroethane
JP5105672B2 (en) Method for purifying tetrachloroethylene and method for producing pentafluoroethane using the method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

EXPY Cancellation because of completion of term