WO2006027287A1 - Sensorelement für partikelsensoren und verfahren zur herstellung desselben - Google Patents

Sensorelement für partikelsensoren und verfahren zur herstellung desselben Download PDF

Info

Publication number
WO2006027287A1
WO2006027287A1 PCT/EP2005/053400 EP2005053400W WO2006027287A1 WO 2006027287 A1 WO2006027287 A1 WO 2006027287A1 EP 2005053400 W EP2005053400 W EP 2005053400W WO 2006027287 A1 WO2006027287 A1 WO 2006027287A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor element
sensor
heating element
measuring electrodes
element according
Prior art date
Application number
PCT/EP2005/053400
Other languages
English (en)
French (fr)
Inventor
Detlef Heimann
Hans-Joerg Renz
Thorsten Ochs
Henrik Schittenhelm
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2006027287A1 publication Critical patent/WO2006027287A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging

Definitions

  • the invention is based on a sensor element and a method for producing the same according to the type defined in the preamble of the independent claims.
  • a sensor for the detection of substances in a fluid flow is known, which is carried out on the basis of a ceramic multilayer substrate. It comprises two spaced-apart measuring electrodes, which are the one to be examined
  • the sensor further comprises two layered running heating elements, which make it possible, the electrodes or their
  • an oxygen sensor which is designed as a radially symmetrical hollow body, wherein in the cavity of the oxygen sensor, a rod-shaped heating element can be introduced.
  • Object of the present invention is to provide a sensor element for sensors for determining the concentration of particles in gas mixtures, which shows a high accuracy of the obtained measurement signals and yet can be produced inexpensively.
  • the sensor element with the characterizing features of claim 1 has the advantage that it solves the problem underlying the invention in an advantageous manner This is based ⁇ on its simple structure and on its radially symmetrical configuration, which is due to the fact that the measurement signals obtained by means of the sensor element independently from the spatial orientation of the sensor element and from the flow conditions of the gas element flowing around the sensor element.
  • the sensor element has a radially symmetrically designed heating element, on the
  • the radially symmetrical design of the heating element allows for a uniform heating of the entire surface of the heating element and on the other hand independent of the flow conditions access of the gas mixture to be examined.
  • the measuring electrodes are designed as interdigital electrodes and cover the entire surface of the cylindrical jacket of the heating element as completely as possible. In this way, the largest possible surface suitable for measuring a particle load is available.
  • a measurement signal of the sensor element results as a measure of the loading of the heating element surface with particles, which is independent of which
  • the heating element comprises a ceramic material which advantageously comprises an electrically insulating material such as alumina, optionally mixed with alkaline earth oxides.
  • the resistor track of the integrated electrical resistor is preferably designed as a cermet material, so that a good connection of the resistor track to the ceramic insulation is achieved.
  • Resistor conductor run as a platinum meander. This allowed rapid, uniform and permanent heating of the sensor element.
  • FIG. 1 shows a plan view of a sensor element according to a first exemplary embodiment of the present invention
  • FIG. 2 shows a schematic of FIG
  • Figure 3 shows a sensor element according to a second embodiment of the present invention in a schematic longitudinal section at an intermediate stage during the manufacturing process and Figure 4 shows a variant of the sensor element of Figure 3 in a plan view in an intermediate stage during the manufacturing process.
  • FIG. 1 shows a basic structure of a first embodiment of the present invention.
  • a ceramic sensor element for example, an electrochemical gas sensor.
  • the sensor element is used to determine a particle concentration in a gas mixture surrounding the sensor element.
  • the sensor element 10 has a ceramic heating element 12, in which an electrical resistance, not shown, is integrated.
  • a barium-containing alumina is preferably used, since such isolation even at Ternperalurcicbe hot a long period has a largely constant high electrical resistance
  • the use of ceria or alumina with the addition of other alkaline earth oxides is possible or the use of ZrO 2, wherein then insulating layers of aluminum oxide for electrical insulation of the resistance conductor of the heating element or the measuring electrodes 14, 16 are provided.
  • two measuring electrodes 14, 16 are applied, which are preferably designed as interdigitated interdigital electrodes.
  • the use of interdigital electrodes as measuring electrodes 14, 16 advantageously enables a particularly accurate determination of the electrical resistance or the electrical conductivity of the surface material located between the measuring electrodes 14, 16.
  • a contact surface 20 is formed in the region of an end 18 of the heating element 12 facing away from the gas mixture.
  • a corresponding second contact surface for contacting the electrode 16 is preferably also arranged on an opposite side of the heating element 12 at the end facing away from the gas mixture 18 of the heating element 12 and thus not shown in Figure 1.
  • During operation of the sensor element 10 is applied to the measuring electrodes 14, 16 applying a voltage ⁇ . Since the measuring electrodes 14, 16 are arranged on the surface of the heating element 12, there is essentially no current flow between the electrodes 14, 16 due to the good electrical insulating properties of the ceramic insulation of the heating element 12.
  • soot has a certain electrical conductivity, it comes with sufficient loading of the surface of the Sensor element 10 with soot to an increasing current flow, which correlates with the extent of the load. If now a preferably constant direct or alternating voltage is applied to the measuring electrodes 14, 16 and the increase of the current flow over time is determined, it is possible to deduce the current particle mass flow, in particular soot mass flow, in the gas mixture from the quotient of current flow rise and time. With this measurement method, the concentration of all those particles in a gas mixture is detected, which influence the electrical conductivity of the located between the measuring electrodes 14, 16 ceramic material positive or negative.
  • the heating element 12 is designed radially symmetrically along an axis which extends centrally through the base area facing away from the gas mixture and through the base area of the heating element 12 facing the gas mixture.
  • the heating element 12 includes at least one electrical resistance, not shown, which serves to burn off the deposited on the surface of the sensor element soot particles.
  • the electrical resistor used is preferably a resistor track of a cermet material. It is preferably a mixture of a metal, such as platinum, with ceramic moieties, such as alumina.
  • the resistance conductor track is preferably designed in the form of a meander and has at both ends not shown electrical connections. By applying a corresponding heating voltage to the terminals of the resistor track, the heating power of the heating element 12 can be regulated accordingly *
  • FIG. 2 shows an electrochemical gas sensor for determining the particle concentration of a gas mixture in which a sensor element on which the invention is based is integrated, as illustrated, for example, in FIG.
  • the same reference numerals designate the same component components as in FIG. 1.
  • the sensor element 10 is surrounded by a preferably metallic protective tube 30 to protect against corrosive and abrasive influences of the gas mixture, so that within the Schulzrohres 30 a sample gas space 20 is formed around the sensor element 10 around.
  • Protective tube 30 is preferably designed as a double protection tube with an outer cylinder sleeve 22 and an inner cylinder sleeve 24. Between the outer cylinder sleeve 22 and the inner cylinder sleeve 24, a circumferential gap 26 is present.
  • the outer cylinder sleeve 32 has a plurality of, not shown, in particular the oncoming gas mixture facing, preferably axially or radially distributed gas inlets.
  • the inner cylinder sleeve 24 has also a plurality of radially and / or axially distributed inner gas inlets 28. This arrangement allows the gas mixture access to the sensitive region of the sensor element 10 while avoiding turbulent flow guidance of the gas mixture in the immediate vicinity of the sensor element 10.
  • the application of the measuring electrodes 14, 16 on the surface of the heating element 12 can be done for example by pad printing or by means of a transfer coating.
  • the production of the sensor element 10 is particularly cost-effective if a rod-shaped heating element customary in the case of lambda probes in the form of so-called finger probes is used as the heating element 12.
  • the entire surface of the sensor element designed as a cylinder can be provided with measuring electrodes 14, 16 in the case of the sensor element 10 described here and is thus used as measuring range
  • FIG. 3 shows a sensor element according to a second exemplary embodiment in an intermediate stage of manufacture
  • the sensor element shown in FIG. 3 has two measuring electrodes 14a, 16a arranged one above the other instead of two or more measuring electrodes 14, 16 arranged next to one another and interlocking with one another. It is produced by forming a resistance conductor 17 between two planar, preferably planar ceramic substrates 13, 15.
  • the ceramic substrates 13, 15 and the resistance conductor 17 are made, for example, of the same materials as the ceramic layers of the heating element 12 or its resistance conductor in FIG. 1.
  • a first measuring electrode 14a and its supply line 21 and a second supply line 23 recognizable in FIG. 4 for a further measuring electrode 16a are printed on a large area of one of the ceramic substrates 13.
  • the first measuring electrode 14a is at least partially covered by a porous intermediate layer 25.
  • the intermediate layer 25 is preferably made open-porous, wherein the pore size is chosen so that the determined
  • the pore size of the porous layer 25 is preferably in a range of 2 to 10 microns.
  • the porous layer 25 is made of a ceramic material which is preferably similar to or corresponds to the material of the ceramic substrates 13, 15. Alternatively, the porous layer 25 may be made of a semiconducting material.
  • the porous intermediate layer 25 can be easily produced by screen printing.
  • the porosity of the porous intermediate layer 25 is adjusted by addition of pore formers to the screen printing paste by the arrangement of the measuring electrodes 14a, 16a one above the other instead of each other manufacturing technology, a significantly smaller distance of the two measuring electrodes 14a, 16a can be achieved. While only electrode distances of about 80-200 ⁇ m can be generated laterally by means of customary printing techniques, these are in the stacked arrangement of the measuring electrodes 14a, 16a in the range of 10-20 ⁇ m; only determined by the layer thickness of the porous intermediate layer 25.
  • FIG. 4 shows a variant of the sensor element shown in FIG.
  • the same reference numerals designate the same component components as in FIG. 3.
  • the further measuring electrode 16 can also be embodied as a simple printed conductor instead of in a flat form.
  • the sensor elements 10 shown in Figure 3 and 4 are shown in a plane intermediate stage bent after successful printing processes about an axis C, which is parallel to the longitudinal orientation of the sensor element centrally through the
  • Base surface of the sensor element extends, so that the edge A of the sensor element meets the edge B of the sensor element and a radially symmetrical body is formed. Finally, a sintering of the sensor element takes place.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Es wird ein Sensorelement (10) für Sensoren zur Bestimmung der Konzentration von Partikeln in Gasgemischen beschrieben, insbesondere für einen Rußsensor, das mindestens zwei Messelektroden (14, 16) und ein Heizelement (12) aufweist, wobei das Heizelement (12) einen in ein keramisches Material eingebetteten elektrischen Widerstand umfaßt. Das Heizelement (12) ist radialsymmetrisch ausgeführt und die Messelektroden (14, 16) sind auf dessen Oberfläche aufgebracht. Weiterhin wird ein Verfahren zur Herstellung eines solchen Sensorelements beschrieben.

Description

Sensorelement für Partikelsensoren und Verfahren zur Herstellung desselben
Die Erfindung geht von einem Sensorelement und einem Verfahren zur Herstellung desselben gemäß der im Oberbegriff der unabhängigen Ansprüche definierten Art aus.
Stand der Technik
Im Zuge einer sich verschärfenden Umweltgesetzgebung erlangen zunehmend Abgasnachbehandlungssysteme Bedeutung, die die Filtration bzw. Eliminierung von in Verbrennungsabgasen existierenden Rußpartikeln ermöglichen. Um die Funktionstüchtigkeit derartiger Abgasnachbehandlungssysteme zu überprüfen bzw. zu überwachen, werden Sensoren benötigt, mit denen auch im Langzeitbetrieb eine genaue Ermittlung der aktuell im Verbrennungsabgas vorliegenden Partikelkonzentration ermittelt werden kann. Darüber hinaus soll mittels derartiger Sensoren eine Beladungsprognose beispielsweise von Dieselpartikelfiltern in Abgassystemen ermöglicht werden, um eine hohe Systemsicherheit zu erreichen und dadurch kostengünstigere Filtermaterialien einsetzen zu können.
Aus der DE 102 19798 Al ist ein Sensor zur Detektion von Stoffen in einem Fluidstrom bekannt, der auf der Basis eines keramischen Mehrlagensubstrats ausgeführt ist. Er umfasst zwei voneinander beabstandete Messelektroden, die dem zu untersuchenden
Verbrennungsabgas ausgesetzt sind. Lagert sich zwischen den beiden Messelektroden Ruß ab, so kommt es zu einem Stromfluss zwischen den beiden Messelektroden, sobald eine geeignete Spannung an die Messelektroden angelegt wird. Der Sensor umfasst weiterhin zwei schichtförmig ausgeführte Heizelemente, die es ermöglichen, die Elektroden bzw. deren
Umgebung auf thermischem Wege von abgelagerten Rußpartikeln zu befreien. Nachteilig an diese Art von Sensoren ist einerseits deren aufwendige Herstellung und zum anderen die Abhängigkeit der erhaltenen Messresultate von der Positionierung des Sensors im Gasstrom, da die Beladung eines derartigen Sensors mit Rußpartikeln wesentlich von den Strömungsverhältnissen des Λbgasstromes im Bereich des Sensors abhängt.
Aus der US 6,679,982 Bl ist ein Sauerstoffsensor bekannt, der als radialsymmetrischer Hohlkörper ausgeführt ist, wobei in den Hohlraum des Sauerstoffsensors ein stabförmiges Heizelement eingeführt werden kann.
Aufgabe der vorliegenden Erfindung ist es, ein Sensorelement für Sensoren zur Bestimmung der Konzentration von Partikeln in Gasgemischen bereitzustellen, das eine hohe Genauigkeit der erhaltenen Messsignale zeigt und dennoch kostengünstig hergestellt werden kann.
Vorteile der Erfindung
Das Sensorelement mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass es die der Erfindung zugrundeliegende Aufgabe in vorteilhafter Weise löst Dies beruht ^insbesondere auf dessen einfachem Aufbau und auf dessen radialsymmetrischer Ausgestaltung, worauf zurückzufuhren ist, dass die mittels des Sensorelements gewonnenen Messsignale unabhängig von der räumlichen Ausrichtung des Sensorelements und von den Strömungsverhältnissen der das Sensorelement umströmenden Gasgemische sind.
Dazu weist das Sensorelement ein radialsymmetrisch ausgeführtes Heizelement auf, auf dessen
Oberfläche mindestens zwei Messelektroden aufgebracht sind. Die radialsymmetrische Ausführung des Heizelementes ermöglicht zum einen eine gleichmäßige Beheizung der gesamten Oberfläche des Heizelementes und zum anderen einen von den Strömungsverhältnissen unabhängigen Zutritt des zu untersuchenden Gasgemischs.
Weitere vorteilhafte Ausführungsformen des vorliegenden Sensorelements ergeben sich aus den Unteransprüchen. So ist es von Vorteil, wenn die Messelektroden als Interdigitalelektroden ausgeführt sind und möglichst vollflächig den zylinderförmigen Mantel des Heizelementes bedecken. Auf diese Weise steht eine möglichst große, zur Messung einer Partikelbeladung geeignete Oberfläche zur Verfugung. Darüber hinaus ergibt sich ein Messsignal des Sensorelements als Maß für die Beladung der Heizelementoberfläche mit Partikeln, das unabhängig davon ist, aus welcher
Richtung die Beladung der Oberfläche mit Partikeln erfolgt.
Um eine möglichst gute Abschirmung der Messelektroden gegenüber einem in das Heizelement integrierten elektrischen Widerstand zu erreichen, umfasst das Heizelement ein keramisches Material, das vorteilhafter Weise aus ein elektrisch isolierendes Material wie Aluminiumoxid ggf. in Mischung mit Erdalkalioxiden umfasst. Dabei ist die Widerstandsleiterbahn des integrierten elektrischen Widerstandes vorzugsweise als Cermet-Material ausgeführt, sodass eine gute Anbindung der Widerstandsleiterbahn an die keramische Isolierung erreicht wird.
Bei einer besonders vorteilhaften Ausführungsform der vorliegenden Erfindung ist die
Widerstandsleiterbahn als platinhaltiger Mäander ausgeführt. Dies ermöglichte eine rasche, gleichmäßige und dauerhafte Beheizung des Sensorelements.
Zeichnung
Zwei Ausführungsbeispiele eines erfϊndungsgemäßen Sensorelements sind in der Zeichnung schematisch vereinfacht dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Dabei zeigt Figur 1 eine Aufsicht auf ein Sensorelement gemäß einem ersten Λusführungsbeispiel der vorliegenden Erfindung, Figur 2 in schematischer Weise das
Sensorelement aus Figur 1, nachdem es in einen Gassensor verbaut wurde, Figur 3 ein Sensorelement gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung in einem schematischen Längsschnitt in einem Zwischenstadium während des Herstellungsverfahrens und Figur 4 eine Variante des Sensorelements gemäß Figur 3 in einer Aufsicht in einem Zwischenstadium während des Herstellungsverfahrens. Beschieibung der Ausführungsbeispiele
In Figur 1 ist ein prinzipieller Aufbau einer ersten Ausführungsform der vorliegenden Erfindung dargestellt. Mit 10 ist ein keramisches Sensorelement beispielsweise eines elektrochemischen Gassensors bezeichnet. Das Sensorelement dient der Bestimmung einer Partikelkonzentration in einem das Sensorelement umgebenden Gasgemisch. Das Sensorelement 10 weist ein keramisches Heizelement 12 auf, in das ein nicht dargestellter elektrischer Widerstand integriert ist. Als keramisches Material zur elektrischen Isolierung des Heizelementes 12 wird vorzugsweise ein bariumhaltiges Aluminiumoxid verwendet, da eine derartige Isolierung auch bei Ternperalurwechselbeanspruchungen über einen langen Zeitraum einen weitgehend konstanten hohen elektrischen Widerstand aufweist Alternativ ist auch die Verwendung von Cerdioxid bzw. von Aluminiumoxid unter Zusatz anderer Erdalkalioxide möglich oder die Verwendung von ZrO2, wobei dann Isolationsschichten aus Aluminiumoxid zur elektrischen Isolierung der Widerstandleiterbahn des Heizelements bzw. der Messelektroden 14, 16 vorgesehen sind .
Auf der Oberfläche des Heizelementes 12 sind beispielsweise zwei Messelektroden 14, 16 aufgebracht, die vorzugsweise als ineinander verzahnte Interdigitalelektroden ausgebildet sind. Die Verwendung von Interdigitalelektroden als Messelektroden 14, 16 ermöglicht vorteilhafterweise eine besonders genaue Bestimmung des elektrischen Widerstandes bzw. der elektrische Leitfähigkeit des sich zwischen den Messelektroden 14, 16 befindenden Oberflächenmaterials. Zur Kontaktierung der Messelektrode 14 ist im Bereich eines dem Gasgemisch abgewandten Ende 18 des Heizelementes 12 eine Kontaktfläche 20 ausgebildet. Eine entsprechende zweite Kontaktfläche zur Kontaktierung der Elektrode 16 ist vorzugsweise auf einer gegenüberliegenden Seite des Heizelementes 12 ebenfalls an dem dem Gasgemisch abgewandten Ende 18 des Heizelementes 12 angeordnet und somit in Figur 1 nicht dargestellt. Während des Betriebs des Sensorelementes 10 wird an die Messelektroden 14, 16 eine Spannung angelegt. Da die Messelektroden 14, 16 auf der Oberfläche des Heizelementes 12 angeordnet sind, kommt es zunächst aufgrund der guten elektrisch isolierenden Eigenschaften der keramischen Isolierung des Heizelementes 12 im wesentlichen zu keinem Stromfluss zwischen den Elektroden 14, 16.
Enthält ein das Sensorelement 10 umströmendes Gasgemisch Partikel, insbesondere Ruß, so lagern sich diese auf der Oberfläche des Sensorelementes 10 ab. Da Ruß eine bestimmte elektrische Leitfähigkeit aufweist, kommt es bei ausreichender Beladung der Oberfläche des Sensorelementes 10 mit Ruß zu einem ansteigenden Stromfluss, der mit dem Ausmaß der Beladung korreliert. Wird nun an die Messeleklroden 14, 16 eine vorzugsweise konstante Gleich- oder Wechselspannung angelegt und der Anstieg des Stromflusses über der Zeit ermittelt, so kann aus dem Quotienten aus Stromflussanstieg und Zeit auf den aktuellen Partikelmassenstrom, insbesondere Rußmassenstrom, im Gasgemisch geschlossen werden. Mit dieser Messmethode wird die Konzentration all derjenigen Partikel in einem Gasgemisch erfasst, die die elektrische Leitfähigkeit des sich zwischen den Messelektroden 14, 16 befindenden keramischen Materials positiv oder negativ beeinflussen.
Das Heizelement 12 ist radialsymmetrisch entlang einer Achse ausgeführt, die mittig durch die dem Gasgemisch abgewandte Grundfläche und durch die dem Gasgemisch zugewandte Grundfläche des Heizelementes 12 verläuft. Das Heizelement 12 enthält mindestens einen nicht dargestellten elektrischen Widerstand, der dem Abbrand der auf der Oberfläche des Sensorelements abgelagerten Rußpartikel dient. Als elektrischer Widerstand wird vorzugsweise eine Widerstandsleiterbahn aus einem Cermet-Material eingesetzt. Dabei handelt es sich vorzugsweise um eine Mischung eines Metalls, wie beispielsweise Platin, mit keramischen Anteilen, wie beispielsweise Aluminiumoxid. Die Widerstandsleiterbahn ist vorzugsweise in Form eines Mäanders ausgeführt und weist an beiden Enden nicht dargestellte elektrische Anschlüsse auf. Durch Anlegen einer entsprechenden Heizspannung an die Anschlüsse der Widerstandsleiterbahn kann die Heizleistung des Heizelementes 12 entsprechend reguliert werden*
In Figur 2 ist ein elektrochemischer Gassensor zur Bestimmung der Partikelkonzentration eines Gasgemischs dargestellt, in den ein der Erfindung zugrundeliegendes Sensorelement integriert ist, wie es beispielsweise in Figur 1 dargestellt ist. Dabei bezeichnen gleiche Bezugszeichen die gleichen Bauteilkomponenten wie in Figur 1.
Das Sensorelement 10 ist dabei zum Schutz vor korrosiven und abrasiven Einflüssen des Gasgemischs von einem vorzugsweise metallischen Schutzrohr 30 umgeben, sodass innerhalb des Schulzrohres 30 ein Messgasraum 20 um das Sensorelement 10 herum entsteht. Das
Schutzrohr 30 ist vorzugsweise als Doppelschutzrohr mit einer äußeren Zylinderhülse 22 und einer inneren Zylinderhülse 24 ausgeführt. Zwischen der äußeren Zylinderhülse 22 und der inneren Zylinderhülse 24 ist ein umlaufender Spalt 26 vorhanden. Die äußere Zylinderhülse 32 weist mehrere, nicht dargestellte, insbesondere dem anströmenden Gasgemisch zugewandte, vorzugsweise axial oder radial verteilte Gaseinlässe auf. Die innere Zylinderhülse 24 weist ebenfalls mehrere, radial und/oder axial verteilte innere Gaseinlässe 28 auf. Diese Anordnung ermöglicht dem Gasgemisch den Zutritt zum sensitiven Bereich des Sensorelements 10 unter Vermeidung einer turbulenten Strömungsführung des Gasgemischs in der unmittelbaren Umgebung des Sensorelements 10.
Die Befestigung des Schutzrohrs 22, 24 bzw. des Sensorelementes 10 erfolgt im Gassensor in einer bei Lambdasonden üblichen Art und Weise, wie sie beispielsweise in der DE 19648 685 Al beschrieben ist.
Die Aufbringung der Messelektroden 14, 16 auf die Oberfläche des Heizelementes 12 kann beispielsweise mittels Tampondruck oder mittels einer Transferbeschichtung erfolgen.
Besonders kostengünstig erfolgt die Fertigung des Sensorelementes 10, wenn als Heizelement 12 ein bei Lambdasonden in Form sogenannter Fingersonden übliches stabförmiges Heizelement verwendet wird.
Gegenüber konventionellen, plättchenförmigen Rußsensoren, bei denen lediglich eine Großfläche des Sensorelementes mit Messelektroden versehen ist, kann bei dem hier beschriebenen Sensorelementes 10 die gesamte als Zylinder ausgeführte Oberfläche des Sensorelements mit Messelektroden 14, 16 versehen sein und steht somit als Messbereich zur
Verfügung. Dies erhöht den über die Rußpartikel transportierten Strom und somit das Signal/Rauschverhältnis des gewonnenen Messsignals bzw. dessen Genauigkeit.
In Figur 3 ist ein Sensorelement gemäß einem zweiten Ausführungsbeispiel in einem Zwischenstadium der Herstellung dargestellt Dabei bezeichnen weiterhin gleiche
Bezugszeichen die gleichen Bauteilkomponenten wie in Figur 1 und 2.
Das in Figur 3 dargestellte Sensorelement weist anstatt zweier oder mehrerer nebeneinander angeordneter und ineinander verzahnter Messelektroden 14, 16 zwei übereinander angeordnete Messelektroden 14a, 16a auf. Es wird hergestellt, indem zwischen zwei flächige, vorzugsweise planare keramische Substrate 13, 15 eine Widerstandsleiterbahn 17 ausgebildet wird. Die keramischen Substrate 13, 15 und die Widerstandsleiterbahn 17 sind beispielsweise aus denselben Materialien ausgeführt wie die keramischen Schichten des Heizelementes 12 bzw. dessen Widerstandleiterbahn in Figur 1. Auf eine Großfläche eines der keramischen Substrate 13 wird eine erste Messelektrode 14a sowie deren Zuleitung 21 und eine in Figur 4 erkennbare zweite Zuleitung 23 für eine weitere Messelektrode 16a aufgedruckt Die erste Messelektrode 14a wird zumindest weilgehend mit einer porösen Zwischenschicht 25 überdeckt. Die Zwischenschicht 25 ist vorzugsweise offenporös ausgeführt, wobei die Porengröße so gewählt wird, dass die zu bestimmenden
Partikel im Gasgemisch in die Poren der porösen Schicht 18 eindiffundieren können. Die Porengröße der porösen Schicht 25 liegt dabei vorzugsweise in einem Bereich von 2 bis 10 μm. Die poröse Schicht 25 ist aus einem keramischen Material ausgeführt, das vorzugsweise dem Material der keramischen Substrate 13, 15 ähnlich ist oder diesem entspricht Alternativ kann die poröse Schicht 25 auch aus einem halbleitenden Material ausgeführt sein..
Die poröse Zwischenschicht 25 kann in einfacher Weise mittels Siebdruck hergestellt werden. Dabei wird die Porosität der porösen Zwischenschicht 25 durch Zusatz von Porenbildnern zu der Siebdruckpaste entsprechend eingestellt Durch die Anordnung der Messelektroden 14a, 16a übereinander anstatt nebeneinander kann fertigungstechnisch ein deutlich geringer Abstand der beiden Messelektroden 14a, 16a erzielt werden. Während lateral mittels üblicher Drucktechniken lediglich Elektrodenabstände von ca. 80 - 200 μm erzeugt werden können, liegen diese bei gestapelter Anordnung der Messelektroden 14a, 16a im Bereich von 10 - 20 μm; lediglich bestimmt durch die Schichtdicke der porösen Zwischenschicht 25.
In Figur 4 ist eine Variante des in Figur 3 dargestellten Sensorelements abgebildet. Dabei bezeichnen gleiche Bezugszeichen die gleichen Bauteilkomponenten wie in Figur 3.
In dieser Variante ist gezeigt, dass die weitere Messelektrode 16 anstatt in flächiger Form auch als einfache Leiterbahn ausgeführt sein kann. Alternativ ist eine Ausführung in Form einer mit
Seitenästen versehenen Leiterbahn oder als netzförmige Elektrode möglich.
Während des Herstellungsverfahrens werden die in Figur 3 und 4 in einem planeren Zwischenstadium dargestellten Sensorelemente 10 nach erfolgten Druckprozessen um eine Achse C gebogen, die parallel zur Längsausrichtung des Sensorelements mittig durch die
Grundfläche des Sensorelements verläuft, sodass die Kante A des Sensorelements auf die Kante B des Sensorelements trifft und ein radialsymmetrischer Körper entsteht. Abschließend erfolgt eine Sinterung des Sensorelements.

Claims

Ansprüche
1. Sensorelement für Sensoren zur Bestimmung der Konzentration von Partikeln in Gasgemischen, insbesondere von Ruß, mit mindestens zwei Messelektroden und mit einem Heizelement, das einen in ein keramisches Material eingebetteten elektrischen Widerstand aufweist, dadurch gekennzeichnet, dass das Heizelement (12) radialsymmetrisch ausgeführt ist und die Messelektroden (14, 14a, 16, 16a) auf dessen Oberfläche aufgebracht sind.
2. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, dass die Messelektroden (14, 16) als Interdigitalelektroden ausgeführt sind.
3. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, dass die Messelektroden (14a, 16a) im wesentlichen übereinander angeordnet sind
4. Sensorelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Heizelement (12) zylinderförmig ausgeführt ist.
5. Sensorelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das keramische Material des Heizelements (12) Aluminiumoxid und/oder Erdalkalioxide enthält
6. Sensorelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Widerstand des Heizelements (12) eine Widerstandsleiterbahn aus einem Cermet-Material ist.
7. Sensorelement nach Anspruch 5, dadurch gekennzeichnet, dass die Widerstandsleiterbahn als plaünhalüger Mäander ausgeführt ist.
8. Sensor zur Bestimmung der Konzentration von Partikeln in Gasgemischen, insbesondere
Rußsensor, dadurch gekennzeichnet, dass ein Sensorelement nach einem der vorhergehenden Ansprüche vorgesehen ist.
9. Verfahren zur Herstellung eines Sensorelementes, insbesondere nach einem der Ansprüche 1 bis 7, wobei in einem ersten Schritt ein zumindest weitgehend planares keramisches Substrat
(13, 15) zumindest mit einer Messelektrode (14a) versehen wird, dadurch gekennzeichnet, dass das keramische Substrat (13, 15) in einem zweiten Schritt so gebogen wird, dass zwei sich gegenüber liegende Seiten (A, B) des keramischen Substrats (13, 15) unter Bildung eines radialsymmetrischen Körpers in physischen Kontakt kommen.
PCT/EP2005/053400 2004-09-07 2005-07-15 Sensorelement für partikelsensoren und verfahren zur herstellung desselben WO2006027287A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410043122 DE102004043122A1 (de) 2004-09-07 2004-09-07 Sensorelement für Partikelsensoren und Verfahren zur Herstellung desselben
DE102004043122.1 2004-09-07

Publications (1)

Publication Number Publication Date
WO2006027287A1 true WO2006027287A1 (de) 2006-03-16

Family

ID=34972639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/053400 WO2006027287A1 (de) 2004-09-07 2005-07-15 Sensorelement für partikelsensoren und verfahren zur herstellung desselben

Country Status (2)

Country Link
DE (1) DE102004043122A1 (de)
WO (1) WO2006027287A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072850A (zh) * 2009-11-06 2011-05-25 罗伯特·博世有限公司 粒子传感器
FR3012047A1 (fr) * 2013-10-23 2015-04-24 Peugeot Citroen Automobiles Sa Capteur de suie en forme de peignes sur un element de support arrondi
US9062576B2 (en) 2010-12-22 2015-06-23 Caterpillar Inc. Exhaust particulate filter system and operating method therefor
WO2016185841A1 (ja) * 2015-05-19 2016-11-24 株式会社デンソー 粒子状物質検出センサ
CN102072850B (zh) * 2009-11-06 2016-12-14 罗伯特.博世有限公司 粒子传感器
DE102016201193A1 (de) * 2016-01-27 2017-07-27 Technische Universität München Gedruckte Sensorvorrichtung zum Detektieren von Medien
DE102017102985A1 (de) 2016-03-08 2017-09-14 Ford Global Technologies, Llc Verfahren und system zum erfassen von partikeln in abgasen
US9841357B2 (en) 2015-12-11 2017-12-12 Ford Global Technologies, Llc System for sensing particulate matter
US10705002B2 (en) 2014-12-23 2020-07-07 Heraeus Nexensos Gmbh Sensor for detecting electrically conductive and/or polarizable particles and method for adjusting such a sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015385A1 (de) * 2006-04-03 2007-10-04 Robert Bosch Gmbh Sensor zur Detektion von Partikeln in einem Fluid und Verfahren zur Detektion von Partikeln in einem Fluid
DE102006042605B4 (de) * 2006-09-11 2020-01-16 Robert Bosch Gmbh Sensorelement für Gassensoren und Verfahren zum Betrieb desselben
DE102009000318A1 (de) 2009-01-20 2010-07-22 Robert Bosch Gmbh Teilchensensor
DE102010011637A1 (de) * 2010-03-16 2011-09-22 Continental Automotive Gmbh Strömungsleitvorrichtung eines Sensors
DE102013214581A1 (de) * 2013-07-25 2015-01-29 Continental Automotive Gmbh Rußsensorelement
DE102013220813A1 (de) * 2013-10-15 2015-04-16 Continental Automotive Gmbh Rußsensor
DE102016107888A1 (de) * 2016-04-28 2017-11-02 Heraeus Sensor Technology Gmbh Sensor zur Detektion elektrisch leitfähiger und/oder polarisierbarer Partikel, Sensorsystem, Verfahren zum Betreiben eines Sensors und Verwendung eines derartigen Sensors
CN106990137A (zh) * 2017-03-13 2017-07-28 英吉森安全消防系统(上海)有限公司 一种新型热解粒子传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656832A (en) * 1982-09-30 1987-04-14 Nippondenso Co., Ltd. Detector for particulate density and filter with detector for particulate density
US4677374A (en) * 1984-11-05 1987-06-30 Aisin Seiki Kabushiki Kaisha Oil mist dectector
FR2805347A1 (fr) * 2000-02-22 2001-08-24 Inst Francais Du Petrole Dispositif pour controler le debit de particules conductrices dans un flux de gaz
GB2395567A (en) * 2002-11-22 2004-05-26 Inst Francais Du Petrole Particle measuring system for diesel exhaust

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656832A (en) * 1982-09-30 1987-04-14 Nippondenso Co., Ltd. Detector for particulate density and filter with detector for particulate density
US4677374A (en) * 1984-11-05 1987-06-30 Aisin Seiki Kabushiki Kaisha Oil mist dectector
FR2805347A1 (fr) * 2000-02-22 2001-08-24 Inst Francais Du Petrole Dispositif pour controler le debit de particules conductrices dans un flux de gaz
GB2395567A (en) * 2002-11-22 2004-05-26 Inst Francais Du Petrole Particle measuring system for diesel exhaust

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072850A (zh) * 2009-11-06 2011-05-25 罗伯特·博世有限公司 粒子传感器
US8800350B2 (en) 2009-11-06 2014-08-12 Robert Bosch Gmbh Particle sensor
CN102072850B (zh) * 2009-11-06 2016-12-14 罗伯特.博世有限公司 粒子传感器
US9062576B2 (en) 2010-12-22 2015-06-23 Caterpillar Inc. Exhaust particulate filter system and operating method therefor
FR3012047A1 (fr) * 2013-10-23 2015-04-24 Peugeot Citroen Automobiles Sa Capteur de suie en forme de peignes sur un element de support arrondi
US10705002B2 (en) 2014-12-23 2020-07-07 Heraeus Nexensos Gmbh Sensor for detecting electrically conductive and/or polarizable particles and method for adjusting such a sensor
WO2016185841A1 (ja) * 2015-05-19 2016-11-24 株式会社デンソー 粒子状物質検出センサ
US9841357B2 (en) 2015-12-11 2017-12-12 Ford Global Technologies, Llc System for sensing particulate matter
RU2727120C2 (ru) * 2015-12-11 2020-07-20 Форд Глобал Текнолоджиз, Ллк Система (варианты) и способ для обнаружения твердых частиц
DE102016201193A1 (de) * 2016-01-27 2017-07-27 Technische Universität München Gedruckte Sensorvorrichtung zum Detektieren von Medien
DE102017102985A1 (de) 2016-03-08 2017-09-14 Ford Global Technologies, Llc Verfahren und system zum erfassen von partikeln in abgasen
US10078043B2 (en) 2016-03-08 2018-09-18 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing

Also Published As

Publication number Publication date
DE102004043122A1 (de) 2006-03-09

Similar Documents

Publication Publication Date Title
WO2006027287A1 (de) Sensorelement für partikelsensoren und verfahren zur herstellung desselben
EP1792170B1 (de) Sensorelement für partikelsensoren und verfahren zum betrieb desselben
EP1844316B1 (de) Sensorelement für partikelsensoren und verfahren zum betrieb desselben
EP1623217B1 (de) Sensor zur detektion von teilchen
EP1869428B1 (de) Sensorelement für partikelsensoren und verfahren zum betrieb desselben
EP1896838B1 (de) SENSOR UND BETRIEBSVERFAHREN ZUR DETEKTION VON RUß
DE2907032C2 (de) Polarographischer Sauerstoffmeßfühler für Gase, insbesondere für Abgase von Verbrennungsmotoren
WO2008113644A2 (de) Sensorelement zur bestimmung von partikeln in einem messgas
DE102007047078A1 (de) Sensorelement zur Detektion von Partikeln in einem Gas und Verfahren zu dessen Herstellung
WO2006094923A1 (de) Sensorelement und sensor dieses enthaltend
DE102012217428A1 (de) Sensor zur Detektion von Teilchen
DE4432749A1 (de) Sauerstoffkonzentrationsdetektor und Verfahren zu dessen Herstellung
DE112015003077B4 (de) Gassensor
DE102008007664A1 (de) Keramisches Heizelement
EP1448982B1 (de) Sensor zur detektion von teilchen in einem gasstrom
WO2008025602A1 (de) Sensor zur resistiven bestimmung von konzentrationen leitfähiger partikel in gasgemischen
DE10331838B3 (de) Sensorelement, Verfahren zu seiner Herstellung und Verfahren zur Erfassung von Partikeln
EP2145173B1 (de) Sensor zur detektion von teilchen in einem gasstrom
DE102006002111A1 (de) Sensorelement für Partikelsensoren und Verfahren zum Betrieb desselben
EP1844315B1 (de) Messanordnung und verfahren zur bestimmung der konzentration von partikeln in gasgemischen
DE112016001244B4 (de) Gassensorelement
DE102006002112B4 (de) Verfahren zur Bestimmung der Konzentration von Partikeln in Gasgemischen
DE102006032549A1 (de) Sensorelement eines Gassensors
DE112020003048T5 (de) Gassensor und verfahren zur herstellung desselben
DE102021105497A1 (de) Gassensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase