WO2006025603A1 - 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置 - Google Patents

円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置 Download PDF

Info

Publication number
WO2006025603A1
WO2006025603A1 PCT/JP2005/016470 JP2005016470W WO2006025603A1 WO 2006025603 A1 WO2006025603 A1 WO 2006025603A1 JP 2005016470 W JP2005016470 W JP 2005016470W WO 2006025603 A1 WO2006025603 A1 WO 2006025603A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
measured
cross
circle
measuring
Prior art date
Application number
PCT/JP2005/016470
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Kawai
Kyoichi Teramoto
Yoichi Kawamorita
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to US11/281,603 priority Critical patent/US20060074587A1/en
Publication of WO2006025603A1 publication Critical patent/WO2006025603A1/ja
Priority to US11/469,094 priority patent/US7328125B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/10Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters

Definitions

  • the present invention relates to a shape of a cross-sectional circle in a direction perpendicular to the axis of a cylinder, a method for measuring the cylindrical shape, and a measuring apparatus used therefor.
  • the present invention relates to a technique that contributes to accuracy measurement when the outer surface of a cylindrical member is cut as a means for obtaining a highly accurate cylindrical member.
  • the present inventors are particularly concerned with electrophotographic copying machines, laser one-beam printers, facsimiles, image forming members of printing apparatuses, or substrates thereof. The present invention was applied to the measurement and the effect was confirmed. Background art
  • an electrophotographic photosensitive drum and a developing sleeve in an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, a facsimile machine, and a printing machine use a cylindrical member whose shape is finished with a predetermined accuracy.
  • An electrophotographic photosensitive drum is manufactured by applying a photosensitive film on the surface of a drum base finished to a predetermined accuracy.
  • the photosensitive film is uneven, which causes a problem that the image of the image forming apparatus is defective. Therefore, in order to obtain a highly accurate image forming apparatus, high accuracy is required for the cylindricality and roundness of the drum base.
  • the surface shape while rotating a circle to be measured-cylinder (the cylinder to be measured; the same shall apply hereinafter) on a rotatable base Is measured by a strip laser or other measuring means (see, for example, Japanese Patent Laid-Open No. Q6-20201375 (Patent Document 1)).
  • a method of measuring the cylindrical shape by measuring the dimension that interrupts the belt-shaped laser beam by gripping and rotating both ends of the cylinder to be measured with some gripping tool for example, Japanese Patent Laid-Open No.
  • the measurement means that suits your needs should be used.
  • the measurement of the dimensional accuracy in the field of measuring the dimensional accuracy of the circular shape of the cylinder, in particular, the circular shape of the cylinder, which is supposed to have a high level of accuracy originally targeted in the present invention. If individual measurements are extremely accurate, a sufficient evaluation can be made even if the number of measurement points is relatively small. Therefore, industrially, it is preferable to reduce the number of measurement points as much as possible to shorten the processing time. On the other hand, even if the number of measurement points is increased when evaluating partial shape defects on the cylindrical surface, it is difficult to evaluate all fine defects such as hairline scratches. It is not preferable to increase. Therefore, alternative evaluation methods such as image processing and other surface defect analysis should be used.
  • a cylinder to be measured is placed on a conventional rotatable base and rotated.
  • a strip laser or other measuring means is used to measure the surface shape with a strip laser or other measuring means.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 06-202013 (Patent Document 1)
  • a cylinder to be measured on the base is used.
  • Preparatory work such as precise centering is required, and it is not easy to reduce measurement time and load.
  • a method of measuring the cylindrical shape by measuring the dimension that interrupts the belt-like laser by rotating both ends of the cylinder to be measured with a gripping tool for example, Japanese Patent Laid-Open No. 0-8-0 0 5 3 4 1).
  • the present invention measures cylindrical dimensions, particularly circumferential shapes.
  • the main purpose of the measurement was to reduce the load on the measurement, to make each measurement value accurate, and to efficiently reduce the number of measurement pins.
  • a method for measuring the shape of a circle with a cross section perpendicular to the axis of a cylinder is provided.
  • the measurement method according to the present invention is not limited mechanically, but the position of the floating center is tracked and theoretically captured and limited based on the transition of numerical values obtained sequentially from the probe according to the measurement. Main feature. Therefore, according to the measuring method of the present invention, since it is not necessary to accurately limit the center of the cylinder, the circumference of the cylinder can be simply and without any load like this with high accuracy. It is possible to measure the shape.
  • the measurement value can be influenced by the number of measurement points. No.
  • the number of measurement points for measuring the circumferential shape (dimensional accuracy) of the cylinder which is premised on having a high accuracy level as the object of the present invention, is 10 or 20 It is possible to perform measurements necessary to guarantee product accuracy with a few points, that is, the minimum number of measurement points. Therefore, the present invention is extremely ideal from the viewpoint of pursuing measurement efficiency in measuring the accuracy of a cylinder as an industrial product evaluation. You can say that.
  • the cylindrical shape of the cylinder is measured by rotating the cylinder in the circumferential direction as an object to be measured.
  • the cylindrical shape of the cylinder is characterized by measuring the cylindricity of the cylinder to be measured by determining the circular shape and roundness of a cross section perpendicular to the central axis of the cylinder using a measuring method of the circular shape A measurement method is provided.
  • a measuring means having three or more displacement detectors arranged in a fan shape with a predetermined angle (0 °) between each other and fixed to a mounting base according to the flowchart shown in FIG. A method of measuring the shape of the is provided.
  • the cylinder to be measured is mounted on a mounting base provided so as to be able to reciprocate in parallel with the rotation axis of the cylinder to be measured, and a cylindrical receiving jig for placing and rotating the cylinder to be measured. It is located on the same cross section perpendicular to the axis, and is directed to the measurement reference point ( ⁇ 0 ), which is the point where the rotation axis of the cylinder to be measured and the cross section perpendicular to the rotation axis intersect, and 0.
  • step (i i) repeating the above step (i) with the measured cylinder rotated 0 °;
  • two displacement detectors A and B arranged across an angle 0 and two displacement detectors A ′ and B ′ arranged across an angle 0 A cylindrical measuring method is provided, characterized in that the angle of the included angle between A and A ′ or B and B ′ is a positive integer multiple of 0.
  • a displacement detector is arranged in the cylinder to be measured, and the thickness of the cylinder to be measured, the circle center of the inner circumference circle, and the roundness are obtained.
  • a method for measuring the cylindrical shape of a cylinder is provided.
  • a measurement method as described above comprising a plurality of cylinders having different diameters, and a composite cylinder having a rotation center axis in the outer circumference of all the cylinders.
  • a method of measuring the cylindrical shape of a composite cylinder is provided that determines all cylindrical shapes, concentricity, and wall thickness of the composite cylinder. Furthermore, according to another aspect of the present invention, a cylinder receiving jig for mounting and rotating the cylinder to be measured, and a mounting base provided so as to be able to reciprocate in parallel with the rotation axis of the cylinder to be measured.
  • a measurement reference point which is located on the same cross section perpendicular to the rotation axis of the cylinder to be measured, and is a point where the rotation axis of the cylinder to be measured and a cross section perpendicular to the rotation axis intersect
  • Measuring means having three or more displacement detectors arranged in a fan shape with a predetermined angle (0 °) between each other and fixed to a mounting base.
  • a cylindrical shape measuring apparatus characterized by comprising computing means for executing the following steps (i) to (V i i):
  • step (i i) repeating the above step (i) with the measured cylinder rotated 0 °;
  • the measurement method of the present invention is not limited mechanically, and the position of the floating center is tracked and theoretically captured based on the transition of the numerical value obtained from the probe sequentially according to the measurement. By calculating the distance between the circle and the point on the circumference of the circle to be measured, the shape of the circle to be measured can be specified.
  • the method of the present invention it is not necessary to accurately limit the center of the cylinder, and it is possible to measure the cylinder simply and with high accuracy without any load.
  • the method provided by the present invention does not limit the method of rotating the cylinder to be measured, and the measurement can be performed with both ends open or with components such as flanges attached. Therefore, even if the measuring mechanism using the measuring method of the present invention is mounted in the production line, problems such as interference with the conveying means do not occur, and very simple and highly accurate measurement is possible.
  • Figure 1 shows a summary of the measurement flow chart.
  • Figure 2 is a schematic diagram of the measuring instrument.
  • Fig. 3 is an explanatory diagram of the measurement position.
  • FIG. 4 is an explanatory diagram regarding the movement of the floating center.
  • FIG. 5 is an explanatory diagram (1) regarding the calculation of the floating center position.
  • FIG. 6 is an explanatory diagram (2) regarding the calculation of the floating center position.
  • FIG. 7 is a diagram illustrating the position of the displacement detector according to the first embodiment.
  • FIG. 8 is a diagram illustrating the position of the displacement detector according to the second embodiment.
  • FIG. 9 shows data from the measured values of the displacement detector to the circle center coordinate position of samples No 1 to No 5 obtained in Example 1. .
  • FIG. 10 shows data obtained from Example 1, from the measured values of the displacement detector to the circle center coordinate position of samples No 6 to No 10.
  • Figure 11 shows the Cartesian coordinate position of each point with reference to the central target position, the distance to each point, the maximum value and the minimum value of Samples No 1 to N 0 5 obtained in Example 1. Value.
  • Figure 12 shows the Cartesian coordinate position of each point based on the center coordinate position, the distance to each point, and the maximum value obtained in Example 1 from Samples No 6 to No 10. The minimum value.
  • FIG. 13 shows the roundness obtained in Example 1 and Comparative Example 1.
  • FIG. 14 is a graph comparing the roundness obtained in Example 1 and Comparative Example 1.
  • FIG. 15 shows the time required for measurement and the difference obtained in Example 1 and Comparative Example 1.
  • Figure 16 shows the distance between the displacement detector and the measured cylindrical surface obtained in Example 2.
  • FIG. 17 shows the difference value obtained by the rotation of FIG. 7 obtained in Example 2 and a numerical value obtained by subtracting from the constant to obtain a positive integer.
  • FIG. 18 shows the amount of displacement on the surface of the cylinder 1 to be measured obtained in Example 2 with reference to the floating center.
  • Fig. 19 shows the coordinate values and distances obtained in Example 2 by converting Fig. 9 into Cartesian coordinate positions. It is.
  • FIG. 20 shows the distances from the respective coordinate positions to the respective measurement points on the circumference, the maximum values, and the minimum values obtained in Example 3.
  • FIG. 21 shows the cylindricity of the measured cylinder obtained in Example 4.
  • FIG. 22 shows the cylindricity of the measured cylinder obtained in Example 5.
  • FIG. 1 An example of an apparatus used for measuring the shape of a circular cross-section of a cylinder according to this embodiment is shown in FIG.
  • the measuring device is mounted on a cylindrical receiving jig (roller 6) that can rotate the cylinder 1 to be measured, and is reciprocally mounted in parallel to the rotation axis of the cylinder 1 to be measured by a guide rail 4 and a pole screw 5.
  • a measurement reference point that is located on the mounting base 2 on the same cross section that is perpendicular to the rotation axis of the cylinder 1 to be measured, and where the rotation axis of the cylinder 1 to be measured and a cross section that is perpendicular to the rotation axis intersect. O 0 and measurement point 0.
  • AL 2i can be obtained from the arguments included in the following two equations, that is, the included angle of the displacement detector and the measured value.
  • the third step further rotate the cylinder to be measured 30 ° clockwise.
  • the measurement points 2 1 to 12i on the circumference in the second stage move to 2 2 , 1 2 and 1 2 2 respectively , and the displacement detectors S 1, S 2 and S 3
  • the distance between the points 3 2 , 2 2 and 1 2 on the circumference and the measurement reference point 0 can be measured.
  • the displacement detectors S1 to S3 Points on the circumference 3 2 , 2 2 and 1 2 and 0 respectively. Measure the distance between.
  • the sensing axis deviation of the position of the floating center O n is the measurement error arising against.
  • the error is a minimum distance between the floating center O n until the sensing axis ⁇ L, circumference and the measurement reference position on the detection axis 0.
  • the mean radius of the circle to be measured is 5 Omm, and when the rotation error is 0.1 °, the heel is about 0.076; m. This number is a 1. 5X 10- 4% with respect to the measurement value as an error, the error in addition to the measurement reproducibility of the general displacement measuring instrument of the one common and inexpensive rotation mechanism Considering that the stopping accuracy can be expected to be about 0.04 ° as a reproducibility, it can be said that the effect on the measurement result is extremely small.
  • Cartesian coordinate position component is X i, respectively, x, ⁇ L l -sm ⁇ -0 1- (i — 1) ⁇ y ⁇ Lrcos ⁇ - ⁇ !-(I —1) ⁇
  • 0 i is used as a negative angle in the above equation is to represent the orthogonal coordinate position of each measured point as shown in Fig. 3, and the angle is the Y axis of the Cartesian coordinate system. Sequentially add counterclockwise as 0 °.
  • x 1 2 y 1 2 can be obtained.
  • 12 given to the denominator of the right term of both equations is 36. This is the number obtained by dividing 0 ° by 0 or 30 °, and this number varies with 0 i.
  • roundness A is obtained.
  • the calculated O (x, y) is replaced with the origin (0, 0) on Cartesian coordinates, and the measurement point 1 on the circumference moves accordingly.
  • the roundness A of the cross-sectional circle perpendicular to the central axis is L 1 0 'to L 1 2. It can be calculated as the difference between the maximum and minimum values of '. 'Obtain the above measurements and calculations for the cross-sectional circles perpendicular to each desired center axis of the cylinder 1 to be measured, and obtain the center position of the circle and the amount of radial displacement for each cross-sectional circle to be measured.
  • the outer diameter is as small as about 5 mm. It can be used for thick ones up to 1 torr.
  • displacement detection means there are a wide variety of displacement detection means that can be used in this measurement method.
  • the cylinder to be measured is very thin with respect to its length and weight, is soft as a material, or is very thin, the measurement ⁇ bends under the influence of gravity. If there is a possibility that the measurement results may be affected by elastic deformation such as, it is effective to make the measurement with the cylinder center axis of the cylinder to be measured close to parallel to the direction of gravity or other external action. .
  • the positions of the cross sections perpendicular to the central axes at both ends are closer to the both ends of the cylinder to be measured.
  • the displacement detector is generally parallel to the cylindrical axis direction such as the guide rail 4.
  • the accuracy of the means for moving the is important.
  • the shape of the locus of the floating center point obtained when the cylinder to be measured rotates during measurement is substantially circular, and the cylinder to be measured is placed on the roller-shaped cylindrical receiving jig as described above. If it is rotated, the run-out of the roller-shaped cylindrical support jig; ⁇ If it is very small, the same rotation will be repeated.
  • the cylinder to be measured of sample No. 1 has three displacement detectors S 0, S 45, and S 90.
  • the measurement axis of each displacement detector is perpendicular to the axis of the cylinder. Crossed at a predetermined point in the circle of the cross section in the direction, and placed on a cylindrical receiving jig of a cylindrical measuring instrument arranged in a fan shape with the angle of 45 ° between each point.
  • the three displacement detection examples described above were arranged at a position of 80 mm from one end of the cylinder to be measured in the direction of the central axis of the cylinder, and the displacement detector used was MCH335 electrical micrometer manufactured by Mitutoyo Corporation.
  • the measurement was performed 8 times in total by rotating 45 ° per measurement with the rotary drive transmitter.
  • the distance from the intersection of the detection axes to each displacement detector is measured in advance, and the measured value of the displacement detector in this embodiment is calculated from the intersection of the detection axes to the rotation axis of the cylinder to be measured. It is shown that the distance to the intersection of the cylindrical surface on the same cross section perpendicular to each other and each detection axis is measured.
  • the cylinder to be measured was rotated at a speed of 6 revolutions per minute.
  • the time required for the measurement was measured as the time from when the cylinder to be measured was placed on the cylinder receiving jig until the cylinder to be measured completed one rotation for measurement.
  • Example 1 In the table frame of the figure used in Example 1, it is at the S 0 position at the start of measurement. The measurement is taken as 0 °, and 45 ° is sequentially added to the measured position on the circumferential surface that reaches S 0 as the measured cylinder rotates.
  • the respective moving distances on the detection axis of the displacement detectors S 45 and S 90 are calculated using the equations (1) and (2).
  • the movement distance on each axis is the difference between the measured value of S45 on the S45 detection axis and the measured value of S0 before 45 ° rotation, and the S90 value on the S90 detection axis. Calculated as the difference between the measured value and the measured value of S45 before 45 ° rotation.
  • ⁇ at the Cartesian coordinate position was obtained using Equation 13, and then ⁇ y was calculated using Equation 12 above.
  • ⁇ and ⁇ are moving distance of the floating center Omicron [pi where indicated by orthogonal coordinates. Then, by subtracting the ⁇ from the measured value of SO, the true value of S 0 position, namely to determine the distance to the measured cylinder surface relative to a floating center O n.
  • the distance to each point on the basis of the floating center 0 n was converted into a rectangular coordinate position.
  • the true circle center coordinate O (x, y) was obtained by the least square center method, and the center X coordinate and the center Y coordinate were obtained.
  • FIGS. 9 and 10 show the measured values from the displacement detectors to the circle center coordinate position.
  • the distance between the X-axis component and the Y-axis component from the center coordinate position to each point, the distance to each point, and the maximum and minimum values are shown in FIG. 11 and FIG.
  • Sample No. 1 to Sample No. 10 aluminum measured in Example 1 Using a roundness measuring instrument (trade name: Rund test RA—H 5 0 0 0 AH; manufactured by Mitutoyo Co., Ltd.) The outer surface roundness at the mm position was measured. The time required for the measurement was measured as the time from when the cylinder to be measured was placed on the rotary table, to automatic centering, automatic leveling, and all automatic measurements were continuously operated by a series of programs until this was completed.
  • a roundness measuring instrument trade name: Rund test RA—H 5 0 0 0 AH; manufactured by Mitutoyo Co., Ltd.
  • the centering position is 20 mm from the bottom of the cylinder to be measured
  • the horizontal position is 80 mm from the bottom
  • magnification Automatic centering, automatic leveling, and roundness measurement were performed with a 500,000 times magnification, an area of 8 ⁇ m, and a rotary table rotation speed of 10 rpm.
  • the cylinder to be measured is placed directly without using the company's three-claw chuck or other fixtures.
  • This cylinder to be measured was placed on a cylindrical receiving jig of a cylindrical measuring instrument similar to that shown in FIG.
  • the displacement detector is located on the same cross section that is perpendicular to the rotation axis from the center of 3 O mm from one end of the cylinder to be measured in the direction of the center axis of the cylinder, and has a cross section that is perpendicular to the rotation center of the cylinder to be measured and the rotation axis.
  • the displacement detector As the displacement detector, an eddy current type displacement detector manufactured by KAMAN was used, and the positions of the displacement detectors were adjusted so that the distances from the intersection were equal to each other. Then, the measurement was rotated 15 ° per measurement with the rotary drive transmission device for a total of 24 times, and the amount of displacement between each displacement detector and the measured cylinder surface was measured as a distance. Thereafter, in the table frames of the figures used in Example 2 and Example 3, the measurement at the SO position is set to 0 ° at the start of measurement, and on the circumferential surface reaching S 0 according to the rotation of the cylinder to be measured. Add 15 ° in turn to the measured position. This is shown in Figure 16.
  • each measured value is regarded as a difference value, so that the first measured value, that is, the measured value of the displacement detector S 0 when the cylinder to be measured has never rotated is set to 0, and the others. All the measurement results are calculated as differences from S0. In addition, all difference values are converted to positive numbers to facilitate subsequent calculations. In this example, the total difference value was subtracted from 50 / as an arbitrary constant to obtain a positive numerical value. This is shown in Figure 17.
  • the respective moving distances on the detection axes of the displacement detectors S 15 and S 75 are calculated using the above equation 2. This The distance traveled on each axis is the difference between the measured value of S15 on the detection axis of S15 and the measured value of S0 before 15 ° rotation, and S75 on the detection axis of S75. Calculated as the difference between the measured value of S and the measured value of S 60 before 15 ° rotation.
  • the measured value is changed to a positive difference value using the same method as in Example 2, and then Like the ⁇ 2 was determined Displacement of the floating center O n the measured cylinder surface relative of each of the measuring circle.
  • This cylinder to be measured was placed on a cylindrical receiving jig of a cylindrical measuring instrument similar to that shown in FIG. 3 Omm, 4 Omm, 60 mm, 8 Omm, 90 mm, 120 mm, 140 mm, 1 50 mm, 180 mm, 20 Omm, 2 1 Omm, from one end of cylinder 1 to the other
  • a cross-sectional circle of 24 Omm and perpendicular to the cylindrical center axis of 12 was used as a circle to be measured, and the cylindricity was measured for each of these by the same method as in Example 3. The results are shown in FIG.
  • Machining preset outer diameter that has been pre-cut as the cylinder to be measured is ⁇ 180. 0
  • This cylinder to be measured was placed on a cylindrical receiving jig of a cylindrical measuring instrument similar to that shown in FIG. 30mm, 35mm, 40mm, 60mm, 80mm, 90mm, 120mm, 140mm, 150mm, 180mm, 200mm, 210mm, 240mm, 260mm, 27 0 mm, from one end of cylinder 1 to the other
  • the cross-sectional circles perpendicular to the 20 cylindrical central axes of 300 mm, 310 mm, 320 mm, 330 mm, and 350 mm were measured circles, and the cylindricity was measured for each of these by the same method as in Example 3.
  • the results are shown in FIG. Measurement of a cylindrical shape is facilitated by the present invention, and the present invention is expected to be used as a technique for producing a highly accurate cylindrical member.

Abstract

 本発明の目的は、円筒体形状の寸法測定、特には円周形状の測定において測定にかかる負荷が少なく、個々の測定値が極めて正確、かつ測定ポイント数を効率的に低減する測定方法を提供することにある。 本発明は、円筒体の軸に対して直交する断面の円の形状の測定方法において、該断面円内に設定した基準点に対する該断面円の円周上の少なくとも3つの所定の点の距離の該円筒の回転による変化に基づいて、該基準点と該円周との間の距離を算出して該断面円の形状を特定する工程を有することを特徴とする。

Description

明 細 書 円形状の測定方法、 円筒形状の測定方法及び円筒形状の測定装置 技術分野
本発明は円筒の軸に直交する方向の断面円の形状、 及び円筒形状の測定方 法並びにこれに用いる測定装置に関する。 特に、 本発明は精度の良い円筒部 材を得る手段として円筒部材の外表面を切削加工した際の精度測定に寄与す る技術に関する。 本発明で得られた測定技術の適用範囲は多岐にわたるが、 本発明者らは、 特に電子写真方式の複写機やレーザ一ビームプリンター、 同 ファクシミリ、 又は印刷装置の画像形成部材、 又はその基体の測定に本発明 を適応し、 その効果を確認した。 背景技術
従来、電子写真方式の複写機、 レーザービームプリンタ一、ファクシミリ、 印刷機等の画像形成装置における電子写真感光ドラムや現像スリーブは、 形 状寸法が所定の精度に仕上げられた円筒部材を用いる。 電子写真感光ドラム は所定の精度に仕上げられたドラム基体の表面に感光膜を施すことによって 製造される。 しかしながら該ドラム基体の寸法精度が低いと感光膜に凹凸が 生じ、 このために画像形成装置の画像に欠陥が生じるという問題がある。 従 つて、 精度の高い画像形成装置を得るためには、 該ドラム基体の円筒度およ び真円度等に高い精度が求められる。
さらに、 こうしたドラム基体を製造する工程においても、 その寸法精度を 保証することを目的とした高精度な測定機能が必要であり、 それを目的とし た方法として、 以下の従来技術が知られている。 回転可能な基台に被測定円- 筒 (測定対象の円筒。 以下同じ。) を立ててこれを回転させながら、 表面形状 を帯状レーザーその他の測定手段によって測定する方法 (例えば、 特開平 Q 6 - 2 0 1 3 7 5号公報(特許文献 1 )参照)。被測定円筒の両端を何らかの 把持具にて把持して回転させ、 帯状レーザ一をさえぎる寸法を測定して円筒 形状を測定する方法 (例えば、 特開平 0 8— 0 0 5 3 4 1号公報 (特許文献 2 )参照)。 回転軸を固定することなく被測定円筒を回転させ、 被測定円筒の 外周部に臨む変位検出器から得た測定値を近似算出させて測定する方法 (例 えば、 特開平 0 6— 1 4 7 8 7 9号公報 (特許文献 3 ) 参照) 等。 しかしな がら、 近年ではこうした画像形成装置の高画質化への要求に加えて、 製造コ ストの低減を目的とした、 より簡便な測定方式が不可欠となってきている。 さらに、 円筒形状の測定方法を工業的な製品評価としてのニーズに則して言 及すれば、 評価するべき項目をその円筒としての寸法精度と表面の部分的な 形状欠陥に切り分け、それぞれの目的に合った測定手段を用いるべきである。 ここで寸法精度の測定においては、 円筒の円周形状、 特には本発明で対象と するようなもともと高い精度レベルを有することを前提とする円筒の円周形 状の寸法精度を測定する分野においては、 個々の測定値が極めて正確であれ ば、 測定ボイント数は比較的少数であっても十分な評価とすることが可能で ある。 したがって、 工業的には測定ポイント数を可能な限り削減して処理時 間の短縮を図ることが好ましい。 一方、 円筒表面の部分的な形状欠陥を評価 するにあたって測定ボイント数を増やしても、 ヘアライン状の傷欠陥等の微 細な欠陥を全て評価するには困難であり、 この点においても測定ポイント数 を増加させることは好ましくない。 したがって、 それに代わる画像処理その 他の表面欠陥の分析等による評価手段を用いるべきである。 すなわち、 工業 的な製品評価として円筒の円周形状の寸法精度測定を行うに際して、 測定効 率を追求する観点から、 測定にかかる負荷が少なく、 個々の測定値が正確で あって、かゥ測定ポイント数を最小限に抑えることが最も好ましいと言える。 この点 おいて、 従来の、 回転可能な基台に被測定円筒を立ててこれを回転 させながら表面形状を帯状レーザーその他の測定手段によって測定する方法
(例えば、 特開平 0 6— 2 0 1 3 7 5号公報 (特許文献 1 ) 参照) では、 非 常に高精度な測定値を得ることが可能である反面、 測定にあたり基台上の被 測定円筒を精密に心出しする等の準備作業が必要で、 測定時間と負荷の削減 が容易ではない。 また被測定円筒の両端を何らかの把持具で把持して回転さ せ、 帯状レーザ一をさえぎる寸法を測定して円筒形状を測定する方法 (例え ば、 特開平 0 8— 0 0 5 3 4 1号公報 (特許文献 2 ) 参照) では、 比較的簡 便な測定が可能である反面、円筒の肉厚の偏りが測定値に影響を及ぼしたり、 両端の把持具の勘合隙間寸法や、 把持力による端部変形、 あるいは被測定円 筒を回転させる時点で発生する軸の振れ等が測定誤差を生じたりする原因に なり易い。 また、 回転軸を固定することなく被測定円筒を回転させ、 被測定 円筒の外周部に臨む変位検出器から得た測定値を近似算出させて測定する方 法 (例えば、 特開平 0 6 - 1 4 7 8 7 9号公報 (特許文献 3 ) 参照) では、 簡便かつ測定にかかる機器精度の測定結果におよぼす影響を抑制できる反面、 測定結果が近似算出値であることから測定ポイント数と近似計算の次数を増 加させることによって個々の測定値の正確性を向上させるという特徴を有し ており、 その測定ポイント数は少なくとも 6 4点、 または 1 0 0点以上か *必 要とされている。従ってこの方法では測定ポイント数の削減があまり望めず、 比較的長い測定時間を要してしまう。
このように従来技術においては、 測定効率の観点から、 測定にかかる負荷 を最少にし、 個々の測定値が正確であり、 かつ測定ポイント数を最小限に抑 えることを可能とした、 工業的な製品評価としての円筒の円周形状の寸法精 度測定方法を提供するにいたっていない。 発明の開示
本発明は、 こうした問題に鑑み、 円筒形状の寸法測定、 特には円周形状の 測定において測定にかかる負荷が少なく、 個々の測定値が正確、 かつ測定ポ ィン卜数を効率的に低減することを主たる目的として成された。
即ち本発明のー態搽によれば、 円筒の軸に対して直交する断面の円の形状 の測定方法であって、 該断面円内に設定した基準点に対する該断面円の円周 上の少なくとも 3つの所定の点の距離の該円筒の回転による変化に基づいて、 該基準点と該円周との間の距離を算出して該断面円の形状を特定する工程を 有することを特徴とする円筒の軸に対して直交する断面の円の形状測定方法 が提供される。
従来の測定方法の殆どが、 より高い測定精度を得ることを目的として、 H 定基準位置として円筒中心の機械的限定の正確さを追求することに負荷を要 しているのに対し、 本発明で提供する方法では、 この円筒中心が回転によつ て移動してしまうような仮想中心すなわち浮動中心であることを前提として 捉えている。 よって、 本発明の測定方法は、 機械的に限定することなく、 測 定に従って順次測定子より得られる数値の変遷を元にこの浮動中心の位置を 追跡して理論的に捕捉、 限定することを主たる特徴とする。 従って、 本発明 の測定方法によれば前記した円筒中心を正確に限定する必要が無いことから、 このような一切の負荷を伴うことなく簡便に、 力、つ高い精度を伴って円筒の 円周形状を測定することが可能である。
加えて、 本発明で提供する方法では、 各測定値は近似算出されること無く 直接計測された測定結果を得ることが可能であることから、 各測定値は測定 ポイント数に影響されることが無い。 これにより前述の、 本発明で対象とす るようなもともと高い精度レベルを有することを前提とする円筒の円周形状 (寸法精度) を測定するにあたっての測定ポイント数は 1 0点、 或いは 2 0 点程度、 すなわち必要最小限な測定ボイント数で製品の精度保証に必要な測 定を行うことが可能である。 したがって、 本発明は工業的な製品評価として 円筒の精度測定を行うにあたり、 測定効率を追求する観点から極めて理想的 であるといえる。
また、 本発明の別の一態様によれば、 この方法を用いて円筒の円筒形状を 測定する方法として、 円筒を被測定物としてその円周方向に回転させて該円 筒の円筒形状を測定するにあたり、 該円筒の円筒中心軸に対して垂直方向か ら該円筒の円筒寸法を計測する複数の検出器を該円筒中心軸に対し平行に移 動する工程と、 前記複数の検出器から得られた所望の位置での複数の検出信 号を演算する工程とを有し、 該円筒の円筒度と真円度を測定する方法におい て、 被測定円筒を回転して測定するにあたり、 上記の円周形状の測定方法を 用いて前記円筒中心軸と直角を成す断面の円周形状と真円度を求めることに よって該被測定円筒の円筒度を測定することを特徴とする円筒の円筒形状の 測定方法が提供される。
また本発明のさらなる一態様によれば、 被測定円筒を載置し、 これを回転 する円筒受け治具と、 該被測定円筒の回転軸に平行に往復可能に設けられた 取り付け台に、 該被測定円筒の回転軸と直角を成す同一断面上に位置し、 該 被測定円筒の回転軸と該回転軸と直角を成す断面とが交わる点である測定基 準点 (O 0 ) に向けられ、 かつ 0。を中心として互いに所定め角度 (0 ° ) を 挟んで扇状に配置して取り付け台に固定された 3個以上の変位検出器を有し ている測定手段を用いて、 図 1に示すフローチャートに従って円筒の形状を 測定する方法が提供される。
具体的には、 被測定円筒を載置し、 これを回転する円筒受け治具と、 該被 測定円筒の回転軸に平行に往復可能に設けられた取り付け台に、 該被測定円 筒の回転軸と直角を成す同一断面上に位置し、 該被測定円筒の回転軸と該回 転軸と直角を成す断面とが交わる点である測定基準点(Ο 0) に向けられ、 か つ 0。を中心として互いに所定の角度(0 ° )を挟んで扇状に配置して取り付 け台に固定された 3個以上の変位検出器を有している測定手段を用いて、 下 記 (i ) 〜 (V i ) のステップによって該被測定円筒の円筒度を求める円筒 形状の測定方法:
( i ) 該変位検出器により測定基準点から該被測定円筒の軸と直角を成す断 面円の円周上の点までの距離を測定するステップと
( i i ) 該被測定円筒を 0° 回転させた状態で上記ステップ ( i ) を繰り返 すステップと、
( i i i ) 上記ステップ ( i ) 及び (i i ) を繰り返して該測定基準点と該 断面円の円周上の n点 (η-Β β θΖΘ) までの各距離を算出するステップ と、
( i V) 該各距離を用いて最小自乗中心法により該断面円の円中心位置及び 真円度を算出するステップと、
(V) 該取り付け台を被測定円筒の回転中心軸に平行に移動させ、 該被測定 円筒の異なる断面円について上記ステップ ( i ) 〜 ( i V) により該断面円 について円中心位置と真円度を算出するステップと、
(v i ) 上記ステップ ( i ) 〜 (V) により円中心位置と真円度とを算出し た断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ 直線からなる円筒中心軸とし、 該円中心軸と該円中心位置及び真円度を算出 した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交 点から各断面円の円周上の所定の点までの距離を算出し、 該距離の最大値と 最小値の差を求めるステツプ。
本発明の他の態様によれば、 角度 0を挟んで配置された、 Aと Bの 2つの 変位検出器と、 角度 0を挟んで配置された、 A' と B' の 2つの変位検出器 を有し、 Aと A' 又は Bと B' の挟角の角度が、 前記 0の正の整数倍である ことを特徴とする円筒形状の測定方法が提供される。
本発明のさらに別の態様によれば、被測定円筒内に変位検出器を配置して、 被測定円筒の肉厚、 及び内周円の円中心、 及び真円度を求めることを特徴と する円筒の円筒形状の測定方法が提供すされる。 また、 本発明のさらに別の態様によれば、 上記の測定方法であって、 径の 異なる複数の円筒からなり、 該全ての円筒の外周円内に回転中心軸を共有す る複合円筒に対して、 該複合円筒を構成する少なくとも 1つの円筒を、 上記 のいずれかの方法で測定し、 前記 1つの円筒以外の円筒をそれぞれ少なくと も 1つの変位検出器を用いて円筒形状を測定し、 全ての円筒形状、 同軸度、 及び複合円筒の肉厚を求める、複合円筒の円筒形状の測定方法が提供される。 更に本発明の別の態様によれば、 被測定円筒を載置し、 これを回転する円 筒受け治具と、 該被測定円筒の回転軸に平行に往復可能に設けられた取り付 け台に、 該被測定円筒の回転軸と直角を成す同一断面上に位置し、 該被測定 円筒の回転軸と該回転軸と直角を成す断面とが交わる点である測定基準点
(00) に向けられ、 力つ〇。を中心として互いに所定の角度 (0° ) を挟ん で扇状に配置して取り付け台に固定された 3個以上の変位検出器を有してい る測定手段と、
下記ステップ ( i ) 〜 (V i i ) を実行する演算手段と、 を具備しているこ とを特徴とする円筒の形状測定装置が提供される:
( 1) 該変位検出器により測定基準点から該被測定円筒の軸と直角を成す断 面円の円周上の点までの距離を測定するステップと
( i i ) 該被測定円筒を 0° 回転させた状態で上記ステップ ( i ) を繰り返 すステップと、
( i i i ) 上記ステップ ( i ) 及び ( i i ) を繰り返して該測定基準点と該 断面円の円周上の n点 (n= 360Z6O までの各距離を算出するステップ と、
( i V) 該各距離を用いて最小自乗中心法により該断面円の円中心位置及び 真円度を算出するステップと、
(V) 該.取り付け台を被測定円筒の回転中心軸に平行に移動させ、 該被測定 円筒の異なる断面円について上記ステップ ( i ) 〜 ( i V) により該断面円 について円中心位置と真円度を算出するステップと、
( V i ) 上記ステップ ( i ) 〜 (V ) により円中心位置と真円度とを算出し た断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ 直線からなる円筒中心軸とし、 該円中心軸と該円中心位置及び真円度を算出 した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との交 点から各断面円の円周上の所定の点までの距離を算出し、 該距離の最大値と 最小値の差を求めるステップ。
従来の測定方法の殆どが、 より高い測定精度を得ることを目的として、 測 定基準位置として円筒中心の機械的限定の正確さを追求することに負荷を要 するのに対し、 本発明で提供する方法では、 この円筒中心を仮想中心すなわ ち回転により移動してもよい中心として捉えている。 よって、 本発明の測定 方法は、 機械的に限定することなく、 測定に従って順次測定子より得られる 数値の変遷を元にこの浮動中心の位置を追跡して理論的に捕捉し、 該浮動中 心と測定対象たる円の円周上の点との距離を算出することにより、 該測定対 象たる円の形状を特定することができる。 したがって、 本発明の方法によれ ば前記の円筒中心を正確に限定する必要が無く、 かかる一切の負荷を伴うこ となく簡便に、 かつ高い精度を伴って円筒を測定することが可能である。 加 えて、 本発明で提供する方法では被測定円筒の測定にあたって回転させる方 法が限定されず、 両端部を開放させたまま、 或いはフランジ等の部品を装着 した状態での測定が可能であることから、 本発明の測定方法を用いた測定機 構を生産ライン中に搭載しても搬送手段との干渉などの問題が発生せず、 非 常に簡便かつ高精度な測定が可能である。 図面の簡単な説明
図 1は、 測定フローチヤ一卜である。
図 2は、 測定機概略図である。 図 3は、 測定位置説明図である。
図 4は、 浮動中心の移動に関する説明図である。
図 5は、 浮動中心位置の算出に関する説明図 (1 ) である。
図 6は、 浮動中心位置の算出に関する説明図 (2 ) である。
図 7は、 実施例 1の変位検出器位置を示す図である。
図 8は、 実施例 2の変位検出器位置を示す図である。
図 9は、 実施例 1で得た、 サンプル N o 1から N o 5の、 変位検出器の測 定値から円中心座標位置までのデータである。 .
図 1 0は、 実施例 1で得た、 サンプル N o 6から N o 1 0の、 変位検出器 の測定値から円中心座標位置までのデータである。
図 1 1は、 実施例 1で得た、 サンプル N o 1から N 0 5の、 中心 標位置 を基準とした各点の直交座標位置、 及び各点までの距離と、 その最大値と最 小値である。
図 1 2は、 実施例 1で得た、 サンプル N o 6から N o 1 0の、 中心座標位 置を基準とした各点の直交座標位置、 及び各点までの距離と、 その最大値と 最小値である。
図 1 3は、 実施例 1及び比較例 1で得た真円度である。
図 1 4は、 実施例 1及び比較例 1で得た真円度を比較するグラフである。 図 1 5は、 実施例 1及び比較例 1で得た、 測定所要時間と差である。 図 1 6は、 実施例 2で得た、 変位検出器と被測定円筒表面までの距離であ る。
図 1 7は、 実施例 2で得た、 図 7の回転によって生じた差分値と、 定数か ら減算して正の整数とした数値である。
図 1 8は、 実施例 2で得た、 浮動中心を基準とした被測定円筒 1表面の変 位量である。
図 1 9は、 実施例 2で得た、 図 9を直交座標位置に変換した座標値と距離 である。
図 2 0は、 実施例 3で得た、 各座標位置から前記各交点と円周上の各測定 点までの距離と、 最大値と、 最小値である。
図 2 1は、 実施例 4で得た、 被測定円筒の円筒度である。
図 2 2は、 実施例 5で得た、 被測定円筒の円筒度である。 発明を実施するための最良の形態
以下の説明は本発明で用いる方法の一実施形態であって、 同様の効果は他 の形態においても得られることは当業者であれば容易に理解されよう。
本実施態様に係る円筒の断面円の形状測定に用いる装置の一例を図 2に示 す。 当該測定装置は、 被測定円筒 1を回転可能な円筒受け治具 (コロ 6 ) 上 に載置し、 ガイドレール 4及びポールねじ 5によって被測定円筒 1の回転軸 に平行に往復可能に取り付けた取り付け台 2に、 被測定円筒 1の回転軸と直 角を成す同一断面上に位置し、 被測定円筒 1の回転軸と、 該回転軸と直角を 成す断面とが交わる点である測定基準点 O oに向けられ、 かつ測定基準点 0。 を中心として互いに所定の角度 0を挟んで扇状に配置して取り付け台 2に固 定された 3個の ¾位検出器 S 1、 S 2及び S 3を有する。 3つの変位検出器 S 1 , S 2及び S 3と 2つのコロ 6の回転中心は、 同一の撐械に固定されて おり、 互いの位置は常に変化しない。
次に、 当該円筒の、 軸と直交する斬面の円の形状の測定方法について述べ る。ここでは、被測定円筒 1の 1測定あたりの回転角度 θ。 を 3 0 ° とした。 従って円周上の測定点は図 3に示す通り 1。から 1 2。の1 2点となる。 そし て本測定方法では最終には、 浮動中心の始点 (O n = Q) と被測定円の円周上 の各点 1。から 1 2。との距離を算出し、 被測定円の形状を特定することにな る。
第一段階として、 変位検出器 S l、 S 2及び S 3を用いることで、 0。 ( On =。) と被測定円の円周上の点 10、 12。及び1 1。との間の距離し 10、 L 12。及び L 1 1。を測定する。
第二段階として、 円筒を右方向に 30° 回転させると、 第一段階での円周 上の測定点 1。、 12。及び 1 1。は、 図 4に示すように、 各々 1い 12い 1 1 iに移動し、また変位検出器 S 1、 S 2及び S 3は、各々円周上の点 2い 及び 12 iと測定基準点 Oqとの距離を測定可能となる。 このとき、 浮動 中心 ON = Qが、 被測定円の真の中心と一致していない且つ被測定円が真円形 状でないことを前提として、, ο^ά〇η = 1に移動する。 この時点では、 浮動中 心 Οη =。と円周上の点 2 iとの距離は不明である。 次いで、 変位検出器 S l、 S 2及び S 3を用いて、 各々円周上の点 2い 1 i及び 12 iと測定基準点 Oo との距離 L 2い L 1ェ及び L 12 iを測定する。
ここで、回転による各距離の変化から浮動中心 ONの現在位置 ON = 1の位置 を求める。 L l^ L 12。は既知であることから、 変位検出器 S 2及び S 3 の各検知軸上における ON = ()から ON = 1への移動距離 AL 1い AL 12 iが 求まる。
Figure imgf000013_0001
△ L I 2 ! = L 12 !-L 12 o · - · (2)
以降、こめ 2つの距離を用いて変位検出器 S 1の検知軸上での浮動中心 On =1の移動距離 AL 2 iを求める。そして、 L2 iと 2 iの差をとることで、 浮動中心 ON = ()と円周上の点 2。との距離が求まる。 即ち、 図 5に示すように △ L 11を3とし、変位検出器 S 1の検知軸と浮動中心 ON = 1の最短距離すな わち変位検出器 S 1の検知軸を y軸とする直交座標で表すところの浮動中心 O n = iの X軸成分での移動距離を bとし、 aと bをそれぞれ図 5に示す r及 び]"' を用いて表せば、
r ' · sin^ J + r = a · · · (3)
r ' + r · sin^ ! = · · · (4) r ' = (b- a · sin^ j) / (cos2 Θ x) - · · (5)
r = a-sin0 ! · C(b-a - sin0x) / (cos2 Θ ,)] . · · (6) 更に、 図 5より、
△ L Si:!" '
Figure imgf000014_0001
であることから、
Δ L 2 != a · cos Θ J -tan^ ! (b - a · sin^ x) - · - (7)
ここで、 図 6より、
AL 12 j-b · sin {θ ^ Θ 2) =AL2 cos {Θ 1+ θ 2) - · - (8)
△ L 2 i= [厶 L I 2 !-b - sin {θ x+ Θ 2)] / [cos {θ λ+ Θ 2)] · · · (9)
a · cos0 !-t n0! - (b— a · sin^ x) = ['厶 L 12 — b · sin (Θ t + Θ 2)] / [cos ( + )] · · · (10)
b= [a (cos0 x+sin0 : - tan^ x) - cos (θ , + θ 2) -AL 12 J / [tan - cos (θ +θ 2) -sin θ χ + θ 2)] - · - (1 1)
従って、 AL 2iは、 以下の 2つの式に含まれる引数、すなわち変位検出器 の互いの挟角と測定値によって求めることが可能である。
上記式 (7) より、
AL 2 i = AL 1! · cos^ !-tan^! (b— Δ L 1丄 · sin 0丄) · · - (12) b= [厶 L 1 · (cos0 i+sinS丄 · tan0 :· cos (Θ ^ Θ 2) - AL 1 2 J / Ctan6> ! - cos (θ + θ 2) -sin (θ ^ Θ 2)] - - - (13) . 上記式 (12) 及び (13) を用いて求められた AL 2ェから、
LSe-LZi— AL 2iとして、 L2。を得る。
第三段階として、 更に被測定円筒を右方向に 30° 回転させる。 すると、 上記第二段階に於ける円周上の測定点 2い 1ぃ 12iは、 各々22、 12、 1 22に移動し、 また変位検出器 S l、 S 2、 S 3は、 各々円周上の点 32、 22及び 12と測定基準点 0 との距離を測定可能となる。 また浮動中心 〇n = 1は、 更に Οπ = 2に移動する。 次いで、 変位検出器 S 1〜S 3を用いて、 各々円周上の点 32、 22及び 12と 0。との間の距離を測定する。 これらの測 定値を用いて、上記と同様の方法にて浮動中心 Οπ=2の On =。からの移動距離 を算出し、 更にその計算結果を用いて、 変位検出器 S 1の測定軸 (y軸) 上 における On = 2の Οπ = 0からの移動距離 (AL32) を求め、 そこから浮動中 心 On =。と円周上の点 3。との距離を求める。 以降、 同様に円筒を 30° ずつ 回転させ、 浮動中心 On =。と円周上の点 40、 50, 60, 7。、 8。、 9。及び 10。各々との距離 L4。、 L 50、 L 60、 L 70、 L 80、 L 9。及び L 1 0。を求める。 このとき、 L l l0、 L 120、 についても同様な方法を用い て算出すれば、 より高い精度の測定結果を得ることができる。
このとき、前述のように浮動中心 Onは円筒が回転す.るに従ってその位置を 移動する点であることから、 必ずしも常に変位測定器の検知軸上に存在する ことは望めず、この検知軸に対する浮動中心 O nの位置のズレは測定誤差を生 じる。 しかしながらその誤差は、浮動中心 Onと前記検知軸までの最小距離を △ L、 検知軸上の円周と測定基準位置 0。との距離をしい 検知軸と平行かつ 浮動中心 Onを通過する軸が円周と交わる点と測定基準位置 0Qとの距離を L2とすれば、 検知距離に与える誤差 ΔΙ は以下の式: し - ,L2 2 -^ iL2 として与えられ、 Δ1 は非常に小さい。 一例として、 平均半径が 50mm であって真円度が 100 m程度の円を測定対象とした場合、 浮動中心 On の移動距離は 50 zzm程度生じることが想定され、 Δ1 は、 約 0. 025 mとなる。 この数値は、 誤差として測定値に対して 5 X 10一 5%、 浮動中 心 Onの移動距離に対しても 0. 05%であって、一般的に高精度とされる変 位測定器の測定再現性がほぼ 0. 1 であることを考慮すれば、 測定結果 に与える影響は極めて小さいといえる。
また、 被測定円筒 1を測定に従って回転させるときに生じることが予想さ れる、 回転角度に起因する誤差について言及すれば、 回転誤差角度を 0° 、 検知軸上の円周と測定基準位置 0。との距離をしい 測定基準位置 0。で検知 軸と前記回転誤差角度を挟んで交差する軸上の、測定基準位置 00から円周ま での距離を L2としたとき、 検知距離に与える誤差 AL' は以下の式:
AL, = χ— 2 ' cos θ
として与えられ、 AL' は非常に小さい。 一例として、 測定対象円の平均半 径が 5 Ommであって、 回転誤差が 0. 1° 生じた場合の厶し' は、 約 0. 076; mとなる。この数値は、誤差として測定値に対して 1. 5X 10—4% であって、 この誤差は前記の一般的な変位測定器の測定再現性に加えて、 一 般的かつ安価な回転機構の停止精度がその再現性としてほぼ 0. 04° 程度 を十分期待できることを考慮すれば、 測定結果に与える影響は極めて小さい といえる。
続いて、 求められた距離 L 1Q〜L 12。カ^ら、 既知の最小自乗中心法を用 いて、 直交座標位置における円中心位置および各半径方向距離を算出する。 次に、 浮動中心 On =。を直交座標における原点 (0, 0) として、 距離し 10〜L 12。カ^ら、 円周上の測定点 1。〜12。の当該直交座標内における位 置を定める。 計算の便宜上、 いったん nを iに置き換えて測定点 1。〜12。 までの引数とし、直交座標位置成分をそれぞれ X i、 とすれば、以下の式: x ,^Ll-sm{-01- ( i — 1) } y ^Lrcos}- ^ !- ( i —1) } として求めることができる。なお、上式で 0 iを負の角度として用いているの は、 各被測定点の直行座標位置を図 3に順じて表すためであって、 その角度 は、 直交座標系の Y軸を 0° として反時計方向に順次加算する。
ここで真の円中心 Oの直交座標位置を O (x、 y) とすれば、 以下の式:
-- ∑ x , = 2∑ y ,
x 1 2 y 1 2 として求めることができる。 このとき両式右項の分母に与える 12は、 36 0° を 0 すなわち 30° で割った数であり、 この数は 0 iによって変化する。 続いて真円度 Aを求める。 求めた O (x、 y) を直交座標上の原点 (0、 0) に置き換え、 これに伴って移動する円周上の測定点 1。~ 1 2。の位置を 10, 〜1 2。, とすれば、 直交座標位置成分 (xn、 yn) は、 以下の式: xn=X i - x、 y n=y i -y
で与えられる。 得られた 1。' ~1 2。' の直交座標位置成分 (xn、 yn) よ り、 真の各半径方向の変位量 L 1。, 〜L 1 2。' は、 以下の式:
Ln'=V"
で与えられる。 このとき中心軸直角断面円の真円度 Aは L 10' 〜L 1 2。' の最大値と最小値の差として求めることができる。 ' 以上の測定と算出を被測定円筒 1の所望の各中心軸と直角を成す断面円に ついて求め、 各測定断面円について、 円中心位置および半径方向の変位量を 得る。
次に、 被測定円筒 1の円筒度を求める。
測定された各中心軸と直角を成す断面円のうち、 被測定円筒 1の両端 2つ の中心軸と直角を成す新面円の両円中心同 ±を結ぶ直線と、 その他の各中心 軸と直角を成す断面円の交点の位置を、 距離比例計算によって求める。 続い て、 式 1 3に示した方法を用いて、 前記各交点と円周上の各測定点を結ぶ直 線上の変位量を半径方向の距離として算出する。 ここで、 得られた全ての距 離の、 最木値と最小値の差を被測定円筒の円筒度として得ることができる。 以上述べた測定方法は、 被測定円筒の外径、 内径、 及び長さによってその 機能が影響を受ける度合いが小さいことから、 例えば外径においては、 φ 5 mm程度の非常に細いものから数メ一トルに至る太いものにまで用いること ができる。 さらに、 この測定方法に用いることのできる変位検出手段として は多岐にわたり、 例えば、 電気式マイクロメーター、 渦電流式変位検出器、 レーザー変位検出器、 ダイヤルゲージ等の手段を用いることが有効である。 また、 被測定円筒が自身の長さや重量に対して非常に細いか、 または材質と して軟らかいか、 或いは非常に薄肉である等の理由から、 測定 Ψに重力の影 響を受けて撓む等の弾性変形を生じて測定結果に影響を与える可能性が有る 場合は、 被測定円筒の円筒中心軸を重力その他の外的作用方向に対して平行 に近づけて測定を行うことが有効である。
加えて、 最終的に求めるべき円筒度の正確性をより向上させるためには、 両端の中心軸と直角を成す断面の位置が、 より被測定円筒の両端部に近いこ とが好ましい。
ここで、 前記円筒度の測定のような、 円筒軸方向の位置を違えた複数の回 転によって測定を行う際には、 一般に前記ガイドレール 4のような円筒軸方 向に平行に変位検出器を移動させる手段の精度が重要になる。しかしながら、 被測定円筒が測定に際して回転する際に得られる前記浮動中心点軌跡の成す 形はほぼ円形状であって、 また、 被測定円筒が前記のようなコロ状の円筒受 け冶具に載置されて回転する場合は、 コロ状の円筒受け冶具の回転振れ;^非 常に小さければ、 同じ回転を繰り返すこととなる。 すなわち被測定円筒が複 数回回転しても円筒表面の全ての点は回転毎に常にほぼ同一の軌跡を迪るこ とになる。 このことから、 円筒度の測定ような円筒軸方向の位置を違えた複 数の回転によって測定を行う際に前記浮動中心点の軌跡が複数得られても、 全ての軌跡すなわち円形状はほぼ同心の関係にあるか、 あるいは円形状でな くとも中心位置を共有する相似の形状を成す。 したがって、 測定によって得 られた複数の断面円を前記中心位置を共通の基準として配置すれば、 前記ガ ィドレール 4のような変位検出器の移動手段の精度に影響を受けない円筒度 の算出、 測定が可能となる。
また、 各円筒中心軸と直角を成す断面の円周形状の測定にあたって被測定 円筒を回転させる際、 各測定位置において回転を停止させることなく変位検 出器による測定を行うことも、 測定時間の短縮において有効である。
さらに、 変位検出器を固定する前記取り付け台を複数台使用して、 同時に 複数の円筒中心軸と直角を成す断面の円周形状を測定することによって、 よ り少ない回転数、特には 1回転のみでの測定を行うことも非常に有効である。 以下に本発明を実施例により具体的に説明するが、 本発明はこれらの実施 例により限定されるものではない。
(実施例 1 )
被測定円筒として予め切削加工を施された、 加工設定外径が Φ 84. Om m、 内径が Φ 78. Omm、 長さ 360. 0 mmの A 30 03アルミニウム 管を 1 0本準備し、 サンプル No. 1〜サンプル No. 1 0とした。
サンプル No. 1の被測定円筒を、 図 7に示す様に、 3つの変位検出器 S 0、 S 45、 及び S 90を、 各変位検出器の測定軸が、 該円筒の軸に直交す る方向の断面の円内の所定の点において交わり、 且つその点を中心として、 それぞれ互いに挟角として 45° を挟んで扇状に配置した円筒測定器の円筒 受け治具上に載置した。 上記 3つの変位検出 ¾は、 被測定円筒の一端から円 筒中心軸方向に 8 0mmの位置に配置し、 変位検出器は株式会社ミツトヨ製 MCH33 5電気式マイクロメ一夕一を使用した。 そして前記の回転駆動伝 達機にて一測定回数あたり 45° ずつ回転させて測定を計 8回行った。なお、 前記検出軸同士の交点から各変位検出器までの距離は予め計測してあり、 本 実施例における変位検出器の測定値は、 各検出軸同士の交点から、 被測定円 筒の回転軸と直角を成す同一断面上の円筒表面と前記各検出軸との交点まで の距離を測定したものとして示す。
測定に際して被測定円筒は、 毎分 6回転の速度で回転させた。 このとき測 定に要した時間を、 被測定円筒を前記円筒受け治具に載置してから被測定円 筒が測定のために 1回転を終了するまでの間として測定した。
以降、 実施例 1で使用する図の表枠中では、 測定開始時点で S 0位置にお ける測定を 0° とし、 被測定円筒の回転に従って S 0に到達する円周表面上 の被測定位置に順次 45° を加算して与える。
前記浮動中心の移動距離を求めるには、 変位検出器 S 45、 及び S 90の 検知軸上における各移動距離を、 前記式 (1)、 (2) を用いて算出する。 こ のとき各軸上での移動距離は、 S 45の検知軸上では S 45の測定値と 4 5° 回転前の S 0の測定値との差、 S 90の検知軸上では S 90の測定値と 45° 回転前の S 45の測定値との差としてそれぞれ算出する。 - 次に、 前記式 13を用いて、 直交座標位置における Δχを求め、 続いて Δ yとして、 前記式 12を用いて算出した。 ここで Δχ及び Δγは、 直交座標 位置で示すところの浮動中心 Οπの移動距離である。続いて、 この Δγを S O の測定値から減算することによって、 S 0位置の真値、すなわち浮動中心 On を基準とした被測定円筒表面までの距離を求めた。
次に、浮動中心〇nを基準とした各点までの距離を直交座標位置に変換した。 こうして求まった xn、 ynを用いて、 真の円中心座標 O (x、 y) を前記最 小自乗中心法で求め、 中心 X座標および中心 Y座標を得た。
続いて、 求められた中心座標位置から各点までの X軸成分及び Y軸成分の 距離、 及び該各点までの直線距離すなわち真の各点の半径方向距離、 加えて その最大値と最小値の差から真円度を得た。
以上について、 サンプル No. 2からサンプル No. 10についても同様 に測定し、 前記所要時間と真円度を求めた。
以上の測定によって得られたデータのうち、 前記各変位検出器の測定値か ら前記円中心座標位置までについて図 9及び図 10に示す。 続いて、 前記中 心座標位置から各点までの X軸成分及び Y軸成分の距離、 該各点までの距離 と、 及びその最大値と最小値を図 11及び図 12に示す。
(対照例 1)
実施例 1で測定したサンプル No. 1〜サンプル No. 10のアルミニゥ ム管を、 真円度測定器 (商品名:ラゥンドテストR A— H 5 0 0 0 AH ;株 式会社ミツトヨ社製) を用いて、 被測定円筒の載置時下端から円筒中心軸方 向 8 O mm位置の外表面真円度を測定した。 測定に際しての所要時間を、 被 測定円筒を回転テーブルに載置してから、 自動心出し、 自動水平だし、 自動 測定を全て一連のプログラムによって連続動作させ、 これが終了するまでの 間として測定した。
なお、 前記自動心出し及び自動水平だし工程については、 自動かつ高速モ ードを採用し、 心だし位置を被測定円筒下端から 2 0 mm、 水平だし位置を 前記下端から 8 0 mmとし、 倍率 5 0 0 0倍、 領域 8 ^ m、 回転テーブル回 転速度を 1 0 r p mと設定して、 自動心出し、 自動水平だし及び真円度測定 を実施した。 また、 被測定円筒を前記回転テーブル上に載置するにあたって は、 測定にかかる時間の短縮を考慮し、 同社製三爪チャックその他の固定具 を使用せずに直接載置し、 かつ載置位置のばらつきによって自動心出し及び 自動水平だし動作が複数回動作することから発生する前記所要時間の増長を 無くすために、 自動心出し又は自動水平だし動作が 2回以上必要であった測 定についてはデータとして採用せず、 自動心出し及び動作水平だし動作が 1 回のみで終了する測定が得られるまで再試行し、 これを所要時間のデータと した。
[評価]
実施例 1及び対照例 1で測定した各真円度の値とそれぞれの差を図 1 3及 び図 1 4に示す。 また、 実施例 1及び対照例 1で測定した各所要時間を図 1 5に示す。
図 1 3及び図 1 4から、 実施例 1と対照例 1の各測定方法による測定結果 の差が、 最大でも 2 . 2 i mであり、 十分小さいと判断できる。
また図 1 5より、 実施例 1の測定所要時間が、 対照例 1の測定所要時間に 対して平均で 5 4 . 7 %短縮できていることが確認できる。 (実施例 2 )
被測定円筒として予め切削加工を施された、 加工設定外径が Φ 8 0 . O m m、 内径が φ 7 4. O mm、 長さ 3 6 0 . O.mmの A 3 0 0 3アルミニウム 管を準備した。
この被測定円筒を図 2と同様な円筒測定器の円筒受け治具上に載置した。 変位検出器は、 被測定円筒の一端から円筒中心軸方向に 3 O mm中央よりの 回転軸と直角を成す同一断面上に位置して被測定円筒の回転中心と回転軸と 直角を成す断面とが交わる点に向けられるような図 8に示す取り付け台に、
5 0と S 1 5、 及び S 6 0と S 7 5を、 前記交点を中心として、 それぞれ互 いに挟角として 1 5 ° を挟んで扇状に配置した。 さらに S Oと S 6 0を挟角
6 0 ° になるように配置した。 変位検出器は KAMAN社製渦電流式変位検 出器を使用し、 また各変位検出器は、 前記交点からの距離が互いに等しくな るように位置を調整した。 そして前記の回転駆動伝達機にて一測定回数あた り 1 5 ° ずつ回転させて測定を計 2 4回行い、 各変位検出器と被測定円筒表 面との変位量を距離として測定した。 以降、 実施例 2及び実施例 3で使用す る図の表枠中では、 測定開始時点で S O位置における測定を 0 ° とし、 被測 定円筒の回転に従って S 0に到達する円周表面上の被測定位置に順次 1 5 ° を加算して与える。 これを図 1 6に示す。
次に算出の便宜上各測定値を差分値として捉えるため、 最初の測定値、 す なわち被測定円筒が一度も回転していない時点での変位検出器 S 0の測定値 を 0として、 それ以外の全ての計測結果を S 0との差分として算出する。 加 えて、 以降の計算を円滑に行うために全ての差分値を正の数に変換する。 本 実施例では、 任意.の定数として 5 0 /から全差分値を減算し、 正の数値とし た。 これを図 1 7に示す。
次に、 前記浮動中心の移動距離を求めるにあたり、 変位検出器 S 1 5、 及 び S 7 5の検知軸上における各移動距離を、 前記式 2を用いて算出する。 こ のとき各軸上での移動距離は、 S 1 5の検知軸上では S 1 5の測定値と 1 5° 回転前の S 0の測定値との差、 S 75の検知軸上では S 75の測定値と 1 5° 回転前の S 60の測定値との差としてそれぞれ算出する。
求めた 2軸上での移動距離から、 前記式 (12) で示した式のうち bの項 を用いて直交座標位置における Δχを求め、 続いて Δγとして、 前記式 (1 2) に示した厶し 2 iの項を用いて算出した。続いて、 この を S 0から減 算することによって、 S 0位置の真値、すなわち浮動中心 Οηを基準とした被 測定円筒 1表面の変位量が求められる。 以降、 同様に被測定円筒の一周分の 測定を行う。 これを図 18に示す。
次に、 円の真の中心を求める。
図 1 8で求まった浮動中心 Οηを基準とした各点の変位量を直交座標成分 に変換し、 こうして求まった xn、 ynを用いて、 真の円中心座標 0 (x、 y) を、 前記最小自乗中心法を用いて求め、 (一 4. 5、 -0. 5) を得た。 加え て、浮動中心 Onを基準とした各点での X軸成分及び Y軸成分の変位量、及び 該各点までの真の半径方向の変位量と、 それらの最大値 (53. 3 urn) と 最小値 (47. 2 urn) の差を求めることによって、 真円度として 6. 1 n mを得た。 これを図 19に示す。
(実施例 3)
実施例 2に記載の機器を用いて、 被測定円筒 1の一方の端から他方の端に 向かって 30mm、 35mm、 40mm、 60mm、 80mm, 90mm、 120 mm, 140mm、 1 50mm> 180mm, 200mm, 210m m、 240 mm, 260 mm, 270 mm, 300 mm, 310 mm, 32 0mm、 330mm, 350mmの、 20の円筒中心軸と直角を成す断面円 を被測定円とし、 これらに対してそれぞれ一測定周あたり 15° ずつ計 24 点の測定を行い、 各変位検出器と被測定円筒表面との距離を得た。
次に、 測定値を実施例 2と同様の方法を用いて正の差分値とし、 続いて実 施例 2と同様に各被測定円の浮動中心 Onを基準とした被測定円筒表面の変 位量を求めた。
次に、実施例 2と同様に各被測定円の中心座標、浮動中心 Onを基準とした 各点の変位量の X軸成分及び Y軸成分と、 これらの各最大値と最小値、 およ びこれらによる真円度を求めた。
続いて、 測定した 20の被測定円のうち両端に位置する 2つの被測定円、 すなわち円筒中心軸方向の 3 Omm位置と 350 mm位置の両円中心同士を 結ぶ直線と、 その他の各被測定円との交点の位置を、 距離比例計算により求 めた。 次に、 各被測定円ごとに前記各交点を基準とした円周上の各測定点の x、 y座標成分としての変位量を算出し、 さらに、 前記各座標成分としての 変位量から前記各交点を基準とした円周上の各測定点の半径方向の変位量を 求めた。 これを図 20に示す。 ここで、 得られた全ての距離の、 最大値 (5 4. 5 ^m) と最小値(45. 5 ^m) の差をもって被測定円筒の円筒度 9. O wmを得た。
(実施例 4)
被測定円筒として予め切削加工を施された、 加工設定外径が Φ 30. Om m、 内径が Φ 28. 5mm、 長さ 260. 0 mmの A 3003アルミニウム 管を 10本準備した。
この被測定円筒を図 2と同様な円筒測定器の円筒受け治具上に載置した。 被測定円筒 1の一方の端から他方の端に向かって 3 Omm、 4 Omm, 60 mm, 8 Omm、 90 mm, 120 mm, 140 mm, 1 50 mm, 180 mm、 20 Omm, 2 1 Omm, 24 Ommの、 1 2の円筒中心軸と直角を 成す断面円を被測定円とし、 これらに対してそれぞれ実施例 3と同様な方法 で円筒度を測定した。 この結果を図 21に示す。
(実施例 5 )
被測定円筒として予め切削加工を施された、 加工設定外径が φ 180. 0 mm、 内径が Φ 174. 0 mm、 長さ 370. 0 mmの A 3003アルミ二 ゥム管を 10本準備した。
この被測定円筒を図 2と同様な円筒測定器の円筒受け治具上に載置した。 被測定円筒 1の一方の端から他方の端に向かって 30mm、 35mm, 40 mm、 60mm, 80mm、 90mm, 120mm、 140 mm, 150m m、 180mm, 200mm, 210mm、 240mm, 260mm, 27 0 mm, 300mm、 310mm、 320mm、 330mm、 350 mmの、 20の円筒中心軸と直角を成す断面円を被測定円とし、 これらに対してそれ ぞれ実施例 3と同様な方法で円筒度を測定した。 この結果を図 22に示す。 本発明により円筒形状の測定が容易になり、 本発明は精度の良い円筒部材 を作る技術として利用が期待される。
この出願は 2004年 9月 1日に出願された日本国特許出願番号第 200 4- 254363からの優先権を主張するものであり、. その内容を引用して この出願の一部とするものである。

Claims

請 求 の 範 囲
1. 円麁の軸に対して直交する断面の円の形状の測定方法であって、 該 断面円内に設定した基準点に対する該断面円の円周上の少なくとも 3つの所 定の点の距離の該円筒の回転による変化に基づいて、 該基準点と該円周上の 点との間の距離を算出して該断面円の形状を特定する工程を有することを特 徵とする、 円筒の軸に対して直交する断面の円の形状測定方法。
2. 円筒の円筒形状の測定方法であって、請求項 1に記載の測定方法を、 該円筒の軸に対して直交する複数の断面の円の形状を測定する工程を有し、 該断面円の形状の測定を請求項 1記載の測定方法を用いて行うことを特徴と する円筒の円筒形状の測定方法。
3. 被測定円筒を載置し、 これを回転する円筒受け治具と、 該被測定円 筒の回転軸に平行に往復可能に設けられた取り付け台に、 該被測定円筒の回 転軸と直角を成す同一断面上に位置し、 該被測定円筒の回転軸と該回転軸と 直角を成す断面とが交わる点である測定基準点 (O に向けられ、 かつ 0。 を中心として互いに所定の角度 (0。 ) を挟んで扇状に配置して取り付け台 に固定された 3個以上の変位検出器を有している測定手段を用いて、 下記 ( i ) 〜 (V i ) のステップによって該被測定円筒の円筒度を求める円筒形 状の測定方法: '
( i ) 該変位検出器により測定基準点から該被測定円筒の軸と直角を成す断 面円の円周上の点までの距離を測定するステップと
( i i ) 該被測定円筒を 0° 回転させた状態で上記ステップ (i ) を繰り返 すステップと、
( i i i ) 上記ステップ (i ) 及び (i i ) を繰り返して該測定基準点と該 断面円の円周上の n点 (η=36 ΟΖ0) までの各距離を算出するステップ と、 ( i v ) 該各距離を用いて最小自乗中心法により該断面円の円中心位置及び 真円度を算出するステップと、
( V ) 該取り付け台を被測定円筒の回転中心軸に平行に移動させ、 該被測定 円筒の異なる断面円について上記ステップ (i ) 〜 (i V ) により該断面円 について円中心位置と真円度を算出するステップと、
( v i ) 上記ステップ ( i ) 〜 (V ) により円中心位置と真円度とを算出し た断面円のうち、 該被測定円筒の両端の、 2つの断面円の円中心同士を結ぶ 直線からなる円筒中心軸とし、 該円筒中心軸と該円中心位置及び真円度を算 出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との 交点から各断面円の円周上の所定の点までの距離を算出し、 該距離の最大値 と最小値の差を求めるステップ。
4. 角度 0を挟んで配置された、 Aと Bの 2つの変位検出器と、 角度 Θ を挟んで配置された、 A ' と B ' の 2つの変位検出器を有し、 Aと A ' 又は Bと B ' の挟角の角度が、 前記 0の正の整数倍であることを特徴とする請求 項 2に記載の円筒の円筒形状の測定方法。
5 . 前記被測定円筒内に変位検出器を配置して、前記被測定円筒の肉厚、 及び内周円の円中心、 及び真円度を求めることを特徴とする請求項 2〜 4の いずれかに記載の円筒の円筒形状の測定方法。
6 . 請求項 2〜5のいずれかに記載の測定方法であって、 径の異なる複 数の円筒からなり、 該全ての円筒の外周円内に回転中心軸を共有する複合円 筒に対して、 該複合円筒を構成する少なくとも 1つの円筒を、 請求項 2〜5 のいずれかに記載のいずれかの方法で測定し、 前記 1つの円筒以外の円筒を それぞれ少なくとも 1つの変位検出器を用いて円筒形状を測定し、 全ての円 筒形状、 同軸度、 及び複合円筒の肉厚を求めることを特徴とする複合円筒の 円筒形状の測定方法。
7 . 被測定円筒を載置し、 これを回転する円筒受け治具と、 該被測定円 筒の回転軸に平行に往復可能に設けられた取り付け台に、 該被測定円筒の回 転軸と直角を成す同一断面上に位置し、 該被測定円筒の回転軸と該回転軸と 直角を成す断面とが交わる点である測定基準点 (O0) に向けられ、 かつ O0 を中心として互いに所定の角度 (0° ) を挟んで扇状に配置して取り付け台 に固定された 3個以上の変位検出器を有している測定手段と、
下記ステップ ( i ) 〜 (V i i ) を実行する演算手段と、 を具備しているこ とを特徴とする円筒の形状測定装置:
( i ) 該変位検出器により測定基準点から該被測定円筒の軸と直角を成す断 面 Rの円周上の点までの距離を測定するステップと
(i i) 該被測定円筒を ° 回転させた状態で上記ステップ (i) を繰り返 すステップと、
( i i i ) 上記ステップ ( i ) 及び ( i i ) を繰り返して該測定基準点と該 断面円の円周上の n点 (n=36O/0) までの各距離を算出するステップ と、
( i v)該各距離を用いて最小自乗中心法により該断面円の円中心位置及び 真円度を算出するステップと、
(V) 該取り付け台を被測定円筒の回転中心軸に平行に移動させ、 該被測定 円筒の異なる断面円について上記ステップ ( i ) 〜 (i V) により該断面円 について円中心位置と真円度を算出するステップと、
(v i) 上記ステップ ( i ) 〜 (V) により円中心位置と真円度とを算出し た断面円のうち、 該被測定円筒の両端の、 2つの斬面円の円中心同士を結ぶ 直線からなる円筒中心軸とし、 該円筒中心軸と該円中心位置及び真円度を算 出した断面円のうち、 該被測定円筒の両端の 2つの断面円以外の断面円との 交点から各断面円の円周上の所定の点までの距離を算出し、 該距離の最大値 と最小値の差を求めるステップ。
PCT/JP2005/016470 2004-09-01 2005-09-01 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置 WO2006025603A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/281,603 US20060074587A1 (en) 2004-09-01 2005-11-18 Measuring method of circular shape, measuring method of cylindrical shape, and measuring apparatus of cylindrical shape
US11/469,094 US7328125B2 (en) 2004-09-01 2006-08-31 Measuring method of cylindrical body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-254363 2004-09-01
JP2004254363 2004-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/281,603 Continuation US20060074587A1 (en) 2004-09-01 2005-11-18 Measuring method of circular shape, measuring method of cylindrical shape, and measuring apparatus of cylindrical shape

Publications (1)

Publication Number Publication Date
WO2006025603A1 true WO2006025603A1 (ja) 2006-03-09

Family

ID=36000231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016470 WO2006025603A1 (ja) 2004-09-01 2005-09-01 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置

Country Status (2)

Country Link
US (1) US20060074587A1 (ja)
WO (1) WO2006025603A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099646A1 (ja) * 2006-02-28 2007-09-07 Canon Kabushiki Kaisha 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
JP2007263940A (ja) * 2005-09-02 2007-10-11 キヤノン株式会社 円筒体の測定方法
US7328125B2 (en) 2004-09-01 2008-02-05 Canon Kabushiki Kaisha Measuring method of cylindrical body
CN102435163A (zh) * 2011-09-20 2012-05-02 长沙理工大学 水轮机叶片叶型测量装置及测量方法
CN114659482A (zh) * 2020-12-22 2022-06-24 核动力运行研究所 一种基于非均匀离散数据的高精度圆形轮廓尺寸测量算法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI246583B (en) * 2004-11-12 2006-01-01 Hon Hai Prec Ind Co Ltd A composite position calculating system and method
JP2008286535A (ja) * 2007-05-15 2008-11-27 Mitsutoyo Corp 真円度測定装置、真円度測定方法、及び真円度測定プログラム
FR2948758B1 (fr) * 2009-07-30 2011-11-18 Hommel Etamic France Sa Dispositif de controle des portees des tourillons et manetons d'un vilebrequin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119208A (en) * 1981-01-19 1982-07-24 Nippon Kokan Kk <Nkk> Roundness measuring apparatus
JPS6073413A (ja) * 1983-09-30 1985-04-25 Mitsubishi Heavy Ind Ltd 真円度測定方法
JPH04148819A (ja) * 1990-10-12 1992-05-21 Sumitomo Metal Ind Ltd ロールプロフィール測定方法およびその装置
JPH06147879A (ja) * 1992-11-04 1994-05-27 Mitsubishi Heavy Ind Ltd 円筒形状の測定方法
JP2000249540A (ja) * 1999-03-02 2000-09-14 Tokyo Seimitsu Co Ltd 円筒物の形状測定装置及び測定方法
JP2003240503A (ja) * 2002-02-18 2003-08-27 Fukushima Prefecture 真円測定方法および真円測定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779797B2 (ja) * 1989-07-28 1995-08-30 キヤノン株式会社 ケラトメータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119208A (en) * 1981-01-19 1982-07-24 Nippon Kokan Kk <Nkk> Roundness measuring apparatus
JPS6073413A (ja) * 1983-09-30 1985-04-25 Mitsubishi Heavy Ind Ltd 真円度測定方法
JPH04148819A (ja) * 1990-10-12 1992-05-21 Sumitomo Metal Ind Ltd ロールプロフィール測定方法およびその装置
JPH06147879A (ja) * 1992-11-04 1994-05-27 Mitsubishi Heavy Ind Ltd 円筒形状の測定方法
JP2000249540A (ja) * 1999-03-02 2000-09-14 Tokyo Seimitsu Co Ltd 円筒物の形状測定装置及び測定方法
JP2003240503A (ja) * 2002-02-18 2003-08-27 Fukushima Prefecture 真円測定方法および真円測定装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328125B2 (en) 2004-09-01 2008-02-05 Canon Kabushiki Kaisha Measuring method of cylindrical body
JP2007263940A (ja) * 2005-09-02 2007-10-11 キヤノン株式会社 円筒体の測定方法
WO2007099646A1 (ja) * 2006-02-28 2007-09-07 Canon Kabushiki Kaisha 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
EP1992909B1 (en) * 2006-02-28 2017-09-27 Canon Kabushiki Kaisha Circular shape measurement method, cylindrical shape measurement method, and cylindrical shape measurement apparatus
CN102435163A (zh) * 2011-09-20 2012-05-02 长沙理工大学 水轮机叶片叶型测量装置及测量方法
CN102435163B (zh) * 2011-09-20 2013-07-24 长沙理工大学 水轮机叶片叶型测量装置及测量方法
CN114659482A (zh) * 2020-12-22 2022-06-24 核动力运行研究所 一种基于非均匀离散数据的高精度圆形轮廓尺寸测量算法
CN114659482B (zh) * 2020-12-22 2023-06-13 核动力运行研究所 一种基于非均匀离散数据的高精度圆形轮廓尺寸测量算法

Also Published As

Publication number Publication date
US20060074587A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
WO2007099646A1 (ja) 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
WO2006025603A1 (ja) 円形状の測定方法、円筒形状の測定方法及び円筒形状の測定装置
US7328125B2 (en) Measuring method of cylindrical body
JP6775446B2 (ja) ケーブルの製造方法、ケーブルの検査方法およびケーブル外観検査装置
JP4459264B2 (ja) 三次元形状測定方法
JP5532850B2 (ja) 半導体ウェーハの形状測定方法およびそれに用いる形状測定装置
CN114739344A (zh) 一种圆度误差在线测量方法及系统
JP2008008879A (ja) 測定装置、測定基準及び精密工作機械
JP4897951B2 (ja) 管状体の振れ測定方法及びその装置
JP3682027B2 (ja) モータコア内径測定装置及び方法
JP2006266910A (ja) 円筒形状の測定方法及び測定装置
WO2019130757A1 (ja) ワークの両面研磨装置および両面研磨方法
JP4557940B2 (ja) 被測定円筒の軸に直交する断面円の形状の測定方法および被測定円筒の円筒形状の測定方法
CN117260389A (zh) 多传感器融合驱动的大型深孔零件形状误差在位测量系统
JP4646986B2 (ja) 半導体ウェーハを測定する方法および装置
JPH0434306A (ja) 擬似円筒度測定方法
JP7010166B2 (ja) ワークの両面研磨装置および両面研磨方法
JPH06147879A (ja) 円筒形状の測定方法
JPH10511317A (ja) 精密仕上げ盤用検査装置
JP2000249540A (ja) 円筒物の形状測定装置及び測定方法
JP4324035B2 (ja) 振れ測定装置及び現像ローラの選別方法
JP2007232637A (ja) 円筒状基体上の塗膜の膜厚測定方法及び測定装置
JPH05248842A (ja) 円筒状物体の外形の真直度測定装置
JP2010253604A (ja) 走査運動誤差測定方法
JP2005091290A (ja) ローラ体振れ測定装置及びローラ体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11281603

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006532028

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 11281603

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase