WO2006027818A1 - Ldpc符号生成方法および通信装置 - Google Patents

Ldpc符号生成方法および通信装置 Download PDF

Info

Publication number
WO2006027818A1
WO2006027818A1 PCT/JP2004/012830 JP2004012830W WO2006027818A1 WO 2006027818 A1 WO2006027818 A1 WO 2006027818A1 JP 2004012830 W JP2004012830 W JP 2004012830W WO 2006027818 A1 WO2006027818 A1 WO 2006027818A1
Authority
WO
WIPO (PCT)
Prior art keywords
ensemble
order
snr
search
bit position
Prior art date
Application number
PCT/JP2004/012830
Other languages
English (en)
French (fr)
Inventor
Shigeru Uchida
Akira Otsuka
Wataru Matsumoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/012830 priority Critical patent/WO2006027818A1/ja
Priority to JP2006535064A priority patent/JP4755104B2/ja
Priority to PCT/JP2005/012949 priority patent/WO2006027897A1/ja
Priority to EP05765754A priority patent/EP1788709A4/en
Priority to CN2005800295990A priority patent/CN101010881B/zh
Publication of WO2006027818A1 publication Critical patent/WO2006027818A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/033Theoretical methods to calculate these checking codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
    • H03M13/1185Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/255Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with Low Density Parity Check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/353Adaptation to the channel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/356Unequal error protection [UEP]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations

Definitions

  • the present invention relates to a communication device that employs an LDPC code as an error correction method, and more particularly to an LDPC code generation method and a communication device that search for an optimal degree ensemble of a parity check matrix in an LDPC code. It is.
  • Non-Patent Document 1 proposes a scheme using an LDPC (Low-Density-Parity-Check) code for each level of multilevel coding as a coding scheme for a multilevel modulation scheme.
  • LDPC code optimization method for each level a probability density function that is an initial value is obtained for each bit position that is mapped to a modulation symbol, and is used as a “Density Evolution”.
  • the optimal degree ensemble of the LDPC code for each bit position shows the structure of the parity check matrix, and expresses the number of "1" in the row or column of the parity check matrix as the order (weight)) Seeking.
  • Non-Patent Literature l J. Hou, Paul H. Siegel, Laurence B. Milstein, and Henry
  • the present invention has been made in view of the above, while avoiding an increase in circuit scale.
  • the purpose is to obtain an LDPC code generation method that can generate a code suitable for a multi-level modulation system with two LDPC codes.
  • an LDPC code generation method is an LDPC code generation method applicable to a multilevel modulation scheme, for example, a bit position of a modulation symbol.
  • the order ensemble of the parity check matrix that minimizes the SNR threshold (the SNR value at which the bit error rate drops sharply when the code length is sufficiently long)
  • An ensemble search step that searches for an ensemble of row weights and column weights
  • a code generation step that generates a parity check matrix and a generation matrix based on the order ensemble obtained as a result of the search.
  • the LDPC code generation method After classifying the distribution of the received signal for each bit position of the modulation symbol, the order ensemble of the parity check matrix that minimizes the SNR threshold and the value is obtained.
  • the parity check matrix and the generation matrix are generated according to the order ensemble, it is possible to construct a communication system capable of realizing encoding suitable for the multilevel modulation scheme with one LDPC code. This has the effect of
  • FIG. 1 is a diagram showing a configuration of a communication system including an LDPC encoder / decoder.
  • FIG. 2 is a diagram showing an example of “16QAM Gray Mapping”.
  • FIG. 3 is a diagram illustrating an example of an order ensemble of a multi-edge type LDPC code.
  • FIG. 4 is a diagram for explaining the order ensemble search method of the first embodiment.
  • FIG. 5 is a diagram for explaining the order ensemble search method of the first embodiment.
  • FIG. 6 is a diagram showing a configuration example of an LDPC encoder.
  • FIG. 7 is a diagram illustrating a configuration example of an LDPC encoder.
  • FIG. 8 is a flowchart showing the order ensemble search method of the second embodiment.
  • FIG. 9 is a diagram showing an example of the search result of the order ensemble according to the procedure of FIG.
  • FIG. 10 is a diagram showing an example of an order ensemble search result according to the procedure of FIG.
  • FIG. 11 is a diagram showing a comparison result between the SNR threshold value obtained from the order ensemble in FIG. 3 and the SNR threshold value obtained in the procedure in FIG.
  • FIG. 12 is a diagram for explaining the LLR probability density function calculation process according to the third embodiment.
  • FIG. 13 is a diagram for explaining the LLR probability density function calculation process according to the third embodiment.
  • FIG. 14 is a diagram for explaining the LLR probability density function calculation process according to the third embodiment.
  • FIG. 15 is a diagram for explaining the LLR probability density function calculation process according to the third embodiment.
  • FIG. 16 is a diagram for explaining the LLR probability density function calculation process according to the third embodiment.
  • FIG. 17 is a diagram for explaining the LLR probability density function calculation process according to the third embodiment.
  • FIG. 18 is a diagram showing a configuration of a fourth embodiment of a communication system including an LDPC encoder / decoder.
  • FIG. 19 is a diagram illustrating a configuration example of an LDPC encoder.
  • FIG. 20 is a diagram illustrating a specific example of the LDPC code generation method according to the fourth embodiment. Explanation of symbols
  • FIG. 1 is a diagram showing a configuration of a communication system including an LDPC encoder / decoder.
  • the communication device on the transmission side includes an LDPC encoder 1 and a modulator 2
  • the communication device on the reception side includes a demodulator 4 and an LDPC decoder 5.
  • a generation matrix 0 (information length, n: codeword length) of k 11 is generated by the LDPC code generation method of the present embodiment described later. Then, it receives a message (m, m, ⁇ ⁇ -, m) with an information length k, and uses this message and the generator matrix G to
  • the modulator 2 digitally modulates the code word C generated by the LDPC encoder 1 using a modulation scheme having a multi-value number of 2 or more, such as multi-value PSK and multi-value QAM, That modulation
  • a modulation scheme having a multi-value number of 2 or more such as multi-value PSK and multi-value QAM, That modulation
  • the signal is transmitted to the receiving side via communication path 3.
  • the demodulator 4 performs digital demodulation such as multi-level PSK and multi-level QAM on the modulated signal received via the communication path 3, and further, the LDPC decoder 5 Is the log likelihood ratio (LLR: Log
  • Iterative decoding is performed on the “likelihood ratio” using the “sum_product algorithm”, and the estimation results (corresponding to the original m, m, ⁇ , m) are output.
  • x represents a transmission signal
  • y represents a reception signal
  • p (y I x) represents the probability that the reception signal received through the communication channel 3 when the transmission signal is X is y.
  • the Q component when the Q component is fixed for the third bit and the fourth bit, the values of the I component are all the same. Since it is a value, the error probability can be considered in the same way as the 1st and 2nd bits.
  • Multi-edge type LDPC codes can be found in the literature ⁇ T. Richardson, and R. Urbanke, Modern Coding Theory, available.
  • LDPC code proposed by at http://lthcwww.epfl.ch/papers/ics.psj. It can classify the distribution of received signals and reflect it in the code structure.
  • FIG. 3 is a diagram illustrating an example of an order ensemble of the multi-edge type LDPC code disclosed in the above-mentioned document.
  • the first column is BEC (Binary
  • the second column shows the order of the AWGN (Additive White Gaussian Noise) channel.
  • the column d indicates the degree of each edge type between the variable node and the check node, V indicates the ratio of the variable nodes indicated by b and d, and u indicates the check node indicated by d and b and d d
  • the SNR threshold code length is sufficient.
  • the average SNR (which causes the bit error rate to drop sharply when the value is long) is calculated.
  • FIG. 4 and 5 are diagrams for explaining the order ensemble search method of the present embodiment.
  • force M-value QAM using the example of “16QAM Gray Mapping” in FIG. 2 and not limited to “Gray Mapping”, multi-level modulation other than M-value QAM is used.
  • mapping methods other than “Gray Mapping” are also applicable.
  • the force described for the case where the communication path is AWGN is not limited to this.
  • LDPC encoder 1 divides the received signal distribution for each bit position of the modulation symbol. Then, search for the order ensemble of the notity check matrix (Fig. 4, step Sl). For example, as shown in Fig. 5, for the order ensemble in Fig. 3, AWGN of b columns is divided for each bit position of the modulation symbol. At this time, the ratio of each bit position is made equal, that is, the sum of V is made equal to the distribution of the divided received signals (control).
  • predetermined initial values are set as the upper and lower search ranges. Is substituted (step S2). Then, the average value of the search upper limit and the search lower limit of SNR is calculated (step S3).
  • LDPC encoder 1 receives the average value (input SNR) calculated above and generates an LLR probability density function for each bit position of the modulation symbol (step S 4).
  • the LLR for the 1st bit can be obtained as shown in Equation (6) from Equation (2) and Equation (3) above. Then, considering the probability density function of the received signal with respect to the transmission signal “0”, the probability density function is obtained for the LLR in the above equation (6).
  • the error probability differs depending on the transmission signal power S "0" or "1". Therefore, when the transmission signal is "0", the LLR is the same as the first bit. Force for obtaining probability density function For the transmission signal force S'T ', LLR is obtained by replacing "0" and "1" in the mapping in Fig. 2, and the LLR probability density function is obtained. Then, by averaging the two probability density functions, the LLR probability density function of the second bit is obtained.
  • LDPC encoder 1 executes "Density EvolutionJ" with the order ensemble generated in step SI and the LLR probability density function generated in step S4 as inputs (step S5).
  • the LDPC encoder 1 determines whether or not the LLR probability density function updated by the iterative process diverges in an infinite direction as a result of executing "Density Evolution" (step S1). S6). For example, when diverging (step S6, Yes), since it can be determined that the SNR threshold exists in a direction smaller than the input SNR (average value), the search upper limit of SNR is updated with the input SNR (step S7). On the other hand, if it does not diverge (step S6, No), it can be determined that the SNR threshold exists in a direction larger than the input SNR, so the search lower limit of SNR is updated with the input SNR (step S8). .
  • LDPC encoder 1 subtracts the SNR search lower limit from the SNR search upper limit, and when the accuracy falls below the previously specified accuracy (when the desired accuracy is reached) (step S9, Yes), the SNR threshold search processing loop (steps S3 to S9) is exited, and the SNR threshold (SNR limit) is obtained by calculating the average of the SNR search upper limit and search lower limit (step S3). S10). On the other hand, if the set accuracy is not reached (No at step S9), the SNR threshold and value search processing loop is executed again.
  • the LDPC encoder 1 determines whether or not the SNR threshold value obtained above is a sufficiently good SNR threshold and value (step S10: a specific threshold and a value equal to or greater than the value). Or whether it is the best value for a specific number of searches). For example, if a sufficiently good SNR threshold is obtained (Step S10, Yes), the value is set to the SNR threshold (the bit error rate drops sharply when the code length is sufficiently long). The order ensemble with the smallest SNR threshold is output. On the other hand, if a sufficiently good SNR threshold is not obtained (step S10, No), the process returns to step SI, and the SNR threshold search process (step S1 step S11) for another order ensemble is performed.
