WO2019038997A1 - Prism and optical module - Google Patents

Prism and optical module Download PDF

Info

Publication number
WO2019038997A1
WO2019038997A1 PCT/JP2018/017487 JP2018017487W WO2019038997A1 WO 2019038997 A1 WO2019038997 A1 WO 2019038997A1 JP 2018017487 W JP2018017487 W JP 2018017487W WO 2019038997 A1 WO2019038997 A1 WO 2019038997A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light
convex lens
optical module
present
Prior art date
Application number
PCT/JP2018/017487
Other languages
French (fr)
Japanese (ja)
Inventor
充 富田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2019038997A1 publication Critical patent/WO2019038997A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to a prism for optically coupling between optical elements and an optical module provided with the prism.
  • Patent Document 1 an optical module using a prism that optically couples optical elements is known.
  • An example of such an optical module is disclosed in Patent Document 1 below.
  • a prism is provided at one end of the optical waveguide circuit. The light emitted from the optical waveguide circuit passes through the inside of the prism and is received by the light receiving element.
  • a lens is provided on the exit surface of the prism, and the light is collected by the light receiving element.
  • Patent Document 2 discloses an optical module provided with a prism in which lenses are provided on both of the entrance surface and the exit surface.
  • alignment markers are provided on the prism and the light receiving element, respectively. Then, alignment is performed by detecting the position of the alignment marker by the imaging device and overlapping the alignment marker of the prism and the light receiving element.
  • An object of the present invention is to provide a prism and an optical module using the prism, which can be easily aligned and can be miniaturized.
  • the prism according to the present invention comprises an incident surface on which light is incident, a reflecting surface on which the light incident on the incident surface is reflected, and an emitting surface on which the light reflected on the reflecting surface is emitted.
  • a convex lens is provided, and the convex lens is characterized by being an asymmetric lens.
  • the curvature of the convex lens in the x direction and the curvature in the y direction is preferable that the curvature of the convex lens be different.
  • the prism according to the present invention light is totally reflected at the reflection surface.
  • the prism according to the present invention further includes opposing first and second side surfaces, and the incident surface, the reflecting surface, and the emitting surface respectively correspond to the first and second side surfaces.
  • a plurality of convex lenses are provided in a line in a direction in which the first side surface and the second side surface are connected.
  • a direction connecting the first side surface and the second side surface is the x direction
  • a direction orthogonal to the x direction is the y direction. It is preferable that the curvature of the convex lens in the direction is larger than the curvature of the convex lens in the y direction.
  • An optical module according to the present invention comprises a prism configured according to the present invention, an optical fiber for causing light to enter the prism, and a light receiving element for collecting light emitted from the prism. It is characterized by
  • FIG. 1 is a perspective view showing the appearance of a prism constituting an optical module according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the optical module according to the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing a reflection surface of a prism constituting the optical module according to the first embodiment of the present invention.
  • FIG. 4 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module according to the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing the main parts of an optical module according to a second embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing the main parts of an optical module according to a third embodiment of the present invention.
  • FIG. 7 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module of the comparative example.
  • FIG. 1 is a perspective view showing the appearance of a prism constituting an optical module according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the optical module according to the first embodiment of the present invention. 2 is a schematic cross-sectional view showing the main part of the optical module in the direction along the line AA of FIG.
  • the optical module 11 includes an optical fiber 12, a prism 1 and a light receiving element 13.
  • the prism 1 includes an entrance surface 2, a reflection surface 3, an exit surface 4 and an opposing surface 7.
  • the incident surface 2 is a surface on which light is incident.
  • the reflective surface 3 is a surface on which light incident from the incident surface 2 is reflected.
  • the emitting surface 4 is a surface from which the light reflected by the reflecting surface 3 is emitted.
  • the facing surface 7 is a surface facing the incident surface 2, and is connected to the reflecting surface 3 and the outgoing surface 4.
  • light is emitted from the optical fiber 12, and light enters the prism 1 through the incident surface 2.
  • the light entering the prism 1 through the incident surface 2 is reflected by the reflective surface 3.
  • the light reflected by the reflecting surface 3 is emitted to the outside of the prism 1 through the emitting surface 4.
  • the light emitted from the emission surface 4 is received by the light receiving element 13.
  • the prism 1 includes the first side 5 and the second side 6 facing each other.
  • the incident surface 2, the reflecting surface 3, the emitting surface 4, and the facing surface 7 described above connect the first side surface 5 and the second side surface 6.
  • the entrance surface 2 is connected to the reflection surface 3 and the exit surface 4, and connects the first side surface 5 and the second side surface 6.
  • the reflecting surface 3 is connected to the incident surface 2 and the opposing surface 7, and connects the first side surface 5 and the second side surface 6.
  • the exit surface 4 is connected to the entrance surface 2 and the facing surface 7, and connects the first side surface 5 and the second side surface 6.
  • the facing surface 7 is connected to the reflecting surface 3 and the emitting surface 4, and connects the first side surface 5 and the second side surface 6.
  • the reflective surface 3 is provided with a plurality of convex lenses 8.
  • the planar shape of the plurality of convex lenses 8 is elliptical.
  • the planar shape of the plurality of convex lenses 8 may not be elliptical, and the planar shape is not particularly limited.
  • the prism 1 of the present embodiment is a prism lens array.
  • the number of convex lenses 8 in the prism 1 is not particularly limited.
  • the prism 1 may be, for example, a prism configured by one convex lens 8.
  • the light incident on the prism 1 can be reflected by the convex lens 8, and the light can be condensed on the light receiving element 13.
  • FIG. 3 is a schematic plan view showing a reflection surface of a prism constituting the optical module according to the first embodiment of the present invention.
  • each of the plurality of convex lenses 8 is an asymmetrical lens and has a so-called anamorphic aspheric surface. More specifically, the curvature of the convex lens 8 in the x 1 direction shown in FIG. 3, and the curvature of the convex lens 8 in the y 1 direction are different.
  • x 1 direction in the present embodiment is a direction connecting the first side surface 5 and the second side 6 the reflection surface 3.
  • the y 1 direction is a direction orthogonal to the x 1 direction on the reflective surface 3.
  • the curvature of the convex lens 8 in an arbitrary direction and the curvature of the convex lens 8 in the direction orthogonal to the arbitrary direction may be different.
  • the plurality of convex lenses 8 are all configured by asymmetric lenses, but at least one of the plurality of convex lenses 8 may be configured by an asymmetric lens.
  • the convex lens 8 is provided on the reflection surface 3 of the prism 1 as described above. Therefore, the position of the lens 8 can be clearly viewed from the direction other than the light receiving element 13. Therefore, when the prism 1 is mounted, alignment can be performed easily and accurately, and the positional accuracy when mounting the prism 1 can be effectively improved. Further, in the present embodiment, since the position of the convex lens 8 can be clearly viewed, an alignment marker may not be additionally provided to the emission surface 4 or the like. Therefore, in the prism 1 and the light module 11, the number of parts can be reduced.
  • the optical fiber 12 is directly connected to the incident surface 2 of the prism 1.
  • the optical fiber 12 can be brought close to the incident surface 2. Therefore, the optical module 11 can be miniaturized.
  • the convex lens 8 is provided on the reflection surface 3 of the prism 1 and the convex lens 8 is not provided on the emission surface 4, the height of the optical module 11 can be reduced.
  • the optical module 11 can be miniaturized and reduced in height also from this point of view. .
  • the convex lens 8 is configured by an asymmetric lens. Therefore, in the optical module 11, light can be focused on the light receiving element 13 with high accuracy. This will be described in more detail below with reference to FIGS. 4 and 7.
  • FIG. 4 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module according to the first embodiment of the present invention.
  • FIG. 7 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module of the comparative example. Note that FIG. 4 shows a state in which light is received by the light receiving element 13 when the axially asymmetric convex lens 8 in the present embodiment described above is used. Further, FIG. 7 shows a state in which light is received by the light receiving element 13 when an axially symmetrical convex lens is used as a comparative example.
  • the present embodiment uses a convex lens 8 in the axial asymmetry, in the x 2 direction and the y 2 direction, it is possible to control the reflection direction of light independently. Therefore, as shown in FIG. 4, the light can be collected on the light receiving element 13 with high accuracy.
  • the curvature of the convex lens 8 in the x 1 direction is larger than the curvature of the convex lens 8 in the y 1 direction. Therefore, when the dimension in the x 1 direction of the reflecting surface 3 are the same, as compared with the case convex lens 8 is spherical, more can be provided even more convex lens 8. Further, when the number of the convex lens 8 is the same, it is possible to further reduced the size of the x 1 direction of the reflecting surface 3, can be further miniaturized.
  • the light be totally reflected at the reflection surface 3. In this case, light can be condensed on the light receiving element 13 more efficiently.
  • the convex lens 8 is preferably made of glass. In this case, higher optical properties can be obtained, and higher durability can be obtained.
  • SiO 2 -B 2 O 3 -RO (R is Mg, Ca, Sr or Ba) based glass
  • SiO 2 -B 2 O 3 -R ′ 2 O (R ′ is Li, Na or K ) System glass
  • SiO 2 -B 2 O 3 -RO-R ' 2 O (R' is Li, Na or K) system glass
  • SnO-P 2 O 5 system glass TeO 2 system glass or Bi 2 O 3 system Glass or the like
  • FIG. 5 is a schematic cross-sectional view showing an optical module according to a second embodiment of the present invention.
  • the facing surface 7 is not provided.
  • the reflecting surface 3 and the emitting surface 4 are directly connected.
  • the planar shape of the prism 22 is substantially triangular. The other points are the same as in the first embodiment.
  • the convex lens 8 is provided on the reflecting surface 3 and the convex lens 8 is an asymmetric lens. Therefore, when the prism 22 is mounted, alignment can be performed easily and accurately. In addition, since the position of the convex lens 8 can be clearly viewed, it is not necessary to add an alignment marker to the emission surface 4 or the like. Therefore, in the prism 22 and the optical module 21, the number of parts can be reduced. In addition, the optical module 21 can be miniaturized and reduced in height.
  • the prism 22 may not have the facing surface 7, and the reflecting surface 3 and the light emitting surface 4 may be directly connected. In this case, the height of the prism 22 and the optical module 21 can be further reduced.
  • a jig for position adjustment not shown is provided in the case of having the opposing surface 7 as in the first embodiment. It is possible to adjust the position by pressing the prism 1 to a position, etc., and optical axis adjustment at the time of mounting can be performed more easily.
  • FIG. 6 is a schematic cross-sectional view showing an optical module according to a third embodiment of the present invention. As shown in FIG. 6, in the optical module 31, the exit surface 4 of the prism 32 is connected to the light receiving element 13. The other points are the same as in the first embodiment.
  • the convex lens 8 is provided on the reflection surface 3, and the convex lens 8 is the asymmetric convex lens 8. Therefore, when the prism 32 is mounted, alignment can be performed easily and accurately. In addition, since the position of the convex lens 8 can be clearly viewed, it is not necessary to add an alignment mark to the emission surface 4 or the like. Therefore, in the prism 32 and the optical module 31, the number of parts can be reduced. In addition, the optical module 31 can be miniaturized and reduced in height.
  • the exit surface 4 of the prism 32 may be directly connected to the light receiving element 13. In this case, the height of the optical module 31 can be further reduced.
  • Incident surface 3 Reflective surface 4: Emitting surface 5, 6: First and second side surface 7: Opposite surface 8: Convex lens 11, 21, 31: Optical module 12: Optical fiber 13 ...Light receiving element

Abstract

Provided is a prism whereby alignment can be easily performed, and size reduction can be achieved. A prism 1 is characterized by being provided with: an incident surface 2 which light enters; a reflecting surface 3 on which light having entered the incident surface 2 is reflected; and an outgoing surface 4 from which light having been reflected by the reflecting surface 3 outgoes. The prism is also characterized in that: the reflecting surface 3 is provided with a convex lens 8; and the convex lens 8 is an asymmetric lens.

Description

プリズム及び光モジュールPrism and light module
 本発明は、光学素子間を光学的に結合するプリズム及び該プリズムを備える光モジュールに関する。 The present invention relates to a prism for optically coupling between optical elements and an optical module provided with the prism.
 従来、光学素子間を光学的に結合するプリズムを用いた光モジュールが知られている。このような光モジュールの一例が、下記の特許文献1に開示されている。特許文献1の光モジュールでは、光導波回路の一端にプリズムが設けられている。光導波回路から出射された光は、プリズム内を通って、受光素子で受光される。特許文献1では、プリズムの出射面にレンズが設けられており、それによって受光素子に集光されている。 Conventionally, an optical module using a prism that optically couples optical elements is known. An example of such an optical module is disclosed in Patent Document 1 below. In the optical module of Patent Document 1, a prism is provided at one end of the optical waveguide circuit. The light emitted from the optical waveguide circuit passes through the inside of the prism and is received by the light receiving element. In Patent Document 1, a lens is provided on the exit surface of the prism, and the light is collected by the light receiving element.
 また、下記の特許文献2では、入射面及び出射面の双方にレンズが設けられたプリズムを備える光モジュールが開示されている。特許文献2では、プリズム及び受光素子に、それぞれ、アライメント用マーカが設けられている。そして、撮像装置によってアライメント用マーカの位置を検出し、プリズム及び受光素子のアライメント用マーカを重ね合わせることにより、調芯がなされている。 Further, Patent Document 2 below discloses an optical module provided with a prism in which lenses are provided on both of the entrance surface and the exit surface. In Patent Document 2, alignment markers are provided on the prism and the light receiving element, respectively. Then, alignment is performed by detecting the position of the alignment marker by the imaging device and overlapping the alignment marker of the prism and the light receiving element.
特開2010-164856号公報Unexamined-Japanese-Patent No. 2010-164856 特開2014-137410号公報JP, 2014-137410, A
 しかしながら、特許文献1の光モジュールでは、受光素子側以外からはレンズ曲面が視認できないため、実装時においてレンズによりアライメント(位置合わせ)できないという問題があった。また、特許文献2の光モジュールでは、レンズとアライメント用マーカ間における位置精度誤差が累積することがあった。さらに、アライメント用マーカを追加で構造付与しなければならないため、低コスト化や小型化が難しいという問題があった。 However, in the optical module of Patent Document 1, there is a problem that the lens can not be aligned (aligned) at the time of mounting since the lens curved surface can not be visually recognized except from the light receiving element side. Further, in the optical module of Patent Document 2, positional accuracy errors between the lens and the alignment marker sometimes accumulate. Furthermore, there is a problem that cost reduction and miniaturization are difficult because an alignment marker needs to be added and structured.
 本発明の目的は、容易にアライメントすることができ、小型化を図ることを可能とする、プリズム及び該プリズムを用いた光モジュールを提供することにある。 An object of the present invention is to provide a prism and an optical module using the prism, which can be easily aligned and can be miniaturized.
 本発明に係るプリズムは、光が入射する入射面と、前記入射面で入射した光が反射する反射面と、前記反射面で反射した光が出射する出射面と、を備え、前記反射面に凸レンズが設けられており、前記凸レンズが、非対称のレンズであることを特徴としている。 The prism according to the present invention comprises an incident surface on which light is incident, a reflecting surface on which the light incident on the incident surface is reflected, and an emitting surface on which the light reflected on the reflecting surface is emitted. A convex lens is provided, and the convex lens is characterized by being an asymmetric lens.
 本発明に係るプリズムは、前記反射面において、任意の方向をx方向とし、該x方向に直交する方向をy方向としたときに、前記x方向における前記凸レンズの曲率と、前記y方向における前記凸レンズの曲率とが異なっていることが好ましい。 In the prism according to the present invention, when an arbitrary direction is the x direction and a direction orthogonal to the x direction is the y direction on the reflection surface, the curvature of the convex lens in the x direction and the curvature in the y direction It is preferable that the curvature of the convex lens be different.
 本発明に係るプリズムは、前記反射面において、光が全反射することが好ましい。 Preferably, in the prism according to the present invention, light is totally reflected at the reflection surface.
 本発明に係るプリズムは、対向し合う第1の側面及び第2の側面をさらに備え、前記入射面、前記反射面及び前記出射面が、それぞれ、前記第1の側面及び前記第2の側面を結んでおり、前記第1の側面及び前記第2の側面を結ぶ方向において、前記凸レンズが一列に複数設けられていることが好ましい。 The prism according to the present invention further includes opposing first and second side surfaces, and the incident surface, the reflecting surface, and the emitting surface respectively correspond to the first and second side surfaces. Preferably, a plurality of convex lenses are provided in a line in a direction in which the first side surface and the second side surface are connected.
 本発明に係るプリズムは、前記反射面において、前記第1の側面及び前記第2の側面を結ぶ方向を前記x方向とし、前記x方向と直交する方向を前記y方向としたときに、前記x方向における前記凸レンズの曲率が、前記y方向における前記凸レンズの曲率よりも大きいことが好ましい。 In the prism according to the present invention, in the reflection surface, a direction connecting the first side surface and the second side surface is the x direction, and a direction orthogonal to the x direction is the y direction. It is preferable that the curvature of the convex lens in the direction is larger than the curvature of the convex lens in the y direction.
 本発明に係る光モジュールは、本発明に従って構成されるプリズムと、前記プリズムに光を入射させるための光ファイバと、前記プリズムから出射された光を集光するための受光素子と、を備えることを特徴としている。 An optical module according to the present invention comprises a prism configured according to the present invention, an optical fiber for causing light to enter the prism, and a light receiving element for collecting light emitted from the prism. It is characterized by
 本発明によれば、容易にアライメントすることができ、小型化を図ることを可能とする、プリズムを提供することができる。 According to the present invention, it is possible to provide a prism which can be easily aligned and which can be miniaturized.
図1は、本発明の第1の実施形態に係る光モジュールを構成するプリズムの外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of a prism constituting an optical module according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る光モジュールの要部を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the main parts of the optical module according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る光モジュールを構成するプリズムの反射面を示す模式的平面図である。FIG. 3 is a schematic plan view showing a reflection surface of a prism constituting the optical module according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態に係る光モジュールを構成する受光素子で光を受光する状態を示す模式図である。FIG. 4 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module according to the first embodiment of the present invention. 図5は、本発明の第2の実施形態に係る光モジュールの要部を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing the main parts of an optical module according to a second embodiment of the present invention. 図6は、本発明の第3の実施形態に係る光モジュールの要部を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing the main parts of an optical module according to a third embodiment of the present invention. 図7は、比較例の光モジュールを構成する受光素子で光を受光する状態を示す模式図である。FIG. 7 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module of the comparative example.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the embodiments. In each drawing, members having substantially the same functions may be referred to by the same reference numerals.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る光モジュールを構成するプリズムの外観を示す斜視図である。図2は、本発明の第1の実施形態に係る光モジュールの要部を示す模式的断面図である。なお、図2は、図1のA-A線に沿う方向における光モジュールの要部を示す模式的断面図である。
First Embodiment
FIG. 1 is a perspective view showing the appearance of a prism constituting an optical module according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing the main parts of the optical module according to the first embodiment of the present invention. 2 is a schematic cross-sectional view showing the main part of the optical module in the direction along the line AA of FIG.
 図2に示すように、光モジュール11は、光ファイバ12、プリズム1及び受光素子13を備える。プリズム1は、入射面2、反射面3、出射面4及び対向面7を備える。入射面2は、光が入射する面である。反射面3は、入射面2から入射した光が反射する面である。また、出射面4は、反射面3で反射した光が出射する面である。対向面7は、入射面2と対向する面であり、反射面3及び出射面4と接続されている。 As shown in FIG. 2, the optical module 11 includes an optical fiber 12, a prism 1 and a light receiving element 13. The prism 1 includes an entrance surface 2, a reflection surface 3, an exit surface 4 and an opposing surface 7. The incident surface 2 is a surface on which light is incident. The reflective surface 3 is a surface on which light incident from the incident surface 2 is reflected. Further, the emitting surface 4 is a surface from which the light reflected by the reflecting surface 3 is emitted. The facing surface 7 is a surface facing the incident surface 2, and is connected to the reflecting surface 3 and the outgoing surface 4.
 本実施形態では、光ファイバ12から光が出射され、入射面2を通ってプリズム1内に光が入射する。入射面2を通ってプリズム1内に入射した光は、反射面3で反射する。反射面3で反射した光は、出射面4を通ってプリズム1の外に出射される。そして、出射面4から出射された光は、受光素子13で受光される。 In the present embodiment, light is emitted from the optical fiber 12, and light enters the prism 1 through the incident surface 2. The light entering the prism 1 through the incident surface 2 is reflected by the reflective surface 3. The light reflected by the reflecting surface 3 is emitted to the outside of the prism 1 through the emitting surface 4. The light emitted from the emission surface 4 is received by the light receiving element 13.
 図1に示すように、プリズム1は、対向し合う第1の側面5及び第2の側面6を備える。上述の入射面2、反射面3、出射面4及び対向面7は、この第1の側面5及び第2の側面6を結んでいる。より具体的に、入射面2は、反射面3及び出射面4と接続されており、第1の側面5及び第2の側面6を結んでいる。反射面3は、入射面2及び対向面7と接続されており、第1の側面5及び第2の側面6を結んでいる。出射面4は、入射面2及び対向面7と接続されており、第1の側面5及び第2の側面6を結んでいる。そして、対向面7は、反射面3及び出射面4と接続されており、第1の側面5及び第2の側面6を結んでいる。 As shown in FIG. 1, the prism 1 includes the first side 5 and the second side 6 facing each other. The incident surface 2, the reflecting surface 3, the emitting surface 4, and the facing surface 7 described above connect the first side surface 5 and the second side surface 6. More specifically, the entrance surface 2 is connected to the reflection surface 3 and the exit surface 4, and connects the first side surface 5 and the second side surface 6. The reflecting surface 3 is connected to the incident surface 2 and the opposing surface 7, and connects the first side surface 5 and the second side surface 6. The exit surface 4 is connected to the entrance surface 2 and the facing surface 7, and connects the first side surface 5 and the second side surface 6. The facing surface 7 is connected to the reflecting surface 3 and the emitting surface 4, and connects the first side surface 5 and the second side surface 6.
 反射面3には、複数の凸レンズ8が設けられている。本実施形態において、複数の凸レンズ8の平面形状は、楕円状である。もっとも、複数の凸レンズ8の平面形状は、楕円状でなくともよく、平面形状は特に限定されない。 The reflective surface 3 is provided with a plurality of convex lenses 8. In the present embodiment, the planar shape of the plurality of convex lenses 8 is elliptical. However, the planar shape of the plurality of convex lenses 8 may not be elliptical, and the planar shape is not particularly limited.
 また、複数の凸レンズ8は、反射面3において、第1の側面5及び第2の側面6を結ぶ方向に一列に設けられている。それによって、プリズムレンズアレイが構成されている。従って、本実施形態のプリズム1は、プリズムレンズアレイである。なお、プリズム1において、凸レンズ8の個数は、特に限定されない。プリズム1は、例えば、1個の凸レンズ8により構成されるプリズムであってもよい。本実施形態においては、凸レンズ8により、プリズム1に入射した光を反射させ、受光素子13に光を集光させることができる。 In addition, the plurality of convex lenses 8 are provided in a line in the direction in which the first side surface 5 and the second side surface 6 are connected in the reflection surface 3. Thereby, a prism lens array is configured. Therefore, the prism 1 of the present embodiment is a prism lens array. The number of convex lenses 8 in the prism 1 is not particularly limited. The prism 1 may be, for example, a prism configured by one convex lens 8. In the present embodiment, the light incident on the prism 1 can be reflected by the convex lens 8, and the light can be condensed on the light receiving element 13.
 図3は、本発明の第1の実施形態に係る光モジュールを構成するプリズムの反射面を示す模式的平面図である。図3に示すように、複数の凸レンズ8は、いずれも非対称のレンズであり、いわゆるアナモルフィック非球面を有している。より具体的には、図3に示すx方向における凸レンズ8の曲率と、y方向における凸レンズ8の曲率とが異なっている。なお、本実施形態においてx方向は、反射面3において第1の側面5及び第2の側面6を結ぶ方向である。y方向は、反射面3においてx方向に直交する方向である。もっとも、本発明においては、反射面3において、任意の方向における凸レンズ8の曲率と、上記任意の方向に直交する方向における凸レンズ8の曲率が異なっていればよい。また、本実施形態では、複数の凸レンズ8が、全て非対称のレンズにより構成されているが、複数の凸レンズ8のうち少なくとも1つの凸レンズ8が非対称のレンズにより構成されていればよい。 FIG. 3 is a schematic plan view showing a reflection surface of a prism constituting the optical module according to the first embodiment of the present invention. As shown in FIG. 3, each of the plurality of convex lenses 8 is an asymmetrical lens and has a so-called anamorphic aspheric surface. More specifically, the curvature of the convex lens 8 in the x 1 direction shown in FIG. 3, and the curvature of the convex lens 8 in the y 1 direction are different. Incidentally, x 1 direction in the present embodiment is a direction connecting the first side surface 5 and the second side 6 the reflection surface 3. The y 1 direction is a direction orthogonal to the x 1 direction on the reflective surface 3. However, in the present invention, in the reflecting surface 3, the curvature of the convex lens 8 in an arbitrary direction and the curvature of the convex lens 8 in the direction orthogonal to the arbitrary direction may be different. Further, in the present embodiment, the plurality of convex lenses 8 are all configured by asymmetric lenses, but at least one of the plurality of convex lenses 8 may be configured by an asymmetric lens.
 本実施形態においては、上記のようにプリズム1の反射面3に凸レンズ8が設けられている。そのため、受光素子13以外の方向から、レンズ8の位置を明確に視認することができる。従って、プリズム1を実装する際に、容易にかつ精度よくアライメントすることができ、プリズム1を実装する際の位置精度を効果的に高めることができる。また、本実施形態では、凸レンズ8の位置を明確に視認することができるので、出射面4などにアライメント用マーカを追加で構造付与しなくともよい。従って、プリズム1や光モジュール11においては、部品点数を削減することもできる。 In the present embodiment, the convex lens 8 is provided on the reflection surface 3 of the prism 1 as described above. Therefore, the position of the lens 8 can be clearly viewed from the direction other than the light receiving element 13. Therefore, when the prism 1 is mounted, alignment can be performed easily and accurately, and the positional accuracy when mounting the prism 1 can be effectively improved. Further, in the present embodiment, since the position of the convex lens 8 can be clearly viewed, an alignment marker may not be additionally provided to the emission surface 4 or the like. Therefore, in the prism 1 and the light module 11, the number of parts can be reduced.
 本実施形態においては、プリズム1の入射面2に光ファイバ12が直接接続されている。本実施形態においては、プリズム1の反射面3に凸レンズ8が設けられており、入射面2に凸レンズ8が設けられていないので、光ファイバ12を入射面2に近づけることができる。そのため、光モジュール11の小型化を図ることができる。 In the present embodiment, the optical fiber 12 is directly connected to the incident surface 2 of the prism 1. In the present embodiment, since the convex lens 8 is provided on the reflection surface 3 of the prism 1 and the convex lens 8 is not provided on the incident surface 2, the optical fiber 12 can be brought close to the incident surface 2. Therefore, the optical module 11 can be miniaturized.
 本実施形態においては、プリズム1の反射面3に凸レンズ8が設けられており、出射面4に凸レンズ8が設けられていないので、光モジュール11の低背化を図ることもできる。 In the present embodiment, since the convex lens 8 is provided on the reflection surface 3 of the prism 1 and the convex lens 8 is not provided on the emission surface 4, the height of the optical module 11 can be reduced.
 なお、本実施形態では、上述したように出射面4などにアライメント用マーカを追加で構造付与しなくてもよいので、この点からも光モジュール11の小型化や低背化を図ることができる。 In the present embodiment, as described above, since it is not necessary to add an alignment marker to the emission surface 4 or the like to provide a structure, the optical module 11 can be miniaturized and reduced in height also from this point of view. .
 また、本実施形態では、上述したように、凸レンズ8が非対称のレンズにより構成されている。そのため、光モジュール11では、受光素子13に精度よく光を集光することができる。これを、以下、図4及び図7を参照してより詳細に説明する。 Further, in the present embodiment, as described above, the convex lens 8 is configured by an asymmetric lens. Therefore, in the optical module 11, light can be focused on the light receiving element 13 with high accuracy. This will be described in more detail below with reference to FIGS. 4 and 7.
 図4は、本発明の第1の実施形態に係る光モジュールを構成する受光素子で光を受光する状態を示す模式図である。図7は、比較例の光モジュールを構成する受光素子で光を受光する状態を示す模式図である。なお、図4では、上述した本実施形態における軸非対称の凸レンズ8を用いた場合において、受光素子13で光を受光する状態を示している。また、図7では、比較例として軸対称の凸レンズを用いた場合において、受光素子13で光を受光する状態を示している。 FIG. 4 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module according to the first embodiment of the present invention. FIG. 7 is a schematic view showing a state in which light is received by the light receiving element constituting the optical module of the comparative example. Note that FIG. 4 shows a state in which light is received by the light receiving element 13 when the axially asymmetric convex lens 8 in the present embodiment described above is used. Further, FIG. 7 shows a state in which light is received by the light receiving element 13 when an axially symmetrical convex lens is used as a comparative example.
 比較例においては、軸対称の凸レンズを用いているので、x方向及びy方向において、独立に光の反射方向を制御することができない。そのため、図7に示すように、受光素子13に精度よく集光することができない。 In the comparative example, because of the use of the axisymmetric lens, x in the second direction and y 2 direction, it is impossible to control the reflection direction of light independently. Therefore, as shown in FIG. 7, the light can not be collected on the light receiving element 13 with high accuracy.
 一方、本実施形態においては、軸非対称の凸レンズ8を用いているので、x方向及びy方向において、独立に光の反射方向を制御することができる。そのため、図4に示すように、受光素子13に精度よく集光することができる。 On the other hand, in the present embodiment uses a convex lens 8 in the axial asymmetry, in the x 2 direction and the y 2 direction, it is possible to control the reflection direction of light independently. Therefore, as shown in FIG. 4, the light can be collected on the light receiving element 13 with high accuracy.
 なお、図3に示すように、本実施形態においては、x方向における凸レンズ8の曲率が、y方向における凸レンズ8の曲率よりも大きい。そのため、反射面3のx方向における寸法が同じ場合、凸レンズ8が球面である場合と比較して、より一層多くの凸レンズ8を設けることができる。また、凸レンズ8の個数が同じである場合、反射面3のx方向における寸法をより一層小さくすることができ、より一層の小型化を図ることができる。 As shown in FIG. 3, in this embodiment, the curvature of the convex lens 8 in the x 1 direction is larger than the curvature of the convex lens 8 in the y 1 direction. Therefore, when the dimension in the x 1 direction of the reflecting surface 3 are the same, as compared with the case convex lens 8 is spherical, more can be provided even more convex lens 8. Further, when the number of the convex lens 8 is the same, it is possible to further reduced the size of the x 1 direction of the reflecting surface 3, can be further miniaturized.
 また、本実施形態においては、反射面3において、光が全反射することが好ましい。この場合、受光素子13に光をより一層効率的に集光させることができる。 Further, in the present embodiment, it is preferable that the light be totally reflected at the reflection surface 3. In this case, light can be condensed on the light receiving element 13 more efficiently.
 なお、本実施形態において、凸レンズ8は、ガラスにより構成されていることが好ましい。この場合、より一層高い光学特性を得ることができ、より一層高い耐久性を得ることができる。 In the present embodiment, the convex lens 8 is preferably made of glass. In this case, higher optical properties can be obtained, and higher durability can be obtained.
 ガラスとしては、例えば、SiO-B-RO(RはMg、Ca、SrまたはBa)系ガラス、SiO-B-R’O(R’はLi、NaまたはK)系ガラス、SiO-B-RO-R’O(R’はLi、NaまたはK)系ガラス、SnO-P系ガラス、TeO系ガラスまたはBi系ガラス等を用いることができる。 As glass, for example, SiO 2 -B 2 O 3 -RO (R is Mg, Ca, Sr or Ba) based glass, SiO 2 -B 2 O 3 -R ′ 2 O (R ′ is Li, Na or K ) System glass, SiO 2 -B 2 O 3 -RO-R ' 2 O (R' is Li, Na or K) system glass, SnO-P 2 O 5 system glass, TeO 2 system glass or Bi 2 O 3 system Glass or the like can be used.
 (第2の実施形態)
 図5は、本発明の第2の実施形態に係る光モジュールを示す模式的断面図である。図5に示すように、光モジュール21を構成するプリズム22においては、対向面7が設けられていない。プリズム22においては、反射面3及び出射面4が直接的に接続されている。なお、プリズム22の平面形状は、略三角形である。その他の点は、第1の実施形態と同様である。
Second Embodiment
FIG. 5 is a schematic cross-sectional view showing an optical module according to a second embodiment of the present invention. As shown in FIG. 5, in the prism 22 constituting the optical module 21, the facing surface 7 is not provided. In the prism 22, the reflecting surface 3 and the emitting surface 4 are directly connected. The planar shape of the prism 22 is substantially triangular. The other points are the same as in the first embodiment.
 第2の実施形態においても、凸レンズ8が反射面3に設けられており、凸レンズ8が非対称のレンズである。そのため、プリズム22を実装する際に、容易にかつ精度よくアライメントすることができる。また、凸レンズ8の位置を明確に視認することができるので、出射面4などにアライメント用マーカを追加で構造付与しなくともよい。従って、プリズム22や光モジュール21においては、部品点数を削減することができる。また、光モジュール21の小型化や低背化を図ることもできる。 Also in the second embodiment, the convex lens 8 is provided on the reflecting surface 3 and the convex lens 8 is an asymmetric lens. Therefore, when the prism 22 is mounted, alignment can be performed easily and accurately. In addition, since the position of the convex lens 8 can be clearly viewed, it is not necessary to add an alignment marker to the emission surface 4 or the like. Therefore, in the prism 22 and the optical module 21, the number of parts can be reduced. In addition, the optical module 21 can be miniaturized and reduced in height.
 また、第2の実施形態のように、プリズム22は、対向面7を有していなくともよく、反射面3及び出射面4が直接、接続されていてもよい。この場合、プリズム22や光モジュール21のより一層の低背化を図ることができる。もっとも、第1の実施形態のように対向面7を有している場合は、反射面3と出射面4とを結ぶ方向に沿う対向面7を有することにより、図示しない位置調整用の治具等にプリズム1を押し当てて位置調整を行うことが可能となり、実装時の光軸調をより一層容易に行うことができる。 In addition, as in the second embodiment, the prism 22 may not have the facing surface 7, and the reflecting surface 3 and the light emitting surface 4 may be directly connected. In this case, the height of the prism 22 and the optical module 21 can be further reduced. However, in the case of having the opposing surface 7 as in the first embodiment, by providing the opposing surface 7 along the direction connecting the reflecting surface 3 and the emitting surface 4, a jig for position adjustment not shown is provided. It is possible to adjust the position by pressing the prism 1 to a position, etc., and optical axis adjustment at the time of mounting can be performed more easily.
 (第3の実施形態)
 図6は、本発明の第3の実施形態に係る光モジュールを示す模式的断面図である。図6に示すように、光モジュール31においては、プリズム32の出射面4が、受光素子13と接続されている。その他の点は、第1の実施形態と同様である。
Third Embodiment
FIG. 6 is a schematic cross-sectional view showing an optical module according to a third embodiment of the present invention. As shown in FIG. 6, in the optical module 31, the exit surface 4 of the prism 32 is connected to the light receiving element 13. The other points are the same as in the first embodiment.
 第3の実施形態においても、凸レンズ8が反射面3に設けられており、凸レンズ8が非対称の凸レンズ8である。そのため、そのため、プリズム32を実装する際に、容易にかつ精度よくアライメントすることができる。また、凸レンズ8の位置を明確に視認することができるので、出射面4などにアライメントマークを追加で構造付与しなくともよい。従って、プリズム32や光モジュール31においては、部品点数を削減することができる。また、光モジュール31の小型化や低背化を図ることもできる。 Also in the third embodiment, the convex lens 8 is provided on the reflection surface 3, and the convex lens 8 is the asymmetric convex lens 8. Therefore, when the prism 32 is mounted, alignment can be performed easily and accurately. In addition, since the position of the convex lens 8 can be clearly viewed, it is not necessary to add an alignment mark to the emission surface 4 or the like. Therefore, in the prism 32 and the optical module 31, the number of parts can be reduced. In addition, the optical module 31 can be miniaturized and reduced in height.
 また、第3の実施形態のように、プリズム32の出射面4が、受光素子13と直接接続されていてもよい。この場合、光モジュール31のより一層の低背化を図ることができる。 Further, as in the third embodiment, the exit surface 4 of the prism 32 may be directly connected to the light receiving element 13. In this case, the height of the optical module 31 can be further reduced.
1,22,32…プリズム
2…入射面
3…反射面
4…出射面
5,6…第1,第2の側面
7…対向面
8…凸レンズ
11,21,31…光モジュール
12…光ファイバ
13…受光素子
1, 2, 22,... Prism 2: Incident surface 3: Reflective surface 4: Emitting surface 5, 6: First and second side surface 7: Opposite surface 8: Convex lens 11, 21, 31: Optical module 12: Optical fiber 13 …Light receiving element

Claims (6)

  1.  光が入射する入射面と、
     前記入射面で入射した光が反射する反射面と、
     前記反射面で反射した光が出射する出射面と、
    を備え、
     前記反射面に凸レンズが設けられており、
     前記凸レンズが、非対称のレンズである、プリズム。
    An incident surface on which light is incident;
    A reflective surface on which the light incident on the incident surface is reflected,
    An emitting surface from which the light reflected by the reflecting surface is emitted;
    Equipped with
    A convex lens is provided on the reflecting surface,
    A prism wherein the convex lens is an asymmetrical lens.
  2.  前記反射面において、任意の方向をx方向とし、該x方向に直交する方向をy方向としたときに、
     前記x方向における前記凸レンズの曲率と、前記y方向における前記凸レンズの曲率とが異なっている、請求項1に記載のプリズム。
    In the reflecting surface, when an arbitrary direction is an x direction and a direction orthogonal to the x direction is an y direction,
    The prism according to claim 1, wherein the curvature of the convex lens in the x direction is different from the curvature of the convex lens in the y direction.
  3.  前記反射面において、光が全反射する、請求項1又は2に記載のプリズム。 The prism according to claim 1, wherein light is totally reflected at the reflection surface.
  4.  対向し合う第1の側面及び第2の側面をさらに備え、
     前記入射面、前記反射面及び前記出射面が、それぞれ、前記第1の側面及び前記第2の側面を結んでおり、
     前記第1の側面及び前記第2の側面を結ぶ方向において、前記凸レンズが一列に複数設けられている、請求項1~3のいずれか1項に記載のプリズム。
    It further comprises opposing first and second sides,
    The incident surface, the reflecting surface, and the emitting surface respectively connect the first side surface and the second side surface,
    The prism according to any one of claims 1 to 3, wherein a plurality of the convex lenses are provided in a line in a direction connecting the first side surface and the second side surface.
  5.  前記反射面において、前記第1の側面及び前記第2の側面を結ぶ方向を前記x方向とし、前記x方向と直交する方向を前記y方向としたときに、
     前記x方向における前記凸レンズの曲率が、前記y方向における前記凸レンズの曲率よりも大きい、請求項1~4のいずれか1項に記載のプリズム。
    In the reflecting surface, a direction connecting the first side surface and the second side surface is the x direction, and a direction orthogonal to the x direction is the y direction.
    The prism according to any one of claims 1 to 4, wherein the curvature of the convex lens in the x direction is larger than the curvature of the convex lens in the y direction.
  6.  請求項1~5のいずれか1項に記載のプリズムと、
     前記プリズムに光を入射させるための光ファイバと、
     前記プリズムから出射された光を集光するための受光素子と、
    を備える、光モジュール。
    A prism according to any one of claims 1 to 5;
    An optical fiber for causing light to enter the prism;
    A light receiving element for collecting light emitted from the prism;
    , Light module.
PCT/JP2018/017487 2017-08-25 2018-05-02 Prism and optical module WO2019038997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-161771 2017-08-25
JP2017161771A JP2019040062A (en) 2017-08-25 2017-08-25 Prism and optical module

Publications (1)

Publication Number Publication Date
WO2019038997A1 true WO2019038997A1 (en) 2019-02-28

Family

ID=65440013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017487 WO2019038997A1 (en) 2017-08-25 2018-05-02 Prism and optical module

Country Status (3)

Country Link
JP (1) JP2019040062A (en)
TW (1) TW201913154A (en)
WO (1) WO2019038997A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444897A (en) * 2019-08-30 2021-03-05 三星电机株式会社 Prism for optical imaging system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206415A (en) * 2015-04-22 2016-12-08 富士通オプティカルコンポーネンツ株式会社 Optical module and optical fiber assembly
JP2017090680A (en) * 2015-11-10 2017-05-25 富士通株式会社 Optical wiring connection structure and optical wiring connection method
WO2017130586A1 (en) * 2016-01-28 2017-08-03 ソニー株式会社 Optical connector and optical transmission module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203793A (en) * 2016-05-09 2017-11-16 住友電気工業株式会社 Electro-optic conversion module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206415A (en) * 2015-04-22 2016-12-08 富士通オプティカルコンポーネンツ株式会社 Optical module and optical fiber assembly
JP2017090680A (en) * 2015-11-10 2017-05-25 富士通株式会社 Optical wiring connection structure and optical wiring connection method
WO2017130586A1 (en) * 2016-01-28 2017-08-03 ソニー株式会社 Optical connector and optical transmission module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444897A (en) * 2019-08-30 2021-03-05 三星电机株式会社 Prism for optical imaging system

Also Published As

Publication number Publication date
JP2019040062A (en) 2019-03-14
TW201913154A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US7128477B2 (en) Optical transmitter and receiver module
US20160377821A1 (en) Optical connection of optical fibers to grating couplers
CN104977670B (en) Light connects construct
JP2009163213A (en) Optically coupled device and optical module having the same
JPWO2006001286A1 (en) Optical element, optical system and waveguide
WO2011135877A1 (en) Optical element and optical device provided with same
US9323004B2 (en) Optical device
US10386575B2 (en) Optical assembly and method for coupling a waveguide array to a photonic-integrated circuit
JP2009229996A (en) Lens array device and manufacturing method thereof
JP5935465B2 (en) Optical device
WO2019038997A1 (en) Prism and optical module
JP2007109923A (en) Photodetector and optical communication system using same
US11262504B2 (en) Optical connection apparatus
US20230168439A1 (en) Optical connector using thermal expansion to maintain alignment
EP3153905A2 (en) Image-forming optical component and optical system of surveying instrument
US7417806B2 (en) Lens with reference mounting surface
CN115427843A (en) Optical system
US8757898B2 (en) Optical coupling structure and array optical amplification module
TW201341878A (en) Optical receptacle and optical module provided with same
WO2016147378A1 (en) Optical system and optical element
JP3798408B2 (en) Optical monitor module
JP2009258154A (en) Optical transmission module and manufacturing method therefor
JP4127203B2 (en) Optical coupling structure and optical coupling device
JP2023161570A (en) Light device
WO2019039002A1 (en) Prism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847928

Country of ref document: EP

Kind code of ref document: A1