WO2006028210A1 - Optical switch - Google Patents

Optical switch Download PDF

Info

Publication number
WO2006028210A1
WO2006028210A1 PCT/JP2005/016616 JP2005016616W WO2006028210A1 WO 2006028210 A1 WO2006028210 A1 WO 2006028210A1 JP 2005016616 W JP2005016616 W JP 2005016616W WO 2006028210 A1 WO2006028210 A1 WO 2006028210A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical fiber
lens
light beam
Prior art date
Application number
PCT/JP2005/016616
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoki Uesugi
Yoshihisa Yamada
Harumichi Kitaguchi
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Publication of WO2006028210A1 publication Critical patent/WO2006028210A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3514Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along a line so as to translate into and out of the beam path, i.e. across the beam path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation

Definitions

  • the present invention relates to an optical switch for switching a coupling relationship between an optical input unit (for example, an input optical fiber) and an optical output unit (for example, an output optical fiber).
  • an optical input unit for example, an input optical fiber
  • an optical output unit for example, an output optical fiber
  • FIG. 1 (a) is a cross-sectional view showing the structure of a conventional optical switch
  • FIGS. 1 (b) and 1 (c) are partially broken planes showing how the optical path is switched in the conventional optical switch.
  • the optical switch 11 is composed of two sets of optical fibers 13a, 13b and 13c, 13d positioned by a ferrule 12 and two sets of lenses 14.
  • the ferrule 12 is a two-core ferrule, and one ferrule 12 positions the input optical fiber 13a and the output optical fiber 13b at a certain interval so as to be parallel to each other, and the other ferrule 12
  • the input optical fiber 13c and the output optical fiber 13d are positioned at a predetermined interval so as to be parallel to each other.
  • a refractive index distribution type lens 14 is disposed at a position facing the end faces of the optical fibers 13a to 13d. Both lenses 14 face each other with a gap therebetween, and a double-sided reflection mirror 15 is provided in the gap between both lenses 14 so as to be freely inserted and removed.
  • the light emitted from one input optical fiber 13a is incident on a position where the optical axial force of the lens 14 is also removed, and the center direction of the light beam is directed to the lens 14
  • the light is bent in the direction of the optical axis of the light and is emitted from one lens 14 as substantially parallel light. If there is no obstacle in the gap between the lenses 14, the light emitted from one lens 14 immediately enters the other lens 14, is condensed by the lens 14, and enters the other output optical fiber 13d. Shoot.
  • the light emitted from the other input optical fiber 13c also passes through the two lenses 14 and enters one output optical fiber 13b.
  • the double-sided reflection mirror 15 when the double-sided reflection mirror 15 also has a gap force between the lenses 14, the input optical fiber 13a and the output optical fiber 13d are separated from each other.
  • the optical fiber 13c for input and the optical fiber 13b for output are coupled. So in this case The optical fibers 13a to 13d in the diagonal direction are coupled.
  • the double-sided reflection mirror 15 when the double-sided reflection mirror 15 is inserted in the gap between the lenses 14 so as to be parallel to the end surface of the lens 14, one input light is input.
  • the light emitted from the fiber 13a and emitted from the lens 14 returns to the original lens 14 by being reflected by the double-sided reflection mirror 15, and is coupled to the output optical fiber 13b.
  • the light emitted from the other input optical fiber 13c exits from the lens 14, is reflected by the double-sided reflection mirror 15, and returns to the original lens 14 again to be coupled to the output optical fiber 13d. Therefore, in this case, the optical fibers 13a to 13d in the same ferrule 12 are coupled.
  • the double-sided reflection mirror 15 is inserted and removed between the lenses 14 as described above.
  • the optical paths of the optical fibers 13a to 13d can be switched, which is a 2 X 2 optical switch.
  • the two optical fiber forces held by the ferrule 12 are opposed to each other with the two lenses 14 and the double-sided reflection mirror 15 interposed therebetween.
  • An optical fiber will come out. For this reason, there are problems that the mounting area when the optical switch is incorporated into the apparatus is increased and the handling of the optical fiber is complicated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 223779
  • the present invention has been made in view of the technical problems as described above, and an object of the present invention is to provide an optical switch in which all optical fibers can be drawn out from the same direction. .
  • An optical switch includes a total of three or more light input portions and light output portions arranged in parallel to each other on the same plane, and transmits the light to each other.
  • An optical switch that switches an optical path by changing a combination of optical couplings of an output unit, and includes two reflecting surfaces arranged so as to be orthogonal to each other when viewed in a direction perpendicular to the plane.
  • Fixed mirror arranged at a position facing the input unit and the light output unit
  • optical path switching means for switching the return destination of the light emitted from the light input unit and reflected by the fixed mirror and incident on the light output unit to the light output unit.
  • the optical input unit and the optical output unit are those that transmit light, such as optical fibers and optical waveguides.
  • the fixed mirror having two reflecting surfaces arranged so as to be orthogonal to each other is arranged at a position facing the light input unit and the light output unit.
  • the light emitted from the input unit can be recursively reflected by the fixed mirror. Therefore, all the light input sections and the light output sections can be provided on one side of the optical switch.
  • each light input is performed by the optical path switching means.
  • the light output unit coupled to the unit can be switched.
  • the light input unit and the light output unit can be arranged in parallel on one side, so that the light input unit and the light output unit can be arrayed, and the light input unit And the handling of the light output part becomes easy. Also, by combining the optical input unit and the optical output unit into one of the optical switches, the mounting area of the optical switch can be reduced.
  • the optical path switching means in an embodiment of the optical switch according to the present invention switches the return destination to the light output unit by reflecting light. According to the embodiment, since the light path can be switched by reflecting the light emitted from the light input unit force by the light path switching means, an optical switch having a simple structure can be obtained.
  • the light input unit force is also emitted, reflected by the fixed mirror, and reflected on the light output unit. It is characterized in that optical paths of incident principal axis rays intersect.
  • the principal axis light beam is an optical beam emitted from the end face of the light input section in parallel with the optical axis direction (axial direction) of the light input section, or the optical axis of the light output section toward the end face of the light output section. A light beam incident parallel to the direction (axial direction).
  • the optical paths of the principal axis rays intersect, the optical paths can be easily switched by reflecting the light by the optical path switching means at this intersection.
  • the optical path switching hand may be composed of a movable mirror having light reflecting surfaces on both sides, and an actuator for taking the movable mirror in and out of the intersection of the optical paths of the principal axis rays. If a movable mirror is inserted into the optical path, this is the force that can replace the optical path when the movable mirror is off the optical path.
  • the optical path switching means may be composed of an optical functional element that is disposed at an intersection position of the optical path of the principal axis light beam and can switch between transmission and reflection of light. In this case, by switching the optical functional element to a state in which light is reflected, the optical path can be switched with that when the optical element is in a state of transmitting light.
  • optical functional elements include those utilizing electro-optic effect, magneto-optic effect, thermo-optic effect and the like.
  • a lens is provided to face end faces of the light input portion and the light output portion, and an optical axis of the lens, the light input portion, and the light are provided. Do not align the optical axis at the end of the output section.
  • the optical axis of the lens is not aligned with the optical axis of the end of the light input section and the light output section, the light input section force is emitted diagonally by the lens. Bend.
  • the light traveling obliquely toward the light output unit can be bent by the lens and returned to be parallel to the light output unit. Therefore, it is possible to cross the optical paths of the principal axis rays by bending the light with the lens.
  • a lens it can also serve as a lens for condensing or collimating the light emitted from the light input section, and bends the optical path of the principal beam without increasing the number of components. be able to.
  • Fig. 1 is a sectional view showing the structure of a conventional optical switch, and Fig. 1 (b) and Fig. 1 (c) show how the optical path is switched in the conventional optical switch. It is a partially broken plan view
  • FIG. 2 is an external perspective view of an optical switch according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view of the optical switch according to the first embodiment.
  • FIG. 4 is a side view of the optical switch according to the first embodiment.
  • FIG. 5 is a perspective view showing a state in which the upper surface force optical fiber array of the base and the fixed mirror are removed in the optical switch of the first embodiment.
  • FIG. 6 is a side view of the above.
  • FIG. 7 is a perspective view of an optical fiber array and a fixed mirror in Example 1.
  • FIG. 8 is a plan view of the same.
  • FIG. 9 is an explanatory diagram showing an optical arrangement in the optical switch of Example 1.
  • FIG. 10 is an explanatory view showing the behavior of light when the movable mirror is raised and out of the space.
  • FIG. 11 is an explanatory diagram showing the behavior of light when the movable mirror is lowered and inserted into the space.
  • FIG. 12 is an external perspective view of an optical switch according to Embodiment 2 of the present invention.
  • FIG. 13 is a plan view of an optical switch according to a second embodiment.
  • FIG. 14 is a side view of an optical switch according to a second embodiment.
  • FIG. 15 is a plan view showing the behavior of light when the optical functional element is in a transparent state in the optical switch according to Embodiment 3 of the present invention.
  • FIG. 16 is a plan view showing the behavior of light when the optical functional element is in a state of reflecting light in the optical switch according to Embodiment 3 of the present invention.
  • FIG. 17 is a plan view showing the behavior of light when the optical functional element is in a transparent state in the optical switch according to Embodiment 4 of the present invention.
  • FIG. 18 is a plan view showing the behavior of light when the optical functional element is in a state of reflecting light in the optical switch according to Embodiment 4 of the present invention.
  • FIG. 19 is a perspective view showing the structure of a fixed mirror used in Example 4.
  • FIG. 20 (a) and FIG. 20 (b) are diagrams for explaining an example of a manufacturing method of the fixed mirror.
  • FIG. 2 is an external perspective view of the optical switch 21 according to Embodiment 1 of the present invention
  • FIGS. 3 and 4 are a plan view and a side view thereof.
  • an optical fiber array 23 an optical fiber array fixing section 24, a fixed mirror 25, a movable mirror 26, and an actuator 27 for driving a movable mirror are provided on the upper surface of a rectangular flat base 22.
  • Yes. 5 and 6 are a perspective view and a side view showing a state in which the top surface force of the base 22 is also removed from the optical fiber array 23 and the fixed mirror 25.
  • FIG. 7 and 8 are a perspective view and a plan view of the optical fiber array 23 and the fixed mirror 25, respectively.
  • the base 22 is formed of an insulating material, and as shown in FIG.
  • the actuator 27 is fixed, and the terminal 28 of the actuator 27 protrudes from the lower surface of the base 22.
  • This actuator 27 is also used for an electromagnetic relay or the like.
  • An electromagnet (not shown) is built in the interior, and a permanent magnet (see FIG. (Not shown) is fixed, and a driving rod 29 is provided on the upper surface of the movable piece 27a.
  • the electromagnet is excited by energizing the terminal 28 on the ON side, the tip of the movable piece 27a is attracted to the electromagnet, the drive rod 29 is tilted horizontally, and is held by itself as it is after the electromagnet current is cut off.
  • the off-side terminal 28 is energized, the base of the movable piece 27a is attracted to the electromagnet, the tip end side of the drive rod 29 rises, and is self-held as it is after the current is cut off.
  • the movable mirror 26 is a double-sided mirror in which both surfaces are mirror surfaces. As shown in FIG. 6, the movable mirror 26 is fixed to the tip of the drive rod 29 of the actuator 27 and protrudes below the lower surface of the tip of the drive rod 29. In addition, the movable mirror 26 is mounted vertically in a direction parallel to the length direction of the drive rod 29. Accordingly, the movable mirror 26 moves up and down by driving the actuator 27.
  • the end portions of the plurality of optical fibers 8a to 8e are aligned in parallel at a constant pitch, and the holding block 31 made of glass or resin is used. It is an integrated one.
  • a force 2 X 2 optical switch showing a commercially available optical fiber array 23 holding 8 optical fibers in parallel at a pitch of 250 ⁇ m uses 4 fibers. Because it is an optical fiber, use only two optical fibers 30a, 30b, 30c, and 30d at each end of the eight optical fibers! The remaining four optical finos can be powered up to 30ei or left as they are.
  • the two optical fibers 30a and 30b and the two optical fibers 30c and 30d may be specially manufactured by holding the holding block 31 at a predetermined distance.
  • the optical fibers 30a and 30d are input optical fibers (light input portions), and the optical fibers 30b and 30c are output optical fibers (light output portions).
  • a lens array substrate 32 is attached to the front surface of the holding block 31.
  • the lens array substrate 32 is provided with a circular lens 33a such as a spherical lens or an aspheric lens at a position facing the two optical fibers 30a and 30b at one end, and the optical fiber 3 at the other end.
  • a circular lens 33b such as a spherical lens or an aspherical lens is also provided at a position facing 0c and 30d.
  • the fixed mirror 25 is fixed to the back of the base 35 with two triangular blocks 34 each having a substantially right-angled isosceles triangular column having an inclined angle of 45 degrees.
  • the slopes of the triangular block 34 face each other and form an angle of 90 degrees with each other.
  • mirror reflecting surfaces 36a and 36b are formed by depositing a metal thin film, for example.
  • the fixed mirror 25 is integrally attached to the front surface of the optical fiber array 23, that is, the front surface of the lens array substrate 32 by an adhesive or the like, and a triangular space is provided between the optical fiber array 23 and the fixed mirror 25. 37 is formed.
  • the reflecting surface 36a faces the front of the optical fibers 30a and 30b and the lens 33a, and the reflecting surface 36a is in the optical axis direction of the optical fibers 30a and 30b. It is inclined at an angle of 45 degrees.
  • the reflecting surface 36b is opposed to the front of the optical fibers 30c and 30d and the lens 33b, and the reflecting surface 36b is inclined at an angle of 45 degrees with respect to the optical axis direction of the optical fibers 30c and 30d.
  • a rectangular plate-shaped optical fiber array fixing portion 24 projects from a position adjacent to the actuator 27 on the upper surface of the base 22.
  • the optical fiber array 23 is placed on the optical fiber array fixing portion 24, aligned with the movable mirror 26 so as to have a predetermined positional relationship, and then, as shown in FIGS.
  • the bottom surface is fixed to the optical fiber array fixing part 24 with a quick-drying adhesive such as grease.
  • FIG. 9 is an explanatory diagram showing an optical arrangement in the optical switch 21.
  • the optical path of the principal beam that enters and exits in parallel with the optical axis direction (axial direction) of the end of each of the optical fibers 30 a to 30 d out of the light that enters and exits the optical fibers 30 a to 30 d is indicated by an arrow. It represents. Further, the unnecessary optical finer 30e is not shown (the same applies hereinafter).
  • Reference numeral 38 is a virtual line that is perpendicular to the plane including the optical axis direction of the end portions of the optical fibers 30a to 30d, is parallel to the optical axis direction of the end portions of the optical fibers 30a to 30d, and passes through the center of the optical fibers 30a to 30d. It represents a simple plane.
  • the fixed mirror 25 is arranged so that the reflecting surfaces 36a and 36b are symmetrical with respect to the plane 38, and each reflecting surface 36a and 36b forms an angle of 45 degrees with the plane 38.
  • the lens 33a is arranged so that its optical axis (indicated by a one-dot chain line in FIG.
  • the lens 33a is arranged so as to focus on the mirror image 38a of the plane 38 related to the reflecting surface 36a when it is considered that a parallel light beam is incident on the lens 33a.
  • the distance force between the main surface of the lens 33a and the mirror image 38a is equal to the focal length of the lens 33a.
  • the lens 33b is arranged so that its optical axis coincides with a straight line passing through the centers of the optical fibers 30a and 30b in parallel.
  • the lens 33b is arranged so as to focus on the mirror image 38b of the plane 38 with respect to the reflecting surface 36b when a parallel light beam is incident on the lens 33b.
  • the distance force between the main surface of the lens 33b and the mirror image 38b is equal to the focal length of the lens 33b.
  • the movable mirror 26 coincides with the plane 38 when inserted in the space 37 between the optical fiber array 23 and the fixed mirror 25.
  • the optical path of the principal beam that is emitted from the optical fiber 30a, reflected by the reflecting surfaces 36a and 36b of the fixed mirror 25, and incident on the optical fiber 30c, and the optical path that is emitted from the optical fiber 30d and reflected by the fixed mirror 25 The optical path of the principal ray reflected by the surfaces 36b and 36a and entering the optical fiber 30b intersects at the position of the plane 38.
  • FIG. 10 and FIG. 11 are diagrams for explaining the operation of the optical switch 21.
  • FIG. 10 shows the behavior of light when the movable mirror 26 rises and goes out of the space 37.
  • FIG. 11 shows the behavior of light when the movable mirror 26 is lowered and inserted into the space 37.
  • the distances along the optical axis direction of the ends of the optical finos 30a to 30d between the optical finos 30a to 30d and the lenses 33a and 33b are equal to the focal lengths of the lenses 33a and 33b.
  • the light beam emitted from the core of the input optical fiber 30a enters the position where the optical axis force of the lens 33a deviates, and the traveling direction of the light beam is bent obliquely and converted into a parallel light beam.
  • the parallel light beam that has passed through the lens 33a is reflected twice by the reflecting surfaces 36a and 36b, and then returns to the original direction.
  • the parallel light beam reflected back to the original direction is incident on the position deviating from the optical axis force of the lens 33b, the direction of travel of the light beam is bent in a direction parallel to the optical axis of the output optical fiber 30c, and the optical fiber 30c.
  • the light is focused on the core end face and enters the optical fiber 30c.
  • the light beam emitted from the input optical fiber 30d (the optical path of the principal beam of this light beam is indicated by a broken line arrow in FIG. 10) is incident on a position off the optical axis of the lens 33b.
  • the direction in which the light beam travels is bent and converted into a parallel light beam.
  • the parallel light flux that has passed through the lens 33b is reflected twice by the reflecting surfaces 36b and 36a, and then returns to the original direction.
  • the parallel light beam that has been retro-reflected in the original direction enters the position where the optical axis force of the lens 33a deviates, and the direction in which the light beam travels is bent in a direction parallel to the output optical fiber 30b, and the core end surface of the optical fiber 30b. And is incident on the optical fiber 30b.
  • the light beam emitted from the input optical fiber 30a (the optical path of the principal axis light beam of this light beam is indicated by a solid arrow in FIG.
  • the lens 33a can bend the light traveling direction diagonally and convert it into a parallel light beam.
  • the parallel light flux that has passed through the lens 33a is reflected by the reflecting surface 36a and then returns to the original direction by being reflected by the movable mirror 26.
  • the parallel light flux returned to the original direction is reflected again by the reflecting surface 36a and enters the lens 33a.
  • the light that has passed through the lens 33a is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30b, is focused on the core of the optical fiber 30b, and enters the optical fiber 30b.
  • the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 11) is converted into a parallel light beam while the direction of travel of the light beam is bent by the lens 33b. Is converted to The parallel light flux that has passed through the lens 33b is reflected by the reflecting surface 36b and then returns to the original direction by being reflected by the movable mirror 26. The parallel light flux returned to the original direction is reflected again by the reflecting surface 36b and enters the lens 33b. The light that has passed through the lens 33b is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30c, collected on the core end face of the optical fiber 30c, and incident on the optical fiber 30c.
  • the input optical fiber 30a and the output optical fiber 30c are The optical fiber 30d for input and the optical fiber 30b for output are coupled. Further, when the movable mirror 26 is lowered by the actuator 27 and inserted into the space 37, the input optical fiber 30a and the output optical fiber 30b are coupled to each other, and the input optical fiber 30b is coupled. The fiber 30d and the output optical fiber 30c are coupled. [0039] In such an optical switch 21, since all the optical fibers 30a to 30e are positioned in the same direction, a large number of optical switches 21 are incorporated in a device such as an alternating switch.
  • the optical switch 21 and the optical fibers 30a to 3Oe can be inspected only from one side of the apparatus, and the handling becomes easy.
  • the wiring space of the optical fibers 30a to 30e only needs to be provided on one side, the mounting area of the optical switch 21 in the apparatus is reduced to J.
  • the alignment work at the time of assembling the optical switch 21 can be performed in two steps, the alignment work is facilitated. That is, when the fixed mirror 25 is first attached to the front surface of the optical fiber array 23, light is emitted from the input optical fibers 30a and 30d, and the light incident on the output optical fibers 30c and 30b is converted into the optical fiber 30c, Monitor the other end of 30b, power the fixed mirror 25 so that the amount of received light is maximized, and fix the fixed mirror 25 to the optical fiber array 23 at the position where the amount of received light is maximum. As a result, the positions of the optical fibers 30a to 30e and the reflecting surfaces 36a and 36b are adjusted so as to be in the state of FIG.
  • the optical fiber array 23 to which the fixed mirror 25 is attached is placed on the optical fiber array fixed portion 24 to which the adhesive is applied, and the movable mirror 26 is lowered into the space 37. Then, light is emitted from the input optical fibers 30a and 30d, and the light incident on the output optical fibers 30b and 30c is monitored at the other end of the optical fibers 30b and 30c so that the amount of received light is maximized.
  • the optical fiber array 23 is bonded and fixed to the optical fiber array fixing portion 24 at a position where the optical fiber array 23 is powered and the amount of received light is maximum. As a result, the positions of the optical fibers 30a to 30e, the reflecting surfaces 36a and 36b, and the movable mirror 26 are adjusted so as to be in the state of FIG.
  • the former adjustment work can be adjusted without considering the position of the movable mirror 26, and the latter adjustment is an adjustment after the positional relationship between the optical fiber array 23 and the fixed mirror 25 is fixed.
  • the alignment work at the time of assembling the optical switch 21 can be facilitated.
  • a force input optical fiber 3 in which the light beams emitted from the core end faces of the input optical fibers 30a and 30d are converted into parallel light beams by the lenses 33a and 33b.
  • Parallel beams emitted from the core force of 0a and 30d should be converged on the plane 38 by the lenses 33a and 33b.
  • FIG. 12 is an external perspective view of the optical switch 41 according to the second embodiment of the present invention, and a plan view and a side view thereof.
  • the fixed mirror 25 is not attached to the optical fiber array 23, and its base 35 is fixed to the upper surface of the base 22 or the front surface of the actuator 27.
  • the fixed mirror 25 and the optical fiber array 23 are separated from each other, and the movable mirror 26 can be moved up and down in front of the fixed mirror 25.
  • the other points are the same as in Example 1.
  • the switching operation of the optical switch 41 is the same as the switching operation of the first embodiment described with reference to FIGS.
  • FIGS. 15 and 16 are plan views showing the main part of the optical switch 42 in Embodiment 3 of the present invention.
  • an optical function element 51 that can be switched between a state of transmitting light and a state of reflecting light is used instead of the movable mirror.
  • Examples of such an optical functional element 51 include an element utilizing an electro-optic effect, an element utilizing a magneto-optic effect, and an element utilizing a thermo-optic effect.
  • the optical functional element 51 is installed such that the reflecting surface in the state of reflecting light coincides with the position of the plane 38.
  • the optical functional element 51 is switched between a light transmitting state and a light reflecting state. For example, the state can be changed by turning on and off the DC power source 57.
  • the optical functional element 51 when the optical functional element 51 is in a state of transmitting light, the light beam emitted from the core of the input optical fiber 30a (the principal axis light beam of this light beam) 15 is indicated by a solid arrow in FIG. 15.) is incident on a position where the optical axial force of the lens 33a is also removed, and the traveling direction of the light beam is bent obliquely and converted into a parallel light beam.
  • the parallel light flux that has passed through the lens 33a is reflected by the reflecting surface 36a, then passes through the optical functional element 51, is further reflected by the reflecting surface 36b, and returns to its original direction.
  • the light beam emitted from the input optical fiber 30d (the optical path of the principal beam of this light beam is indicated by a broken line arrow in FIG. 15) is incident at a position off the optical axis of the lens 33b.
  • the direction in which the light beam travels is bent and converted into a parallel light beam.
  • the parallel light flux that has passed through the lens 33b is reflected by the reflecting surface 36b, then passes through the optical functional element 51, is further reflected by the reflecting surface 36a, and returns to its original direction.
  • the collimated light flux that has been retro-reflected in the original direction is incident on a position off the optical axis of the lens 33a, the direction of travel of the light flux is bent in a direction parallel to the output optical fiber 30b, and the core of the optical fiber 30b. It is focused on the end face and enters the optical fiber 30b.
  • the optical functional element 51 when the optical functional element 51 is in a state of reflecting light as shown in FIG. 16, the light beam emitted from the input optical fiber 30a (the optical path of the principal axis light beam of this light beam is illustrated). Indicated by a solid arrow in 16)), the light traveling direction is obliquely bent by the lens 33a and converted into a parallel light beam.
  • the parallel light flux that has passed through the lens 33a is reflected by the reflecting surface 36a and then reflected by the optical functional element 51 to return to the original direction.
  • the parallel light flux returning to the original direction is reflected again by the reflecting surface 36a and enters the lens 33a.
  • the light that has passed through the lens 33a is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30b, is focused on the core of the optical fiber 30b, and enters the optical fiber 30b.
  • the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 16) is converted into a parallel light beam while the direction of travel of the light beam is bent by the lens 33b. Is converted to The parallel light flux that has passed through the lens 33b is reflected by the reflecting surface 36b and then returned to the original direction by being reflected by the optical functional element 51. The parallel light flux returned to the original direction is reflected again by the reflecting surface 36b and enters the lens 33b.
  • the light that has passed through the lens 33b is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30c, is condensed on the core end face of the optical fiber 30c, and enters the optical fiber 30c.
  • the optical functional element 51 when the optical functional element 51 is in a transmissive state, the input optical fiber 30a and the output optical fiber 30c are coupled, and the input optical fiber 30a is coupled.
  • the optical fiber 30d and the output optical fiber 30b are coupled.
  • the optical functional element 51 is in the reflective state, the input optical fiber 30a and the output optical fiber 30b are coupled, and the input optical fiber 30d and the output optical fiber are coupled. Combined with 30c.
  • FIGS. 17 and 18 are plan views showing the main parts of the optical switch 43 in Embodiment 4 of the present invention.
  • a prism is used as the fixed mirror 25, and light is totally reflected at the interface (reflecting surfaces 36a and 36b) of the prism.
  • FIG. 19 is a perspective view showing the structure of the fixed mirror 25 used in the fourth embodiment.
  • the fixed mirror 25 is formed by a triangular prism 61 having a right-angled isosceles triangular column shape, and planes sandwiching a 90 ° corner are reflecting surfaces 36a and 36b, respectively.
  • An optical functional element 51 is built in a triangular prism 61 that is a fixed mirror 25.
  • the optical function element 51 extends between the 90 ° corner and the slope facing the corner so as to form an angle of 45 ° with the reflecting surfaces 36a and 36b.
  • the integrated fixed mirror 25 and optical function element 51 are installed such that the optical function element 51 coincides with the position of the plane 38 as shown in FIGS.
  • FIGS. 20 (a) and 20 (b) are diagrams for explaining an example of a method for manufacturing the fixed mirror 25.
  • FIG. 20 (a) two small triangular prisms 62 having a right isosceles triangular prism shape having a size of 1Z2 of the triangular prism 61 are prepared. Then, one surface of the optical functional element 51 is bonded to the surface adjacent to the 90-degree corner of one triangular prism 62 using a transparent adhesive grease. Next, as shown in FIGS. 20 (a) and 20 (b), a transparent adhesive grease is used on the other surface of the optical function element 51, and the 90 ° corner of the other triangular prism 62 is used. Adhere adjacent faces. As a result, the large triangular prism 61 is formed by the two small triangular prisms 62, and the optical functional element 51 is incorporated in the triangular prism 61.
  • Example 4 when the optical functional element 51 is in a state of transmitting light as shown in FIG. 17, it is emitted from the core of the input optical fiber 30a.
  • the light beam (the optical path of the principal beam of this light beam is indicated by a solid arrow in FIG. 17) is the optical axis of the lens 33a.
  • the light beam is incident on a position deviated from the center of the beam, and the traveling direction of the light beam is obliquely bent and converted into a parallel light beam.
  • the parallel light beam that has passed through the lens 33a enters the triangular prism 61, is totally reflected by the reflecting surface 36a, passes through the optical functional element 51, is further totally reflected by the reflecting surface 36b, and returns to its original direction. .
  • the collimated light beam reflected back to the original direction is incident on the position where the optical axis force of the lens 33b is also deviated, and the traveling direction of the light beam is bent in a direction parallel to the optical axis of the output optical fiber 30c.
  • the light is collected on the core end face of the light and enters the optical fiber 30c.
  • the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 17) is incident on a position off the optical axis of the lens 33b.
  • the direction in which the light beam travels is bent and converted into a parallel light beam.
  • the parallel light beam that has passed through the lens 33b enters the triangular prism 61, is totally reflected by the reflecting surface 36b, passes through the optical functional element 51, is further totally reflected by the reflecting surface 36a, and returns to its original direction.
  • the parallel luminous flux retroreflected in the original direction is incident on the position deviating from the optical axis force of the lens 33a, and the direction in which the luminous flux travels is bent in a direction parallel to the output optical fiber 30b. It is focused on the end face and enters the optical fiber 30b.
  • the optical functional element 51 when the optical functional element 51 is in a state of reflecting light, the light beam emitted from the input optical fiber 30a (the optical path of the principal axis light beam of this light beam is illustrated). 18 is indicated by a solid arrow in FIG. 18), and the light traveling direction is bent obliquely by the lens 33a and converted into a parallel light beam.
  • the parallel light beam that has passed through the lens 33a enters the triangular prism 61, is totally reflected by the reflecting surface 36a, and then returns to the original direction by being reflected by the optical functional element 51.
  • the parallel light flux returned to the original direction is again totally reflected by the reflecting surface 36a and is incident on the lens 33a.
  • the light that has passed through the lens 33a is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30b, is focused on the core of the optical fiber 30b, and enters the optical fiber 30b.
  • the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 18) is deflected by the lens 33b and the parallel light beam. Is converted to The parallel light flux that has passed through the lens 33b enters the triangular prism 61, is reflected by the reflecting surface 36b, and then returns to the original direction by being reflected by the optical functional element 51. The luminous flux that has returned to its original direction is again totally reflected by the reflecting surface 36b, and the lens Incident on 33b.
  • the light that has passed through the lens 33b is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30c, is condensed on the core end face of the optical fiber 30c, and is incident on the optical fiber 30c.
  • the input optical fiber 30a and the output optical fiber 30c are coupled, and the input optical fiber 30a is coupled.
  • the optical fiber 30d and the output optical fiber 30b are coupled.
  • the optical functional element 51 is in the reflective state, the input optical fiber 30a and the output optical fiber 30b are coupled, and the input optical fiber 30d and the output optical fiber are coupled. Combined with 30c.
  • a gap is provided between the two triangular prisms 62, and a movable mirror in which both surfaces are mirror surfaces. Try to put 26 in and out.
  • the coupling relationship of the four optical fibers is switched.
  • the number of optical fibers may be three.
  • the output destination or the input source can be switched as an IX 2 optical switch. be able to.
  • the number of optical fibers may be five or more.
  • the fixed mirror 25 is arranged such that the reflecting surfaces 36a and 36b form an angle of 45 degrees with the plane 38.
  • the fixed mirror 51 is arranged with the optical fibers 30a to 30d. Lean around an axis that is perpendicular to the plane. Even if the fixed mirror 51 is tilted, the direction of the principal ray returning to the output optical fiber is parallel to the direction of the principal ray emitted from the input optical fiber.
  • the optical path of the principal ray If they intersect, the light can be switched by reflecting the light. Further, in Example 5, if the optical path of the principal axis light beam is in the opposite direction and parallel, the light path can be switched by retroreflecting the light there.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Optical fibers (30a-30d) are arranged in parallel. When a movable mirror (26) is outside a space (37), a light from an inputting optical fiber (30a) is bent in direction by a lens (33a), then reflected by a fixed mirror (25), condensed by a lens (33b), and coupled with an outputting optical fiber (33c). When a movable mirror (26) is inside a space (37), a light from an inputting optical fiber (30a) is bent in direction by a lens (33a), then reflected by a fixed mirror (25), further reflected by the fixed mirror (25), reflected by the fixed mirror (25) again, condensed by a lens (33a), and coupled with an outputting optical fiber (33b).

Description

明 細 書  Specification
光スィッチ  Light switch
技術分野  Technical field
[0001] 本発明は、光入力部 (例えば、入力用光ファイバ)と光出力部 (例えば、出力用光フ アイバ)との結合関係を切り換えるための光スィッチに関する。  The present invention relates to an optical switch for switching a coupling relationship between an optical input unit (for example, an input optical fiber) and an optical output unit (for example, an output optical fiber).
背景技術  Background art
[0002] 図 1 (a)は従来例の光スィッチの構造を示す断面図、図 1 (b)及び図 1 (c)は従来例 の光スィッチにおいて光路を切り換える様子を示す一部破断した平面図である (特許 文献 1)。図 1 (a)に示すように、この光スィッチ 11は、フェルール 12により位置決めさ れた 2組の光ファイバ 13a、 13b及び 13c、 13dと 2組のレンズ 14によって構成されて いる。フエルール 12は 2芯フエルールとなっていて、一方のフエルール 12は入力用 の光ファイバ 13aと出力用の光ファイバ 13bを互いに平行となるように一定間隔をあ けて位置決めし、他方のフエルール 12は入力用の光ファイバ 13cと出力用の光ファ ィバ 13dを互いに平行となるように一定間隔をあけて位置決めしている。光ファイバ 1 3a〜13dの端面に対向する位置には、それぞれ屈折率分布型のレンズ 14が配置さ れている。両レンズ 14は互いに間隙を隔てて対向しており、両レンズ 14間の間隙に は両面反射ミラー 15が出し入れ自在に設けられている。  FIG. 1 (a) is a cross-sectional view showing the structure of a conventional optical switch, and FIGS. 1 (b) and 1 (c) are partially broken planes showing how the optical path is switched in the conventional optical switch. Figure (Patent Document 1). As shown in FIG. 1 (a), the optical switch 11 is composed of two sets of optical fibers 13a, 13b and 13c, 13d positioned by a ferrule 12 and two sets of lenses 14. The ferrule 12 is a two-core ferrule, and one ferrule 12 positions the input optical fiber 13a and the output optical fiber 13b at a certain interval so as to be parallel to each other, and the other ferrule 12 The input optical fiber 13c and the output optical fiber 13d are positioned at a predetermined interval so as to be parallel to each other. A refractive index distribution type lens 14 is disposed at a position facing the end faces of the optical fibers 13a to 13d. Both lenses 14 face each other with a gap therebetween, and a double-sided reflection mirror 15 is provided in the gap between both lenses 14 so as to be freely inserted and removed.
[0003] しかして、図 1 (a)に示すように、一方の入力用光ファイバ 13aから出射された光は、 レンズ 14の光軸力も外れた位置に入射し、光束の中心方向をレンズ 14の光軸方向 へ曲げられると共に、ほぼ平行光となって一方のレンズ 14から出射される。レンズ 14 間の間隙に障害物がない場合には、一方のレンズ 14から出射した光は、直ちに他方 のレンズ 14に入射し、そのレンズ 14で集光されて他方の出力用光ファイバ 13dに入 射する。同様にして、他方の入力用光ファイバ 13cから出射された光も、 2つのレンズ 14を通過して一方の出力用光ファイバ 13bに入射する。  Accordingly, as shown in FIG. 1 (a), the light emitted from one input optical fiber 13a is incident on a position where the optical axial force of the lens 14 is also removed, and the center direction of the light beam is directed to the lens 14 The light is bent in the direction of the optical axis of the light and is emitted from one lens 14 as substantially parallel light. If there is no obstacle in the gap between the lenses 14, the light emitted from one lens 14 immediately enters the other lens 14, is condensed by the lens 14, and enters the other output optical fiber 13d. Shoot. Similarly, the light emitted from the other input optical fiber 13c also passes through the two lenses 14 and enters one output optical fiber 13b.
[0004] 従って、図 1 (b)に示すように、両面反射ミラー 15がレンズ 14間の間隙力も外に出 ている場合には、入力用の光ファイバ 13aと出力用の光ファイバ 13dとが結合し、入 力用の光ファイバ 13cと出力用の光ファイバ 13bとが結合する。よって、この場合には 、対角方向どうしの光ファイバ 13a〜13dが結合する。 Therefore, as shown in FIG. 1 (b), when the double-sided reflection mirror 15 also has a gap force between the lenses 14, the input optical fiber 13a and the output optical fiber 13d are separated from each other. The optical fiber 13c for input and the optical fiber 13b for output are coupled. So in this case The optical fibers 13a to 13d in the diagonal direction are coupled.
[0005] これに対し、図 1 (c)に示すように、レンズ 14間の間隙に、レンズ 14の端面と平行と なるようにして両面反射ミラー 15が挿入されると、一方の入力用光ファイバ 13aから 出射されてレンズ 14から出た光は、両面反射ミラー 15で反射されることによって元の レンズ 14内に戻り、出力用の光ファイバ 13bに結合する。同様に、他方の入力用光 ファイバ 13cから出射された光は、レンズ 14から出て両面反射ミラー 15で反射され、 再び元のレンズ 14内に戻って出力用の光ファイバ 13dに結合する。よって、この場合 には同じフエルール 12内の光ファイバ 13a〜 13dどうしが結合する。  On the other hand, as shown in FIG. 1 (c), when the double-sided reflection mirror 15 is inserted in the gap between the lenses 14 so as to be parallel to the end surface of the lens 14, one input light is input. The light emitted from the fiber 13a and emitted from the lens 14 returns to the original lens 14 by being reflected by the double-sided reflection mirror 15, and is coupled to the output optical fiber 13b. Similarly, the light emitted from the other input optical fiber 13c exits from the lens 14, is reflected by the double-sided reflection mirror 15, and returns to the original lens 14 again to be coupled to the output optical fiber 13d. Therefore, in this case, the optical fibers 13a to 13d in the same ferrule 12 are coupled.
[0006] 図 1 (a)、図 1 (b)及び図 1 (c)に示した従来の光スィッチでは、上記のようにしてレン ズ 14間に両面反射ミラー 15を出し入れすることにより、 4本の光ファイバ 13a〜13d の光路を切り換えることができるようになっており、 2 X 2光スィッチとなっている。  [0006] In the conventional optical switch shown in FIGS. 1 (a), 1 (b), and 1 (c), the double-sided reflection mirror 15 is inserted and removed between the lenses 14 as described above. The optical paths of the optical fibers 13a to 13d can be switched, which is a 2 X 2 optical switch.
[0007] しかしながら、従来例のような構造の光スィッチでは、フェルール 12に保持された 2 組の光ファイバ力 2つのレンズ 14と両面反射ミラー 15を挟んで対向するので、光ス イッチの両端力も光ファイバが出ることになる。そのため、装置に光スィッチを組み込 む際の実装面積が増大したり、光ファイバの取り扱いが複雑になるという問題があつ た。  However, in the optical switch having the structure as in the conventional example, the two optical fiber forces held by the ferrule 12 are opposed to each other with the two lenses 14 and the double-sided reflection mirror 15 interposed therebetween. An optical fiber will come out. For this reason, there are problems that the mounting area when the optical switch is incorporated into the apparatus is increased and the handling of the optical fiber is complicated.
[0008] 特許文献 1 :特開平 11 223779号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11 223779
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は上記のような技術的課題に鑑みてなされたものであり、その目的とするとこ ろは、すべての光ファイバを同一方向から引き出せるようにした光スィッチを提供する ことにある。 The present invention has been made in view of the technical problems as described above, and an object of the present invention is to provide an optical switch in which all optical fibers can be drawn out from the same direction. .
課題を解決するための手段  Means for solving the problem
[0010] 本発明に力かる光スィッチは、同一平面上において互いに平行に配置された、合 計で 3本以上の光入力部及び光出力部を備え、互いに光を伝送する光入力部と光 出力部の光結合の組み合わせを変更することによって光路切換えを行なう光スイツ チであって、前記平面に垂直な方向力 見て互いに直交するように配置された 2つの 反射面を有し、前記光入力部及び光出力部に対向する位置に配置された固定ミラ 一と、前記光入力部から出射され前記固定ミラーで反射して前記光出力部へ入射す る光の、光出力部への戻り先を切り換えるための光路切換手段とを備えたことを特徴 としている。ここで、光入力部及び光出力部とは、光ファイバや光導波路等のように光 を伝送するものであればょ 、。 [0010] An optical switch according to the present invention includes a total of three or more light input portions and light output portions arranged in parallel to each other on the same plane, and transmits the light to each other. An optical switch that switches an optical path by changing a combination of optical couplings of an output unit, and includes two reflecting surfaces arranged so as to be orthogonal to each other when viewed in a direction perpendicular to the plane. Fixed mirror arranged at a position facing the input unit and the light output unit And optical path switching means for switching the return destination of the light emitted from the light input unit and reflected by the fixed mirror and incident on the light output unit to the light output unit. Yes. Here, the optical input unit and the optical output unit are those that transmit light, such as optical fibers and optical waveguides.
[0011] 本発明に力かる光スィッチにあっては、直交するように配置された 2つの反射面を 有する固定ミラーを光入力部及び光出力部に対向する位置に配置しているので、光 入力部から出射された光を固定ミラーで回帰反射させることができる。よって、すべて の光入力部と光出力部を光スィッチの一方の側に設けることができる。また、光入力 部から出射され固定ミラーで反射して光出力部へ入射する光の、光出力部への戻り 先を切り換えるための光路切換手段を備えているので、光路切換手段によって各光 入力部と結合される光出力部を切り替えることができる。  [0011] In the optical switch that works for the present invention, the fixed mirror having two reflecting surfaces arranged so as to be orthogonal to each other is arranged at a position facing the light input unit and the light output unit. The light emitted from the input unit can be recursively reflected by the fixed mirror. Therefore, all the light input sections and the light output sections can be provided on one side of the optical switch. In addition, since there is an optical path switching means for switching the return destination of the light emitted from the light input section, reflected by the fixed mirror and incident on the light output section to the light output section, each light input is performed by the optical path switching means. The light output unit coupled to the unit can be switched.
[0012] 本発明の光スィッチにあっては、一方の側に光入力部と光出力部を平行にまとめら れるので、光入力部と光出力部をアレイ化することができて光入力部及び光出力部 の取り扱いが容易になる。また、光入力部と光出力部を光スィッチの一方にまとめる ことにより、光スィッチの実装面積も小さくすることができる。  [0012] In the optical switch of the present invention, the light input unit and the light output unit can be arranged in parallel on one side, so that the light input unit and the light output unit can be arrayed, and the light input unit And the handling of the light output part becomes easy. Also, by combining the optical input unit and the optical output unit into one of the optical switches, the mounting area of the optical switch can be reduced.
[0013] 本発明にかかる光スィッチの一実施態様における前記光路切換手段は、光を反射 させることによって光出力部への戻り先を切り替えるものである。力かる実施態様によ れば、光入力部力 出射された光を光路切換手段により反射させることによって光路 を切り替えることができるので、簡単な構造の光スィッチが得られる。  [0013] The optical path switching means in an embodiment of the optical switch according to the present invention switches the return destination to the light output unit by reflecting light. According to the embodiment, since the light path can be switched by reflecting the light emitted from the light input unit force by the light path switching means, an optical switch having a simple structure can be obtained.
[0014] 本発明に力かる光スィッチの別な実施態様にぉ 、ては、前記光路切換手段が機能 していないとき、前記光入力部力も出射され前記固定ミラーで反射し前記光出力部 に入射する主軸光線の光路が交差していることを特徴としている。ここで、主軸光線 とは、光入力部の端面から光入力部の光軸方向(軸心方向)と平行に出射される光 線や、光出力部の端面に向けて光出力部の光軸方向(軸心方向)と平行に入射する 光線をいう。力かる実施態様によれば、主軸光線の光路が交差しているので、この交 差箇所で光路切換手段により光を反射させることにより容易に光路を入れ替えること ができる。  [0014] In another embodiment of the optical switch that is useful in the present invention, when the optical path switching means is not functioning, the light input unit force is also emitted, reflected by the fixed mirror, and reflected on the light output unit. It is characterized in that optical paths of incident principal axis rays intersect. Here, the principal axis light beam is an optical beam emitted from the end face of the light input section in parallel with the optical axis direction (axial direction) of the light input section, or the optical axis of the light output section toward the end face of the light output section. A light beam incident parallel to the direction (axial direction). According to this embodiment, since the optical paths of the principal axis rays intersect, the optical paths can be easily switched by reflecting the light by the optical path switching means at this intersection.
[0015] 上記交差箇所で光を反射させて光路を切り替える方法としては、前記光路切換手 段を、両面が光反射面となった可動ミラーと、前記可動ミラーを前記主軸光線の光路 の交差位置に出し入れするためのァクチユエータとで構成すればよい。可動ミラーを 光路に挿入すれば、可動ミラーが光路カゝら外れている場合と光路を入れ替えることが できる力 である。 [0015] As a method of switching the optical path by reflecting light at the intersection, the optical path switching hand The step may be composed of a movable mirror having light reflecting surfaces on both sides, and an actuator for taking the movable mirror in and out of the intersection of the optical paths of the principal axis rays. If a movable mirror is inserted into the optical path, this is the force that can replace the optical path when the movable mirror is off the optical path.
[0016] あるいは、前記光路切換手段を、前記主軸光線の光路の交差位置に配置された、 光の透過と反射を切り換えることができる光学機能素子で構成してもよ ヽ。この場合 には、光学機能素子を光の反射する状態に切り替えることにより、光学素子が光を透 過させる状態となっているときと光路を入れ替えることができる。なお、このような光学 機能素子としては、電気光学効果や磁気光学効果、熱光学効果などを利用したもの がある。  Alternatively, the optical path switching means may be composed of an optical functional element that is disposed at an intersection position of the optical path of the principal axis light beam and can switch between transmission and reflection of light. In this case, by switching the optical functional element to a state in which light is reflected, the optical path can be switched with that when the optical element is in a state of transmitting light. Such optical functional elements include those utilizing electro-optic effect, magneto-optic effect, thermo-optic effect and the like.
[0017] 本発明にかかる光スィッチのさらに別な実施態様においては、前記光入力部及び 前記光出力部の端面に対向させてレンズを設け、当該レンズの光軸と前記光入力部 及び前記光出力部の端部の光軸とがー致しな 、ようにして 、る。力かる実施態様に よれば、レンズの光軸と光入力部及び光出力部の端部の光軸とがー致していないの で、光入力部力 真っ直ぐに出射された光はレンズによって斜めに曲げられる。また 、光出力部に向けて斜めに進んでくる光をレンズで曲げて光出力部と平行に戻すこ とができる。よって、レンズで光を曲げることにより、主軸光線の光路を交差させること が可能になる。し力も、レンズを利用することで、光入力部から出射された光を集光又 は平行光化するためのレンズを兼ねることができ、部品点数を増加させることなく主 軸光線の光路を曲げることができる。  [0017] In still another embodiment of the optical switch according to the present invention, a lens is provided to face end faces of the light input portion and the light output portion, and an optical axis of the lens, the light input portion, and the light are provided. Do not align the optical axis at the end of the output section. According to this embodiment, since the optical axis of the lens is not aligned with the optical axis of the end of the light input section and the light output section, the light input section force is emitted diagonally by the lens. Bend. Further, the light traveling obliquely toward the light output unit can be bent by the lens and returned to be parallel to the light output unit. Therefore, it is possible to cross the optical paths of the principal axis rays by bending the light with the lens. By using a lens, it can also serve as a lens for condensing or collimating the light emitted from the light input section, and bends the optical path of the principal beam without increasing the number of components. be able to.
[0018] なお、本発明の以上説明した構成要素は、可能な限り任意に組み合わせることが できる。  [0018] The above-described components of the present invention can be arbitrarily combined as much as possible.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1 (a)は従来例の光スィッチの構造を示す断面図、図 1 (b)及び図 1 (c)は従 来例の光スィッチにおいて光路を切り換える様子を示す一部破断した平面図である  [0019] [Fig. 1] Fig. 1 (a) is a sectional view showing the structure of a conventional optical switch, and Fig. 1 (b) and Fig. 1 (c) show how the optical path is switched in the conventional optical switch. It is a partially broken plan view
[図 2]図 2は、本発明の実施例 1による光スィッチの外観斜視図である。 FIG. 2 is an external perspective view of an optical switch according to Embodiment 1 of the present invention.
[図 3]図 3は、実施例 1による光スィッチの平面図である。 [図 4]図 4は、実施例 1による光スィッチの側面図である。 FIG. 3 is a plan view of the optical switch according to the first embodiment. FIG. 4 is a side view of the optical switch according to the first embodiment.
[図 5]図 5は、実施例 1の光スィッチにおいて、基台の上面力 光ファイバアレイと固定 ミラーを除 ヽた状態を示す斜視図である。  FIG. 5 is a perspective view showing a state in which the upper surface force optical fiber array of the base and the fixed mirror are removed in the optical switch of the first embodiment.
[図 6]図 6は、同上の側面図である。 FIG. 6 is a side view of the above.
[図 7]図 7は、実施例 1における光ファイバアレイ及び固定ミラーの斜視図である。  FIG. 7 is a perspective view of an optical fiber array and a fixed mirror in Example 1.
[図 8]図 8は、同上の平面図である。 FIG. 8 is a plan view of the same.
[図 9]図 9は、実施例 1の光スィッチにおける光学的な配置を示す説明図である。  FIG. 9 is an explanatory diagram showing an optical arrangement in the optical switch of Example 1.
[図 10]図 10は、可動ミラーが上昇していて空間の外に出ている場合の光の挙動を表 わした説明図である。 [FIG. 10] FIG. 10 is an explanatory view showing the behavior of light when the movable mirror is raised and out of the space.
[図 11]図 11は、可動ミラーが下降して空間に挿入されて!ヽる場合の光の挙動を表わ した説明図である。  [FIG. 11] FIG. 11 is an explanatory diagram showing the behavior of light when the movable mirror is lowered and inserted into the space.
[図 12]図 12は、本発明の実施例 2による光スィッチの外観斜視図である。  FIG. 12 is an external perspective view of an optical switch according to Embodiment 2 of the present invention.
[図 13]図 13は、実施例 2による光スィッチの平面図である。 FIG. 13 is a plan view of an optical switch according to a second embodiment.
[図 14]図 14は、実施例 2による光スィッチの側面図である。 FIG. 14 is a side view of an optical switch according to a second embodiment.
[図 15]図 15は、本発明の実施例 3による光スィッチにおいて、光学機能素子が透明 な状態にある場合の光の挙動を示す平面図である。  FIG. 15 is a plan view showing the behavior of light when the optical functional element is in a transparent state in the optical switch according to Embodiment 3 of the present invention.
[図 16]図 16は、本発明の実施例 3による光スィッチにおいて、光学機能素子が光を 反射する状態にある場合の光の挙動を示す平面図である。  FIG. 16 is a plan view showing the behavior of light when the optical functional element is in a state of reflecting light in the optical switch according to Embodiment 3 of the present invention.
[図 17]図 17は、本発明の実施例 4による光スィッチにおいて、光学機能素子が透明 な状態にある場合の光の挙動を示す平面図である。  FIG. 17 is a plan view showing the behavior of light when the optical functional element is in a transparent state in the optical switch according to Embodiment 4 of the present invention.
[図 18]図 18は、本発明の実施例 4による光スィッチにおいて、光学機能素子が光を 反射する状態にある場合の光の挙動を示す平面図である。  FIG. 18 is a plan view showing the behavior of light when the optical functional element is in a state of reflecting light in the optical switch according to Embodiment 4 of the present invention.
[図 19]図 19は、実施例 4で用 、られる固定ミラーの構造を示す斜視図である。  FIG. 19 is a perspective view showing the structure of a fixed mirror used in Example 4.
[図 20]図 20 (a)及び図 20 (b)は上記固定ミラーの製造方法の一例を説明する図で ある。  FIG. 20 (a) and FIG. 20 (b) are diagrams for explaining an example of a manufacturing method of the fixed mirror.
符号の説明 Explanation of symbols
21 光スィッチ  21 Hikari switch
23 光ファイノくアレイ 25 固定ミラー 23 Optical fiber array 25 Fixed mirror
26 可動ミラー  26 Movable mirror
27 ァクチユエータ  27 Actuator
29 駆動桿  29 Driving rod
30a, 30b、 30c、 30d 光ファイノ  30a, 30b, 30c, 30d optical fino
32 レンズアレイ基板  32 Lens array substrate
33a, 33b レンズ  33a, 33b lens
34 三角ブロック  34 Triangle block
36a, 36b 反射面  36a, 36b Reflective surface
37 空間  37 space
41 光スィッチ  41 Light switch
42 光スィッチ  42 Light switch
43 光スィッチ  43 Light switch
44 光スィッチ  44 Light switch
51 光学機能素子  51 Optical functional elements
61 三角プリズム  61 Triangular prism
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施例を図面に従って詳細に説明する。ただし、本発明は、以下 の実施例に限定されるものでなぐ適宜設計変更可能であることはいうまでもない。 実施例 1 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, it goes without saying that the present invention is not limited to the following examples, and can be appropriately modified. Example 1
[0022] 図 2は本発明の実施例 1による光スィッチ 21の外観斜視図、図 3及び図 4はその平 面図及び側面図である。この光スィッチ 21においては、長方形平板状をした基台 22 の上面に、光ファイバアレイ 23、光ファイバアレイ固定部 24、固定ミラー 25、可動ミラ 一 26、可動ミラー駆動用のァクチユエータ 27を設けている。図 5及び図 6は基台 22 の上面力も光ファイバアレイ 23と固定ミラー 25とを除いた状態を示す斜視図及び側 面図である。図 7及び図 8は光ファイバアレイ 23及び固定ミラー 25の斜視図及び平 面図である。  FIG. 2 is an external perspective view of the optical switch 21 according to Embodiment 1 of the present invention, and FIGS. 3 and 4 are a plan view and a side view thereof. In this optical switch 21, an optical fiber array 23, an optical fiber array fixing section 24, a fixed mirror 25, a movable mirror 26, and an actuator 27 for driving a movable mirror are provided on the upper surface of a rectangular flat base 22. Yes. 5 and 6 are a perspective view and a side view showing a state in which the top surface force of the base 22 is also removed from the optical fiber array 23 and the fixed mirror 25. FIG. 7 and 8 are a perspective view and a plan view of the optical fiber array 23 and the fixed mirror 25, respectively.
[0023] 基台 22は絶縁材料によって形成されており、図 5に示すように、その上面の片側に はァクチユエータ 27が固定されており、基台 22の下面からはァクチユエータ 27の端 子 28が突出している。このァクチユエータ 27は、電磁リレーなどにも用いられている ものであり、電磁石(図示せず)が内部に内蔵され、中央部を揺動自在に指示された 可動片 27aの下面に永久磁石(図示せず)が固着され、可動片 27aの上面に駆動桿 29が設けられている。オン側の端子 28に通電して電磁石を励磁すると、可動片 27a の先端部が電磁石に吸着され、駆動桿 29が水平に倒され、電磁石の電流遮断後も そのままの状態で自己保持される。また、オフ側の端子 28に通電すると、可動片 27a の基部が電磁石に吸着され、駆動桿 29の先端側が上に上がり、電流遮断後もその ままの状態で自己保持される。 [0023] The base 22 is formed of an insulating material, and as shown in FIG. The actuator 27 is fixed, and the terminal 28 of the actuator 27 protrudes from the lower surface of the base 22. This actuator 27 is also used for an electromagnetic relay or the like. An electromagnet (not shown) is built in the interior, and a permanent magnet (see FIG. (Not shown) is fixed, and a driving rod 29 is provided on the upper surface of the movable piece 27a. When the electromagnet is excited by energizing the terminal 28 on the ON side, the tip of the movable piece 27a is attracted to the electromagnet, the drive rod 29 is tilted horizontally, and is held by itself as it is after the electromagnet current is cut off. When the off-side terminal 28 is energized, the base of the movable piece 27a is attracted to the electromagnet, the tip end side of the drive rod 29 rises, and is self-held as it is after the current is cut off.
[0024] 可動ミラー 26は、両面が鏡面となった両面ミラーである。図 6に示すように、可動ミラ 一 26は、ァクチユエータ 27の駆動桿 29の先端に固定されており、駆動桿 29の先端 部下面よりも下方に飛び出ている。また、可動ミラー 26は、駆動桿 29の長さ方向と平 行な向きで、垂直に取り付けられている。従って、可動ミラー 26は、ァクチユエータ 27 を駆動することによって上下に昇降する。  [0024] The movable mirror 26 is a double-sided mirror in which both surfaces are mirror surfaces. As shown in FIG. 6, the movable mirror 26 is fixed to the tip of the drive rod 29 of the actuator 27 and protrudes below the lower surface of the tip of the drive rod 29. In addition, the movable mirror 26 is mounted vertically in a direction parallel to the length direction of the drive rod 29. Accordingly, the movable mirror 26 moves up and down by driving the actuator 27.
[0025] 光ファイバアレイ 23においては、図 7及び図 8に示すように、複数本の光ファイバ 8a 〜8eの先端部を一定ピッチで平行に揃えてガラス製又は榭脂製の保持ブロック 31 で一体化したものである。この実施例では、 8本の光ファイバを 250 μ mのピッチで平 行に保持した巿販品の光ファイバアレイ 23を示している力 2 X 2光スィッチでは、使 用するのは 4本の光ファイバであるので、 8本の光ファイバのうち両端の各 2本ずつの 光ファイノく 30a、 30b、 30c、 30dのみを使用して!/ヽる。残り 4本の光ファイノく 30eiま力 ットしてもよく、そのまま残しておいてもよい。あるいは、 2本の光ファイバ 30a、 30bと 2 本の光ファイバ 30c、 30dを所定の距離をおいて保持ブロック 31に保持させたものを 特別に製作してもよい。この実施例では、光ファイバ 30a、 30dが入力用光ファイバ( 光入力部)となっており、光ファイバ 30b、 30cが出力用光ファイバ(光出力部)となつ ている。  [0025] In the optical fiber array 23, as shown in Figs. 7 and 8, the end portions of the plurality of optical fibers 8a to 8e are aligned in parallel at a constant pitch, and the holding block 31 made of glass or resin is used. It is an integrated one. In this example, a force 2 X 2 optical switch showing a commercially available optical fiber array 23 holding 8 optical fibers in parallel at a pitch of 250 μm uses 4 fibers. Because it is an optical fiber, use only two optical fibers 30a, 30b, 30c, and 30d at each end of the eight optical fibers! The remaining four optical finos can be powered up to 30ei or left as they are. Alternatively, the two optical fibers 30a and 30b and the two optical fibers 30c and 30d may be specially manufactured by holding the holding block 31 at a predetermined distance. In this embodiment, the optical fibers 30a and 30d are input optical fibers (light input portions), and the optical fibers 30b and 30c are output optical fibers (light output portions).
[0026] 保持ブロック 31の前面には、レンズアレイ基板 32が取り付けられている。レンズァレ ィ基板 32には、一方の端の 2本の光ファイバ 30a、 30bに対向する位置に球面レンズ 又は非球面レンズ等の円形のレンズ 33aが設けられており、他方の端の光ファイバ 3 0c、 30dに対向する位置にも球面レンズ又は非球面レンズ等の円形のレンズ 33bが 設けられている。 A lens array substrate 32 is attached to the front surface of the holding block 31. The lens array substrate 32 is provided with a circular lens 33a such as a spherical lens or an aspheric lens at a position facing the two optical fibers 30a and 30b at one end, and the optical fiber 3 at the other end. A circular lens 33b such as a spherical lens or an aspherical lens is also provided at a position facing 0c and 30d.
[0027] 固定ミラー 25は、図 7及び図 8に示すように、斜面の傾斜角が 45度の角度をなす 略直角二等辺三角形柱状をした三角ブロック 34を 2つ、ベース 35の背面に固着させ 、三角ブロック 34の斜面どうしが対向して互 ヽに 90度の角度をなすようにしたもので ある。また、三角ブロック 34の斜面には、金属薄膜を蒸着させるなどしてそれぞれ鏡 面の反射面 36a、 36bが形成されている。  [0027] As shown in FIGS. 7 and 8, the fixed mirror 25 is fixed to the back of the base 35 with two triangular blocks 34 each having a substantially right-angled isosceles triangular column having an inclined angle of 45 degrees. In this case, the slopes of the triangular block 34 face each other and form an angle of 90 degrees with each other. On the slope of the triangular block 34, mirror reflecting surfaces 36a and 36b are formed by depositing a metal thin film, for example.
[0028] 固定ミラー 25は、接着剤等により光ファイバアレイ 23の前面すなわちレンズアレイ 基板 32の前面に一体に取り付けられており、光ファイバアレイ 23と固定ミラー 25との 間には三角形状の空間 37が形成されている。固定ミラー 25を光ファイバアレイ 23の 前面に取り付けた状態では、光ファイバ 30a、 30b及びレンズ 33aの前方に反射面 3 6aが対向しており、反射面 36aは光ファイバ 30a、 30bの光軸方向に対して 45度の 角度で傾いている。同様に、光ファイバ 30c、 30d及びレンズ 33bの前方に反射面 3 6bが対向しており、反射面 36bは光ファイバ 30c、 30dの光軸方向に対して 45度の 角度で傾いている。  [0028] The fixed mirror 25 is integrally attached to the front surface of the optical fiber array 23, that is, the front surface of the lens array substrate 32 by an adhesive or the like, and a triangular space is provided between the optical fiber array 23 and the fixed mirror 25. 37 is formed. In a state where the fixed mirror 25 is attached to the front surface of the optical fiber array 23, the reflecting surface 36a faces the front of the optical fibers 30a and 30b and the lens 33a, and the reflecting surface 36a is in the optical axis direction of the optical fibers 30a and 30b. It is inclined at an angle of 45 degrees. Similarly, the reflecting surface 36b is opposed to the front of the optical fibers 30c and 30d and the lens 33b, and the reflecting surface 36b is inclined at an angle of 45 degrees with respect to the optical axis direction of the optical fibers 30c and 30d.
[0029] 図 4及び図 5に示すように、基台 22の上面の、ァクチユエータ 27に隣接する位置に は、矩形板状をした光ファイバアレイ固定部 24が突設されている。光ファイバアレイ 2 3は、光ファイバアレイ固定部 24の上に載置され、可動ミラー 26と所定の位置関係と なるように位置合わせした後、図 1〜図 3に示すように、紫外線硬化型榭脂のような即 乾性の接着剤で下面を光ファイバアレイ固定部 24に固定される。  As shown in FIG. 4 and FIG. 5, a rectangular plate-shaped optical fiber array fixing portion 24 projects from a position adjacent to the actuator 27 on the upper surface of the base 22. The optical fiber array 23 is placed on the optical fiber array fixing portion 24, aligned with the movable mirror 26 so as to have a predetermined positional relationship, and then, as shown in FIGS. The bottom surface is fixed to the optical fiber array fixing part 24 with a quick-drying adhesive such as grease.
[0030] 図 9は光スィッチ 21における光学的な配置を示す説明図である。図 9においては、 光ファイバ 30a〜30dから入出射される光のうち各光ファイバ 30a〜30dの端部の光 軸方向(軸心方向)と平行に入出射される主軸光線の光路を矢印で表わしている。ま た、不要な光ファイノ 30eは図示を省略している(以下同様)。符号 38は、光ファイバ 30a〜30dの端部の光軸方向を含む平面に垂直で、光ファイバ 30a〜30dの端部の 光軸方向と平行で、光ファイバ 30a〜30dの中央を通る仮想的な平面を表わしてい る。固定ミラー 25は、その反射面 36a、 36bが平面 38に関して互いに面対称となるよ うに配置されており、各反射面 36a、 36bは平面 38と 45度の角度をなしている。 [0031] レンズ 33aは、その光軸(図 9において 1点鎖線で示す。)が光ファイバ 30a、 30bの 中央を平行に通過する直線と一致するように配置されている。また、レンズ 33aは、レ ンズ 33aに平行光束が入射したと考えた場合、反射面 36aに関する平面 38の鏡像 3 8aの上に焦点を結ぶように配置されている。言い換えると、レンズ 33aの主面と鏡像 3 8aとの距離力 レンズ 33aの焦点距離に等しくなつている。同様に、レンズ 33bは、そ の光軸が光ファイバ 30a、 30bの中央を平行に通過する直線と一致するように配置さ れている。また、レンズ 33bは、レンズ 33bに平行光束が入射した場合、反射面 36b に関する平面 38の鏡像 38bの上に焦点を結ぶように配置されて 、る。言 、換えると、 レンズ 33bの主面と鏡像 38bとの距離力 レンズ 33bの焦点距離に等しくなつている。 また、可動ミラー 26は、光ファイバアレイ 23と固定ミラー 25の間の空間 37に挿入され たときには、平面 38と一致する。 FIG. 9 is an explanatory diagram showing an optical arrangement in the optical switch 21. In FIG. 9, the optical path of the principal beam that enters and exits in parallel with the optical axis direction (axial direction) of the end of each of the optical fibers 30 a to 30 d out of the light that enters and exits the optical fibers 30 a to 30 d is indicated by an arrow. It represents. Further, the unnecessary optical finer 30e is not shown (the same applies hereinafter). Reference numeral 38 is a virtual line that is perpendicular to the plane including the optical axis direction of the end portions of the optical fibers 30a to 30d, is parallel to the optical axis direction of the end portions of the optical fibers 30a to 30d, and passes through the center of the optical fibers 30a to 30d. It represents a simple plane. The fixed mirror 25 is arranged so that the reflecting surfaces 36a and 36b are symmetrical with respect to the plane 38, and each reflecting surface 36a and 36b forms an angle of 45 degrees with the plane 38. [0031] The lens 33a is arranged so that its optical axis (indicated by a one-dot chain line in FIG. 9) coincides with a straight line passing through the center of the optical fibers 30a and 30b in parallel. In addition, the lens 33a is arranged so as to focus on the mirror image 38a of the plane 38 related to the reflecting surface 36a when it is considered that a parallel light beam is incident on the lens 33a. In other words, the distance force between the main surface of the lens 33a and the mirror image 38a is equal to the focal length of the lens 33a. Similarly, the lens 33b is arranged so that its optical axis coincides with a straight line passing through the centers of the optical fibers 30a and 30b in parallel. The lens 33b is arranged so as to focus on the mirror image 38b of the plane 38 with respect to the reflecting surface 36b when a parallel light beam is incident on the lens 33b. In other words, the distance force between the main surface of the lens 33b and the mirror image 38b is equal to the focal length of the lens 33b. The movable mirror 26 coincides with the plane 38 when inserted in the space 37 between the optical fiber array 23 and the fixed mirror 25.
[0032] 従って、光ファイバ 30aから出射され、固定ミラー 25の反射面 36a、 36bで反射され て光ファイバ 30cに入射する主軸光線の光路と、光ファイバ 30dから出射され、固定ミ ラー 25の反射面 36b、 36aで反射されて光ファイバ 30bに入射する主軸光線の光路 とは、平面 38の位置で交差する。  [0032] Accordingly, the optical path of the principal beam that is emitted from the optical fiber 30a, reflected by the reflecting surfaces 36a and 36b of the fixed mirror 25, and incident on the optical fiber 30c, and the optical path that is emitted from the optical fiber 30d and reflected by the fixed mirror 25 The optical path of the principal ray reflected by the surfaces 36b and 36a and entering the optical fiber 30b intersects at the position of the plane 38.
[0033] 図 10及び図 11は光スィッチ 21の動作を説明する図であって、図 10は可動ミラー 2 6が上昇して 、て空間 37の外に出て 、る場合の光の挙動を表わし、図 11は可動ミラ 一 26が下降して空間 37内に挿入されている場合の光の挙動を表わしている。ここで 、各光ファイノ 30a〜30dと各レンズ 33a、 33bとの、光ファイノ 30a〜30dの端咅の 光軸方向に沿った距離は、レンズ 33a、 33bの焦点距離に等しくなつている。  FIG. 10 and FIG. 11 are diagrams for explaining the operation of the optical switch 21. FIG. 10 shows the behavior of light when the movable mirror 26 rises and goes out of the space 37. FIG. 11 shows the behavior of light when the movable mirror 26 is lowered and inserted into the space 37. Here, the distances along the optical axis direction of the ends of the optical finos 30a to 30d between the optical finos 30a to 30d and the lenses 33a and 33b are equal to the focal lengths of the lenses 33a and 33b.
[0034] 図 10に示すように可動ミラー 26が空間 37の外にある場合には、入力用の光フアイ ノ 30aのコアから出射された光束 (この光束の主軸光線の光路を図 10において実線 矢印で示す。)は、レンズ 33aの光軸力 外れた位置に入射し、光束の進む方向を斜 めに曲げられると共に平行光束に変換される。レンズ 33aを通過した平行光束は、反 射面 36a及び 36bで 2回反射した後、元の方向に戻る。元の方向に回帰反射した平 行光束は、レンズ 33bの光軸力 外れた位置に入射し、光束の進む方向を出力用の 光ファイバ 30cの光軸と平行な方向へ曲げられ、光ファイバ 30cのコア端面に集光さ れ、光ファイバ 30cに入射する。 [0035] 一方、入力用の光ファイバ 30dから出射された光束 (この光束の主軸光線の光路を 図 10において破線矢印で示す。)は、レンズ 33bの光軸カゝら外れた位置に入射し、 光束の進む方向を曲げられると共に平行光束に変換される。レンズ 33bを通過した 平行光束は、反射面 36b及び 36aで 2回反射した後、元の方向に戻る。元の方向に 回帰反射した平行光束は、レンズ 33aの光軸力 外れた位置に入射し、光束の進む 方向を出力用の光ファイバ 30bに平行な方向へ曲げられ、光ファイバ 30bのコア端 面に集光されて光ファイバ 30bに入射する。 [0034] As shown in FIG. 10, when the movable mirror 26 is outside the space 37, the light beam emitted from the core of the input optical fiber 30a (the optical path of the principal axis light beam of this light beam in FIG. (Shown by an arrow) enters the position where the optical axis force of the lens 33a deviates, and the traveling direction of the light beam is bent obliquely and converted into a parallel light beam. The parallel light beam that has passed through the lens 33a is reflected twice by the reflecting surfaces 36a and 36b, and then returns to the original direction. The parallel light beam reflected back to the original direction is incident on the position deviating from the optical axis force of the lens 33b, the direction of travel of the light beam is bent in a direction parallel to the optical axis of the output optical fiber 30c, and the optical fiber 30c. The light is focused on the core end face and enters the optical fiber 30c. [0035] On the other hand, the light beam emitted from the input optical fiber 30d (the optical path of the principal beam of this light beam is indicated by a broken line arrow in FIG. 10) is incident on a position off the optical axis of the lens 33b. The direction in which the light beam travels is bent and converted into a parallel light beam. The parallel light flux that has passed through the lens 33b is reflected twice by the reflecting surfaces 36b and 36a, and then returns to the original direction. The parallel light beam that has been retro-reflected in the original direction enters the position where the optical axis force of the lens 33a deviates, and the direction in which the light beam travels is bent in a direction parallel to the output optical fiber 30b, and the core end surface of the optical fiber 30b. And is incident on the optical fiber 30b.
[0036] 図 11に示すように可動ミラー 26が空間 37内にある場合には、入力用の光ファイバ 30aから出射された光束 (この光束の主軸光線の光路を図 11にお 、て実線矢印で 示す。)は、レンズ 33aで光の進む方向を斜めに曲げられると共に平行光束に変換さ れる。レンズ 33aを通過した平行光束は、反射面 36aで反射された後、可動ミラー 26 で反射されることによって元の方向へ戻る。元の方向へ戻った平行光束は、再び反 射面 36aで反射されてレンズ 33aに入射する。レンズ 33aを通過した光は、出力用の 光ファイバ 30bの光軸と平行な方向へ光束の進む方向を曲げられ、光ファイバ 30b のコアに集光されて光ファイバ 30bに入射する。  When the movable mirror 26 is in the space 37 as shown in FIG. 11, the light beam emitted from the input optical fiber 30a (the optical path of the principal axis light beam of this light beam is indicated by a solid arrow in FIG. The lens 33a can bend the light traveling direction diagonally and convert it into a parallel light beam. The parallel light flux that has passed through the lens 33a is reflected by the reflecting surface 36a and then returns to the original direction by being reflected by the movable mirror 26. The parallel light flux returned to the original direction is reflected again by the reflecting surface 36a and enters the lens 33a. The light that has passed through the lens 33a is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30b, is focused on the core of the optical fiber 30b, and enters the optical fiber 30b.
[0037] 一方、入力用の光ファイバ 30dから出射された光束 (この光束の主軸光線の光路を 図 11において破線矢印で示す。)は、レンズ 33bで光束の進む方向を曲げられると 共に平行光束に変換される。レンズ 33bを通過した平行光束は、反射面 36bで反射 された後、可動ミラー 26で反射されることによって元の方向へ戻る。元の方向へ戻つ た平行光束は、再び反射面 36bで反射されてレンズ 33bに入射する。レンズ 33bを 通過した光は、出力用の光ファイバ 30cの光軸と平行な方向へ光束の進む方向を曲 げられ、光ファイバ 30cのコア端面に集光され、光ファイバ 30cに入射する。  [0037] On the other hand, the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 11) is converted into a parallel light beam while the direction of travel of the light beam is bent by the lens 33b. Is converted to The parallel light flux that has passed through the lens 33b is reflected by the reflecting surface 36b and then returns to the original direction by being reflected by the movable mirror 26. The parallel light flux returned to the original direction is reflected again by the reflecting surface 36b and enters the lens 33b. The light that has passed through the lens 33b is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30c, collected on the core end face of the optical fiber 30c, and incident on the optical fiber 30c.
[0038] よって、この実施例にあっては、ァクチユエータ 27で可動ミラー 26を上昇させて空 間 37外に出している場合には、入力用の光ファイバ 30aと出力用の光ファイバ 30cと が結合され、かつ、入力用の光ファイバ 30dと出力用の光ファイバ 30bとが結合され る。また、ァクチユエータ 27で可動ミラー 26を下降させて空間 37内に挿入している場 合には、入力用の光ファイバ 30aと出力用の光ファイバ 30bとが結合され、かつ、入 力用の光ファイバ 30dと出力用の光ファイバ 30cとが結合される。 [0039] し力も、このような光スィッチ 21にあっては、すべての光ファイバ 30a〜30eが同じ 方向に位置しているので、多数の光スィッチ 21が交 «のような装置に組み込まれ ている場合、装置の一方の側のみからそれぞれの光スィッチ 21や光ファイバ 30a〜3 Oeの点検を行なうことができ、取り扱いが容易になる。また、光ファイバ 30a〜30eの 配線スペースが片側にだけあればよいので、装置内における光スィッチ 21の実装面 積ち/ Jヽさくなる。 Therefore, in this embodiment, when the movable mirror 26 is lifted by the actuator 27 and out of the space 37, the input optical fiber 30a and the output optical fiber 30c are The optical fiber 30d for input and the optical fiber 30b for output are coupled. Further, when the movable mirror 26 is lowered by the actuator 27 and inserted into the space 37, the input optical fiber 30a and the output optical fiber 30b are coupled to each other, and the input optical fiber 30b is coupled. The fiber 30d and the output optical fiber 30c are coupled. [0039] In such an optical switch 21, since all the optical fibers 30a to 30e are positioned in the same direction, a large number of optical switches 21 are incorporated in a device such as an alternating switch. In this case, the optical switch 21 and the optical fibers 30a to 3Oe can be inspected only from one side of the apparatus, and the handling becomes easy. In addition, since the wiring space of the optical fibers 30a to 30e only needs to be provided on one side, the mounting area of the optical switch 21 in the apparatus is reduced to J.
[0040] この光スィッチ 21の組み立て時における調芯作業も 2回の作業に分けて行なうこと ができるので、調芯作業が容易になる。すなわち、まず固定ミラー 25を光ファイバァ レイ 23の前面に取り付ける際には、入力用の光ファイバ 30a、 30dから光を出射させ 、出力用の光ファイバ 30c、 30bに入射した光を光ファイバ 30c、 30bの他端でモニタ 一し、その受光量が最大となるように固定ミラー 25を動力して受光量最大となった位 置で固定ミラー 25を光ファイバアレイ 23に接着固定する。この結果、図 10の状態と なるように光ファイバ 30a〜30eと反射面 36a、 36bとが位置調整される。  [0040] Since the alignment work at the time of assembling the optical switch 21 can be performed in two steps, the alignment work is facilitated. That is, when the fixed mirror 25 is first attached to the front surface of the optical fiber array 23, light is emitted from the input optical fibers 30a and 30d, and the light incident on the output optical fibers 30c and 30b is converted into the optical fiber 30c, Monitor the other end of 30b, power the fixed mirror 25 so that the amount of received light is maximized, and fix the fixed mirror 25 to the optical fiber array 23 at the position where the amount of received light is maximum. As a result, the positions of the optical fibers 30a to 30e and the reflecting surfaces 36a and 36b are adjusted so as to be in the state of FIG.
[0041] ついで、固定ミラー 25を取り付けられた光ファイバアレイ 23を、接着剤を塗布され た光ファイバアレイ固定部 24の上に置き、可動ミラー 26を空間 37内に下降させる。 そして、入力用の光ファイバ 30a、 30dから光を出射させ、出力用の光ファイバ 30b、 30cに入射した光を光ファイバ 30b、 30cの他端でモニターし、その受光量が最大と なるように光ファイバアレイ 23を動力して受光量最大となった位置で光ファイバアレイ 23を光ファイバアレイ固定部 24に接着固定する。この結果、図 11の状態となるように 光ファイバ 30a〜30e及び反射面 36a、 36bと、可動ミラー 26とが位置調整される。  Next, the optical fiber array 23 to which the fixed mirror 25 is attached is placed on the optical fiber array fixed portion 24 to which the adhesive is applied, and the movable mirror 26 is lowered into the space 37. Then, light is emitted from the input optical fibers 30a and 30d, and the light incident on the output optical fibers 30b and 30c is monitored at the other end of the optical fibers 30b and 30c so that the amount of received light is maximized. The optical fiber array 23 is bonded and fixed to the optical fiber array fixing portion 24 at a position where the optical fiber array 23 is powered and the amount of received light is maximum. As a result, the positions of the optical fibers 30a to 30e, the reflecting surfaces 36a and 36b, and the movable mirror 26 are adjusted so as to be in the state of FIG.
[0042] 前者の調整作業は可動ミラー 26の位置を考慮することなく調整でき、後者の調整 は光ファイバアレイ 23と固定ミラー 25の位置関係が固定された後の調整であるから、 調芯作業を 2回に分けて行なうことにより、光スィッチ 21の組み立て時の調芯作業を 容易にすることができる。  [0042] The former adjustment work can be adjusted without considering the position of the movable mirror 26, and the latter adjustment is an adjustment after the positional relationship between the optical fiber array 23 and the fixed mirror 25 is fixed. By performing the process in two steps, the alignment work at the time of assembling the optical switch 21 can be facilitated.
[0043] さらに、光ファイバを光ファイバアレイ 23としてアレイ化することで、光ファイバと固定 ミラーや可動ミラー等との調芯作業を一括して行なうことができる。  Furthermore, by aligning the optical fibers as the optical fiber array 23, it is possible to perform the alignment operation of the optical fiber and the fixed mirror, the movable mirror, etc. in a lump.
[0044] なお、上記実施例では、入力用の光ファイバ 30a、 30dのコア端面から出射された 光束をレンズ 33a、 33bで平行光束に変換させるようにした力 入力用の光ファイバ 3 0a、 30dのコア力ら出射された平行光束をレンズ 33a、 33bにより平面 38にお!/ヽて収 束させるようにしてちょい。 In the above embodiment, a force input optical fiber 3 in which the light beams emitted from the core end faces of the input optical fibers 30a and 30d are converted into parallel light beams by the lenses 33a and 33b. Parallel beams emitted from the core force of 0a and 30d should be converged on the plane 38 by the lenses 33a and 33b.
実施例 2  Example 2
[0045] 図 12は本発明の実施例 2による光スィッチ 41の外観斜視図、図 13及び図 14その 平面図及び側面図である。この光スィッチ 41においては、固定ミラー 25は、光フアイ バアレイ 23に取り付けられておらず、そのベース 35を基台 22の上面又はァクチユエ ータ 27の前面に固定されている。固定ミラー 25と光ファイバアレイ 23とは離間してお り、可動ミラー 26は固定ミラー 25の前方で昇降させられるようになつている。これ以外 の点については実施例 1と同様である。特に、光スィッチ 41の切り替え動作は、図 10 及び図 11により説明した実施例 1の切り替え動作と同じである。  FIG. 12 is an external perspective view of the optical switch 41 according to the second embodiment of the present invention, and a plan view and a side view thereof. In this optical switch 41, the fixed mirror 25 is not attached to the optical fiber array 23, and its base 35 is fixed to the upper surface of the base 22 or the front surface of the actuator 27. The fixed mirror 25 and the optical fiber array 23 are separated from each other, and the movable mirror 26 can be moved up and down in front of the fixed mirror 25. The other points are the same as in Example 1. In particular, the switching operation of the optical switch 41 is the same as the switching operation of the first embodiment described with reference to FIGS.
実施例 3  Example 3
[0046] 図 15及び図 16は本発明の実施例 3における光スィッチ 42の要部を示す平面図で ある。実施例 3においては、可動ミラーに代えて、光を透過させる状態と光を反射させ る状態とに切り換えることができる光学機能素子 51を用いている。このような光学機 能素子 51としては、電気光学効果を利用したもの、磁気光学効果を利用したもの、 熱光学効果を利用したものなどがある。電気光学効果を利用した光学機能素子 51と しては、例えば KTN (KTa Nb O (x = 0.1〜0.9) )、 BaTiO、 LiNbOなどの電  FIGS. 15 and 16 are plan views showing the main part of the optical switch 42 in Embodiment 3 of the present invention. In the third embodiment, an optical function element 51 that can be switched between a state of transmitting light and a state of reflecting light is used instead of the movable mirror. Examples of such an optical functional element 51 include an element utilizing an electro-optic effect, an element utilizing a magneto-optic effect, and an element utilizing a thermo-optic effect. Examples of the optical functional element 51 using the electro-optic effect include KTN (KTa Nb O (x = 0.1 to 0.9)), BaTiO, LiNbO, and the like.
X l -X 3 3 3  X l -X 3 3 3
気光学効果により屈折率が変化する電気光学薄膜を用いたものがある。  Some use an electro-optic thin film whose refractive index changes due to the gas-optic effect.
[0047] この光学機能素子 51は、光を反射させる状態のときの反射面が前記平面 38の位 置に一致するようにして設置される。光学機能素子 51は、光を透過させる状態と光を 反射させる状態とに切り替わるようになっており、例えば直流電源 57をオン、オフする ことによって状態を変化させることができる。  [0047] The optical functional element 51 is installed such that the reflecting surface in the state of reflecting light coincides with the position of the plane 38. The optical functional element 51 is switched between a light transmitting state and a light reflecting state. For example, the state can be changed by turning on and off the DC power source 57.
[0048] しかして、図 15に示すように、光学機能素子 51が光を透過させる状態となっている 場合には、入力用の光ファイバ 30aのコアから出射された光束 (この光束の主軸光線 の光路を図 15において実線矢印で示す。)は、レンズ 33aの光軸力も外れた位置に 入射し、光束の進む方向を斜めに曲げられると共に平行光束に変換される。レンズ 3 3aを通過した平行光束は、反射面 36aで反射された後、光学機能素子 51を透過し、 さらに反射面 36bで反射され、元の方向に戻る。元の方向に回帰反射した平行光束 は、レンズ 33bの光軸力も外れた位置に入射し、光束の進む方向を出力用の光ファ ィバ 30cの光軸と平行な方向へ曲げられ、光ファイバ 30cのコア端面に集光され、光 ファイバ 30cに入射する。 Thus, as shown in FIG. 15, when the optical functional element 51 is in a state of transmitting light, the light beam emitted from the core of the input optical fiber 30a (the principal axis light beam of this light beam) 15 is indicated by a solid arrow in FIG. 15.) is incident on a position where the optical axial force of the lens 33a is also removed, and the traveling direction of the light beam is bent obliquely and converted into a parallel light beam. The parallel light flux that has passed through the lens 33a is reflected by the reflecting surface 36a, then passes through the optical functional element 51, is further reflected by the reflecting surface 36b, and returns to its original direction. Parallel luminous flux retroreflected in the original direction Enters the position where the optical axis force of the lens 33b also deviates, the direction of travel of the light beam is bent in a direction parallel to the optical axis of the output optical fiber 30c, and is condensed on the core end face of the optical fiber 30c, Incident on optical fiber 30c.
[0049] 一方、入力用の光ファイバ 30dから出射された光束 (この光束の主軸光線の光路を 図 15において破線矢印で示す。)は、レンズ 33bの光軸カゝら外れた位置に入射し、 光束の進む方向を曲げられると共に平行光束に変換される。レンズ 33bを通過した 平行光束は、反射面 36bで反射された後、光学機能素子 51を透過し、さらに反射面 36aで反射され、元の方向に戻る。元の方向へ回帰反射した平行光束は、レンズ 33 aの光軸から外れた位置に入射し、光束の進む方向を出力用の光ファイバ 30bに平 行な方向へ曲げられ、光ファイバ 30bのコア端面に集光されて光ファイバ 30bに入射 する。 [0049] On the other hand, the light beam emitted from the input optical fiber 30d (the optical path of the principal beam of this light beam is indicated by a broken line arrow in FIG. 15) is incident at a position off the optical axis of the lens 33b. The direction in which the light beam travels is bent and converted into a parallel light beam. The parallel light flux that has passed through the lens 33b is reflected by the reflecting surface 36b, then passes through the optical functional element 51, is further reflected by the reflecting surface 36a, and returns to its original direction. The collimated light flux that has been retro-reflected in the original direction is incident on a position off the optical axis of the lens 33a, the direction of travel of the light flux is bent in a direction parallel to the output optical fiber 30b, and the core of the optical fiber 30b. It is focused on the end face and enters the optical fiber 30b.
[0050] また、図 16に示すように光学機能素子 51が光を反射する状態となっている場合に は、入力用の光ファイバ 30aから出射された光束 (この光束の主軸光線の光路を図 1 6において実線矢印で示す。)は、レンズ 33aで光の進む方向を斜めに曲げられると 共に平行光束に変換される。レンズ 33aを通過した平行光束は、反射面 36aで反射 された後、光学機能素子 51で反射されることによって元の方向へ戻る。元の方向へ 戻った平行光束は、再び反射面 36aで反射されてレンズ 33aに入射する。レンズ 33a を通過した光は、出力用の光ファイバ 30bの光軸と平行な方向へ光束の進む方向を 曲げられ、光ファイバ 30bのコアに集光されて光ファイバ 30bに入射する。  In addition, when the optical functional element 51 is in a state of reflecting light as shown in FIG. 16, the light beam emitted from the input optical fiber 30a (the optical path of the principal axis light beam of this light beam is illustrated). Indicated by a solid arrow in 16)), the light traveling direction is obliquely bent by the lens 33a and converted into a parallel light beam. The parallel light flux that has passed through the lens 33a is reflected by the reflecting surface 36a and then reflected by the optical functional element 51 to return to the original direction. The parallel light flux returning to the original direction is reflected again by the reflecting surface 36a and enters the lens 33a. The light that has passed through the lens 33a is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30b, is focused on the core of the optical fiber 30b, and enters the optical fiber 30b.
[0051] 一方、入力用の光ファイバ 30dから出射された光束 (この光束の主軸光線の光路を 図 16において破線矢印で示す。)は、レンズ 33bで光束の進む方向を曲げられると 共に平行光束に変換される。レンズ 33bを通過した平行光束は、反射面 36bで反射 された後、光学機能素子 51で反射されることによって元の方向へ戻る。元の方向へ 戻った平行光束は、再び反射面 36bで反射されてレンズ 33bに入射する。レンズ 33 bを通過した光は、出力用の光ファイバ 30cの光軸と平行な方向へ光束の進む方向 を曲げられ、光ファイバ 30cのコア端面に集光され、光ファイバ 30cに入射する。  [0051] On the other hand, the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 16) is converted into a parallel light beam while the direction of travel of the light beam is bent by the lens 33b. Is converted to The parallel light flux that has passed through the lens 33b is reflected by the reflecting surface 36b and then returned to the original direction by being reflected by the optical functional element 51. The parallel light flux returned to the original direction is reflected again by the reflecting surface 36b and enters the lens 33b. The light that has passed through the lens 33b is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30c, is condensed on the core end face of the optical fiber 30c, and enters the optical fiber 30c.
[0052] よって、この実施例にあっては、光学機能素子 51が透過状態となっている場合に は、入力用の光ファイバ 30aと出力用の光ファイバ 30cとが結合され、かつ、入力用 の光ファイバ 30dと出力用の光ファイバ 30bとが結合される。また、光学機能素子 51 が反射状態となっている場合には、入力用の光ファイバ 30aと出力用の光ファイバ 30 bとが結合され、かつ、入力用の光ファイバ 30dと出力用の光ファイバ 30cとが結合さ れる。 Therefore, in this embodiment, when the optical functional element 51 is in a transmissive state, the input optical fiber 30a and the output optical fiber 30c are coupled, and the input optical fiber 30a is coupled. The optical fiber 30d and the output optical fiber 30b are coupled. When the optical functional element 51 is in the reflective state, the input optical fiber 30a and the output optical fiber 30b are coupled, and the input optical fiber 30d and the output optical fiber are coupled. Combined with 30c.
実施例 4  Example 4
[0053] 図 17及び図 18は本発明の実施例 4における光スィッチ 43の要部を示す平面図で ある。実施例 4においては、固定ミラー 25としてプリズムを用い、プリズムの界面 (反射 面 36a、 36b)で光を全反射させるようにしたものである。  FIGS. 17 and 18 are plan views showing the main parts of the optical switch 43 in Embodiment 4 of the present invention. In the fourth embodiment, a prism is used as the fixed mirror 25, and light is totally reflected at the interface (reflecting surfaces 36a and 36b) of the prism.
[0054] 図 19は実施例 4で用いられる固定ミラー 25の構造を示す斜視図である。固定ミラ 一 25は直角二等辺三角形柱状をした三角プリズム 61によって形成されており、 90 度の角部を挟む平面がそれぞれ反射面 36a、 36bとなっている。固定ミラー 25である 三角プリズム 61内には、光学機能素子 51が内蔵されている。光学機能素子 51は、 反射面 36a、 36bと 45度の角度をなすようにして、 90度の角部と当該角部に対向す る斜面との間に延びている。そして、一体化された固定ミラー 25及び光学機能素子 5 1は、図 17及び図 18に示すように、光学機能素子 51が前記平面 38の位置に一致 するようにして設置される。  FIG. 19 is a perspective view showing the structure of the fixed mirror 25 used in the fourth embodiment. The fixed mirror 25 is formed by a triangular prism 61 having a right-angled isosceles triangular column shape, and planes sandwiching a 90 ° corner are reflecting surfaces 36a and 36b, respectively. An optical functional element 51 is built in a triangular prism 61 that is a fixed mirror 25. The optical function element 51 extends between the 90 ° corner and the slope facing the corner so as to form an angle of 45 ° with the reflecting surfaces 36a and 36b. Then, the integrated fixed mirror 25 and optical function element 51 are installed such that the optical function element 51 coincides with the position of the plane 38 as shown in FIGS.
[0055] 図 20 (a)及び図 20 (b)は上記固定ミラー 25の製造方法の一例を説明する図であ る。まず図 20 (a)に示すように、上記三角プリズム 61の 1Z2の大きさを有する直角二 等辺三角形柱状をした小さな三角プリズム 62を 2つ用意する。そして、一方の三角プ リズム 62の 90度の角部に隣接する面に、透明な接着用榭脂を用いて光学機能素子 51の一方の面を接着する。ついで、図 20 (a)及び図 20 (b)に示すように、光学機能 素子 51の他方の面に、透明な接着用榭脂を用いて、他方の三角プリズム 62の 90度 の角部に隣接する面を接着する。この結果、 2つの小さな三角プリズム 62によって大 きな三角プリズム 61が形成されると共に、三角プリズム 61内に光学機能素子 51が内 蔵される。  FIGS. 20 (a) and 20 (b) are diagrams for explaining an example of a method for manufacturing the fixed mirror 25. FIG. First, as shown in FIG. 20 (a), two small triangular prisms 62 having a right isosceles triangular prism shape having a size of 1Z2 of the triangular prism 61 are prepared. Then, one surface of the optical functional element 51 is bonded to the surface adjacent to the 90-degree corner of one triangular prism 62 using a transparent adhesive grease. Next, as shown in FIGS. 20 (a) and 20 (b), a transparent adhesive grease is used on the other surface of the optical function element 51, and the 90 ° corner of the other triangular prism 62 is used. Adhere adjacent faces. As a result, the large triangular prism 61 is formed by the two small triangular prisms 62, and the optical functional element 51 is incorporated in the triangular prism 61.
[0056] しかして、実施例 4にあっては、図 17に示すように光学機能素子 51が光を透過させ る状態となっている場合には、入力用の光ファイバ 30aのコアから出射された光束 (こ の光束の主軸光線の光路を図 17において実線矢印で示す。)は、レンズ 33aの光軸 から外れた位置に入射し、光束の進む方向を斜めに曲げられると共に平行光束に変 換される。レンズ 33aを通過した平行光束は、三角プリズム 61内に入射し、反射面 36 aで全反射された後、光学機能素子 51を透過し、さらに反射面 36bで全反射され、元 の方向に戻る。元の方向へ回帰反射した平行光束は、レンズ 33bの光軸力も外れた 位置に入射し、光束の進む方向を出力用の光ファイバ 30cの光軸と平行な方向へ曲 げられ、光ファイバ 30cのコア端面に集光され、光ファイバ 30cに入射する。 Therefore, in Example 4, when the optical functional element 51 is in a state of transmitting light as shown in FIG. 17, it is emitted from the core of the input optical fiber 30a. The light beam (the optical path of the principal beam of this light beam is indicated by a solid arrow in FIG. 17) is the optical axis of the lens 33a. The light beam is incident on a position deviated from the center of the beam, and the traveling direction of the light beam is obliquely bent and converted into a parallel light beam. The parallel light beam that has passed through the lens 33a enters the triangular prism 61, is totally reflected by the reflecting surface 36a, passes through the optical functional element 51, is further totally reflected by the reflecting surface 36b, and returns to its original direction. . The collimated light beam reflected back to the original direction is incident on the position where the optical axis force of the lens 33b is also deviated, and the traveling direction of the light beam is bent in a direction parallel to the optical axis of the output optical fiber 30c. The light is collected on the core end face of the light and enters the optical fiber 30c.
[0057] 一方、入力用の光ファイバ 30dから出射された光束 (この光束の主軸光線の光路を 図 17において破線矢印で示す。)は、レンズ 33bの光軸カゝら外れた位置に入射し、 光束の進む方向を曲げられると共に平行光束に変換される。レンズ 33bを通過した 平行光束は、三角プリズム 61内に入射して反射面 36bで全反射された後、光学機能 素子 51を透過し、さらに反射面 36aで全反射され、元の方向に戻る。元の方向に回 帰反射した平行光束は、レンズ 33aの光軸力 外れた位置に入射し、光束の進む方 向を出力用の光ファイバ 30bに平行な方向へ曲げられ、光ファイバ 30bのコア端面に 集光されて光ファイバ 30bに入射する。  On the other hand, the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 17) is incident on a position off the optical axis of the lens 33b. The direction in which the light beam travels is bent and converted into a parallel light beam. The parallel light beam that has passed through the lens 33b enters the triangular prism 61, is totally reflected by the reflecting surface 36b, passes through the optical functional element 51, is further totally reflected by the reflecting surface 36a, and returns to its original direction. The parallel luminous flux retroreflected in the original direction is incident on the position deviating from the optical axis force of the lens 33a, and the direction in which the luminous flux travels is bent in a direction parallel to the output optical fiber 30b. It is focused on the end face and enters the optical fiber 30b.
[0058] また、図 18に示すように光学機能素子 51が光を反射させる状態となっている場合 には、入力用の光ファイバ 30aから出射された光束 (この光束の主軸光線の光路を図 18において実線矢印で示す。)は、レンズ 33aで光の進む方向を斜めに曲げられる と共に平行光束に変換される。レンズ 33aを通過した平行光束は、三角プリズム 61内 に入射して反射面 36aで全反射された後、光学機能素子 51で反射されることによつ て元の方向へ戻る。元の方向に戻った平行光束は、再び反射面 36aで全反射されて レンズ 33aに入射する。レンズ 33aを通過した光は、出力用の光ファイバ 30bの光軸 と平行な方向へ光束の進む方向を曲げられ、光ファイバ 30bのコアに集光されて光 ファイバ 30bに入射する。  In addition, as shown in FIG. 18, when the optical functional element 51 is in a state of reflecting light, the light beam emitted from the input optical fiber 30a (the optical path of the principal axis light beam of this light beam is illustrated). 18 is indicated by a solid arrow in FIG. 18), and the light traveling direction is bent obliquely by the lens 33a and converted into a parallel light beam. The parallel light beam that has passed through the lens 33a enters the triangular prism 61, is totally reflected by the reflecting surface 36a, and then returns to the original direction by being reflected by the optical functional element 51. The parallel light flux returned to the original direction is again totally reflected by the reflecting surface 36a and is incident on the lens 33a. The light that has passed through the lens 33a is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30b, is focused on the core of the optical fiber 30b, and enters the optical fiber 30b.
[0059] 一方、入力用の光ファイバ 30dから出射された光束 (この光束の主軸光線の光路を 図 18において破線矢印で示す。)は、レンズ 33bで光束の進む方向を曲げられると 共に平行光束に変換される。レンズ 33bを通過した平行光束は、三角プリズム 61内 に入射し、反射面 36bで反射された後、光学機能素子 51で反射されることによって 元の方向へ戻る。元の方向に戻った光束は、再び反射面 36bで全反射されてレンズ 33bに入射する。レンズ 33bを通過した光は、出力用の光ファイバ 30cの光軸と平行 な方向へ光束の進む方向を曲げられ、光ファイバ 30cのコア端面に集光され、光ファ ィバ 30cに入射する。 [0059] On the other hand, the light beam emitted from the input optical fiber 30d (the optical path of the principal axis light beam of this light beam is indicated by a broken arrow in FIG. 18) is deflected by the lens 33b and the parallel light beam. Is converted to The parallel light flux that has passed through the lens 33b enters the triangular prism 61, is reflected by the reflecting surface 36b, and then returns to the original direction by being reflected by the optical functional element 51. The luminous flux that has returned to its original direction is again totally reflected by the reflecting surface 36b, and the lens Incident on 33b. The light that has passed through the lens 33b is bent in the direction in which the light beam travels in a direction parallel to the optical axis of the output optical fiber 30c, is condensed on the core end face of the optical fiber 30c, and is incident on the optical fiber 30c.
[0060] よって、この実施例にあっては、光学機能素子 51が透過状態となっている場合に は、入力用の光ファイバ 30aと出力用の光ファイバ 30cとが結合され、かつ、入力用 の光ファイバ 30dと出力用の光ファイバ 30bとが結合される。また、光学機能素子 51 が反射状態となっている場合には、入力用の光ファイバ 30aと出力用の光ファイバ 30 bとが結合され、かつ、入力用の光ファイバ 30dと出力用の光ファイバ 30cとが結合さ れる。  Therefore, in this embodiment, when the optical functional element 51 is in the transmissive state, the input optical fiber 30a and the output optical fiber 30c are coupled, and the input optical fiber 30a is coupled. The optical fiber 30d and the output optical fiber 30b are coupled. When the optical functional element 51 is in the reflective state, the input optical fiber 30a and the output optical fiber 30b are coupled, and the input optical fiber 30d and the output optical fiber are coupled. Combined with 30c.
[0061] なお、図示しないが、三角プリズム 62の間に光学機能素子 51を挟み込む代わりに 、 2つの三角プリズム 62の間に隙間を設けておき、この隙間に両面が鏡面となった可 動ミラー 26を出し入れするようにしてもょ 、。  [0061] Although not shown, instead of sandwiching the optical functional element 51 between the triangular prisms 62, a gap is provided between the two triangular prisms 62, and a movable mirror in which both surfaces are mirror surfaces. Try to put 26 in and out.
[0062] なお、上記各実施例では、 4本の光ファイバの結合関係を切り替えるようにしたが、 光ファイバの本数は 3本であってもよい。例えば、上記いずれかの実施例において入 力用光ファイバ又は出力用光ファイバを 1本だけ省略して光ファイバを 3本にすれば 、出力先又は入力元を切り替え可能な I X 2光スィッチとして用いることができる。また 、本発明の光スィッチの構成から明らかなように、光ファイバを 5本以上にしてもよい。  [0062] In the above embodiments, the coupling relationship of the four optical fibers is switched. However, the number of optical fibers may be three. For example, in one of the above embodiments, if only one input optical fiber or output optical fiber is omitted and the number of optical fibers is three, the output destination or the input source can be switched as an IX 2 optical switch. be able to. Further, as is apparent from the configuration of the optical switch of the present invention, the number of optical fibers may be five or more.
[0063] また、上記各実施例では、固定ミラー 25は、反射面 36a、 36bが平面 38と 45度の 角度をなすように配置されていた力 固定ミラー 51は光ファイバ 30a〜30dの配置さ れて 、る平面に垂直な軸の回りに傾 ヽて 、てもよ 、。固定ミラー 51が傾 ヽて 、ても、 出力用の光ファイバに戻る主軸光線の方向は入力用光ファイバから出射される主軸 光線の方向と平行となり、実施例 1〜4では、主軸光線の光路が交差していれば、そ こで光を反射させることにより光路を入れ替えることができる力もである。また、実施例 5では、主軸光線の光路が逆向きで平行となっていれば、そこで光を回帰反射させる ことにより光路を入れ替えることができる。  [0063] In each of the above embodiments, the fixed mirror 25 is arranged such that the reflecting surfaces 36a and 36b form an angle of 45 degrees with the plane 38. The fixed mirror 51 is arranged with the optical fibers 30a to 30d. Lean around an axis that is perpendicular to the plane. Even if the fixed mirror 51 is tilted, the direction of the principal ray returning to the output optical fiber is parallel to the direction of the principal ray emitted from the input optical fiber. In Examples 1 to 4, the optical path of the principal ray If they intersect, the light can be switched by reflecting the light. Further, in Example 5, if the optical path of the principal axis light beam is in the opposite direction and parallel, the light path can be switched by retroreflecting the light there.

Claims

請求の範囲 The scope of the claims
[1] 同一平面上において互いに平行に配置された、合計で 3本以上の光入力部及び光 出力部を備え、互いに光を伝送する光入力部と光出力部の光結合の組み合わせを 変更することによって光路切換えを行なう光スィッチであって、  [1] A total of three or more light input units and light output units arranged in parallel to each other on the same plane, and changing the combination of optical coupling of the light input unit and the light output unit that transmit light to each other An optical switch that switches the optical path by
前記平面に垂直な方向から見て互いに直交するように配置された 2つの反射面を 有し、前記光入力部及び光出力部に対向する位置に配置された固定ミラーと、 前記光入力部から出射され前記固定ミラーで反射して前記光出力部へ入射する光 の、光出力部への戻り先を切り換えるための光路切換手段と、  Two reflecting surfaces arranged so as to be orthogonal to each other when viewed from a direction perpendicular to the plane, a fixed mirror arranged at a position facing the light input unit and the light output unit, and from the light input unit Optical path switching means for switching the return destination of the light emitted and reflected by the fixed mirror and incident on the light output unit to the light output unit;
を備えた光スィッチ。  Light switch with
[2] 前記光路切換手段は、光を反射させることによって光出力部への戻り先を切り替える ものであることを特徴とする、請求項 1に記載の光スィッチ。  [2] The optical switch according to [1], wherein the optical path switching means switches a return destination to the light output unit by reflecting light.
[3] 前記光路切換手段が機能していないとき、前記光入力部から出射され前記固定ミラ 一で反射し前記光出力部に入射する主軸光線の光路が交差していることを特徴とす る、請求項 1に記載の光スィッチ。 [3] When the optical path switching means is not functioning, the optical paths of principal axis rays that are emitted from the light input section and reflected by the fixed mirror and incident on the light output section cross each other. The optical switch according to claim 1.
[4] 前記光路切換手段は、両面が光反射面となった可動ミラーと、前記可動ミラーを前記 主軸光線の光路の交差位置に出し入れするためのァクチユエータとからなることを特 徴とする、請求項 3に記載の光スィッチ。 [4] The optical path switching means includes: a movable mirror whose both surfaces are light reflecting surfaces; and an actuator for moving the movable mirror in and out of an intersection position of the optical path of the principal axis light beam. Item 4. The optical switch according to item 3.
[5] 前記光路切換手段は、前記主軸光線の光路の交差位置に配置された、光の透過と 反射を切り換えることができる光学機能素子であることを特徴とする、請求項 3に記載 の光スィッチ。 [5] The light according to claim 3, wherein the optical path switching means is an optical functional element that is disposed at an intersection position of the optical path of the principal axis light beam and can switch between transmission and reflection of light. Switch.
[6] 前記光入力部及び前記光出力部の端面に対向させてレンズを設け、当該レンズの 光軸と前記光入力部及び前記光出力部の端部の光軸とがー致しないようにしたこと を特徴とする、請求項 3に記載の光スィッチ。  [6] A lens is provided opposite to the end surfaces of the light input portion and the light output portion so that the optical axis of the lens does not match the optical axes of the end portions of the light input portion and the light output portion. The optical switch according to claim 3, wherein
PCT/JP2005/016616 2004-09-10 2005-09-09 Optical switch WO2006028210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004263669A JP2006078837A (en) 2004-09-10 2004-09-10 Optical switch
JP2004-263669 2004-09-10

Publications (1)

Publication Number Publication Date
WO2006028210A1 true WO2006028210A1 (en) 2006-03-16

Family

ID=36036492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016616 WO2006028210A1 (en) 2004-09-10 2005-09-09 Optical switch

Country Status (2)

Country Link
JP (1) JP2006078837A (en)
WO (1) WO2006028210A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527418A (en) * 2008-07-11 2011-10-27 オプトポル・テクノロジー・スプウカ・アクツィイナ Spectral optical coherence tomography (SOCT)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173153B2 (en) * 2006-06-14 2013-03-27 日本電信電話株式会社 Electro-optic element
JP2009020167A (en) 2007-07-10 2009-01-29 Central Glass Co Ltd Light loss device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223779A (en) * 1998-02-05 1999-08-17 Mitsubishi Electric Corp Optical switch
JP2000098270A (en) * 1998-07-23 2000-04-07 Mitsubishi Electric Corp Optical switch and optical path changeover device using optical switch
JP2001305376A (en) * 2000-02-17 2001-10-31 Nippon Sheet Glass Co Ltd Method for designing collimator array device and collimator array device manufactured by the method
JP2003195191A (en) * 2001-11-23 2003-07-09 Delta Electoronics Inc Variable optical attenuator
JP2004191848A (en) * 2002-12-13 2004-07-08 Seiko Instruments Inc Optical device and method of manufacturing the same
JP2005156884A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Optical switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223779A (en) * 1998-02-05 1999-08-17 Mitsubishi Electric Corp Optical switch
JP2000098270A (en) * 1998-07-23 2000-04-07 Mitsubishi Electric Corp Optical switch and optical path changeover device using optical switch
JP2001305376A (en) * 2000-02-17 2001-10-31 Nippon Sheet Glass Co Ltd Method for designing collimator array device and collimator array device manufactured by the method
JP2003195191A (en) * 2001-11-23 2003-07-09 Delta Electoronics Inc Variable optical attenuator
JP2004191848A (en) * 2002-12-13 2004-07-08 Seiko Instruments Inc Optical device and method of manufacturing the same
JP2005156884A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527418A (en) * 2008-07-11 2011-10-27 オプトポル・テクノロジー・スプウカ・アクツィイナ Spectral optical coherence tomography (SOCT)
US8786862B2 (en) 2008-07-11 2014-07-22 Optopol Technology SP. Z O.O Spectral optical coherence tomography

Also Published As

Publication number Publication date
JP2006078837A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP2001296449A (en) Angled optical connector
WO2011135877A1 (en) Optical element and optical device provided with same
US20120251043A1 (en) Optical device having an elastomeric waveguide switch body and related methods
US7027203B2 (en) Combination micromachine and optical device array
JP2005049742A (en) Variable optical attenuator
KR100393127B1 (en) Optical switch
EP1795941B1 (en) Optical switch
WO2006028210A1 (en) Optical switch
CN114114565A (en) Semiconductor laser collimating device
JP2000002843A (en) 2x2-OPTICAL FIBER SWITCH
US6961485B2 (en) Optical switch
JP4382661B2 (en) Reflective variable optical deflector and device using the same
KR100760082B1 (en) Optical switch
US6970615B1 (en) Compact high-stability optical switches
JP2001356283A (en) Movable reflecting mirror and optical switch using this movable reflecting mirror
WO2019038997A1 (en) Prism and optical module
JP2003241002A (en) Optical collimator and optical switch
JPS6295504A (en) Optical waveguide circuit
JP2006106302A (en) Optical switch
JP2001235691A (en) Optical switch
JP2006317706A (en) Optical switch
JP4433312B2 (en) Light switch
TW494252B (en) An optical switch with movable mirror mechanism
JPH11223779A (en) Optical switch
JP2003241239A (en) Optical switch optical system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase