WO2006030024A1 - Sonde de mesure de caracteristiques d'un courant d'excitation d'un plasma, et reacteur a plasma associe. - Google Patents

Sonde de mesure de caracteristiques d'un courant d'excitation d'un plasma, et reacteur a plasma associe. Download PDF

Info

Publication number
WO2006030024A1
WO2006030024A1 PCT/EP2005/054599 EP2005054599W WO2006030024A1 WO 2006030024 A1 WO2006030024 A1 WO 2006030024A1 EP 2005054599 W EP2005054599 W EP 2005054599W WO 2006030024 A1 WO2006030024 A1 WO 2006030024A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
probe
sensor
plasma
Prior art date
Application number
PCT/EP2005/054599
Other languages
English (en)
Inventor
Sébastien DINE
Jacques Jolly
Jean Bernard Pierre Larour
Original Assignee
Ecole Polytechnique
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique, Centre National De La Recherche Scientifique (Cnrs) filed Critical Ecole Polytechnique
Priority to EP05789496.6A priority Critical patent/EP1794600B1/fr
Priority to JP2007531750A priority patent/JP5209313B2/ja
Priority to US11/663,129 priority patent/US7615985B2/en
Publication of WO2006030024A1 publication Critical patent/WO2006030024A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0081Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by electric means

Definitions

  • the present invention relates to a device for measuring current and electrical voltage on the power supply circuit of a plasma (this text will be known as a "probe" measuring device).
  • Plasma-assisted thin film deposition (used for example for the manufacture of liquid crystal flat screens, etc.),
  • the plasma is used as a light source or as a device for treating gaseous effluents for depollution applications or as a thermonuclear fusion reactor, etc.
  • the invention applies to the measuring current and voltage in a plasma reactor using one or more variable voltage or current electrical sources.
  • the invention makes it possible to know, in real time and without disturbing the course of the process, the essential electrical characteristics of the plasma (intensity, voltage, but also phase shift between intensity and voltage, etc.). , and thus makes it possible to modify in real time the characteristics of the electric sources used in these processes, in order to modify the characteristics of the plasma.
  • Such a modification in real time can be exploited in particular to perform a real-time servoing using a non-diagnostic disturbance based on electrical measurements; and thus avoid process drifts.
  • An application of the invention is indeed the control of these methods thanks to the electrical measurements provided by the probe.
  • Plasma reactors can be used to coat a sample with a thin layer of material, to etch a sample by ion bombardment, or more generally to modify the structure or chemical composition of a surface.
  • a plasma reactor may also be used as a light source or as a waste gas treatment device for pollution control applications or as a thermonuclear fusion reactor.
  • FIG. 1 represents, schematically and in section, an example of a plasma reactor to which the present invention applies. This is, for example, a so-called radiofrequency excitation (RF) reactor by capacitive or inductive coupling.
  • RF radiofrequency excitation
  • Such a reactor comprises a vacuum chamber 53. Near a first wall 54 of this chamber is placed on a substrate holder 55, a sample 56 to be treated.
  • the sample 56 is generally in the form of a disc whose surface 57 directed towards the inside of the enclosure 53 constitutes the surface to be treated.
  • the enclosure 53 is filled with a gas at low pressure, for example of the order of a few tens to a few hundred millitorrs (a few tens to a few hundred pascals).
  • the gas comes from a source 57 to be injected into the enclosure of the reactor through a gas supply pipe 58, the gas flow rate being regulated by a flowmeter 59.
  • the gas is evacuated from the enclosure 53 by a discharge pipe 60 connected to a pumping system 61 consisting of one or more vacuum pumps in series.
  • the pumping volumetric flow rate is adjusted by means of a valve 62.
  • the pressure in the chamber is controlled with the valve 62 and / or the flowmeter 59.
  • a plasma reactor can also operate at atmospheric pressure or in a coarse vacuum (gas pressure between one-tenth atmosphere and one atmosphere). The treatment of gaseous effluents for depollution applications is often carried out at these pressures.
  • a radiofrequency voltage is applied to the substrate holder. It is also possible, as shown in FIG. 1, to generate the plasma 63 by means of a source 64 independent of the substrate holder 55.
  • This source 64 may be associated with a generator 65, for example for the following source types:
  • Electrode powered by a low frequency generator Electrode powered by voltage pulses delivered by a pulsed generator
  • microwave generator • microwave generator.
  • inductive and microwave may possibly be associated with an application of a static magnetic field.
  • the latter may be biased by a radiofrequency source 66 to establish self-polarization and thus increase the impact energy of the ions on the surface to be treated.
  • the plasma source is a radiofrequency source
  • the latter may optionally be polarized at a higher frequency than that applied to the substrate holder 55 in order to control the electronic density preferentially.
  • an impedance matching circuit 67 (or matching circuit) is arranged between the generator 65 and the plasma source 64. This circuit is connected to the generator 65 by a transmission line 68, generally coaxial with characteristic impedance equal to 50 ohms.
  • An impedance matching circuit is used to prevent the reflection of electromagnetic energy towards the source. This allows on the one hand to protect the source and on the other hand to optimize the transfer of power to the plasma.
  • This circuit modifies the electrical impedance of the plasma source in order to make it equal to the characteristic impedance of the line 68.
  • the transmission line 68 is said to be adapted.
  • the tuning circuit 67 is connected to the plasma source 64 by a coaxial or radial transmission line 69. This line is mismatched because the impedance of the plasma source is not equal to the characteristic impedance of line 69.
  • a tuning circuit 70 is interposed between the substrate holder and the source.
  • the latter is connected to the tuning circuit by a line of adapted coaxial impedance transmitting transmission 71 characteristic generally equal to 50 ohms.
  • the output of the impedance circuit 70 is connected to the substrate holder by a mismatched radial or coaxial transmission line 72.
  • Plasma processes using a radiofrequency source most often use a frequency in the high frequency domain (HF band: 3 MHz - 30 MHz). In this range, the 13.56 MHz frequency is currently the most used.
  • Plasmas concerned by the present invention include chemically reactive plasmas (and in which chemical reactivity in addition to ion bombardment may be used).
  • the electron concentration and the ion flux are proportional to the electric current in the plasma.
  • the flow of ions and the energy of the ions bombarding the surface to be treated are proportional to the voltage applied to the substrate holder 55 or the electrode 64 in the case of a capacitively coupled source.
  • the measurement of the current flowing in the plasma or of the voltage applied on the electrodes 55 or 64 is therefore a means of controlling characteristics of the plasma without disturbing it.
  • This measurement is performed during the process or during the cleaning and is preferably located on mismatched transmission lines 69 and 72 in order to be carried out as close as possible to the plasma.
  • the measurement probe may also be located on the appropriate transmission lines 68 and 71 to measure the quality of the impedance matching. And this, to possibly modify the characteristics of the impedance matching circuits 67 and 70 and to improve the level of adaptation on the lines 68 and 71.
  • the measurement of the current and the voltage can be associated with a device responsible for measuring the temporal phase shift between the current and the voltage in order to deduce the power dissipated in the plasma and the impedance of the plasma.
  • a device responsible for measuring the temporal phase shift between the current and the voltage in order to deduce the power dissipated in the plasma and the impedance of the plasma.
  • These last two parameters as well as the amplitudes of the voltage and the current are useful to control the smooth running of these processes and the plasma cleaning steps of the reactors. They can optionally control a servo to avoid process drifts.
  • the quality of the control is strongly Dependent on the performance of the probe used to measure current and voltage.
  • the invention applies more particularly to plasmas excited by a source of current or variable voltage, such as a sinusoidal voltage generator or pulse voltage.
  • the invention will find particularly advantageous applications in such excited plasmas with a sinusoidal radiofrequency voltage of frequency between 1 MHz and 1GHz.
  • the electrical impedance of a plasma depends on the current flowing in the plasma: it is called non-linear.
  • a plasma excited by an alternating voltage source of frequency f generates harmonics of this excitation voltage at the frequencies of f. For example, for a plasma generated by a sinusoidal voltage at 13.56 MHz, sinusoidal components at 27.12 MHz, 40.68 MHz, 54.24 MHz ... appear in the measured voltage and current signals).
  • Such a measurement can in particular be used to detect the end of the plasma etching of a dielectric layer on a microprocessor during manufacture. It is specified that the amplitudes of these harmonics at 2f, 3f, 4f ... are much smaller than the amplitude of the fundamental component f, and that it is therefore necessary to be able to isolate them from this fundamental component by filtering.
  • the voltage and current probes must operate in a very wide frequency range because the frequency difference between each harmonic of the fundamental frequency component is higher than in the case where the fundamental frequency used is higher. low (13.56 MHz for example).
  • phase shift measurement is strongly dependent on the performance of the sensor used to measure the current and the voltage. This measurement must be precise because the phase shift variations are often very small.
  • the solution would be to bring the current and voltage sensors of a state-of-the-art probe (such as that shown in FIG. 2) to the same level in an attempt to overcome this type of problem.
  • This error would increase the risk of mutual disruption and lead to a deterioration of the frequency response.
  • the range of frequency of use of the probe would be reduced, It is therefore necessary with this type of known probe to find a compromise between the risk of mutual disruption, the degradation of the measured phase shift and the frequency range of use.
  • FIG. 2 thus exposes in longitudinal section a probe 10 mounted on an electrically conductive coaxial transmission line 20 which includes an inner conductor 21 and an outer conductor 22 which surrounds the inner conductor
  • the coaxial line 20 is connected: by its two conductors, to an impedance matching circuit (not shown in the figure) also connected to an alternating RF voltage source (or RF generator) which excites the plasma (connection by the part of the line at the top of the figure), By its internal conductor, to a radiofrequency electrode (RF) 31 in the form of a solid disc - only the section of this disc appearing in the figure (connection by the part of the line which is at the bottom of the figure),
  • RF radiofrequency electrode
  • a conductive cover 32 which is also in the form of a disc and extends facing and away from the electrode 31 to define between the electrode and the cover a space 30.
  • the cover 32 is also electrically driver.
  • the coaxial line 20 described above corresponds, for example, to line 69 or line 72 of FIG. 1.
  • the radiofrequency electrode 31 corresponds, for example, to the substrate holder 55 or to the plasma source 64 of this same FIG. cover 32 corresponds for example to the enclosure
  • the line is said to be adapted. Between the tuning circuit and the plasma, the line is called mismatched.
  • the space between the inner conductor and the outer conductor is electrically insulating - it can be evacuated or filled with a dielectric material.
  • the line is traversed by currents moving in opposite directions along the core 21 and the envelope 22. These currents are generated by the AC voltage source which excites the plasma via the RF electrode 31 which is in contact with the plasma.
  • the probe 10 comprises means 11 for measuring the voltage between the current flowing through the line 10 and a ground connected to the outer conductor 22, and means 12 for measuring the intensity of this current.
  • the voltage measuring means 11 comprise:
  • a conductive disk 110 disposed near the inner conductor 21 and connected to a conductive cable 111 which passes through the outer conductor 22, and a second conductive cable 112, connected to the outer conductor 22.
  • the measurement of the voltage V2 between the two cables 111 and 112 thus corresponds normally to the voltage that it is desired to measure.
  • the current measurement means 12 comprise a conductive loop 121 (or several loops in series) disposed near the inner conductor 21, and one end of which is connected to ground (connection to the outer conductor 22).
  • the inner conductor is traversed by the sinusoidal current I p ⁇ aS m has that is to be measured.
  • This current induces a sinusoidal and azimuth magnetic field B, which induces a voltage (or electromotive force) between the ends of the This is an indirect technique for measuring current since it uses the magnetic field induced by the current to be measured.
  • the potential difference V1 measured between the ground and the end 1210 of the loop which is not grounded is in principle proportional to the first derivative of the current I p ⁇ aS ma on the line
  • the loop 121 is also capacitively coupled to the central conductor, which has the consequence of adding to the voltage measured across the loop a voltage which is proportional to the voltage V p ⁇ aS ma between the two conductors of the line 20.
  • the loop 121 disturbs the line 20 because it forms a partial short circuit between the two conductors 21 and 22, which can cause a breakdown. In practice, the use of such a loop is thus limited to powers less than 10 kW.
  • An object of the invention is to overcome these limitations.
  • Another object of the invention is to allow simultaneous and accurate measurement of current and voltage at very close points. Yet another object of the invention is to make it possible to carry out such measurements over a wide range of power.
  • Yet another object of the invention is to make it possible to perform such measurements over a wide range of frequencies.
  • the invention proposes, in a first aspect, a probe for measuring the electrical characteristics of a plasma excitation current, said probe being mounted on a conductive line which comprises an internal conductor and a conductor external device, comprising a current sensor and a voltage sensor, characterized in that: • the current sensor comprises:
  • the voltage sensor is a drift sensor, able to measure a voltage proportional to the first time derivative of the voltage of said excitation current.
  • the excitation current is an alternating current RF
  • the throat defines a detour a length of the order of a centimeter
  • Said current sensor and said voltage sensor are both located on the outer conductor.
  • Said voltage sensor is a sensor comprising a conical transmission line, terminated by a slightly curved surface capacitively coupled to the conductor other than that on which said voltage sensor is mounted,
  • the coupling capacitance between said curved surface and said conductor other than that on which said voltage sensor is mounted is of the order of 0.3 pF
  • Said current sensor and said voltage sensor are located at the same level on the current path on the surface of said conductor,
  • Said conductive line is a coaxial cylindrical line, said conductive line is a radial cylindrical line, and
  • the probe comprises means for measuring the temporal phase shift between the current and the voltage of said excitation current.
  • the invention also proposes a plasma reactor comprising an RF generator and a probe as mentioned above.
  • the probe is located between an impedance matching circuit connected to said RF generator and a plasma excitation RF electrode, and
  • the probe is located between said RF generator and a tuning box, on a so-called adapted line.
  • FIG. 3 is a block diagram of a current and voltage measuring probe according to the invention.
  • FIG. 4 is a representation of an electrical diagram equivalent to this probe according to the invention.
  • FIGS. 5a to 5d are views of a practical embodiment of a probe according to the invention.
  • FIG. 6 illustrates the character proportional to the frequency f of the current and voltage measured by a probe according to the invention;
  • FIG. 7 illustrates an embodiment of the invention in which a probe according to the invention is implanted in a radial line.
  • FIG. 3 there is shown schematically a probe according to the invention.
  • the probe is mounted between an RF electrode and an impedance matching circuit connected to an RF generator (not shown).
  • an impedance matching circuit can indeed be used in plasma processes in particular in order to optimize the transfer to the plasma of the power delivered by the RF generator. It is specified that the elements already commented on the known probe of Figure 2 will be referenced in the same way with reference to this Figure 3 (without being introduced again).
  • a coaxial transmission conductor line 20 which comprises an inner conductor 21 and an outer conductor 22,
  • the probe according to the invention can be mounted differently - we will return to this aspect.
  • the probe according to the invention is indeed intended to measure at extremely close points, simultaneously, instantaneous current and voltage, especially in plasmas using electrical power in the field of radio frequency (RF).
  • RF radio frequency
  • This measurement is carried out at a point on the transmission lines responsible for transporting the electric power, delivered by an RF generator, to the enclosure in which the plasma is confined.
  • the invention will in particular be implemented advantageously on so-called mismatched transmission lines.
  • the two sensors 41, 42 are thus inserted in series in a section of the outer conductor 22, being separated only by a distance of the order of 5 millimeters.
  • Such spacing is considered in the sense of the present invention as negligible, and it will therefore be considered that the two sensors are located at the same level on the path of the current on the surface of the conductor 22.
  • This can also be expressed by saying that the two sensors 41 and 42 are implanted in a plane (Z constant), with the dimension Z defined by the axis A which is parallel to the conductors 21 and 22.
  • Line 20 may be a cylindrical coaxial line, or any type of coaxial line in which an inner conductor is surrounded by an outer conductor.
  • the outer conductor 22 is connected to the electrical ground of the system.
  • An RF voltage V p ⁇ aS ma is applied at the output of the tuning circuit, between the internal and external conductor, at the input of this line section (that is to say in its upper part on the representation of FIG. 3).
  • the resulting alternating RF current passes completely or partially through the plasma (shown under the electrode 31) and returns through the external conductor.
  • a groove 410 is hollowed out in the internal face of the outer conductor 22 in order to make RF current of skin an additional path (of the order of one centimeter long).
  • the current path on the walls of this groove is illustrated by arrows.
  • the groove is symmetrical about the central axis A of the line 20. It follows a geometry of revolution relative to this axis.
  • Means for measuring a voltage V1 are associated with this groove.
  • the detour of the groove 410 behaves like a low-value inductance L m (of the order of nanohenry, which is not significant) for comparison the simple inductance of the conductors 21 and
  • the measurement of the voltage V1 amounts to measuring the voltage across a portion (L m ) of the total inductance Ltot.
  • a high frequency coaxial base 411 of the SMA type (50 ohms) is driven from the outside into an orifice in the wall of the conductor 22 which opens into the groove (see FIG. 5d).
  • This base 411 has a screw connector for connecting a conventional coaxial cable (50 ohms) to carry the measured signal to a display device (oscilloscope ...) or acquisition (analog-to-digital conversion card) ).
  • the current sensor 41 is a sensor called "differentiator".
  • the measured signal (V1 (t)) at the output of this sensor is shifted by + 2 / / with respect to the signal (l p i s sma (t)) that one seeks to measure.
  • the voltage sensor 42 is also a divider, which makes it possible to use the probe for measuring phase-shifts between the current and the voltage: with a voltage sensor 42 measuring a phase-shifted voltage of + 7% with respect to the voltage V p ⁇ a sma, a phase shift is obtained between the measured signals V1 and V2 which is identical to the phase shift between the current (l p ⁇ aS ma) and the voltage (V p ⁇ aS ma) on the coaxial line.
  • the invention thus preferably uses a voltage sensor 42 comprising a so-called conical transmission line 420 terminated by a slightly convex surface 421 in "capacitive" coupling with the inner conductor 21.
  • the dimensions of the conical line are chosen so that its characteristic impedance is equal to 50 ohms - which makes it possible to connect this conical line to a coaxial transmission line constructed from an SMA base identical to that used for the current sensor 41.
  • the output of the voltage sensor can be connected with a coaxial cable to a display and acquisition device.
  • the conical line of the sensor 42 allows:
  • the conical line is partially embedded in the conductor 22 which is grounded (see Figure 5c).
  • the current is measured directly. This is measured for the voltage V1 which appears at the terminals of a detour in which the RF current is forced to pass after having completely or partially traversed the plasma, and the voltage measurement is carried out by a capacitively coupled voltage probe. extended by a conical line.
  • the capacitive coupling voltage probe commonly used in RF metrology, is used here with a tapered line that guarantees a derivative operation of the probe in a wide frequency range while keeping the voltage sensor away from the high RF voltage.
  • the probe comprises two main tubular elements 4100, 4200 which are intended to be aligned and assembled, each of these two elements being associated with a respective sensor of the probe (sensor 41 for element 4100, sensor 42 for element 4200). And in this embodiment, the element 4200 serves to close the groove of the current probe (see FIG. 5b), with the two sensors 41,
  • the sensor prototype shown in FIGS. 5a to 5c is of generally cylindrical shape.
  • FIG. 5a shows a probe mounted with male coaxial connectors of type HN.
  • Figure 5b shows a disassembled probe with coaxial connectors N of female type.
  • the invention can also be arranged on a transmission line permanently (without screw connectors) as illustrated by the diagram of FIG. 3.
  • the transmission line on which the sensor is inserted is not necessarily cylindrical and coaxial. It can be a coaxial line with square or rectangular section. More generally, the line must have two conductors, one of which encloses the other and propagating mainly a type of electromagnetic mode "TEM" (transverse electrical and magnetic).
  • TEM transverse electrical and magnetic
  • the line in which the sensor is implanted may also be a radial line such as that constituted by the RF electrode 31 and the cover 32 in the form of a concentric ring.
  • current-diverting groove can be made in the wall of the cover which is opposite the RF electrode.
  • the senor does not disturb the line, it can be arranged on a suitable transmission line without any risk of being unadapted, as for example on the lines 68 and 71 of FIG. 1 situated between the RF power generator and the tuning circuit. in impedance.
  • this behavior of linear variation with the frequency is particularly observable for frequencies up to 500 MHz. Since the industrial processes targeted by the invention use a fundamental frequency (frequency of operation of the RF generator) of less than 100 MHz, the probe whose calibration is illustrated in FIG. 6 can therefore be used to measure the amplitude of at least four of the first harmonics of current and voltage in these industrial processes.
  • the measured voltage (V2) is thus proportional to the voltage to be measured (V p ⁇ aS ma > that can be noted V 0 ) with a multiplicative factor (fVo) proportional to the frequency of the signal that is to be measured (and it is the same for the current).
  • the probe according to the invention is particularly simple to construct.
  • the prototype shown in FIGS. 5a to 5d, and whose calibration curves are shown in FIG. 6, only required the machining of four metal parts, the use of twelve screws for assembly and purchase four coaxial connectors.
  • Another advantage of the probe lies in its simple geometry. This geometry has the advantage of being easily modeled using an analytical calculation. It is thus not necessary to manufacture a large number of prototypes or to resort to complex computer modeling to design and dimension a probe according to the present invention.
  • the probe according to the invention also has a great compactness (use of compact sensors themselves embedded in a conductor connected to the electrical ground). And it is possible to have these sensors close to each other without disturbing them.
  • the probe according to the invention is moreover able to operate over large frequency ranges (typically between 1 MHz and 1 GHz), and is thus not subject to the frequency range limitation of known probes.
  • Another advantageous aspect of the invention resides in the fact that, on the one hand, the measurement of current is direct since it does not use the magnetic field induced by the current to be measured, and that on the other hand the throat ensures its own shielding against magnetic fields external variables. Even in the presence of such fields, the output voltage of the current sensor is not parasitized.
  • the linear frequency response favors the high frequencies on the low frequencies in the signal to be measured. This has two advantages:
  • connection inversion of the probe does not change the voltage measurement but changes the sign of the measurement of I (phase shift of - ⁇ ).
  • the invention uses non-intrusive sensors embedded, or partially embedded, in a conductor connected to the electrical earth. This feature greatly reduces the risk of electrical breakdown (short circuit) caused by the presence of sensors.
  • the probe object of the present invention can therefore measure voltages and currents much higher than conventional devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

L'invention concerne une sonde de mesure de caractéristiques électriques d'un courant d'excitation d'un plasma, ladite sonde étant montée sur une ligne conductrice (20) qui comprend un conducteur interne (21) et un conducteur externe (22), comportant un capteur de courant (41) et un capteur de tension (42), caractérisée en ce que : le capteur de courant comporte : une gorge (410) formée dans la masse d'un des conducteurs (22) afin de former un détour pour le courant parcourant ledit conducteur, et un point de mesure de tension électrique entre une masse reliée audit conducteur et un point de ladite gorge, ledit capteur de courant étant ainsi apte à mesurer une tension (V1) proportionnelle à la dérivée temporelle première de l'intensité (I<sub

Description

Sonde de mesure de caractéristiques d'un courant d'excitation d'un plasma, et réacteur à plasma associé
La présente invention concerne un dispositif de mesure de courant et de tension électrique sur le circuit d'alimentation en puissance d'un plasma (on nommera dans ce texte un tel dispositif de mesure « sonde »).
Et les applications de l'invention couvrent l'ensemble des procédés industriels assistés par plasma mis en œuvre à l'intérieur d'un réacteur à plasma. De tels procédés incluent notamment (sans que cette liste soit limitative) :
• la gravure par plasma (utilisée notamment en microélectronique ou dans le domaine des nanotechnologies),
• le dépôt de couches minces assisté par plasma (utilisé par exemple pour la fabrication d'écrans plats à cristaux liquides...),
• les applications pour lesquelles le plasma est utilisé comme source de lumière ou en tant que dispositif de traitement d'effluents gazeux pour des applications de dépollution ou bien comme réacteur de fusion thermonucléaire, etc.... L'invention s'applique à la mesure du courant et de la tension électrique dans un réacteur à plasma utilisant une ou plusieurs sources électriques de tension ou de courant variables.
Pour des procédés tels que mentionnés ci-dessus, l'invention permet de connaître en temps réel et sans perturber le déroulement du procédé des caractéristiques électriques essentielles du plasma (intensité, tension, mais également déphasage temporel entre intensité et tension, ...), et permet ainsi de modifier en temps réel les caractéristiques des sources électriques mises en œuvre dans ces procédés, afin de modifier les caractéristiques du plasma. Une telle modification en temps réel peut être exploitée notamment pour effectuer un asservissement temps réel à l'aide d'un diagnostique non perturbatif fondé sur les mesures électriques ; et éviter ainsi les dérives de procédé.
Une application de l'invention est en effet le contrôle de ces procédés grâce aux mesures électriques fournies par la sonde.
Présentation d'un réacteur à plasma
Préalablement à la description de formes de réalisation de l'invention qui va suivre, on va exposer ci-dessous quelques caractéristiques d'un exemple (non limitatif) de réacteur à plasma pouvant être mis en œuvre dans le cadre de l'invention.
Les réacteurs à plasma peuvent être utilisés pour revêtir un échantillon d'une couche mince de matériau, pour graver un échantillon par bombardement ionique, ou plus généralement pour modifier la structure ou la composition chimique d'une surface.
Un réacteur à plasma peut également être utilisé comme source de lumière ou en tant que dispositif de traitement d'effluents gazeux pour des applications de dépollution ou bien comme réacteur de fusion thermonucléaire. La figure 1 représente, schématiquement et en coupe, un exemple de réacteur à plasma auquel s'applique la présente invention. Il s'agit, par exemple, d'un réacteur dit à excitation radiofréquence (RF) par couplage capacitif ou inductif.
Un tel réacteur comprend une enceinte sous vide 53. Près d'une première paroi 54 de cette enceinte est placé, sur un porte-substrat 55, un échantillon 56 à traiter.
L'échantillon 56 a généralement la forme d'un disque dont une surface 57 dirigée vers l'intérieur de l'enceinte 53 constitue la surface à traiter. L'enceinte 53 est remplie d'un gaz à faible pression, par exemple de l'ordre de quelques dizaines à quelques centaines de millitorrs (de quelques dizaines à quelques centaines de pascals). Le gaz est issu d'une source 57 pour être injecté dans l'enceinte du réacteur par un tuyau d'approvisionnement en gaz 58, le débit de gaz étant régulé par un débitmètre 59.
Lorsqu'un mélange de gaz est utilisé, plusieurs sources, débitmètres et tuyaux d'approvisionnement sont utilisés en parallèle. Le gaz est évacué de l'enceinte 53 par un tuyau d'évacuation 60 connecté à un système de pompage 61 constitué d'une ou plusieurs pompes à vide en série. Le débit volumétrique de pompage est ajusté à l'aide d'une valve 62.
La pression dans l'enceinte se contrôle avec la valve 62 et/ou le débitmètre 59.
Un réacteur plasma peut également fonctionner à la pression atmosphérique ou dans un vide grossier (pression de gaz entre un dixième d'atmosphère et une atmosphère). Le traitement d'effluents gazeux pour des applications de dépollution s'effectue souvent à ces pressions.
C'est le cas également pour le traitement en continu de grande surface comme le dépôt de couches minces sur les vitrages ou le nettoyage des plaques d'acier en sortie de laminoir.
Plusieurs moyens peuvent être utilisés pour générer le plasma 63. Par exemple, dans une configuration dite « gravure ionique réactive à couplage capacitif », une tension radiofréquence est appliquée au porte- substrat. On peut également, comme cela est représenté sur la figure 1 , générer le plasma 63 au moyen d'une source 64 indépendante du porte- substrat 55.
Cette source 64 peut être associée à un générateur 65, par exemple pour les types de source suivants :
• électrode alimentée par un générateur haute fréquence (source capacitive),
• électrode alimentée par un générateur basse fréquence, • électrode alimentée par des impulsions de tensions délivrés par un générateur puisé,
• bobine alimentée par un générateur radiofréquence (source inductive),
• générateur de micro-ondes. Les deux derniers types de sources, inductives et micro-ondes, peuvent éventuellement être associés à une application d'un champ magnétique statique. Dans le cas de l'emploi d'une source indépendante du porte-substrat, ce dernier peut être polarisé par une source radiofréquence 66 pour établir une auto-polarisation et augmenter ainsi l'énergie d'impact des ions sur la surface à traiter.
Lorsque la source de plasma est une source radiofréquence, cette dernière peut éventuellement être polarisée à une fréquence plus élevée que celle appliquée au porte-substrat 55 dans le but de contrôler préférentiellement la densité électronique. Quant la source de plasma est une source radiofréquence (HF, VHF ou micronde) un circuit d'accord en impédance 67 (ou circuit d'adaptation) est disposé entre le générateur 65 et la source plasma 64. Ce circuit est connecté au générateur 65 par une ligne de transmission 68, généralement coaxiale d'impédance caractéristique égale à 50 ohms. Un circuit d'accord en impédance est utilisé pour empêcher la réflexion d'énergie électromagnétique vers la source. Ceci permet d'une part de protéger la source et d'autre part d'optimiser le transfert de puissance vers le plasma. Ce circuit modifie l'impédance électrique de la source plasma afin de la rendre égale à l'impédance caractéristique de la ligne 68. La ligne de transmission 68 est dite adaptée. Le circuit d'accord 67 est connecté à la source plasma 64 par une ligne de transmission 69 coaxiale ou radiale. Cette ligne est désadaptée car l'impédance de la source plasma n'est pas égale à l'impédance caractéristique de la ligne 69.
Lorsque le porte-substrat est alimenté par une source radiofréquence, un circuit d'accord 70 est intercalé entre le porte-substrat et la source. Cette dernière est connectée au circuit d'accord par une ligne de transmission adaptée 71 coaxiale d'impédance caractéristique généralement égale à 50 ohms. La sortie du circuit d'impédance 70 est connectée au porte-substrat par une ligne de transmission 72 désadaptée radiale ou coaxiale. Les procédés plasmas utilisant une source radiofréquence utilisent le plus souvent une fréquence dans le domaine des hautes fréquences (bande HF : 3 MHz - 30 MHz). Dans cette gamme, c'est la fréquence 13,56 MHz qui est actuellement la plus utilisée.
Les plasmas concernés par la présente invention incluent les plasmas chimiquement réactifs (et dans lesquels la réactivité chimique en plus du bombardement ionique peut être utilisée).
La seule réactivité du gaz ou du mélange de gaz injectés dans l'enceinte est parfois le seul phénomène exploité. Mais en général cette réactivité est améliorée ou même générée par les collisions des électrons sur les atomes ou molécules neutres produisant ainsi des radicaux, espèces chimiques instables absentes dans le gaz sans la présence des électrons. Ces radicaux ainsi que les ions réactifs sont responsables du dépôt ou de la gravure. Dans le cas du dépôt, on parle alors de dépôt chimique en phase vapeur assisté par plasma. Cette réactivité initiée par les électrons évite le recours à un chauffage important du gaz ou du porte- substrat, ce qui endommagerait l'échantillon à traiter.
Le taux de production des radicaux produits par les collisions électroniques est fonction de la concentration électronique. De même, le flux de particules chargées (électrons et ions) qui arrivent et qui quittent la surface à traiter est proportionnel à la concentration électronique. La réactivité chimique et le bombardement ionique agissent généralement en synergie dans ces plasmas.
Or la concentration électronique et le flux d'ions sont proportionnels au courant électrique dans le plasma. Le flux d'ions et l'énergie des ions bombardant la surface à traiter sont proportionnels à la tension appliqué sur le porte-substrat 55 ou sur l'électrode 64 dans le cas d'une source à couplage capacitive.
Dans un processus de dépôt ou de gravure par plasma, il est important de connaître les caractéristiques du plasma pour pouvoir contrôler la mise en oeuvre du processus et sa reproductibilité, en particulier pour contrôler la vitesse de dépôt ou de gravure en fonction de l'épaisseur du dépôt ou de la profondeur de la gravure souhaitée.
Après un dépôt ou une gravure toutes les surfaces exposées au plasma (électrodes, parois) sont recouvertes d'un dépôt qu'il faut enlever afin de traiter un nouvel échantillon. Cette étape de nettoyage est souvent réalisée à l'aide d'un plasma dont on utilise la réactivité chimique et le bombardement ionique.
La mesure du courant circulant dans le plasma ou de la tension appliquée sur les électrodes 55 ou 64 est donc un moyen de contrôler des caractéristiques du plasma sans le perturber. Cette mesure est réalisée pendant le procédé ou pendant le nettoyage et est située préférentiellement sur les lignes de transmission désadaptées 69 et 72 afin d'être effectuée le plus près possible du plasma. La sonde de mesure peut également être située sur les lignes de transmission adaptées 68 et 71 afin de mesurer la qualité de l'adaptation en impédance. Et cela, pour éventuellement modifier les caractéristiques des circuits d'accord en impédance 67 et 70 et améliorer le niveau d'adaptation sur les lignes 68 et 71.
La mesure du courant et celle de la tension peuvent être associées à un dispositif chargé de mesurer le déphasage temporel entre le courant et la tension afin d'en déduire la puissance dissipée dans le plasma et l'impédance du plasma. Ces deux derniers paramètres ainsi que les amplitudes de la tension et du courant sont utiles pour contrôler le bon déroulement de ces procédés et les étapes de nettoyage par plasma des réacteurs. Ils permettent éventuellement de commander un asservissement afin d'éviter des dérives de procédé. La qualité du contrôle est fortement dépendante des performances de la sonde utilisée pour mesurer le courant et la tension.
On précise que l'invention s'applique plus particulièrement aux plasmas excités par une source de courant ou de tension électrique variable, telle qu'un générateur de tension sinusoïdale ou de tension impulsionnelle.
Et l'invention trouvera plus précisément encore des applications particulièrement avantageuses dans de tels plasmas excités avec une tension radiofréquence sinusoïdale de fréquence entre 1 MHz et 1GHz. L'impédance électrique d'un plasma dépend du courant circulant dans le plasma : elle est dite non-linéaire. L'une des conséquences de cette non-linéarité est qu'un plasma excité par une source de tension alternative de fréquence f génère des harmoniques de cette tension d'excitation aux fréquences multiples de f. Par exemple pour un plasma généré par une tension sinusoïdale à 13,56 MHz, des composantes sinusoïdales à 27,12 MHz, 40,68 MHz, 54,24 MHz ... apparaissent dans les signaux de tension et de courant mesurés).
Au cours d'un procédé industriel tel que ceux mentionnés ci- dessus la mesure de l'évolution temporelle de l'amplitude de ces harmoniques, en plus de l'amplitude de la fréquence fondamentale au cours d'un procédé industriel est d'une grande utilité.
Une telle mesure peut notamment être utilisée pour détecter la fin de la gravure par plasma d'une couche diélectrique sur un microprocesseur en cours de fabrication. On précise que les amplitudes de ces harmoniques à 2f, 3f, 4f... sont beaucoup plus faibles que l'amplitude de la composante fondamentale f, et qu'il est donc nécessaire de pouvoir les isoler de cette composante fondamentale par filtrage.
En outre, les procédés plasmas utilisant une fréquence RF supérieure à 13,56 MHz, et en particulier dans le domaine des très hautes fréquences (notamment bande VHF : 30 MHz - 300 MHz) sont de plus en plus courants.
A de telles fréquences, les sondes de tension et de courant doivent fonctionner dans une gamme de fréquence très large car l'écart de fréquence entre chaque harmonique de la composante fondamentale de fréquence est plus élevé que dans le cas où la fréquence fondamentale utilisée est plus basse (13,56 MHz par exemple).
La plupart des sondes existantes conçues pour fonctionner à 13,56 MHz ne sont ainsi plus utilisables en VHF. Et il serait avantageux de disposer d'une sonde apte à fonctionner dans une large gamme de fréquence.
Par ailleurs, la taille des réacteurs de gravure et de dépôt assisté par plasma utilisés dans l'industrie a également tendance à augmenter afin de traiter en une seule fois un plus grand nombre de dispositifs. Ces réacteurs de taille importante nécessitent l'utilisation de plus fortes puissances électriques RF. Les courants et les tensions RF à mesurer augmentent donc aussi.
Or, les risques d'échauffement, de court-circuit et de claquage électrique augmentent pour des courants et des tensions plus importants. Et il serait avantageux de réduire ces risques, notamment pour pouvoir mesurer des courants et des tensions importants.
Comme cela a été exposé ci-dessus, il est souvent désiré de mesurer le courant et la tension sur le circuit d'alimentation en puissance électrique du plasma. II est également souvent désiré de déterminer le déphasage temporel entre le courant et la tension afin d'en déduire la puissance dissipée dans le plasma et l'impédance de celui-ci.
La qualité de la mesure du déphasage est fortement dépendante des performances du capteur utilisé pour mesurer le courant et la tension. Cette mesure doit être précise car les variations de déphasage sont souvent très faibles.
Or on constate avec les sondes de tension et de courant connues que le déphasage mesuré entre le courant et la tension est entaché d'une erreur (cette erreur étant généralement d'autant plus grande que les capteurs de courant et de tension de la sonde sont distants l'un de l'autre). Il serait naturellement désirable de s'affranchir de ce type d'erreur.
La solution qui consisterait à amener au même niveau les capteurs de courant et de tension d'une sonde de l'état de l'art (telle que celle qui est représentée sur la figure 2) pour tenter de s'affranchir de ce type d'erreur augmenterait par ailleurs le risque de perturbation mutuelle et entraînerait une dégradation de la réponse en fréquence. La gamme de fréquence d'utilisation de la sonde en serait réduite, II est donc nécessaire avec ce type de sonde connu de trouver un compromis entre le risque de perturbation mutuelle, la dégradation du déphasage mesuré et la gamme de fréquence d'utilisation.
Comme cela a été évoqué ci-dessus, il existe déjà des sondes visant à mesurer le courant et la tension délivrés à un plasma. La figure 2 expose ainsi en section longitudinale une sonde 10 montée sur une ligne de transmission coaxiale électriquement conductrice 20 qui comporte un conducteur interne 21 et un conducteur externe 22 qui entoure le conducteur interne
La ligne coaxiale 20 est connectée : • par ses deux conducteurs, à un circuit d'accord en impédance (non représenté sur la figure) connecté par ailleurs à une source de tension RF alternative (ou générateur RF) qui excite le plasma (connection par la partie de la ligne qui est en haut de la figure), • par son conducteur interne, à une électrode radiofréquence (RF) 31 en forme de disque plein - seule la section de ce disque apparaissant sur la figure (connexion par la partie de la ligne qui est en bas de la figure),
• par son conducteur externe à un couvercle 32 conducteur qui est également en forme de disque et s'étend en regard et à distance de l'électrode 31 pour définir entre l'électrode et le couvercle un espace 30. Le couvercle 32 est également électriquement conducteur.
La ligne coaxiale 20 décrite ci-dessus correspond par exemple à la ligne 69 ou la ligne 72 de la figure 1. L'électrode radiofréquence 31 correspond par exemple au porte-substrat 55 ou à la source plasma 64 de cette même figure 1. Le couvercle 32 correspond par exemple à l'enceinte
53 ou à la paroi 54 de l'enceinte à vide de cette figure.
Entre le générateur RF et le circuit d'accord, la ligne est dite adaptée. Entre le circuit d'accord et le plasma, la ligne est dite désadaptée.
L'espace compris entre le conducteur interne et le conducteur externe est électriquement isolant - on peut y avoir fait le vide ou encore l'avoir rempli avec un matériau diélectrique.
La ligne est parcourue par des courants se déplaçant en sens contraire le long de l'âme 21 et de l'enveloppe 22. Ces courants sont générés par la source de tension alternative qui excite le plasma par l'intermédiaire de l'électrode RF 31 qui est en contact avec le plasma.
Ces courants s'annulent et changent de sens - tout en restant en sens contraire l'un par rapport à l'autre - deux fois par cycle de tension alternative.
On précise qu'en vertu de l'effet de peau les courants de hautes fréquences (les « hautes fréquences » étant comprises dans le cadre du présent texte comme des fréquences supérieures à 1 MHz) se propagent à la surface des éléments conducteurs qu'il traverse (âme 21 , enveloppe 22, électrode 31 , couvercle 32 ...) et en regard, c'est-à-dire à l'extérieur de l'âme 21 et à l'extérieur de l'enveloppe 22.
La sonde 10 comprend des moyens 11 pour mesurer la tension entre le courant qui traverse la ligne 10 et une masse reliée au conducteur externe 22, et des moyens 12 pour mesurer l'intensité de ce courant.
Les moyens 11 de mesure de tension comprennent :
• un disque conducteur 110 disposé à proximité du conducteur interne 21 et relié à un câble conducteur 111 qui traverse le conducteur externe 22, et • un deuxième câble conducteur 112, relié au conducteur externe 22.
La mesure de la tension V2 entre les deux câbles 111 et 112 correspond ainsi normalement à la tension que l'on souhaite mesurer.
Toutefois, une tension mesurée entre ces deux câbles comporte certaines limitations : • d'une part, la réponse d'une telle sonde de tension est restreinte en fréquence,
• d'autre part le fonctionnement de la ligne de transmission 20 est perturbé par la proximité du disque 110 avec le conducteur interne 21 ,
• et enfin la ligne 20 est partiellement court-circuitée par le conducteur 110, ce qui peut provoquer un claquage, restreignant ainsi la gamme de tension mesurable.
Les moyens 12 de mesure de courant comprennent une boucle conductrice 121 (ou plusieurs boucles en série) disposée(s) à proximité du conducteur interne 21 , et dont une extrémité est connectée à la masse (connection au conducteur externe 22).
Le conducteur interne est parcouru par le courant sinusoïdal lpιaSma que l'on désire mesurer.
Ce courant induit un champ magnétique B sinusoïdal et azimutal, qui induit une tension (ou force électromotrice) entre les extrémités de la boucle 121. Ceci constitue une technique indirecte de mesure de courant puisqu'elle utilise le champ magnétique induit par le courant à mesurer.
La différence de potentiel V1 mesurée entre la masse et l'extrémité 1210 de la boucle qui n'est pas à la masse est en principe proportionnelle à la dérivée première du courant lpιaSma sur la ligne
En pratique cependant, la boucle 121 est également couplée capacitivement au conducteur central ce qui a pour conséquence d'ajouter à la tension mesurée aux bornes de la boucle une tension qui est proportionnelle à la tension VpιaSma entre les deux conducteurs de la ligne 20.
Ceci constitue une composante additionnelle de tension qui rend la mesure du courant moins précise, et perturbe également la mesure du déphasage temporel entre le courant et la tension.
La boucle 121 perturbe la ligne 20 car elle forme un court-circuit partiel entre les deux conducteurs 21 et 22, pouvant provoquer un claquage. En pratique l'utilisation d'une telle boucle se trouve ainsi limitée à des puissances inférieures à 10 kW.
En outre, à cause de la taille importante de la boucle il est aussi difficile de disposer un capteur de la tension V2 à proximité sans que les capteurs de courant et de tension se perturbent mutuellement. Il est alors nécessaire d'éloigner ces deux capteurs l'un de l'autre - ce qui introduit une erreur dans la mesure du déphasage entre le courant et la tension.
On ajoutera qu'il est nécessaire de calibrer très finement une telle sonde connue, en prenant en compte les caractéristiques (géométrie, taille, ..) de la boucle 121.
On précise que toutes les sondes existant actuellement dans le domaine d'application visé utilisent des variantes de la sonde décrite ci- dessus. Par ailleurs, ces sondes mettent toutes en œuvre une mesure du courant indirecte car elles utilisent le champ magnétique induit par les courants circulant dans la ligne 20.
Les différentes variantes de sonde connues peuvent permettre de pallier une ou plusieurs des limitations qui ont été exposées, sans jamais les pallier toutes. On peut notamment citer pour illustration les sondes décrites dans les documents US 5834931 , US 5808415, US 6501285.
Il apparaît ainsi que les sondes existantes et visant à mesurer en temps réel le courant et la tension délivrées par un générateur RF à un plasma comportent des limitations.
Un but de l'invention est de permettre de s'affranchir de ces limitations.
Un autre but de l'invention est de permettre la mesure simultanée et précise du courant et de la tension en des points très proches. Un autre but encore de l'invention est de permettre de réaliser de telles mesures dans une large gamme de puissance.
Un autre but encore de l'invention est de permettre de réaliser de telles mesures dans une large gamme de fréquences.
Afin d'atteindre ces buts, l'invention propose selon un premier aspect une sonde de mesure de caractéristiques électriques d'un courant d'excitation d'un plasma, ladite sonde étant montée sur une ligne conductrice qui comprend un conducteur interne et un conducteur externe, comportant un capteur de courant et un capteur de tension, caractérisée en ce que : • le capteur de courant comporte :
> une gorge formée dans la masse d'un des conducteurs afin de former un détour pour le courant parcourant ledit conducteur, > et un point de mesure de tension électrique entre une masse reliée audit conducteur et un point de ladite gorge, ledit capteur de courant étant ainsi apte à mesurer une tension proportionnelle à la dérivée temporelle première de l'intensité dudit courant d'excitation
• le capteur de tension est un capteur dérivateur, apte à mesurer une tension proportionnelle à la dérivée temporelle première de la tension dudit courant d'excitation.
Des aspects préférés mais non limitatifs de la sonde de l'invention sont les suivants :
• le courant d'excitation est un courant alternatif RF,
• la gorge définit un détour d'une longueur de l'ordre du centimètre,
• ledit capteur de courant et ledit capteur de tension sont implantés tous deux sur le conducteur externe. • ledit capteur de tension est un capteur comprenant une ligne de transmission conique, terminée par une surface légèrement bombée couplée capacitivement au conducteur autre que celui sur lequel ledit capteur de tension est monté,
• la capacité de couplage entre ladite surface bombée et ledit conducteur autre que celui sur lequel ledit capteur de tension est monté est de l'ordre de 0,3 pF,
• ledit capteur de courant et ledit capteur de tension sont implantés au même niveau sur le trajet du courant à la surface dudit conducteur,
• ladite ligne conductrice est une ligne cylindrique coaxiale, • ladite ligne conductrice est une ligne cylindrique radiale, et
• la sonde comporte des moyens de mesure du déphasage temporel entre le courant et la tension dudit courant d'excitation. Selon un deuxième aspect, l'invention propose également un réacteur à plasma comportant un générateur RF et une sonde telle que mentionnée ci-dessus.
Des aspects préférés mais non limitatifs du réacteur selon l'invention sont les suivants :
• la sonde est implantée entre un circuit d'accord en impédance reliée audit générateur RF et une électrode RF d'excitation du plasma, et
• la sonde est implantée entre ledit générateur RF et une boîte d'accord, sur une ligne dite adaptée. D'autres aspects, buts et avantages de l'invention apparaîtront mieux à la lecture de la description suivante, faite en référence aux dessins annexés sur lesquels, outre les figures 1 et 2 qui ont déjà été commentées en référence à l'état de la technique :
• la figure 3 est un schéma de principe d'une sonde de mesure de courant et de tension selon l'invention,
• la figure 4 est une représentation d'un schéma électrique équivalent à cette sonde selon l'invention,
• les figures 5a à 5d sont des vues d'une réalisation pratique d'une sonde selon l'invention, • la figure 6 illustre le caractère proportionnel à la fréquence f du courant et de la tension mesurés par une sonde selon l'invention,
• la figure 7 illustre un mode de réalisation de l'invention dans lequel une sonde selon l'invention est implantée dans une ligne radiale.
En référence à la figure 3, on a représenté schématiquement une sonde selon l'invention.
Ici encore, la sonde est montée entre une électrode RF et un circuit d'accord en impédance relié à un générateur RF (non représenté). Comme cela a été exposé ci-dessus, un circuit d'accord en impédance peut en effet être utilisé dans les procédés plasma notamment afin d'optimiser le transfert vers le plasma de la puissance délivrée par le générateur RF. On précise que les éléments déjà commentés à propos de la sonde connue de la figure 2 seront référencés de la même manière en référence à cette figure 3 (sans être introduits à nouveau).
On retrouve ainsi sur cette figure :
• une ligne de conductrice transmission coaxiale 20 qui comporte un conducteur interne 21 et un conducteur externe 22,
• une électrode RF 31 en forme de disque, et un couvercle associé 32.
On précise toutefois que le sonde selon l'invention peut être montée différemment - on reviendra sur cet aspect.
On retrouve également un capteur de courant (ici 41 ) et un capteur de tension (ici 42). Ces capteurs sont spécifiques à l'invention.
On remarque que ces deux capteurs sont disposés extrêmement proches l'un de l'autre.
La sonde selon l'invention est en effet destinée à mesurer en des points extrêmement rapprochés, simultanément, le courant et la tension instantanés, notamment dans les plasmas utilisant de la puissance électrique dans le domaine de la radiofréquence (RF).
Cette mesure est effectuée en un point sur les lignes de transmission chargées de transporter la puissance électrique, délivrée par un générateur RF, jusqu'à l'enceinte dans laquelle le plasma est confiné. L'invention sera en particulier mise en œuvre avantageusement sur des lignes de transmission dites désadaptées. Les deux capteurs 41 , 42 sont donc insérés en série dans une section du conducteur externe 22, en étant séparés seulement d'une distance de l'ordre de 5 millimètres.
Un tel espacement est considéré au sens de la présente invention comme négligeable, et on considérera donc que les deux capteurs sont implantés au même niveau sur le trajet du courant à la surface du conducteur 22. Ceci peut également être exprimé en disant que les deux capteurs 41 et 42 sont implantés dans un plan (Z constant), avec la dimension Z définie par l'axe A qui est parallèle aux conducteurs 21 et 22.
La ligne 20 peut être une ligne coaxiale cylindrique, ou tout type de ligne coaxiale dans laquelle un conducteur interne est entouré d'un conducteur externe.
Le conducteur externe 22 est relié à la masse électrique du système.
Une tension RF VpιaSma est appliquée en sortie du circuit d'accord, entre le conducteur interne et externe, à l'entrée de cette section de ligne (c'est à dire dans sa partie haute sur la représentation de la figure 3).
Le courant alternatif RF qui en résulte traverse complètement ou en partie le plasma (représenté sous l'électrode 31 ) et revient par le conducteur externe.
Comme cela a été mentionné plus haut dans ce texte, dans le domaine des hautes fréquences HF et supérieures le courant circule à la surface des conducteurs sur une profondeur de quelques micromètres. Le courant circule donc à la surface du conducteur central et sur la face interne du conducteur externe.
On va maintenant détailler la structure des capteurs 41 et 42.
Concernant tout d'abord le capteur 41 , une gorge 410 est creusée dans la face interne du conducteur externe 22 afin de faire parcourir au courant RF de peau un trajet supplémentaire (de l'ordre d'un centimètre de long). Le trajet du courant sur les parois de cette gorge est illustré par des flèches.
La gorge est symétrique par rapport à l'axe central A de la ligne 20. Elle suit donc une géométrie de révolution par rapport à cet axe.
Des moyens de mesure d'une tension V1 sont associés à cette gorge.
Ces moyens mesurent la différence de potentiel V1 entre deux points situés sur le détour formé par la gorge. La figure 4 donne le schéma électrique équivalent de la sonde.
Le détour de la gorge 410 se comporte comme une inductance Lm de faible valeur (de l'ordre du nanohenry, ce qui n'est pas significatif - à titre de comparaison la simple inductance propre des conducteurs 21 et
22 est typiquement de quelques dizaines de nanohenry par mètre) placée en série sur le parcours du courant.
La présence de ce détour ne modifie donc pas de manière sensible les propriétés de cette ligne.
Dans le schéma de la figure 4, la mesure de la tension V1 revient à mesurer la tension aux bornes d'une portion (Lm) de l'inductance totale Ltot.
Et la tension aux bornes de l'inductance Lm est égale à la dérivée temporelle première du courant lpιasma qui la traverse. Comme ce courant est sinusoïdal, l'amplitude de la tension mesurée est donc proportionnelle
3 ' plasma- Pour effectuer la mesure de V1 , une embase coaxiale haute fréquence 411 de type SMA (50 ohms) est enfoncée de l'extérieur dans un orifice de la paroi du conducteur 22 qui débouche dans la gorge (cf. figures 5d). Cette embase 411 dispose d'un connecteur à vis permettant de brancher un câble coaxial conventionnel (50 ohms) pour transporter le signal mesuré jusqu'à un dispositif de visualisation (oscilloscope...) ou d'acquisition (carte de conversion analogique-numérique). Le capteur de courant 41 est un capteur dit « dérivateur ». Le signal mesuré (V1 (t)) en sortie de ce capteur est déphasé de +2^/ par rapport au signal (lpιasma(t)) que l'on cherche à mesurer.
Et le capteur de tension 42 est également dérivateur, ce qui permet d'utiliser la sonde pour mesurer des déphasages entre le courant et la tension : avec un capteur de tension 42 mesurant une tension déphasée de +7^ par rapport à la tension Vpιasma, on obtient un déphasage entre les signaux mesurés V1 et V2 qui est identique au déphasage entre le courant (lpιaSma) et la tension (VpιaSma) sur la ligne coaxiale. L'invention utilise ainsi de préférence un capteur de tension 42 comprenant une ligne de transmission 420 dite conique, terminée par une surface 421 légèrement bombée en couplage « capacitif » avec le conducteur interne 21. La capacité de couplage entre la surface 421 et le conducteur interne est de l'ordre de 0,3 pF. En pratique les dimensions critiques des éléments formant la sonde (diamètre des conducteurs, espacement entre conducteur interne et externe, espacement entre les deux capteurs de la sonde, ...) seront adaptés en fonction des paramètres de fonctionnement de cette sonde (gamme de valeur des tensions que l'on veut mesurer, précision que l'on veut obtenir sur le déphasage courant/tension, fréquence à laquelle on travaille, ...). On prendra en tout état de cause soin de ménager entre les conducteurs interne et externe un espacement suffisant pour empêcher un claquage. Dans un mode de réalisation, les dimensions de la ligne conique sont choisies de manière à ce que son impédance caractéristique soit égale à 50 ohms - ce qui permet de relier cette ligne conique à une ligne de transmission coaxiale construite à partir d'une embase SMA identique à celle utilisée pour le capteur de courant 41.
Et ici encore, on peut relier avec un câble coaxial la sortie du capteur de tension à un dispositif de visualisation et d'acquisition.
La ligne conique du capteur 42 permet :
• de garantir un fonctionnement dérivateur de la sonde dans une large gamme de fréquence,
• tout en gardant le capteur de tension éloigné de la haute tension RF.
La ligne conique est en partie encastrée dans le conducteur 22 qui est à la masse (cf. figure 5c).
On remarquera que si les lignes coniques sont connues en tant que telles, elles étaient jusqu'à maintenant employées pour la mesure de courants très spécifiques (courants transitoires de plusieurs méga¬ ampères pendant des impulsions d'une centaine de nanosecondes de durée) qui sont bien différents de ceux mis en œuvre dans la présente invention. En outre, le fait de placer le capteur de courant sur le conducteur de retour par la masse va à rencontre de la démarche normale de l'homme du métier. Le conducteur externe à la masse est en effet considéré comme un simple blindage bloquant le rayonnement électromagnétique émis par le conducteur interne, et non pas comme un conducteur transportant le courant électrique de retour pouvant être exploité.
Ainsi, dans le cadre de la présente invention : • contrairement à ce qui est habituellement utilisé en métrologie RF, le courant est mesuré directement. On mesure pour cela la tension V1 qui apparaît aux bornes d'un détour dans laquelle on force le courant RF à passer après avoir traversé complètement ou en partie le plasma, et • la mesure de tension est effectuée par une sonde de tension à couplage capacitif prolongée par une ligne conique. La sonde de tension à couplage capacitif, d'usage courant en métrologie RF, est ici utilisée avec une ligne conique qui permet de garantir un fonctionnement dérivateur de la sonde dans une large gamme de fréquence tout en gardant le capteur de tension éloigné de la haute tension RF.
Le circuit électrique équivalent au capteur de tension à ligne conique est montré sur la figure 4. Sans l'utilisation d'une ligne conique, il existerait un condensateur en parallèle entre le capteur et la masse. C'est le cas pour les capteurs de tension conventionnels. La présence de ce composant supplémentaire altère la réponse en fréquence du capteur. Notamment, il réduit la gamme de fréquence pour laquelle sa réponse est dérivatrice.
L'intérêt d'une ligne conique est qu'elle assure une transition continue entre le capteur bombé et la ligne coaxiale cylindrique chargée de transportée la tension à mesurer jusqu'à un dispositif de visualisation et d'acquisition. Cela a pour but de d'intégrer ce condensateur parasite dans ceux normalement présents entre les deux conducteurs d'une ligne coaxiale afin qu'il n'altère plus la réponse de la sonde. Dans le mode de réalisation illustré sur les figures 5a à 5c, la sonde comprend deux éléments tubulaires principaux 4100, 4200 qui sont destinés à être alignés et assemblés, chacun de ces deux éléments étant associé à un capteur respectif de la sonde (capteur 41 pour l'élément 4100, capteur 42 pour l'élément 4200). Et dans ce mode de réalisation, l'élément 4200 sert à fermer la gorge de la sonde de courant (cf. figure 5b), avec les deux capteurs 41 ,
42 situés au plus près du plan de contact entre les deux éléments 4100,
4200. Les deux sondes sont ainsi disposées au plus près l'une de l'autre (cf. figure 5a).
Le prototype de capteur représenté sur les figures 5a à 5c est de forme globalement cylindrique.
Sa longueur est de cinq centimètres pour un diamètre de 4,5 centimètres. Il est constitué essentiellement de laiton. Il s'agit ici d'une sonde de type « repositionnable » car elle possède à ses extrémités des connecteurs coaxiaux à vis. Ces derniers sont par exemple de type N ou HN pour assurer un bon blindage et transporter de fortes puissances. Ces connecteurs sont modifiables afin de s'adapter aux types de connecteurs (taille et genre) utilisés sur la ligne de transmission sur laquelle on souhaite effectuer les mesures électriques. La figure 5a montre une sonde montée avec des connecteurs coaxiaux mâles de type HN. La figure 5b montre une sonde démontée avec des connecteurs coaxiaux N de type femelle.
L'invention peut également être disposée sur une ligne de transmission de manière permanente (sans connecteurs à vis) comme cela est illustré par le schéma de la figure 3.
La ligne de transmission sur laquelle est insérée le capteur n'est pas nécessairement cylindrique et coaxiale. Il peut s'agir d'une ligne coaxiale à section carrée ou rectangulaire. Plus généralement la ligne doit posséder deux conducteurs dont l'un enferme l'autre et propageant principalement un mode électromagnétique de type « TEM » (transverse électrique et magnétique).
La ligne dans laquelle est implantée le capteur peut également être une ligne radiale comme celle constituée par l'électrode RF 31 et le couvercle 32 sous forme d'un anneau concentrique. Dans un tel cas la gorge de détour du courant peut être pratiquée dans la paroi du couvercle qui est en regard de l'électrode RF. Un exemple d'implantation de l'invention dans une ligne radiale est montré sur la figure 7.
Comme le capteur ne perturbe pas la ligne il peut être disposé sur une ligne de transmission adaptée sans risque de la désadapter, comme par exemple sur les lignes 68 et 71 de la figure 1 situées entre le générateur de puissance RF et le circuit d'accord en impédance.
Préalablement à toute utilisation métrologique, le capteur a été calibré (ou caractérisé). La figure 6 montre un exemple des résultats de cette calibration. Cette figure expose en effet à partir des mesures faites pour VI et V2 :
• V1/ Ipiasma (courbe 51 ), et
• V2/ Vpiasma (courbe 52).
On constate que ces deux courbes tracées en fonction de la fréquence RF sont proches de droites, ce qui indique que les capteurs sont bien dérivateurs (réponse linéaire avec la fréquence).
Dans l'exemple illustré ici, ce comportement de variation linéaire avec la fréquence est particulièrement bien observable pour des fréquences allant jusqu'à 500 MHz. Les procédés industriels visés par l'invention utilisant une fréquence fondamentale (fréquence de fonctionnement du générateur RF) inférieure à 100 MHz, la sonde dont la calibration est illustrée sur la figure 6 est donc utilisable pour mesurer l'amplitude d'au moins quatre des premières harmoniques du courant et de la tension dans ces procédés industriels.
La tension mesurée (V2) est ainsi proportionnelle à la tension à mesurer (VpιaSma > que l'on peut noter V0) avec un facteur multiplicatif (fVo) proportionnel à la fréquence du signal que l'on cherche à mesurer (et il en est de même pour le courant).
Figure imgf000026_0001
On remarquera que la sonde selon l'invention est particulièrement simple à construire. Le prototype illustré sur les figures 5a à 5d, et dont les courbes de calibration sont exposées sur la figure 6, n'a nécessité que l'usinage de quatre pièces métalliques, l'utilisation de douze vis pour l'assemblage et l'achat de quatre connecteurs coaxiaux.
L'usinage des pièces a été réalisé sans difficultés à l'aide de machines outil courantes d'atelier de mécanique (une tolérance d'usinage de l'ordre du dixième de millimètre suffit). Enfin le laiton utilisé pour fabriquer les pièces est un matériau peu onéreux.
Un autre avantage de la sonde réside dans sa géométrie simple. Cette géométrie présente l'avantage d'être facilement modélisable à l'aide d'un calcul analytique. Il n'est ainsi pas nécessaire de fabriquer un grand nombre de prototypes ou d'avoir recours à une modélisation informatique complexe pour concevoir et dimensionner une sonde selon la présente invention.
La sonde selon l'invention présente en outre une grande compacité (utilisation de capteurs eux-mêmes compacts encastrés dans un conducteur relié à la masse électrique). Et il est possible de disposer ces capteurs à proximité l'un de l'autre, sans qu'ils se perturbent.
La sonde selon l'invention est par ailleurs apte à fonctionner sur de grandes plages de fréquence (typiquement entre 1 MHz et 1 GHz), et n'est ainsi pas soumise à la limitation de gamme de fréquence des sondes connues. Un autre aspect avantageux de l'invention réside dans le fait que d'une part la mesure de courant est directe puisqu'elle n'utilise pas le champ magnétique induit par le courant à mesurer, et que d'autre part la gorge assure son propre blindage vis-à-vis de champs magnétiques variables externes. Même en présence de tels champs, la tension en sortie du capteur de courant n'est pas parasitée.
La réponse linéaire en fréquence favorise les hautes fréquences sur les basses fréquences dans le signal à mesurer. Ceci présente deux avantages :
• d'une part cela rend la sonde insensible à la présence de composantes à basse fréquence (< 100 kHz) dues à des instabilités dans le plasma,
• et d'autre part cela favorise la mesure des harmoniques dont l'amplitude est toujours plus faible que celle de la fondamentale : c'est une « compensation en fréquence».
Il est à noter que l'inversion de branchement de la sonde ne change pas la mesure de tension mais change le signe de la mesure de I (déphasage de -π ). L'invention utilise des capteurs peu intrusifs encastrés, ou en partie encastrés, dans un conducteur relié à la masse électrique. Cette particularité réduit fortement le risque de claquage électrique (court- circuit) provoqué par la présence des capteurs.
La sonde objet de la présente invention peut donc mesurer des tensions et des courants bien plus élevés que les dispositifs conventionnels.
On ajoutera enfin que les mesures « directes » de courant et de tension étant proportionnelles à la fréquence (modulo lpιasma et VpιaSma) rend plus aisé encore la mise en œuvre de la sonde selon l'invention à de hautes fréquences pour des mesures fiables - cet avantage étant renforcé par le fait que les procédés de plasmas évoluent actuellement vers des fréquences de plus en plus élevées.

Claims

REVENDICATIONS
1. Sonde de mesure de caractéristiques électriques d'un courant d'excitation d'un plasma, ladite sonde étant montée sur une ligne conductrice (20) qui comprend un conducteur interne (21 ) et un conducteur externe (22), comportant un capteur de courant (41) et un capteur de tension (42), caractérisée en ce que :
• le capteur de courant comporte :
> une gorge (410) formée dans la masse d'un des conducteurs (22) afin de former un détour pour le courant parcourant ledit conducteur,
> et un point de mesure de tension électrique entre une masse reliée audit conducteur et un point de ladite gorge, ledit capteur de courant étant ainsi apte à mesurer une tension (V1) proportionnelle à la dérivée temporelle première de l'intensité
(I plasma) dudit courant d'excitation
• le capteur de tension (42) est un capteur dérivateur, apte à mesurer une tension (V2) proportionnelle à la dérivée temporelle première de la tension (VpιaSma) dudit courant d'excitation.
2. Sonde selon la revendication précédente, caractérisée en ce que le courant d'excitation est un courant alternatif RF.
3. Sonde selon l'une des revendications précédentes, caractérisée en ce que la gorge définit un détour d'une longueur de l'ordre du centimètre.
4. Sonde selon l'une des revendications précédentes, caractérisée en ce que ledit capteur de courant (41) et ledit capteur de tension (42) sont implantés tous deux sur le conducteur externe.
5. Sonde selon l'une des revendications précédentes, caractérisée en ce que ledit capteur de tension (42) est un capteur comprenant une ligne de transmission (420) conique, terminée par une surface (421 ) légèrement bombée couplée capacitivement au conducteur (21 ) autre que celui sur lequel ledit capteur de tension est monté.
6. Sonde selon la revendication précédente caractérisée en ce que la capacité de couplage entre ladite surface bombée (421 ) et ledit conducteur (21) autre que celui sur lequel ledit capteur de tension est monté est de l'ordre de 0,3 pF.
7. Sonde selon l'une des revendications précédentes, caractérisée en ce que ledit capteur de courant (41) et ledit capteur de tension (42) sont implantés au même niveau sur le trajet du courant à la surface dudit conducteur.
8. Sonde selon l'une des revendications précédentes, caractérisée en ce que ladite ligne conductrice (20) est une ligne cylindrique coaxiale.
9. Sonde selon l'une des revendications 1 à 7, caractérisée en ce que ladite ligne conductrice est une ligne cylindrique radiale.
10. Sonde selon l'une des revendications précédentes, caractérisée en ce que la sonde comporte des moyens de mesure du déphasage temporel entre le courant et la tension dudit courant d'excitation.
11. Réacteur à plasma comportant un générateur RF caractérisé en ce qu'il comporte une sonde selon l'une des revendications précédentes.
12. Réacteur selon la revendication précédente caractérisé en ce que la sonde est implantée entre un circuit d'accord en impédance reliée audit générateur RF et une électrode (31 ) RF d'excitation du plasma.
13. Réacteur selon la revendication 11 caractérisé en ce que la sonde est implantée entre ledit générateur RF et une boîte d'accord, sur une ligne dite adaptée.
PCT/EP2005/054599 2004-09-16 2005-09-15 Sonde de mesure de caracteristiques d'un courant d'excitation d'un plasma, et reacteur a plasma associe. WO2006030024A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05789496.6A EP1794600B1 (fr) 2004-09-16 2005-09-15 Sonde de mesure de caracteristiques d'un courant d'excitation d'un plasma, et reacteur a plasma associe.
JP2007531750A JP5209313B2 (ja) 2004-09-16 2005-09-15 プラズマの励起電流の特性を測定するためのプローブ、および関連するプラズマ反応器
US11/663,129 US7615985B2 (en) 2004-09-16 2005-09-15 Probe for measuring characteristics of an excitation current of a plasma, and associated plasma reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0409811 2004-09-16
FR0409811A FR2875304B1 (fr) 2004-09-16 2004-09-16 Sonde de mesure de caracteristiques d'un courant d'excitation d'un plasma, et reacteur a plasma associe

Publications (1)

Publication Number Publication Date
WO2006030024A1 true WO2006030024A1 (fr) 2006-03-23

Family

ID=34949006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054599 WO2006030024A1 (fr) 2004-09-16 2005-09-15 Sonde de mesure de caracteristiques d'un courant d'excitation d'un plasma, et reacteur a plasma associe.

Country Status (5)

Country Link
US (1) US7615985B2 (fr)
EP (1) EP1794600B1 (fr)
JP (1) JP5209313B2 (fr)
FR (1) FR2875304B1 (fr)
WO (1) WO2006030024A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543298A (ja) * 2006-06-28 2009-12-03 ラム リサーチ コーポレーション プラズマ処理チャンバの非拘束状態の検出方法および装置
JP2012518253A (ja) * 2009-02-13 2012-08-09 アプライド マテリアルズ インコーポレイテッド プラズマチャンバ電極のためのrf母線およびrf帰還母線

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501631B2 (en) 2009-11-19 2013-08-06 Lam Research Corporation Plasma processing system control based on RF voltage
US9842725B2 (en) 2013-01-31 2017-12-12 Lam Research Corporation Using modeling to determine ion energy associated with a plasma system
US9295148B2 (en) 2012-12-14 2016-03-22 Lam Research Corporation Computation of statistics for statistical data decimation
US9320126B2 (en) 2012-12-17 2016-04-19 Lam Research Corporation Determining a value of a variable on an RF transmission model
US9171699B2 (en) 2012-02-22 2015-10-27 Lam Research Corporation Impedance-based adjustment of power and frequency
US9197196B2 (en) 2012-02-22 2015-11-24 Lam Research Corporation State-based adjustment of power and frequency
US9114666B2 (en) 2012-02-22 2015-08-25 Lam Research Corporation Methods and apparatus for controlling plasma in a plasma processing system
US10157729B2 (en) 2012-02-22 2018-12-18 Lam Research Corporation Soft pulsing
US9462672B2 (en) 2012-02-22 2016-10-04 Lam Research Corporation Adjustment of power and frequency based on three or more states
US10128090B2 (en) 2012-02-22 2018-11-13 Lam Research Corporation RF impedance model based fault detection
US10325759B2 (en) 2012-02-22 2019-06-18 Lam Research Corporation Multiple control modes
US9368329B2 (en) 2012-02-22 2016-06-14 Lam Research Corporation Methods and apparatus for synchronizing RF pulses in a plasma processing system
US9502216B2 (en) 2013-01-31 2016-11-22 Lam Research Corporation Using modeling to determine wafer bias associated with a plasma system
US9390893B2 (en) 2012-02-22 2016-07-12 Lam Research Corporation Sub-pulsing during a state
US9408288B2 (en) 2012-09-14 2016-08-02 Lam Research Corporation Edge ramping
US20140202634A1 (en) * 2013-01-23 2014-07-24 Applied Materials, Inc. Radial transmission line based plasma source
US9779196B2 (en) 2013-01-31 2017-10-03 Lam Research Corporation Segmenting a model within a plasma system
US9620337B2 (en) 2013-01-31 2017-04-11 Lam Research Corporation Determining a malfunctioning device in a plasma system
US9107284B2 (en) 2013-03-13 2015-08-11 Lam Research Corporation Chamber matching using voltage control mode
US9119283B2 (en) 2013-03-14 2015-08-25 Lam Research Corporation Chamber matching for power control mode
US9502221B2 (en) 2013-07-26 2016-11-22 Lam Research Corporation Etch rate modeling and use thereof with multiple parameters for in-chamber and chamber-to-chamber matching
US9594105B2 (en) 2014-01-10 2017-03-14 Lam Research Corporation Cable power loss determination for virtual metrology
US10950421B2 (en) 2014-04-21 2021-03-16 Lam Research Corporation Using modeling for identifying a location of a fault in an RF transmission system for a plasma system
US9536749B2 (en) 2014-12-15 2017-01-03 Lam Research Corporation Ion energy control by RF pulse shape
CN113396335B (zh) * 2018-11-21 2022-12-13 华为技术有限公司 探头、阵列探头、探测器及方法
US11678429B2 (en) * 2019-10-30 2023-06-13 Ryan Paul Fellows Inertial electrostatic confinement fusion device
EP4250335A1 (fr) * 2022-03-25 2023-09-27 Impedans Ltd Appareil de détection non invasive de spectre de courant de fréquence radio circulant dans une chambre de traitement au plasma
CN116850461A (zh) * 2023-07-14 2023-10-10 济南一渚医疗科技有限公司 一种荷电粒子的调谐方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239587B1 (en) * 1997-01-03 2001-05-29 Texas Instruments Incorporated Probe for monitoring radio frequency voltage and current
WO2002054091A2 (fr) * 2001-01-08 2002-07-11 Tokyo Electron Limited Sonde tension h.f. a couplage capacitif

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834931A (en) * 1996-10-31 1998-11-10 Sematech, Inc. RF current sensor
US5808415A (en) * 1997-03-19 1998-09-15 Scientific Systems Research Limited Apparatus for sensing RF current delivered to a plasma with two inductive loops
US6449568B1 (en) * 1998-02-27 2002-09-10 Eni Technology, Inc. Voltage-current sensor with high matching directivity
US6501285B1 (en) * 2000-06-20 2002-12-31 Scientific Systems Research Limited RF current sensor
JP4030766B2 (ja) * 2002-01-30 2008-01-09 アルプス電気株式会社 プラズマ処理装置
US7154256B2 (en) * 2002-02-28 2006-12-26 Tokyo Electron Limited Integrated VI probe
JP3977114B2 (ja) * 2002-03-25 2007-09-19 株式会社ルネサステクノロジ プラズマ処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239587B1 (en) * 1997-01-03 2001-05-29 Texas Instruments Incorporated Probe for monitoring radio frequency voltage and current
WO2002054091A2 (fr) * 2001-01-08 2002-07-11 Tokyo Electron Limited Sonde tension h.f. a couplage capacitif

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543298A (ja) * 2006-06-28 2009-12-03 ラム リサーチ コーポレーション プラズマ処理チャンバの非拘束状態の検出方法および装置
JP2012518253A (ja) * 2009-02-13 2012-08-09 アプライド マテリアルズ インコーポレイテッド プラズマチャンバ電極のためのrf母線およびrf帰還母線

Also Published As

Publication number Publication date
EP1794600B1 (fr) 2015-04-08
JP5209313B2 (ja) 2013-06-12
FR2875304B1 (fr) 2006-12-22
JP2008513940A (ja) 2008-05-01
FR2875304A1 (fr) 2006-03-17
US20070252580A1 (en) 2007-11-01
US7615985B2 (en) 2009-11-10
EP1794600A1 (fr) 2007-06-13

Similar Documents

Publication Publication Date Title
EP1794600B1 (fr) Sonde de mesure de caracteristiques d&#39;un courant d&#39;excitation d&#39;un plasma, et reacteur a plasma associe.
FR2738984A1 (fr) Procede et dispositif de mesure d&#39;un flux d&#39;ions dans un plasma
Miller et al. An inductively coupled plasma source for the gaseous electronics conference RF reference cell
Liu et al. Optical detection of the percolation threshold of nanoscale silver coatings with optical fiber gratings
EP1941291B1 (fr) Procede de mesure de permeabilite magnetique et echantillon de reference utilise dans celui-ci
EP0346168B1 (fr) Réacteur à plasma
FR2627909A1 (fr) Etalon de frequence passif
Wang et al. Distinct modes in the evolution of interaction between polymer film and atmospheric pressure plasma jet
WO2008009558A1 (fr) Dispositif et procédé de production et de confinement d&#39;un plasma
Jang et al. In situ method for real time measurement of dielectric film thickness in plasmas
Khand et al. Sensitivity Enhancement of THz Metamaterial by Decoupling its Resonance from the Substrate's Fabry–Pérot Oscillations
EP3539145B1 (fr) Circuit d&#39;adaptation d&#39;impedance entre un générateur et une charge à des fréquences multiples, ensemble comportant un tel circuit et utlisation liée
Naz et al. Development of simple designs of multitip probe diagnostic systems for RF plasma characterization
WO2005076028A1 (fr) Cavite resonante de haute frequence pour la resonance magnetique nucleaire, utilisant des lignes de transmission radio-frequence.
Zeng et al. Spatially resolved ground state atomic oxygen density during the mode transition of inductively coupled oxygen plasmas
FR2876536A1 (fr) Dispositif et procede de caracterisation de plasma
EP3149506B1 (fr) Adaptateur d&#39;antenne
EP2036116B1 (fr) Dispositif et procédé à capacité commandable
RU2587468C2 (ru) Способ измерения плотности электронов в плазме методом оптической спектроскопии
EP0359598B1 (fr) Procédé de caractérisation de matériaux pour leur utilisation en magnétométrie à résonance, spectromètre pour cette caractérisation et procédé de calibration de ce spectromètre
FR3005825A1 (fr) Generateur de plasma etendu comprenant des generateurs elementaires integres
FR2654834A1 (fr) Sonde capacitive pour la mesure in situ de la teneur en eau d&#39;un sol.
WO1991007668A1 (fr) Cellule de vapeurs atomiques ou moleculaires pour pompage optique et magnetometre ou gyroscope utilisant une telle cellule
EP0734048B1 (fr) Procédé et dispositif pour revêtir ou nettoyer un substrat
Na et al. Wave-cutoff method: theory, apparatus, characteristics, and applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11663129

Country of ref document: US

Ref document number: 2007531750

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005789496

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005789496

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11663129

Country of ref document: US