WO2006027918A1 - 脚式移動ロボットの脚体関節アシスト装置 - Google Patents

脚式移動ロボットの脚体関節アシスト装置 Download PDF

Info

Publication number
WO2006027918A1
WO2006027918A1 PCT/JP2005/014420 JP2005014420W WO2006027918A1 WO 2006027918 A1 WO2006027918 A1 WO 2006027918A1 JP 2005014420 W JP2005014420 W JP 2005014420W WO 2006027918 A1 WO2006027918 A1 WO 2006027918A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
electromagnetic
leg
joint
air chamber
Prior art date
Application number
PCT/JP2005/014420
Other languages
English (en)
French (fr)
Inventor
Toru Takenaka
Hiroshi Gomi
Kazushi Hamaya
Kazushi Akimoto
Katsushi Tanaka
Original Assignee
Honda Motor Co., Ltd.
Showa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd., Showa Corporation filed Critical Honda Motor Co., Ltd.
Priority to DE602005019451T priority Critical patent/DE602005019451D1/de
Priority to US11/573,922 priority patent/US20070210739A1/en
Priority to EP05768955A priority patent/EP1808276B1/en
Publication of WO2006027918A1 publication Critical patent/WO2006027918A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1641Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present invention relates to a leg joint assist device that generates an auxiliary driving force for assisting a joint actuator for driving a joint of a leg of a legged mobile robot such as a biped mobile robot. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-103480
  • a bipedal mobile robot has a cylinder in between two link members (thigh and crus) connected by knee joints of each leg.
  • a gas spring having two air chambers defined by a piston is interposed, and this gas spring assists the knee joint in parallel with the driving force of the knee joint actuator (electric motor that drives the knee joint).
  • Drive force is generated to reduce the burden on the knee joint actuator.
  • the cylinder and piston are connected to the thigh and crus so that the volume of both air chambers in the cylinder changes according to the bending and stretching movements of the legs at the knee joint.
  • the auxiliary driving force is elastically generated.
  • the two air chambers are connected via a gas flow passage having an electromagnetic on-off valve, and the gas spring generates an auxiliary driving force only when the electromagnetic on-off valve is closed, so that the electromagnetic spring
  • auxiliary driving force is generated only during a desired period when the robot moves.
  • a normal electromagnetic on-off valve is a normally open type or a normally closed type having a panel for biasing the valve body to a valve open position or a valve close position, and energization of a solenoid of the electromagnetic on-off valve is performed.
  • the valve In the shut-off state, the valve is held open or closed by the panel biasing force.
  • a normal electromagnetic on-off valve energizes the solenoid to generate a driving force (electromagnetic force) opposite to the urging force of the panel, and maintains the energized state to The valve body of the valve closing is held in the valve closing position or valve opening position against the urging force of the panel.
  • Patent Document 1 when the electromagnetic on-off valve is closed, the pressure difference between the two air chambers acts on the valve body of the electromagnetic on-off valve. For this reason, particularly when a normally open type electromagnetic on-off valve is used, the auxiliary driving force is generated in a period in which the pressure difference acts in the same direction as the panel urging force (valve opening direction). If the solenoid on / off valve is closed, the current to be applied to the solenoid increases and the power consumption of the solenoid on / off valve increases. In order to avoid this, it is conceivable to use a normally closed type electromagnetic on-off valve. In this case, however, the solenoid on-off valve solenoid is always open when the electromagnetic on-off valve does not generate auxiliary driving force.
  • the period during which auxiliary driving force is required is a period during a specific movement, such as when the robot is moving at high speed. If the solenoid valve is always energized during this period, the power consumption of the solenoid valve will increase.
  • the present invention has been made in view of the strong background, and is compensated by gas compression or expansion accompanying the movement of the leg when the electromagnetic on-off valve of the gas flow passage leading to the air chamber is closed.
  • An object of the present invention is to provide a leg joint assist device that can effectively reduce the power consumption of the electromagnetic on-off valve of the assist device with a simple configuration in the leg joint assist device that generates the assist driving force.
  • a first invention of a leg joint assist device for a legged mobile robot is a leg formed by connecting a plurality of link members from the upper body via a plurality of joints in order to achieve the object.
  • at least one of the joints of each leg is set as a specific joint and linked to the relative displacement movement between a pair of link members connected by the specific joint
  • a gas flow passage provided in communication with the air chamber so that the gas flows between the air chamber and the outside thereof, and the gas flow
  • An electromagnetic on-off valve provided in the passage so as to be openable and closable, and sealing the air chamber by closing the electromagnetic on-off valve during a predetermined period when the robot moves, and the air chamber in the sealed state
  • the elastic force generated by the gas due to the compression or expansion of the gas in the air chamber accompanying the change in volume of the gas is used as the auxiliary driving force for the specific joint, and the auxiliary driving force is the driving force of the joint actuator that drives the specific joint.
  • the electromagnetic on-off valve is opened during a period other than the predetermined period to place the air chamber in an unsealed state.
  • a leg joint assist device in which the maximum value of the elastic force generated by the indoor gas is at least smaller than the predetermined period (for example, the elastic force is substantially zero), wherein the electromagnetic on-off valve solenoid Solenoid valve with a self-holding function that switches the open / close state of the solenoid on / off valve by temporary energization of the solenoid valve, and holds the open / close state of the valve body after the switch in the energized stop state of the solenoid It is characterized by comprising.
  • the electromagnetic on-off valve is constituted by the electromagnetic valve having a self-holding function, the electromagnetic on-off valve can be opened and closed by temporarily energizing the solenoid. As a result, power consumption of the electromagnetic on-off valve can be reduced.
  • the self-holding function of the electromagnetic on-off valve can be realized by various known means.
  • the plunger connected to the valve body is held by a magnetic force such as a permanent magnet at the open position of the valve body or at the closed position, or the open position of the valve body in the recess formed in the plunger.
  • a magnetic force such as a permanent magnet at the open position of the valve body or at the closed position, or the open position of the valve body in the recess formed in the plunger.
  • examples include a means for locking the plunger in the closed position.
  • the pressure difference is substantially equal to the pressure difference at the start of the predetermined period.
  • the volume of the air chamber changes in conjunction with the relative displacement movement of the pair of link members so as to decrease, and the electromagnetic on-off valve has the pressure difference in the electromagnetic on-off valve during the predetermined period.
  • the gas flow passage is interposed in the valve body so as to act in the valve closing direction (second invention).
  • the pressure difference acts on the valve body of the electromagnetic on-off valve in the valve closing direction when the electromagnetic on-off valve is closed, so that the valve body is held in the valve closed state. Therefore, the mechanism can be omitted or the mechanism can be made small. As a result, the electromagnetic on-off valve The configuration can be small and simple. In addition, the current that should be temporarily energized to the solenoid during the closing operation of the electromagnetic on-off valve can be reduced, and the power consumption of the electromagnetic on-off valve can be effectively reduced. Since the pressure difference does not act on the valve body when the electromagnetic on-off valve is in the open state, a mechanism for holding the electromagnetic on-off valve in the open state may be small and simple.
  • the self-holding function for holding the electromagnetic on-off valve in a closed state is realized by the pressure difference acting on the valve body of the electromagnetic on-off valve during the predetermined period. (Third invention). According to this, since the mechanism for holding the valve body in the closed state can be omitted, the electromagnetic on-off valve can be effectively downsized.
  • the fourth aspect of the leg joint assist device of the legged mobile robot of the present invention is a leg type provided with a plurality of leg bodies formed by connecting a plurality of link members from the upper body via a plurality of joints.
  • at least one of the joints of each leg is designated as a specific joint, and the volume changes in conjunction with the relative displacement movement between a pair of link members connected by the specific joint.
  • An air chamber provided in the air chamber, a gas flow passage provided in communication with the air chamber for allowing gas to flow between the air chamber and the outside thereof, and an openable and closable opening provided in the gas flow passage.
  • the air chamber is sealed by closing the electromagnetic on-off valve during a predetermined period when the robot moves, and the volume of the air chamber in the sealed state is changed.
  • Elasticity generated by compression or expansion of gas in the air chamber Is used as an auxiliary driving force for the specific joint, and the auxiliary driving force is applied to the specific joint together with the driving force of the joint actuator for driving the specific joint, and the electromagnetic on-off valve is used in a period other than the predetermined period.
  • the relative relationship between the pair of link members decreases so as to decrease to a pressure difference substantially equal to the pressure difference at the starting time.
  • An urging means for urging the valve body to be actuated in the valve opening direction is further provided, and the valve body is connected to the solenoid on / off valve by energizing the solenoid of the electromagnetic on-off valve when the valve body is opened. It is configured to operate in the valve-open state by piled on the urging force,
  • the electromagnetic opening / closing is performed only during the predetermined period until the pressure difference at the start increases to a pressure difference that can hold the valve body in a closed state against the urging force of the urging means. It is characterized by energizing the solenoid of the valve.
  • the electromagnetic on-off valve is a normally open type electromagnetic on-off valve because the valve body is urged in the valve opening direction by the urging means.
  • the pressure difference acts in the valve closing direction of the valve body of the electromagnetic on-off valve during the predetermined period (period in which the electromagnetic on-off valve is closed), It is not necessary to energize the whole of the predetermined period. Pressure at the start of the predetermined period The pressure difference can be piled on the urging force of the urging means to hold the valve body in a closed state. It is sufficient to energize the solenoid temporarily only for the period until it increases.
  • the electromagnetic on-off valve includes the urging means
  • the electromagnetic on-off valve is automatically activated by the urging force of the urging means when the pressure difference decreases and falls below the predetermined value. Then, the valve is switched from the closed state to the open state, and the open state is maintained. Therefore, by simply energizing the solenoid of the solenoid on-off valve temporarily at the beginning of the predetermined period, the electromagnetic on-off valve can be maintained closed during the predetermined period. During periods other than the initial period, it is not necessary to energize the solenoid of the solenoid valve. For this reason, the power consumption of the electromagnetic on-off valve can be effectively reduced.
  • a cylinder connected to one link member of the pair of link members and a link member connected to the other link member of the pair of link members, A piston inserted into the cylinder so as to slide in the cylinder in conjunction with a relative displacement movement between a pair of link members, and the air chamber is provided on both sides of the piston in the cylinder.
  • the gas flow path is a path that communicates the pair of air chambers in the cylinder with each other (fifth invention).
  • the electromagnetic on-off valve when the electromagnetic on-off valve is closed, the gas in one of the air chambers in the cylinder is compressed and the gas in the other air chamber is expanded, and the gas in both air chambers is simultaneously elastic. (The auxiliary driving force) is generated. Therefore, a large auxiliary driving force can be generated during the predetermined period while the air chamber is configured using a small cylinder.
  • the electromagnetic on-off valve when the electromagnetic on-off valve is opened, even if the piston slides in the cylinder in conjunction with the relative displacement movement between the pair of link members, Since the pressures in the two air chambers are maintained substantially equal to each other, the auxiliary driving force is maintained at substantially zero.
  • one of the pair of air chambers in the cylinder has the meaning of the “outside” of the other air chamber.
  • the predetermined period includes each leg when the legged mobile robot moves in a predetermined gait, such as when the legged mobile robot moves at high speed. It is preferable that the period is when the body is in an implanted state (the sixth invention). According to this, it is necessary to apply a relatively large driving force to the joints of each leg. In the landing state of the legs, the auxiliary driving force is generated, and the burden on the joint actuator of the specific joint is reduced. Can be effectively reduced.
  • each leg has an intermediate portion between a tip portion and an end on the upper body side.
  • the specific joint is preferably the knee joint (seventh invention). That is, in a biped robot, generally the driving force (rotational force) required for the knee joint at the time of movement increases, so that a part of the driving force is borne by the auxiliary driving force. The burden on the joint actuator can be effectively reduced.
  • the predetermined period is a pattern of a temporal change in the bending degree of the leg at the knee joint during a period in which each leg is in a landing state during the traveling operation of the biped mobile robot. Is a period in which the curve is convex in the increasing direction of the bending degree (eighth invention).
  • the pattern of change over time of the rotational force to be generated in the knee joint is a period in which each leg is in a landing state during the traveling operation of the biped mobile robot. It is preferable that the period is convex in the direction (the ninth invention).
  • the period during which the pattern of temporal change in the bending degree of the leg at the knee joint is convex in the increasing direction of the bending degree (the bending degree increases, followed by In the decreasing period)
  • the temporal change pattern of the rotational force to be generated in the knee joint becomes convex in the leg stretching direction (the rotational force in the leg stretching direction increases and then decreases)
  • the peak value of the rotational force of the knee joint required during this period (the rotational force in the direction of extending the leg) tends to be particularly large.
  • the auxiliary driving force is generated by the rotational force to be generated in the knee joint.
  • the pattern can be changed in the same pattern as the pattern of change with time. Therefore, by setting the predetermined period as in the eighth invention or the ninth invention, the burden on the joint actuator of the knee joint (specific joint) can be effectively reduced.
  • means for determining a target driving force of the specific joint for causing the legged mobile robot to follow the target gait of the robot It is preferable that the driving force of the joint actuator of the specific joint is controlled so that the sum of the driving force of the joint actuator and the auxiliary driving force becomes the determined target driving force (a tenth aspect of the invention). ). According to this, it is possible to keep the load on the joint actuator of the specific joint (driving force generated in the joint actuator) to the minimum necessary while appropriately causing the legged mobile robot to follow the target gait.
  • FIG. 1 is a diagram schematically showing the configuration of a biped mobile robot as a legged mobile robot in this embodiment.
  • the robot 1 includes two legs 3 and 3 extending downward from an upper body 2 as a base. Since these legs 3 and 3 have the same structure including the assist device described later, one leg 3 (the left leg 3 facing the front of the robot 1 in the figure) is a part of it. Only the figure Show.
  • each leg 3 has thigh 4, leg 5 and foot 6 in order from upper body 2 through hip joint 7, knee joint 8, and ankle joint 9. Concatenated. More specifically, the thigh 4 of each leg 3 is extended from the upper body 2 through the hip joint 7, and the lower leg 5 is connected to the thigh 4 through the knee joint 8, The part 6 is connected to the lower leg part 5 through the ankle joint 9. The thigh part 4, the crus part 5 and the foot part 6 correspond to the link members in the present invention.
  • the hip joint 7 can be rotated about three axes in the front-rear, left-right, and vertical directions of the robot 1, and the knee joint 8 can be rotated about one axis in the left-right direction.
  • the ankle joint 9 can rotate around two axes in the front-rear and left-right directions.
  • each leg 3 can move substantially the same as a human leg.
  • the knee joint 8 is provided with an electric motor 10 (hereinafter referred to as a knee joint electric motor 10) as a joint actuator in order to perform a rotational movement about one axis in the left-right direction.
  • the hip joint 7 is provided with three electric motors for rotating around its three axes, and the ankle joint 9 is rotated around its two axes. Two electric motors are provided.
  • each foot 6 is connected to an ankle joint 9 via a six-axis force sensor 11. Further, each joint 7, 8, 9 has its rotational position (specifically, the electric power of each joint 7-9). An encoder (not shown) for detecting the rotation angle of the motor is provided.
  • the knee joint 8 of each leg 3 is a specific joint in the present invention, and the rotational force (auxiliary) that acts on the knee joint 8 in addition to the rotational force of the knee joint electric motor 10.
  • An assist device 12 that generates a driving force as needed is provided for each leg 3.
  • the assist device 12 includes a gas spring as a spring means 13 that elastically generates an auxiliary driving force by gas compression or expansion.
  • the spring means 13 has a cylinder structure, and includes a cylinder (outer cylinder) 14, a piston 15 slidably inserted in the cylinder 14 in its axial direction, and a cylinder 14 Piston 15
  • the air chambers 16 and 17 are formed on both sides (upper and lower in the figure), and the air chambers 16 and 17 are filled with a gas such as air.
  • the cylinder 14 is provided to extend in a substantially vertical direction (a direction along the longitudinal direction of the thigh 4) on the back side of the thigh 4 of each leg 3, and is fixed to the lower end (bottom) thereof.
  • the connected connecting member 18 is connected to the lower leg 5 via a free joint 19.
  • the tip (upper end) of a piston rod 20 that extends from the piston 15 through the upper air chamber 16 and extends above the cylinder 14 is connected to the thigh 4 via a free joint 21.
  • a bending / extending movement (hereinafter referred to as a knee bending / extending movement) as a relative displacement movement between the thigh 4 and the lower thigh 5 in the knee joint 8 is performed.
  • a bending / extending movement (hereinafter referred to as a knee bending / extending movement) as a relative displacement movement between the thigh 4 and the lower thigh 5 in the knee joint 8 is performed.
  • a bending / extending movement hereinafter referred to as a knee bending / extending movement
  • the piston 15 slides in the axial direction in the cylinder 14, and the volume of each air chamber 16, 17 changes accordingly. In this case, as the volume of one of the air chambers 16 and 17 increases, the other volume decreases.
  • the assist device 12 further serves as a gas flow passage that communicates with the air chambers 16 and 17 and is connected to the cylinder 14 in order to appropriately flow gas between the air chambers 16 and 17.
  • a communication pipe 22 and an electromagnetic opening / closing valve 23 interposed in the communication pipe 22 are provided to open and close the communication pipe 22.
  • the electromagnetic on-off valve 23 has a function as a means for interrupting transmission of the knee flexion / extension motion to the gas in the air chambers 16, 17.
  • both the air chambers 16 and 17 communicate with each other via the communication pipe 22 so that the gases in the both air chambers 16 and 17 can freely flow with each other. For this reason, even if the volume of the air chambers 16 and 17 changes due to the knee flexion and extension movement, the gas in the air chambers 16 and 17 is maintained at a substantially constant pressure, and the gas is hardly compressed or expanded. Does not occur. In other words, when the electromagnetic on-off valve 23 is in the open state, the knee flexion and extension movement is not substantially transmitted to the gas in the air chambers 16 and 17, and the gas releases elastic energy (the natural state of the solid spring). Corresponding state).
  • the gas in each of the air chambers 16, 17 is The elastic force (auxiliary rotational force for the knee joint 8) is not generated (the elastic force is almost zero).
  • the spring means 13 does not have a function as a spring.
  • the air chamber 17 is external to the air chamber 16, and the air chamber 16 is external to the air chamber 17.
  • both the air chambers 16, 17 are in a sealed state, and the gas in each of the air chambers 16, 17 cannot enter the outside.
  • this sealed state as the volume of the air chambers 16 and 17 changes due to the knee flexion and extension movement, the gas in the air chambers 16 and 17 is compressed or expanded, and the gas accumulates elastic energy.
  • the electromagnetic on-off valve 23 is closed, the knee flexion / extension motion is substantially transmitted to the gas in the air chambers 16, 17 (the knee flexion / extension motion is compressed or compressed in the air chambers 16, 17).
  • the gas accumulates elastic energy, thereby generating an elastic force).
  • the spring means 13 when the electromagnetic on-off valve 23 is closed, the spring means 13 generates an elastic force while performing its original function as a spring according to the knee flexion and extension movement.
  • the generated elastic force is in parallel with the rotational force of the knee joint 8 by the knee joint electric motor 10 as auxiliary rotational force of the knee joint 8 (auxiliary driving force, hereinafter referred to as knee rotational assist force). Acts on the knee joint 8.
  • the knee rotation assisting force generated by the spring means 13 when the electromagnetic open / close valve 23 is closed is the starting point of the closed state of the electromagnetic open / close valve 23 (when the open state force is switched to the closed state).
  • Force depending on the amount of change in the bending angle ⁇ of the leg 3 at the knee joint 8 (hereinafter referred to as the knee bending angle ⁇ , see Fig. 1).
  • a graph illustrating the relationship between the knee rotation assist force and the knee bending angle ⁇ is shown in FIG.
  • the knee bending angle ⁇ is more specifically defined as the inclination angle of the axis of the lower leg 5 with respect to the axis of the thigh 4 of the leg 3 as shown in FIG.
  • the value of ⁇ increases as the degree of bending of the leg 3 at the knee joint 8 increases.
  • the rotational force in the bending direction of the leg 3 at the knee joint 8 is a positive value
  • the rotational force in the extending direction of the leg 3 is a negative value.
  • the spring means 13 The knee rotation assisting force that occurs varies with the knee bending angle ⁇ with the characteristics shown in graph a, for example. Also, If the valve closing start knee bending angle is 0 force “0 2” (0 1> 0 2), the knee rotation assisting force generated by the spring means 13 has a characteristic as shown in the graph b, for example, to the knee bending angle ⁇ . Change.
  • FIG. 3 shows a cross-sectional view of the electromagnetic on-off valve 23 in the present embodiment.
  • This electromagnetic open / close valve 23 is a valve in which the flow passage 30 leading to the communication tube 22a on the air chamber 16 side and the flow passage 31 leading to the communication tube 22b on the air chamber 17 side are formed.
  • a valve body 33 is provided in the body case 32.
  • the valve body 33 has a position where the both flow passages 30, 31 communicate with each other as shown in the figure (the position shown in the figure, hereinafter referred to as a valve opening position), and the valve body 33 abuts the valve seat 34 so that the both flow passages 30 , 31 is provided so as to be movable in the direction of the arrow Y1 (the left-right direction in the figure) between the position where it is cut off (hereinafter referred to as the valve closing position).
  • a plunger 35 extending in the movable direction is connected to the valve body 33, and the plunger 35 is inserted into an insertion hole 37 in a drive unit case 36 fixed to the valve body case 32.
  • the inside of the insertion hole 37 is slidable in the same direction as the movable direction of the valve element 33.
  • a permanent magnet 38 and a solenoid 39 are provided with an interval in the axial direction of the plunger 35 (movable direction of the valve element 33).
  • the permanent magnet 38 acts on the plunger 35 with a magnetic force for holding the valve body 33 in the valve open position when the valve body 33 is in the valve open position.
  • the movement of the valve position force to the valve opening position is performed by temporarily energizing solenoids 39 with currents in opposite directions. That is, when the solenoid on / off valve 23 is closed, a current in a predetermined direction (hereinafter referred to as a “closed current”) is temporarily energized to the solenoid 39, so that the plunger 35 is valved by the electromagnetic force generated by the solenoid 39. Retracting from the body case 32 side, the valve body 33 moves from the valve opening position to the valve closing position (the electromagnetic open / close valve 23 also closes the valve open state).
  • the solenoid 39 when performing the opening operation of the electromagnetic on-off valve 23, the solenoid 39 generates an electromagnetic wave generated by temporarily passing a current in the opposite direction to the closed current (hereinafter referred to as an open current) to the solenoid 39. Due to the force, the plunger 35 moves forward to the valve body case 32 side, and the valve body 33 moves to the valve closing position (the electromagnetic on-off valve 23 opens from the valve closed state).
  • the plunger 35 is moved to the valve open position of the valve element 33 by the magnetic force of the permanent magnet 38 even when the energization of the open current to the solenoid 39 is stopped after the valve opening operation.
  • the electromagnetic open / close valve 23 is held in the corresponding position (position shown in the figure). Further, in the present embodiment, as will be described later, the electromagnetic on-off valve 23 is closed by the pressure difference between the air chambers 16 and 17 of the spring means 13 via the flow passages 30 and 31, as described later.
  • the valve body 33 is operated in the valve closing direction (the direction in which the valve body 33 is biased to the valve closing position) (the period in which the pressure in the air chamber 17 is higher than the pressure in the air chamber 16). ing.
  • the electromagnetic on-off valve 23 is interposed in the communication pipe 22 so that a pressure difference between the air chambers 16 and 17 acts in the valve closing direction of the valve body 33 during the period in which the electromagnetic on-off valve 23 should be closed. It is. Therefore, when the electromagnetic on-off valve 23 is closed, the valve element 33 is held in the closed position by the pressure difference (hereinafter referred to as differential pressure) even when the energization of the closing current to the solenoid 39 is stopped. It has become.
  • the electromagnetic on-off valve 23 has a self-holding function for holding the valve body 33 in the closed state and the open state even after the energization of the closing current and the opening current to the solenoid 39 is stopped.
  • the function of maintaining the valve closed state is realized by the differential pressure.
  • the holding function to the valve open state is realized by the magnetic force of the permanent magnet 38.
  • the upper body 2 of the robot 1 is connected to the motion control of each joint 7, 8, 9 of each leg 3.
  • a control unit 40 for controlling the power a power storage device 41 as a power source for the electric motors of the joints 7, 8, 9 and the electromagnetic on-off valve 23, and the posture of the upper body 2 (inclination angle with respect to the vertical direction and axis of the vertical direction).
  • a posture sensor 42 for detecting the rotation angle of the rotation and a motor driver circuit 43 for controlling energization of each electric motor are mounted.
  • the attitude sensor 42 is also configured with a gyro sensor, an acceleration sensor and the like.
  • the power storage device 41 is configured by a force such as a notch (secondary battery) or a capacitor.
  • the control unit 40 is configured by an electronic circuit including a microcomputer or the like. As shown in the block diagram of FIG. 4, the control unit 40 has, as its main functional configuration, a gait generator 51, a motor controller. 52, and an electromagnetic on-off valve controller 53.
  • the gait generator 51 uses external commands for gait parameters (gait, gait period, motion mode, etc.) that define the target gait of the robot 1, or preset teaching data (movement plan). Data)) for each step during the movement of the robot 1 (each time the support leg is switched), and based on this gait parameter, the target gait for each predetermined control cycle (instantaneous target gait) Are generated sequentially.
  • the gait parameter determined by the gait generator 51 in this embodiment is a target gait that causes the robot 1 to perform a normal walking motion, or the robot 1 performs a running motion similar to a human running motion. This is a parameter that regulates the desired gait.
  • the target gait includes, for example, the target value of the position and posture of the upper body 2 of the robot 1 (hereinafter referred to as the target body position and posture) and the position and posture of each foot 6 of the robot 1.
  • Target value of the total force (total floor reaction force) of the target value hereinafter referred to as target foot position / posture
  • target total floor reaction a target position
  • target ZMP Zero Moment Point
  • the content of the target gait is not necessarily limited to that disclosed in the above-mentioned publication, but basically it is sufficient if it can express the target motion form of the robot 1.
  • the electromagnetic on-off valve controller 53 has a function of controlling the operation of the electromagnetic on-off valve 23 of the assist device 12.
  • This electromagnetic on-off valve controller 53 is generated by the gait generator 51. According to the target gait or the gait parameter that defines this, as described later, the electromagnetic on / off valve 23 should be closed (hereinafter referred to as the lock period), and the electromagnetic on / off valve 23 is opened.
  • the period (hereinafter referred to as free period) to be determined is determined.
  • the electromagnetic on-off valve controller 53 controls the energization of the electromagnetic on-off valve 23 so that the electromagnetic on-off valve 23 is closed during the lock period, and opens the electromagnetic on-off valve 23 during the free period.
  • the solenoid valve 23 is energized and controlled. Since the period other than the lock period is a free period and the period other than the free period is a mouth period, if either period is determined, the other period is determined in a dependent manner. Therefore, in practice, only one of the lock period and the free period needs to be determined. In this embodiment, the lock period is determined.
  • the motor controller 52 sequentially controls the electric motors of the joints 7, 8, and 9 including the knee joint electric motor 10 (specifically, the rotation angle of the electric motor is sequentially controlled). It is.
  • This motor controller 52 shows the target gait generated by the gait generator 51 and the actual inclination angle (actual inclination angle with respect to the vertical direction) of the body 2 detected by the posture sensor 42.
  • the control unit 40 performs a predetermined initialization process such as initialization of a timer that performs timekeeping, and then, every predetermined control cycle (for example, 50 ms) that is determined in advance, is a flowchart shown in FIG. Execute the process. That is, the control unit 40 first determines whether or not it is the gait switching timing of the robot 1 (STEP 1).
  • the gait switching timing is specifically the timing at which the supporting leg when the robot 1 moves is switched from one leg 3 to the other leg 3. If the gait switching timing is not reached in STEP 1, the processing of the control unit 40 proceeds to STEP 3 described later.
  • the control unit 40 based on the operation command of the robot 1 given from the outside or the movement plan data set by force, The gait parameters that define the target gait of the robot 1 are generated (updated) by the gait generator 51 (STEP 2).
  • the target gait defined by the gait parameter generated by the gait generator 51 is, for example, the target gait up to the next gait switching timing or a timing slightly ahead of it. is there.
  • the target gait defined by the gait parameters generated by the gait generator 51 is the target gait of the running motion of the robot 1 (the leg 3 , Goal gait like doing 3 exercises).
  • control unit 40 executes the processing of STEPs 3 to 5 by the motor controller 52.
  • the processing of STEP 3 to 5 is performed when the knee rotation assisting force does not act on the knee joint 8 from the spring means 13 (when the electromagnetic opening / closing valve 23 of the assist device 12 is in the open state).
  • This is a process for obtaining the torque commands (hereinafter referred to as basic torque commands) for the electric motors of the joints 7, 8, and 9 required to follow the movement of the robot 1. Since the processes of STEP 3 to 5 are described in detail in Japanese Patent Application Laid-Open No. 11-300660 by the applicant of the present application, the outline of the processes of STEP 3 to 5 will be described below.
  • the control unit 40 obtains an instantaneous target gait based on the gait parameters currently generated by the gait generator 51.
  • This instantaneous desired gait is the desired gait for each control cycle of the processing of the control unit 40.
  • the instantaneous desired gait is more specifically composed of a desired body position / posture, a desired foot position / posture, a desired total floor reaction force, and a desired ZMP for each control cycle.
  • the control unit 40 corrects the desired foot position / posture in the instantaneous desired gait by the composite compliance operation process. More specifically, in this composite compliance operation process, the actual inclination angle of the upper body 2 of the robot 1 (this is determined by the posture sensor 42). Detected) is restored to the target inclination angle determined by the target body position and posture (body
  • the floor reaction force (moment) to be applied to the robot 1 is obtained in order to converge the deviation between the actual inclination angle of 2 and the target inclination angle to 0). Then, the resultant force of the floor reaction force (moment) and the target total floor reaction force is set as a target value of the total floor reaction force that should actually be applied to the robot 1, and the target value of each foot 6 is The desired foot position / posture for each control cycle is corrected so that the resultant force of the actual floor reaction force of each foot portion 6 detected by the six-axis force sensor 11 follows.
  • Such composite compliance operation processing is for ensuring autonomous stability of the posture of the robot 1.
  • the control unit 40 obtains basic torque commands for the electric motors of the joints 7, 8, 9 of each leg 3 of the robot 1.
  • the kinematic disc calculation process determines the target rotation angle of each joint 7, 8, 9 of each leg 3 of the robot 1. Then, each joint 7, 7, and 9 is caused to follow the target rotation angle by the actual rotation angle of each joint 7, 8, 9 (which is detected by an encoder (not shown) provided for each joint 7, 8, 9). , 8 and 9 electric motor torque commands are required.
  • the torque command of the knee joint electric motor 10 of each leg 3 includes the target rotation angle of the knee joint 8 (target value of the knee bending angle ⁇ ) and the actual rotation angle of the knee joint 8 (knee bending). From the deviation ⁇ from the detected value of the angle ⁇ ) and the torque Tff (hereinafter referred to as the reference torque Tff) of the electric motor 10 required to generate the target floor reaction force against the leg 3, Required by (1).
  • the first and second terms on the right side of Equation (1) are feedback control terms corresponding to the deviation ⁇
  • the third term on the right side is the floor reaction force acting on the leg 3.
  • This is a feed-forward control term that compensates for the effects of inertia and inertia.
  • the second term on the right-hand side is a term having a buffering function (damping function) that quickly attenuates the vibration with respect to the target value of the knee bending angle ⁇ .
  • Step 6 the control unit 40 executes the conduction control process of the electromagnetic opening / closing valve 23 of the assist device 12 by the electromagnetic opening / closing valve controller 53.
  • This process is executed by a subroutine process shown in the flowchart of FIG. That is, the electromagnetic on-off valve controller 53 first sets the lock period during which the electromagnetic on-off valve 23 should be closed based on the gait parameters currently set by the gait generator 51 (STEP 6 — 1).
  • the electromagnetic on-off valve controller 53 performs the entire walking motion.
  • the electromagnetic opening / closing valve 23 is opened (the knee rotation assisting force by the spring means 13 is not applied to the knee joint 8). Therefore, in this case, the lock period is not set.
  • the gait parameter is a gait parameter that allows the robot 1 to perform a running motion (a running motion similar to a human running motion), for example, as described below.
  • the lock period is set so that the electromagnetic open / close valve 23 is closed during a predetermined period of the gait.
  • FIG. 7 (a) shows either leg 3 or 3 when the robot 1 travels (traveling in the same manner as a normal human travel).
  • FIG. 7 (b) shows the change over time of the target knee bending angle of the knee joint 8 of the leg 3 on the other side
  • FIG. 7 (b) shows the necessary knee rotational force corresponding to the target knee bending angle of FIG. 7 (a).
  • the change over time is illustrated as an example.
  • FIG. 7 (c) is a timing chart of the required operation mode of the electromagnetic opening / closing valve 23
  • FIG. 7 (d) is a timing chart of the energization state of the opening / closing electromagnetic valve 23
  • FIG. The change over time of the differential pressure between both chambers 16, 17 is illustrated.
  • the target knee bending angle is a support for the leg 3 to be in a landing state as shown in Fig. 7 (a). It increases in the first half of the leg period (the bending degree of the leg 3 at the knee joint 8 increases). In the latter half of the supporting leg period, the target knee bending angle decreases until immediately before the end of the supporting leg period (the bending degree of the leg 3 at the knee joint 8 is reduced).
  • the target knee flexion angle increases during the swing leg period (period in which the foot 6 of the leg 3 is in the state of getting out of bed) immediately before the end of the supporting leg period, and then the free leg In the second half of the period, the target knee bending angle decreases until just before the end of the swing leg period.
  • the target knee bending angle slightly increases immediately before the end of the swing leg period. Therefore, the target knee bending angle during running motion takes a maximum value at the intermediate point of the support leg period and at the intermediate point of the swing leg period, and takes a minimum value immediately before the end of the support leg period.
  • the required knee rotational force (the rotational force in the bending direction of the leg 3 is a positive value and the rotational force in the extending direction is a negative value)
  • the rotational force decreases significantly from the positive rotational force to the negative rotational force (the rotational force significantly increases in the direction of extension of leg 3)
  • the torque increases to almost “0” until just before the end of the supporting leg period (a period in which the target knee bending angle decreases).
  • the necessary knee rotational force gradually decreases to a slightly negative value from just before the end of the supporting leg period to the first half of the swinging leg period.
  • the required knee rotational force during the running operation is increased in the extending direction of the leg 3 particularly in the supporting leg period, and the required knee rotating force in the extending direction is substantially in the middle of the supporting leg period. It becomes the maximum at the time (this time generally coincides with the time when the knee bending angle reaches the maximum).
  • the necessary knee rotation force is the leg
  • the period that increases on the extension side of body 3 (for example, the period from time T1 to time T2 in FIG. 7) is set as the lock period. More specifically, the lock period is a period of the supporting leg period in which the required knee rotational force is convex in the extending direction of the leg 3 or the knee bending angle is convex in the increasing direction. . Then, during this lock period, as shown in the timing chart of FIG. 7 (c), the opening / closing electromagnetic valve 23 is controlled to be in the closed state, whereby the knee rotation assisting force by the spring means 13 of the assist device 12 is increased. Act on the knee joint 8.
  • the differential pressure value P2 is obtained when the driving force in the valve opening direction of the valve body 33 acting on the plunger 35 when the open current is applied to the solenoid 39 of the electromagnetic on-off valve 23 is determined by the differential pressure of the differential pressure value P2. It is the maximum value of the differential pressure values that will overcome the driving force in the valve closing direction of 33 (hereinafter referred to as the allowable differential pressure value P2 that can be opened).
  • the lock period is set as follows.
  • the electromagnetic on-off valve controller 53 first performs the gait parameter. Based on the volume parameters, the target knee bending angle of the leg 3 in the supporting leg phase (specifically, the time series of the change over time in the supporting leg phase of the target knee bending angle) is obtained.
  • the electromagnetic open / close valve controller 53 determines the target knee bending angle ⁇ offinin at the start of the locking period, that is, the target value ⁇ offinin of the valve closing start knee bending angle (hereinafter referred to as the valve closing start target knee bending angle ⁇ offinin).
  • the period during which the target knee bending angle is ⁇ offinin or more (at time T1 in Fig. 7) To the time T2) is set as the lock period.
  • the end time ⁇ 2 of the lock period is the time when the target knee bending angle returns to 0 ffinin after the valve closing start target knee bending angle increases by 0 offinin force.
  • ⁇ offin is a value close to the minimum value of the target knee bending angle in the supporting leg phase, and after the start of the supporting leg period, the required knee rotational force is calculated from the value in the bending direction (positive value).
  • the differential pressure when the target knee bend angle decreases to ⁇ offinin at the end of the lock period is close to the value of the knee bend angle immediately after changing to the value in the extension direction (negative value). It is determined so that the allowable differential pressure value P2 or less is possible. Since the differential pressure between the air chambers 16 and 17 depends on the knee bending angle, for example, if the correlation between the knee bending angle and the differential pressure is sought, the correlation is based on that correlation. ⁇ offinin can be determined.
  • the electromagnetic on-off valve controller 53 opens the electromagnetic valve in order to perform the closing operation of the electromagnetic on-off valve 23 at the start of the lock period (the opening state force is also switched to the closed state).
  • the closing current energization time A Tclose (see Fig. 7 (d)), which is the time during which the closing current should be supplied to the solenoid 39 of the valve closing 23, and the opening and closing operation of the solenoid on-off valve 23 at the end of the locking period Switch to the valve open state) to determine the open current energization time A Topen (see Fig. 7 (d)), which is the time during which the open current should be applied to the solenoid 39 of the solenoid on / off valve 23.
  • the closing current energizing time A Tclose and the opening current energizing time A Topen are determined at a predetermined time so that, for example, the solenoid on / off valve 23 can be reliably closed and opened. .
  • the closed state after the solenoid on / off valve 23 is closed is maintained by the differential pressure between the air chambers 16 and 17. Therefore, the closed current energization time A Tclose is a differential pressure (see Fig. 7 (e)) that ensures that the solenoid on / off valve 23 is kept closed when the differential pressure stops energizing the solenoid 39. It is desirable to set the time so that the differential pressure value P1) increases.
  • the differential pressure is It is only necessary to determine the timing when the pressure rises to a differential pressure value PI that can reliably hold the valve closed, and to determine the starting force during the locking period as the closing current energizing time.
  • the electromagnetic on-off valve controller 53 supplies an open current to the solenoid 39 of the electromagnetic on-off valve 23 (STEP 6-5). As a result, the opening current is supplied to the solenoid 39 for the time A Topen from the end time T2 of the lock period, and the electromagnetic opening / closing valve 23 is opened.
  • the electromagnetic on / off valve controller 53 closes the open / close current to the solenoid 39 of the electromagnetic on / off valve 23. Shut off the power to the machine (STEP 6-6)
  • the electromagnetic on / off valve 23 is temporarily closed by energizing the electromagnetic on / off valve 23 at the beginning of the lock period, thereby performing the closing operation of the electromagnetic on / off valve 23.
  • the electromagnetic on-off valve 23 is kept closed by the differential pressure.
  • the electromagnetic on / off valve 23 is temporarily energized, whereby the electromagnetic on / off valve 23 is opened. It should be noted that after the opening current is stopped, the electromagnetic on-off valve 23 is held open by the magnetic force of the permanent magnet 38.
  • the control unit 40 performs the processing of STEP 6 as described above, and then the knee rotation assist force (specifically, for each control cycle) by the spring means 13 of the assist device 12.
  • Estimate knee rotation assist force (STEP 7).
  • the estimated value of the knee rotation assisting force is used by the motor controller 52 to determine the final torque command for the knee joint electric motor 10, and is obtained by the motor controller 52 as follows, for example. .
  • the bending angle ⁇ is stored and retained as the valve closing start knee bending angle.
  • the knee bending angle stored and held as the valve closing start knee bending angle may be the knee bending angle determined in accordance with the target foot position / posture corrected by the composite compliance operation process.
  • the motor controller 52 estimates the knee rotation assist force by the spring means 13.
  • the data data table, arithmetic expression, etc.
  • the electromagnetic on-off valve 23 is in the lock period during which the valve is closed, the valve-closing start knee bending angle stored and held as described above and the detected value (or target value) of the current knee bending angle ⁇
  • the knee rotation assisting force by the spring means 13 is estimated from the above characteristic data of the knee rotation assisting force. For example, referring to FIG.
  • the estimated value of the knee rotation assisting force is “Mk”.
  • the knee rotation assist force during the free period is “0”. Further, the knee rotation assisting force can be directly detected using a force sensor or the like.
  • the control unit 40 uses the motor controller 52 to control each joint 7, 8, 9 of the leg 3 for each electric motor control cycle.
  • the final torque command is determined as the final torque command (STEP 8).
  • the final torque command for the knee joint motor 10 is the basic torque command obtained by Equation (1) in STEP 5 (the target gait is assumed when the knee rotation assist force is “0”). Accordingly, it is determined by subtracting the knee rotation assisting force determined in STEP 7 from the torque to be generated in the knee joint 8 accordingly.
  • the knee joint electric motor 10 so that the sum of the final torque command for the knee joint electric motor 10 (the command value of the torque that should be actually generated by the knee joint electric motor 10) and the knee rotation auxiliary force becomes the basic torque command.
  • the final torque command for is generated.
  • the basic torque command is used as it is as the final torque command for the electric motors of the joints 7 and 9 other than the knee joint 8.
  • the control unit 40 outputs the final torque command determined as described above to the motor driver circuit 43 (STEP 9), thereby ending the processing for each control cycle.
  • the electric motors of the joints 7, 8, and 9 are energized, and the rotation angles of the electric motors, that is, the rotation angles of the joints 7, 8, and 9 are the target body position / posture.
  • goal feet It is controlled so as to follow the required rotation angle determined by the flat position and posture (modified by the composite compliance operation process). Therefore, the robot 1 moves according to the target gait defined by the gait parameters.
  • the target knee bending angle is equal to or greater than the valve closing start target knee bending angle 0 offinin in the supporting leg phase of each leg 3 as shown in FIG. 8 (a).
  • the period is determined as the lock period, and in this lock period, the electromagnetic on-off valve 23 is closed.
  • FIG. 8 (a) is the same as FIG. 7 (a), and illustrates the change over time of the target knee bending angle during the running operation of the robot 1.
  • FIG. FIG. 8 (b) shows that the spring means 13 is generated in response to the change in the target knee bending angle in FIG. 8 (a) (or the actual change in the knee bending angle following the target knee bending angle). The change with time of the generated knee rotation assisting force is illustrated.
  • FIG. 8 (c) shows the knee joint electric motor corresponding to the change of the target knee bend angle of Fig. 8 (a) (the change in the actual knee bend angle following the target knee bend angle).
  • the change over time in the torque generated in the motor 10 is illustrated by a solid line.
  • FIG. 8 (c) shows the change in the necessary knee rotational force with time (this is the same as that in FIG. 7 (b)) along with a broken line.
  • the knee rotation assisting force generated by the spring means 13 is the knee bending angle during the lock period as shown in Fig. 8 (b).
  • Start of valve closing Target knee bending angle ⁇ offinin force As the force increases, the leg 3 increases in the extending direction, and then as the knee bending angle decreases to the valve closing start target knee bending angle ⁇ offinin, Decrease in stretching direction. It should be noted that the knee rotation assisting force generated by the spring means 13 is substantially zero at the start and end of the lock period and during periods other than the lock period. Accordingly, as shown in FIG.
  • the torque generated by the knee joint electric motor 10 is calculated from the required knee rotational force.
  • a relatively small torque is required after subtracting the rotation assist force.
  • the generated torque of the knee joint electric motor 10 is relatively small over the entire period of the traveling operation of the robot 1, and the power consumption and capacity of the knee joint electric motor 10 can be reduced.
  • the electromagnetic current is temporarily energized by the closed current energization time A Tclose and the open current energization time A Topen at the start and end of the lock period, respectively.
  • Open and close valve 23 is closed and opened.
  • electromagnetic opening and closing in the lock period After the valve 23 is closed, the solenoid valve 23 is closed by the pressure difference between the air chambers 16 and 17 of the spring means 13 after the closing current to the solenoid 39 of the solenoid valve 23 is cut off. The valve state is maintained.
  • the solenoid on / off valve 23 is opened, after the open current to the solenoid 39 of the solenoid on / off valve 23 is cut off, the magnetic on / off valve 23 is opened by the magnetic force of the permanent magnet 38. Retained. Therefore, it is possible to reduce the power consumption of the electromagnetic on-off valve 23 while making the configuration of the electromagnetic on-off valve 23 small and simple. As a result, the power consumption of the robot 1 can be reduced.
  • the knee bending angle at the start and end of the lock period during the traveling operation of the robot 1 is the same, so the following effects are obtained. That is, since the knee bending angle at the start and end of the lock period is equal, the knee rotation assisting force of the spring means 13 becomes substantially “0” not only at the start of the lock period but also at the end. For this reason, when switching the electromagnetic open / close valve 23 from the closed state to the open state, the knee rotation assisting force of the spring means 13 is prevented from changing discontinuously. As a result, when the electromagnetic on-off valve 23 is switched to the closed state force open state, the operation of the robot 1 can be performed smoothly without causing the behavior of the robot 1 to be jerky.
  • the electromagnetic on / off valve 23 is switched to the open state when the spring means 13 has sufficiently released the elastic energy, the elastic energy accumulated in the spring means 13 is unnecessarily heated. It is prevented from being consumed by being converted to energy, and the energy use efficiency of the robot 1 can be increased.
  • This second embodiment is an embodiment of the first and second inventions described above.
  • This embodiment is different from the first embodiment only in the configuration of a part of the electromagnetic on-off valve. Therefore, in the description of the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
  • FIG. 9 is a cross-sectional view of the electromagnetic on-off valve 60 in the present embodiment.
  • This electromagnetic on-off valve 60 is different from the electromagnetic on-off valve 23 of the first embodiment only in a part of the configuration in the drive unit case 36.
  • a valve body 33 Open position shown in Fig. 9) Position
  • a valve closing position a state in which the valve element 33 is in contact with the valve seat 34
  • a locking mechanism 61 for locking the plunger 35 in the drive unit case 36.
  • This locking mechanism 61 is a means for realizing the self-holding function of the electromagnetic opening / closing valve 60, and is directed to the outer peripheral surface of the plunger 35 in the insertion hole 37 in a direction perpendicular to the axial direction (movable direction) of the plunger 35. It is provided with a sphere 62 that can be moved forward and backward by force (movable in and out of the insertion hole 37), and a panel 63 (in this example, a coil panel) that urges the sphere 62 in the forward direction (direction approaching the plunger 35). Yes.
  • a pair of semispherical recesses 35a and 35b into which the half of the sphere 62 can be fitted are formed with an interval in the axial direction of the plunger 35.
  • the half part of the sphere 62 is the panel. It is provided so as to be fitted by the urging force of 63, and the plunger 35 is locked by the fitting so that the valve element 33 is held in the valve open position.
  • the recess 35b is provided so that the half of the spherical body 62 is fitted by the biasing force of the panel 63 when the valve body 33 is in a position corresponding to the valve closing position. 35 is locked and the valve element 33 is held in the valve open position.
  • the electromagnetic on-off valve 60 has a self-holding function for holding the valve element 33 in the valve open position and the valve close position by the locking mechanism 61.
  • the biasing force of the panel 63 of the locking mechanism 61 is based on the electromagnetic force generated by the solenoid 39 when the solenoid 39 is energized with the closing current or the opening current at the valve opening position or the valve closing position of the valve element 33.
  • the plunger 62 is set so as to move in the axial direction while the sphere 62 is detached from the recess 35a or 35b.
  • control unit 40 performs the same processing (FIGS. 5 and 6) as in the first embodiment, and performs the running operation of the robot 1, so that each leg 3 Set the lock period within the support leg period. During this locking period, the electromagnetic on / off valve 60 is closed to generate a knee rotation assisting force by the spring means 13.
  • This embodiment has the same effects as those of the first embodiment.
  • the electromagnetic on-off valve 60 is held in the open or closed state even after the energization of the open or closed current to the solenoid 39 is stopped by the locking mechanism 61. .
  • the closing current energization time ATclose at the start of the lock period can be made shorter than that of the first embodiment, and the power consumption of the electromagnetic on-off valve 23 can be further suppressed.
  • the valve body 33 is held in the valve closing position and the valve opening position by the locking mechanism 61 in each of the closed state and the open state of the electromagnetic on-off valve 60.
  • the concave portion 35a of the locking mechanism 61 may be omitted, and the valve element 33 may be held at the valve open position by the locking mechanism only when the electromagnetic opening / closing valve 60 is in the open state.
  • the valve body 33 may be held at the closed position by the differential pressure between the air chambers 16 and 17 as in the first embodiment. In this way, another embodiment of the third invention can be configured.
  • the third embodiment is an embodiment of the fourth invention.
  • This embodiment is different from the first embodiment only in the configuration of a part of the electromagnetic on-off valve and only the energization control processing of the electromagnetic on-off valve by the control unit. Therefore, in the description of the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
  • FIG. 10 is a cross-sectional view of the electromagnetic on-off valve 70 in the present embodiment.
  • This electromagnetic on-off valve 70 is different from the electromagnetic on-off valve 23 of the first embodiment only in a part of the configuration in the drive unit case 36.
  • a panel 71 (coil panel in this example) is provided as a biasing means for biasing the valve body 33 toward the valve opening position.
  • the panel 71 is interposed between the bottom of the insertion hole 37 of the drive unit case 36 and the end surface of the plunger 35 (the end surface opposite to the valve element 33), and the plunger 35 is inserted into the valve element 33.
  • the valve is energized toward the valve opening position (to the left in Fig. 10).
  • the configuration other than that described above is the same as that of the first embodiment.
  • the solenoid 35 is energized with a closed current, so that the plunger 35 moves against the urging force of the panel 71 by the electromagnetic force generated by the solenoid 39.
  • the valve body 33 moves backward from the case 32 and the valve body 33 is closed.
  • a close current is applied to the solenoid 39 in order to keep the valve element 33 in the closed position.
  • the energization of the closing current to the solenoid 39 is interrupted.
  • the differential pressure makes it possible to hold the valve element 33 in the closed position against the urging force of the panel 71. If the differential pressure falls below the differential pressure value P3, the valve element 33 is automatically returned to the valve open position by the urging force of the panel 71 while the power to the solenoid 39 is cut off. ing.
  • the differential pressure value P3 is referred to as a valve opening return differential pressure value P3.
  • control unit 40 executes the control process shown in the flowchart of FIG. 5 as in the first embodiment.
  • the subroutine processing of STEP 6 the energization control processing of the electromagnetic on-off valve 70
  • This subroutine processing is executed as shown in the flowchart of FIG.
  • the electromagnetic on-off valve controller 53 first sets the electromagnetic on-off valve 23 to the closed state based on the gait parameter currently set by the gait generator 51, as in the first embodiment.
  • the lock period to be set is set (STEP 6-11). That is, when the gait parameter currently set by the gait generator 51 is a gait parameter corresponding to the traveling motion of the robot 1, as shown in FIG. 12 (a), as in the first embodiment.
  • the valve closing start target knee bending angle ⁇ offinin which is the target knee bending angle at the start of the locking period, is determined, and in the supporting leg period, the target knee bending angle is equal to or greater than ⁇ offinin (from time T1 in FIG. 12).
  • the period until time T2) is set as the lock period.
  • ⁇ offinin is a value close to the minimum value of the target knee bending angle in the support leg phase, and after the start of the support leg period, the required knee rotational force is changed from the value in the bending direction (positive value) to the extension direction.
  • the differential pressure is determined to be equal to or less than the valve opening return differential pressure value P3 (in this embodiment, the differential pressure is slightly smaller than P3).
  • FIG. 12 (a) is the same as FIG. 7 (a), and illustrates the change over time of the target knee bending angle when the robot 1 is running.
  • FIG. 12 (b) is the same as FIG. 7 (b) and illustrates the change over time of the required knee rotation assisting force corresponding to the change in the target knee bending angle in FIG. 12 (a).
  • Fig. 12 (c) is a timing chart of the required operation mode of the electromagnetic on-off valve 70
  • Fig. 12 (d) is an open / close state.
  • the timing chart of the energized state of the solenoid valve 70, FIG. 12 (e) illustrates the change over time in the differential pressure between the air chambers 16, 17 of the spring means 13.
  • the electromagnetic on-off valve controller 53 operates the solenoid 39 of the electromagnetic on-off valve 23 to perform the closing operation of the electromagnetic on-off valve 23 at the start of the lock period (the valve-opening state force is also switched to the valve-closing state).
  • the closed current energization time ⁇ Tclose (see Fig. 12 (d)), which is the time during which the closed current should be applied, is determined.
  • the timing at which the differential pressure between the air chambers 16 and 17 of the spring means 13 surely exceeds the valve opening return differential pressure value P3 is determined, and the lock period Force at start time The time until that timing is determined as the closed current conduction time ⁇ Tclose.
  • the relationship between the target knee bending angle and the differential pressure is stored and held in the control unit 40 using the target knee bending angle at the start of the lock period as a parameter. Based on the relationship, the timing at which the differential pressure surely exceeds the valve opening return differential pressure value P3 is determined.
  • the electromagnetic on-off valve controller 53 supplies a close current to the solenoid 39 of the electromagnetic on-off valve 70 (STEP 6-14). As a result, the solenoid 39 is energized for the duration of ⁇ Tclose from the start time T1 of the lock period, and the electromagnetic open / close valve 23 is closed.
  • the electromagnetic on-off valve controller 53 cuts off the energization of the closing current to the solenoid 39 of the electromagnetic on-off valve 70 (STEP 6-15). In this embodiment, energization for opening the electromagnetic on-off valve 70 is not performed.
  • the electromagnetic on / off valve 70 is closed by energizing the electromagnetic on / off valve 70 at the beginning of the lock period by temporarily energizing the electromagnetic on / off valve 70 for the closing current energizing time A Tclose. After the energization of the closed current is stopped, the electromagnetic on-off valve 70 is held in the closed state against the urging force of the panel 71 by the differential pressure. Then, near the end time T2 of the lock period, when the differential pressure decreases to the valve opening return differential pressure value P3 or less, the electromagnetic on-off valve 70 is automatically opened by the biasing force of the panel 71, and the valve is opened. Kept in a state.
  • the powerful embodiment of the present invention has the same effects as the first embodiment. is there. Power! In this embodiment, only the solenoid 39 of the electromagnetic on / off valve 70 needs to be temporarily energized only at the start of the lock period, so that the power consumption of the electromagnetic on / off valve 70 can be further reduced. .
  • the start timing of energization of the closed current or open current to the electromagnetic open / close valves 23, 60 is determined based on the time t.
  • the knee bending angle of the instantaneous target gait is May be determined based on the detected value of the knee bending angle.
  • the value of torque to be generated in the knee joint 8 (the value of the necessary knee rotational force) is determined based on the start timing and end timing of the lock period, and the basic torque indicates the start timing and end timing of the lock period. The determination may be made based on the detected value of the actual torque acting on the knee joint 8.
  • the knee bending angle value at the closing timing is determined and the knee bending angle or knee bending of the instantaneous target gait is determined.
  • the end timing of energization of the closed current may be determined based on the detected corner value.
  • the value of the differential pressure at the end timing of energization of the closed current is determined (for example, P1 in FIG. 7 (e) is determined), and the estimated value of the differential pressure for estimating the force such as the target knee bending angle It may be possible to determine the end timing of energization of the closed current based on the value detected by the pressure sensor.
  • the lock period is set, but only the energization start timing and energization end timing of the closed current to the electromagnetic on-off valve 70 may be determined. Then, similarly to the modified embodiments according to the first and second embodiments, the start timing of energization of the closed current (the start timing of the lock period) is changed to the detected value of the knee bending angle or knee bending angle of the instantaneous target gait. The determination may be made based on the basic torque or the detected value of the actual torque acting on the knee joint 8.
  • the knee bending angle or the knee bending angle of the instantaneous target gait is detected, as in the modification according to the first and second embodiments. Judgment based on the value or based on the estimated value or detected value of the differential pressure.
  • the required knee rotational force is convex in the extending direction of the leg 3 during the supporting leg period.
  • the energizing time of the closing current to 23, 60, 70 is as short as possible as long as the closing operation of the electromagnetic on-off valve can be surely performed. In other words, it is desirable to cut off the energization of the closed current in a state where the differential pressure can keep the electromagnetic on-off valve in the closed state.
  • the force that seals both the air chambers 16, 17 of the spring means 13 in the closed state of the electromagnetic on-off valves 23, 60, 70 for example, You may do as follows. That is, one air chamber 16 or 17 is kept open to the atmosphere, and an electromagnetic on-off valve is provided in a communication pipe (gas flow passage) that communicates the other air chamber 17 or 16 with the outside air. Alternatively, only the other air chamber 17 or 16 may be sealed when the electromagnetic on-off valve is closed. Furthermore, as seen in FIG. 22 of the above-mentioned Japanese Patent Application Laid-Open No. 2003-103480, the other air chamber 17 or 16 is provided at an appropriate location outside the robot (such as the thigh 4 of the robot 1).
  • An electromagnetic on-off valve may be interposed in a communication pipe (gas flow passage) communicating with the accumulator (the accumulator is filled with pressurized gas). In this case, it is possible to increase the knee rotation assisting force generated by the spring means when the electromagnetic on-off valve is closed.
  • the accumulator is provided in this way, the knees that are not zero in response to changes in the volume of the air chamber of the spring means accompanying the knee flexion and extension movement in the open state of the electromagnetic on-off valve (period other than the lock period) Rotation assist force will be generated, but the maximum value of the knee rotation assist force will be sufficiently smaller than the knee rotation assist force generated by the spring means during the lock period when the electromagnetic on-off valve is closed.
  • the air chambers 16 and 17 are formed by the cylinder 14 and the piston 15. However, if the volume changes according to the knee flexion and extension motion, the chambers 14 and 17 are suitable.
  • the air chamber may be formed by a suitable bag member.
  • first to third embodiments show examples in which the present invention is applied to a biped robot.
  • the present invention can be applied to a robot having two or more legs. is there.
  • the assist device 12 is provided only in the knee joint 8. Furthermore, the hip joint 7 and the ankle joint 9 may be provided with an assist device similar to the assist device 12.
  • the joint 8 provided with the assist device 12 is a joint that enables the leg 3 to bend and extend, but the leg is provided with a direct acting joint.
  • a legged mobile robot may be provided with an assist device that applies an auxiliary driving force to the direct acting joint.
  • the leg joint assist device of the legged mobile robot according to the present invention can appropriately assist the leg joint of the legged mobile robot such as a biped robot with less power consumption. It is useful as something that can exert force.
  • FIG. 1 is a diagram schematically showing a schematic configuration of a legged mobile robot (biped mobile robot) including an assist device according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the assisting force generated by the spring means (gas spring) of the assist device provided in the robot of FIG. 1 and the bending angle of the knee joint.
  • FIG. 3 is a cross-sectional view showing a configuration of an electromagnetic on-off valve provided in the robot assist device of FIG. 1.
  • FIG. 4 is a block diagram showing a functional configuration of a control unit provided in the robot of FIG.
  • FIG. 5 is a flowchart showing processing of the control unit of FIG.
  • FIG. 6 is a flowchart showing subroutine processing of the flowchart of FIG.
  • Fig. 7 is a graph illustrating the change in the bending angle of the knee joint of the leg during the running motion of the robot in Fig. 1, and Fig. 7 (b) is the required rotation of the knee joint.
  • Fig. 7 (c) is a timing chart of the required operation mode of the electromagnetic on-off valve in the first embodiment
  • Fig. 7 (d) is an example of the on-off electromagnetic valve in the first embodiment.
  • FIG. 7 (e) is a timing chart of the energized state, and is a graph illustrating the change over time of the pressure difference (differential pressure) between the air chambers in the first embodiment.
  • FIG. 8 (a) is a graph illustrating the change over time in the bending angle of the knee joint during the running motion of the robot of FIG. 1, and FIG. 8 (b) is the assist device of the first embodiment.
  • FIG. 8 (c) is a graph illustrating the change in the assist drive power of the knee joint over time. The graph which illustrates the change with time of the torque which a motor generates with a continuous line.
  • ⁇ 10 A sectional view showing the configuration of the electromagnetic on-off valve provided in the assist device in the third embodiment of the present invention.
  • FIG. 12 (a) is a graph illustrating the change over time of the bending angle of the knee joint of the leg during the running motion of the robot of FIG. 1, and FIG. 12 (b) is the required rotational force of the knee joint.
  • Fig. 12 (c) is a timing chart of the required operation mode of the electromagnetic on-off valve in the third embodiment, and Fig. 12 (d) is an energization state of the on-off electromagnetic valve in the third embodiment.
  • FIG. 12 (e) is a graph illustrating the change over time of the pressure difference (differential pressure) between the air chambers in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Abstract

 アシスト装置12は、気室16,17に通じる気体流通路22の電磁開閉弁23を閉弁した状態で気体の圧縮または膨張によって、脚体3の膝関節(特定関節)8での屈伸運動に伴い補助駆動力を発生して、膝関節8に作用させる。電磁開閉弁23の開弁状態では、補助駆動力は発生しない。電磁開閉弁23は、自己保持機能を有する電磁開閉弁で構成され、電磁開閉弁23を閉弁状態とする所定期間で、気室16,17間の圧力差が弁体の閉弁方向に作用するように気体流通路22に介装される。これにより、簡単な構成で電磁開閉弁の電力消費を効果的に低減する。

Description

明 細 書
脚式移動ロボットの脚体関節アシスト装置
技術分野
[0001] 本発明は 2足移動ロボットのなどの脚式移動ロボットの脚体の関節に、該関節を駆 動するための関節ァクチユエータを補助する補助駆動力を発生する脚体関節アシス ト装置に関する。
背景技術
[0002] 従来、この種のアシスト装置としては、例えば本願出願人が先に提案した特開 200 3 - 103480号公報(以下、特許文献 1と!、う)の図 21に見られるものが知られて 、る
[0003] この特許文献 1の図 21のものは、 2足移動ロボットの各脚体の膝関節により連結さ れた 2つのリンク部材 (大腿部および下腿部)の間に、シリンダ内にピストンにより画成 された 2つ気室を有する気体ばねを介装し、この気体ばねにより、膝関節ァクチユエ ータ (膝関節を駆動する電動モータ)の駆動力と並列に膝関節に作用する補助駆動 力を発生させ、膝関節ァクチユエータの負担を軽減するようにしたものである。この場 合、シリンダ内の両気室の体積が膝関節における脚体の屈伸運動に応じて変化する ようにシリンダおよびピストンが大腿部および下腿部に連結され、該屈伸運動に応じ て両気室内の気体の圧縮または膨張を発生させることで、弾性的に補助駆動力を発 生させるようにしている。また、両気室は、電磁開閉弁を有する気体流通路を介して 接続されており、電磁開閉弁を閉弁させた状態でのみ、気体ばねが補助駆動力を発 生するようにして、電磁開閉弁を通電制御することで、ロボットの移動時の所望の期 間でのみ、補助駆動力を発生するようにしている。
[0004] ところで、通常の電磁開閉弁は、その弁体を開弁位置または閉弁位置に付勢する パネを備える常開型または常閉型のものであり、該電磁開閉弁のソレノイドの通電遮 断状態では、パネの付勢力により、開弁状態または閉弁状態に保持されるようになつ ている。そして、通常の電磁開閉弁は、そのソレノイドに通電して、パネの付勢力と逆 向きの駆動力(電磁力)を発生させ、また、その通電状態を維持することで、電磁開 閉弁の弁体がパネの付勢力に抗して閉弁位置または開弁位置に保持されるようにな つている。
[0005] このため、このような通常の電磁開閉弁を特許文献 1のもので使用すると、電磁開 閉弁の閉弁状態または開弁状態での電力消費が大きなものとなり、ロボットの移動時 の電力消費を低減する妨げとなっていた。
[0006] また、特許文献 1のものでは、電磁開閉弁の閉弁状態で、該電磁開閉弁の弁体に 前記両気室の圧力差が作用する。このため、特に常開型の電磁開閉弁を使用した 場合に、前記圧力差が前記パネの付勢力と同方向 (弁体の開弁方向)に作用するよ うな期間で前記補助駆動力を発生させるベく電磁開閉弁を閉弁状態にすると、ソレノ イドに通電すべき電流が大きくなつて、電磁開閉弁の電力消費が増大する。これを回 避するために、常閉型の電磁開閉弁を使用することも考えられるが、この場合には、 補助駆動力を発生しない電磁開閉弁の開弁状態で常時、電磁開閉弁のソレノイドに 通電しておく必要がある。し力しながら、一般に、補助駆動力を必要とする期間(電磁 開閉弁を閉弁すべき期間)は、ロボットの高速移動時など、特定の運動時の一部の 期間であるため、それ以外の期間で常に電磁開閉弁に通電しておくことは、却って、 電磁開閉弁の電力消費が増大してしまう。
[0007] 本発明は力かる背景に鑑みてなされたものであり、気室に通じる気体流通路の電 磁開閉弁を閉弁した状態での脚体の運動に伴う気体の圧縮または膨張によって補 助駆動力を発生する脚体関節アシスト装置において、簡単な構成でアシスト装置の 電磁開閉弁の電力消費を効果的に低減することができる脚体関節アシスト装置を提 供することを目的とする。
発明の開示
[0008] 本発明の脚式移動ロボットの脚体関節アシスト装置の第 1発明は、かかる目的を達 成するために、上体から複数のリンク部材を複数の関節を介して連接してなる脚体を 複数備えた脚式移動ロボットにおいて、各脚体の複数の関節のうちの少なくとも 1つ の関節を特定関節とし、該特定関節により連結された一対のリンク部材間の相対的 変位運動に連動して体積が変化するように設けられた気室と、該気室とその外部との 間の気体の流通を行なうべく該気室に連通して設けられた気体流通路と、該気体流 通路に開閉自在に設けられた電磁開閉弁とを備え、前記ロボットの移動時の所定期 間において該電磁開閉弁を閉弁させることにより前記気室を密封して、その密封状 態の気室の体積変化に伴う該気室内の気体の圧縮または膨張により該気体が発生 する弾性力を前記特定関節に対する補助駆動力とし、該補助駆動力を前記特定関 節を駆動する関節ァクチユエータの駆動力と併せて該特定関節に作用させると共に 、前記所定期間以外の期間では前記電磁開閉弁を開弁させて前記気室を非密封状 態にすることにより、該気室の体積変化に伴 、該気室内の気体が発生する弾性力の 最大値が少なくとも前記所定期間よりも小さくなる (例えば該弾性力がほぼ 0となる)よ うにした脚体関節アシスト装置であって、前記電磁開閉弁は、そのソレノイドへの一時 的な通電によって該電磁開閉弁の弁体の開閉状態が切り替り、且つ、その切り替り 後の弁体の開閉状態をソレノイドへの通電停止状態で保持する自己保持機能を持 つ電磁弁により構成されていることを特徴とする。
[0009] かかる第 1発明によれば、前記電磁開閉弁を自己保持機能を持つ電磁弁により構 成したので、電磁開閉弁の開閉をソレノイドに一時的に通電することで行なうことがで きる。その結果、電磁開閉弁の電力消費を低減することができる。
[0010] なお、電磁開閉弁の自己保持機能は、種々様々の公知の手段によって実現できる
。その手段としては、例えば、弁体に連結したプランジャを弁体の開位置ゃ閉位置で それぞれ永久磁石などの磁力により保持する手段、あるいは、該プランジャに形成し た凹部に弁体の開位置ゃ閉位置で該プランジャを係止する手段などが挙げられる。
[0011] かかる第 1発明では、前記所定期間は、前記気室と外部との間の圧力差が該所定 期間の開始時力も増カロした後、その開始時の圧力差にほぼ等しい圧力差まで減少 するように前記一対のリンク部材の相対的変位運動に連動して前記気室の体積が変 化する期間であり、前記電磁開閉弁は、前記所定期間において前記圧力差が該電 磁開閉弁の弁体にその閉弁方向に作用するように前記気体流通路に介装されてい ることが好適である (第 2発明)。
[0012] この第 2発明によれば、電磁開閉弁の閉弁状態で前記圧力差が前記電磁開閉弁 の弁体にその閉弁方向に作用するので、該弁体を閉弁状態に保持するための機構 を省略し、あるいは該機構を小型なものとすることができる。その結果、電磁開閉弁の 構成を小型で簡略なものとすることができる。また、電磁開閉弁の閉弁動作時にソレ ノイドに一時的に通電すべき電流を小さくすることができ、電磁開閉弁の電力消費を 効果的に低減できる。なお、電磁開閉弁の開弁状態では、弁体に圧力差が作用しな いので、該電磁開閉弁を開弁状態に保持するための機構などは小型で簡略なもの でよい。
[0013] この場合、前記電磁開閉弁を閉弁状態に保持する自己保持機能は、前記所定期 間で該電磁開閉弁の弁体に作用する前記圧力差によって実現されていることが好適 である (第 3発明)。これによれば、弁体を閉弁状態に保持するための機構を省略で きるので、電磁開閉弁を効果的に小型化できる。
[0014] また、本発明の脚式移動ロボットの脚体関節アシスト装置の第 4発明は、上体から 複数のリンク部材を複数の関節を介して連接してなる脚体を複数備えた脚式移動口 ボットにおいて、各脚体の複数の関節のうちの少なくとも 1つの関節を特定関節とし、 該特定関節により連結された一対のリンク部材間の相対的変位運動に連動して体積 が変化するように設けられた気室と、該気室とその外部との間の気体の流通を行なう ベく該気室に連通して設けられた気体流通路と、該気体流通路に開閉自在に設けら れた電磁開閉弁とを備え、前記ロボットの移動時の所定期間にお 、て該電磁開閉弁 を閉弁させることにより前記気室を密封して、その密封状態の気室の体積変化に伴う 該気室内の気体の圧縮または膨張により該気体が発生する弾性力を前記特定関節 に対する補助駆動力とし、該補助駆動力を前記特定関節を駆動する関節ァクチユエ ータの駆動力と併せて該特定関節に作用させると共に、前記所定期間以外の期間 では前記電磁開閉弁を開弁させて前記気室を非密封状態にすることにより、該気室 の体積変化に伴い該気室内の気体が発生する弾性力の最大値が少なくとも前記所 定期間よりも小さくなる (例えば該弾性力がほぼ 0となる)ようにした脚体関節アシスト 装置であって、
前記所定期間は、前記気室と外部との圧力差が該所定期間の開始時力 増加した 後、その開始時の圧力差にほぼ等しい圧力差まで減少するように前記一対のリンク 部材の相対的変位運動に連動して前記気室の体積が変化する期間であり、 前記電磁開閉弁は、前記所定期間にお 、て前記圧力差が該電磁開閉弁の弁体に その閉弁方向に作用するように前記気体流通路に介装されて 、ると共に、前記圧力 差が所定値以下に減少したときに該電磁開閉弁の弁体を閉弁状態力 開弁状態に 作動させるベく該弁体を開弁方向に付勢する付勢手段を備え、さらに該弁体の開弁 状態で該電磁開閉弁のソレノイドに通電することにより該弁体が前記付勢手段の付 勢力に杭して開弁状態力 閉弁状態に作動するように構成されており、
前記所定期間のうち、その開始時力 前記圧力差が前記付勢手段の付勢力に抗 して前記弁体を閉弁状態に保持し得る圧力差に増加するまでの期間だけ、前記電 磁開閉弁のソレノイドに通電するようにしたことを特徴とする。
[0015] この第 4発明では、前記電磁開閉弁は、その弁体が前記付勢手段により開弁方向 に付勢されているので、常開型の電磁開閉弁である。但し、この電磁開閉弁の弁体 には、前記所定期間 (電磁開閉弁を閉弁する期間)において、前記圧力差が該弁体 の閉弁方向に作用するので、該電磁開閉弁のソレノイドに前記所定期間の全体にわ たって通電しておく必要はなぐ前記所定期間の開始時力 前記圧力差が前記付勢 手段の付勢力に杭して前記弁体を閉弁状態に保持し得る圧力差に増加するまでの 期間だけ、一時的にソレノイドに通電すれば十分である。また、前記電磁開閉弁が前 記付勢手段を備えることで、前記圧力差が減少して、前記所定値以下に低下すれば 、該付勢手段の付勢力によって、自動的に電磁開閉弁は、閉弁状態から開弁状態 に切り替わり、その開弁状態に保持される。従って、前記所定期間の開始初期に一 時的に電磁開閉弁のソレノイドに通電するだけで、該所定期間にお ヽて電磁開閉弁 を閉弁状態に維持することができ、前記所定期間の開始初期以外の期間では、電磁 開閉弁のソレノイドに通電する必要がない。このため、電磁開閉弁の電力消費を効果 的に低減することができる。
[0016] 以上説明した第 1〜第 4発明では、前記一対のリンク部材のうちの一方のリンク部材 に連結されたシリンダと、前記一対のリンク部材のうちの他方のリンク部材に連結され 、該一対のリンク部材間の相対的変位運動に連動して前記シリンダ内を摺動するよう に該シリンダに内挿されたピストンとを備え、前記気室は、前記シリンダ内で前記ビス トンの両側に形成された一対の気室から構成され、前記気体流通路は、前記シリン ダ内の一対の気室を互いに連通する通路であることが好まし ヽ (第 5発明)。 [0017] この第 5発明によれば、前記一対のリンク部材間の相対的変位運動により、前記シ リンダ内の一方の気室の体積が減少すると、他方の気室の体積が増加することとなる 。このため、前記電磁開閉弁を閉弁状態にしたとき、前記シリンダ内の一方の気室の 気体が圧縮されると共に他方の気室の気体が膨張し、両気室内の気体が同時に弾 性力(前記補助駆動力)を発生することとなる。従って、小型なシリンダを用いて前記 気室を構成しつつ、前記所定期間において大きな補助駆動力を発生させることがで きる。なお、この第 5発明では、前記電磁開閉弁を開弁状態にしたときには、前記一 対のリンク部材間の相対的変位運動に連動して前記ピストンがシリンダ内で摺動して も、シリンダ内の両気室の圧力が互いにほぼ等しい状態に維持されるので、前記補 助駆動力はほぼ 0に維持されることとなる。また、第 5発明においては、シリンダ内の 一対の気室のうちの任意の一方の気室に対し、他方の気室は前記「外部」としての意 味を持つこととなる。
[0018] また、以上説明した第 1〜第 5発明では、前記所定期間は、脚式移動ロボットの高 速移動時など、該脚式移動ロボットの所定の歩容形態での移動時における各脚体の 着床状態での期間であることが好ましい (第 6発明)。これによれば、各脚体の関節に 比較的大きな駆動力を作用させる必要がある、該脚体の着床状態において、前記補 助駆動力を発生させ、前記特定関節の関節ァクチユエータの負担を効果的に軽減 できる。
[0019] また、前記脚式移動ロボットが、 2つの前記脚体を備える 2足移動ロボットであると共 に、各脚体には、その先端部と前記上体側の端部と間の中間部に該脚体の屈伸運 動を可能とする膝関節が設けられている場合には、、前記特定関節は、該膝関節で あることが好ましい (第 7発明)。すなわち、 2足移動ロボットでは、一般に、その移動 時に膝関節に必要な駆動力(回転力)が大きくなるので、その駆動力の一部を前記 補助駆動力で負担することで、前記特定関節の関節ァクチユエータの負担を効果的 に軽減できる。
[0020] この場合、前記所定の期間は、前記 2足移動ロボットの走行動作時に各脚体が着 床状態となる期間のうち、前記膝関節における該脚体の曲げ度合いの経時変化のパ ターンが該曲げ度合いの増加方向で凸となる期間であることが好ましい (第 8発明)。 あるいは、前記所定の期間は、前記 2足移動ロボットの走行動作時に各脚体が着床 状態となる期間のうち、前記膝関節に発生させるべき回転力の経時変化のパターン が該脚体の伸ばし方向で凸となる期間であることが好ましい (第 9発明)。すなわち、 2 足移動ロボットの走行動作時には、前記膝関節における該脚体の曲げ度合いの経 時変化のパターンが該曲げ度合 、の増加方向で凸となる期間(曲げ度合 、が増加し 、続いて減少する期間)で、該膝関節に発生させるべき回転力の経時変化のパター ンが該脚体の伸ばし方向で凸となる (脚体の伸ばし方向の回転力が増加し、続いて 減少する)。そして、この期間で必要な膝関節の回転力のピーク値 (脚体の伸ばし方 向の回転力)が特に大きなものとなりやすい。また、このとき、前記膝関節により連結 された一対のリンク部材間の相対的変位運動 (この場合は、屈伸運動)に連動して、 前記補助駆動力を、膝関節に発生させるべき回転力の経時変化のパターンと同じよ うなパターンで変化させることができる。従って、前記所定の期間を前記第 8発明ある いは第 9発明の如く設定することで、前記膝関節 (特定関節)の関節ァクチユエータ の負担を効果的に軽減できる。
[0021] また、前記第 1〜第 9発明では、前記脚式移動ロボットを該ロボットの目標歩容に追 従させるための前記特定関節の目標駆動力を決定する手段と、前記所定期間にお ける前記特定関節の関節ァクチユエータの駆動力を、該関節ァクチユエータの駆動 力と前記補助駆動力との和が前記決定した目標駆動力になるように制御する手段と を備えることが好ましい (第 10発明)。これによれば、脚式移動ロボットを目標歩容に 適切に追従させながら、前記特定関節の関節ァクチユエータの負担 (該関節ァクチュ エータに発生させる駆動力)を必要最低限に留めることができる。
発明を実施するための最良の形態
[0022] 本発明の第 1実施形態を図 1〜図 8を参照して説明する。この第 1実施形態は、前 記第 1〜第 3発明の実施形態である。図 1は本実施形態における脚式移動ロボットと しての 2足移動ロボットの構成を模式ィ匕して示した図である。同図示のように、ロボット 1はその基体である上体 2から下方に延設された 2本の脚体 3, 3を備えている。なお 、これらの脚体 3, 3は後述のアシスト装置を含めて同一構造であるため、一方の脚体 3 (図ではロボット 1の前方に向かって左側の脚体 3)については、その一部のみを図 示している。
[0023] 各脚体 3は、人間の脚と同様、大腿部 4、下腿部 5および足平部 6を上体 2から股関 節 7、膝関節 8、足首関節 9を介して順次連接して構成されている。より詳しく言えば、 各脚体 3の大腿部 4は、上体 2から股関節 7を介して延設され、下腿部 5は膝関節 8を 介して大腿部 4に連接され、足平部 6は足首関節 9を介して下腿部 5に連接されてい る。なお、大腿部 4、下腿部 5および足平部 6はそれぞれ本発明におけるリンク部材 に相当するものである。
[0024] この場合、股関節 7は、ロボット 1の前後、左右、上下方向の 3軸回りの回転動作が 可能とされ、膝関節 8は、左右方向の 1軸回りの回転動作が可能とされ、足首関節 9 は、前後、左右方向の 2軸回りの回転動作が可能とされている。これらの各関節 7, 8 , 9の回転動作により、各脚体 3は人間の脚とほぼ同様の運動が可能となっている。 そして、例えば膝関節 8には、その左右方向の 1軸回りの回転動作を行なうために、 関節ァクチユエータとしての電動モータ 10 (以下、膝関節電動モータ 10と 、う)が設 けられている。また、図示は省略するが、股関節 7には、その 3軸回りの回転動作を行 なうための 3個の電動モータが設けられ、足首関節 9には、その 2軸回りの回転動作 を行なうための 2個の電動モータが設けられている。
[0025] なお、本実施形態では、各足平部 6に作用する床反力(ロボット 1の前後、左右、上 下の 3軸方向の並進力および 3軸回りのモーメントを検出するために、各足平部 6は 6 軸力センサ 11を介して足首関節 9に連接されている。また、各関節 7, 8, 9には、そ の回転位置 (詳しくは、各関節 7〜9の電動モータの回転角)を検出するためのェンコ ーダ(図示しな 、)が備えられて 、る。
[0026] 本実施形態では、各脚体 3の膝関節 8を本発明における特定関節とし、前記膝関 節電動モータ 10による回転力と併せて膝関節 8に補助的に作用させる回転力(補助 駆動力)を必要に応じて発生するアシスト装置 12が各脚体 3毎に設けられている。こ のアシスト装置 12は、気体の圧縮または膨張によって補助駆動力を弾性的に発生 する気体ばねをばね手段 13として備えている。
[0027] このばね手段 13は、シリンダ構造のものであり、シリンダ(外筒) 14と、このシリンダ 1 4にその軸心方向に摺動自在に内挿されたピストン 15と、シリンダ 14内でピストン 15 の両側(図では上下)に形成された気室 16, 17とを備え、各気室 16, 17に空気など の気体が充填されている。シリンダ 14は、各脚体 3の大腿部 4の背面側で概略上下 方向(大腿部 4の長手方向に概略沿う方向)に延在して設けられ、その下端部 (底部 )に固設された連結部材 18が下腿部 5にフリージョイント 19を介して連結されている。 また、ピストン 15から上側の気室 16を貫通してシリンダ 14の上方に延設されたピスト ンロッド 20の先端部(上端部)がフリージョイント 21を介して大腿部 4に連結されてい る。
[0028] このような構成のばね手段 13にあっては、膝関節 8における大腿部 4と下腿部 5との 間の相対的変位運動としての屈伸運動(以下、膝屈伸運動という)に連動して、シリン ダ 14が傾動しつつ、ピストン 15がシリンダ 14内をその軸心方向に摺動し、これに伴 い各気室 16, 17の体積が変化するようになっている。この場合、気室 16, 17の一方 の体積の増加に伴い、他方の体積は減少する。
[0029] アシスト装置 12は、さらに、両気室 16, 17の間での気体の流通を適宜行なうため にこれらの気室 16, 17に連通してシリンダ 14に接続された気体流通路としての連通 管 22と、該連通管 22を開閉すべく該連通管 22に介装された電磁開閉弁 23とを備え ている。電磁開閉弁 23は、気室 16, 17内の気体に対する前記膝屈伸運動の伝達を 継断する手段としての機能を持つものであり、該電磁開閉弁 23の開閉によって、気 室 16, 17内の気体に前記膝屈伸運動が伝達される状態 (気室 16, 17内の気体が 膝屈伸運動に伴い弾性エネルギーを蓄積する状態)と、気室 16, 17の気体への膝 屈伸運動の伝達が遮断される状態 (気室 16, 17内の気体が弾性エネルギーを放出 する状態)とが切り替るようになって!/、る。
[0030] すなわち、電磁開閉弁 23を開弁したときには、両気室 16, 17は連通管 22を介して 連通し、両気室 16, 17内の気体が相互に流通自在となる。このため、膝屈伸運動に よって両気室 16, 17の体積が変化しても、両気室 16, 17内の気体は、ほぼ一定の 圧力に維持されて、該気体の圧縮または膨張がほとんど生じない。つまり、電磁開閉 弁 23の開弁状態では、両気室 16, 17内の気体には膝屈伸運動が実質的に伝達さ れず、該気体が弾性エネルギーを放出した状態(固体ばねの自然状態に相当する 状態)になる。従って、電磁開閉弁 23の開弁状態では、各気室 16, 17内の気体は、 弾性力 (膝関節 8に対する補助的な回転力)を発生しない状態 (弾性力がほぼ 0の状 態)となる。換言すれば、電磁開閉弁 23の開弁状態では、ばね手段 13は、ばねとし ての機能を持たないものとなる。補足すると、本実施形態では、気室 16に対しては、 気室 17は外部であり、気室 17に対しては、気室 16は外部である。
[0031] また、電磁開閉弁 23を閉弁することにより、両気室 16, 17が密封状態となり、各気 室 16, 17内の気体が外部に流出できない状態となる。この密封状態では、前記膝屈 伸運動による両気室 16, 17の体積変化に伴い、両気室 16, 17内の気体の圧縮ま たは膨張が発生し、該気体が弾性エネルギーを蓄積する。つまり、電磁開閉弁 23の 閉弁状態では、膝屈伸運動が両気室 16, 17内の気体に実質的に伝達されて (膝屈 伸運動が両気室 16, 17内の気体の圧縮または膨張を発生させるように該気体に伝 達される)、該気体が弾性エネルギーを蓄積し、それにより弾性力を発生する。換言 すれば、電磁開閉弁 23の閉弁状態では、ばね手段 13がばねとしての本来の機能を 膝屈伸運動に応じて発揮しつつ弾性力を発生することとなる。そして、その発生した 弾性力は、前記膝関節電動モータ 10による膝関節 8の回転力と並列に、該膝関節 8 の補助的な回転力 (補助駆動力。以降、膝回転補助力という)として膝関節 8に作用 する。
[0032] この場合、電磁開閉弁 23の閉弁状態でばね手段 13が発生する膝回転補助力は、 電磁開閉弁 23の閉弁状態の開始時点(開弁状態力も閉弁状態への切替時)力もの 、膝関節 8における脚体 3の曲げ角 Θ (以下、膝曲げ角 Θという。図 1参照)の変化量 に応じたものとなる。この膝回転補助力と、膝曲げ角 Θとの関係を例示するグラフを 図 2に示す。なお、本明細書の実施形態では、膝曲げ角 Θは、より詳しくは、図 1に 示す如ぐ脚体 3の大腿部 4の軸心に対する下腿部 5の軸心の傾斜角度として定義さ れたものであり、その Θの値は、膝関節 8における脚体 3の曲げ度合いが増加するに 伴い、大きくなる。また、本明細書の実施形態では、膝関節 8における脚体 3の曲げ 方向の回転力を正の値とし、脚体 3の伸ばし方向の回転力を負の値とする。
[0033] 図 2を参照して、電磁開閉弁 23の閉弁状態の開始時点における膝曲げ角 Θ (以下 、閉弁開始膝曲げ角という)が「θ 1」であるとすると、ばね手段 13が発生する膝回転 補助力は、例えばグラフ aで示すような特性で膝曲げ角 Θに対して変化する。また、 閉弁開始膝曲げ角 0力「 0 2」( 0 1 > 0 2)であるとすると、ばね手段 13が発生する膝 回転補助力は、例えばグラフ bで示すような特性で膝曲げ角 Θに対して変化する。
[0034] いずれの場合でも、膝曲げ角 Θが閉弁開始膝曲げ角力 増加するに伴い、ばね手 段 13のピストン 15が下方に摺動して、上側の気室 16の気体が膨張しつつ下側の気 室 17の気体が圧縮され、下側の気室 17の気体の圧力が上側の気室 16の気体よりも 高くなつていく。従って、膝曲げ角 Θが閉弁開始膝曲げ角力も増加するに伴い、膝 回転補助力が脚体 3の伸ばし方向に増加していく。また、これと逆に、膝曲げ角 Θが 閉弁開始膝曲げ角力 減少するに伴 、、膝回転補助力が脚体 3の曲げ方向に増加 していく。なお、閉弁開始膝曲げ角では、膝回転補助力はほぼ 0である。
[0035] 補足すると、閉弁開始膝曲げ角によらずに、膝曲げ角 Θの変化に対する膝回転補 助力の変化の特性(図 2の各グラフ a, bの形状)はほぼ一定である。また、電磁開閉 弁 23の開弁状態では、膝屈伸運動によらずに両気室 16, 17の気体の圧力が互い にほぼ等しい一定の圧力に維持されるので、膝回転補助力は、膝曲げ角 Θによらず に定常的にほぼ 0になる。
[0036] ここで、前記電磁開閉弁 23のより詳細な構成を図 3を参照して説明する。図 3は本 実施形態での電磁開閉弁 23の断面図を示している。この電磁開閉弁 23は、前記連 通管 22のうち、気室 16側の連通管 22aに通じる流通路 30と、気室 17側の連通管 22 bに通じる流通路 31とが形成された弁体ケース 32内に弁体 33を備えて 、る。弁体 3 3は、図示の如く両流通路 30, 31を連通させる位置(図示の位置。以下、開弁位置と いう)と、該弁体 33が弁座 34に当接して両流通路 30, 31を遮断する位置(以下、閉 弁位置という)との間で矢印 Y1の方向(図の左右方向)に移動自在に設けられている 。この弁体 33には、その可動方向に延在するプランジャ 35が連結されており、このプ ランジャ 35が弁体ケース 32に固設された駆動部ケース 36内の揷入孔 37に挿入され て、該挿入孔 37内を弁体 33の可動方向と同方向に摺動自在に設けられている。駆 動部ケース 36内のプランジャ 35の周囲には、永久磁石 38と、ソレノイド 39とがプラン ジャ 35の軸方向(弁体 33の可動方向)に間隔を存して設けられている。永久磁石 38 は、弁体 33が開弁位置にあるときに、弁体 33を開弁位置に保持する磁力をプランジ ャ 35に作用させるものである。 [0037] このような構造の本実施形態の電磁開閉弁 23では、弁体 33の開弁位置から閉弁 位置への移動動作 (電磁開閉弁 23の閉弁動作)と、弁体 33の閉弁位置力も開弁位 置への移動動作 (電磁開閉弁 23の開弁動作)とは、ソレノイド 39に互いに逆方向の 電流を一時的に通電することで行なわれるようになつている。すなわち、電磁開閉弁 23の閉弁動作を行なうときには、ソレノイド 39に所定方向の電流(以下、閉電流とい う)を一時的に通電することで、ソレノイド 39が発生する電磁力によりプランジャ 35が 弁体ケース 32側から後退して、弁体 33が開弁位置から閉弁位置に移動する(電磁 開閉弁 23が開弁状態カも閉弁する)。また、電磁開閉弁 23の開弁動作を行なうとき には、ソレノイド 39に前記閉電流と逆方向の電流(以下、開電流という)を一時的に通 電することで、ソレノイド 39が発生する電磁力によりプランジャ 35が弁体ケース 32側 に前進して、弁体 33が閉弁位置力も開弁位置に移動する (電磁開閉弁 23が閉弁状 態から開弁する)。
[0038] そして、本実施形態の電磁開閉弁 23では、その開弁動作後にソレノイド 39への開 電流の通電を停止しても永久磁石 38の磁力によってプランジャ 35が弁体 33の開弁 位置に対応する位置 (図に示す位置)に保持され、電磁開閉弁 23の開弁状態が保 持されるようになっている。さらに、本実施形態では、電磁開閉弁 23の閉弁は、後述 するように、その閉弁動作後に、前記ばね手段 13の気室 16, 17の圧力差が前記流 通路 30, 31を介して弁体 33の閉弁方向(弁体 33を閉弁位置に付勢する方向)に作 用する期間 (気室 17の圧力が気室 16の圧力よりも高くなる期間)で行なわれるように なっている。換言すれば、電磁開閉弁 23は、それを閉弁状態とすべき期間において 、弁体 33の閉弁方向に気室 16, 17間の圧力差が作用するように連通管 22に介装さ れている。従って、電磁開閉弁 23の閉弁状態では、その圧力差 (以下、差圧という) によって、ソレノイド 39への閉電流の通電を停止しても弁体 33が閉弁位置に保持さ れるようになっている。このように電磁開閉弁 23は、ソレノイド 39への閉電流、開電流 の通電を停止した後も、弁体 33の閉弁状態、開弁状態を保持する自己保持機能を 有している。この場合、閉弁状態への保持機能は、上記差圧により実現される。また 、開弁状態への保持機能は、永久磁石 38の磁力により実現される。
[0039] 図 1の説明に戻って、ロボット 1の上体 2には、各脚体 3の各関節 7, 8, 9の動作制 御などを行なう制御ユニット 40と、各関節 7, 8, 9の電動モータや電磁開閉弁 23など の電源としての蓄電装置 41と、上体 2の姿勢 (鉛直方向に対する傾斜角や鉛直方向 の軸回りの回転角)を検出する姿勢センサ 42と、各電動モータの通電を制御するた めのモータドライバ回路 43とが搭載されている。姿勢センサ 42は、ジャイロセンサ、 加速度センサ等力も構成されたものである。また、蓄電装置 41は、ノ ッテリ(二次電 池)やコンデンサなど力 構成されたものである。
[0040] 制御ユニット 40は、マイクロコンピュータなどを含む電子回路により構成されたもの であり、図 4のブロック図に示すように、その主な機能的構成として、歩容生成器 51、 モータ制御器 52、および電磁開閉弁制御器 53を備えている。
[0041] 歩容生成器 51は、ロボット 1の目標歩容を規定する歩容パラメータ (歩幅、歩容周 期、運動モードなど)を外部からの指令、あるいはあらかじめ設定されたティーチング データ (移動計画データ)などに応じてロボット 1の移動時の 1歩毎 (支持脚が切り替 る毎)に決定し、さらにこの歩容パラメータを基に所定の制御サイクル毎の目標歩容( 瞬時目標歩容)を逐次生成するものである。ここで、本実施形態で歩容生成器 51が 決定する歩容パラメータは、ロボット 1に通常的な歩行動作を行わせる目標歩容や、 ロボット 1に人間の走行動作と同様な走行動作を行わせる目標歩容などを規定する ノ ラメータである。そして、該目標歩容は、例えばロボット 1の上体 2の位置および姿 勢の目標値 (以下、目標上体位置姿勢という)と、ロボット 1の各足平部 6の位置およ び姿勢の目標値 (以下、目標足平位置姿勢という)と、両足平部 6, 6に作用する床反 力(並進力およびモーメント)の合力(全床反力)の目標値 (以下、目標全床反力と!、 う)と、該全床反力の作用点としての ZMP (Zero Moment Point)の目標位置(以下、 目標 ZMPという)とから構成されるものである。なお、目標歩容の構成要素のより具体 的な内容については、例えば本願出願人が特開平 11— 300660号公報にて詳細に 説明している通りであるので、ここでは詳細な説明を省略する。また、目標歩容の内 容は、必ずしも上記公報に開示されているものに限られるものではなぐ基本的には 、ロボット 1の目標とする運動形態を表現できるものであればよい。
[0042] 電磁開閉弁制御器 53は、アシスト装置 12の電磁開閉弁 23の動作制御を行なう機 能を担うものである。この電磁開閉弁制御器 53は、歩容生成器 51により生成された 目標歩容あるいはこれを規定する歩容パラメータに応じて、後述するように電磁開閉 弁 23を閉弁状態とすべき期間 (以下、ロック期間という)と、電磁開閉弁 23を開弁状 態とすべき期間(以下、フリー期間という)とを決定する。そして、電磁開閉弁制御器 5 3は、ロック期間では、電磁開閉弁 23を閉弁状態にするように電磁開閉弁 23を通電 制御し、フリー期間では、電磁開閉弁 23を開弁状態にするように電磁開閉弁 23を通 電制御する。なお、ロック期間以外の期間はフリー期間、フリー期間以外の期間は口 ック期間であるので、いずれか一方の期間を決定すれば、他方の期間は従属的に決 定される。従って、実際上は、ロック期間およびフリー期間のいずれか一方のみを決 定すればよぐ本実施形態では、ロック期間を決定するようにしている。
[0043] モータ制御器 52は、前記膝関節電動モータ 10を含めて、各関節 7, 8, 9の電動モ ータを逐次制御する(詳しくは該電動モータの回転角を逐次制御する)ものである。こ のモータ制御器 52は、歩容生成器 51により生成された目標歩容や、前記姿勢セン サ 42により検出される上体 2の実傾斜角(鉛直方向に対する実際の傾斜角)、図示し ないエンコーダを用いて検出される脚体 3の各関節 7, 8, 9の実回転角、前記 6軸力 センサ 11により検出される各足平部 6の実床反力、前記電磁開閉弁制御器 53により 決定される前記ロック期間 (もしくはフリー期間)のデータ等に基づいて、後述するよう に、各電動モータに発生させるべきトルクを規定するトルク指令 (具体的には電動モ ータの通電電流の指令値)を逐次生成する。そして、該モータ制御器 52は、生成し たトルク指令をモータドライバ回路 43に出力し、該モータドライバ回路 43を介してトル ク指令に応じたトルクを各電動モータに発生させる。
[0044] 次に、本実施形態のシステムの作動を図 5のフローチャートを参照して説明する。
前記制御ユニット 40は、時刻計時を行なうタイマの初期化等の所定の初期化処理を 行った後、あら力じめ定められた所定の制御サイクル (例えば 50ms)毎に、図 5のフロ 一チャートの処理を実行する。すなわち、制御ユニット 40は、まず、ロボット 1の歩容 の切替わりタイミングであるか否かを判断する(STEP1)。ここで、歩容の切替わりタイ ミングは、詳しくは、ロボット 1の移動時の支持脚が一方の脚体 3から他方の脚体 3に 切替わるタイミングである。そして、 STEP1で歩容の切替わりタイミングでない場合に は、制御ユニット 40の処理は後述の STEP3の処理に進む。 [0045] また、 STEP1で歩容の切替わりタイミングである場合には、制御ユニット 40は、外 部から与えられるロボット 1の動作指令や、あら力じめ設定された移動計画データに 基づいて、ロボット 1の目標歩容を規定する歩容パラメータを前記歩容生成器 51によ り生成 (更新)する(STEP2)。ここで、該歩容生成器 51が生成する歩容パラメータに より規定される目標歩容は、例えば次回の歩容の切替わりタイミング、もしくは、それ よりも若干先のタイミングまでの目標歩容である。また、この場合、例えばロボット 1の 走行動作を行うべき旨の動作指令が外部力 与えられている場合や、ロボット 1の移 動計画データによってロボット 1の走行動作を行うべき状況である場合には、歩容生 成器 51が生成する歩容パラメータにより規定される目標歩容は、ロボット 1の走行動 作の目標歩容 (人間の走行時の足運びと同じような足運びで脚体 3, 3の運動を行う ような目標歩容)である。
[0046] 次いで、制御ユニット 40は、 STEP3〜5の処理をモータ制御器 52により実行する。
この STEP3〜5の処理は、ばね手段 13から膝関節 8に膝回転補助力が作用しない 場合 (アシスト装置 12の電磁開閉弁 23が開弁状態であるとした場合)に、前記目標 歩容にロボット 1の運動を追従させるために要する各関節 7, 8, 9の電動モータのトル ク指令(以下、基本トルク指令という)を求めるための処理である。尚、この STEP3〜 5の処理は、本願出願人による特開平 11— 300660号公報にて詳細に説明されて いるので、以下に STEP3〜5の処理の概要を説明する。
[0047] STEP3では、制御ユニット 40は、歩容生成器 51により現在生成されている歩容パ ラメータに基づいて瞬時目標歩容を求める。この瞬時目標歩容は、制御ユニット 40 の処理の制御サイクル毎の目標歩容である。該瞬時目標歩容は、先にも述べたよう に、より具体的には、制御サイクル毎の、目標上体位置姿勢、目標足平位置姿勢、 目標全床反力、目標 ZMPと力 成る。尚、 STEP3の処理では、さらに、上記目標足 平位置姿勢、目標全床反力、目標 ZMP等に基づいて、制御サイクル毎の各脚体 3 の目標床反力及びその目標床反力の作用点も求められる。
[0048] STEP4では、制御ユニット 40は、複合コンプライアンス動作処理により、上記瞬時 目標歩容のうちの目標足平位置姿勢を修正する。この複合コンプライアンス動作処 理では、より詳しくは、ロボット 1の上体 2の実傾斜角(これは前記姿勢センサ 42により 検出される)を、前記目標上体位置姿勢により定まる目標傾斜角に復元させる (上体
2の実傾斜角と目標傾斜角との偏差を 0に収束させる)ためにロボット 1に作用させる べき床反力(モーメント)が求められる。そして、この床反力(モーメント)と上記目標全 床反力との合力を、ロボット 1に実際に作用させるべきトータルの床反力の目標値とし 、この目標値に、各足平部 6の 6軸力センサ 11により検出される各足平部 6の実床反 力の合力を追従させるように、制御サイクル毎の目標足平位置姿勢が修正される。こ のような複合コンプライアンス動作処理は、ロボット 1の姿勢の自律的な安定性を確保 するためのものである。
[0049] そして、 STEP5では、制御ユニット 40は、ロボット 1の各脚体 3の関節 7, 8, 9の各 電動モータに対する基本トルク指令を求める。この処理では、より具体的には、瞬時 目標歩容における目標上体位置姿勢、上述のように STEP4で修正された目標足平 位置姿勢等から、ロボット 1のモデル(剛体リンクモデル)に基づく逆キネマティスク演 算処理によって、ロボット 1の各脚体 3の各関節 7, 8, 9の目標回転角が求められる。 そして、この目標回転角に、各関節 7, 8, 9の実回転角(これは、各関節 7, 8, 9に備 えた図示しないエンコーダにより検出される)を追従させるように、各関節 7, 8, 9の電 動モータのトルク指令が求められる。
[0050] この場合、例えば各脚体 3の膝関節電動モータ 10のトルク指令は、膝関節 8の目標 回転角(膝曲げ角 Θの目標値)と該膝関節 8の実回転角(膝曲げ角 Θの検出値)との 偏差 Δ Θと、該脚体 3に対する前記目標床反力を発生させるために必要な電動モー タ 10のトルク Tff (以下、基準トルク Tffという)とから、次式(1)により求められる。
[0051]
基本トルク指令 =Κρ· Δ θ +Kv (d A Θ Zdt) +Tff …… (1) 尚、式(1)の演算に用いる基準トルク Tffは、目標上体位置姿勢、目標足平位置姿 勢、脚体 3に対する目標床反力や、各関節 7, 8, 9の目標回転角加速度等から、ロボ ット 1のモデル (動力学モデル)に基づく逆動力学演算処理によって求められる。また 、式(1)中の Kp、 Κνは、あら力じめ定められたゲイン係数であり、 d A Θ Zdtは、偏差 Δ Θの時間微分値である。 [0052] ここで、式(1)の右辺第 1項及び第 2項は、上記偏差 Δ Θに応じたフィードバック制 御項であり、右辺第 3項は、脚体 3に作用する床反力や慣性力の影響を補償するた めのフィードフォワード制御項である。そして、特に、右辺第 2項は、膝曲げ角 Θの目 標値に対する振動を速やかに減衰させる緩衝機能 (ダンピング機能)を有する項であ る。
[0053] 膝関節 8以外の他の関節 7, 9の各電動モータについても上記と同様に基本トルク 指令が求められる。このようにして求められる基本トルク指令は、先にも説明したよう に、アシスト装置 12のばね手段 13による膝回転補助力が膝関節 8に作用しな 、状態 で、前記目標歩容にロボット 1の運動を追従させるために要する各関節 7, 8, 9の電 動モータのトルク指令である。
[0054] 制御ユニット 40は、次に、 STEP6において、アシスト装置 12の電磁開閉弁 23の通 電制御処理を前記電磁開閉弁制御器 53により実行する。この処理は、図 6のフロー チャートに示すサブルーチン処理により実行される。すなわち、電磁開閉弁制御器 5 3は、まず、歩容生成器 51により現在設定されている歩容パラメータに基づいて、電 磁開閉弁 23を閉弁状態とすべきロック期間を設定する(STEP6— 1)。この場合、本 実施形態では、歩容パラメータが例えばロボット 1の通常的な歩行動作を行わしめる 歩容パラメータである場合には、電磁開閉弁制御器 53は、その歩行動作の全期間 にわたつて、電磁開閉弁 23を開弁状態とする(ばね手段 13による膝回転補助力を膝 関節 8に作用させない)。従って、この場合には、ロック期間は設定されない。
[0055] 一方、歩容パラメータが例えばロボット 1の走行動作 (人間の走行動作と同様の走 行動作)を行わしめる歩容パラメータである場合には、以下に説明するように、ロボッ ト 1の歩容の所定の期間において、電磁開閉弁 23を閉弁状態とするようにロック期間 が設定される。
[0056] ここで、このロック期間の設定について具体的に説明する前に、本実施形態におけ るロボット 1の走行動作における目標歩容によって定まる目標膝曲げ角と、この目標 膝曲げ角に対応して膝関節 8に作用させるべき回転力(以下、必要膝回転力という) とについて図 7を参照して説明する。図 7 (a)は、ロボット 1の走行動作時 (人間の通常 的な走行動作と同じような足運び形態での走行動作)において、脚体 3, 3のいずれ か一方側の脚体 3の膝関節 8の目標膝曲げ角の経時的変化を例示しており、図 7 (b )は、図 7 (a)の目標膝曲げ角に対応する必要膝回転力の経時的変化を例示して 、 る。なお、図 7 (c)は、電磁開閉弁 23の要求動作モードのタイミングチャート、図 7 (d) は、開閉電磁弁 23の通電状態のタイミングチャート、図 7 (e)は、ばね手段 13の両気 室 16, 17間の差圧の経時的変化を例示している。
[0057] 人間の通常的な走行動作と同様の形態でロボット 1の走行動作を行う場合、目標膝 曲げ角は、図 7 (a)に示すように、脚体 3が着床状態となる支持脚期の前半では増加 する (膝関節 8における脚体 3の曲げ度合いが大きくなる)。そして、支持脚期の後半 では、該支持脚期の終了直前まで目標膝曲げ角は減少する (膝関節 8における脚体 3の曲げ度合いが小さくなる)。さらに、該支持脚期の終了直前から、遊脚期 (脚体 3 の足平部 6が離床状態となる期間)の前半にかけて、目標膝曲げ角は増カロして 、き、 その後、遊脚期の後半では、該遊脚期の終了直前まで、目標膝曲げ角は減少して いく。尚、遊脚期の終了直前では、目標膝曲げ角は若干増加する。従って、走行動 作時の目標膝曲げ角は、支持脚期の中間時点と、遊脚期の中間時点で極大値を採 り、また、支持脚期の終了直前で極小値を採る。
[0058] また、図 7 (b)に示すように、必要膝回転力(脚体 3の曲げ方向の回転力を正の値、 伸ばし方向の回転力を負の値とする)は、支持脚期の前半 (概ね目標膝曲げ角が増 加する期間)では、正の回転力から負の回転力に大きく減少し (脚体 3の伸ばし方向 に回転力が大きく増加する)、支持脚期の後半では、該支持脚期の終了直前まで( 概ね目標膝曲げ角が減少する期間)、ほぼ「0」の回転力まで増加する。そして、支持 脚期の終了直前から遊脚期の前半かけては、必要膝回転力は、若干負の値に緩や かに減少し、その後、遊脚期の後半では、必要膝回転力は、負の値から正の値に緩 やかに増力!]していく。従って、走行動作時の必要膝回転力は、特に、支持脚期にお いて、脚体 3の伸ばし方向に大きくなり、また、その伸ばし方向の必要膝回転力は、 該支持脚期のほぼ中間時点(この時点は、概ね、膝曲げ角が極大値となる時点と一 致する)で最大となる。
[0059] 本実施形態では、ロボット 1の走行動作時のこのような目標膝曲げ角と、必要膝回 転力との特性を考慮し、基本的には、脚体 3の支持脚期のうち、必要膝回転力が脚 体 3の伸ばし側に大きくなる期間(例えば図 7の時刻 T1から時刻 T2の期間)をロック期 間として設定する。そのロック期間は、より詳しく言えば、支持脚期のうち、必要膝回 転力が脚体 3の伸ばし方向に凸となる期間、あるいは、膝曲げ角がその増加方向に 凸となる期間である。そして、このロック期間において、図 7 (c)のタイミングチャートに 示す如く開閉電磁弁 23を閉弁状態にするように制御することで、前記アシスト装置 1 2のばね手段 13による膝回転補助力を膝関節 8に作用させる。
[0060] 一方、上記のようにロック期間を設定して、このロック期間で開閉電磁弁 23を閉弁 状態にするようにしたとき、ばね手段 13の両気室 16, 17間の差圧 (気室 17の圧力— 気室 16の圧力)は、図 7 (e)に示すように、ロック期間の開始時(時刻 T1)から膝曲げ 角の増加に伴 、増加し、これに続く膝曲げ角の減少に伴 、ロック期間の終了時(時 刻 T2)まで減少する。そして、本実施形態では、前述したように気室 16, 17はそれぞ れ電磁開閉弁 23の流通路 22a, 22bに連通しているため、この差圧は、電磁開閉弁 23の弁体 33に対してその閉弁方向に作用する。従って、ロック期間の終了時に電磁 開閉弁 23の開弁動作 (閉弁状態力も開弁状態への切替)を確実に行なうためには、 上記差圧がある差圧値 P2以下に低下していることが必要である。その差圧値 P2は、 電磁開閉弁 23のソレノイド 39に開電流を通電したときにプランジャ 35に作用する弁 体 33の開弁方向への駆動力が、差圧値 P2の差圧による弁体 33の閉弁方向への駆 動力に打ち勝つような差圧値のうちの最大値 (以下、開弁可能許容差圧値 P2と 、う) である。
[0061] これらのことを考慮し、前記 STEP6— 1では、例えば次のようにロック期間が設定さ れる。
[0062] すなわち、歩容生成器 51により現在設定されている歩容パラメータがロボット 1の走 行動作に対応する歩容パラメータである場合には、電磁開閉弁制御器 53は、まず、 その歩容パラメータに基づいて、脚体 3の支持脚期における目標膝曲げ角(詳しくは 目標膝曲げ角の支持脚期における経時変化の時系列)を求める。そして、電磁開閉 弁制御器 53は、ロック期間の開始時における目標膝曲げ角 Θ offinin,すなわち閉弁 開始膝曲げ角の目標値 Θ offinin (以下、閉弁開始目標膝曲げ角 Θ offininという)を決 定し、支持脚期において、目標膝曲げ角が Θ offinin以上となる期間(図 7の時刻 T1か ら時刻 T2までの期間)をロック期間として設定する。なお、ロック期間の終了時刻 Τ2は 、目標膝曲げ角が閉弁開始目標膝曲げ角 0 offinin力 増カロした後、 0 ffininに復帰 する時刻となる。
[0063] ここで、 Θ offininは、支持脚期における目標膝曲げ角の最小値に近い値であって、 支持脚期の開始後、必要膝回転力が曲げ方向の値 (正の値)から伸ばし方向の値( 負の値)に変化する直後における膝曲げ角の値の近傍の値になり、且つ、ロック期間 の終了時に目標膝曲げ角が Θ offininまで減少した時における差圧が前記開弁可能 許容差圧値 P2以下になるように決定される。気室 16, 17間の差圧は、膝曲げ角に応 じたものとなるので、例えば膝曲げ角と差圧との相関関係をあら力じめ求めておけば 、その相関関係に基づいて Θ offininを決定できる。なお、本実施形態では、ロック期 間の開始時と終了時との目標膝曲げ角が同じ値( =閉弁開始目標膝曲げ角 Θ offinin )になるようにしたが、必ずしもそれらが同じ値になるようにロック期間を設定する必要 はない。ロック期間の終了時における目標膝曲げ角 Θは、差圧が開弁可能上限差圧 値 P2以下であれば、ロック期間の開始時の目標膝曲げ角 Θと多少異なっていてもよ い。
[0064] 次いで、 STEP6— 2において、電磁開閉弁制御器 53は、ロック期間の開始時に電 磁開閉弁 23の閉弁動作 (開弁状態力も閉弁状態への切替)を行なうために電磁開 閉弁 23のソレノイド 39に閉電流を通電すべき時間である閉電流通電時間 A Tclose ( 図 7 (d)を参照)と、ロック期間の終了時に電磁開閉弁 23の開弁動作 (閉弁状態から 開弁状態への切替)を行なうために電磁開閉弁 23のソレノイド 39に開電流を通電す べき時間である開電流通電時間 A Topen (図 7 (d)を参照)とを決定する。これらの閉 電流通電時間 A Tcloseおよび開電流通電時間 A Topenは、例えば電磁開閉弁 23の 閉弁動作、開弁動作を確実に行なうことができるようにあらかじめ定められた所定時 間に決定される。なお、本実施形態では、電磁開閉弁 23の閉弁動作後の閉弁状態 は、気室 16, 17間の差圧によって保持する。従って、閉電流通電時間 A Tcloseは、 その差圧がソレノイド 39への閉電流の通電停止時に、電磁開閉弁 23を確実に閉弁 状態に保持し得るような差圧(図 7 (e)の差圧値 P1)に上昇しているような時間に設定 することが望ましい。この場合、例えば目標膝曲げ角を基に、差圧が電磁開閉弁 23 を確実に閉弁状態に保持し得る差圧値 PIまで上昇するタイミングを判断し、ロック期 間の開始時力 そのタイミングまでの時間を閉電流通電時間として決定すればよい。
[0065] 次いで、現在時刻 tが Tl≤t<Tl + A Tcloseである力、 T2≤t<T2+ A Topenであ る力、あるいはそれ以外の時刻であるかが STEP6— 3で判断される。そして、 Tl≤t く T1 + A Tcloseであるときには、電磁開閉弁制御器 53は、電磁開閉弁 23のソレノィ ド 39に閉電流を通電する(STEP6—4)。これにより、ロック期間の開始時刻 T1から A Tcloseの時間だけソレノイド 39に閉電流が通電され、電磁開閉弁 23の閉弁動作 が行なわれる。また、 T2≤t<T2+ A Topenであるときには、電磁開閉弁制御器 53は 、電磁開閉弁 23のソレノイド 39に開電流を通電する(STEP6— 5)。これにより、ロッ ク期間の終了時刻 T2から A Topenの時間だけソレノイド 39に開電流が通電され、電 磁開閉弁 23の開弁動作が行なわれる。そして、現在時刻 tが Tl≤t<Tl + A Tclose でなぐ且つ、 T2≤t<T2+ A Topenでないときには、電磁開閉弁制御器 53は、電磁 開閉弁 23のソレノイド 39への閉電流および開電流の通電を遮断する(STEP6 - 6)
[0066] 以上が、 STEP6の処理の詳細である。このように本実施形態では、ロック期間の開 始時に電磁開閉弁 23に閉電流を一時的に通電することで、電磁開閉弁 23の閉弁 動作が行なわれ、その閉電流の通電停止後は前記差圧によって、電磁開閉弁 23が 閉弁状態に保持される。そして、ロック期間の終了時に電磁開閉弁 23に開電流を一 時的に通電することで、電磁開閉弁 23の開弁動作が行なわれる。なお、開電流の通 電停止後は、前記永久磁石 38の磁力によって、電磁開閉弁 23が開弁状態に保持さ れる。
[0067] 図 6のフローチャートの説明に戻って、制御ユニット 40は、上述のように STEP6の 処理を実行した後、アシスト装置 12のばね手段 13による膝回転補助力(詳しくは制 御周期毎の膝回転補助力)を推定する (STEP7)。この膝回転補助力の推定値は、 モータ制御器 52が、膝関節電動モータ 10に対する最終的なトルク指令を決定する ために用いるものであり、該モータ制御器 52により例えば次のように求められる。す なわち、モータ制御器 52は、ロック期間の開始時における目標膝曲げ角(= Θ oflmin )、あるいは、ロック期間の開始時において図示しないエンコーダにより検出される膝 曲げ角 Θを閉弁開始膝曲げ角として記憶保持する。なお、閉弁開始膝曲げ角として 記憶保持する膝曲げ角は、前記複合コンプライアンス動作処理により修正された目 標足平位置姿勢に対応して定まる膝曲げ角を用いるようにしてもょ 、。
[0068] 次いで、モータ制御器 52は、ばね手段 13による膝回転補助力を推定する。この場 合、本実施形態では、図 2の実線 a, bで示したようなばね手段 15の膝回転補助力の 特性を表すデータ (データテーブルや演算式など)があらかじめ図示しな!、メモリに 記憶保持されている。そして、電磁開閉弁 23を閉弁状態とするロック期間であるとき には、前述のように記憶保持した閉弁開始膝曲げ角と、現在の膝曲げ角 Θの検出値 (あるいは目標値)と、膝回転補助力の上記の特性データとから、ばね手段 13による 膝回転補助力が推定される。例えば図 2を参照して、閉弁開始膝曲げ角が「 Θ 2」で、 現在の膝曲げ角が Θ kである場合には、膝回転補助力の推定値は「Mk」となる。尚、 フリー期間での膝回転補助力は「0」である。また、膝回転補助力は、力センサ等を用 いて直接的に検出するようにすることも可能である。
[0069] 上述のようにして STEP7で膝回転補助力を推定した後、制御ユニット 40は、モー タ制御器 52により、脚体 3の各関節 7, 8, 9の電動モータの制御サイクル毎の最終的 なトルク指令としての最終トルク指令を決定する(STEP8)。この場合、膝関節電動モ ータ 10に対する最終トルク指令は、前記 STEP5で式(1)により求めた基本トルク指 令 (膝回転補助力が「0」であると仮定した場合に目標歩容に応じて膝関節 8に発生 させるべきトルク)から、前記 STEP7で求めた膝回転補助力を減算することで決定さ れる。すなわち、膝関節電動モータ 10に対する最終トルク指令 (膝関節電動モータ 1 0に実際に発生させるべきトルクの指令値)と膝回転補助力との和が基本トルク指令と なるように膝関節電動モータ 10に対する最終トルク指令を生成する。尚、本実施形 態では膝関節 8以外の関節 7, 9の電動モータに対する最終トルク指令は、前記基本 トルク指令がそのまま用いられる。
[0070] 次 、で、制御ユニット 40は、上述のように決定した最終トルク指令をモータドライバ 回路 43に出力し (STEP9)、これにより制御サイクル毎の処理を終了する。この最終 トルク指令の出力に応じて、各関節 7, 8, 9の電動モータに通電され、該電動モータ の回転角、すなわち、各関節 7, 8, 9の回転角が前記目標上体位置姿勢や目標足 平位置姿勢 (前記複合コンプライアンス動作処理による修正を施したもの)により定ま る所要の回転角に追従するように制御される。従って、歩容パラメータにより規定され る目標歩容に従って、ロボット 1の移動が行われる。
[0071] 力かる本実施形態のシステムでは、図 8 (a)に示す如ぐ各脚体 3の支持脚期にお いて、目標膝曲げ角が閉弁開始目標膝曲げ角 0 offinin以上となる期間がロック期間 として決定され、このロック期間において、電磁開閉弁 23が閉弁状態とされる。なお、 図 8 (a)は、図 7 (a)と同じであり、ロボット 1の走行動作時の目標膝曲げ角の経時的 変化を例示している。また、図 8 (b)は、図 8 (a)の目標膝曲げ角の変化 (あるいはそ の目標膝曲げ角に追従する実際の膝曲げ角の変化)に対応して、ばね手段 13が発 生する膝回転補助力の経時的変化を例示している。さらに、図 8 (c)は、図 8 (a)の目 標膝曲げ角の変化 (ある 、はその目標膝曲げ角に追従する実際の膝曲げ角の変化 )に対応して、膝関節電動モータ 10に発生させるトルクの経時的変化を実線で例示 している。この場合、図 8 (c)には、前記必要膝回転力の経時的変化 (これは図 7 (b) のものと同じである)を破線で併記して 、る。
[0072] 上記のようにロック期間で電磁開閉弁 23を閉弁させたとき、ばね手段 13が発生す る膝回転補助力は、図 8 (b)に示すように、ロック期間において膝曲げ角が閉弁開始 目標膝曲げ角 Θ offinin力 増加するに伴い脚体 3の伸ばし方向に増加し、続いて膝 曲げ角が閉弁開始目標膝曲げ角 Θ offininまで減少するに伴い、脚体 3の伸ばし方向 で減少する。なお、ロック期間の開始時および終了時と、ロック期間以外の期間では 、ばね手段 13が発生する膝回転補助力はほぼ 0である。従って、図 8 (c)に示す如く 、必要膝回転力が脚体 3の伸ばし方向に大きなものとなる期間(ロック期間)において 、膝関節電動モータ 10に発生させるトルクは必要膝回転力から膝回転補助力を差し 引いた、比較的小さなトルクで済む。その結果、ロボット 1の走行動作時の全期間に わたって、膝関節電動モータ 10の発生トルクが比較的小さなもので済み、膝関節電 動モータ 10の電力消費や容量を小さくすることができる。
[0073] また、前記図 7 (d)に示すようにロック期間の開始時と終了時とで、それぞれ閉電流 通電時間 A Tclose、開電流通電時間 A Topenだけ一時的に通電することで、電磁開 閉弁 23の閉弁動作、開弁動作が行なわれる。そして、ロック期間における電磁開閉 弁 23の閉弁動作後には、電磁開閉弁 23のソレノイド 39への閉電流の通電を遮断し た後は、ばね手段 13の気室 16, 17間の差圧によって、電磁開閉弁 23が閉弁状態 に保持される。また、電磁開閉弁 23の開弁動作後には、電磁開閉弁 23のソレノイド 3 9への開電流の通電を遮断した後は、前記永久磁石 38の磁力によって、電磁開閉 弁 23が開弁状態に保持される。従って、電磁開閉弁 23の構成を小型で簡易なもの としつつ、電磁開閉弁 23の電力消費を少なくできる。その結果、ロボット 1の電力消 費を低減することができる。
[0074] また、本実施形態では、ロボット 1の走行動作時におけるロック期間の開始時と終了 時における膝曲げ角が等しいため、次のような効果がある。すなわち、ロック期間の 開始時と終了時における膝曲げ角が等しいため、ロック期間の開始時はもちろん、終 了時においても、ばね手段 13の膝回転補助力はほぼ「0」になる。このため、電磁開 閉弁 23を閉弁状態から開弁状態に切り替える時に、ばね手段 13の膝回転補助力が 不連続に変化することが回避される。この結果、電磁開閉弁 23を閉弁状態力 開弁 状態に切り替える時に、ロボット 1の挙動がぎくしゃくしたりすることがなぐ該ロボット 1 の動作を円滑に行うことができる。また、特に、ばね手段 13が弾性エネルギーを十分 に放出した状態で、電磁開閉弁 23を閉弁状態力も開弁状態に切り替えることとなる ため、ばね手段 13に蓄積した弾性エネルギーが、無駄に熱エネルギーに変換され て消耗してしまうことが防止され、ロボット 1のエネルギーの利用効率を高めることがで きる。
[0075]
次に、本発明の第 2実施形態を図 9を参照して説明する。この第 2実施形態は、前 記第 1および第 2発明の実施形態である。本実施形態は、第 1実施形態のものと電磁 開閉弁の一部の構成のみが相違するものである。従って、本実施形態の説明では、 第 1実施形態と同一構成部分については第 1実施形態と同一の参照符号を用い詳 細な説明を省略する。
[0076] 図 9は本実施形態における電磁開閉弁 60の断面図である。この電磁開閉弁 60は、 第 1実施形態の電磁開閉弁 23と駆動部ケース 36内の一部の構成のみが相違するも のであり、電磁開閉弁 23の永久磁石 38の代わりに、弁体 33の開弁位置(図 9に示す 位置)と閉弁位置 (弁体 33が弁座 34に当接した状態)とでプランジャ 35を係止する 係止機構 61を駆動部ケース 36内に備えたものである。この係止機構 61は、電磁開 閉弁 60の自己保持機能を実現する手段であり、プランジャ 35の軸方向(可動方向) と直交する方向で揷入孔 37内のプランジャ 35の外周面に向力つて進退自在 (挿入 孔 37内に出没自在)に設けられた球体 62と、この球体 62を前進方向(プランジャ 35 に近づく方向)に付勢するパネ 63 (この例ではコイルパネ)とを備えている。
[0077] 揷入孔 37内のプランジャ 35の外周面には、球体 62の半部を嵌合可能な一対の半 球面状の凹部 35a, 35bがプランジャ 35の軸方向に間隔を存して形成されている。こ れらの凹部 35a, 35bのうち、凹部 35aは、プランジャ 35が弁体 33の開弁位置に対 応する位置(図 9に示す位置)に在るときに、球体 62の半部がパネ 63の付勢力により 嵌合するように設けられ、その嵌合によりプランジャ 35が係止されて、弁体 33が開弁 位置に保持されるようになっている。また、凹部 35bは、弁体 33が閉弁位置に対応す る位置に在るときに、球体 62の半部がパネ 63の付勢力により嵌合するように設けら れ、その嵌合によりプランジャ 35が係止されて、弁体 33が開弁位置に保持されるよう になっている。このように電磁開閉弁 60は、係止機構 61によって、弁体 33を開弁位 置と閉弁位置とに保持する自己保持機能を有している。なお、係止機構 61のパネ 6 3の付勢力は、弁体 33の開弁位置または閉弁位置でソレノイド 39に閉電流または開 電流を通電したときに、該ソレノイド 39が発生する電磁力により、球体 62が凹部 35a または 35bから脱離しつつ、プランジャ 35が軸方向に移動し得るように設定されて!ヽ る。
[0078] 以上説明した以外の構成は、第 1実施形態と同一である。
[0079] 力かる本実施形態では、制御ユニット 40は、第 1実施形態と同じ処理(図 5および 図 6)の処理を実行し、ロボット 1の走行動作を行なうときに、各脚体 3の支持脚期内 にロック期間を設定する。そして、このロック期間において、電磁開閉弁 60を閉弁す ることで、ばね手段 13により膝回転補助力を発生する。
[0080] かかる本実施形態では、前記第 1実施形態と同様の効果を奏する。この場合、本実 施形態では、電磁開閉弁 60は、係止機構 61によって、ソレノイド 39への開電流また は閉電流の通電を停止した後も、開弁状態または閉弁状態に保持される。このため、 特に、ロック期間の開始時における閉電流通電時間 A Tcloseを前記第 1実施形態の ものよりも短くでき、電磁開閉弁 23の電力消費をより一層抑制できる。
[0081] なお、本実施形態では、電磁開閉弁 60の閉弁状態および開弁状態のそれぞれに おいて、弁体 33を係止機構 61によって閉弁位置、開弁位置に保持するようにしたが 、例えば係止機構 61の凹部 35aを省略し、電磁開閉弁 60の開弁状態においてのみ 、弁体 33を係止機構によって開弁位置に保持するようにしてもよい。そして、弁体 33 の閉弁位置への保持は、前記第 1実施形態と同様に気室 16, 17間の差圧によって 行なうようにしてもよい。このようにすることで、前記第 3発明の他の実施形態を構成で きる。
[0082]
次に、本発明の第 3実施形態を図 10〜図 12を参照して説明する。この第 3実施形 態は、前記第 4発明の実施形態である。本実施形態は、第 1実施形態のものと電磁 開閉弁の一部の構成と、制御ユニットによる電磁開閉弁の通電制御処理のみが相違 するものである。従って、本実施形態の説明では、第 1実施形態と同一構成部分に ついては、第 1実施形態と同一の参照符号を用い詳細な説明を省略する。
[0083] 図 10は本実施形態における電磁開閉弁 70の断面図である。この電磁開閉弁 70は 、第 1実施形態の電磁開閉弁 23と駆動部ケース 36内の一部の構成のみが相違する ものであり、電磁開閉弁 23の永久磁石 38を備えずに、プランジャ 35を弁体 33の開 弁位置側に付勢する付勢手段であるパネ 71 (この例ではコイルパネ)を備えたもので ある。この場合、パネ 71は、駆動部ケース 36の挿入孔 37内で、その底部とプランジ ャ 35の端面 (弁体 33と反対側の端面)との間に介装され、プランジャ 35を弁体 33の 開弁位置側(図 10の左方向)に付勢している。以上説明した以外の構成は、第 1実 施形態と同一である。
[0084] ここで、力かる構成の電磁開閉弁 70では、ソレノイド 39に閉電流を通電することで、 ソレノイド 39が発生する電磁力によって、パネ 71の付勢力に抗してプランジャ 35が 弁体ケース 32から離反する側に後退し、弁体 33の閉弁動作が行なわれる。この場 合、前記ばね手段 13の気室 16, 17間の差圧が 0もしくはそれに近い状態であるとき には、弁体 33を閉弁位置に保持するためには、ソレノイド 39に閉電流を通電し続け る必要がある力 該差圧が弁体 33の閉弁方向に増加して、ある差圧値 P3 (図 12 (e) を参照)を超えると、ソレノイド 39への閉電流の通電を遮断しても、その差圧によって 、パネ 71の付勢力に抗して弁体 33を閉弁位置に保持することが可能となっている。 また、その差圧が上記差圧値 P3以下に低下すれば、ソレノイド 39への通電を遮断し たまま、パネ 71の付勢力によって自動的に弁体 33が開弁位置に復帰するようになつ ている。以下、差圧値 P3を開弁復帰差圧値 P3という。
[0085] 次に、本実施形態のシステムの作動を説明する。本実施形態では、制御ユニット 4 0は、第 1実施形態と同様に、図 5のフローチャートに示す制御処理を実行する。この 場合、本実施形態では、 STEP6のサブルーチン処理 (電磁開閉弁 70の通電制御 処理)のみが、第 1実施形態と相違している。このサブルーチン処理は、図 11のフロ 一チャートに示すように実行される。
[0086] すなわち、電磁開閉弁制御器 53は、まず、第 1実施形態と同様に、歩容生成器 51 により現在設定されている歩容パラメータに基づいて、電磁開閉弁 23を閉弁状態と すべきロック期間を設定する(STEP6— 11)。すなわち、歩容生成器 51により現在 設定されている歩容パラメータがロボット 1の走行動作に対応する歩容パラメータであ る場合には、第 1実施形態と同様に、図 12 (a)に示す如くロック期間の開始時におけ る目標膝曲げ角である閉弁開始目標膝曲げ角 Θ offininを決定し、支持脚期において 、目標膝曲げ角が Θ offinin以上となる期間(図 12の時刻 T1から時刻 T2までの期間) をロック期間として設定する。この場合、 Θ offininは、支持脚期における目標膝曲げ 角の最小値に近い値であって、支持脚期の開始後、必要膝回転力が曲げ方向の値 (正の値)から伸ばし方向の値 (負の値)に変化する直後における膝曲げ角の値の近 傍の値になり、且つ、ロック期間の終了時に目標膝曲げ角が Θ offininまで減少した時 における気室 16, 17間の差圧が前記開弁復帰差圧値 P3以下になる(本実施形態で は、該差圧が P3より若干小さくなる)ように決定される。
[0087] なお、図 12 (a)は図 7 (a)と同じであり、ロボット 1の走行動作時の目標膝曲げ角の 経時的変化を例示している。また、図 12 (b)は、図 7 (b)と同じで、図 12 (a)の目標膝 曲げ角の変化に対応する必要膝回転補助力の経時的変化を例示している。また、図 12 (c)は、電磁開閉弁 70の要求動作モードのタイミングチャート、図 12 (d)は、開閉 電磁弁 70の通電状態のタイミングチャート、図 12 (e)は、ばね手段 13の両気室 16, 17間の差圧の経時的変化を例示して 、る。
[0088] 次いで、電磁開閉弁制御器 53は、ロック期間の開始時に電磁開閉弁 23の閉弁動 作 (開弁状態力も閉弁状態への切替)を行なうために電磁開閉弁 23のソレノイド 39 に閉電流を通電すべき時間である閉電流通電時間 Δ Tclose (図 12 (d)を参照)を決 定する。
[0089] この場合、例えば目標膝曲げ角を基に、ばね手段 13の気室 16, 17間の差圧が前 記開弁復帰差圧値 P3を確実に超えるタイミングを判断し、ロック期間の開始時力 そ のタイミングまでの時間を閉電流通電時間 Δ Tcloseとして決定する。なお、この場合、 目標膝曲げ角と差圧との関係は、ロック期間の開始時の目標膝曲げ角をパラメータと してあら力じめ制御ユニット 40に記憶保持されており、この記憶保持された関係に基 づいて、該差圧が開弁復帰差圧値 P3を確実に超えるタイミングが判断される。
[0090] 次いで、現在時刻 tが Tl≤t<Tl + A Tcloseであるか否かが STEP6— 3で判断さ れる。そして、 Tl≤t<Tl + A Tcloseであるときには、電磁開閉弁制御器 53は、電磁 開閉弁 70のソレノイド 39に閉電流を通電する(STEP6— 14)。これにより、ロック期 間の開始時刻 T1から Δ Tcloseの時間だけソレノイド 39に閉電流が通電され、電磁開 閉弁 23の閉弁動作が行なわれる。そして、現在時刻 tが Tl≤t<Tl + A Tcloseでな いときには、電磁開閉弁制御器 53は、電磁開閉弁 70のソレノイド 39への閉電流の 通電を遮断する(STEP6— 15)。本実施形態では、電磁開閉弁 70を開弁させるた めの通電は行なわれな 、。
[0091] 以上が、本実施形態での STEP6の処理の詳細である。このように本実施形態では 、ロック期間の開始時に電磁開閉弁 70に閉電流を閉電流通電時間 A Tcloseだけ一 時的に通電することで、電磁開閉弁 70の閉弁動作が行なわれ、その閉電流の通電 停止後は前記差圧によって、電磁開閉弁 70が前記パネ 71の付勢力に抗して閉弁 状態に保持される。そして、ロック期間の終了時刻 T2近傍で、前記差圧が開弁復帰 差圧値 P3以下に低下することで、電磁開閉弁 70が前記パネ 71の付勢力により自動 的に開弁し、開弁状態に保持される。
[0092] 力かる本実施形態においても第 1実施形態と同様の効果を奏することはもちろんで ある。力!]えて、本実施形態では、ロック期間の開始時にだけ一時的に電磁開閉弁 70 のソレノイド 39に閉電流を通電すればよいので、電磁開閉弁 70の電力消費をより一 層低減することができる。
[0093] 次に、以上説明した第 1〜第 3実施形態の変形態様をいくつ力説明する。前記第 1 および第 2実施形態では、電磁開閉弁 23, 60への閉電流または開電流の通電開始 タイミングを時刻 tに基づいて判断するようにしたが、瞬時目標歩容の膝曲げ角ある いは膝曲げ角の検出値に基づいて判断するようにしてもよい。あるいは、ロック期間 の開始タイミングと終了タイミングとで膝関節 8に発生させるべきトルクの値 (前記必要 膝回転力の値)を決定し、ロック期間の開始タイミングと終了タイミングとを前記基本ト ルクある 、は膝関節 8に作用する実トルクの検出値に基づ 、て判断するようにしても よい。また、電磁開閉弁 23, 60への閉電流の通電終了タイミングの判断にあっても、 その通電終了タイミングにおける膝曲げ角の値を決定しておき、瞬時目標歩容の膝 曲げ角あるいは膝曲げ角の検出値に基づいて閉電流の通電終了タイミングを判断 するようにしてもよい。あるいは、閉電流の通電終了タイミングにおける前記差圧の値 を決定し (例えば図 7 (e)の P1を決定する)、目標膝曲げ角など力 推定される差圧の 推定値、もしくは、適宜の圧力センサによる差圧の検出値に基づいて閉電流の通電 終了タイミングを判断するようにしてもょ 、。
[0094] また、前記第 3実施形態では、ロック期間を設定したが、電磁開閉弁 70への閉電流 の通電開始タイミングおよび通電終了タイミングのみを決定するようにしてもょ 、。そ して、第 1及び第 2実施形態に係る変形態様と同様に、閉電流の通電開始タイミング (ロック期間の開始タイミング)を、瞬時目標歩容の膝曲げ角や膝曲げ角の検出値に 基づいて判断したり、前記基本トルクもしくは、膝関節 8に作用する実トルクの検出値 に基づいて判断するようにしてもよい。また、電磁開閉弁 70への閉電流の通電終了 タイミングの判断にあっても、第 1及び第 2実施形態に係る変形態様と同様に、瞬時 目標歩容の膝曲げ角あるいは膝曲げ角の検出値に基づいて判断したり、前記差圧 の推定値もしくは検出値に基づ 、て判断するようにしてもょ 、。
[0095] いずれの場合であっても、電磁開閉弁 23, 60, 70を閉弁状態とすべきロック期間 は、支持脚期のうち、必要膝回転力が脚体 3の伸ばし方向に凸となる期間、あるいは 、膝曲げ角がその増加方向に凸となり、また、その期間の開始時と終了時とで膝曲げ 角が同一もしくはほぼ同一になる期間に設定することが望ましい。また、電磁開閉弁
23, 60, 70への閉電流の通電時間は、該電磁開閉弁の閉弁動作が確実に行い得 る範囲で、できるだけ短い時間にすることが望ましい。換言すれば、前記差圧が該電 磁開閉弁を閉弁状態に保持し得る状態では、閉電流の通電を遮断することが望まし い。
[0096] また、前記第 1〜第 3実施形態では、電磁開閉弁 23, 60, 70の閉弁状態で、ばね 手段 13の気室 16, 17の両者が密封されるようにした力 例えば次のようにしてもよい 。すなわち、一方の気室 16または 17を大気に開放しておくと共に、他方の気室 17ま たは 16をその外側の大気に連通させる連通管 (気体流通路)に電磁開閉弁を介装し ておき、電磁開閉弁の閉弁状態で、他方の気室 17または 16のみが密封されるように してもよい。さらには、前記特開 2003— 103480号公報の図 22に見られるように、上 記他方の気室 17または 16を、その外側の適宜の箇所 (ロボット 1の大腿部 4など)に 備えたアキュムレータ (該アキュムレータには加圧された気体が充填される)に連通さ せる連通管 (気体流通路)に電磁開閉弁を介装するようにしてもよい。このようにした 場合には、電磁開閉弁の閉弁状態でばね手段が発生する膝回転補助力を高めるこ とができる。なお、このようにアキュムレータを備えた場合には、電磁開閉弁の開弁状 態 (ロック期間以外の期間)で、膝屈伸運動に伴うばね手段の気室の体積変化に応 じて 0でない膝回転補助力が発生することとなるが、その膝回転補助力の最大値は、 電磁開閉弁を閉弁状態とするロック期間でばね手段が発生する膝回転補助力よりも 十分に小さなものとなる。
[0097] また、前記第 1〜第 3実施形態では、シリンダ 14およびピストン 15によって気室 16, 17を形成するようにしたが、膝屈伸運動に応じて体積が変化するものであれば、適 宜の袋部材によって気室を形成するようにしてもょ 、。
[0098] また、前記第 1〜第 3実施形態は、本発明を 2足移動ロボットに適用した例を示した 力 本発明は、 2本以上の脚体を有するロボットについても適用できることはもちろん である。
[0099] また、前記第 1〜第 3実施形態では、膝関節 8のみにアシスト装置 12を備えたが、さ らには、股関節 7や足首関節 9にもアシスト装置 12と同様のアシスト装置を備えるよう にしてもよい。
[0100] また、前記第 1〜第 3実施形態では、アシスト装置 12を備えた関節 8を脚体 3の屈 伸運動を可能とする関節としたが、脚体に直動型の関節を備える脚式移動ロボットに あっては、その直動型の関節に補助駆動力を作用させるアシスト装置を備えるように してちよい。
産業上の利用可能性
[0101] 以上のように、本発明の脚式移動ロボットの脚体関節アシスト装置は、 2足移動ロボ ット等の脚式移動ロボットの脚体の関節に、少なく消費電力で適切に補助駆動力を 作用させることができるものとして有用である。
図面の簡単な説明
[0102] [図 1]本発明の第 1実施形態のアシスト装置を含む脚式移動ロボット(2足移動ロボット )の概略構成を模式化して示す図。
[図 2]図 1のロボットに備えたアシスト装置のばね手段 (気体ばね)が発生する補助力 と膝関節の曲げ角との関係を示すグラフ。
[図 3]図 1のロボットのアシスト装置に備えた電磁開閉弁の構成を示す断面図。
[図 4]図 1のロボットに備えた制御ユニットの機能的構成を示すブロック図。
[図 5]図 4の制御ユニットの処理を示すフローチャート。
[図 6]図 5のフローチャートのサブルーチン処理を示すフローチャート。
[図 7]図 7 (a)は、図 1のロボットの走行動作時における脚体の膝関節の曲げ角の経 時的変化を例示するグラフ、図 7 (b)は、膝関節の必要回転力の経時的変化を例示 するグラフ、図 7 (c)は、第 1実施形態における電磁開閉弁の要求動作モードのタイミ ングチャート、図 7 (d)は、第 1実施形態における開閉電磁弁の通電状態のタイミング チャート、図 7 (e)は、第 1実施形態における気室間の圧力差 (差圧)の経時的変化を 例示するグラフ。
[図 8]図 8 (a)は、図 1のロボットの走行動作時の膝関節の曲げ角の経時的変化を例 示するグラフ、図 8 (b)は、第 1実施形態のアシスト装置で発生する膝関節の補助駆 動力の経時的変化を例示するグラフ、図 8 (c)は、第 1実施形態で膝関節の電動モ ータに発生させるトルクの経時的変化を実線で例示するグラフ。
圆 9]本発明の第 2実施形態におけるアシスト装置に備えた電磁開閉弁の構成を示 す断面図。
圆 10]本発明の第 3実施形態におけるアシスト装置に備えた電磁開閉弁の構成を示 す断面図。
[図 11]第 3実施形態における制御ユニットの制御処理のサブルーチン処理を示すフ 口1 ~~テャ1 ~~卜。
[図 12]図 12 (a)は、図 1のロボットの走行動作時における脚体の膝関節の曲げ角の 経時的変化を例示するグラフ、図 12 (b)は、膝関節の必要回転力の経時的変化を 例示するグラフ、図 12 (c)は、第 3実施形態における電磁開閉弁の要求動作モード のタイミングチャート、図 12 (d)は、第 3実施形態における開閉電磁弁の通電状態の タイミングチャート、図 12 (e)は、第 1実施形態における気室間の圧力差 (差圧)の経 時的変化を例示するグラフ。

Claims

請求の範囲
[1] 上体カゝら複数のリンク部材を複数の関節を介して連接してなる脚体を複数備えた脚 式移動ロボットにおいて、各脚体の複数の関節のうちの少なくとも 1つの関節を特定 関節とし、該特定関節により連結された一対のリンク部材間の相対的変位運動に連 動して体積が変化するように設けられた気室と、該気室とその外部との間の気体の流 通を行なうべく該気室に連通して設けられた気体流通路と、該気体流通路に開閉自 在に設けられた電磁開閉弁とを備え、前記ロボットの移動時の所定期間において該 電磁開閉弁を閉弁させることにより前記気室を密封して、その密封状態の気室の体 積変化に伴う該気室内の気体の圧縮または膨張により該気体が発生する弾性力を 前記特定関節に対する補助駆動力とし、該補助駆動力を前記特定関節を駆動する 関節ァクチユエータの駆動力と併せて該特定関節に作用させると共に、前記所定期 間以外の期間では前記電磁開閉弁を開弁させて前記気室を非密封状態にすること により、該気室の体積変化に伴い該気室内の気体が発生する弾性力の最大値が少 なくとも前記所定期間よりも小さくなるようにした脚体関節アシスト装置であって、 前記電磁開閉弁は、そのソレノイドへの一時的な通電によって該電磁開閉弁の弁 体の開閉状態が切り替り、且つ、その切り替り後の弁体の開閉状態をソレノイドへの 通電停止状態で保持する自己保持機能を持つ電磁弁により構成されていることを特 徴とする脚式移動ロボットの脚体関節アシスト装置。
[2] 前記所定期間は、前記気室と外部との間の圧力差が該所定期間の開始時から増 カロした後、その開始時の圧力差にほぼ等しい圧力差まで減少するように前記一対の リンク部材の相対的変位運動に連動して前記気室の体積が変化する期間であり、 前記電磁開閉弁は、前記所定期間にお!、て前記圧力差が該電磁開閉弁の弁体に その閉弁方向に作用するように前記気体流通路に介装されていることを特徴とする 請求項 1記載の脚式移動ロボットの脚体関節アシスト装置。
[3] 前記電磁開閉弁を閉弁状態に保持する自己保持機能は、前記所定期間で該電磁 開閉弁の弁体に作用する前記圧力差によって実現されていることを特徴とする請求 項 2記載の脚式移動ロボットの脚体関節アシスト装置。
[4] 上体カゝら複数のリンク部材を複数の関節を介して連接してなる脚体を複数備えた脚 式移動ロボットにおいて、各脚体の複数の関節のうちの少なくとも 1つの関節を特定 関節とし、該特定関節により連結された一対のリンク部材間の相対的変位運動に連 動して体積が変化するように設けられた気室と、該気室とその外部との間の気体の流 通を行なうべく該気室に連通して設けられた気体流通路と、該気体流通路に開閉自 在に設けられた電磁開閉弁とを備え、前記ロボットの移動時の所定期間において該 電磁開閉弁を閉弁させることにより前記気室を密封して、その密封状態の気室の体 積変化に伴う該気室内の気体の圧縮または膨張により該気体が発生する弾性力を 前記特定関節に対する補助駆動力とし、該補助駆動力を前記特定関節を駆動する 関節ァクチユエータの駆動力と併せて該特定関節に作用させると共に、前記所定期 間以外の期間では前記電磁開閉弁を開弁させて前記気室を非密封状態にすること により、該気室の体積変化に伴い該気室内の気体が発生する弾性力の最大値が少 なくとも前記所定期間よりも小さくなるようにした脚体関節アシスト装置であって、 前記所定期間は、前記気室と外部との圧力差が該所定期間の開始時から増加した 後、その開始時の圧力差にほぼ等しい圧力差まで減少するように前記一対のリンク 部材の相対的変位運動に連動して前記気室の体積が変化する期間であり、 前記電磁開閉弁は、前記所定期間にお!/、て前記圧力差が該電磁開閉弁の弁体に その閉弁方向に作用するように前記気体流通路に介装されて 、ると共に、前記圧力 差が所定値以下に減少したときに該電磁開閉弁の弁体を閉弁状態力 開弁状態に 作動させるベく該弁体を開弁方向に付勢する付勢手段を備え、さらに該弁体の開弁 状態で該電磁開閉弁のソレノイドに通電することにより該弁体が前記付勢手段の付 勢力に杭して開弁状態力 閉弁状態に作動するように構成されており、
前記所定期間のうち、その開始時力 前記圧力差が前記付勢手段の付勢力に抗 して前記弁体を閉弁状態に保持し得る圧力差に増加するまでの期間だけ、前記電 磁開閉弁のソレノイドに通電するようにしたことを特徴とする脚式移動ロボットの脚体 関節アシスト装置。
前記一対のリンク部材のうちの一方のリンク部材に連結されたシリンダと、前記一対 のリンク部材のうちの他方のリンク部材にピストンロッドを介して連結され、該一対のリ ンク部材間の相対的変位運動に連動して前記シリンダ内を摺動するように該シリンダ に内挿されたピストンとを備え、前記気室は、前記シリンダ内で前記ピストンの両側に 形成された一対の気室から構成され、前記気体流通路は、前記シリンダ内の一対の 気室を互いに連通する通路であることを特徴とする請求項 1または 4記載の脚式移動 ロボットの脚体関節アシスト装置。
[6] 前記所定の期間は、前記脚式移動ロボットの所定の歩容形態での移動時における 各脚体の着床状態での期間であることを特徴とする請求項 1または 4記載の脚式移 動ロボットの脚体関節アシスト装置。
[7] 前記脚式移動ロボットは、 2つの前記脚体を備える 2足移動ロボットであると共に、 各脚体には、その先端部と前記上体側の端部と間の中間部に該脚体の屈伸運動を 可能とする膝関節が設けられ、前記特定関節は、該膝関節であることを特徴とする請 求項 1または 4記載の脚式移動ロボットの脚体関節アシスト装置。
[8] 前記所定の期間は、前記 2足移動ロボットの走行動作時に各脚体が着床状態とな る期間のうち、前記膝関節における該脚体の曲げ度合いの経時変化のパターンが該 曲げ度合いの増加方向で凸となる期間であることを特徴とする請求項 6記載の脚式 移動ロボットの脚体関節アシスト装置。
[9] 前記所定の期間は、前記 2足移動ロボットの走行動作時に各脚体が着床状態とな る期間のうち、前記膝関節に発生させるべき回転力の経時変化のパターンが該脚体 の伸ばし方向で凸となる期間であることを特徴とする請求項 6記載の脚式移動ロボッ トの脚体関節アシスト装置。
[10] 前記脚式移動ロボットを該ロボットの目標歩容に追従させるための前記特定関節の 目標駆動力を決定する手段と、前記所定期間における前記特定関節の関節ァクチ ユエータの駆動力を、該関節ァクチユエータの駆動力と前記補助駆動力との和が前 記決定した目標駆動力〖こなるように制御する手段とを備えたことを特徴とする請求項 1または 4記載の脚式移動ロボットの脚体関節アシスト装置。
PCT/JP2005/014420 2004-09-06 2005-08-05 脚式移動ロボットの脚体関節アシスト装置 WO2006027918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602005019451T DE602005019451D1 (de) 2004-09-06 2005-08-05 Schreitroboter mit beinen und einer beingelenkunterstützungsvorrichtung
US11/573,922 US20070210739A1 (en) 2004-09-06 2005-08-05 Leg joint assist device of legged mobile robot
EP05768955A EP1808276B1 (en) 2004-09-06 2005-08-05 Legged mobile robot with a leg joint assist device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004257962A JP4526332B2 (ja) 2004-09-06 2004-09-06 脚式移動ロボットの脚体関節アシスト装置
JP2004-257962 2004-09-06

Publications (1)

Publication Number Publication Date
WO2006027918A1 true WO2006027918A1 (ja) 2006-03-16

Family

ID=36036212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014420 WO2006027918A1 (ja) 2004-09-06 2005-08-05 脚式移動ロボットの脚体関節アシスト装置

Country Status (6)

Country Link
US (1) US20070210739A1 (ja)
EP (1) EP1808276B1 (ja)
JP (1) JP4526332B2 (ja)
KR (1) KR101262692B1 (ja)
DE (1) DE602005019451D1 (ja)
WO (1) WO2006027918A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138707B2 (en) * 2007-10-23 2012-03-20 Honda Motor Co., Ltd. Bipedal walking robot
JP5330733B2 (ja) * 2008-05-12 2013-10-30 学校法人東海大学 歩行ロボット
KR101464125B1 (ko) * 2008-06-05 2014-12-04 삼성전자주식회사 보행로봇
KR20110026935A (ko) * 2009-09-09 2011-03-16 삼성전자주식회사 로봇 관절 구동장치 및 이를 포함하는 로봇
KR101275534B1 (ko) * 2011-09-15 2013-06-20 대우조선해양 주식회사 착용로봇의 가변링크
JP5976401B2 (ja) * 2012-05-31 2016-08-23 Thk株式会社 脚式ロボットの下肢構造及び脚式ロボット
KR101430307B1 (ko) * 2012-06-29 2014-08-13 인텔렉추얼디스커버리 주식회사 관절보호장치
US9222493B2 (en) * 2013-10-14 2015-12-29 Brian Riskas Statically stable walking machine and power system therefor
KR101877032B1 (ko) * 2016-03-24 2018-08-10 주식회사 그리노이드 레그식 이동 로봇 모듈
CN110053070A (zh) * 2019-05-06 2019-07-26 胡杰 一种仿肌肉伸缩驱动的机器人关节装置
JP7303100B2 (ja) * 2019-12-19 2023-07-04 リンナイ株式会社 予混合装置
CN113478510B (zh) * 2021-06-30 2022-12-02 江西机电职业技术学院 一种机械抓手
CN114131584A (zh) * 2021-12-21 2022-03-04 彭丽 一种人体骨骼运动辅助平衡方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2022783A (en) 1978-05-30 1979-12-19 Thomson Brandt Bistable Electrically Actuated Valve
JP2003103480A (ja) 2001-09-27 2003-04-08 Honda Motor Co Ltd 脚式移動ロボットの脚体関節アシスト装置
JP2003145477A (ja) * 2001-11-09 2003-05-20 Honda Motor Co Ltd 脚式移動ロボットの脚体関節アシスト装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494221B2 (ja) * 2000-12-25 2004-02-09 Smc株式会社 自己保持型電磁弁

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2022783A (en) 1978-05-30 1979-12-19 Thomson Brandt Bistable Electrically Actuated Valve
JP2003103480A (ja) 2001-09-27 2003-04-08 Honda Motor Co Ltd 脚式移動ロボットの脚体関節アシスト装置
JP2003145477A (ja) * 2001-11-09 2003-05-20 Honda Motor Co Ltd 脚式移動ロボットの脚体関節アシスト装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1808276A4 *

Also Published As

Publication number Publication date
DE602005019451D1 (de) 2010-04-01
EP1808276B1 (en) 2010-02-17
JP2006068875A (ja) 2006-03-16
EP1808276A4 (en) 2008-03-26
JP4526332B2 (ja) 2010-08-18
EP1808276A1 (en) 2007-07-18
KR20070102469A (ko) 2007-10-18
KR101262692B1 (ko) 2013-05-15
US20070210739A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2006027918A1 (ja) 脚式移動ロボットの脚体関節アシスト装置
JP3674778B2 (ja) 脚式移動ロボットの脚体関節アシスト装置
US7658246B2 (en) Leg joint assist device of legged mobile robot
JP3665013B2 (ja) 脚式移動ロボットの脚体関節アシスト装置
JP3652643B2 (ja) 脚式移動ロボットの着床衝撃緩衝装置
KR100893901B1 (ko) 다리식 이동로봇의 착상충격 완충장치
KR100917183B1 (ko) 다리식 이동로봇의 착상충격 완충장치
Vanderborght et al. Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles
KR101812603B1 (ko) 능동-수동 동작 모드를 갖는 착용로봇
Oku et al. Passive trunk mechanism for controlling walking behavior of semi-passive walker

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11573922

Country of ref document: US

Ref document number: 2007210739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077007636

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005768955

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005768955

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11573922

Country of ref document: US