  • step S10 a sufficiently good SNR threshold and value
  • step S 1 Decide whether you want to run or finish.
  • the search process described above is used, and for example, R. Storn et al. Differ ential Evolution (R.Storn, and K. Price, "Differential Evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces," Technical Report
  • a parity check matrix H is generated by a method using the Euclidean geometric code described in JP 2003-198383 A, for example. ⁇ Generate 1JG.
  • the received signal distribution is not classified for each bit position of the modulation symbol, for example, based on a conventional order ensemble as shown in FIG.
  • the parity check matrix H is generated by the above method, and the distribution of the received signal is classified according to the bit position of the modulation symbol. Based on the order ensemble in FIG. As a sort of column.
  • the SNR threshold and value (when the code length is sufficiently long, the bit error rate is Search for an order ensemble that minimizes the SNR average value), and generate a parity check matrix and generator matrix according to the order ensemble that minimizes the SNR threshold. It was. As a result, it is possible to construct a communication system that can realize encoding suitable for the multi-level modulation method with one LDPC code.
  • the LDPC code generated by the above method may be directly provided to encoding section 11 in LDPC code encoder 1 as shown in FIG. 6, for example.
  • the channel type estimation unit 12 in the LDPC encoder 1 estimates the channel type to be a model such as an AWG N channel, Rayleigh fading channel, and the like.
  • the order ensemble calculation unit 13 and the L DPC code generation unit 14 may generate the LDPC code in real time.
  • the generated parity check matrix H and generation matrix G are input to the encoding unit 11a, and the parity check matrix H is transmitted to the receiving side through the encoding unit 11a.
  • the LDPC code generation method of the present embodiment is not limited to the multi-edge type LDPC code, but can also be applied to the order ensemble of an irregular LDPC code.
  • the following formulas (7) and (8) are used to generate the order distribution of variable nodes and check nodes, respectively. Indicates a function. Where ⁇ , represents the ratio of variable nodes of order i and edges belonging to check nodes (representing “1” in parity check matrix H as an edge), d is the maximum order of variable nodes, and d is The maximum order of the check node.
  • the generation function of the order distribution of the bull node and the check node is expressed, and further, the SNR is minimized by the LDPC code generation method of this embodiment after dividing the LLR probability density function for each bit position of the modulation symbol. Find the order ensemble and generate the LDPC code.
  • Embodiment 2 when searching for an order ensemble with a sufficiently small SNR threshold in the LDPC code generation method of Embodiment 1, the calculation required for the search is divided into two stages. Reduce time.
  • the configuration of the communication system of the present embodiment is the same as that of FIG. 1 of the first embodiment described above.
  • FIG. 8 is a flowchart showing the order ensemble search method according to the second embodiment.
  • LDPC encoder 1 performs the bit position of the modulation symbol.
  • the order ensemble that minimizes the SNR threshold is calculated by a conventional method that does not classify the distribution of the received signal every time (Fig. 8, step S21: For example, the conventional order ensemble shown in Fig. 3 is obtained).
  • the distribution of the received signal may not be classified for each bit position of the symbol, or a known order ensemble may be used in a fixed manner. .
  • LDPC encoder 1 assigns a ratio for each modulation symbol bit position for each order, and uses the ratio as a parameter for parity detection by an optimization method such as “Differential Evolution”.
  • a matrix order ensemble is generated (step S22). At this time, as a parameter constraint condition, it is specified that the sum of the ratios is 1 for each order, and the ratio of each bit position is determined to be equal. It is also possible to add constraints other than the above.
  • step S22 The processing of step S22 will be specifically described with reference to FIGS. 3 and 5.
  • the ratio of “0.5” As shown in Figure 5, the first line: “0.5 X 0.36”, the second line: “0.5 X 0.64” harm “J harm”.
  • the total ratio of the variable nodes of AWGN for the 1st and 3rd bits and AWGN for the 2nd and 4th bits is equal to 0.5 respectively.
  • Step S23 determines whether or not an order ensemble with a minimum SNR threshold value has been obtained. For example, if an order ensemble with the smallest SNR threshold is obtained (Step S23, Yes), the variable i is initialized to 0 (Step S24), and if it is not obtained (Step S23, No) The variable i is incremented (step S25). This procedure counts how many times the order ensemble with the smallest SNR threshold is compared with other order ensembles.
  • LDPC encoder 1 outputs the order ensemble that minimizes the SNR threshold when variable i exceeds the specified number of times set (step S26, Yes). If it is smaller (No at step S26), return to step S22 and change the ratio for each bit position of the modulation symbol to generate a new order ensemble using an optimization method such as “Differential EvolutionJ”.
  • the order ensemble of Fig. 3 is fixedly used, and "16QAM Gray Mapping g" or " Figures 9 and 10 show the results of obtaining the order ensemble for “64QAM Gray Mapping”. Also, without using the procedure of FIG. 8 in the present embodiment, the SNR threshold obtained from the order ensemble of FIG.
  • the power of the procedure of FIG. 8 in the present embodiment can generate the order ensemble having the minimum SNR threshold with respect to the order ensemble of FIG. 3 in any modulation scheme. Recognize. Also, in the modulation scheme with a large multi-level number, the distribution of the received signal can be classified in more detail, so that the effect of executing FIG. 8 in this embodiment is great.
  • Embodiment 3 in the LDPC code generation method of Embodiment 1 or 2, the LLR probability density function is calculated in accordance with, for example, the LLR calculation processing in LDPC decoder 5. Note that the configuration of the communication system of the present embodiment is the same as that of FIG. 1 of the first embodiment described above.
  • FIG. 12 to FIG. 17 are diagrams for explaining the calculation processing of the LLR probability density function of the third embodiment.
  • the LDPC code generation method of the present embodiment also Generate LLR probability density function considering all modulation points.
  • the LLR probability density function is generated in the same manner as in the first embodiment.
  • Fig. 13 is a diagram showing the probability density function of the LLRs in the 1st and 3rd bits when calculating LLR using all modulation points
  • Fig. 14 shows the case where LLR is calculated using all modulation points. It is a figure which shows the probability density function of LLR of the 2nd and 4th bit.
  • the LDPC decoder 5 calculates the LLR using the neighboring modulation point of the reception point, also in the LDPC code generation method of the present embodiment, Generate the LLR probability density function taking into account neighboring modulation points of "0" and "'for each bit.
  • the solid line in Fig. 15 represents the neighboring point of the 1st and 3rd bits, and the dotted line represents the neighboring point of the 2nd and 4th bits.
  • the LLR probability density function is obtained by the same processing as in Embodiment 1 for the LLR obtained by the following equation (1 1).
  • Fig. 16 is a diagram showing the probability density function of the LLRs in the 1st and 3rd bits when calculating LLR using neighboring modulation points
  • Fig. 17 shows the case where LLR is calculated using neighboring modulation points.
  • FIG. 4 is a diagram showing a probability density function of LLRs in the 2nd and 4th bits.
  • an LLR probability density function is generated in accordance with the LLR calculation process in the LDPC decoder 5. it can.
  • Embodiment 4 when the modulation scheme is changed in the adaptive modulation scheme, the LDPC code generated for the modulation scheme before the change by the LDPC code generation method of Embodiment 1 is used.
  • the target parity check matrix H Swap the sequence to generate a new code.
  • FIG. 18 is a diagram showing the configuration of the fourth embodiment of the communication system including the LDPC encoder / decoder, and further includes a channel quality estimation unit 6 in addition to the configuration of FIG. .
  • the channel quality measurement unit 6 detects deterioration or improvement in channel quality, it instructs the modulator 2 to change the modulation method, and the modulator 2 Follow the instructions to adaptively change the modulation method.
  • the channel quality measurement unit 6 also notifies the LDPC encoder 1 that the modulation method has been changed.
  • LDPC code generation unit 14a newly generates an LDPC code based on the notification of modulation scheme change from channel quality measurement unit 16, as shown in FIG. To do.
  • the generated parity check matrix H and generation matrix G are input to the encoding unit 11a, and the NOTY detection matrix H is transmitted to the receiving side through the encoding unit 11a.
  • FIG. 20 is a diagram illustrating a specific example of the LDPC code generation method according to the present embodiment.
  • LDPC codes are first generated for 64QAM (“Gray Mapping”) by the same process as in the first embodiment. Then, based on the notification of the modulation method change from the communication channel quality measurement unit 16, for example, the modulation method is changed to 16QAM (“Gray Mapping”) and transmitted.
  • the 3rd bit of 64QAM (the error rate of 4th, 5th and 6th bits is equivalent to 1st, 2nd and 3rd bits respectively) is the bit position with the highest error probability in 6bits.
  • the error probability before and after the change is greatly different. Therefore, if the LDPC code generated for 64QAM is used as it is, the performance may be significantly degraded. Therefore, in this embodiment, as shown in FIG. 20, for the bit position (the third bit of 64QAM) with greatly different error probabilities, the column of parity check matrix H is replaced with the surrounding column, and the performance is greatly improved. A new LDP C code that does not deteriorate is generated.
  • the parity check matrix H column corresponding to the bit positions with greatly different error probabilities before and after the change is changed, I decided to replace it with the surrounding columns.
  • the LDPC code generation method according to the present invention is useful for communication apparatuses and communication systems that employ LDPC codes as error correction methods, and in particular, the optimal parity check matrix for LDPC codes. It is suitable for code generators that generate order ensembles.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

 本発明にかかるLDPC符号生成方法は、多値変調方式に適用可能なLDPC符号生成方法であって、たとえば、変調シンボルのビット位置毎に受信信号の分布を分類した上で、SNRしきい値(符号長が十分に長い場合にビット誤り率が急峻に落ちるSNRの値)が最小となるようなパリティ検査行列の次数アンサンブル(行の重みと列の重みのアンサンブル)を探索し、さらに、前記探索結果として得られた次数アンサンブルに基づいて、パリティ検査行列、生成行列を生成することとした。

Description

明 細 書
LDPC符号生成方法および通信装置
技術分野
[0001] 本発明は、誤り訂正方式として LDPC符号を採用する通信装置に関するものであり 、特に、 LDPC符号におけるパリティ検查行列の最適な次数アンサンブルを探索す る LDPC符号生成方法および通信装置に関するものである。
背景技術
[0002] 下記非特許文献 1では、多値変調方式に対する符号化方式として、マルチレベル 符号化のレベル毎に LDPC (Low-Density-Parity-Check)符号を用いた方式が提案 されている。ここでは、レベル毎の LDPC符号の最適化方法として、変調シンボルに マッピングされてレ、るビットの位置毎に初期値となる確率密度関数を求め、それを用 いて「Density Evolution (密度発展法)」により各ビット位置に対する LDPC符号 の最適な次数アンサンブル (パリティ検査行列の構造を示すものであり、 ノ^ティ検査 行列の行または列の" 1 "の数を次数(重み)と表現する)を求めている。
[0003] 非特許文献 l : J.Hou, Paul H.Siegel, Laurence B.Milstein, and Henry
D.Pfister, "Multilevel Coding with Low-Density Parity-Check Component し odes," Proceedingsof IEEE Global Telecommunications Conference, San Antonio, TX, USA, November 25—29, 2001
発明の開示
発明が解決しょうとする課題
[0004] し力、しながら、上記非特許文献 1において提案されているマルチレベル符号ィ匕によ る方式では、変調シンボルにマッピングされるビット位置毎に、符号化器および復号 器を用意する必要があり、回路規模が増大してしまう、という問題があった。
[0005] また、上記マルチレベル符号化による方式では、情報長を変調シンボルにマツピン グされるビット数分毎に分割して符号ィ匕する必要があるが、一般に LDPC符号では、 符号長が短くなると、特性が劣化する傾向にあることが知られている。
[0006] 本発明は、上記に鑑みてなされたものであって、回路規模の増大を回避しつつ、 1 つの LDPC符号により多値変調方式に適した符号を生成することが可能な LDPC符 号生成方法を得ることを目的とする。
課題を解決するための手段
[0007] 上述した課題を解決し、 目的を達成するために、本発明にかかる LDPC符号生成 方法は、多値変調方式に適用可能な LDPC符号生成方法であって、たとえば、変調 シンボルのビット位置毎に受信信号の分布を分類した上で、 SNRしきい値 (符号長 が十分に長い場合にビット誤り率が急峻に落ちる SNRの値)が最小となるようなパリ ティ検査行列の次数アンサンブル (行の重みと列の重みのアンサンブル)を探索する 次数アンサンブル探索ステップと、前記探索結果として得られた次数アンサンブルに 基づいて、パリティ検査行列、生成行列を生成する符号生成ステップと、を含むことを 特徴とする。
発明の効果
[0008] 本発明に力かる LDPC符号生成方法においては、変調シンボルのビット位置毎に 受信信号の分布を分類した上で、 SNRしきレ、値が最小となるようなパリティ検査行列 の次数アンサンブルを探索することとし、さらに、当該次数アンサンブルにしたがって パリティ検查行列および生成行列を生成することとしたので、 1つの LDPC符号で多 値変調方式に適した符号化を実現可能な通信システムを構築できる、という効果を 奏する。
図面の簡単な説明
[0009] [図 1]図 1は、 LDPC符号化器/復号器を含む通信システムの構成を示す図である。
[図 2]図 2は、「16QAM Gray Mapping」の一例を示す図である。
[図 3]図 3は、マルチエッジタイプ LDPC符号の次数アンサンブルの一例を示す図で ある。
[図 4]図 4は、実施の形態 1の次数アンサンブル探索方法を説明するための図である [図 5]図 5は、実施の形態 1の次数アンサンブル探索方法を説明するための図である 園 6]図 6は、 LDPC符号化器の構成例を示す図である。 [図 7]図 7は、 LDPC符号化器の構成例を示す図である。
[図 8]図 8は、実施の形態 2の次数アンサンブル探索方法を示すフローチャートである [図 9]図 9は、図 8の手順による次数アンサンブルの探索結果の一例を示す図である
[図 10]図 10は、図 8の手順による次数アンサンブルの探索結果の一例を示す図であ る。
[図 11]図 11は、図 3の次数アンサンブルから求めた SNRしきい値と、図 8の手順で求 めた SNRしきい値と、の比較結果を示す図である。
[図 12]図 12は、実施の形態 3の LLRの確率密度関数の計算処理を説明するための 図である。
[図 13]図 13は、実施の形態 3の LLRの確率密度関数の計算処理を説明するための 図である。
[図 14]図 14は、実施の形態 3の LLRの確率密度関数の計算処理を説明するための 図である。
[図 15]図 15は、実施の形態 3の LLRの確率密度関数の計算処理を説明するための 図である。
[図 16]図 16は、実施の形態 3の LLRの確率密度関数の計算処理を説明するための 図である。
[図 17]図 17は、実施の形態 3の LLRの確率密度関数の計算処理を説明するための 図である。
[図 18]図 18は、 LDPC符号化器/復号器を含む通信システムの実施の形態 4の構 成を示す図である。
[図 19]図 19は、 LDPC符号化器の構成例を示す図である。
[図 20]図 20は、実施の形態 4の LDPC符号生成方法の具体例を示す図である。 符号の説明
1 LDPC符号化器
2 変調器 3 通信路
4 復調器
5 LDPC復号器
6 通信路品質推定部
11, 11a 符号化部
12 通信路種別推定部
13 次数アンサンブル算出部
14, 14a LDPC符号生成部
発明を実施するための最良の形態
[0011] 以下に、本発明に力かる LDPC符号生成方法の実施例を図面に基づいて詳細に 説明する。なお、この実施例によりこの発明が限定されるものではない。
[0012] 実施の形態 1.
まず、本実施の形態の LDPC符号生成方法を実現可能な符号化器の通信システ ム内の位置付けについて説明する。図 1は、 LDPC符号化器/復号器を含む通信シ ステムの構成を示す図である。図 1において、送信側の通信装置は、 LDPC符号化 器 1と変調器 2を含む構成とし、受信側の通信装置は、復調器 4と LDPC復号器 5を 含む構成とする。
[0013] ここで、 LDPC符号を採用する場合の符号化,復号の流れを簡単に説明する。送 信側の LDPC符号化器 1では、後述する本実施の形態の LDPC符号生成方法で k 11の生成行列0( 情報長, n:符号語長)を生成する。そして、情報長 kのメッセ一 ジ(m, m ,■·-, m )を受け取り、このメッセージおよび上記生成行列 Gを用いて、下
1 2 k
記(1)式のように、符号語 Cを生成する。ただし、 LDPC用のノ^ティ検查行列を Hと した場合、生成行列 Gは、 GHT=0(Tは転置行列)、 H(c, c ,■·-, c )T = 0を満たす
1 2 η
行列となる。
C= m, m, "', m)G
1 2 k
=(c , c , ···, c ) …ひ)
1 2 n
[0014] そして、変調器 2では、 LDPC符号ィ匕器 1で生成した符号語 Cに対して、多値 PSK ,多値 QAMなどの多値数が 2以上の変調方式によりデジタル変調を行い、その変調 信号を、通信路 3を介して受信側に送信する。
[0015] 一方、受信側では、復調器 4が、通信路 3を介して受け取った変調信号に対して、 多値 PSK,多値 QAMなどのデジタル復調を行レ、、さらに、 LDPC復号器 5が、復調 結果となる対数尤度比 (LLR: Log
Likelihood Ratio)に対して、「sum_productアルゴリズム」による繰り返し復号を実施 し、推定結果 (もとの m, m , ·■·, mに対応)を出力する。
1 2 k
[0016] つづいて、多値変調において、変調信号から得られる復調結果の誤り特性につい て説明する。多値変調では、変調点への" 0"、 "1 "のマッピング方法により、ビット位 置毎の誤り確率が異なる。図 2に示す「16QAM Gray Mapping」の例を用いて説 明する。まず、 lbit目について注目すると、 I成分を固定した場合に、 Q成分の値は 全て同じ値となる。従って、誤り確率を考慮する際には I成分のみを考慮することにな る。そこで、送信信号として" 0"を送信した場合に、受信信号力 S"0"である確率 (正し い信号が得られる確率)および" 1 "である確率 (誤った信号が得られる確率)を求める と、それぞれ下記(2)式、 (3)式のようになる。
p (y I x=-3) +p (y | x=-l) …(2)
p (y I x= + l) +p (y | x= + 3) … )
ただし、 xは送信信号を表し、 yは受信信号を表し、 p (y I x)は、送信信号が Xのとき に通信路 3を通して受信した受信信号が yである確率を示す。
[0017] つぎに、 2bit目について注目すると、送信信号力 S"0"ど T'で誤り確率が異なるた め、それぞれで考える必要がある。すなわち、送信信号として" 0"を送信した場合に、 受信信号力 S"0"である確率(正しい信号が得られる確率)および" 1 "である確率 (誤つ た信号が得られる確率)を求めると、それぞれ下記 (4)式、(5)式のようになり、一方 で、送信信号として" 1"を送信した場合に、受信信号が" 1"である確率 (正しい信号 が得られる確率)および" 0"である確率 (誤った信号が得られる確率)を求めると、そ れぞれ下記(5)式、(4)式のようになる。
p (y I x=-3) +p (y | x= + 3) …(4)
p (y I x=-l) +p (y | x= + l) …(5)
[0018] また、 3bit目, 4bit目につレ、ては、 Q成分を固定した場合に、 I成分の値は全て同じ 値となるため、 lbit目、 2bit目と同様に誤り確率を考えることができる。
[0019] 以上のとおり、変調シンボルのビット位置毎に誤り確率が異なるため、それを考慮す ることで、より性能の高い符号を生成できる可能性がある。
[0020] つづいて、マルチエッジタイプの LDPC符号について説明する。マルチエッジタイ プ LDPC符号は、文献「T. Richardson, and R.Urbanke, Modern Coding Theory, available
at http://lthcwww.epfl.ch/papers/ics.psjにより提案されている LDPC符号であり、受 信信号の分布を分類し、それを符号構成に反映することができる。
[0021] 図 3は、上記文献に示されるマルチエッジタイプ LDPC符号の次数アンサンブル例 を示す図である。図 3の bの列において, 1列目は消失確率 1の BEC (Binary
Erasure
Channel) , 2列目は AWGN (Additive White Gaussian Noise) channelの次数を示 す。なお、 dの列はバリアブルノードとチェックノード間の各エッジタイプの次数を示し 、 V は b, dで示されるバリアブルノードの割合を示し、 uは dで示されるチェックノード b,d d
の割合を示す。
[0022] この例で示されるような次数アンサンブルに対して、上記文献に記載された「Densi ty Evolurion (密度発展法)」の手法で解析を行うことにより、 SNRしきい値 (符号長 が十分に長い場合にビット誤り率が急峻に落ちる SNRの平均的な値)が求められる。 この SNRしきい値が最小となる次数アンサンブルを探索し、その次数アンサンブルに 基づいて符号を構成することにより、性能の高い符号を得ることができる。
[0023] つづいて、上記の説明を前提として、本実施の形態の LDPC符号生成方法、詳細 には次数アンサンブル探索方法について説明する。図 4および図 5は、本実施の形 態の次数アンサンブル探索方法を説明するための図である。なお、本実施の形態で は、具体例として、図 2の「16QAM Gray Mapping」の例を用いている力 M値 Q AMかつ「Gray Mapping」に限るものではなぐ M値 QAM以外の多値変調、「Gra y Mapping」以外のマッピング方法についても同様に適用可能である。また、本実 施の形態では、通信路が AWGNの場合について説明している力 これに限らない。
[0024] まず、 LDPC符号化器 1では、変調シンボルのビット位置毎に受信信号の分布を分 類した上で、ノ^ティ検査行列の次数アンサンブルを探索する(図 4、ステップ S l)。 たとえば、図 5に示すように、図 3の次数アンサンブルに対して、変調シンボルのビット 位置毎に bの列の AWGNを分割する。この際、各ビット位置の割合が等しくなるよう に、すなわち、分割した受信信号の分布に対して V の和が等しくなるようにする(制
b'd
約条件)。また、上記制約条件以外に、たとえば、パリティ検査行列 Hの右斜め上三 角の領域を" 0"に設定するために次数の割合の一部を固定する、等の制約条件を 追カロすることとしてもよレ、。なお、 lbit目と 3bit目、 2bit目と 4bit目、でまとめている理 由については後述する。
[0025] つぎに、 LDPC符号化器 1では、 SNRしきい値を探索するための探索範囲を指定 するため、探索範囲上限,下限に、予め決められた初期値 (探索範囲として十分な範 囲と考えられる値)を代入する (ステップ S2)。そして、 SNRの探索上限と探索下限の 平均値を計算する (ステップ S3)。
[0026] つぎに、 LDPC符号化器 1では、上記で計算された平均値 (入力 SNR)を入力とし て、変調シンボルのビット位置毎に LLRの確率密度関数を生成する(ステップ S4)。 図 2に示す「16QAM Gray Mapping」の例で、 lbit目の LLRは、上記(2)式、(3 )式より(6)式のように求められる。そして、送信信号" 0"に対する受信信号の確率密 度関数を考慮し、上記(6)式の LLRに対して確率密度関数を求める。
[0027] [数 1]
Figure imgf000009_0001
[0028] また、 2bit目については上述した通り、送信信号力 S"0"ど ' 1 "の場合で誤り確率が 異なるため、送信信号が" 0"の場合は、 lbit目と同様に LLRの確率密度関数を求め る力 送信信号力 S'T'の場合については、図 2におけるマッピングの" 0"ど ' 1 "を置き 換えて LLRを求め、 LLRの確率密度関数を求める。そして、その 2つの確率密度関 数を平均することで 2bit目の LLRの確率密度関数を求める。
[0029] また、 3bit目、 4bit目については、それぞれ lbit目, 2bit目と全く同じ確率密度関 数を求めることになるため、 LLRの確率密度関数の分類としては、 1, 3bit目、 2, 4bi t目で 2つに分類する。 [0030] つぎに、 LDPC符号化器 1では、ステップ SIで生成した次数アンサンブル、および ステップ S4で生成した LLRの確率密度関数、を入力として、 「Density EvolutionJ を実行する (ステップ S5)。
[0031] つぎに、 LDPC符号化器 1では、「Density Evolution」を実行した結果として、繰 り返し処理により更新された LLRの確率密度関数が無限大方向に発散するかどうか を判定する(ステップ S6)。たとえば、発散する場合は(ステップ S6, Yes)、 SNRしき い値は上記入力 SNR (平均値)よりもさらに小さい方向に存在すると判断できるため 、 SNRの探索上限を上記入力 SNRで更新する(ステップ S7)。一方、発散しない場 合は(ステップ S6, No)、 SNRしきい値は上記入力 SNRよりも大きい方向に存在す ると判断できるため、 SNRの探索下限を上記入力 SNRで更新する(ステップ S8)。
[0032] つぎに、 LDPC符号化器 1では、 SNRの探索上限から SNRの探索下限を引き、事 前に規定した精度以下になった場合 (所望の精度に達した場合)に (ステップ S9, Y es)、 SNRしきい値探索処理ループ(ステップ S3— S9)を抜けて、 SNRの探索上限 と探索下限の平均を計算することにより SNRしきい値(SNRの限界値)を求める(ステ ップ S10)。一方、設定した精度に達していない場合は(ステップ S9, No)、 SNRしき レ、値探索処理ループを再度実行する。
[0033] つぎに、 LDPC符号化器 1では、上記で求められた SNRしきい値が十分に良好な SNRしきレ、値であるかどうかを判断する(ステップ S10:特定のしきレ、値以上の値であ るか、特定の探索回数に対して最も良好な値であるか、等の判断処理を行う)。たとえ ば、十分に良好な SNRしきい値が得られている場合は(ステップ S10, Yes)、その値 を SNRしきい値 (符号長が十分に長い場合にビット誤り率が急峻に落ちる SNRの平 均的な値)として決定し、 SNRしきい値が最小となる次数アンサンブルを出力する。 一方、十分に良好な SNRしきい値が得られていない場合は(ステップ S10, No)、ス テツプ SIに戻って、別の次数アンサンブルに対する SNRしきい値探索処理 (ステツ プ S1 ステップ S11)を実行する力 \または終了するか、を決める。なお、ステップ S 1に戻って別の次数アンサンブルを生成する場合には、上記の探索過程にぉレ、て、 その時点の次数アンサンブルに対して、たとえば、 R.Storn等が提案している「Differ ential Evolution (R.Storn, and K.Price, "Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces," Technical Report
TR-95-012, ICSI)等の最適化手法を使用して、新たな次数アンサンブルを生成する
[0034] そして、上記のように得られた次数アンサンブルに基づいて、たとえば、特開 2003 —198383号公報に記載されたユークリット幾何符号を用いた手法によりパリティ検查 行列 Hを生成し、生成行歹 1JGを生成する。なお、 LDPC符号を生成する際には、変 調シンボルのビット位置毎に受信信号の分布を分類していなレ、、たとえば、図 3のよう な従来の次数アンサンブルに基づレ、て、従来の方法によりパリティ検查行列 Hを生 成し、変調シンボルのビット位置毎に受信信号の分布を分類している図 5の次数アン サンブルに基づレ、て、ノ^ティ検查行列 Hの列を並び替えることとしてもょレ、。
[0035] このように、本実施の形態においては、変調シンボルのビット位置毎に受信信号の 分布を分類した上で、 SNRしきレ、値 (符号長が十分に長レ、場合にビット誤り率が急 峻に落ちる SNRの平均的な値)が最小となるような次数アンサンブルを探索すること とし、さらに、 SNRしきい値が最小となる次数アンサンブルにしたがってパリティ検査 行列および生成行列を生成することとした。これにより、 1つの LDPC符号で多値変 調方式に適した符号化を実現可能な通信システムを構築できる。
[0036] なお、本実施の形態では、上記方法により生成された LDPC符号を、たとえば、図 6のように、 LDPC符号ィ匕器 1内の符号化部 11に直接持たせることとしてもよい。また 、たとえば、図 7のように、 LDPC符号化器 1内の通信路種別推定部 12内で、 AWG Nチャネル,レイリーフェージングチャネル等のモデルとなる通信路種別を推定した 上で、本実施の形態の LDPC符号生成方法により、次数アンサンブル算出部 13、 L DPC符号生成部 14にてリアルタイムに LDPC符号を生成することとしてもよレ、。この 場合、生成されたパリティ検查行列 H,生成行列 Gを符号化部 11aに入力し、さらに、 パリティ検查行列 Hについては符号化部 11aを通して受信側に送信する。
[0037] また、本実施の形態の LDPC符号生成方法は、マルチエッジタイプ LDPC符号に 限らず、イレギュラー LDPC符号の次数アンサンブルに適用することも可能である。 下記(7)式、(8)式は、それぞれバリアブルノード,チェックノードの次数配分の生成 関数を示している。ただし、 λ , はそれぞれ次数 iのバリアブルノードとチェックノー ドに属するエッジ (パリティ検査行列 Hの "1 "をエッジと表現する)の比率を表し、 dは バリアブルノードの最大次数であり、 dはチェックノードの最大次数である。
[0038] [数 2]
Figure imgf000012_0001
[0039] [数 3]
1
(8)
[0040] そして、上記(7)式、(8)式に対応して、たとえば、変調シンボルのビット位置 k毎に λ , ρを分類した λ k, p kに基づいて、下記(9)式、(10)式のようにそれぞれバリア i i i i
ブルノード,チェックノードの次数配分の生成関数を表現し、さらに、変調シンボルの ビット位置毎に LLRの確率密度関数を分けた上で、本実施の形態の LDPC符号生 成方法により SNRが最小となる次数アンサンブルを求め、 LDPC符号を生成する。
[0041] [数 4] ∑∑ (9)
[0042] [数 5]
Figure imgf000012_0002
[0043] 実施の形態 2.
実施の形態 2では、前述の実施の形態 1の LDPC符号生成方法において SNRしき い値が十分に小さい次数アンサンブルを検索する際に、処理を 2段階に分割するこ とにより、検索に必要な計算時間を短縮する。なお、本実施の形態の通信システムの 構成にっレ、ては、前述した実施の形態 1の図 1と同様である。
[0044] 図 8は、実施の形態 2の次数アンサンブル探索方法を示すフローチャートである。
本実施の形態では、前述の実施の形態 1と異なる処理についてのみ説明する。
[0045] 本実施の形態においては、まず、 LDPC符号化器 1が、変調シンボルのビット位置 毎に受信信号の分布を分類しない、従来の手法により、 SNRしきい値が最小となる 次数アンサンブルを算出する(図 8、ステップ S21 :たとえば、図 3のような従来の次数 アンサンブルを求める)。なお、ここでは、上記ステップ S21の処理に限らず、たとえ ば、シンボルのビット位置毎に受信信号の分布を分類しなレ、、既知の次数アンサン ブルを、固定的に使用することとしてもよい。
[0046] つぎに、 LDPC符号化器 1では、次数毎に、変調シンボルビット位置毎の割合を付 与し、その割合をパラメータとして、「Differential Evolution」等の最適化手法によ りパリティ検查行列の次数アンサンブルを生成する(ステップ S22)。このとき、パラメ ータの制約条件として、次数毎に割合の和が 1となるように規定し、また、各ビット位 置の割合が等しくなるように決定する。なお、上記以外の制約条件を追加することとし てもよい。
[0047] 上記ステップ S22の処理を具体的に図 3、図 5を用いて説明すると、たとえば、図 3 でバリアブルノードの 1行目の次数に着目し、この「0. 5」の割合を、図 5に示すように 、 1行目:「0. 5 X 0. 36」, 2行目:「0. 5 X 0. 64」の害 'J合に分害 'Jする。なお、 1, 3bit 目の AWGN、 2, 4bit目の AWGNのバリアブルノードの割合の合計は、それぞれ 0 . 5で等しい。
[0048] つぎに、前述の実施の形態 1と同様の処理でステップ S2— S10を実行後、 LDPC 符号化器 1では、 SNRしきい値が最小となる次数アンサンブルが得られたかどうかを 判定する(ステップ S23)。たとえば、 SNRしきい値が最小となる次数アンサンブルが 得られた場合は (ステップ S23, Yes)、変数 iを 0に初期化し (ステップ S24)、得られ な力 た場合は (ステップ S23, No)、変数 iをインクリメントする(ステップ S25)。この 手順により、 SNRしきい値が最小となる次数アンサンブルに対して、他の次数アンサ ンブルと何回にわたって比較したかカウントする。
[0049] 最後に、 LDPC符号化器 1では、上記変数 iが設定した規定回数より大きくなつた場 合に(ステップ S26, Yes)、 SNRしきい値が最小となる次数アンサンブルを出力し、 規定回数より小さい場合は (ステップ S26, No)、ステップ S22に戻り、上記変調シン ボルのビット位置毎の割合を変えて「Differential EvolutionJ等の最適化手法に より新しレ、次数アンサンブルを生成する。 [0050] ここで、本実施の形態の数値解析例として、たとえば、図 3の次数アンサンブルを固 定的に使用し、本実施の形態における図 8の手順により「16QAM Gray Mappin g」、または「64QAM Gray Mapping」に対して次数アンサンブルを求めた結果を 、図 9、図 10に示す。また、本実施の形態における図 8の手順を用いずに、図 3の次 数アンサンブルから求めた SNRしきい値と、本実施の形態の図 8の手順で求めた S NRしきレ、値と、の比較結果を図 11に示す。図示のとおり、いずれの変調方式におい ても、本実施の形態における図 8の手順の方力 図 3の次数アンサンブルに対して、 SNRしきい値が最小となる次数アンサンブルを生成できていることがわかる。また、 多値数が大きい変調方式では、受信信号の分布をより詳細に分類できるため、本実 施の形態における図 8の実行による効果は大きい。
[0051] このように、本実施の形態においては、実施の形態 1と比較して、次数アンサンブル の探索処理におけるパラメータの増加による計算量の大幅な増大を回避できるととも に、短時間の解析で SNRしきい値が最小となる次数アンサンブルを探索できる。
[0052] 実施の形態 3.
実施の形態 3では、前述の実施の形態 1または 2の LDPC符号生成方法において 、たとえば、 LDPC復号器 5における LLR算出処理に合わせて、 LLRの確率密度関 数を計算する。なお、本実施の形態の通信システムの構成については、前述した実 施の形態 1の図 1と同様である。
[0053] 図 12—図 17は、実施の形態 3の LLRの確率密度関数の計算処理を説明するため の図である。図 12に示すように(黒丸は受信点を表す)、たとえば、 LDPC復号器 5が 、全変調点を考慮して LLRを算出する場合は、本実施の形態の LDPC符号生成方 法においても、全変調点を考慮して LLRの確率密度関数を生成する。図 2に示す「1 6QAM Gray Mapping」の例では、前述の実施の形態 1と同様の方法で LLRの 確率密度関数を生成する。図 13は、全変調点を用いて LLRを算出する場合の、 1, 3bit目の LLRの確率密度関数を示す図であり、図 14は、全変調点を用いて LLRを 算出する場合の、 2, 4bit目の LLRの確率密度関数を示す図である。
[0054] これに対して、図 15に示されるように、 LDPC復号器 5が、受信点の近傍変調点を 用いて LLRを算出する場合は、本実施の形態の LDPC符号生成方法においても、 各ビットにおける" 0"ど ' の近傍変調点を考慮して LLRの確率密度関数を生成する 。図 15における実線は 1 , 3bit目の近傍点を表し、点線は 2, 4bit目の近傍点を表し ている。たとえば、図 2に示す「16QAM Gray Mapping」の 1 , 3bit目の例では、 下記(1 1 )式により LLRを求め、その確率密度関数を求める。
[0055] [数 6]
LLR = ln Max(f^ X = -3} P( x = -ll … (U )
[0056] また、 2, 4bit目については、下記(1 1 )式に求めた LLRに対して、実施の形態 1と 同様の処理で、 LLRの確率密度関数を求める。図 16は、近傍変調点を用いて LLR を算出する場合の、 1 , 3bit目の LLRの確率密度関数を示す図であり、図 17は、近 傍変調点を用いて LLRを算出する場合の、 2, 4bit目の LLRの確率密度関数を示 す図である。
[0057] このように、本実施の形態においては、前述の実施の形態 1または 2の効果に加え て、さらに、 LDPC復号器 5における LLR算出処理に合わせて、 LLRの確率密度関 数を生成できる。
[0058] 実施の形態 4.
実施の形態 4では、適応変調方式において変調方式が変更された場合に、実施の 形態 1の LDPC符号生成方法により変更前の変調方式に対して生成した LDPC符 号を利用する。そして、変更前の変調方式のビット位置毎の LLR確率密度分布と、 変更後の変調方式のビット位置毎の LLR確率密度分布と、が大きく異なるビット位置 については、対象となるパリティ検査行列 Hの列を入れ替えて、新たな符号を生成す る。
[0059] 図 18は、 LDPC符号化器/復号器を含む通信システムの実施の形態 4の構成を 示す図であり、図 1の構成に加えて、さらに通信路品質推定部 6を備えている。本実 施の形態においては、通信路品質測定部 6が、通信路品質の劣化または改善を検 出した場合に、変調器 2に対して変調方式の変更を指示し、変調器 2が、その指示に 従い、変調方式を適応的に変更する。同時に、通信路品質測定部 6では、 LDPC符 号化器 1に対しても、変調方式が変更されたことを通知する。 [0060] また、 LDPC符号化器 1では、図 19で示すように、通信路品質測定部 16からの変 調方式変更の通知に基づいて、 LDPC符号生成部 14aが、 LDPC符号を新たに生 成する。この場合、生成されたパリティ検査行列 H,生成行列 Gを符号化部 11aに入 力し、さらに、ノ^ティ検查行列 Hについては符号ィ匕部 11aを通して受信側に送信す る。
[0061] 図 20は、本実施の形態の LDPC符号生成方法の具体例を示す図である。図 20の 例では、まず、 64QAM (「Gray Mapping」)を対象に、前述した実施の形態 1と同 様の処理により LDPC符号を生成している。そして、通信路品質測定部 16からの変 調方式変更の通知に基づいて、たとえば、 16QAM (「Gray Mapping」)に変調方 式を変更してレヽる。このような場合、たとえは、、 64QAMの 3bit目(4, 5, 6bit目の誤 り率はそれぞれ 1 , 2, 3bit目と等価である)は、 6bit中最も誤り確率が高いビット位置 となるため、変更後の 16QAMにおける対応ビット位置(3, 4bit目の誤り率はそれぞ れ 1 , 2bit目と等価である)と比較した場合、変更前と変更後で誤り確率が大きく異な つてしまう。そのため、 64QAM用に生成した LDPC符号をそのまま使用すると、性 能が大幅に劣化することが考えられる。そこで、本実施の形態においては、図 20に 示すように、誤り確率が大きく異なるビット位置(64QAMの 3bit目)については、パリ ティ検査行列 Hの列を周辺の列と入れ替えて、性能が大幅に劣化しなレ、ような LDP C符号を新たに生成する。
[0062] このように、本実施の形態においては、通信中に変調方式が変更された場合、変 更前と変更後で誤り確率が大きく異なるビット位置に対応するパリティ検査行列 Hの 列を、周辺の列と入れ替えることとした。これにより、適応変調方式を採用する通信シ ステムであつても、変更方式毎に個別に実施の形態 1と同様の LDPC符号生成方法 を実行する必要がなくなり、さらに各変調方式に対して性能を大幅に劣化させずに、 新たな LDPC符号を生成できる。
産業上の利用可能性
[0063] 以上のように、本発明にかかる LDPC符号生成方法は、誤り訂正方式として LDPC 符号を採用する通信装置および通信システムに有用であり、特に、 LDPC符号にお けるパリティ検査行列の最適な次数アンサンブルを生成する符号ィ匕器に適している。

Claims

請求の範囲
[1] 多値変調方式に適用可能な LDPC (Low-Density-Parity-Check)符号生成方法に おいて、
変調シンボルのビット位置毎に受信信号の分布を分類した上で、 SNR (Signal to Noise Ratio)しきい値 (符号長が十分に長い場合にビット誤り率が急峻に落ちる SNR の値)が最小となるようなパリティ検查行列の次数アンサンブル (行の重みと列の重み のアンサンブル)を探索する次数アンサンブル探索ステップと、
前記探索結果として得られた次数アンサンブルに基づいて、パリティ検査行列、生 成行列を生成する符号生成ステップと、
を含むことを特徴とする LDPC符号生成方法。
[2] 前記次数アンサンブル探索ステップにあっては、
前記受信信号の分布を分類する処理として、変調シンボルのビット位置毎に LLR ( Log Likelihood Ratio)の確率密度関数を分類し、探索過程におけるその時点の次数 アンサンブルに対して所定の最適化手法を適用し、新たな次数アンサンブルを探索 する第 1の工程と、
所定の基準を満たすまで、前記新たな次数アンサンブルに対する「Density Evol urion (密度発展法)」の実行結果に基づいて SNRの探索上限および探索下限を更 新する処理を繰り返し実行し、前記基準を満たした時点の SNRの探索上限と探索下 限に基づいて SNRしきい値を求める第 2の工程と、
得られた SNRしきい値が所望の SNRしきい値であるかどうかを判断する第 3の工程 と、
を含み、
所望の SNRしきい値が得られるまで前記各工程を繰り返し実行することを特徴とす る請求項 1に記載の LDPC符号生成方法。
[3] 多値変調方式に適用可能な LDPC (Low-Density-Parity-Check)符号生成方法に おいて、
既知の手法により、 SNR (Signal to Noise Ratio)しきい値(符号長が十分に長い 場合にビット誤り率が急峻に落ちる SNRの値)が最小となるようなパリティ検査行列の 次数アンサンブル (行の重みと列の重みのアンサンブル)を探索する第 1の次数アン サンブル探索ステップと、
次数毎に、変調シンボルビット位置毎の割合をその値を変えながら規定回数にわ たって付与し、前記探索結果として得られる次数アンサンブルに対して、変調シンポ ルのビット位置毎に受信信号の分布を分類した上で、前記各割合をパラメータとして
、 SNRしきい値が最小となるようなパリティ検查行列の次数アンサンブルを探索する 第 2の次数アンサンブル探索ステップと、
前記第 2の次数アンサンブル探索ステップにより得られた次数アンサンブルに基づ いて、パリティ検查行列、生成行列を生成する符号生成ステップと、
を含むことを特徴とする LDPC符号生成方法。
[4] 多値変調方式に適用可能な LDPC (Low-Density-Parity-Check)符号生成方法に おいて、
次数毎に、変調シンボルビット位置毎の割合をその値を変えながら規定回数にわ たって付与し、固定的に使用する既知の次数アンサンブル (行の重みと列の重みの アンサンブル)に対して、変調シンボルのビット位置毎に受信信号の分布を分類した 上で、前記各割合をパラメータとして、 SNR (Signal to Noise
Ratio)しきい値 (符号長が十分に長い場合にビット誤り率が急峻に落ちる SNRの値) が最小となるようなノ^ティ検査行列の次数アンサンブルを探索する次数アンサンブ ル探索ステップと、
前記次数アンサンブル探索ステップにより得られた次数アンサンブルに基づいて、 パリティ検査行列、生成行列を生成する符号生成ステップと、
を含むことを特徴とする LDPC符号生成方法。
[5] さらに、復号器の尤度計算処理に合わせて、変調シンボルのビット位置毎の受信信 号の分布を計算することを特徴とする請求項 1に記載の LDPC符号生成方法。
[6] さらに、復号器の尤度計算処理に合わせて、変調シンボルのビット位置毎の受信信 号の分布を計算することを特徴とする請求項 3に記載の LDPC符号生成方法。
[7] さらに、復号器の尤度計算処理に合わせて、変調シンボルのビット位置毎の受信信 号の分布を計算することを特徴とする請求項 4に記載の LDPC符号生成方法。
[8] 通信中に変調方式が変更された場合、変更前と変更後で誤り確率が大きく異なる ビット位置に対応するパリティ検査行列 Hの列を、周辺の列と入れ替えることを特徴と する請求項 1に記載の LDPC符号生成方法。
[9] 通信中に変調方式が変更された場合、変更前と変更後で誤り確率が大きく異なる ビット位置に対応するパリティ検查行列 Hの列を、周辺の列と入れ替えることを特徴と する請求項 3に記載の LDPC符号生成方法。
[10] 通信中に変調方式が変更された場合、変更前と変更後で誤り確率が大きく異なる ビット位置に対応するパリティ検查行列 Hの列を、周辺の列と入れ替えることを特徴と する請求項 4に記載の LDPC符号生成方法。
[11] 多値変調方式に対する符号化方式として、 LDPC (Low-Density-Parity-Check)符 号を採用する通信装置において、
変調シンボルのビット位置毎に受信信号の分布を分類した上で、 SNR (Signal to
Noise Ratio)しきい値 (符号長が十分に長い場合にビット誤り率が急峻に落ちる SNR の値)が最小となるようなパリティ検査行列の次数アンサンブル (行の重みと列の重み のアンサンブル)を探索する次数アンサンブル探索機能と、
前記探索結果として得られた次数アンサンブルに基づいて、パリティ検査行列、生 成行列を生成する符号生成機能と、
を有することを特徴とする通信装置。
[12] 多値変調方式に対する符号化方式として、 LDPC (Low-Density-Parity-Check)符 号を採用する通信装置におレ、て、
既知の手法により、 SNR (Signal to Noise Ratio)しきい値(符号長が十分に長い 場合にビット誤り率が急峻に落ちる SNRの値)が最小となるようなパリティ検查行列の 次数アンサンブル (行の重みと列の重みのアンサンブル)を探索する第 1の次数アン サンブル探索機能と、
次数毎に、変調シンボルビット位置毎の割合をその値を変えながら規定回数にわ たって付与し、前記探索結果として得られる次数アンサンブルに対して、変調シンポ ルのビット位置毎に受信信号の分布を分類した上で、前記各割合をパラメータとして
、 SNRしきい値が最小となるようなパリティ検查行列の次数アンサンブルを探索する 第 2の次数アンサンブル探索機能と、
前記第 2の次数アンサンブル探索機能により得られた次数アンサンブルに基づい て、パリティ検査行列、生成行列を生成する符号生成機能と、
を有することを特徴とする通信装置。
[13] 多値変調方式に対する符号化方式として、 LDPC (Low-Density-Parity-Check)符 号を採用する通信装置において、
次数毎に、変調シンボルビット位置毎の割合をその値を変えながら規定回数にわ たって付与し、固定的に使用する既知の次数アンサンブル (行の重みと列の重みの アンサンブル)に対して、変調シンボルのビット位置毎に受信信号の分布を分類した 上で、前記各割合をパラメータとして、 SNR (Signal to Noise
Ratio)しきい値 (符号長が十分に長い場合にビット誤り率が急峻に落ちる SNRの値) が最小となるようなパリティ検查行列の次数アンサンブルを探索する次数アンサンブ ル探索機能と、
前記次数アンサンブル探索機能により得られた次数アンサンブルに基づいて、パリ ティ検査行列、生成行列を生成する符号生成機能と、
を有することを特徴とする通信装置。
PCT/JP2004/012830 2004-09-03 2004-09-03 Ldpc符号生成方法および通信装置 WO2006027818A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2004/012830 WO2006027818A1 (ja) 2004-09-03 2004-09-03 Ldpc符号生成方法および通信装置
JP2006535064A JP4755104B2 (ja) 2004-09-03 2005-07-13 Ldpc符号生成方法、通信装置および符号列生成方法
PCT/JP2005/012949 WO2006027897A1 (ja) 2004-09-03 2005-07-13 Ldpc符号生成方法、通信装置および符号列生成方法
EP05765754A EP1788709A4 (en) 2004-09-03 2005-07-13 METHOD FOR LPDC CODE GENERATION, COMMUNICATION DEVICE AND METHOD FOR CODE SEQUENCE GENERATION
CN2005800295990A CN101010881B (zh) 2004-09-03 2005-07-13 Ldpc码生成方法、通信装置以及码列生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/012830 WO2006027818A1 (ja) 2004-09-03 2004-09-03 Ldpc符号生成方法および通信装置

Publications (1)

Publication Number Publication Date
WO2006027818A1 true WO2006027818A1 (ja) 2006-03-16

Family

ID=36036115

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/012830 WO2006027818A1 (ja) 2004-09-03 2004-09-03 Ldpc符号生成方法および通信装置
PCT/JP2005/012949 WO2006027897A1 (ja) 2004-09-03 2005-07-13 Ldpc符号生成方法、通信装置および符号列生成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012949 WO2006027897A1 (ja) 2004-09-03 2005-07-13 Ldpc符号生成方法、通信装置および符号列生成方法

Country Status (3)

Country Link
EP (1) EP1788709A4 (ja)
CN (1) CN101010881B (ja)
WO (2) WO2006027818A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090040311A (ko) * 2006-08-04 2009-04-23 미쓰비시덴키 가부시키가이샤 검사 행렬 생성 방법, 부호화 방법, 통신 장치, 통신 시스템 및 부호화기
US8230299B2 (en) 2006-09-18 2012-07-24 Availink, Inc. Interleaving scheme for an LDPC coded QPSK/8PSK system
WO2008034291A1 (en) * 2006-09-18 2008-03-27 Ming Yang An interleaving scheme for an ldpc coded qpsk/8psk system
US20100070820A1 (en) * 2006-12-18 2010-03-18 Mitsubishi Electric Corporation Coding apparatus, coding method, coding and decoding apparatus, and communication apparatus
KR101503059B1 (ko) * 2008-02-26 2015-03-19 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 채널 부호/복호 방법 및 장치
CN104969522B (zh) 2012-12-21 2019-03-15 三星电子株式会社 在无线通信系统中使用调制技术收发信号的方法和设备
JP5792256B2 (ja) * 2013-10-22 2015-10-07 日本電信電話株式会社 疎グラフ作成装置及び疎グラフ作成方法
CN109347485A (zh) * 2018-09-29 2019-02-15 山东存储之翼电子科技有限公司 构造ldpc码校验矩阵的方法及ldpc码编译方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168733A (ja) * 1999-10-12 2001-06-22 Thomson Csf Ldpcコードの構築およびコーディングのためのプロセス
JP2003198383A (ja) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp Ldpc符号用検査行列生成方法
JP2004080753A (ja) * 2002-07-03 2004-03-11 Hughes Electronics Corp 低密度のパリティチェック(ldpc)コードをデコードする方法およびシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163975A1 (en) * 2000-09-21 2002-11-07 Mitsuru Uesugi Wireless transmission device, and transmission signal mapping method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168733A (ja) * 1999-10-12 2001-06-22 Thomson Csf Ldpcコードの構築およびコーディングのためのプロセス
JP2003198383A (ja) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp Ldpc符号用検査行列生成方法
JP2004080753A (ja) * 2002-07-03 2004-03-11 Hughes Electronics Corp 低密度のパリティチェック(ldpc)コードをデコードする方法およびシステム

Also Published As

Publication number Publication date
EP1788709A1 (en) 2007-05-23
CN101010881B (zh) 2012-07-25
CN101010881A (zh) 2007-08-01
EP1788709A4 (en) 2008-11-12
WO2006027897A1 (ja) 2006-03-16

Similar Documents

Publication Publication Date Title
US7805653B2 (en) LDPC-code generating method, communication apparatus, and code-string generating method
US8351552B2 (en) Decoding of forward error correction codes in the presence of phase noise and thermal noise
US9806743B2 (en) System and method of belief propagation decoding
US7979775B2 (en) Turbo interference suppression in communication systems
JP2017077012A (ja) 連結コーディング・システムの先進繰り返しデコーディングおよびチャネル評価のためのシステムおよび方法
CN104467874B (zh) 一种基于振荡变量节点的ldpc码动态调度译码方法
WO2006027897A1 (ja) Ldpc符号生成方法、通信装置および符号列生成方法
EP2963830A1 (en) Decoding method, decoding apparatus, and communications system
EP2974196B1 (en) Method and apparatus for encoding and decoding for frequency and quadrature-amplitude modulation in wireless communication system
Lechner et al. Analysis and design of binary message passing decoders
Zhao et al. A variant of the EMS decoding algorithm for nonbinary LDPC codes
US9614548B1 (en) Systems and methods for hybrid message passing and bit flipping decoding of LDPC codes
US20050257116A1 (en) Time-invariant hybrid iterative decoders
JP2004032125A (ja) 通信システムおよび信号処理方法
KR20150031568A (ko) 디지털 비디오 방송 시스템에서 LDPC(Low Density Parity Check) 복호기 및 LDPC 복호기의 복호화 방법
JP4380407B2 (ja) ブランチメトリック演算方法
US9531577B2 (en) Bit-likelihood calculating apparatus and bit-likelihood calculating method
JP3712371B2 (ja) 復調復号装置、受信装置および復調復号方法
Monsees et al. Channel-optimized information bottleneck design for signal forwarding and discrete decoding in cloud-RAN
Kurkoski et al. Concatenation of a discrete memoryless channel and a quantizer
JP4755104B2 (ja) Ldpc符号生成方法、通信装置および符号列生成方法
JP4666646B2 (ja) 軟判定ビタビ復号装置および方法、復号装置および方法
CN113949453B (zh) 调制编码、解调译码的方法、装置、设备及通信系统
Lewandowsky et al. A discrete information bottleneck receiver with iterative decision feedback channel estimation
JP2011082759A (ja) 誤り訂正符号の復号方法およびその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase