WO2006027317A1 - Guiding device for guiding a displaceable machine element of a machine - Google Patents

Guiding device for guiding a displaceable machine element of a machine Download PDF

Info

Publication number
WO2006027317A1
WO2006027317A1 PCT/EP2005/054213 EP2005054213W WO2006027317A1 WO 2006027317 A1 WO2006027317 A1 WO 2006027317A1 EP 2005054213 W EP2005054213 W EP 2005054213W WO 2006027317 A1 WO2006027317 A1 WO 2006027317A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
guide device
bearing
material measure
guiding
Prior art date
Application number
PCT/EP2005/054213
Other languages
German (de)
French (fr)
Inventor
Gerhard Forster
Jens Hamann
Dietmar Stoiber
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US11/574,788 priority Critical patent/US7891112B2/en
Publication of WO2006027317A1 publication Critical patent/WO2006027317A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders
    • G01D5/34753Carriages; Driving or coupling means

Definitions

  • the invention relates to a guide device for guiding a movable machine element of a machine and a machine with such a guide device.
  • a movable machine element for example a guide carriage
  • a guide device which may be e.g. in the form of a guide rail vor ⁇ can be moved position-controlled.
  • FIG. 1 a commercially available machine tool is shown schematically, with only the elements necessary for understanding the invention being shown for the sake of clarity.
  • the machine element 1 is provided with a drive (not shown for reasons of clarity), for example a linear drive, with the aid of which the machine element 1 can be moved in position-controlled manner by a control and / or regulation system along the guide device 3.
  • the Hopkinssvorrich ⁇ device 3 is mechanically fixed verbun ⁇ with a machine bed 4, which stands on a bottom 5.
  • the guide device 3 To determine the position of the machine element 1 ent ⁇ long the guide device 3 is a material measure 6, which may be present for example in the form of a band provided with a regular pitch, mechanically fixedly connected to the guide device 3.
  • the material measure 6 is provided, for example in the form of lines, with a so-called part, which is separated from a reading head 2 connected to the machine. nenelement 1 is connected, can be read.
  • the Rush ⁇ embodiment 6 thus allows in conjunction with the Lese ⁇ head 2 an accurate position determination of the machine element. 1
  • the machine element 1 which in the exemplary embodiment is in the form of a so-called guide carriage
  • a commercially available machine there are further structures, eg in the form of a spindle with tools, which can be moved along the guide direction 3 with the aid of the machine element 1 , available.
  • the workpiece to be machined is often anchored directly to the ground in such a machine.
  • the machine element 1 and the structures fastened to it form a so-called tool slide.
  • a tool carriage not only a single carriage, but have a plurality of carriages.
  • the machine slides must be positioned with high accuracy and high speed while maintaining given travel profiles.
  • the given travel profiles contain speed changes that require high acceleration forces.
  • the rapid change of the acceleration forces stimulates the mechanics of the machine, in particular the machine bed 4, to oscillate.
  • the machine bed 1 is stressed particularly strongly by the reaction forces of the movement guidance. Due to the influence of the acceleration forces of the tool carriage, the machine bed deviates in the opposite direction. Often it deforms and / or it starts to swing. Even if the machine element 1 can be exactly positioned relative to the machine bed 4, the machine bed 4 itself oscillates in relation to the floor 5. If the machine is, for example, a portal milling machine in which the workpiece to be machined is firmly anchored to the floor, then the vibrations of the machine bed 4 on the workpiece are to be seen, even if the machine element 1 exactly complies with the prescribed position relative to the machine bed 4.
  • the vibrations of the machine bed 4 are so unfavorable that the control properties ofxs ⁇ leadership of the machine element 1 is severely impaired and not even a sufficiently precise motion control of the machine element 1 relative to the machine bed 4 were ⁇ can achieved. In this case, the vibrations of the machine bed 4 occurring during the movement guidance have a doubly detrimental effect.
  • Feed drives which are constructed according to this technical teaching, are used, for example, in machine tools in which the tool carriage is subjected to high accelerations.
  • Feed drives which are constructed according to this technical teaching, are used, for example, in machine tools in which the tool carriage is subjected to high accelerations.
  • the required movable anchoring of Motor reaction surface of the linear direct drive caused considerable costs and effort.
  • the published patent application DE 198 10 996 A1 proposes to improve the motion guidance in a machine with a vibratory machine bed, to decouple the motor reaction surface from the machine bed.
  • the measuring system reacts very sensitively to a change in the distance between Vintagever ⁇ body and guide device, because, for example, the graduation attached to the graduation (a division can be present, for example in the form of attached to the graduation lines vorlie ⁇ ) no longer exactly from the read head can be read.
  • This has a strongly negative effect on the positioning accuracy of the machine element.
  • the invention has for its object to provide a politicianssvor ⁇ direction for guiding a movable machine element of a machine, which allows an exact positioning of the movable Maschinen ⁇ even with vibrations of Maschinen ⁇ bed.
  • a guide device for guiding a movable machine element of a machine, wherein the guide device is mechanically fixedly connected to a machine bed, wherein a material measure for determining a position of the machine element is arranged along at least a part of the guide device, wherein the guide device and the material measure are movable relative to each other, wherein at least a part of the Titan ⁇ embodiment is directly or via a bearing with the Samuels ⁇ device in contact.
  • a first advantageous embodiment of the invention is characterized in that the bearing is designed as a plain bearing. Sliding bearings are to be realized particularly cost-effectively compared to other types of bearings.
  • the bearing is designed as a rolling element bearing, since in this way a particularly precise guidance of the material measure along the réellesvor ⁇ direction is ensured.
  • the Tetrachlor ⁇ body is connected to an arranged outside the machine bed anchoring. This ensures that the material measure is anchored to the vibrating machine bed dormant.
  • a workpiece to be machined is provided as anchoring, since then the position of the machine element with respect to the workpiece is measured directly. Furthermore, it proves to be advantageous if a holding-down device exerts a pressure in the direction of the guide device on the measuring body, since then the material measure always maintains a uniform contact with the bearing.
  • the use of the guide device according to the invention in machine tools, production machines and / or robots is advantageous, since a high positioning accuracy of the machine element is often required on these technical devices.
  • guide device can also be used in machines that are in other technical fields.
  • FIG. 1 a machine with the guide device according to the invention is shown in the form of a schematic representation.
  • the embodiment shown in FIG. 2 corresponds essentially to the embodiment described above with reference to the basic structure. The same elements are therefore provided in FIG. 2 with the same reference numerals as in FIG. 1.
  • the essential difference with respect to the embodiment shown in FIG. 1 is that the dimensional tolerances tion 6 is not mechanically firmly connected to the guide device 3 but the guide device 3 and the Vietnamese ⁇ body 6 are movable relative to each other, at least a part of the material measure 6 is ger directly or via a La ⁇ with the guide device 3 in contact.
  • the guide device 3 and the measuring element 6 can be moved relative to one another by the bearing and, on the other hand, the distance between the reading head 2 and the measuring standard 6 is determined exactly along the entire measuring standard 3 and does not fluctuate.
  • the measuring standard 6 is connected to an anchoring arranged outside the machine bed 4, which is present in the embodiment in the form of the two supports 7a and 7b. Since the anchoring is spatially separated from the machine bed 4, this does not vibrate with the machine bed and thus ensures a stationary anchoring of felicitverkörpe ⁇ tion 6.
  • the material measure 6 but not as in the exemplary embodiment Aus ⁇ always along the entire effetsvorrich ⁇ 3, but can also be arranged only along part of the guide device 3.
  • the guide device 3 is mechanically fixedly connected to the machine bed 4.
  • the guide device 3 according to the invention is shown in the form of a cross-sectional drawing.
  • the guide device 3 is designed in the exemplary embodiment according to FIG. 3 in the form of a guide rail.
  • the movable machine element 1, which in the exemplary embodiment is in the form of a guide carriage, is movably connected to the guide device 3 via four rows of balls IIa, IIb, IIc and Hd.
  • the machine element 1 is guided in its movement along the guide device 3 through it.
  • the drive system of the machine element 1 for moving the machine element 1 along the guide device 3 is not shown for the sake of clarity, since it is immaterial to the understanding of the invention.
  • the Machine element 1 normally located structures, such as a spindle and / or tools are Koch ⁇ sake of clarity and as they are not necessary for understanding the vor ⁇ underlying invention, not shown.
  • the reading head 2 is screwed by means of two screws 12a and 12b to the machine element 1.
  • the reading head 2 scans with the aid of a light beam 8, the material measure 6, which is present in the form of a band in the embodiment.
  • the material measure 6 is mounted on the guide device 3 via a bearing 9 and is thus movably connected to the guide rail 3.
  • the bearing 9 is formed as a roller bearing. There are thus a plurality of rolling elements, via which the material measure 6 is in contact with the guide device 3. Because the measuring standard 6 is mounted on the guide device 3 by means of the bearing 9, the distance between the reading head 2 and the measuring standard 6 along the entire material measure 6 is identical and is not subject to any fluctuations. The mecanicverkör ⁇ ment 6 can thus be read exactly from the read head 2 at any Posi ⁇ tion.
  • Two hold-down devices 10a and 10b which are connected to the reading head 2 in the exemplary embodiment and exert a slight pressure in the direction of the guide device on the material measure 6, ensure that the material measure 6 always maintains uniform contact with the bearing 9.
  • the two hold-down devices 10a and 10b only a single hold-down device could be provided or additional hold-down devices could be used.
  • the bearing 9 is designed as a rolling body bearing, it being possible for the balls or rollers to serve as rolling bodies, for example.
  • the bearing 9 can also be designed as a plain bearing, with a lubricating medium between the guide device 3 and the measuring standard 6 serving, for example, as an oil-containing substance.
  • the Guide device 3 and / or measuring standard 6 are also coated with ei ⁇ ner lubricious coating such as Teflon and thus a slide bearing can be realized without Geleitstoff.
  • the measuring scale 6 and / or the guiding device 3 itself may also be e.g. the measuring scale 6 and / or the guiding device 3 itself also without coating e.g. have a smooth Ober ⁇ surface by a corresponding grinding, so that the necessary sliding properties between the guide device 3 and measuring scale 6 are also oh ⁇ ne the use of a bearing given.
  • the symposiumverkörpe ⁇ tion 6 is in this case directly in contact with the Füh ⁇ rungsvorraum. 3
  • the guide device 3 according to the invention is shown in the form of a plan view.
  • the machine element 1 can be moved along the guide device 3.
  • the reading head 2 is screwed by means of two screws 12a and 12b.
  • the material measure 6 is screwed by means of two screws 13a and 13b to the respectively associated support 7a and 7b, which are located outside of the machine bed according to FIG. 2, so that the material measure 6 is resting on the supports 7a and 7b, which have an anchoring bil ⁇ that is anchored.
  • the guide device according to FIG. 1 it is also conceivable to use the guide device according to FIG. 1 to solve the task according to the invention, in which the material measure 6 is mechanically firmly connected to the guide device 3.
  • the reading head 2 according to FIG. 1 generates a first position signal.
  • a sensor which measures the position between the stationary support and the oscillating machine bed and thus generates a second position signal, is attached to a support, which is arranged outside the machine bed, as shown in FIG.
  • the two position signals are now added in an electronic circuit and in this way the position of the machine element with respect to a stationary reference system, that is to say in this case in relation to the support, is determined.
  • the signal processing time of the electronic circuit should be short in order not to adversely affect downstream control processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Units (AREA)

Abstract

The invention relates to a guiding device (3) for guiding a displaceable machine element (1) of a machine. Said guiding device (3) in connected in a mechanically fixed manner to a machine bed (4). A material measure (6) is arranged along at least one part of the guiding device (3) in order to determine a position of the machine element (1). The guiding device (3) and the material measure (6) can be displaced in relation to each other and at least one part of the material measure (6) is in contact with the guiding device (3) either directly or via a bearing (9). The inventive guiding device (3) enables the displaceable machine elements to be positioned in a precise manner even when the machine bed (4) is vibrated. The invention also relates to a machine comprising said type of guiding device (3).

Description

FÜHRUNGSVORRICHTUNG MIT MASSVERKORPERUNG ZUR FUHRUNG EINES BEWEGBAREN MASCHINENE LEMETNS EINER MASCHINEGUIDING DEVICE WITH MEASUREMENT OF TRANSMISSION FOR GUIDING A MOVABLE MACHINE LENGTH OF A MACHINE
Die Erfindung betrifft eine Führungsvorrichtung zur Führung eines bewegbaren Maschinenelements einer Maschine sowie eine Maschine mit einer solchen FührungsVorrichtung.The invention relates to a guide device for guiding a movable machine element of a machine and a machine with such a guide device.
Bei Maschinen wie z.B. Werkzeugmaschinen, Produktionsmaschi¬ nen und/oder Robotern muss häufig ein bewegbares Maschinen¬ element wie zum Beispiel ein Führungswagen entlang einer Füh¬ rungsvorrichtung, die z.B. in Form einer Führungsschiene vor¬ liegen kann, lagegeregelt verfahren werden. In FIG 1 ist schematisiert eine handelsübliche Werkzeugmaschine darge¬ stellt, wobei der Übersichtlichkeit halber nur die für die zum Verständnis der Erfindung notwendigen Elemente darge¬ stellt sind. Ein bewegliches Maschinenelement 1, das in dem Ausführungsbeispiel bei der handelsüblichen Maschine in Form eines Führungswagens ausgebildet ist, wird von einer Füh¬ rungsvorrichtung 3, die in dem Ausführungsbeispiel in Form einer Führungsschiene gegeben ist, geführt. Das Maschinenele¬ ment 1 ist mit einem der Übersichtlichkeit halber nicht dar¬ gestellten Antrieb, zum Beispiel einem Linearantrieb ausges¬ tattet, mit Hilfe dessen das Maschinenelement 1 entlang der Führungsvorrichtung 3 lagegeregelt von einer Steuerung und/oder Regelung verfahren werden kann. Die Führungsvorrich¬ tung 3 ist mechanisch fest mit einem Maschinenbett 4 verbun¬ den, das auf einem Boden 5 steht.For machines such as e.g. Machine tools, production machines and / or robots often have to have a movable machine element, for example a guide carriage, along a guide device, which may be e.g. in the form of a guide rail vor¬ can be moved position-controlled. In FIG. 1, a commercially available machine tool is shown schematically, with only the elements necessary for understanding the invention being shown for the sake of clarity. A movable machine element 1, which is formed in the embodiment in the commercial machine in the form of a guide carriage, is guided by a guide device 3, which in the exemplary embodiment is in the form of a guide rail. The machine element 1 is provided with a drive (not shown for reasons of clarity), for example a linear drive, with the aid of which the machine element 1 can be moved in position-controlled manner by a control and / or regulation system along the guide device 3. The Führungsvorrich¬ device 3 is mechanically fixed verbun¬ with a machine bed 4, which stands on a bottom 5.
Zur Ermittlung der Position des Maschinenelements 1 ist ent¬ lang der Führungsvorrichtung 3 eine Maßverkörperung 6, die zum Beispiel in Form eines mit einer regelmäßigen Teilung versehenen Bandes vorliegen kann, mechanisch fest mit der Führungsvorrichtung 3 verbunden. Die Maßverkörperung 6 ist zum Beispiel in Form von Strichen mit einer so genannten Tei¬ lung versehen, die von einem Lesekopf 2, der mit dem Maschi- nenelement 1 verbunden ist, ausgelesen werden kann. Die Ma߬ verkörperung 6 erlaubt somit im Zusammenspiel mit dem Lese¬ kopf 2 eine genaue Positionsbestimmung des Maschinenelements 1.To determine the position of the machine element 1 ent¬ long the guide device 3 is a material measure 6, which may be present for example in the form of a band provided with a regular pitch, mechanically fixedly connected to the guide device 3. The material measure 6 is provided, for example in the form of lines, with a so-called part, which is separated from a reading head 2 connected to the machine. nenelement 1 is connected, can be read. The Ma߬ embodiment 6 thus allows in conjunction with the Lese¬ head 2 an accurate position determination of the machine element. 1
Auf dem Maschinenelement 1, das in dem Ausführungsbeispiel in Form eines so genannten Führungswagens vorliegt, sind bei ei¬ ner handelsüblichen Maschine weitere Aufbauten, z.B. in Form einer Spindel mit Werkzeugen, die mit Hilfe des Maschinenele¬ ments 1 längs der Führungsrichtung 3 verfahren werden können, vorhanden. Das zu bearbeitende Werkstück ist bei einer sol¬ chen Maschine oftmals direkt am Boden verankert. Das Maschi¬ nenelement 1 und die an ihm befestigten Aufbauten bilden ei¬ nen so genannten Werkzeugschlitten. Gegebenenfalls kann ein Werkzeugschlitten nicht nur einen einzigen Führungswagen, sondern mehrere Führungswagen aufweisen. Bei Maschinen, wie z.B. Werkzeugmaschinen, Produktionsmaschinen und/oder Roboter müssen die Maschinenschlitten mit hoher Genauigkeit und hoher Geschwindigkeit unter Einhaltung von vorgegebenen Verfahr¬ profilen positioniert werden. Die vorgegebenen Verfahrprofile enthalten Geschwindigkeitsänderungen, die hohe Beschleuni¬ gungskräfte erforderlich machen. Der schnelle Wechsel der Be¬ schleunigungskräfte regt die Mechanik der Maschine, ins¬ besondere das Maschinenbett 4 zu Schwingungen an. Oftmals wird das Maschinenbett 1 von den Reaktionskräften der Bewe¬ gungsführung besonders stark beansprucht. Durch den Einfluss der Beschleunigungskräfte des Werkzeugschlittens weicht das Maschinenbett in die Gegenrichtung aus. Häufig verformt es sich dabei und/oder es fängt an zu schwingen. Selbst wenn das Maschinenelement 1 relativ zum Maschinenbett 4 exakt positio¬ niert werden kann, so schwingt doch das Maschinenbett 4 selbst gegenüber dem Boden 5. Wenn die Maschine beispielswei¬ se eine Portalfräsmaschine ist, bei der das zu bearbeitende Werkstück fest am Boden verankert ist, dann sind die Schwin¬ gungen des Maschinenbetts 4 auf dem Werkstück zu sehen, auch wenn das Maschinenelement 1 die vorgeschriebene Position re¬ lativ zum Maschinenbett 4 exakt einhält. Häufig wirken sich die Schwingungen des Maschinenbetts 4 so ungünstig aus, dass die Regelungseigenschaften der Bewegungs¬ führung des Maschinenelements 1 stark beeinträchtigt wird und nicht einmal eine ausreichend präzise Bewegungsführung des Maschinenelements 1 relativ zum Maschinenbett 4 erreicht wer¬ den kann. In diesem Fall wirken sich die bei der Bewegungs¬ führung auftretenden Schwingungen des Maschinenbetts 4 dop¬ pelt nachteilig auf.On the machine element 1, which in the exemplary embodiment is in the form of a so-called guide carriage, in a commercially available machine there are further structures, eg in the form of a spindle with tools, which can be moved along the guide direction 3 with the aid of the machine element 1 , available. The workpiece to be machined is often anchored directly to the ground in such a machine. The machine element 1 and the structures fastened to it form a so-called tool slide. Optionally, a tool carriage not only a single carriage, but have a plurality of carriages. In machines such as machine tools, production machines and / or robots, the machine slides must be positioned with high accuracy and high speed while maintaining given travel profiles. The given travel profiles contain speed changes that require high acceleration forces. The rapid change of the acceleration forces stimulates the mechanics of the machine, in particular the machine bed 4, to oscillate. Often, the machine bed 1 is stressed particularly strongly by the reaction forces of the movement guidance. Due to the influence of the acceleration forces of the tool carriage, the machine bed deviates in the opposite direction. Often it deforms and / or it starts to swing. Even if the machine element 1 can be exactly positioned relative to the machine bed 4, the machine bed 4 itself oscillates in relation to the floor 5. If the machine is, for example, a portal milling machine in which the workpiece to be machined is firmly anchored to the floor, then the vibrations of the machine bed 4 on the workpiece are to be seen, even if the machine element 1 exactly complies with the prescribed position relative to the machine bed 4. Often, the vibrations of the machine bed 4 are so unfavorable that the control properties of Bewegungs¬ leadership of the machine element 1 is severely impaired and not even a sufficiently precise motion control of the machine element 1 relative to the machine bed 4 wer¬ can achieved. In this case, the vibrations of the machine bed 4 occurring during the movement guidance have a doubly detrimental effect.
Nach dem Stand der Technik ist man bestrebt unerwünschte Schwingungen des Maschinenbetts durch einen entsprechend steifen und schweren Aufbau des Maschinenbetts zu unter¬ drücken. Das Maschinenbett wird dadurch aber schwer, auf¬ wendig und teuer.According to the state of the art, efforts are made to suppress undesired vibrations of the machine bed by means of a correspondingly stiff and heavy construction of the machine bed. The machine bed is characterized but heavy, auf¬ agile and expensive.
Wenn ein Lineardirektantrieb als Antriebssystem für das Ma¬ schinenelement verwendet wird, dann ist es möglich, die Reak¬ tionsfläche des Motors vom Maschinenbett zu trennen. Dieser Sachverhalt ist in der Offenlegungsschrift DE 198 10 996 Al offenbart. In der Druckschrift wird eine Entkopplung der Mo¬ torreaktionsfläche vom Maschinenbett vorgeschlagen, wobei der Bezugspunkt der Achsregelung auf dem Maschinenbett verbleibt. In der Druckschrift wird vorgeschlagen, die Motorreaktions¬ fläche gegenüber dem Maschinenbett beweglich zu verankern. Dadurch wird die Reaktionskraft, die sich als direkte Folge der Beschleunigungsvorgänge ergibt, in der beweglich gestal¬ teten Motorreaktionsfläche aufgefangen und solchermaßen vom Maschinenbett ferngehalten. Das Maschinenbett bleibt dadurch auch bei heftigen Geschwindigkeitsänderungen des Werkzeug¬ schlittens in Ruhe, wodurch die Genauigkeit der Bewegungsfüh¬ rung des Werkzeugschlittens erheblich verbessert wird. Der Bezugspunkt zu Positionsbestimmung verbleibt dabei z.B. für die Regelung unverändert am Maschinenbett. Vorschubantriebe, die nach dieser technischen Lehre aufgebaut sind, werden z.B. bei Werkzeugmaschinen, bei denen der Werkzeugschlitten hohen Beschleunigungen ausgesetzt ist, eingesetzt. Es hat sich aber gezeigt, dass die erforderliche bewegliche Verankerung der Motorreaktionsfläche des linearen Direktantriebs erhebliche Kosten und Aufwand verursacht. Insbesondere als Vorrichtung zur Vermeidung von Schwingungen bei kostengünstig und leicht aufgebauten Maschinenbetten finden sie daher keine Verwen¬ dung.If a linear direct drive is used as the drive system for the machine element, then it is possible to separate the reaction surface of the motor from the machine bed. This fact is disclosed in the published patent application DE 198 10 996 A1. The document proposes a decoupling of the motor reaction surface from the machine bed, the reference point of the axis control remaining on the machine bed. In the document it is proposed to anchor the motor reaction surface movably in relation to the machine bed. As a result, the reaction force, which results as a direct result of the acceleration processes, is absorbed in the movably designed motor reaction surface and thus kept away from the machine bed. As a result, the machine bed remains at rest even in the event of violent speed changes of the tool carriage, as a result of which the accuracy of the movement movement of the tool carriage is considerably improved. The reference point for position determination remains unchanged at the machine bed, for example for the regulation. Feed drives, which are constructed according to this technical teaching, are used, for example, in machine tools in which the tool carriage is subjected to high accelerations. However, it has been shown that the required movable anchoring of Motor reaction surface of the linear direct drive caused considerable costs and effort. In particular, as a device for preventing vibrations in inexpensive and easily constructed machine beds they therefore find no Verwen¬ training.
In der Offenlegungsschrift DE 198 10 996 Al wird vorgeschla¬ gen um die Bewegungsführung bei einer Maschine mit einem schwingfähigen Maschinenbett zu verbessern, die Motorreakti¬ onsfläche vom Maschinenbett abzukoppeln.The published patent application DE 198 10 996 A1 proposes to improve the motion guidance in a machine with a vibratory machine bed, to decouple the motor reaction surface from the machine bed.
Aus der Offenlegungsschrift WO 91/16594 ist bekannt, ein La¬ gemesssystem in eine Wälzkörperführung zu integrieren. Die Maßverkörperung des Lagemesssystems ist hierbei fest an der Führungsleiste der Wälzkörperführung verankert.From published patent application WO 91/16594 it is known to integrate a measuring system into a rolling element guide. The material measure of the position measuring system is firmly anchored to the guide rail of the rolling element.
Aus der Zeitschrift "Werkstatt und Betrieb", Seite 160 bis 164, Jahrgang 133 (2000)6, Carl Hansa Verlag, München, ist eine auf einem ersten Portal befindliche Führungsvorrichtung zur Führung eines bewegbaren Maschinenelements bekannt, wobei eine Maßverkörperung an einem zweiten räumlich vom ersten Portal getrennten zweiten Portal angebracht ist. Die Maßver¬ körperung und die Führungsvorrichtung sind dabei bedingt durch den Abstand der beiden Portale voneinander räumlich ge¬ trennt. Der räumlich weite und relativ unregelmäßige Abstand zwischen beiden Portalen hat zu Folge, dass der Abstand zwi¬ schen Maßverkörperung und dem Lesekopf des Maschinenelementes Schwankungen unterworfen ist. Das Messsystem reagiert aber sehr empfindlich auf Änderung des Abstands zwischen Maßver¬ körperung und Führungsvorrichtung, weil z.B. die auf der Ma߬ verkörperung angebrachte Teilung (eine Teilung kann z.B. in Form von an der Maßverkörperung angebrachten Strichen vorlie¬ gen) nicht mehr exakt von dem Lesekopf abgelesen werden kön¬ nen. Dies hat eine stark negative Auswirkung auf die Positio¬ niergenauigkeit des Maschinenelements zur Folge. Der Erfindung liegt die Aufgabe zugrunde, eine Führungsvor¬ richtung zur Führung eines bewegbaren Maschinenelements einer Maschine anzugeben, die auch bei Schwingungen des Maschinen¬ betts eine exakte Positionierung des bewegbaren Maschinen¬ elements ermöglicht.From the magazine "Workshop and Operation", pages 160 to 164, year 133 (2000) 6, Carl Hansa Verlag, Munich, located on a first portal guide device for guiding a movable machine element is known, wherein a material measure at a second spatially from the first portal separate second portal is attached. Due to the distance between the two gantries, the dimensional arrangement and the guide device are spatially separated from one another. The spatially wide and relatively irregular distance between the two portals has the consequence that the distance between the dimensional standard and the reading head of the machine element is subject to fluctuations. However, the measuring system reacts very sensitively to a change in the distance between Maßver¬ body and guide device, because, for example, the graduation attached to the graduation (a division can be present, for example in the form of attached to the graduation lines vorlie¬) no longer exactly from the read head can be read. This has a strongly negative effect on the positioning accuracy of the machine element. The invention has for its object to provide a Führungsvor¬ direction for guiding a movable machine element of a machine, which allows an exact positioning of the movable Maschinen¬ even with vibrations of Maschinen¬ bed.
Diese Aufgabe wird gelöst durch eine Führungsvorrichtung zur Führung eines bewegbaren Maschinenelements einer Maschine, wobei die Führungsvorrichtung mechanisch fest mit einem Ma¬ schinenbett verbunden ist, wobei eine Maßverkörperung zur Er¬ mittlung einer Position des Maschinenelements entlang zu¬ mindest eines Teils der Führungsvorrichtung angeordnet ist, wobei die Führungsvorrichtung und die Maßverkörperung relativ zueinander bewegbar sind, wobei zumindest ein Teil der Ma߬ verkörperung direkt oder über ein Lager mit der Führungs¬ vorrichtung in Kontakt steht.This object is achieved by a guide device for guiding a movable machine element of a machine, wherein the guide device is mechanically fixedly connected to a machine bed, wherein a material measure for determining a position of the machine element is arranged along at least a part of the guide device, wherein the guide device and the material measure are movable relative to each other, wherein at least a part of the Ma߬ embodiment is directly or via a bearing with the Führungs¬ device in contact.
Eine erste vorteilhafte Ausbildung der Erfindung ist dadurch gekennzeichnet, dass das Lager als Gleitlager ausgebildet ist. Gleitlager sind gegenüber anderen Lagerarten besonders kostengünstig zu realisieren.A first advantageous embodiment of the invention is characterized in that the bearing is designed as a plain bearing. Sliding bearings are to be realized particularly cost-effectively compared to other types of bearings.
Ferner erweist es sich als vorteilhaft, wenn das Lager als Wälzkörperlager ausgebildet ist, da hierdurch eine besonders exakte Führung der Maßverkörperung entlang der Führungsvor¬ richtung sichergestellt ist.Furthermore, it proves to be advantageous if the bearing is designed as a rolling element bearing, since in this way a particularly precise guidance of the material measure along the Führungsvor¬ direction is ensured.
Weiterhin erweist es sich als vorteilhaft, wenn die Maßver¬ körperung mit einer außerhalb des Maschinenbetts angeordneten Verankerung verbunden ist. Hierdurch ist sichergestellt, dass die Maßverkörperung gegenüber dem schwingenden Maschinenbett ruhend verankert ist.Furthermore, it proves to be advantageous if the Maßver¬ body is connected to an arranged outside the machine bed anchoring. This ensures that the material measure is anchored to the vibrating machine bed dormant.
Weiterhin erweist es sich als vorteilhaft, wenn als Veranke¬ rung ein zu bearbeitendes Werkstück vorgesehen ist, da dann direkt die Position des Maschinenelements im Bezug auf das Werkstück gemessen wird. Ferner erweist es sich als vorteilhaft, wenn ein Niederhalter einen Druck in Richtung der Führungsvorrichtung auf die Ma߬ verkörperung ausübt, da dann die Maßverkörperung stets einen gleichmäßigen Kontakt mit dem Lager hält.Furthermore, it proves to be advantageous if a workpiece to be machined is provided as anchoring, since then the position of the machine element with respect to the workpiece is measured directly. Furthermore, it proves to be advantageous if a holding-down device exerts a pressure in the direction of the guide device on the measuring body, since then the material measure always maintains a uniform contact with the bearing.
Es erweist sich dabei als vorteilhaft, eine Maschine mit der erfindungsgemäßen FührungsVorrichtung auszustatten.It proves to be advantageous to equip a machine with the guide device according to the invention.
Insbesondere ist der Einsatz der erfindungsgemäßen Führungs¬ vorrichtung bei Werkzeugmaschinen, Produktionsmaschinen und/oder Roboter von Vorteil, da auf diesen technischen Ge¬ bieten oftmals eine hohe Positioniergenauigkeit des Maschi¬ nenelements verlangt wird. Selbstverständlich ist die erfin¬ dungsgemäße Führungsvorrichtung jedoch auch bei Maschinen, die auf anderen technischen Gebieten liegen, einsetzbar.In particular, the use of the guide device according to the invention in machine tools, production machines and / or robots is advantageous, since a high positioning accuracy of the machine element is often required on these technical devices. Of course, the erfin¬ tion of the invention, however, guide device can also be used in machines that are in other technical fields.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher erläutert. Dabei zei¬ gen:An embodiment of the invention is illustrated in the drawing and will be explained in more detail below. Show:
FIG 1 eine schematisiert dargestellte Maschine nach dem Stand der Technik,1 shows a schematically illustrated machine according to the prior art,
FIG 2 eine schematisiert dargestellte Maschine mit der er¬ findungsgemäßen FührungsVorrichtung,2 shows a schematically illustrated machine with the inventive guide device,
FIG 3 eine Querschnittszeichnung der erfindungsgemäßen Füh¬ rungsvorrichtung und3 shows a cross-sectional drawing of the invention Füh¬ device and
FIG 4 eine Draufsicht der erfindungsgemäßen Führungsvorrich¬ tung.4 shows a plan view of the invention Führungsvorrich¬ device.
In FIG 1 ist in Form einer schematisierten Darstellung eine Maschine mit der erfindungsgemäßen Führungsvorrichtung dar¬ gestellt. Die in FIG 2 dargestellte Ausführungsform ent¬ spricht bezüglich des Grundaufbaus im Wesentlichen der vor¬ stehend in FIG 1 beschriebenen Ausführungsform. Gleiche Ele¬ mente sind daher in FIG 2 mit gleichen Bezugszeichen versehen wie in FIG 1. Der wesentliche Unterschied gegenüber der Aus¬ führungsform gemäß FIG 1 besteht darin, dass die Maßverkörpe- rung 6 nicht mechanisch fest mit der Führungsvorrichtung 3 verbunden ist sondern die Führungsvorrichtung 3 und die Ma߬ verkörperung 6 relativ zueinander bewegbar sind, wobei zumin¬ dest ein Teil der Maßverkörperung 6 direkt oder über ein La¬ ger mit der Führungsvorrichtung 3 in Kontakt steht. Durch das Lager ist einerseits die Führungsvorrichtung 3 und die Ma߬ verkörperung 6 relativ zueinander bewegbar und andererseits ist der Abstand zwischen Lesekopf 2 und der Maßverkörperung 6 exakt entlang der gesamten Maßverkörperung 3 bestimmt und un¬ terliegt keinen Schwankungen. Weiterhin wird in der Ausfüh¬ rungsform gemäß FIG 2 gegenüber der Ausführungsform gemäß FIG 1 die Maßverkörperung 6 mit einer außerhalb des Maschinen¬ betts 4 angeordneten Verankerung, die in dem Ausführungsbei¬ spiel in Form der beiden Stützen 7a und 7b vorliegt, verbun¬ den. Da die Verankerung räumlich von dem Maschinenbett 4 ge¬ trennt ist, schwingt diese nicht mit dem Maschinenbett mit und sorgt somit für eine ruhende Verankerung der Maßverkörpe¬ rung 6. Die Maßverkörperung 6 braucht aber nicht wie im Aus¬ führungsbeispiel immer entlang der gesamten Führungsvorrich¬ tung 3 angeordnet sein, sondern kann auch nur entlang eines Teils der Führungsvorrichtung 3 angeordnet sein. Die Füh¬ rungsvorrichtung 3 ist mechanisch fest mit dem Maschinenbett 4 verbunden.In FIG. 1, a machine with the guide device according to the invention is shown in the form of a schematic representation. The embodiment shown in FIG. 2 corresponds essentially to the embodiment described above with reference to the basic structure. The same elements are therefore provided in FIG. 2 with the same reference numerals as in FIG. 1. The essential difference with respect to the embodiment shown in FIG. 1 is that the dimensional tolerances tion 6 is not mechanically firmly connected to the guide device 3 but the guide device 3 and the Ma߬ body 6 are movable relative to each other, at least a part of the material measure 6 is ger directly or via a La¬ with the guide device 3 in contact. On the one hand, the guide device 3 and the measuring element 6 can be moved relative to one another by the bearing and, on the other hand, the distance between the reading head 2 and the measuring standard 6 is determined exactly along the entire measuring standard 3 and does not fluctuate. Furthermore, in the embodiment according to FIG. 2, the measuring standard 6 is connected to an anchoring arranged outside the machine bed 4, which is present in the embodiment in the form of the two supports 7a and 7b. Since the anchoring is spatially separated from the machine bed 4, this does not vibrate with the machine bed and thus ensures a stationary anchoring of Maßverkörpe¬ tion 6. The material measure 6 but not as in the exemplary embodiment Aus¬ always along the entire Führungsvorrich¬ 3, but can also be arranged only along part of the guide device 3. The guide device 3 is mechanically fixedly connected to the machine bed 4.
In FIG 3 ist in Form einer Querschnittszeichnung die er¬ findungsgemäße Führungsvorrichtung 3 dargestellt. Die Füh¬ rungsvorrichtung 3 ist in dem Ausführungsbeispiel gemäß FIG 3 in Form einer Führungsschiene ausgebildet. Das bewegbare Ma¬ schinenelement 1, das in dem Ausführungsbeispiel in Form ei¬ nes Führungswagens vorliegt, ist über vier Kugelreihen IIa, IIb, llc und Hd mit der Führungsvorrichtung 3 bewegbar ver¬ bunden. Das Maschinenelement 1 wird in seiner Bewegung ent¬ lang der Führungsvorrichtung 3 durch diese geführt. Das An¬ triebssystem des Maschinenelements 1 zum Verfahren des Ma¬ schinenelements 1, längs der Führungsvorrichtung 3, wird der Übersichtlichkeit halber, da es für das Verständnis der Er¬ findung unwesentlich ist, nicht dargestellt. Die auf dem Ma- schinenelement 1 sich normalerweise befindlichen Aufbauten, wie zum Beispiel eine Spindel und/oder Werkzeuge sind Über¬ sichtlichkeit halber und da sie für das Verständnis der vor¬ liegenden Erfindung nicht notwendig sind, nicht dargestellt. Der Lesekopf 2 ist mittels zweier Schrauben 12a und 12b an das Maschinenelement 1 angeschraubt. Der Lesekopf 2 tastet mit Hilfe eines Lichtstrahls 8 die Maßverkörperung 6, die in dem Ausführungsbeispiel in Form eines Bandes vorliegt, ab. Die Maßverkörperung 6 ist über ein Lager 9 auf der Führungs¬ vorrichtung 3 gelagert und solchermaßen mit der Führungs¬ schiene 3 beweglich verbunden.In FIG. 3, the guide device 3 according to the invention is shown in the form of a cross-sectional drawing. The guide device 3 is designed in the exemplary embodiment according to FIG. 3 in the form of a guide rail. The movable machine element 1, which in the exemplary embodiment is in the form of a guide carriage, is movably connected to the guide device 3 via four rows of balls IIa, IIb, IIc and Hd. The machine element 1 is guided in its movement along the guide device 3 through it. The drive system of the machine element 1 for moving the machine element 1 along the guide device 3 is not shown for the sake of clarity, since it is immaterial to the understanding of the invention. The Machine element 1 normally located structures, such as a spindle and / or tools are Über¬ sake of clarity and as they are not necessary for understanding the vor¬ underlying invention, not shown. The reading head 2 is screwed by means of two screws 12a and 12b to the machine element 1. The reading head 2 scans with the aid of a light beam 8, the material measure 6, which is present in the form of a band in the embodiment. The material measure 6 is mounted on the guide device 3 via a bearing 9 and is thus movably connected to the guide rail 3.
In dem Ausführungsbeispiel gemäß FIG 3 ist das Lager 9 als Wälzkörperlager ausgebildet. Es sind somit eine Vielzahl von Wälzkörpern vorhanden, über die die Maßverkörperung 6 mit der Führungsvorrichtung 3 in Kontakt steht. Dadurch, dass die Maßverkörperung 6 mittels des Lagers 9 an der Führungsvor¬ richtung 3 gelagert ist, ist der Abstand zwischen Lesekopf 2 und Maßverkörperung 6 längs der gesamten Maßverkörperung 6 identisch und unterliegt keinen Schwankungen. Die Maßverkör¬ perung 6 kann somit vom Lesekopf 2 an jeder beliebigen Posi¬ tion exakt abgelesen werden. Zwei Niederhalter 10a und 10b, die in dem Ausführungsbeispiel mit dem Lesekopf 2 verbunden sind und einen leichten Druck in Richtung der Führungsvor¬ richtung auf die Maßverkörperung 6 ausüben, sorgen dafür, dass die Maßverkörperung 6 stets einen gleichmäßigen Kontakt mit dem Lager 9 hält. Selbstverständlich könnten anstatt der beiden Niederhalter 10a und 10b auch nur ein einziger Nieder¬ halter vorgesehen sein oder es können zusätzliche Niederhal¬ ter verwendet werden.In the embodiment shown in FIG 3, the bearing 9 is formed as a roller bearing. There are thus a plurality of rolling elements, via which the material measure 6 is in contact with the guide device 3. Because the measuring standard 6 is mounted on the guide device 3 by means of the bearing 9, the distance between the reading head 2 and the measuring standard 6 along the entire material measure 6 is identical and is not subject to any fluctuations. The Maßverkör¬ ment 6 can thus be read exactly from the read head 2 at any Posi¬ tion. Two hold-down devices 10a and 10b, which are connected to the reading head 2 in the exemplary embodiment and exert a slight pressure in the direction of the guide device on the material measure 6, ensure that the material measure 6 always maintains uniform contact with the bearing 9. Of course, instead of the two hold-down devices 10a and 10b, only a single hold-down device could be provided or additional hold-down devices could be used.
In der Ausführungsform gemäß FIG 3 ist das Lager 9 als Walz¬ körperlager ausgebildet, wobei als Walzkörper zum Beispiel Kugeln oder Walzen dienen können. Alternativ kann das Lager 9 aber auch als Gleitlager ausgebildet sein, wobei als Gleit¬ mittel zwischen Führungsvorrichtung 3 und Maßverkörperung 6 z.B. eine ölhaltige Substanz dienen kann. Alternativ kann die Führungsvorrichtung 3 und/oder Maßverkörperung 6 auch mit ei¬ ner Gleitbeschichtung wie z.B. Teflon beschichtet werden und solchermaßen auch ohne Geleitmittel ein Gleitlager realisiert werden.In the embodiment according to FIG. 3, the bearing 9 is designed as a rolling body bearing, it being possible for the balls or rollers to serve as rolling bodies, for example. Alternatively, however, the bearing 9 can also be designed as a plain bearing, with a lubricating medium between the guide device 3 and the measuring standard 6 serving, for example, as an oil-containing substance. Alternatively, the Guide device 3 and / or measuring standard 6 are also coated with ei¬ ner lubricious coating such as Teflon and thus a slide bearing can be realized without Geleitmittel.
Alternativ kann aber auch z.B. die Maßverkörperung 6 und/oder die Führungsvorrichtung 3 selbst auch ohne Beschichtung z.B. durch eine entsprechende Schleifbearbeitung eine glatte Ober¬ fläche aufweisen, so dass die notwendigen Gleiteigenschaften zwischen Führungsvorrichtung 3 und Maßverkörperung 6 auch oh¬ ne die Verwendung eines Lagers gegeben sind. Die Maßverkörpe¬ rung 6 steht in diesem Fall direkt in Kontakt mit der Füh¬ rungsvorrichtung 3.Alternatively, however, it may also be e.g. the measuring scale 6 and / or the guiding device 3 itself also without coating e.g. have a smooth Ober¬ surface by a corresponding grinding, so that the necessary sliding properties between the guide device 3 and measuring scale 6 are also oh¬ ne the use of a bearing given. The Maßverkörpe¬ tion 6 is in this case directly in contact with the Füh¬ rungsvorrichtung. 3
In FIG 4 ist die erfindungsgemäße Führungsvorrichtung 3 in Form einer Draufsicht dargestellt. Das Maschinenelement 1 kann längs der Führungsvorrichtung 3 bewegt werden. An das Maschinenelement 1 ist mit Hilfe zweier Schrauben 12a und 12b der Lesekopf 2 angeschraubt. Die Maßverkörperung 6 ist mit Hilfe zweier Schrauben 13a und 13b an die jeweilig zugehörige Stütze 7a und 7b, die sich gemäß FIG 2 außerhalb des Maschi¬ nenbetts befinden, angeschraubt, so dass die Maßverkörperung 6 ruhend auf den Stützen 7a und 7b, die eine Verankerung bil¬ den, verankert ist.In FIG 4, the guide device 3 according to the invention is shown in the form of a plan view. The machine element 1 can be moved along the guide device 3. To the machine element 1, the reading head 2 is screwed by means of two screws 12a and 12b. The material measure 6 is screwed by means of two screws 13a and 13b to the respectively associated support 7a and 7b, which are located outside of the machine bed according to FIG. 2, so that the material measure 6 is resting on the supports 7a and 7b, which have an anchoring bil¬ that is anchored.
Natürlich ist es auch denkbar, als Verankerung für die Ma߬ verkörperung ein zu bearbeitende Werkstück vorzusehen. Die Position des Maschinenelements 1 wird dann direkt auf das Werkstück bezogen gemessen.Of course, it is also conceivable to provide a workpiece to be machined as an anchorage for the scale. The position of the machine element 1 is then measured directly relative to the workpiece.
Mit Hilfe der vorliegenden Erfindung ist es nicht mehr not¬ wendig, um eine exakte Positionierung des Maschinenelements relativ zu einem ruhenden Bezugssystem sicher zu stellen, das Maschinenbett selbst entsprechend schwingungsresistent auf¬ zubauen. Die Schwingfähigkeit des Maschinenbetts kann zu Gunsten eines leichten und kostengünstigen Aufbaus des Ma¬ schinenbetts toleriert werden ohne dass die Qualität eines zu bearbeitenden Werkstücks darunter leidet. Da die Maschinen- bettschwingung durch die erfindungsgemäße Führungsvorrichtung sich nicht mehr negativ auf die Messung der Position des be¬ wegbaren Maschinenelements der Maschine auswirken, kann z.B. auch die Regelverstärkung des für die Positionierung des Ma¬ schinenelements verantwortlichen Lagereglers erhöht werden, so dass eine dynamischere Bewegungsführung des Maschinenele¬ ments realisiert werden kann, was schnellere Bearbeitungszei¬ ten ermöglicht.With the aid of the present invention, it is no longer necessary to ensure exact positioning of the machine element relative to a stationary reference system, to build up the machine bed itself correspondingly vibration-resistant. The ability to vibrate the machine bed can be tolerated in favor of a simple and cost-effective construction of the machine bed without compromising the quality of the machine bed machining workpiece suffers. Since the machine bed oscillation no longer has a negative effect on the measurement of the position of the movable machine element of the machine, the control gain of the position controller responsible for the positioning of the machine element can be increased, for example, so that a more dynamic motion control of the machine element can be realized, which enables faster machining times.
Alternativ zu der beschriebenen erfindungsgemäßen Führungs¬ vorrichtung ist es auch denkbar, zur Lösung der erfindungsge¬ mäßen Aufgabe, die Führungsvorrichtung gemäß FIG 1 zu verwen¬ den, bei der die Maßverkörperung 6 mechanisch fest mit der Führungsvorrichtung 3 verbunden ist. Der Lesekopf 2 gemäß FIG 1 erzeugt dabei ein erstes Lagesignal. An eine, wie zum Bei¬ spiel wie in FIG 2 gezeichnete, außerhalb des Maschinenbetts angeordneten Stütze, wird ein Messgeber angebracht, der die Lage zwischen der ruhenden Stütze und dem schwingenden Ma¬ schinenbett misst und solchermaßen ein zweites Lagesignal er¬ zeugt. Im Weiteren werden nun die beiden Lagesignale in einer elektronischen Schaltung addiert und solchermaßen die Positi¬ on des Maschinenelements im Bezug auf ein ruhendes Bezugssys¬ tem, das heißt in diesem Fall im Bezug auf die Stütze, be¬ stimmt. Die Signalverarbeitungszeit der elektronischen Schal¬ tung sollte kurz sein, um nachgeschaltete Regelungsprozesse nicht nachteilig zu beeinflussen. As an alternative to the described guide device according to the invention, it is also conceivable to use the guide device according to FIG. 1 to solve the task according to the invention, in which the material measure 6 is mechanically firmly connected to the guide device 3. The reading head 2 according to FIG. 1 generates a first position signal. A sensor, which measures the position between the stationary support and the oscillating machine bed and thus generates a second position signal, is attached to a support, which is arranged outside the machine bed, as shown in FIG. In the following, the two position signals are now added in an electronic circuit and in this way the position of the machine element with respect to a stationary reference system, that is to say in this case in relation to the support, is determined. The signal processing time of the electronic circuit should be short in order not to adversely affect downstream control processes.

Claims

Patentansprüche claims
1. Führungsvorrichtung (3) zur Führung eines bewegbaren Ma¬ schinenelements (1) einer Maschine, wobei die Führungsvor¬ richtung (3) mechanisch fest mit einem Maschinenbett (4) ver¬ bunden ist, wobei eine Maßverkörperung (6) zur Ermittelung einer Position des Maschinenelements (1) entlang zumindest eines Teils der Führungsvorrichtung (3) angeordnet ist, wobei die Führungsvorrichtung (3) und die Maßverkörperung (6) rela¬ tiv zueinander bewegbar sind, wobei zumindest ein Teil der Maßverkörperung (6) direkt oder über ein Lager (9) mit der Führungsvorrichtung (3) in Kontakt steht.1. Guide device (3) for guiding a movable machine element (1) of a machine, wherein the guide device (3) is mechanically fixedly connected to a machine bed (4), wherein a material measure (6) for determining a position the machine element (1) along at least a part of the guide device (3) is arranged, wherein the guide device (3) and the material measure (6) relative to each other are movable, wherein at least a portion of the material measure (6) directly or via a bearing (9) is in contact with the guide device (3).
2. Führungsvorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Lager (9) als Gleit¬ lager ausgebildet ist.2. Guide device according to claim 1, d a d u r c h e c e n e z e i c h e n e that the bearing (9) is designed as a sliding bearing.
3. Führungsvorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Lager (9) als Walz¬ körperlager ausgebildet ist.3. Guide device according to claim 1, characterized in that the bearing (9) is designed as a rolling body bearing.
4. Führungsvorrichtung nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Maßverkörperung (6) mit einer außerhalb des Maschi¬ nenbetts (4) angeordneten Verankerung (7a, 7b) verbunden ist.4. Guide device according to one of the preceding An¬ claims, d a d u r c h e c e n e c e in that the measuring scale (6) with an outside of Maschi¬ nenbetts (4) arranged anchoring (7 a, 7 b) is connected.
5. Führungsvorrichtung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass als Verankerung (7a, 7b) ein zu bearbeitendes Werkstück vorgesehen ist.5. Guide device according to claim 4, characterized in that a workpiece to be machined is provided as anchorage (7a, 7b).
6. Führungsvorrichtung nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t , dass ein Niederhalter (10a, 10b) einen Druck in Richtung der Führungsvorrichtung (3) auf die MaßVerkörperung (6) ausübt.6. Guide device according to one of the preceding An¬ claims, in that a hold-down (10a, 10b) exerts a pressure in the direction of the guide device (3) on the MaßVerbörperung (6).
7. Maschine mit einer Führungsvorrichtung (3) nach einem der vorhergehenden Ansprüche. 7. Machine with a guide device (3) according to one of the preceding claims.
8. Maschine nach Anspruch 7, d a d u r c h g e k e n n ¬ z e i c h n e t , dass die Maschine als Werkzeugmaschine, Produktionsmaschine und/oder als Roboter ausgebildet ist. 8. The machine according to claim 7, characterized in that the machine is designed as a machine tool, production machine and / or as a robot.
PCT/EP2005/054213 2004-09-06 2005-08-26 Guiding device for guiding a displaceable machine element of a machine WO2006027317A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/574,788 US7891112B2 (en) 2004-09-06 2005-08-26 Guiding device with measuring scale for guiding a moveable machine element of a machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004043055A DE102004043055B4 (en) 2004-09-06 2004-09-06 Guide device for guiding a movable machine element of a machine
DE102004043055.1 2004-09-06

Publications (1)

Publication Number Publication Date
WO2006027317A1 true WO2006027317A1 (en) 2006-03-16

Family

ID=35658856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/054213 WO2006027317A1 (en) 2004-09-06 2005-08-26 Guiding device for guiding a displaceable machine element of a machine

Country Status (3)

Country Link
US (1) US7891112B2 (en)
DE (1) DE102004043055B4 (en)
WO (1) WO2006027317A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574820B1 (en) 2011-09-30 2014-04-16 Siemens Aktiengesellschaft Processing machine with oscillation compensation of mobile mechanical structures
EP2574821B1 (en) 2011-09-30 2013-10-30 Siemens Aktiengesellschaft Active oscillation attenuator without direct acceleration detection
JP6125298B2 (en) * 2013-04-04 2017-05-10 株式会社東芝 Valve support device for mobile in-core instrumentation and mobile in-core instrumentation device
JP6584990B2 (en) * 2016-03-29 2019-10-02 住友重機械工業株式会社 Stage equipment
DE102018207638A1 (en) * 2018-05-16 2019-11-21 Robert Bosch Gmbh Carriage for a linear motion device, a linear motion device and a method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570346A (en) * 1983-04-27 1986-02-18 Dr. Johannes Heidenhain Gmbh Length or angle measuring device
US4584773A (en) * 1984-07-18 1986-04-29 Rsf Elektronik Gesellschaft M.B.H. Linear measuring system
DE4241111A1 (en) * 1992-12-07 1994-06-09 Leitz Mestechnik Gmbh Photoelectric incident light stepper
EP0905486A2 (en) * 1997-09-24 1999-03-31 INA Wälzlager Schaeffler oHG Linear bearing with a measuring device
EP1111346A2 (en) * 1999-11-30 2001-06-27 RENISHAW plc Device for holding a measurement scale
US20020066201A1 (en) * 1999-03-19 2002-06-06 Ludwig Boge Position measuring device
DE10214426A1 (en) * 2002-03-30 2003-10-09 Heidenhain Gmbh Dr Johannes Linear encoder for use with linear guide assembly, includes scale attaching element whose stop surfaces are arranged perpendicular to longitudinal direction of guide rail, to align scale in parallel to rail
DE10243021A1 (en) * 2002-09-17 2004-03-25 Ina-Schaeffler Kg Guide rail for linear bearing has bores for screws along it at base of groove, cover strip fitting over this which has bar forming part of length measuring system and pressing on strip of foam at base of groove

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037325A (en) * 1975-01-13 1977-07-26 Quality Measurement Systems, Inc. Linear glass scale height gage
DE2712421C2 (en) * 1977-03-22 1982-06-24 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Encapsulated length measuring device
DE3625795A1 (en) * 1986-07-30 1988-02-04 Heidenhain Gmbh Dr Johannes LENGTH MEASURING DEVICE
DE3635511A1 (en) * 1986-10-18 1988-04-28 Zeiss Carl Fa BRACKET FOR MEASURING AND SHAPED EMBODIMENT
CH686322A5 (en) * 1990-04-25 1996-02-29 Schneeberger Ag Maschf Guiding device with measuring device.
IL98310A (en) 1990-06-08 1996-08-04 Astra Ab Pharmaceutical compositions comprising cystine derivatives
DE29522402U1 (en) * 1994-10-25 2003-01-02 Heidenhain Gmbh Dr Johannes Fuel injection for IC engine - with Peltier heater in inlet manifold to prevent condensation of fuel
DE19512892C2 (en) * 1995-04-06 1998-11-05 Heidenhain Gmbh Dr Johannes Position measuring device
DE19810996A1 (en) * 1998-03-13 1999-09-16 Krauss Maffei Ag Motor to drive useful load in machine
EP0951967B1 (en) * 1998-04-25 2002-07-24 Institut Für Fertigungstechnik Der Tu Graz Test gauge for measuring the positional and track precisionof a moving machine part
JP3517185B2 (en) * 2000-07-19 2004-04-05 株式会社ミツトヨ Scale member, manufacturing method thereof, and displacement meter using the same
JP4434452B2 (en) * 2000-08-15 2010-03-17 ソニーマニュファクチュアリングシステムズ株式会社 Measuring device
DE10254358B4 (en) * 2001-12-17 2005-04-14 Dr. Johannes Heidenhain Gmbh Carrier body for a position measuring device
JP4509483B2 (en) * 2002-03-30 2010-07-21 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Linear encoder and linear guide unit
DE10236381A1 (en) * 2002-08-08 2004-02-19 Dr. Johannes Heidenhain Gmbh Length measurement instrument for a machine tool, comprises a housing that also forms the guide rail for a scanning unit carriage, with the guide rail aligned parallel to a machine tool guide using flexible elements
US7207121B2 (en) * 2003-05-05 2007-04-24 Barry Wixey Digital measurement system
DE102005028872B3 (en) * 2005-06-22 2006-08-03 Siemens Ag Production machine tool with linear drive unit on traverse, permits selective relative movements between supports, traverse and measurement component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570346A (en) * 1983-04-27 1986-02-18 Dr. Johannes Heidenhain Gmbh Length or angle measuring device
US4584773A (en) * 1984-07-18 1986-04-29 Rsf Elektronik Gesellschaft M.B.H. Linear measuring system
DE4241111A1 (en) * 1992-12-07 1994-06-09 Leitz Mestechnik Gmbh Photoelectric incident light stepper
EP0905486A2 (en) * 1997-09-24 1999-03-31 INA Wälzlager Schaeffler oHG Linear bearing with a measuring device
US20020066201A1 (en) * 1999-03-19 2002-06-06 Ludwig Boge Position measuring device
EP1111346A2 (en) * 1999-11-30 2001-06-27 RENISHAW plc Device for holding a measurement scale
DE10214426A1 (en) * 2002-03-30 2003-10-09 Heidenhain Gmbh Dr Johannes Linear encoder for use with linear guide assembly, includes scale attaching element whose stop surfaces are arranged perpendicular to longitudinal direction of guide rail, to align scale in parallel to rail
DE10243021A1 (en) * 2002-09-17 2004-03-25 Ina-Schaeffler Kg Guide rail for linear bearing has bores for screws along it at base of groove, cover strip fitting over this which has bar forming part of length measuring system and pressing on strip of foam at base of groove

Also Published As

Publication number Publication date
DE102004043055A1 (en) 2006-03-30
US7891112B2 (en) 2011-02-22
US20090050782A1 (en) 2009-02-26
DE102004043055B4 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
DE4495551C2 (en) Z-axis drive for a machine tool
DE102006049867B4 (en) Machine tool and method for suppressing chatter vibrations
EP2924721B1 (en) Positioning device in portal design
DE102012008106B4 (en) Device and method for testing the tilt play of a ball screw drive
EP1669160B1 (en) Positioning device with two linear motors inclined relative to each other
DE102012222586A1 (en) machine tool
EP3448140B1 (en) Positioning device in portal design
WO2006027317A1 (en) Guiding device for guiding a displaceable machine element of a machine
DE102005028872B3 (en) Production machine tool with linear drive unit on traverse, permits selective relative movements between supports, traverse and measurement component
EP0140003B1 (en) Guiding device
EP1381823B1 (en) Bearing for a coordinate measuring instrument
EP1920876B1 (en) Support for a tool shaft
EP2623257B1 (en) Position compensation device in a machine tool
DE102006034455A1 (en) Positionable workpiece support for a machine and processing system with a corresponding workpiece support
DE102007037886A1 (en) Field-guided planar precision drive for use with air-mounted rotor bearing permanent magnet circuit, has stator plate beneath rotor, and pairs of drive coils lying oppositely are provided on stator plate
DE102007032088B4 (en) Feed device for a multi-coordinate measuring table of a coordinate measuring device
DE102013210739B3 (en) Coordinate measuring machine for measuring workpiece, has drive unit that exerts directed force on thrust unit, such that amount, direction and point of application can be chosen and torque acting on measuring unit is specific value
DE102004059844B4 (en) Linear guide arrangement
DE10217720C1 (en) Automobile wheel suspension testing device, uses movement of plate positioned below wheel via linear motor drives
DE102011016304B4 (en) Device for a multi-coordinate drive
DE102014212748A1 (en) Bearing assembly for a linear fluid bearing guide of a coordinate measuring machine and coordinate measuring machine
DE102007053475B4 (en) positioning
EP3557326A1 (en) Positioning device for positioning an object within a plane in at least two degrees of freedom
DE102016113959B4 (en) coordinate measuring machine
DE102017100282B4 (en) Spindle drive for moving objects in a high vacuum environment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11574788

Country of ref document: US