WO2006025389A1 - Pattern-forming material, pattern-forming apparatus and pattern-forming method - Google Patents

Pattern-forming material, pattern-forming apparatus and pattern-forming method Download PDF

Info

Publication number
WO2006025389A1
WO2006025389A1 PCT/JP2005/015768 JP2005015768W WO2006025389A1 WO 2006025389 A1 WO2006025389 A1 WO 2006025389A1 JP 2005015768 W JP2005015768 W JP 2005015768W WO 2006025389 A1 WO2006025389 A1 WO 2006025389A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern forming
pattern
forming material
meth
Prior art date
Application number
PCT/JP2005/015768
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Iwasaki
Yoshiharu Sasaki
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Publication of WO2006025389A1 publication Critical patent/WO2006025389A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces

Definitions

  • the present invention relates to a pattern forming material suitable for manufacturing a printed wiring board, a color filter, and the like, a pattern forming apparatus provided with the pattern forming material, and a pattern forming method using the pattern forming material.
  • Forming material is used.
  • a method for forming the pattern for example, a layered body is formed by laminating the pattern forming material on a substrate on which a pattern is formed, and the photosensitive layer in the layered body is exposed to light, and then the pattern is formed.
  • a pattern is formed by developing the photosensitive layer, and then a permanent pattern is formed by performing an etching process or the like.
  • a pattern forming material for a color filter having a plurality of colored layers after forming the first color pattern, when the second color pattern is formed, the already formed first color pattern impairs the lamination property of the second color photosensitive layer.
  • the printed wiring board pattern forming material dry film resist
  • the photosensitive layer is made thin in order to obtain high resolution, the laminating property is impaired by the unevenness on the surface of the metal substrate. There is a problem.
  • a cushion layer (thermoplastic resin) is provided between the photosensitive layer and the support.
  • a pattern forming material having a layer) has been developed (see Patent Documents 1 to 16). Due to the presence of the cushion layer, the followability to an already formed pattern or substrate is improved, and the photosensitive layer can be laminated without generating bubbles.
  • the cushion layer is peeled off before exposure (for example, Patent Documents 2 to 10, and 15 to 16). It is difficult to peel off the cushion layer without damaging the photosensitive layer from the thin photosensitive layer to obtain the above.
  • a pattern forming material, a pattern forming apparatus including the pattern forming material, and a pattern forming method using the pattern forming material have not been provided yet, and further improvement and development are desired at present.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-173320
  • Patent Document 2 Japanese Patent Laid-Open No. 7-20309
  • Patent Document 3 Japanese Patent Laid-Open No. 11-72908
  • Patent Document 4 JP-A-11 109124
  • Patent Document 5 Japanese Patent Laid-Open No. 11 174220
  • Patent Document 6 Japanese Patent Laid-Open No. 11 338133
  • Patent Document 7 Japanese Patent Laid-Open No. 2000-250222
  • Patent Document 8 Japanese Patent Laid-Open No. 2000-250221
  • Patent Document 9 Japanese Unexamined Patent Publication No. 2000-266925
  • Patent Document 10 Japanese Patent Laid-Open No. 2001-142223
  • Patent Document 11 Japanese Patent Laid-Open No. 2003-5364
  • Patent Document 12 Japanese Unexamined Patent Publication No. 2003-215793
  • Patent Document 13 Japanese Patent Laid-Open No. 2003-228165
  • Patent Document 14 Japanese Patent Laid-Open No. 2003-302765
  • Patent Document 15 Japanese Patent Application Laid-Open No. 2003-307845
  • Patent Document 16 Japanese Patent Laid-Open No. 5-72724
  • the present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention has a cushion layer and a photosensitive layer on the support in this order, and the total light transmittance and haze value in the cushion layer are within a certain numerical range, so that the uneven follow-up property and the high sensitivity can be achieved.
  • a pattern forming material that is compatible with resolution and that can efficiently form a high-definition pattern without defects, a pattern forming apparatus including the pattern forming material, and a pattern forming method using the pattern forming material The purpose is to provide.
  • ⁇ 3> The pattern forming material according to any one of ⁇ 1> to ⁇ 2>, wherein an average particle size of the fine particles contained in the cushion layer is less than 1 ⁇ m.
  • the cushion layer upper force is also exposed. As a result, a defect-free pattern is formed.
  • ⁇ 5> The pattern forming material according to any one of ⁇ 1> to ⁇ 4>, wherein the thickness force of the cushion layer is 6 to 100111.
  • ⁇ 6> The pattern forming material according to any one of ⁇ 1> to ⁇ 5> above, which has a noble layer capable of suppressing the movement of a substance between the cushion layer and the photosensitive layer.
  • the pattern forming material described in ⁇ 6> has the barrier layer. As a result, a decrease in sensitivity of the photosensitive layer is suppressed.
  • the first photosensitive layer and the second photosensitive layer having a smaller amount of light energy for curing than the first photosensitive layer are laminated in this order.
  • the pattern forming material according to any one of the above. In the pattern forming material described in ⁇ 7>, three-dimensional modeling with different thicknesses inside the image, increasing the strength of the film only in the desired region, or increasing the image density only in the desired region, etc. It is possible to form a cured resin image or the like having characteristics imparted with one kind of pattern forming material.
  • ⁇ 8> The pattern forming material according to ⁇ 7>, wherein a barrier layer is provided between the first photosensitive layer and the second photosensitive layer.
  • cushion layer strength Formed by applying a cushion layer composition coating solution, in which the composition contained in the cushion layer is dissolved, emulsified, or dispersed, through a filter, and then coating and drying on a support.
  • the fine particles such as fine foreign matters and gellic substances contained in the cushion layer composition coating solution are removed by a filter, so that the cushion layer composition is coated on the cushion layer composition.
  • Pattern formation characterized by comprising at least light irradiation means capable of irradiating light and light modulation means for modulating light from the light irradiation means and exposing the photosensitive layer in the pattern forming material.
  • Device In the pattern forming apparatus described in 11>
  • the light irradiating means irradiates light toward the light modulating means.
  • the light modulation means modulates light received from the light irradiation means.
  • the light modulated by the light modulating means is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
  • the light modulation means generates a control signal based on the pattern information to be formed
  • the pattern forming device further comprising a pattern signal generation unit, wherein the light emitted from the light irradiation unit is modulated according to a control signal generated by the pattern signal generation unit.
  • the light modulation unit since the light modulation unit includes the pattern signal generation unit, light emitted from the light irradiation unit is converted into a control signal generated by the pattern signal generation unit. Modulated accordingly.
  • the light modulation means has n pixel parts, and forms any less than n pixel parts continuously arranged from the n pixel parts.
  • the pattern forming apparatus according to any one of the above 11> Karaku 12> which can be controlled according to pattern information.
  • an arbitrary less than n pixel portions arranged continuously from n pixel portions in the light modulation unit are controlled according to pattern information. As a result, the light of the light irradiation means power is modulated at high speed.
  • ⁇ 16> The pattern forming apparatus according to any one of ⁇ 11>, ⁇ 15>, wherein the picture element portion is a micromirror.
  • ⁇ 17> The pattern forming apparatus according to any one of the items ⁇ 11> to ⁇ 16>, wherein the light irradiation unit can synthesize and irradiate two or more lights.
  • the pattern forming apparatus described in ⁇ 17> exposure is performed by exposure light having a deep focal depth because the light irradiation means can synthesize and irradiate two or more lights.
  • the pattern forming material is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber.
  • the pattern forming apparatus according to any one of the above items 11> Karaku 17>.
  • the light irradiation unit is configured to receive the laser beams irradiated with the plurality of laser forces. Since the light is condensed by an optical system and can be coupled to the multimode optical fiber, exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the pattern forming material is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
  • ⁇ 21> The pattern forming method according to any one of ⁇ 19>, ⁇ 20>, wherein the exposure is performed imagewise based on pattern information to be formed.
  • the pattern forming method according to any one of the above 19> Karaku 23> which is performed by light passing through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface are arranged. .
  • the pattern forming method according to 24> In this case, the light modulated by the light modulation means passes through the aspherical surface in the microlens array, so that the aberration due to the distortion of the exit surface in the pixel portion is corrected. As a result, distortion of the image formed on the pattern forming material is suppressed, and exposure to the pattern forming material is performed with extremely high definition. For example, when the photosensitive layer is developed thereafter, an extremely fine pattern is formed.
  • ⁇ 26> The pattern forming method according to any one of the above items ⁇ 19>, ⁇ 25>, wherein the exposure is performed through an aperture array. Further, in the pattern forming method described in 26>, the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
  • ⁇ 27> The pattern forming method according to ⁇ 19>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive layer.
  • exposure is performed at a high speed by performing exposure while relatively moving the modulated light and the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
  • ⁇ 30> The pattern formation method according to ⁇ 29>, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process.
  • ⁇ 31> The pattern forming method according to ⁇ 29>, wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
  • the conventional problems can be solved, and the cushion layer and the photosensitive layer are provided on the support in this order, and the total light transmittance and the haze value in the cushion layer are constant numerical values. If it is within the range, a pattern forming material capable of simultaneously forming unevenness followability and high resolution, and capable of efficiently forming a defect-free V and high-definition pattern, and a pattern forming apparatus provided with the pattern forming material And a pattern forming method using the pattern forming material.
  • FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD).
  • DMD digital micromirror device
  • FIG. 2A is an example of an explanatory diagram for explaining the operation of the DMD.
  • FIG. 2B is an example of an explanatory diagram for explaining the operation of the DMD similar to FIG. 2A.
  • FIG. 3A is an example of a plan view showing the arrangement of the exposure beam and the scanning line in a case where the DMD is not inclined and in a case where the DMD is inclined.
  • FIG. 3B is an example of a plan view showing a comparison of exposure beam arrangement and scanning lines when the DMD similar to FIG. 3A is not inclined and when it is inclined.
  • FIG. 4A is an example of a diagram illustrating an example of a DMD usage area.
  • FIG. 4B is an example of a diagram showing an example of a DMD usage area similar to FIG. 4A.
  • FIG. 5 is an example of a plan view for explaining an exposure method in which a pattern forming material is exposed by one scanning by a scanner.
  • FIG. 6A is an example of a plan view for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner.
  • FIG. 6B is an example of a plan view for explaining an exposure method for exposing the pattern forming material by a plurality of scans by the same scanner as in FIG. 6A.
  • FIG. 7 is an example of a schematic perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 8 is an example of a schematic perspective view showing the configuration of the scanner of the pattern forming apparatus.
  • FIG. 9A is an example of a plan view showing an exposed region formed in a pattern forming material.
  • FIG. 9B is an example of a diagram showing an arrangement of exposure areas by each exposure head.
  • FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means.
  • FIG. 11 is an example of a sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG.
  • FIG. 12 shows an example of a controller that controls DMD based on pattern information.
  • FIG. 13A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system.
  • FIG. 13B is an example of a plan view showing an optical image projected onto the exposure surface when a microlens array or the like is not used.
  • FIG. 13C is an example of a plan view showing an optical image projected onto an exposed surface when a microlens array or the like is used.
  • FIG. 14 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines.
  • FIG. 15A is an example of a graph showing distortion of the reflecting surface of the micromirror in two diagonal directions of the mirror.
  • FIG. 15B is an example of a graph showing distortion of the reflecting surface of the micromirror similar to that in FIG. 15A in two diagonal directions of the mirror.
  • FIG. 16A is an example of a front view of a microlens array used in the pattern forming apparatus.
  • FIG. 16B is an example of a side view of the microlens array used in the pattern forming apparatus.
  • FIG. 17A is an example of a front view of a microlens constituting a microlens array.
  • FIG. 17B is an example of a side view of a microlens constituting a microlens array. is there.
  • FIG. 18A is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
  • FIG. 18B is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
  • FIG. 19A is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens of the present invention.
  • FIG. 19B is an example of a diagram showing the same simulation results as in FIG. 19B, but at different positions.
  • FIG. 19C is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
  • FIG. 19D is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
  • FIG. 20A is an example of a diagram showing a result of simulating the beam diameter in the vicinity of the condensing position of the microlens in the conventional pattern forming method.
  • FIG. 20B is an example of a diagram showing the same simulation results as in FIG. 20A but at different positions.
  • FIG. 20C is an example of a diagram illustrating the simulation result similar to FIG. 20A at another position.
  • FIG. 20D is an example of a diagram showing a simulation result similar to FIG. 20A at another position.
  • FIG. 21 is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 22A is an example of a front view of a microlens constituting a microlens array.
  • FIG. 22B is an example of a side view of a microlens constituting a microlens array.
  • FIG. 23A is an example of a schematic view showing a condensing state by the microlens of FIG. 22A and FIG. 22B in one cross section.
  • FIG. 23B is an example of a schematic diagram showing another cross section of the example of FIG. 23A.
  • FIG. 24A is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
  • FIG. 24B is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
  • FIG. 24C is an example of an explanatory diagram of the concept of correction by the light quantity distribution correction optical system.
  • FIG. 25 is an example of a graph showing a light amount distribution when the light irradiation means is a Gaussian distribution and the light amount distribution is not corrected.
  • FIG. 26 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system.
  • FIG. 27A is a perspective view showing the configuration of the fiber array light source
  • FIG. 27A (B) is an example of a partially enlarged view of (A)
  • FIG. 27A (C) and (D ) Is an example of a plan view showing an array of light emitting points in the laser emitting portion.
  • FIG. 27B is an example of a front view showing an array of light emitting points in a laser emitting section of a fiber array light source.
  • FIG. 28 is an example of a diagram showing a configuration of a multimode optical fiber.
  • FIG. 29 is an example of a plan view showing a configuration of a combined laser light source.
  • FIG. 30 is an example of a plan view showing a configuration of a laser module.
  • FIG. 31 is an example of a side view showing the configuration of the laser module shown in FIG. 30.
  • FIG. 32 is a partial side view showing the configuration of the laser module shown in FIG. 30.
  • FIG. 33 is an example of a perspective view showing a configuration of a laser array.
  • FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser.
  • FIG. 34B is an example of a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. 34A are arranged in an array.
  • FIG. 35 is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 36A is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 36A.
  • FIG. 37A is an example of a cross-sectional view along the optical axis showing the difference between the depth of focus in a conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention.
  • FIG. 37B is an example of a cross-sectional view along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention.
  • the pattern forming material of the present invention has a cushion layer and a photosensitive layer in this order on a support.
  • the cushion layer which may have other layers appropriately selected as necessary, satisfies the total light transmittance of 86% or more and a haze value of 10% or less.
  • the cushion layer can be appropriately selected according to the purpose without particular limitation as long as the total light transmittance is 86% or more and the haze value is 10% or less.
  • thermoplastic resin is used as the cushion layer.
  • the inclusion is preferred.
  • the wavelength of light when obtaining the total light transmittance and the haze value is preferably 405 nm! /.
  • the total light transmittance of the cushion layer is preferably 86% or more, more preferably 87% or more, and particularly preferably 89% or more.
  • the cushion layer When the cushion layer is irradiated with 405 nm light, the cushion layer has a haze value of 10% or less, preferably 7% or less, more preferably 5% or less. 3% or less is particularly preferred, and 1% or less is most preferred.
  • the haze value exceeds 10%, the amount of light scattering in the cushion layer increases, the resolution decreases, and the resist shape may be inferior, such as defects.
  • the method for measuring the total light transmittance is appropriately selected according to the purpose without any particular limitation.
  • a measurement method using an integrating sphere and a spectrophotometer capable of irradiating light of 405 nm for example, UV-2400 manufactured by Shimadzu Corporation
  • a spectrophotometer capable of irradiating light of 405 nm for example, UV-2400 manufactured by Shimadzu Corporation
  • a force that can be appropriately selected according to the purpose for which there is no particular limitation, for example, the method described below can be cited.
  • the parallel light transmittance is measured in the same manner as the total light transmittance measurement method except that the integrating sphere is not used.
  • Examples of the fine particles and aggregates thereof present in the cushion layer include precipitated particles and gel-like substances generated during the production process of the cushion layer composition coating liquid.
  • voids may be generated in the photosensitive layer during exposure, and defects may be generated in the formed pattern.
  • the precipitated particles and the gel-like substance are a catalyst at the time of producing the raw material polymer, a high polymerization degree polymer or a thermal decomposition product locally generated at the time of producing the raw material polymer.
  • the average particle size of the fine particles allowed to be present in the cushion layer and the aggregates thereof is preferably a force S of less than 1 ⁇ m, more preferably a force S of less than 0.5 m, Particularly preferred is less than 2 m.
  • the average particle size of the fine particles and aggregates present in the cushion layer exceeds 1 ⁇ m, the resolution may decrease due to scattering of exposure light.
  • the average particle size is
  • the haze value may decrease if it is contained in a large amount.
  • Examples of the method for measuring the average particle diameter of the fine particles and the aggregates thereof include a method of taking a photograph of a large number of foreign matters with a scanning electron microscope (SEM) and measuring the diameter of the foreign matters on the photograph. It is done.
  • SEM scanning electron microscope
  • the thermoplastic resin preferably contains a thermoplastic resin having a glass transition temperature (Tg) and a softening point of at least 80 ° C.
  • Tg glass transition temperature
  • the softening point of the thermoplastic resin is preferably 80 ° C or less, preferably 60 ° C or less, according to the Vicat method (American material test method ASTMD1235 polymer softening point measurement method). It is particularly preferable that the temperature is 50 ° C or less.
  • thermoplastic resin having a softness point by the Vicat method of 80 ° C. or higher When a thermoplastic resin having a softness point by the Vicat method of 80 ° C. or higher is used, it is necessary to laminate the pattern forming material on a substrate at a high temperature, which is disadvantageous in terms of work.
  • thermoplastic resin examples include polyolefins such as polyethylene and polypropylene, and copolymers thereof; ethylene copolymers such as ethylene vinyl acetate copolymer, ethylene vinyl acetate copolymer kenich; ethylene acrylic acid Ester copolymer and saponified product thereof; polyvinyl chloride; vinyl chloride copolymer such as vinyl chloride-vinyl acetate copolymer and saponified product thereof; polysalt vinylidene; vinylidene chloride copolymer; polystyrene; Styrene copolymer such as styrene (meth) acrylate ester and saponified product thereof; polytoluene toluene; butyltoluene; methacrylic acid ester copolymer and butyltoluene copolymer such as kenicate Poly (meth) acrylic acid esters; butyl (meth) acrylate and butyl
  • thermoplastic resin having a softening point of 80 ° C or less includes the above-mentioned thermoplastic resin, “Plastic Performance Handbook” (edited by the Japan Plastics Industry Federation, All Japan Plastics Molding Industry Federation, published by the Industrial Research Council, Organic polymers with a softening point of about 80 ° C or less as of October 25, 1968).
  • thermoplastic resin having a soft softening point of 80 ° C or higher various plasticizers compatible with the thermoplastic resin are added to obtain a substantial soft softening point. Can be lowered below 80 ° C.
  • the plasticizer is not particularly limited and may be appropriately selected according to the purpose. For example, polypropylene glycol, polyethylene glycol, dioctyl phthalate, diheptino phthalate, dibutino phthalate, tricresyl phosphate , Krezhno Regihue -Alcohols and esters such as ruphosphate and biphenyl diphosphate; amides such as toluenesulfonamide and the like.
  • the cushion layer is prepared by dissolving the thermoplastic resin and, if necessary, other components in a solvent to prepare a coating solution (cushion layer composition coating solution). It can be formed by coating or the like.
  • a coating solution cushion layer composition coating solution
  • the solvent include organic solvents such as methyl ethyl ketone and 1-methoxy-2-propanol, water, and a mixed solution of water and an organic solvent miscible with water.
  • the thermoplastic resin may have a solubility characteristic that is soluble in a solvent in which the composition of the photosensitive layer does not dissolve at all. Good.
  • the cushion layer composition coating liquid is used as the thermoplastic layer.
  • Preferred is an aqueous dispersion of oily polymer fine particles.
  • the cushion layer may be swellable or soluble in an alkaline liquid, or may be insoluble.
  • the thermoplastic resin mainly contains an alkali-soluble thermoplastic polymer, and optionally contains other components.
  • the acid value (mgKOH / g) of the thermoplastic polymer is not particularly limited.
  • a force that can be appropriately selected according to the purpose 50 to 300 force S, preferably 60 to 270 parts S, more preferably 70 to 250 is particularly preferred.
  • the acid value is within the above range, the developability of the cushion layer can be ensured.
  • the acid value is less than 50, development failure may occur.
  • the acid value exceeds 300, the cushion layer becomes too hard, and uneven followability and laminating properties may be deteriorated.
  • the weight average molecular weight of the thermoplastic polymer is not particularly limited and may be appropriately selected according to the purpose.
  • Force S capable of being 1,000 to 300,000 power S, preferably 3,000 to 200,000 A force of 5,000 to 150,000 is particularly preferred.
  • the weight average molecular weight is in the above range, developability of the cushion layer can be ensured, and the viscosity r? It becomes easy to save. Further, the effect can be further obtained by the combination with the above acid value range. If the weight average molecular weight is less than 1,000, the membrane may become fragile or the cushion layer may exude during lamination. If it exceeds 300,000, the cushion layer may become too hard, and the unevenness followability and laminating properties may deteriorate.
  • a copolymer of a carboxylic acid-containing monomer and a (meth) acrylic acid ester monomer can also be used.
  • the carboxylic acid-containing monomer include acrylic acid, methacrylic acid, and derivatives thereof.
  • (Meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Etc.
  • the copolymer may be a binary polymer of a carboxylic acid-containing monomer and an acrylate ester monomer or a multi-polymer, such as methyl metatalate or 2-ethylhexyl meta methacrylic acid.
  • a methacrylic acid Z-methyl methacrylate / Z2-ethylhexyl acrylate / Z-benzyl methacrylate copolymer is particularly preferred.
  • the interlayer adhesive force of the pattern forming material is not particularly limited and can be appropriately selected according to the purpose.
  • the interlayer adhesive force between the support and the cushion layer is the smallest among the interlayer adhesive strengths of the respective layers.
  • the interlayer adhesive strength only the support is peeled off from the laminate, the photosensitive layer is exposed through the cushion layer, and then the photosensitive layer is developed using an alkaline developer. be able to.
  • the photosensitive layer can be developed using an alkaline developer.
  • the method for adjusting the interlayer adhesive force is not particularly limited and may be appropriately selected depending on the purpose.
  • a known polymer, supercooling substance, or adhesion improver in the thermoplastic resin is used.
  • the thermoplastic resin include a copolymer whose main component is an essential copolymer component of ethylene.
  • the copolymer having ethylene as an essential copolymer component is a force that can be appropriately selected according to the purpose without any particular limitation.
  • ethylene vinyl acetate copolymer (EV A) ethylene-ethyl acrylate. Copolymer (EEA) and the like.
  • the interlayer adhesive force of the pattern forming material can be appropriately selected according to the purpose without any particular limitation.
  • the adhesive strength between the photosensitive layer and the cushion layer is preferably the smallest.
  • the photosensitive layer is exposed while leaving the support, and then the support and the cushion layer are peeled off from the laminate, and an alkaline developer is used.
  • the photosensitive layer can also be developed.
  • the photosensitive layer can be developed using an alkaline developer.
  • the method for adjusting the interlayer adhesive force can be appropriately selected according to the purpose without any particular limitation.
  • various polymers, supercooling substances, adhesion improvers in the thermoplastic resin can be selected.
  • the ethylene copolymerization ratio in the copolymer having ethylene as an essential copolymerization component is a force that can be appropriately selected according to the purpose without any particular limitation. For example, 60 to 90% by mass is preferable. 60-80% by mass is more preferred. 65-80% by mass is particularly preferred.
  • the ethylene copolymerization ratio is less than 60% by mass, the interlayer adhesive force between the cushion layer and the photosensitive layer increases, and it becomes difficult to peel off at the interface between the cushion layer and the photosensitive layer. If the amount exceeds 90% by mass, the indirect adhesion between the cushion layer and the photosensitive layer becomes too small, and the cushion layer and the photosensitive layer are very easily peeled off. It may be difficult to produce a pattern forming material containing
  • the cushion layer is insoluble in an alkaline solution and a barrier layer is present between the cushion layer and the photosensitive layer, the sensitivity is increased in the interlayer adhesion of each layer. It is preferable that the interlayer adhesion between the optical layer and the barrier layer is the smallest!
  • the photosensitive layer is exposed through the cushion layer while leaving the support without peeling, and then the support, the cushion layer, and It is also possible to peel off the barrier layer and develop the photosensitive layer using an alkaline developer.
  • this photosensitive layer can also be developed using an alkaline developing solution.
  • the method for adjusting the interlayer adhesive force can be appropriately selected according to the purpose without any particular limitation.
  • a method of containing a release agent in the photosensitive layer, the cushion layer and the barrier Content of at least one selected from a method for surface-treating an adhesive surface with a layer, a method for surface-treating an adhesive surface between the support and the cushion layer, and a component contained in at least one of the layers And a method of containing or applying a component for improving the adhesive strength. These methods may be used alone or in combination of two or more.
  • the release agent can be appropriately selected from known release agents without particular limitations, and examples thereof include silicone compounds and compounds having a fluorinated alkyl group.
  • silicone compound examples include Daicel UCB, Evecril 1360, 350, Toshiba Silicone Dimethyl Silicone Oil TSF400, Methylphenol Silco 1-year-old Inole TSF4300, TSF4446, TSF4460, TSF4452 etc. are listed.
  • Examples of the compound having a fluorinated alkyl group include a fluorine-based surfactant (for example, perfluoroalkyl group 'hydrophilic group-containing oligomer F-171, manufactured by Dainippon Ink & Chemicals, Inc.
  • a fluorine-based surfactant for example, perfluoroalkyl group 'hydrophilic group-containing oligomer F-171, manufactured by Dainippon Ink & Chemicals, Inc.
  • Examples of the surface treatment include plasma treatment, electron beam treatment, glow discharge treatment, corona discharge treatment, and ultraviolet irradiation treatment.
  • Examples of the component for improving the adhesive strength include phenolic substances (for example, cresol monovolak resin, phenol resin, and the like), polysalt-vinylidene resin, styrene butadiene rubber, gelatin, polybulal alcohol, cellulose. And the like. These may be included in at least one of the support, the cushion layer, and the barrier layer as needed, and the contact surface between the support and the cushion layer, the cushion layer, and the barrier layer. You may apply
  • crosslinking agent examples include borax, boric acid, borates (for example, orthoborate, InBO
  • Aldehyde compounds such as formaldehyde, glyoxal, and glutaraldehyde; ketone compounds such as diacetyl and cyclopentanedione; bis (2-chlorodiethylurea) -2 hydroxy 4, 6 dichloro 1, 3, 5 Active halogen compounds such as triazine, 2, 4 dichloro-6-S-triazine 'sodium salt; divinylsulfonic acid, 1,3 berylsulfoluol 2-propanol, ⁇ , ⁇ , monoethylenebis (birusulfuluolacetamide) ), 1, 3, 5 Triarylloyl-hexahydro S Triazine and other active bur compounds; dimethylol urea, methyloldimethylhydantoin and other ⁇ -methylol compounds; melamine linseed (eg, methyl
  • silane coupling agent examples include N-2 (aminoethyl) 3 aminopropyl methyldimethoxysilane, N-2 (aminoethyl) 3 aminopropyltrimethoxysilane, N-2 (aminoethyl) 3 Minopropyltriethoxysilane, 3 aminopropyltrimethoxysilane, 3 aminopropyltriethoxysilane, 3 triethoxysilyl mono N— (1, 3 dimethyl)
  • a silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. can be suitably used.
  • the layer containing at least one of the cross-linking agent and the silane coupling agent can be appropriately selected according to the purpose without any particular limitation.
  • the cushion layer and the noria layer are preferable. More preferably, the cushion layer alone is more preferable.
  • At least one selected from the components included in the support layer at least one selected from the components included in the tack layer, and the components included in the barrier layer.
  • the component force contained in the cushion layer is selected from the components contained in the photosensitive layer, wherein at least one selected from the component force and at least one selected from the components contained in the barrier layer are made into a hydrophobic substance.
  • the component is polybulal alcohol
  • the polybulal alcohol having a saponification degree of 85% or less, or a modified polybulal alcohol can be appropriately selected and used.
  • the polybulal alcohol may be used in combination with the crosslinking agent, the silane coupling agent, or the like.
  • modified polybulal alcohol examples include cation-modified polybulal alcohol (for example, carboxy-modified polybulal alcohol), cation-modified polybulal alcohol, acetoacetylated polybulal alcohol, silanol-modified polybulal alcohol, hydrophobic group-modified polybutyl alcohol.
  • examples include polybulal alcohol (for example, terminal alkylpolybulal alcohol), hydrophilic group-modified polyvinyl alcohol (for example, ethylene oxide-modified polybulal alcohol), terminal thiol polybulal alcohol, exeval (manufactured by KURARENE), and the like.
  • thermoplastic resins described above the laminating property to the substrate is good, the releasability from the noria layer is good, and the photosensitive layer component migration prevention property is excellent, and the production is advantageous.
  • Ethylene vinyl acetate copolymer and olefin fin ionomer are particularly preferred.
  • the cushion layer may be formed by filtering a cushion layer composition coating solution in which the above-described composition is dissolved, emulsified, or dispersed, through a filter, and coating and drying on a support.
  • a filter preferably has a pore diameter of 30 m or less.
  • the thickness of the cushion layer can be appropriately selected according to the purpose for which there is no particular limitation, but f column; t is 6 to: LOO / zm force S girlish, 10 to 50 111 15 to 40
  • the thickness is less than 6 m, unevenness on the surface of the substrate or unevenness followability to bubbles and the like may be deteriorated, and a high-definition permanent pattern may not be formed. Problems such as increased drying load may occur.
  • the photosensitive layer can be appropriately selected from known pattern forming materials with no particular restrictions.
  • the photosensitive layer includes a noinder, a polymerizable compound, and a photopolymerization initiator, and is appropriately selected. Those containing other components are preferred.
  • the number of photosensitive layers to be laminated is appropriately selected according to the purpose for which there is no particular limitation.
  • it may be a single layer or two or more layers.
  • the noinder is preferably swellable in an alkaline aqueous solution and more preferably soluble in an alkaline aqueous solution.
  • binder exhibiting swellability or solubility with respect to the alkaline aqueous solution for example, those having an acidic group are preferably exemplified.
  • the acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyxenore group is preferable. .
  • binder having a carboxyl group examples include a vinyl copolymer having a carboxyl group, polyurethane resin, polyamic acid resin, and modified epoxy resin.
  • solubility in a coating solvent Viewpoints such as solubility in alkaline developer, suitability for synthesis, and ease of adjustment of film properties.
  • Vinyl copolymers having a carboxyl group are preferred.
  • the vinyl copolymer having a carboxyl group can be obtained by copolymerization of at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith.
  • Examples of the butyl monomer having a carboxyl group include (meth) acrylic acid, belbenzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid.
  • (meth) acrylic acid is particularly preferred from the viewpoint of copolymerization cost and solubility.
  • monomers having anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, etc. may be used as the precursor of the carboxyl group.
  • the other copolymerizable monomers are not particularly limited and can be appropriately selected depending on the purpose.
  • Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate.
  • crotonic acid esters examples include butyl crotonic acid and hexyl crotonic acid.
  • Examples of the vinyl esters include vinyl acetate, vinyl propionate, butyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.
  • maleic acid diesters examples include dimethyl maleate, diethyl maleate, and dibutyl maleate.
  • Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate, and the like.
  • Examples of the itaconic acid diesters include dimethyl itaconate, dimethyl itaconate, and dibutyl itaconate.
  • Examples of the (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-Butylacrylic (meth) amide, N-t-butyl (meth) acrylamide, N cyclohexyl (meth) acrylamide, N— (2-methoxyethyl) (meth) acrylamide, N, N dimethyl (meth) acrylamide N, N Jetyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) attalyloylmorpholine, diacetone acrylamide and the like.
  • styrenes examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropylene styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, aceto styrene, chlorostyrene, Examples thereof include dichlorostyrene, bromostyrene, chloromethylstyrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc, etc.), methyl vinylbenzoate, and a-methylstyrene.
  • an acidic substance for example, t-Boc, etc.
  • butyl ethers examples include methyl butyl ether, butyl benzene ether, hexyl butyl ether, methoxyethyl butyl ether, and the like.
  • a method for synthesizing a vinyl monomer having a urethane group or a urea group as the functional group examples thereof include an addition reaction of an isocyanate group and a hydroxyl group or an amino group. Specifically, a monomer having an isocyanate group and a compound containing one hydroxyl group or a primary or secondary amino group Addition reaction with a compound having one of these, and addition reaction of a monomer having a hydroxyl group or a monomer having a primary or secondary amino group with a monoisocyanate.
  • Examples of the monomer having an isocyanate group include compounds represented by the following structural formulas (1) to (3).
  • R 1 represents a hydrogen atom or a methyl group.
  • Examples of the monoisocyanate include cyclohexylenoisocyanate, n-butynoleisocyanate, tolylisocyanate, benzylisocyanate, phenylisocyanate, and the like.
  • Examples of the monomer having a hydroxyl group include compounds represented by the following structural formulas (4) to (12).
  • R 1 represents a hydrogen atom or a methyl group
  • n, nl, and n 2 represent an integer of 1 or more.
  • Examples of the compound containing one hydroxyl group include alcohols (for example, methanol, ethanol, n -propanol, i-propanol, n-butanol, sec-butanol, t-butanol, n-hexanol).
  • alcohols for example, methanol, ethanol, n -propanol, i-propanol, n-butanol, sec-butanol, t-butanol, n-hexanol.
  • phenols eg, phenol, cresol, Naphthol and the like, and those further containing a substituent include fluoroethanol, trifluoroethanol, methoxyethanol, phenoxyethanol, black mouth phenol, dichloro phenol, methoxy phenol, and acetophenol.
  • Examples of the monomer having a primary or secondary amino group include vinylbenzylamine.
  • Examples of the compound containing one primary or secondary amino group include alkylamines (methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, sec-butylamine, t-butylamine, hexylamine, 2 —Ethylhexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, jetylamine, Dibutylamine, dioctylamine), cyclic alkylamines (cyclopentylamine, cyclohexylamine, etc.), aralkylamines (benzylamine, phenethylamine, etc.), arylamines (allin, tolylamine, xylylamine, naphthylamine, etc.), and combinations thereof (N— Methyl-N benzylamine, etc.), and amines having further substituents (trifluor fluor
  • Examples of the other copolymerizable monomers other than those described above include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and benzyl (meth) acrylate. Suitable examples include (meth) acrylic acid 2-ethylhexyl, styrene, chlorostyrene, bromostyrene, hydroxystyrene and the like.
  • the other copolymerizable monomers may be used alone or in combination of two or more.
  • the vinyl copolymer can be prepared by copolymerizing the corresponding monomers by a known method according to a conventional method. For example, it can be prepared by using a method (solution polymerization method) in which the monomer is dissolved in a suitable solvent and a radical polymerization initiator is added thereto to polymerize in a solution. Further, it can be prepared by utilizing polymerization such as so-called emulsion polymerization in a state where the monomer is dispersed in an aqueous medium.
  • the suitable solvent used in the solution polymerization method can be appropriately selected according to the monomer to be used without particular limitation and the solubility of the copolymer to be produced.
  • solvents may be used alone or in combination of two or more.
  • the radical polymerization initiator is not particularly limited.
  • 2, 2'-azobis isobutyoritol-tolyl) (AIBN)
  • Etc. peroxy compounds such as benzoyl peroxide, potassium persulfate, ammonium persulfate Persulfates such as um.
  • [0094] is the content of the polymerizable compound having a carboxyl group in the vinyl copolymer, a force such as especially limited can be appropriately selected depending on the Nag purpose, preferably 5 to 50 mol 0/0 ingredients 10 to 40 mole 0/0, more preferably tool 15-35 mole 0/0 are particularly preferred.
  • the content is less than 5 mol%, the developability to alkaline water may be insufficient, and when it exceeds 50 mol%, the developer resistance of the cured portion (image portion) may be insufficient.
  • the molecular weight of the binder having a carboxyl group is not particularly limited.
  • the force can be appropriately selected according to the purpose.
  • the mass average molecular weight is preferably 2,000 to 300,000, and preferably 4,000. ⁇ 150,000 power ⁇ Preferred more! / ⁇ .
  • the mass average molecular weight is less than 2,000, the strength of the film may be insufficient and stable production may be difficult immediately. If it exceeds 300,000, developability may be deteriorated.
  • the noinder having a carboxyl group may be used alone or in combination of two or more.
  • examples of the case where two or more binders are used in combination include, for example, two or more binders having different copolymer component forces, two or more binders having different mass average molecular weights, two or more binders having different dispersities, And the like.
  • the binder having a carboxyl group a part or all of the carboxyl group may be neutralized with a basic substance.
  • the binder may be used in combination with different types of resins such as polyester resin, polyamide resin, polyurethane resin, epoxy resin, polyvinyl alcohol, and gelatin.
  • binder for example, a resin soluble in an alkaline aqueous solution described in Japanese Patent No. 2873889 can be used.
  • the content of the binder in the photosensitive layer is not particularly limited, and can be appropriately selected according to the purpose. For example, 10 to 90% by mass is preferable 20 to 80% by mass
  • the content is less than 10% by mass, the alkali developability and the adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. The stability against image time and the strength of the cured film (tent film) may be reduced.
  • the above content may be the total content of the binder and the polymer binder used in combination as necessary.
  • the acid value of the binder is not particularly limited and can be appropriately selected according to the purpose.
  • 70 to 250 (mgKOH / g) is preferable, and 90 to 200 (mgKOH / g) is preferable. More preferred is 100 to 180 (mg KOH / g).
  • the acid value is less than 70 (mgKOHZg)
  • developability may be insufficient
  • resolution may be inferior
  • permanent patterns such as wiring patterns may not be obtained in high definition
  • the polymerizable compound is not particularly limited and may be appropriately selected according to the purpose.
  • a monomer or oligomer having at least one of a urethane group and an aryl group is preferably exemplified. These preferably have two or more polymerizable groups.
  • Examples of the polymerizable group include an ethylenically unsaturated bond (for example, a (meth) atarylyl group, a (meth) acrylamide group, a styryl group, a beryl group such as a bull ester or a bull ether, Aryl groups such as aryl esters) and polymerizable cyclic ether groups (for example, epoxy groups, oxetane groups, etc.), among which ethylenically unsaturated bonds are preferred.
  • an ethylenically unsaturated bond for example, a (meth) atarylyl group, a (meth) acrylamide group, a styryl group, a beryl group such as a bull ester or a bull ether, Aryl groups such as aryl esters
  • polymerizable cyclic ether groups for example, epoxy groups, oxetane groups, etc.
  • the monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose.
  • JP-B-48-41708 JP-B-48-41708
  • polyisocyanate compounds having two or more isocyanate groups in the molecule include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate.
  • Diisocyanates such as' -diphenyl diisocyanate; an adduct of the diisocyanate with a bifunctional alcohol (in this case, both ends are also isocyanate groups); a trimer such as a burette or isocyanurate of the diisocyanate; Diisocyanate or diisocyanates and trimethylolpropane, penta Examples thereof include adducts with other functional alcohols such as polyfunctional alcohols such as erythritol and glycerin, or these ethylene oxide adducts.
  • Examples of the butyl monomer having a hydroxyl group in the molecule include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, diethylene glycol mono ( (Meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene dallicol mono (meth) acrylate, otaethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, dipropylene glycol mono ( (Meth) acrylate, tripropylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, polypropylene glycol mono ) Atalylate, dibutylene glycol mono (meth) acrylate, tribubutylene glycol mono (meth) acrylate, tetra
  • the monomer having a urethane group tri ((meth) acryloyloxy) isocyanurate, di (meth) acrylated isocyanurate, ethylene oxide-modified isocyanuric acid tri (meth) atalyte.
  • examples thereof include compounds having an isocyanurate ring such as a rate.
  • compounds represented by the following structural formula (13) or structural formula (14) are preferable. From the viewpoint of tentability, it is particularly preferable that at least the compound represented by the structural formula (14) is included. In addition, these compounds may be used alone or in combination of two or more.
  • ⁇ ⁇ represents a hydrogen atom or a methyl group, respectively.
  • X to X represent alkylene oxides, which may be used alone or in combination of two or more.
  • alkylene oxide group examples include, for example, an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, a combination of these (random and block combinations) Among them, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a combination thereof is more preferable an ethylene oxide group or a propylene oxide group.
  • ml to m3 represent an integer of 1 to 60, preferably 2 to 30, more preferably 4 to 15 force! / ⁇ .
  • Y 1 and Y 2 represent a divalent organic group having 2 to 30 carbon atoms, such as an alkylene group, an arylene group, an alkkelene group, Alkynylene group, carbonyl group (one CO), oxygen atom (one O), sulfur atom (one S), imino group (one NH), imino group hydrogen atom is replaced with monovalent hydrocarbon group ⁇ Mino group, sulfonyl group (So) or a combination of these are preferred, and among these, alkyl
  • the alkylene group may have a branched structure or a cyclic structure.
  • Examples of the arylene group that may be substituted with a hydrocarbon group include, for example, a phenylene group, a tolylene group, a diphenylene group, a naphthylene group, and the following groups. It is done.
  • Examples of the group in which these are combined include a xylylene group.
  • the alkylene group, arylene group, or a combination of these may further have a substituent.
  • substituents include a halogen atom (for example, a fluorine atom, a chlorine atom, Bromine atom, iodine atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group Groups (for example, acetooxy groups, butyryloxy groups), alkoxy carbo yl groups (for example, methoxy carbo yl groups, ethoxy carbo ol groups), aryl carbo yl groups (for example, phenoxy carbo ol groups), etc. Is mentioned.
  • n represents an integer of 3 to 6, and 3, 4 or 6 is preferable from the viewpoint of the raw material supply ability for synthesizing the polymerizable monomer.
  • Z represents an n-valent (trivalent to hexavalent) linking group, and examples thereof include any of the groups shown below.
  • X represents an alkylene oxide.
  • m4 represents an integer of 1 to 20.
  • n is 3-6
  • A represents an n-valent (trivalent to hexavalent) organic group.
  • Examples of A include, for example, an n-valent aliphatic group, an n-valent aromatic group, or an alkylene group, an arylene group, an alkylene group, an alkylene group, a carbonyl group, oxygen, and the like.
  • Preferred is an atom, sulfur atom, imino group, a substituted amino group in which a hydrogen atom of an imino group is substituted with a monovalent hydrocarbon group, or a group in combination with a sulfo group, an n-valent aliphatic group, An n-valent aromatic group or a group in which these are combined with an alkylene group, an arylene group, or an oxygen atom is more preferable.
  • the group is particularly preferred.
  • the number of carbon atoms of A is preferably an integer of 1 to 100, for example, an integer of 1 to 50, more preferably an integer of 3 to 30 is particularly preferable.
  • the n-valent aliphatic group may have a branched structure or a cyclic structure.
  • the number of carbon atoms of the aliphatic group for example, an integer of 1 to 30 is preferable, and an integer of 1 to 20 is more preferable, and an integer of 3 to 10 is particularly preferable.
  • the n-valent aliphatic group or aromatic group may further have a substituent.
  • substituents include a hydroxyl group and a halogen atom (for example, a fluorine atom, a chlorine atom, Oxygen atom, iodine atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example,
  • the alkylene group may have a branched structure or a cyclic structure.
  • the number of carbon atoms of the alkylene group for example, an integer of 1 to 18 is preferable, and an integer of 1 to 10 is more preferable.
  • the arylene group may be further substituted with a hydrocarbon group.
  • the number of carbon atoms of the arylene group is preferably an integer of 6 to 18, more preferably an integer of 6 to 10.
  • the number of carbon atoms of the monovalent hydrocarbon group of the substituted imino group is preferably an integer of 1 to 18, more preferably an integer of 1 to 10.
  • Examples of the compounds represented by the structural formulas (13) and (14) include the following structural formulas (15)
  • n, nl, n2 and m represent 1 to 60, 1 represents 1 to 20, and R represents a hydrogen atom or methyl. Represents a group.
  • the monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected depending on the purpose.
  • a polyhydric alcohol compound having an aryl group a polyvalent amine compound.
  • esters or amides of unsaturated carboxylic acids with at least any of the above compounds and polyamino amino alcohol compounds are examples of the above compounds.
  • polyhydric alcohol compound examples include polystyrene oxide, xylylenediol, di--hydroxyethoxy) benzene, 1, 5 Dihydroxy mono 1, 2, 3, 4-tetrahydronaphthalene, 2, 2 diphenyl 2, 1, 3 propanediol, hydroxybenzyl alcohol, hydroxyethyl resorcinol, 1 phenyl 1, 2 ethanediol, 2, 3, 5, 6-tetramethyl- ⁇ -xylene ⁇ , ⁇ '-diol, 1, 1, 4, 4-tetraphenol 2-nor 1, 4-butanediol, 1, 1, 4, 4-tetrafluoro ninole 2 butyne 1, 4-diol 1, 1'—Bee 2—Naphthol, dihydroxynaphthalene, 1, 1'-methylene oji 2 Naphthol, 1, 2, 4 benzenetriol, bi
  • xylylene bis (meth) acrylamide, novolac-type epoxy resin bisphenol A diglycidyl ether and other glycidyl compounds 0 compounds obtained by adding ⁇ unsaturated carboxylic acid, phthalic acid N trimellit Vinyl monomers that contain acid and other hydroxyl groups in the molecule Esterified products obtained, diallyl phthalate, triallyl trimellitic acid, diallyl benzendisulfonate, cationically polymerizable dibule ethers as polymerizable monomers (for example, bisphenol ⁇ Dibutyl ether), epoxy compounds (for example, novolak type epoxy resin, bisphenol A diglycidyl ether, etc.), bur esters (for example, dibutyl phthalate, dibuter terephthalate, divinylbenzene 1,3 disulfonate, etc.) , Still Compounds such as dibutenebenzene, p-aryl styrene, p-iso
  • R 4 and R 5 represent a hydrogen atom or an alkyl group.
  • X and X each represents an alkylene oxide group, and may be one kind alone.
  • alkylene oxide group examples include an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, and a combination of these (which may be combined in any of random and block), Among them, among these, ethylene oxide An ethylene oxide group and a propylene oxide group, which are preferred are a group, a propylene oxide group, a butylene oxide group, or a combination thereof.
  • m5 and m6 are preferably integers of 1 to 60, more preferably integers of 2 to 30, and particularly preferably integers of 4 to 15.
  • T represents a divalent linking group, for example, methylene, ethylene, MeC
  • Examples include Me, CF CCF, CO, and SO.
  • ⁇ Ar 2 represents an aryl group which may have a substituent, and examples thereof include phenylene and naphthylene.
  • substituent include an alkyl group, an aryl group, an aralkyl group, a halogen group, an alkoxy group, or a combination thereof.
  • the monomer having an aryl group examples include 2, 2 bis [4 (3 (meth) acryloxy 2 hydroxypropoxy) phenol] propane, 2, 2 bis [4 ((meth) acrylic. Oxyethoxy) phenol] propane, a phenolic OH group, substituted with 2 to 20 ethoxy groups, 2, 2 bis (4-(((meth)) allyloyloxypolyethoxy) Phenol) propane (eg, 2, 2 bis (4 ((meth) acryloyloxydiethoxy) phenol) propane, 2, 2 bis (4— ((meth) acryloyloxytetraethoxy) phenol) -Ru) propane, 2,2 bis (4-(((meth)) aryloxypentaethoxy) fele) pouch pan, 2,2 bis (4 — (((meth) attayloxydedecaethoxy) wee -Lu) propane, 2,2bis (4 — ((meth) atarylloyl
  • Examples of the polymerizable compound having a bisphenol skeleton and a urethane group include a hydroxyl group at the terminal obtained as an adduct such as bisphenol and ethylene oxide or propylene oxide, or a polyaddition product.
  • Examples of the compound include a compound having an isocyanate group and a polymerizable group (for example, 2-isocyanate ethyl (meth) acrylate, ⁇ , ⁇ -dimethyl-benzylbenzyl isocyanate) and the like.
  • a polymerizable monomer other than the monomer containing a urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the pattern forming material are not deteriorated.
  • Examples of the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring include an unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, And an amide of an unsaturated carboxylic acid and a polyvalent amine compound.
  • an unsaturated carboxylic acid for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, And an amide of an unsaturated carboxylic acid and a polyvalent amine compound.
  • ester monomer of the unsaturated carboxylic acid and the aliphatic polyhydric alcohol compound examples include, for example, (meth) acrylic acid ester, ethylene glycol di (meth) atrelate, and a number of ethylene groups of 2 to Polyethylene glycol di (meth) acrylate (eg, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) ) Phthalate, dodecaethylene glycol di (meth) acrylate, tetradeca ethylene glycol di (meth) acrylate, etc.), propylene glycol di (meth) acrylate, polypropylene glycol di (2-18 propylene groups) (Meta) attalate (eg Jipuropire glycol di (meth) Atari rate, tripropylene glycol di (meth) Atari rate, tetrapropylene glyco
  • ethylene glycol di (meth) acrylate polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, ethylene glycol chain Z Dialkyl (ethylene) chain with at least one propylene glycol chain (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra ( (Meta) Atalylate, Pentaerythritol Triatalylate, Pen Taerythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerol tri (meth) acrylate, diglycerol di (meth) acrylate, 1, 3 propane Diol di (meth) acrylate, 1, 3 propane Diol di (meth) acrylate
  • ester (itaconic acid ester) of the itaconic acid and the aliphatic polyhydric alcohol compound examples include ethylene glycol diitaconate, propylene glycol diitaconate, and 1,3 butanediol diitaco. 1,4,1 butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate, and sorbitol tetritaconate.
  • ester (crotonic acid ester) of the crotonic acid and the aliphatic polyhydric alcohol compound examples include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol. Examples include tetradicrotonate.
  • esters (isocrotonic acid ester) of the isocrotonic acid and the aliphatic polyhydric alcohol compound examples include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, and sorbitol tetraisocrotonate. Etc.
  • esters (maleic acid ester) of the maleic acid and the aliphatic polyhydric alcohol compound examples include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate and sorbitol. Examples include tetramaleate.
  • Examples of the amide from which the polyvalent amine compound and the unsaturated carboxylic acid compound are also derived include, for example, Samethylene bis (meth) acrylamide, Ottamethylene bis (meth) acrylamide, Jetylene triamine tris (meth) acrylamide, Diethylene Triamine bis (meth) acrylamide.
  • examples of the polymerizable monomer include butanediol 1, 4 Diglycidyl ether, cyclohexane dimethanol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether , Compounds obtained by adding ⁇ , ⁇ -unsaturated carboxylic acid to glycidyl group-containing compounds such as glyceryl triglycidyl ether, JP-A 48-64183, JP-B 49 43191, JP-B Polyester acrylate, polyester (meth) acrylate oligomers and epoxy compounds (for example, butanediol 1,4-diglycidy
  • Photo-curing properties described in polyfunctional ata such as epoxy acrylates reacted with acrylic acid and metatareres ⁇ , Journal of the Adhesion of Japan, vol.20, ⁇ .7, pages 300 to 308 (1984) Monomers and oligomers, allylic esters (eg, diaryl phthalate, diaryl adipate, diaryl malonate, diaryl amide (eg, diaryl acetate amide), cationically polymerizable dibule ethers (eg, butanedio 1,4-dibutyl ether, cyclohexane dimethanol dibulle ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, dipropylene glycol Conorozorino Resinino Reinenore, Hexan di Resorinino Reinenore , Trimethylonorepropan trivinyl ether, pentaerythritol tetravinyl ether, gly
  • bull esters examples include divinyl succinate, dibula adipate and the like.
  • polyfunctional monomers or oligomers may be used alone or in combination of two or more.
  • the polymerizable monomer may be used in combination with a polymerizable compound (monofunctional monomer) containing one polymerizable group in the molecule, if necessary.
  • Examples of the monofunctional monomer include a compound exemplified as a raw material for the binder, a dibasic mono ((meth) atallylooxyalkyl ester) mono (noro) described in JP-A-6-236031.
  • Monofunctional monomers such as hydroxyalkyl esters (for example, ⁇ -chloro-j8-hydroxypropyl j8′-methacryloyloxychetilo o-phthalate, etc.), Patent 2744643, WOOOZ52529, Patent 2548016, etc. And the compounds described.
  • the content of the polymerizable compound in the photosensitive layer is, for example, preferably 5 to 90% by mass, more preferably 15 to 60% by mass, and particularly preferably 20 to 50% by mass.
  • the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (extruding failure of the roll end force) may be deteriorated. is there.
  • LOO mass% is preferable 20-: LOO mass% is more preferable 40-: LOO Mass% is particularly preferred.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Photoexcitations that are sensitive to visible light are preferred. It may be an activator that causes some action with the sensitizer and generates active radicals. An initiator that initiates cationic polymerization according to the type of monomer may be used.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like.
  • a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred.
  • Examples of the hexarylbiimidazole include 2, 2 'bis (2-clonal phenol) 4, 4', 5, 5'-tetraphenyl biimidazole, 2, 2'-bis ( o Fluoro-phenyl) 4, 4 ', 5, 5' — Tetraphenyl bibiimidazole, 2, 2 ′ — Bis (2 bromophenol) 1, 4, 4 ', 5, 5' — Tetra-phenol biimidazole, 2, 2 '— Bis (2, 4 Diclonal Membrane) 4, 4', 5, 5 '— Tetraphenol Biimidazole, 2, 2' — Bis (2 — Diclonal Membrane) 4 , 4 ', 5, 5' — Tetra (3-methoxyphenol) biimidazole, 2, 2 '— Bis (2-chlorophenol) 1, 4, 4', 5, 5 '— Tetra (4-methoxyphenol) -L) biimidazole, 2,2'-bis (4-meth
  • the biimidazoles can be easily prepared by the method disclosed in Bull. Chem. Soc. Japan, 33, 565 (1960), and J. Org. Chem, 36 (16) 2262 (1971), for example. Together Can be made.
  • halogenated hydrocarbon compounds having a triazine skeleton examples include compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), and described in British Patent 1388492.
  • Examples thereof include compounds described in JP-A-62-58241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, and compounds described in US Pat. No. 421 2976.
  • Examples of the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include, for example, 2 phenol-4, 6 bis (trichloromethyl) -1, 3, 5 Triazine, 2 — (4 Chlorphenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4 Tolyl) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2— (4-Methoxyphenyl) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2,4 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2, 4, 6 Tris (trichloromethyl) -1, 3, 5 Triazine, 2-methyl-4, 6 Bis (trichloromethyl) -1,
  • Examples of the compounds described in the British Patent 1388492 include 2-styryl
  • Examples of the compound described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine. , 2- (4-Ethoxy-naphtho-1-yl) -4,6 bis ( ⁇ chloromethyl) -1,3,5 riadine, 2- [4- (2-ethoxyethyl) -naphtho-1-yl ] -4,6 bis (trichloromethyl) 1,3,5 triazine, 2- (4,7 dimethoxymononaphtho-1-yl) 4,6 bis (trichloro) Rumethyl) —1, 3, 5 ⁇ lyazine, and 2- (acenaphtho-5-yl) -4,6 bis (trichloromethyl) -1, 3, 5 triazine.
  • Examples of the compounds described in the specification of the German Patent 3337024 include 2- (4-Styrene Norefiniore) 4, 6 bis (trichloromethinole) -1,3,5 Triazine, 2- (4— (4-methoxystyryl) phenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (1-naphthyl vinylenephenol) 1,4 bis (trichloromethyl) 1,3 , 5 Triazine, 2 Chlorostyryl 1,4,6 Bis (trichloromethyl) 1, 3,5 Triazine, 2— (4 Thiophene-1,2 Bilenphenol) 1,4,6 Bis (trichloromethyl) 1, 3, 5— Triazine, 2— (4 thiophene, 3 bilenphenol), 1, 4, 6 Bis (trichloromethyl), 1, 3, 5 Triazine, 2— (4 furan, 1 biphenylene) 1,6 bis (trichloromethyl) 1, 3,5 triazine, and 2— (4— (4-
  • Examples of the compound described in FC Schaefer et al., J. Org. Chem .; 29, 1527 (1964) include 2-methyl-4,6 bis (tribromomethyl) -1,3,5 Triazine, 2, 4, 6 Tris (tribromomethyl) 1, 3, 5 Triazine, 2, 4, 6 Tris (dibromomethyl) 1, 3, 5 Triazine, 2 Amamino-4-methyl-6 Tri (Bromomethyl) — 1, 3, 5 triazine and 2-methoxy-4-methyl 6-trichloromethyl 1, 3, 5 triazine.
  • Examples of the compounds described in JP-A-62-58241 include 2- (4-phenylethyl-sulfur) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- ( 4—Naphthyru 1-Ethurhu-Lu 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 Trilluture) Fuel) — 4, 6 Bis (Trichloromethyl) —1, 3, 5 —Triazine, 2- (4— (4-Methoxyphenyl) 4,4-methyl (4-methoxyphenyl) 4,6-triphenyl) 1,6,5-triazine, 2— (4— (4-Isopropylphenol) (Phenol) 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4-Ethylfe-Luture) Grav) 1, 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine And so on.
  • Examples of the compound described in JP-A-5-281728 include 2- (4 trifluoromethylphenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6—Difluorophenol) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2, 6 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine 2- (2, 6 dibromophenol) 1,6,6 bis (trichloromethyl) 1, 3, 5 triazine and the like.
  • Examples of the compound described in JP-A-5-34920 include 2,4 bis (trichloromethyl) -6- [4- (N, N-diethoxycarboromethylamino) -3-bromophenol. ] — 1, 3, 5 triazine, trihalomethyl-s triazine compounds described in US Pat. No. 4,239,850, and 2, 4, 6 tris (trichloromethyl) —s triazine, 2- (4-chloro) (Fuel) 4, 6-bis (tribromomethyl) s triazine.
  • Examples of the compounds described in the above-mentioned US Pat. No. 4,212,976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl 1,3,4-oxadiazole, 2 trichloromethyl).
  • Examples of the oxime derivative suitably used in the present invention include compounds represented by the following structural formulas (36) to (69). [0191] [Chemical 40]
  • ketone compound examples include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzo Phenon, 2-Kanoreboki Cibenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenone tetracarboxylic acid or its tetramethyl ester, 4, 4, monobis (dialkylamino) benzophenones (eg, 4, 4, monobis (dimethylamino) benzophenone, 4, 4, 1-bisdicyclohexylamino) benzophenone, 4, 4, 1-bis (jetylamino) benzophenone, 4, 4, 1-bis (dihydroxyethylamino) benzophenone, 4-methoxy-1-4′-dimethylaminobenzophenone, 4, 4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone,
  • meta-octenes examples include bis (7? 5-2, 4-cyclopentagen 1-yl) -bis (2, 6 difluoro 3- (1H pyrrole-1-yl). —Phenol) Titanium, 7? 5 Cyclopentagel-6 Tame-Lu Iron (1 +) —Hexafluorophosphate (1), JP-A-53-133428, JP-B-57-1819, And compounds described in US Pat. No. 57-6096 and US Pat. No. 3,615,455.
  • Atalidine derivatives for example, 9-phenol lysine, 1,7 bis (9,9, -ataridyl) heptane, etc.
  • N-phenol glycine for example, 9-phenol lysine, 1,7 bis (9,9, -ataridyl) heptane, etc.
  • Halogen compounds eg, carbon tetrabromide, felt rib mouth methylsulfone, felt trichloromethyl ketone, etc.
  • coumarins eg, 3- (2-benzofuroyl) -7-jetylaminocoumarin, 3- (2 Benzofuroyl)-7-(1-Pyrrolidyl) coumarin, 3 Ben Zoyl 7 Jetylaminocoumarin, 3— (2-Methoxybenzoyl) 7 Jetylamino Nocoumarin, 3 -— (4-Dimethylaminobenzol) 7—Jetylaminocoumarin, 3,3, 1 Carborubbis (5, 7
  • Amines e.g., ethyl 4-dimethylaminobenzoate, n-butyl 4-dimethylaminobenzoate, phenethyl 4-dimethylaminobenzoate, 2-dimethylaminobenzoic acid 2-phthalimidoethyl, 4-dimethylaminobenzoic acid 2-methacryloyloxychetyl, pentamethylenebis (4 Dimethylaminobenzoate), 3 Dimethylaminobenzoic acid phenethyl, pentamethylene ester, 4 Dimethylaminobenzaldehyde, 2 Chlorone 4-Dimethylaminobenzaldehyde, 4-Dimethylaminobenzil alcohol, Ethyl (4-dimethylaminobenzoyl) acetate , 4-piberidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl-4-toluidine, N, N jetyl
  • Acylphosphine oxides eg, bis (2, 4, 6 trimethylbenzoyl) -phenylphosphine oxide, bis (2, 6 dimethoxybenzoyl) -1,2,4,4 trimethyl monopentylphenol -Luphosphinoxide, LucirinTPO, etc.
  • the photopolymerization initiators may be used singly or in combination of two or more.
  • combinations of two or more include, for example, a combination of hexarylbiimidazole and 4 aminoketones described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516 and trihalomethyl-s—
  • the content of the photopolymerization initiator in the photosensitive layer is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass.
  • Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, color formers, colorants, thermal crosslinking agents, and the like, and further adhesion promoters to the substrate surface and other auxiliary agents.
  • sensitizers thermal polymerization inhibitors, plasticizers, color formers, colorants, thermal crosslinking agents, and the like
  • further adhesion promoters to the substrate surface and other auxiliary agents.
  • pigments, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc. Also good.
  • properties such as the stability, photographic properties, print-out properties, and film properties of the target pattern forming material can be adjusted.
  • the sensitizer can be appropriately selected by using visible light, ultraviolet light, visible light laser, or the like as light irradiation means described later.
  • the sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
  • substances for example, radical generator, acid generator, etc.
  • energy transfer, electron transfer, etc. for example, energy transfer, electron transfer, etc.
  • the sensitizer may be appropriately selected from known sensitizers without particular limitations.
  • known polynuclear aromatics for example, pyrene, perylene, triphenylene
  • xanthenes for example, fluorescein, eosin, erythrucine, rhodamine B, rose bengal
  • cyanines for example, indocarbo Cyanine, thiacarbocyanine, oxacarbyanine
  • merocyanines eg, merocyanine, carbomerocyanine
  • thiazines eg, thionine, methylene blue, toluidine blue
  • atalidines eg, atalidine orange, chloroflavin, acriflavine
  • Anthraquinones eg, anthraquinone
  • squaliums eg, squalium
  • attaridones eg, attaridone, chloroatalidone, N-methyl at
  • Examples of combinations of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like.
  • the content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on all components of the photosensitive resin composition. 2-10% by weight is particularly preferred.
  • the content is less than 0.05% by mass, the sensitivity to active energy rays decreases, the exposure process takes time, and the productivity may decrease.
  • the photosensitive layer May precipitate during storage.
  • the thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
  • thermal polymerization inhibitor examples include 4-methoxyphenol, hydroquinone, alkyl or aryl substituted nanoquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6 di-tert-butyl-4 cresol, 2,2, -methylenebis (4-methyl-6-tert-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, copper and organic chelating agent reactants, methyl salicylate, and phenothiazine, nitrosoy compounds, -tosoy compounds and chelates of A1.
  • the content of the thermal polymerization inhibitor is preferably 0.005 to 5% by mass, more preferably 0.005 to 2% by mass, based on the polymerizable compound of the photosensitive layer. 01 to 1% by mass is particularly preferred.
  • the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.
  • the plasticizer should be added to control the film physical properties (flexibility) of the photosensitive layer.
  • plasticizer examples include dimethyl phthalate, dibutyl phthalate, diisopropyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diphenyl phthalate.
  • Phthalic acid esters such as ril phthalate and octyl capryl phthalate; triethylene glycol diacetate, tetraethylene glycol diacetate, dimethyl dallicose phthalate, ethino retino eno ethino reglycolate, methyl phthal yl acetyl dalicolate, buty Glycol esters such as norephthalino lebutinoglycolate and triethylene glycol dicabrylate; tricresyl phosphate, triphenyl Phosphate esters such as sulfate; 4 Toluenesulfonamide, Benzenesulfonamide Amides such as N-n-butylbenzenesulfonamide, N-n-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sebacate, dioctyl sepacate
  • the content of the plasticizer is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, and particularly preferably 1 to 30% by mass with respect to all components of the photosensitive layer. preferable.
  • the color former should be added to give a visible image (printing function) to the photosensitive layer after exposure.
  • Examples of the color former include tris (4-dimethylaminophenol) methane (leucocrystal violet), tris (4-jetylaminophenol) methane, and tris (4-dimethylamino-2-methylphenol).
  • Methane Tris (4-Jetylamino 2-methylphenol) Methane, Bis (4-dibutylaminophenol) One [4 (2-Cyanethyl) methylaminophenol] Methane, Bis (4-dimethylaminophenol) 2 Aminotriarylmethanes such as quinolylmethane and tris (4 dipropylaminophenol) methane; 3, 6-bis (dimethylamino) 9-phenyl-xanthine, 3 —amino 6 dimethylamino mono 2-methyl 9— (2 Mouthphenyl) Aminoxanthines such as xanthine; 3, 6 bis (jetylamino) 9 (2 etoxycarbol) thixanthene, 3,
  • the color former is combined with a halogen compound for the purpose of coloring the leuco body.
  • halogen compound examples include halogenated hydrocarbons (for example, carbon tetrabromide, iodine form, bromoethylene, odorous methylene, amyl bromide, odorous isoamyl, yowiyamyl, isobutylene bromide, iodine Butyl bromide, diphenylmethyl bromide, hexachloroethane, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, 1,2-dib-mouthed 1,1,2-trichloroethane, 1, 2,3-tribromopronokun, 1-bromo-4-chlorobutane, 1,2,3,4-tetrabromobutane, tetrachlorocyclopropene, hexachlorocyclopentadiene, dibromocyclohexane, 1, 1,1-trichrome 1, 2, bis (4-chlorophenol), etc .
  • organic halogen compounds halogen compounds having two or more halogen atoms bonded to the same carbon atom are preferred. Halogen compounds having three halogen atoms per carbon atom are more preferable. .
  • the organic halogen compounds may be used alone or in combination of two or more. Among these, tribromomethyl phenol sulfonate and 2,4 bis (trichloromethyl) 6 phenol triazole are preferable.
  • the content of the color former is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass with respect to all components of the photosensitive layer, and 0.1 to 5% by mass. % Is particularly preferred.
  • the content of the halogen compound is preferably 0.005 to 5% by mass, more preferably 0.001 to 1% by mass, based on all components of the photosensitive layer.
  • the colorant is not particularly limited and can be appropriately selected according to the purpose.
  • a known pigment such as red, green, blue, yellow, purple, magenta, cyan, black, etc.
  • dyes such as Victoria ⁇ Pure Blue BO (CI 425 95), Auramin (CI 41000), Huatu ⁇ Black HB (CI 26150), Monorai 'Yellow GT (CI Pigment' Yellow 12) , Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent ' Carmine FBB (CI Pigment 'Red 146), Hoster Balm Red ESB (CI Pigment' Violet 19), Permanent 'Ruby FBH (CI Pigment' Red 11), Fastel 'Pink B Supra (CI Pigment' Red 81), Monastral 'First' Blue (C.I. Pigment 'Blue 15), Monolite' First 'Black B (CI Pigment' Black
  • colorant suitable for producing a color filter for example, C. I. pigment
  • the average particle size of the colorant is not particularly limited, and can be appropriately selected according to the purpose.
  • the force is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the average particle diameter is preferably 0.5 / zm or less.
  • a dye can be used for the purpose of coloring the photosensitive resin composition for improving handleability or imparting storage stability.
  • the dye examples include brilliant green (for example, sulfate thereof), eosin, ethyl violet, erythine cin B, methyl green, crystal violet, basic fuchsin, phenolphthalein, 1,3 diphenyltriazine, alizarin red S, Thymolphthalein, methyl violet 2B, quinaldine red, rose bengal, meta-youro, thymolsulfophthalein, xylenol blue, methyl orange, orange IV, diphenyltylocarbazone, 2, 7 diclonal fluorescein, paramethyl red , Congo Red, Benzopurpurin 4B, a Naphthyl Red, Nile Blue A, Phenacetalin , Methyl violet, malachite green, parafuchsin, oil blue # 603 (manufactured by Orient Chemical Industries), rhodamine B, rotamine 6G, Victoria 'pure blue BOH, etc., among which
  • the cationic dye may be a residue of an organic acid or an inorganic acid, such as bromic acid, iodic acid, sulfuric acid, phosphoric acid, oxalic acid, methanesulfonic acid, toluenesulfonic acid, etc. Such as residues
  • the content of the dye is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on all components of the photosensitive layer, and 0.1 to 2% by mass. Is particularly preferred.
  • the thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability, etc.
  • an epoxy resin compound having at least two oxsilane groups in one molecule and an oxetane compound having at least two oxetal groups in one molecule can be used. .
  • the epoxy resin compound examples include bixylenol type or biphenol type epoxy resin ( ⁇ 4000; manufactured by Japan Epoxy Resin Co., Ltd.) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; "Nissan Chemical Industry Co., Ltd.”, "Araldite PT810; Ciba 'Specialty' Chemicals Co., Ltd.”), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A Type epoxy resin, glycidinoreamine type epoxy resin, hydantoin type epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenylmethane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolak Type epoxy resin, tetraf-roll ethane type epoxy resin, glycid Ruphthalate resin, tetraglycidyl xylenol ethane resin, naphthalene group-containing epoxy resin ("ESN
  • Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1, 4-bis [(3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl acrylate , (3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methylate Rume Tatari rate or oligomers thereof or copolymers
  • novolac resin poly (p-hydroxystyl)
  • the solid content in the photosensitive composition solid content of the epoxy resin compound or oxetane compound is preferably 1 to 50 mass%, more preferably 3 to 30 mass%. If the solid content is less than 1% by mass, the hygroscopicity of the cured film is increased, resulting in deterioration of insulation, or solder heat resistance, electroless resistance to plating, etc. If it exceeds 50% by mass, poor developability may cause a reduction in exposure sensitivity, which is not preferable.
  • dicyandiamide benzyldimethylamine, 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxy N , N Amine compounds such as dimethylbenzylamine, 4-methyl-N, N dimethylbenzylamine; Quaternary ammonium salt compounds such as triethylbenzylammochloride; Block isocyanate compounds such as dimethylamine Imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenolimidazole, 4-phenolimidazole, 1-cyan Ethyl 2-phenol imidazole, 1- (2-cyanethyl) 2 Ethyl 4-methyl imidazole and other imidazole derivative bicyclic amidine compounds and salts thereof; Phosphorus compounds such as triphenylphosphine; Melamine
  • the solid content in the solid content of the photosensitive composition of the epoxy resin, the oxetane compound, and a compound capable of accelerating the thermal curing of these with a carboxylic acid is usually 0.01 to 15% by mass. Ah.
  • a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is composed of at least two isocyanates. It may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing a monoto group.
  • a mixture of 1,3 phenolic diisocyanate and 1,4 phenolic diisocyanate, 2, 4 and 2,6 toluene diisocyanate, 1, 3 and 1,4 xylylene diisocyanate Bis (4 isocyanate chain) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, etc .; Polyfunctional alcohols of a bifunctional isocyanate and trimethylolpropane, pentalysitol, glycerin, etc .; an alkylene oxide adduct of the polyfunctional alcohol and an adduct of the bifunctional isocyanate; hexamethylene diisocyanate, Cyclic trimers such as xamethylene 1,6 diisocyanate and its derivatives; It is.
  • the isocyanate groups of the polyisocyanate and its derivatives are used. Use a compound obtained by reacting with a blocking agent.
  • isocyanate group blocking agent examples include alcohols such as isopropanol, tert.-butanol; ⁇ — ratatas such as force prolatatum; phenol, cresol, ⁇ -tert.-butinolephenol, p-sec.—butino Phenenoles, p-sec.
  • Phenols such as amino enoenole, p-octylphenol, p-norphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridin, 8-hydroxyquinoline; dialkyl Active methylene compounds such as malonate, methyl ethyl ketoxime, acetyl acetone, alkylacetoacetoxime, acetoxime, cyclohexanone oxime; and the like.
  • compounds having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
  • aldehyde condensation products can be used.
  • methylol compounds instead of these methylol compounds, the corresponding ethyl or butyl ether, or acetic acid or propionic acid ester may be used. You can also use hexamethoxymethylol melamine, which consists of a formaldehyde condensation product of melamine and urea, or butyl ether of melamine and formaldehyde condensation product.
  • the solid content of the thermal crosslinking agent in the solid content of the photosensitive composition is preferably 1 to 40% by mass, more preferably 3 to 20% by mass. When the solid content is less than 1% by mass, no improvement in the strength of the cured film is observed, and when it exceeds 40% by mass, the developability and the exposure sensitivity may decrease.
  • a well-known adhesion promoter can be used for each layer.
  • adhesion promoter examples include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638.
  • the content of the adhesion promoter is preferably 0.001% by mass to 20% by mass with respect to all components of the photosensitive layer, and more preferably 0.01 to 10% by mass. A mass% to 5 mass% is particularly preferred.
  • the photosensitive layer may be, for example, an organic sulfur compound, peroxide, redox compound, azo or diazo as described in Chapter 5 of "Light Sensitive Systems" by J. Kosa. It may contain a compound, a photoreducing dye, an organic halogen compound, and the like.
  • organic sulfur compound examples include di-n-butyl disulfide, dibenzyl disulfide, 2-mercaprobenthiazole, 2-mercaptobenzoxazole, thiophenol, etyltrichloromethanesulfate, 2- Examples include mercaptobens imidazole.
  • Examples of the peroxide include diethyl butyl peroxide, benzoyl peroxide, and methyl ethyl ketone peroxide.
  • the redox compound also serves as a combination force of peracid compounds and reducing agents, and examples thereof include ferrous ions and persulfate ions, ferric ions and peracid compounds. .
  • Examples of the azo and diazo compounds include ⁇ , ⁇ '-azobis-ylibuchi-tolyl, 2-azobis-2-methylbutyguchi-tolyl, and diaminonium of 4-aminodiphenylamine.
  • Examples of the photoreducible dyes include rose bengal, erythricin, eosin, acriflavine, riboflavin, and thionine.
  • a known surfactant can be added.
  • the surfactant can be appropriately selected from, for example, an anionic surfactant, a cationic surfactant, a non-one surfactant, an amphoteric surfactant, and a fluorine-containing surfactant.
  • the content of the surfactant is preferably 0.001 to 10 mass% with respect to the solid content of the photosensitive resin composition.
  • the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be lowered.
  • a fluorosurfactant contains 40 mass% or more of fluorine atoms in a carbon chain of 3 to 20, and is small from the number of non-bonded ends.
  • Preferable examples also include polymer surfactants having acrylate or metatalylate having a fluoroaliphatic group in which a hydrogen atom bonded to at least 3 carbon atoms is fluorine-substituted as a copolymerization component.
  • the photosensitive layer has a smaller amount of light energy for curing than the first photosensitive layer and the first photosensitive layer! /, And the second photosensitive layer is laminated on the cushion layer in this order.
  • the number of photosensitive layers is N (the number of photosensitive layers is N)
  • the sensitivity of the photosensitive layer on the side away from the support is relatively high compared to the sensitivity of the photosensitive layer on the side close to the support. If a sheet is used, patterns having different thicknesses in N stages can be formed with one kind of pattern forming material.
  • a barrier layer may be provided between each photosensitive layer.
  • the thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. For example, 1-100 ⁇ m is preferable, and 2-50 ⁇ m is more preferable. ⁇ 30 ⁇ m is special Is preferred.
  • the first photosensitive layer When the photosensitive layer is formed by laminating the first photosensitive layer and the second photosensitive layer having a smaller amount of light energy for curing than the first photosensitive layer in this order on the cushion layer, the first photosensitive layer
  • the thickness of the second photosensitive layer can be appropriately selected depending on the purpose.
  • the first photosensitive layer preferably has a thickness in the range of 1 to L00 m, and more preferably in the range of 5 to 80 ⁇ m, particularly 10 to 50 ⁇ m. Preferably it has a thickness in the range. If the thickness of the first photosensitive layer is less than 1 ⁇ m, it may be inappropriate for increasing the film strength, and if the thickness exceeds 100 m, development problems such as development residue may remain. May come out.
  • the thickness of the first photosensitive layer is preferably larger than the thickness of the second photosensitive layer.
  • the barrier layer can be appropriately selected according to the purpose without particular limitation as long as the movement of the substance can be suppressed, and is soluble in an alkaline liquid which may be water-soluble or water-dispersible. It may be insoluble.
  • the ability to suppress the movement of the substance means that the increase or decrease in the content of the target substance in the layer adjacent to the noria layer is suppressed as compared to the case where the noria layer is not provided. Means.
  • the substance can be appropriately selected according to the purpose without any particular limitation, and examples thereof include substances contained in at least one of oxygen, water, the photosensitive layer and the cushion layer.
  • the barrier layer is water-soluble or water-dispersible
  • the barrier layer when the barrier layer is soluble in an alkaline liquid that preferably contains a water-soluble or water-dispersible resin, the alkaline liquid It is preferable to contain soluble greaves.
  • the water solubility is preferably, for example, preferably 0.1% by mass or more, and more preferably 1% by mass or more, with respect to 25 ° C. water.
  • the rosin can be appropriately selected according to the purpose for which there is no particular restriction.
  • examples thereof include various alcohol-soluble varieties, water-soluble varieties, alcohol-dispersible varieties, and water-dispersible varieties.
  • examples thereof include fats, emulsifiable fats, and fats that are soluble in alkaline liquids.
  • specific examples include bulle polymers (for example, polybulal alcohols (modified polybulal alcohols are also included). ), Polyvinyl pyrrolidone, etc.), the above-mentioned vinyl copolymers, water-soluble polyamide, gelatin
  • thermoplastic resin described in Japanese Patent No. 2794242 and the compounds used in the intermediate layer, the binder, and the like can also be used. These may be used alone or in combination of two or more.
  • the barrier layer is insoluble in the alkaline liquid, it is preferable that the barrier layer contains a resin insoluble in the alkaline liquid.
  • Examples of the resin insoluble in the alkaline liquid include a copolymer whose main component is ethylene as a necessary copolymer component.
  • the copolymer having ethylene as an essential copolymer component is not particularly limited and can be appropriately selected according to the purpose.
  • ethylene vinyl acetate copolymer (EV A) ethylene-ethyl acrylate. Copolymer (EEA) and the like.
  • the thickness of the barrier layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness is preferably less than 10 ⁇ m, more preferably 0.1 to 6 ⁇ m 1 ⁇ 5 ⁇ m is particularly preferred.
  • the thickness is 10 / z m or more, light scattering occurs in the barrier layer during exposure, and at least one of resolution and adhesion may be deteriorated.
  • the support is not particularly limited and may be appropriately selected depending on the purpose, but preferably has good light transmittance and more preferably has smooth surface.
  • the support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic.
  • plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose-based film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These can be used alone 2 or more types may be used in combination.
  • the thickness of the support is not particularly limited, and can be appropriately selected according to the purpose.
  • F column; t is 2-150 ⁇ m force S girlish, 5-: LOO ⁇ m force SJ-like girls, 8-50 ⁇ m force S Particularly preferred.
  • the shape of the support is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably long.
  • the length of the long support is not particularly limited, and examples thereof include a length of 10 m to 20000 m.
  • the pattern forming material may form a protective film on the photosensitive layer.
  • Examples of the protective film include those used for the support, paper, polyethylene, paper laminated with polypropylene, and the like. Among these, a polyethylene film and a polypropylene film are preferable.
  • the thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. For example, 5 to: LOO / zm force is preferable, 8 to 50 111 is preferable, and 10 to 30 / zm is preferable. Particularly preferred.
  • the interlayer adhesive strength between the protective film and the photosensitive layer is the smallest among the interlayer adhesive strengths of the other layers.
  • Examples of the combination of the support and the protective film include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc.
  • the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer.
  • a primer layer for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • ultraviolet irradiation treatment for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
  • the coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / !.
  • the pattern forming material is preferably stored, for example, wound around a cylindrical core and wound into a long roll.
  • the length of the long pattern forming material is not particularly limited, and can be appropriately selected, for example, a range force of 10 m to 20, OOOm.
  • slitting may be performed so that it is easy for the user to use, and a long body in the range of 100 m to l, OOOm may be rolled.
  • the support is wound up so as to be the outermost side.
  • the roll-shaped pattern forming material may be slit into a sheet shape.
  • a separator especially moisture-proof and desiccant-containing
  • the protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer.
  • an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed on the surface of the protective film.
  • the undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (particularly 50 to 120 ° C) for 1 to 30 minutes. Can do.
  • the pattern forming material of the present invention includes a release layer, an adhesive layer, a light absorption layer, a surface protective layer, and the like. You may have a layer of. Each of the layers may have one layer or two or more layers.
  • the pattern forming material can be manufactured, for example, as follows. First, the above-mentioned various materials are dissolved, emulsified or dispersed in water or a solvent to prepare a coating solution.
  • the solvent for preparing the coating solution can be appropriately selected according to the purpose without any particular limitation.
  • methanol, ethanol, n-propanol, isopropanol, n-butanol, sec- Alcohols such as butanol and n-hexanol
  • acetone Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone
  • esters such as methoxypropyl acetate
  • aromatic hydrocarbons such as toluene, xylene, benzene, and ethylbenzene
  • tetrasalt-carbon trichloroethylene, chloroform, 1, 1, 1-
  • the cushion layer composition coating solution in which the cushion layer composition is dissolved, emulsified or dispersed, and the barrier layer composition coating solution in which the barrier layer composition is dissolved, emulsified or dispersed are used in a filter. It is preferable that the fine particles and the aggregates thereof, which are solid contents, are removed by filtering with a filter.
  • the effective pore size of the filter used for filtration is preferably 30 m or less, more preferably 0.05 to 1 ⁇ m force, and more preferably 0.25 to 0.3 ⁇ m force ⁇ / ,.
  • the material of the filter examples include, when the coating solution is solvent-based, for example, tetrafluoroethylene resin, polypropylene, polyethersulfone, stainless steel, and the like. preferable.
  • the coating solution is water-soluble or water-dispersible
  • a filter prepared for an aqueous solvent is preferred.
  • a filter made of a polymer material that hardly generates dust is preferable.
  • Examples of the shape of the filter include a disk type, a roll type, a cylindrical type, and a pleated type.
  • the coating solution may be passed through the filter by feeding or pressurized or reduced pressure.
  • the coating solution is preferably defoamed after filtration because air is taken in by the filtration and bubbles may be formed in the film after coating and drying.
  • the defoaming method examples include defoaming by allowing the coating solution to stand after filtration, a method of defoaming with ultrasonic waves, a method of defoaming under reduced pressure, and a method of defoaming by heating.
  • the defoaming by the ultrasonic wave is preferably performed for 30 seconds to 2 hours, and is preferably performed for 5 minutes to 1 hour. Further, the defoaming by heating is preferably allowed to stand at 30 to 50 ° C. for 3 hours or more.
  • the work described above is preferably performed in a clean space of class 1000 or less, preferably in a clean room or clean bench, in order to prevent foreign matter from entering during the work.
  • the cleanness is a value measured by a dust counter.
  • the cushion layer composition coating solution filtered by the filter is applied onto the support and dried to form the cushion layer, and the barrier layer is formed on the cushion layer.
  • a barrier layer composition coating solution is applied and dried to form a barrier layer
  • the photosensitive resin composition solution is applied onto the noor layer or the cushion layer and dried to be photosensitive. Layers can be formed to produce patterning materials.
  • the coating method of the coating solution is not particularly limited, and can be appropriately selected according to the purpose.
  • spray method roll coating method, spin coating method, slit coating method, etasion coating method
  • examples of the coating method include a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
  • the pattern forming material includes a printed wiring board, a protective film, an interlayer insulating film, a solder resist pattern, a color filter, a column material, a rib material, a spacer, a display member such as a partition, a hologram, and a micromachine. It can be widely used for pattern formation such as proofing, and can be particularly suitably used for the pattern forming method and pattern forming apparatus of the present invention.
  • the pattern forming apparatus of the present invention includes the pattern forming material of the present invention, and has at least light irradiation means and light modulation means.
  • the pattern forming method of the present invention comprises at least a laminating step, an exposing step, and a developing step. Including other processes appropriately selected.
  • the laminating step is a step of laminating the pattern forming material on a substrate by at least one of heating and pressurization, and a step of forming a laminate formed by laminating the pattern forming material on the substrate. .
  • the layer structure of the laminate can be appropriately selected according to the purpose without any particular limitation.
  • the layered body, the photosensitive layer, the barrier layer, the cushion layer, and the support are included in this order.
  • Layer structure is preferred ⁇ .
  • the substrate can be appropriately selected from known materials having no particular limitation to materials having high surface smoothness, and having a rough surface.
  • a plate-like substrate (substrate) is preferred.
  • known printed wiring board forming substrates for example, copper-clad laminates
  • glass plates for example, soda glass plates
  • synthetic resin films paper, metal plates, and the like can be given.
  • the pattern forming material is heated and pressed at least slightly on the substrate, while the photosensitive layer in the pattern forming material overlaps the substrate.
  • they can be selected appropriately according to the purpose without any particular limitation.
  • the heating temperature can be appropriately selected according to the purpose for which there is no particular restriction. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
  • the pressure of the pressurization is a force that can be appropriately selected according to the purpose for which there is no particular limitation.
  • F column; t is preferably 0.1 to 1. OMPa force, 0.2 to 0.8 MPa force ⁇ More preferred! / ⁇ .
  • the apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose of restriction, for example, a laminator (for example, Taisei Laminator).
  • a laminator for example, Taisei Laminator
  • a product made by the company, VP- ⁇ is preferable.
  • the exposing step is a step of exposing the photosensitive layer laminated in the laminating step with light irradiated from a light irradiation means, and the photosensitive layer is the photosensitive layer in the pattern forming material. I like it.
  • the exposure can be appropriately selected according to the purpose without any particular limitation, and powers such as digital exposure, analog exposure, etc. Among these, digital exposure is preferable.
  • the digital exposure can be appropriately selected depending on the purpose without any particular limitation.
  • the digital exposure can be performed by a light modulation unit having ⁇ pixel portions that receive and emit light from the light irradiation unit. After the light from the light irradiating means is modulated, the light is passed by the microphone lens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface in the picture element portion are arranged. Are preferred.
  • the light modulation means as long as it has ⁇ pixel portions, it can be appropriately selected according to the purpose without any restriction.
  • a spatial light modulation element or the like is preferable.
  • the spatial light modulation element include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulation element (SLM; Special Light Modulator), and modulated transmitted light by an electro-optic effect.
  • Optical elements PZT elements
  • FLC liquid crystal light shirts
  • DMD is preferable.
  • the DMD 50 has an SRAM cell (memory cell) 60, and a large number (eg, 1024 x 768) of micromirrors 62, each of which constitutes a pixel. It is a mirror device arranged in a shape. In each pixel, a micromirror 62 supported by a support column is provided at the top, and the surface of the micromirror 62 is provided with an Al. A highly reflective material such as minium is deposited. Note that the reflectance of the micromirror 62 is 90% or more, and the arrangement pitch thereof is 13. as an example in both the vertical and horizontal directions.
  • a silicon gate CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke. The entire structure is monolithically configured. ing.
  • the microphone mirror 62 supported by the support column is ⁇ degrees (eg ⁇ 12 °) from the substrate side on which the DMD50 is placed with the diagonal line as the center. ) Tilted within the range.
  • FIG. 2A shows a state tilted to + ⁇ degrees when the micromirror 62 is in the on state
  • FIG. 2B shows a state tilted to ⁇ degrees when the micromirror 62 is in the off state. Therefore, by controlling the inclination of the micromirror 62 in each pixel of the DMD 50 as shown in FIG. 1 according to the pattern information, the laser light incident on the DMD 50 is inclined in the direction of the inclination of each micromirror 62. Reflected to.
  • FIG. 1 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + ⁇ degrees or ⁇ degrees.
  • a controller 302 (see FIG. 12) connected to the DMD 50.
  • a light absorber (not shown) is disposed in the direction in which the laser beam reflected by the micromirror 62 in the off state travels.
  • the DMD 50 be arranged with a slight inclination so that the short side forms a predetermined angle ⁇ (for example, 0.1 ° to 5 °) with the sub-scanning direction.
  • Fig. 3 (b) shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted
  • Fig. 3 (b) shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
  • micromirror array force with a number of micromirrors arranged in the longitudinal direction (eg, 1024)
  • a force with a lot of ⁇ 1_ eg, 756 threads
  • ⁇ 1_ eg, 756 threads
  • the scanning width w in this case is substantially the same.
  • high-speed modulation a method for increasing the modulation speed in the optical modulation means
  • the light modulation means can control any less than n pixel elements arranged continuously from the n pixel elements according to pattern information.
  • the modulation speed per line is determined in proportion to the number of pixels to be used. Using only this increases the modulation rate per line.
  • the laser light B When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light reflected when the microphone mouth mirror of the DMD 50 is in the on state is reflected by the lens systems 54 and 58 on the pattern forming material in the stack. An image is formed on the photosensitive layer 150 (hereinafter referred to as “pattern forming material 150”).
  • pattern forming material 150 An image is formed on the photosensitive layer 150 (hereinafter referred to as “pattern forming material 150”).
  • the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in approximately the same number of pixel units (exposure area 168) as the number of pixels used in the DMD 50. .
  • the non-turn forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region is provided for each exposure head 166. 170 is formed.
  • the DMD 50 has a force in which 768 pairs of micro mirror arrays in which 1024 microphone aperture mirrors are arranged in the main scanning direction are arranged in the sub scanning direction.
  • the controller 302 (see FIG. 12) performs control so that only a part of the micromirror rows (for example, 1024 ⁇ 256 rows) is driven.
  • the micromirror array arranged at the end of the DMD50 may be used as shown in FIG. 4B. May be used.
  • the micromirror array used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.
  • the data processing speed of the DMD50 is limited, and the modulation speed per line is determined in proportion to the number of pixels used. Modulation rate per channel increases. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
  • the stage 152 is moved along the guide 158 by the stage driving device 304. Returning to the origin on the uppermost stream side of the gate 160, it is moved again along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed.
  • modulation can be performed twice as fast per line as compared to using all 768 sets. Also, when only 256 pairs are used in the 768 micromirror array, modulation can be performed three times faster per line than when all 768 pairs are used.
  • the micromirror array force in which 1024 micromirrors are arranged in the main scanning direction is provided with the DMD arranged in 768 threads in the subscanning direction.
  • the modulation speed per line becomes faster than when all the micromirror arrays are driven.
  • the force described in the example of partially driving the micromirror of the DMD has a length in the direction corresponding to the predetermined direction is longer than the length in the direction intersecting the predetermined direction. Even if a long and narrow DMD in which a number of micromirrors that can change the angle of the reflecting surface are arranged in two dimensions is used, the number of micromirrors that control the angle of the reflecting surface is reduced. Can be fast.
  • the exposure method is performed while relatively moving the exposure light and the photosensitive layer.
  • the exposure method is preferably used in combination with the high-speed modulation. Thereby, high-speed exposure can be performed in a short time.
  • the entire surface of the pattern forming material 150 may be exposed by one scan in the X direction by the scanner 162, as shown in FIGS. 6A and 6B. After scanning the pattern forming material 150 in the X direction, the scanner 162 is moved one step in the Y direction, and scanning is performed in the X direction. The entire surface of 150 may be exposed.
  • the skier The na 162 has 18 exposure heads 166.
  • the exposure head has at least the light irradiation means and the light modulation means.
  • the exposure is performed on a partial area of the photosensitive layer, whereby the partial area is cured, and in the development step described later, an uncured area other than the cured partial area. The area is removed and a pattern is formed.
  • the pattern forming apparatus including the light modulating means includes a flat plate stage 152 for adsorbing and holding a sheet-like pattern forming material 150 on the surface.
  • Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-like installation table 156 supported by the four legs 154.
  • the stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 158 so as to be reciprocally movable.
  • the pattern forming apparatus includes a driving device (not shown) for driving the stage 152 along the guide 158.
  • a U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each end of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156.
  • a scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the pattern forming material 150 are provided on the other side. Yes.
  • the scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152.
  • the scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.
  • the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (eg, 3 rows and 5 columns). I have. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the pattern forming material 150. When individual exposure heads arranged in the m-th row and the n-th column are shown, they are expressed as an exposure head 166.
  • An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction. Accordingly, as the stage 152 moves, a strip-shaped exposed region 170 is formed in the pattern forming material 150 for each exposure head 166. If the exposure area by each exposure head arranged in the m-th row and the n-th column is shown, the exposure area 168
  • each of the exposure heads in each row arranged in a line is arranged in the arrangement direction so that the strip-shaped exposed areas 170 are arranged without gaps in the direction perpendicular to the sub-scanning direction. Are shifted by a predetermined interval (a natural number multiple of the long side of the exposure area, twice in this example). Therefore, exposure between the exposure area 168 and the exposure area 168 in the first row is not possible.
  • Unexposed areas are exposed using the exposure area 168 in the second row and the exposure area 168 in the third row.
  • a light modulation means spatial light modulation element that modulates each pixel in accordance with pattern information
  • a digital 'micromirror' device manufactured by Texas Instruments Inc., USA
  • the DMD 50 is connected to the controller 302 (see FIG. 12) having a data processing unit and a mirror drive control unit.
  • the data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The areas to be controlled will be described later.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.
  • a fiber array light source including a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 for correcting the laser light emitted from the fiber array light source 66 and collecting it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order.
  • the lens system 67 is schematically shown.
  • the lens system 67 includes a condensing lens 71 that condenses laser light B as illumination light emitted from the fiber array light source 66, and an optical path of light that has passed through the condensing lens 71.
  • Rod-shaped optical integrator inserted into the rod hereinafter referred to as rod integrator
  • the condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform intensity in the beam cross section.
  • the shape and action of the rod integrator 72 will be described in detail later.
  • the laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70.
  • the TIR prism 70 is omitted.
  • an imaging optical system 51 that images the laser beam B reflected by the DMD 50 onto the pattern forming material 150 is disposed on the light reflection side of the DMD 50.
  • This imaging optical system 51 is schematically shown in FIG. 10, but as shown in detail in FIG. 11, the first imaging optical system consisting of lens systems 52 and 54 and lens systems 57 and 58 are used.
  • the second imaging optical system, the microlens array 55 inserted between these imaging optical systems, and the aperture array 59 are also configured.
  • the microlens array 55 is formed by two-dimensionally arranging a number of microlenses 55a corresponding to each picture element of the DMD 50.
  • the microlens 55a is arranged by 1024 x 256 rows.
  • the arrangement pitch of microlenses 55a is 41 ⁇ m in both the vertical and horizontal directions.
  • the micro lens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed of the optical glass BK7.
  • the shape of the microlens 55a will be described in detail later.
  • the beam diameter of the laser beam B at the position of each microlens 55a is 41 ⁇ m.
  • the aperture array 59 is formed by forming a large number of apertures (openings) 59a corresponding to the respective microlenses 55a of the microlens array 55.
  • the diameter of the aperture 59a is, for example, 10 m.
  • the first imaging optical system magnifies the image by the DMD 50 by a factor of 3 to obtain a microlens array 5 5 forms an image. Then, the second imaging optical system forms an image on the pattern forming material 150 and projects it by enlarging the image that has passed through the microlens array 55 by 1.6 times. Therefore, as a whole, the image formed by the DMD 50 is magnified by 4.8 times and is formed and projected on the pattern forming material 150.
  • a prism pair 73 is disposed between the second imaging optical system and the pattern forming material 150. By moving the prism pair 73 in the vertical direction in FIG. You can adjust the focus of the image above. In the figure, the pattern forming material 150 is sub-scan fed in the direction of arrow F.
  • the picture element portion can be appropriately selected according to the purpose without particular limitation as long as it can receive and emit light from the light irradiation means.
  • the pattern portion of the present invention can be selected.
  • the pattern formed by the forming method is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror.
  • the number of picture element portions (n mentioned above) of the light modulation element can be appropriately selected according to the purpose without particular limitation.
  • the arrangement of the picture element portions in the light modulation element can be appropriately selected according to the purpose for which there is no particular limitation.
  • a two-dimensional arrangement is preferably arranged in a lattice shape. More preferred to be.
  • the microlens array can be appropriately selected depending on the purpose without any limitation as long as microlenses having an aspheric surface capable of correcting aberration due to distortion of the exit surface in the pixel portion are arranged. .
  • the aspherical surface can be appropriately selected depending on the purpose without particular limitation, and for example, a toric surface is preferable.
  • FIG. 13A shows DMD50, light irradiation means 144 for irradiating DMD50 with laser light, and a lens system (imaging optical system) 454, 458, DM D50 for enlarging and imaging the laser light reflected by DMD50.
  • a microlens with multiple microlenses 474 corresponding to each pixel part Aperture array 476 provided with a number of apertures 478 corresponding to each of the microlenses of ray 472 and microlens array 472, and a lens system that forms an image of laser light that has passed through the apertures on exposed surface 56 (imaging optics) System) Represents an exposure head composed of 480 and 482.
  • FIG. 14 shows the result of measuring the flatness of the reflection surface of the micromirror 62 constituting the DMD 50.
  • the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm.
  • the X direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above.
  • 15A and 15B show the height position displacement of the reflection surface of the micromirror 62 along the X direction and the y direction, respectively.
  • the reflection surface of the micromirror 62 is distorted, and when attention is paid particularly to the center of the mirror, one diagonal direction (y direction) ) Distortion 1S The distortion is larger than the distortion in another diagonal direction (X direction). For this reason, the problem that the shape in the condensing position of the laser beam B condensed by the microlens 55a of the microlens array 55 may be distorted.
  • the microlens 55a of the microlens array 55 has a special shape different from the conventional one. This will be described in detail below.
  • FIG. 16A and FIG. 16B respectively show the front shape and the side shape of the entire microlens array 55 in detail. These figures also show the dimensions of each part of the microlens array 55, and their units are mm.
  • the 1024 ⁇ 256 micromirrors 62 of the DMD 50 are driven. It consists of 1024 microlenses 55a aligned in the vertical direction and 256 vertical rows.
  • the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction.
  • FIG. 17A and FIG. 17B show the front shape and the side shape of one microphone opening lens 55a in the microlens array 55, respectively.
  • FIG. 17A also shows the contour lines of the micro lens 55a.
  • the end face of each microlens 55a on the light exit side is In other words, it is an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62.
  • the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively.
  • the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. ing.
  • FIGS. 19A to 19D show simulation results of the beam diameter in the vicinity of the condensing position (focus position) of the microlens 55a when the microlens 55a has the above-described shape.
  • the surface shape of the microlens 55a used in the simulation is calculated by the following calculation formula.
  • X is the lens optical axis in the X direction. This means the distance of O force
  • Y means the distance of the lens optical axis O force in the y direction.
  • the microlens 55a is placed in the direction of the focal length force in the cross section parallel to the y direction.
  • a toric lens smaller than the focal length in the cross section parallel to the beam, distortion of the beam shape in the vicinity of the condensing position is suppressed. If so, the pattern forming material 150 can be exposed to a higher-definition image without distortion.
  • the region where the beam diameter is small is wider, that is, the depth of focus is larger. It turns out that it is big.
  • the focal length in the cross section parallel to the X direction is parallel to the y direction. If the microlens is made up of a toric lens that is smaller than the focal length in the cross section, similarly, a higher definition image without distortion can be exposed to the pattern forming material 150.
  • the aperture array 59 arranged in the vicinity of the condensing position of the microlens array 55 is arranged so that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. . That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
  • the microlens 55a may be a secondary aspherical shape or a higher order (4th, 6th order, aspherical shape). By adopting the higher-order aspherical shape, the beam shape can be further refined.
  • the end surface of the light exit side of the micro lens 55a is aspheric.
  • a microlens array is configured with one of the two light-passing end surfaces being a spherical surface and the other being a cylindrical surface, the same effect as in the above embodiment can be obtained. It can also be obtained.
  • the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62.
  • the same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflection surface of the micromirror 62 instead of adopting the spherical shape.
  • An example of such a microlens 155a is shown in Figs. 22A and 22B.
  • FIG. 22A and 22B show the front shape and the side shape of the microlens 155a, respectively, and the external shape of the microlens 155a is a parallel plate as shown in the figure.
  • the x and y directions in the figure are as described above.
  • FIG. 23A and FIG. 23B schematically show the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the microlens 155a.
  • the microlens 155a has a refractive index distribution in which the optical axis O force gradually increases outward, and the broken line shown in the microlens 155a in FIG. The positions changed at equal pitches are shown.
  • the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is larger. It is getting shorter. Even when a microlens array composed of such a gradient index lens is used, the same effect as when the microlens array 55 is used can be obtained.
  • a refractive index as described above is also applied to a microlens having an aspherical surface shape like the microlens 55a previously shown in FIGS. 17A, 17B, 18A, and 18B. It is possible to give a distribution and correct aberration due to distortion of the reflecting surface of the micromirror 62 by both the surface shape and the refractive index distribution.
  • the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected.
  • the pattern forming method of the present invention using a spatial light modulation element other than the DMD.
  • the present invention can be applied to correct the aberration due to the distortion and prevent the beam shape from being distorted.
  • the cross-sectional area of the beam line reflected in the ON direction by the DMD 50 is several times (for example, twice) by the lens systems 454 and 458. Enlarged.
  • the expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476.
  • the laser beam that has passed through the aperture enters the lens systems 480 and 482. Further, an image is formed on the exposed surface 56.
  • the laser beam reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 and projected onto the exposed surface 56, so that the entire image area is widened. .
  • the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected onto the exposed surface 56 is the exposure area.
  • MTF Modulation Transfer Function
  • the laser light reflected by the DMD50 corresponds to each pixel part of the DMD50 by each microlens of the microlens array 472. Focused.
  • the spot size of each beam spot BS can be reduced to a desired size (for example, lO ⁇ mX lO ⁇ m). It is possible to perform high-definition exposure by preventing deterioration of characteristics.
  • the exposure area 468 is tilted because the DMD 50 is tilted in order to eliminate gaps between pixels.
  • the aperture array can shape the beam so that the spot size on the exposed surface 56 is constant. At the same time, by passing through an aperture array provided corresponding to each pixel, crosstalk between adjacent pixels can be prevented.
  • the pattern forming method of the present invention may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light quantity distribution correcting optical system composed of a pair of combination lenses.
  • the light quantity distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis is smaller on the exit side than on the entrance side.
  • the light amount distribution on the irradiated surface is corrected so as to be substantially uniform.
  • the light quantity distribution correcting optical system will be described with reference to the drawings.
  • the entire luminous flux width (total luminous flux width) HO and HI is the same for the incident luminous flux and the outgoing luminous flux will be described.
  • the portions denoted by reference numerals 51 and 52 virtually represent the entrance surface and the exit surface of the light quantity distribution correcting optical system.
  • the light quantity distribution correcting optical system expands the light flux width hO of the incident light flux at the central portion with respect to the light having the same light flux width hO, hi on the incident side. On the other hand, it acts to reduce the luminous flux width hi. That is, the width hlO of the outgoing light beam in the central portion and the width hl l of the outgoing light beam in the peripheral portion are set to satisfy hl l ⁇ hlO.
  • the central light flux which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the light utilization as a whole is improved.
  • the light amount distribution on the irradiated surface is made substantially uniform without reducing the use efficiency.
  • the degree of uniformity is, for example, such that the unevenness in the amount of light within the effective area is within 30%, preferably within 20%.
  • Figure 24B shows the case where the total beam width H0 on the incident side is “reduced” to the width H2 before being emitted (H0
  • the light quantity distribution correcting optical system is The light beam with the same luminous flux width h0, hi on the side has a larger luminous flux width hlO in the central part than the peripheral part on the outgoing side, and conversely, the luminous flux width hi 1 in the peripheral part is larger than that in the central part. Try to be small.
  • the reduction rate of the luminous flux the reduction rate for the incident light flux in the central portion is made smaller than that in the peripheral portion, and the reduction rate for the incident light flux in the peripheral portion is made larger than that in the central portion.
  • FIG. 24C shows a case where the entire light flux width H0 on the incident side is “expanded” to the width H3 and emitted (H0 and H3).
  • the light quantity distribution correcting optical system has the same light flux width h0, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side.
  • the light flux width hi 1 at the peripheral part is made smaller than that at the central part.
  • the light quantity distribution correction optical system changes the light flux width at each emission position, and outputs the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis Z1 compared to the incident side. Since the emission side is smaller, the light having the same luminous flux width on the incident side has a larger luminous flux width in the central part than in the peripheral part on the outgoing side, and the luminous flux width in the peripheral part is Smaller than the center. As a result, the light beam in the central part can be utilized to the peripheral part, and a light beam cross-section with a substantially uniform light quantity distribution can be formed without reducing the light use efficiency of the entire optical system.
  • lens data is shown in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution, as in the case where the light irradiation means is a laser array light source.
  • the light intensity distribution of the emitted light beam from the optical fino becomes a Gaussian distribution.
  • the parameters of the present invention The turn forming method can be applied in such a case. Also applicable to cases where the core diameter is close to the optical axis by reducing the core diameter of the multimode optical fiber and approaching the configuration of the single mode optical fiber, etc. It is.
  • Table 1 below shows basic lens data.
  • a pair of combination lenses is composed of two rotationally symmetric aspherical lenses. If the light incident side surface of the first lens arranged on the light incident side is the first surface and the light output side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.
  • the unit of the surface distance di value is millimeter (mm).
  • Refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
  • Table 2 below shows the aspherical data for the first and fourth surfaces.
  • each coefficient is defined as follows.
  • Length of perpendicular line (mm) drawn from a point on the aspheric surface at a height ⁇ from the optical axis to the tangential plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
  • E indicates that the next numerical value is a power index with a base of 10
  • FIG. 26 shows the light quantity distribution of illumination light obtained by the pair of combination lenses shown in Table 1 and Table 2.
  • the horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%).
  • Fig. 25 shows the light intensity distribution (Gaussian distribution) of illumination light when correction is applied.
  • the light amount distribution correction optical system corrects the light amount distribution, which is substantially uniform as compared with the case where the correction is not performed. As a result, it is possible to perform uniform exposure with uniform laser light without reducing the light utilization efficiency.
  • the light irradiation means can be appropriately selected according to the purpose without any particular limitation.
  • a known light source such as a semiconductor laser or means capable of combining and irradiating two or more lights can be mentioned. Among these, means capable of combining and irradiating two or more lights are preferable.
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred.
  • Laser that combines two or more lights hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
  • the ultraviolet power is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and 330 ⁇ ! ⁇ 650mn force ⁇ especially preferred!
  • the wavelength of the laser beam is, for example, preferably 200 to 1500 nm force S, more preferably 300 to 800 nm force S, and 330 mm! ⁇ 500mn force more preferred, 400 ⁇ ! ⁇ 450mn power ⁇ especially preferred! /,
  • Means capable of irradiating the combined laser include, for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces to collect the multi-beam.
  • Means having a collective optical system coupled to the bimode optical fiber is preferred.
  • the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64 as shown in FIG. 27A, and one end of the multimode optical fiber 30 is coupled to each laser module 64. ing.
  • the other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30.
  • the end portion of the multimode optical fiber 31 opposite to the optical fiber 30 is arranged along the main scanning direction orthogonal to the sub-scanning direction, and is arranged in two rows.
  • a laser emitting unit 68 is configured.
  • the laser emitting portion 68 constituted by the end of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. Further, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection.
  • the light exit end face of the multimode optical fiber 31 is easy to collect dust and easily deteriorate due to its high light density, but the protective plate as described above prevents the dust from adhering to the end face and prevents deterioration. Can be delayed.
  • the multimode optical fibers 30 adjacent to each other with a large cladding diameter are multimode.
  • the optical fiber 30 is stacked, and the output end of the optical fiber 31 coupled to the stacked multimode optical fiber 30 is connected to the two multimode optical fibers 30 adjacent to each other at the portion where the cladding diameter is large. They are arranged so as to be sandwiched between the two exit ends.
  • such an optical fiber has a light with a small cladding diameter of 1 to 30 cm in length at the tip of the multimode optical fiber 30 with a large cladding diameter on the laser light emission side. It can be obtained by coupling the fibers 31 coaxially.
  • the two optical fibers are fused and bonded to the incident end face force of the optical fiber 31 and the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide.
  • the diameter of the core 31a of the optical fiber 31 is the same as the diameter of the core 30a of the multimode optical fiber 30.
  • a short optical fiber obtained by fusing an optical fiber having a short length and a large clad diameter to which the clad diameter is fused and the optical fiber is fused is connected to the output end of the multimode optical fiber 30 via a ferrule or optical connector. May be combined.
  • the tip portion can be easily replaced when the diameter of the clad or the optical fiber is broken, and the cost required for exposure head maintenance can be reduced.
  • the optical fiber 31 may be referred to as an emission end portion of the multimode optical fiber 30.
  • the multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber.
  • a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used.
  • the cladding thickness ⁇ (cladding diameter, one core diameter) Z2 ⁇ is set to the 800 nm wavelength band. About 1Z2 when propagating infrared light, 1.
  • the cladding diameter can be reduced to 60 m.
  • the cladding diameter of the optical fiber 31 is not limited to 60 ⁇ m.
  • Conventional fiber array The optical fiber used in the light source has a cladding diameter of 125 m.
  • m is preferably 40 m or less.
  • the cladding diameter of the optical fiber 31 is preferably 10 ⁇ m or more.
  • the laser module 64 includes a combined laser light source (fiber array light source) shown in FIG.
  • This combined laser light source is a multiple array array fixed on the heat block 10.
  • Several for example, 7) chip-shaped lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6, and LD7, and GaN-based semiconductor lasers LD1 to LD7
  • the collimator lenses 11, 12, 13, 14, 15, 16, and 17 are provided correspondingly, one condenser lens 20, and one multimode optical fiber 30.
  • the number of semiconductor lasers is not limited to seven.
  • the GaN semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also common (for example, 100 mW for the multimode laser and 30 mW for the single mode laser).
  • As the GaN-based semiconductor lasers LD1 to LD7 lasers having an oscillation wavelength other than the above-described 405 nm in a wavelength range of 350 nm to 450 nm may be used.
  • the combined laser light source is housed in a box-shaped package 40 having an upper opening, together with other optical elements.
  • the package 40 is provided with a package lid 41 created so as to close the opening thereof. After the degassing process, a sealing gas is introduced, and the opening of the knock 40 is closed by the package lid 41, whereby the package 40 and the package 40 are packaged.
  • the combined laser light source is hermetically sealed in a closed space (sealed space) formed by the cage lid 41.
  • a base plate 42 is fixed to the bottom surface of the package 40.
  • the heat block 10 On the top surface of the base plate 42, the heat block 10, the condensing lens holder 45 that holds the condensing lens 20, and the multimode light.
  • a fiber holder 46 that holds the incident end of the fiber 30 is attached. The exit end of the multimode optical fiber 30 is drawn out of the package through an opening formed in the wall surface of the knock 40.
  • a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held.
  • An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
  • wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
  • FIG. 32 shows the front shape of the mounting portion of the collimator lenses 11-17.
  • Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into an elongated shape with a parallel plane.
  • This elongated collimator lens can be formed, for example, by molding a resin or optical glass.
  • the collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the longitudinal direction is perpendicular to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 32). .
  • the GaN-based semiconductor lasers LD1 to LD7 have an active layer with an emission width of 2 ⁇ m, and the divergence angles in a direction parallel to the active layer and a direction perpendicular to the active layer are, for example, 10 ° and 30 °, respectively.
  • the lasers that emit laser beams B1 to B7 are used.
  • These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
  • the laser beams B1 to B7 emitted from the respective light emission points have a direction in which the direction of the larger divergence angle coincides with the longitudinal direction of each of the elongated collimator lenses 11 to 17 as described above.
  • the incident light is incident in a state in which the direction with the smaller width coincides with the width direction (direction perpendicular to the longitudinal direction).
  • the width of each collimator lens 11 to 17 is 1. lmm and the length is 4.6 mm, and the beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2 respectively. 6mm.
  • Each of the collimator lenses 11 to 17 has a focal length f
  • the condensing lens 20 is obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a thin plane in a parallel plane and perpendicular to the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction. It is formed in a shape that is short in the direction.
  • the condensing lens 20 is also formed, for example, by molding a resin or optical glass.
  • the light emitting means for illuminating the DMD is provided with the output end of the optical fiber of the combined laser light source. Since high-intensity fiber array light sources arranged in an array are used, a pattern forming apparatus having a high output and a deep focal depth can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced.
  • the cladding diameter of the output end of the optical fiber is made smaller than the cladding diameter of the incident end, the diameter of the light emitting section is further reduced, and the brightness of the fiber array light source can be increased.
  • a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 ⁇ m or less and a resolution of 0.1 ⁇ m or less, a deep focal depth can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.
  • TFT thin film transistor
  • the light irradiation means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, laser light incident from a single semiconductor laser having one light emitting point
  • a fiber array light source in which a fiber light source including one optical fiber emitting light is arrayed can be used.
  • a light irradiation means having a plurality of light emitting points for example, as shown in FIG. 33, a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 on a heat block 100: LD7 Can be used.
  • a chip-shaped multi-cavity laser 110 shown in FIG. 34A in which a plurality of (for example, five) light emitting points 110a are arranged in a predetermined direction is known.
  • the light emitting points can be arranged with higher positional accuracy than in the case where the chip-shaped semiconductor lasers are arranged, so that the laser beams emitted from the respective light emitting point forces can be easily combined.
  • the number of light emitting points 110a is preferably 5 or less.
  • a plurality of multi-cavity lasers 110 are arranged on the heat block 100 as shown in FIG. 34B.
  • a multi-cavity laser array arranged in the same direction can be used as a laser light source.
  • the combined laser light source is a laser beam emitted from a plurality of chip-shaped semiconductor lasers. It is not limited to what combines.
  • a combined laser light source including a chip-shaped multi-cavity laser 110 having a plurality of (for example, three) emission points 110a can be used.
  • the combined laser light source includes a multi-cavity laser 110, a single multimode optical fiber 130, and a condenser lens 120.
  • the multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.
  • each of the laser beams B also emitted from each of the plurality of light emitting points 110a of the multi-cavity laser 110 is collected by the condenser lens 120 and is incident on the core 130a of the multimode optical fiber 130. To do.
  • the laser light incident on the core 130a is propagated in the optical fiber, combined into one, and emitted.
  • a plurality of light emitting points 110a of the multi-cavity laser 110 are juxtaposed within a width substantially equal to the core diameter of the multi-mode optical fiber 130, and as the condenser lens 120, the multi-mode optical fiber 130
  • the multimode optical fiber 130 By using a convex lens with a focal length approximately equal to the core diameter or a rod lens that collimates the outgoing beam from the multi-cavity laser 110 only in a plane perpendicular to its active layer, the multimode of laser light B
  • the coupling efficiency to the optical fiber 130 can be increased.
  • a plurality of (for example, nine) multi-carriers are provided on the heat block 111 using a multi-cavity laser 110 having a plurality of (for example, three) emission points.
  • a combined laser light source having a laser array 140 in which the bit lasers 110 are arranged at equal intervals can be used.
  • the plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.
  • This combined laser light source is arranged between the laser array 140, the plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and the laser array 140 and the plurality of lens arrays 114. Further, it is configured to include one rod lens 113, one multimode optical fiber 130, and a condensing lens 120.
  • the lens array 114 includes a plurality of microlenses corresponding to the emission points of the multi-cavity laser 110.
  • each of the laser beams B that has also emitted the respective powers of the plurality of light emitting points 10a of the plurality of multi-cavity lasers 110 is condensed in a predetermined direction by the rod lens 113;
  • the light is collimated by each microlens of the lens array 114.
  • the collimated laser beam L is collected by the condensing lens 120 and enters the core 130a of the multimode optical fiber 130.
  • the laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
  • this combined laser light source has a heat block 182 having an L-shaped cross section in the optical axis direction mounted on a substantially rectangular heat block 180, and is stored between two heat blocks. A space is formed.
  • a plurality of (for example, two) multi-cavity lasers in which a plurality of light-emitting points (for example, five) are arranged in an array form 110 power light-emitting points for each chip 110a It is fixed and arranged at equal intervals in the same direction as the direction of arrangement.
  • the substantially rectangular heat block 180 has a recess, and a plurality of light emitting points (for example, five) are arranged on the space side upper surface of the heat block 180 (for example, five).
  • the two multi-cavity lasers 110 are arranged so that their emission points are located on the same vertical plane as the emission points of the laser chips arranged on the upper surface of the heat block 182.
  • a collimating lens array 184 in which collimating lenses are arranged corresponding to the light emitting points 110a of the respective chips is arranged.
  • the longitudinal direction of each collimating lens coincides with the direction in which the laser beam has a large divergence angle (fast axis direction), and the width direction of each collimating lens is in the direction in which the divergence angle is small (slow axis). Direction).
  • the collimating lenses are integrated into an array to improve the space utilization efficiency of the laser light, increase the output of the combined laser light source, reduce the number of parts, and reduce the cost. it can.
  • each of the laser beams B also emitted from each of the plurality of light emitting points 10a of the plurality of multi-cavity lasers 110 arranged on the laser blocks 180 and 182 is converted into parallel light by the collimating lens array 184. Is collected by the condenser lens 120 and is It enters the core 130a of the optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
  • the combined laser light source can achieve particularly high output by the multistage arrangement of multi-cavity lasers and the array of collimating lenses.
  • a higher-intensity fiber array light source or bundle fiber light source can be formed, which is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.
  • each of the combined laser light sources is housed in a casing and the emission end of the multimode optical fiber 130 is drawn out from the casing.
  • a fiber array is formed by coupling another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source.
  • Another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source.
  • a multimode optical fiber with a cladding diameter of 125 m, 80 m, 60 ⁇ m, etc. can be used without connecting another optical fiber to the output end. Also good.
  • each exposure head 166 of the scanner 162 laser light Bl, B2, B3, B4, GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66 is emitted in the state of divergent light.
  • Each of B5, B6, and B7 is collimated by the corresponding collimator lenses 11-17.
  • the collimated laser beams B1 to B7 are collected by the condenser lens 20 and converge on the incident end face of the core 30a of the multimode optical fiber 30.
  • the collimator lenses 11 to 17 and the condenser lens 20 constitute a condensing optical system
  • the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 condensed as described above by the condenser lens 20 are incident on the core 30a of the multimode optical fiber 30 and propagate through the optical fiber. The light is output from the optical fiber 31 combined and coupled to the output end of the multimode optical fiber 30.
  • each laser module laser light B1 to: B7 multimode optical fiber 30
  • the output efficiency of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW
  • the high-luminance light emitting points are arranged in a line along the main scanning direction as described above.
  • a conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has low output, so if the multiple rows are not arranged, the desired force cannot be obtained. Since the wave laser light source has high output, a desired output can be obtained even with a small number of columns, for example, one column.
  • a laser with an output of about 30 mW (milliwatt) is usually used as the semiconductor laser, and the core diameter is used as the optical fiber.
  • Multimode optical fiber with 50 m, clad diameter 125 m, NA (numerical aperture) 0.2 is used, so if you want to obtain an output of about 1 W (watt), 48 multimode optical fibers ( 8 X 6)
  • the luminous area is 0.62 mm 2 (0.675 mm X O. 925 mm)
  • the brightness at the laser emitting section 68 is 1.6 X 10 6 (W / m 2)
  • brightness per optical fiber is 3.2 X 10 6 (WZm 2 ).
  • the light irradiation means is a means capable of irradiating a combined laser
  • an output of about 1 W can be obtained with six multimode optical finos. Since the area of the optical region is 0.0081 mm 2 (0.325 mm X 0.025 mm), the brightness at the laser emission section 68 is 123 X 10 6 (WZm 2 ), which is about 80 times higher than the conventional brightness. Can be achieved.
  • the luminance per optical fiber is 90 X 10 6 (WZm 2 ), which is about 28 times higher than before.
  • the diameter of the light emission area of the bundled fiber light source of the conventional exposure head is 0.675 mm, and the diameter of the light emission area of the fiber array light source of the exposure head is 0.025 mm.
  • the light emitting area of the light irradiation means (bundle-shaped fiber light source) 1 is large. Therefore, the angle of the light beam incident on the DMD 3 increases, and as a result, the angle of the light beam incident on the scanning surface 5 increases. For this reason, the beam diameter tends to increase with respect to the condensing direction (shift in the focus direction).
  • the diameter of the light emission region of the fiber array light source 66 in the sub-scanning direction is reduced.
  • the angle of the light beam incident on the scanning surface 56 is decreased. That is, the depth of focus becomes deep.
  • the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot.
  • the effect on the depth of focus becomes more significant and effective as the required light quantity of the exposure head increases.
  • the size of one pixel projected on the exposure surface is 10 m x 10 m.
  • the DMD is a reflective spatial light modulator, but FIGS. 37A and 37B are developed views for explaining the optical relationship.
  • Pattern information power corresponding to the exposure pattern is inputted to a controller (not shown) connected to the DMD 50, and is stored in a frame memory in the controller.
  • This pattern information is data that represents the density of each pixel constituting the image as binary values (whether or not dots are recorded).
  • the stage 152 having adsorbed the non-turn forming material 150 on its surface is moved along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed by a driving device (not shown).
  • a driving device not shown
  • the pattern information stored in the frame memory is sequentially read for each of a plurality of lines.
  • a control signal is generated for each exposure head 166 based on the pattern information read out and read out by the data processing unit.
  • each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 based on the generated control signal by the mirror drive control unit.
  • the DMD 50 When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the microphone mouth mirror of the DMD 50 is turned on is exposed to the surface of the pattern forming material 150 by the lens systems 54 and 58. Imaged on 56. In this way, the fiber array light source 66 The laser beam from which the force is also emitted is turned on / off for each pixel, and the pattern forming material 150 is exposed in approximately the same number of pixel units (exposure area 168) as the number of pixels used in DM D50.
  • the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure is performed for each exposure head 166. Region 170 is formed.
  • the developing step exposes the photosensitive layer of a laminate formed by laminating the pattern forming material on a substrate to be processed in the exposing step, cures the exposed region of the photosensitive layer, and then forms an ineffective region. It is a process of developing by removing and forming a pattern.
  • the method for removing the uncured region is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method for removing using a developer.
  • the developer is not particularly limited and may be appropriately selected depending on the purpose.
  • examples thereof include an alkaline aqueous solution, an aqueous developer, and an organic solvent.
  • a weak alkaline aqueous solution is used.
  • examples of the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid.
  • the pH of the weak alkaline aqueous solution is more preferably about 9 to 11 force, for example, about 8 to 12 is preferable.
  • Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
  • the temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and for example, about 25 ° C. to 40 ° C. is preferable.
  • the developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.)
  • an organic solvent for example, alcohols, ketones, esters, ethers, amides, latatones, etc.
  • the developer contains water or an alkaline aqueous solution and an organic solvent. It can be a mixed aqueous developer or an organic solvent alone.
  • Examples of the other process include a force that can be appropriately selected from known processes for forming a pattern without limitation. Examples thereof include an etching process, a plating process, and a curing process. These may be used alone or in combination of two or more.
  • the etching step can be performed by a method appropriately selected from among known etching methods.
  • the etching solution used for the etching treatment can be appropriately selected according to the purpose without any particular limitation.
  • a cupric chloride solution examples thereof include a ferric solution, an alkaline etching solution, and a hydrogen peroxide-based etching solution.
  • a point strength of etching factor—a salty ferric solution is preferable.
  • a permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
  • the permanent pattern is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include a wiring pattern.
  • the plating step can be performed by an appropriately selected method selected from known plating processes.
  • Examples of the plating treatment include, for example, copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-speed solder plating, plating bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard plating.
  • Examples include gold plating such as gold plating and soft gold plating.
  • a permanent pattern can be formed on the surface of the substrate by removing the pattern after performing a plating process in the plating process, and further removing unnecessary portions by an etching process or the like as necessary.
  • the curing treatment step is a step of performing a curing treatment on the formed pattern after the development step is performed on the photosensitive layer.
  • the curing treatment can be appropriately selected according to the purpose without any particular restriction, and examples thereof include full-surface exposure treatment and full-surface heat treatment.
  • Examples of the entire surface exposure processing method include a method of exposing the entire surface of the photosensitive laminate on which the pattern is formed after the developing step. The entire surface exposure accelerates the curing of the resin in the photosensitive composition forming the photosensitive layer, and the surface of the pattern is cured.
  • the apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation.
  • a UV exposure machine such as an ultra-high pressure mercury lamp can be preferably used.
  • Examples of the entire surface heat treatment method include a method of heating the entire surface of the photosensitive laminate on which the pattern is formed after the developing step. By heating the entire surface, the film strength of the surface of the pattern is increased.
  • the heating temperature for the entire surface heating is 120 to 250, preferably 120 to 200 ° C.
  • the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment.
  • the heating temperature exceeds 250 ° C, the resin in the photosensitive composition is decomposed and the film quality is weak. May become brittle.
  • the heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • the apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the pattern forming method of the present invention can form a permanent pattern with high definition and efficiency by suppressing distortion of an image formed on the pattern forming material. It can be suitably used for forming various patterns that require a high degree of wiring, and can be particularly suitably used for forming high-definition wiring patterns.
  • the pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole such as a through hole or a via hole, and for the production of a color filter.
  • the pattern forming method of the present invention is used. An example of a method for manufacturing a printed wiring board and a method for manufacturing a color filter will be described.
  • the pattern forming material is placed on the substrate for forming a printed wiring board having the hole portion as the substrate, and the photosensitive layer thereof.
  • Light irradiation is performed on a desired region from the opposite side of the laminate to the substrate, and the photosensitive layer is cured.
  • the laminated body force The support and the cushion layer in the pattern forming material are removed, and (4) the photosensitive layer in the laminated body is developed to form a pattern by removing the uncured portion in the laminated body. Can do.
  • the removal of the cushion layer is not particularly limited, and may be performed anywhere after (2) above.
  • the cushion layer is insoluble in the alkaline liquid, it is preferably removed before (4).
  • the removal of the support in (3) may be performed between (1) and (2) instead of between (2) and (4).
  • the barrier layer may be removed together with the support in (3) or may be removed during development in (4).
  • a method of etching or plating the printed wiring board forming substrate using the formed pattern for example, a known subtractive method or additive method (for example, Semi-additive method and full additive method)).
  • the subtractive method is preferable in order to form a printed wiring board with industrially advantageous tenting.
  • the cured resin remaining on the printed wiring board forming substrate is peeled off.
  • the copper thin film portion is further etched after the peeling to produce a desired printed wiring board. can do.
  • a multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.
  • a printed wiring board forming board having through holes and having a surface covered with a metal plating layer is prepared.
  • the printed wiring board forming substrate for example, a copper clad laminated substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed.
  • a formed substrate (laminated substrate) can be used.
  • the protective film is peeled off so that the photosensitive layer in the pattern forming material is in contact with the surface of the printed wiring board forming substrate. And press-bonding using a pressure roller (lamination process). Thereby, the laminated body which has the said board
  • the lamination temperature of the pattern forming material is not particularly limited, for example, room temperature (15 to 30 ° C.) or under heating (30 to 180 ° C.). Among these, under heating (60 to 140 ° C.) ° C) is preferred.
  • the roll pressure of the crimping roll is not particularly limited, for example, 0.1 to lMPa is preferable.
  • the crimping speed is preferably 1 to 3 mZ, which is not particularly limited.
  • the printed wiring board forming substrate may be preheated or laminated under reduced pressure.
  • the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate.
  • the support may be peeled off and force exposure may be performed.
  • the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer, and the cured layer for forming the wiring pattern and the curing for protecting the metal layer of the through hole are performed.
  • a layer pattern is formed to expose the metal layer on the surface of the printed wiring board forming substrate (development process).
  • post-heating treatment or post-exposure treatment may be performed to further accelerate the curing reaction of the cured portion.
  • Development is a wet development method as described above. Or a dry development method.
  • etching step the metal layer exposed on the surface of the printed wiring board forming substrate is dissolved and removed with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal coating of the through hole prevents the etching solution from entering the through hole and corroding the metal plating in the through hole. Will remain in the prescribed shape. Thereby, a wiring pattern is formed on the printed wiring board forming substrate.
  • the etching solution is not particularly limited and can be appropriately selected according to the purpose.
  • a cupric chloride solution a salt solution
  • a salt solution examples thereof include a ferric solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like.
  • a salty ferric solution is preferable from the viewpoint of an etching factor.
  • the cured layer is removed from the printed wiring board forming substrate as a release piece with a strong alkaline aqueous solution or the like (cured product removing step).
  • the base component in the strong alkaline aqueous solution is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
  • the pH of the strong alkaline aqueous solution is, for example, preferably about 13-14, more preferably about 12-14.
  • the strong alkaline aqueous solution is not particularly limited, and examples thereof include 1 to 10% by mass of sodium hydroxide aqueous solution or potassium hydroxide aqueous solution.
  • the printed wiring board may be a multilayer printed wiring board.
  • the pattern forming material may be used in a Meki process that is performed only by the etching process.
  • the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-throw solder plating, watt bath (nickel sulfate-salt nickel) plating, nickel plating such as nickel sulfamate, Examples include hard gold plating and gold plating such as soft gold plating.
  • a photosensitive layer in the pattern forming material of the present invention is pasted on a substrate such as a glass substrate.
  • the support when the support is peeled from the pattern forming material, the charged support (film) and the human body may receive an unpleasant electric shock, or dust may adhere to the charged support. There is a problem. For this reason, it is preferable to provide a conductive layer on the support or to perform a treatment for imparting conductivity to the support itself. Further, when the conductive layer is provided on the support opposite to the photosensitive layer, it is preferable to provide a hydrophobic polymer layer in order to improve scratch resistance.
  • a material and a pattern forming material having a black photosensitive layer are prepared.
  • the red photosensitive layer is laminated on the substrate surface to form a laminate, and then exposed and developed imagewise to form red pixels. .
  • the laminate is heated to cure the uncured portion. This is performed in the same manner for the green and blue pixels, and each pixel is formed.
  • any arrangement such as a mosaic type, a triangle type, and a four-pixel arrangement type may be used.
  • a pattern forming material having the black photosensitive layer is laminated on the surface on which the pixels are formed, pixels are formed, and back exposure is performed from the other side, and development is performed to form a black matrix.
  • the uncured portion can be cured to produce a color filter.
  • the pattern forming method and pattern forming apparatus of the present invention uses a pattern forming material that can suppress a decrease in sensitivity of the photosensitive layer and can form a high-definition pattern. Since exposure is possible and the exposure speed is increased, it is advantageous in that the processing speed is increased.
  • the pattern forming method of the present invention uses the pattern forming material of the present invention, so that various patterns are formed, permanent patterns such as wiring patterns are formed, color filters, pillar materials, rib materials, and spacers. It can be suitably used for the production of liquid crystal structural members such as partition walls, holograms, micromachines, proofs, etc. It can be used suitably for formation.
  • the pattern forming apparatus of the present invention includes the pattern forming material of the present invention, it forms various patterns, forms permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, partition walls It can be suitably used for the production of liquid crystal structural members such as holograms, micromachines, and proofs, and is particularly suitable for the formation of high-definition wiring patterns and color filters.
  • olefin / emulsion acrylate (trade name: Chemipearl S-100, manufactured by Mitsui Chemicals, Inc., solid content concentration) : 27 mass%) was filtered using a membrane filter (manufactured by Millipore) with a pore size of 0.22 / zm, and the filtrate was applied using a wire bar, dried and dried. A cushion layer was formed.
  • a photosensitive resin composition solution having the following composition is applied onto the cushion layer and dried to form a 20-m-thick photosensitive layer, and the protective layer is formed on the photosensitive layer.
  • a 20 ⁇ m thick polyethylene film was laminated as a film to produce the pattern forming material.
  • a copper-clad laminate manufactured by Hitachi Chemical Co., Ltd., trade name: MCL-E-67, no through-hole, copper thickness 12 m
  • a laminator MODEL8B-720-PH, Taisei Laminator () is formed on the copper-clad laminate while peeling the protective film of the pattern-forming material so that the photosensitive layer of the pattern-forming material is in contact with the copper-clad laminate.
  • a laminate in which the copper-clad laminate, the photosensitive layer, the cushion layer, and the support are laminated in this order.
  • the maximum height (Rz) specified in JIS B 0601 was measured on the surface of the copper clad laminate on which the photosensitive layer was laminated, the Rz was 3 ⁇ m.
  • the pressure bonding conditions were a pressure roll temperature of 105 ° C, a pressure roll pressure of 0.3 MPa, and a laminating speed of lmZ.
  • the cushion layer in the manufactured pattern forming material was measured for total light transmittance and haze value with respect to light having a wavelength of 405 nm, and the manufactured pattern forming material and the laminate were laminated, resolution, and adhesion. And pattern defects were evaluated. The results are shown in Table 3.
  • the sample for measuring the total light transmittance was applied to a cushion layer (length 10 cm, width) by applying the cushion layer composition coating liquid on a Teflon (registered trademark) sheet at a coating amount of 74 gZm 2 and drying. After the formation of 10 cm and a thickness of 20 m), the cushion layer was prepared by peeling from the Teflon (registered trademark) sheet.
  • the total light transmittance of the cushion layer is determined by irradiating the manufactured cushion layer with a laser beam of 405 nm using an apparatus incorporating an integrating sphere into a spectrophotometer (manufactured by Shimadzu Corporation, UV-2400). It was measured by. [0438] ⁇ Haze value of cushion layer>
  • the parallel light transmittance was measured in the same manner as the total light transmittance measurement method except that the integrating sphere was not used for the total light transmittance measurement method.
  • diffuse light transmittance the total light transmittance—one parallel light transmittance
  • haze value diffuse light transmittance Z, total light transmittance X 100 It was obtained by calculating.
  • the presence or absence of bubbles between the photosensitive layer and the substrate was observed with an optical microscope, the presence or absence of stains was visually observed, and evaluation was performed according to the following criteria.
  • the support and the cushion layer are peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate.
  • the time required from the start of spraying of the aqueous solution to the dissolution and removal of the photosensitive layer on the copper clad laminate was measured, and this was taken as the shortest development time.
  • the shortest development time was 15 seconds.
  • a sensitivity curve is obtained by plotting the relationship with the thickness of the cured layer.
  • the amount of light energy when the thickness of the cured region reached 5 m was determined as the amount of light energy required to cure the photosensitive layer.
  • the amount of light energy required for curing the photosensitive layer was 2 mjZcm 2 .
  • the strain on the exit surface was measured.
  • the results are shown in FIG. In FIG. 14, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm.
  • the X direction and the y direction shown in the figure are the two diagonal directions of the micromirror 62, and the microphone mirror 62 rotates around the rotation axis extending in the y direction.
  • 15A and 15B show the height position displacement of the reflection surface of the micromirror 62 along the X direction and the y direction, respectively.
  • the reflection surface of the micromirror 62 is distorted, and when attention is paid particularly to the central portion of the mirror, one diagonal direction (y direction) ) Distortion force It can be seen that it is larger than the distortion in another diagonal direction (X direction). For this reason, it can be seen that the shape of the laser beam B collected by the microlens 55a of the microlens array 55 is distorted as it is.
  • FIG. 16A and FIG. 16B show the front shape and side shape of the entire microlens array 55 in detail.
  • the dimensions of each part of the microlens array 55 are also entered, and their unit is mm.
  • the microlens array 55 of the DMD50 is driven by 1024 x 256 rows of micromirrors 62.
  • the microlens array 55 has 256 rows of 1024 microlenses 55a arranged in the horizontal direction. Configured.
  • FIG. 16A the arrangement order of the microlens array 55 is indicated in the horizontal direction, indicated by j, and indicated in the vertical direction by k! /.
  • FIGS. 17A and 17B show a front shape and a side shape of one microlens 55a in the microlens array 55, respectively.
  • FIG. 17A also shows the contour lines of microlens 55a.
  • the end surface on the light exit side of each microlens 55a is formed into an aspherical shape that corrects aberration due to distortion of the reflection surface of the microphone mirror 62.
  • the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively.
  • the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section.
  • FIGS. 19-8 to 190 show the simulation results of the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above-described shape.
  • the value z represents the evaluation position in the focus direction of the microlens 55a as a distance from the beam exit surface of the microlens 55a.
  • the surface shape of the microlens 55a used in the simulation is calculated by the following calculation formula.
  • X is the lens optical axis in the X direction.
  • Mean distance of O force Y represents the distance of the lens optical axis repulsion in the y direction.
  • the aperture array 59 disposed in the vicinity of the light collection position of the microlens array 55 is
  • Each of the apertures 59a is arranged so that only light that has passed through the corresponding microlens 55a is incident thereon. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
  • the laminate is allowed to stand at room temperature (23 ° C, 55% RH) for 10 minutes, and then the support is peeled off. From the cushion layer, using the pattern forming apparatus, a line Z strap is removed. Each line width was exposed in increments of 1 ⁇ m from 5 ⁇ m to 20 ⁇ m in line width at lZl, and each line width was exposed in steps of 5 ⁇ m from 20 ⁇ m to 50 ⁇ m in line width.
  • the exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in the above (2).
  • an aqueous solution of sodium carbonate (30 ° C, 1% by mass) was used as the developer at a spray pressure of 0.15 MPa for the shortest development time determined in (1) above.
  • the laminate was prepared under the same method and conditions as in the method (1) for evaluating the shortest development time, and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes.
  • the exposure amount at this time is the minimum amount of light energy necessary to cure the photosensitive layer of the pattern forming material measured in (2).
  • the said laminated body After leaving still at room temperature for 10 minutes, the said laminated body force The said cushion layer was peeled off.
  • the entire surface of the photosensitive layer on the copper-clad laminate 2 of the shortest developing time aqueous sodium carbonate (30 ° C, 1 wt 0/0) was determined by the at spray pressure 0. 2 MPa (1) as a developing solution Sprayed for twice the time to dissolve away uncured areas.
  • the surface of the copper clad laminate with a pattern obtained in this way was observed with an optical microscope, and the minimum line width with no abnormalities such as short lines and creases was measured on the pattern line, and this was defined as adhesion. The smaller the value, the better the adhesion.
  • the pattern surface (50 m ⁇ 50 m) formed in this manner was photographed with a scanning electron microscope (SEM), the shape of the formed pattern was observed, and the presence or absence of defects was evaluated.
  • SEM scanning electron microscope
  • Example 1 the same cushion layer composition coating solution as the following composition was prepared, and the cushion layer was formed using the filtrate filtered using a 400 mesh filter. Thus, the pattern forming material of Example 2 and the laminate were prepared. Further, in the same manner as in Example 1, the total light transmittance and haze value of the cushioning layer in the pattern forming material with respect to light having a wavelength of 405 nm were measured, and the pattern forming material and the laminate were laminated. , Adhesion, and pattern defects were evaluated. The results are shown in Table 3.
  • EVAFLEX 45X (vinyl acetate content 46 mass 0/0, manufactured by Mitsui Du Pont Polychemical Co.) 17 parts by weight
  • Example 1 a photosensitive resin composition solution having the following composition was applied onto the cushion layer.
  • the pattern forming material and laminate of Example 3 were the same as Example 1 except that a 15 m thick photosensitive layer was formed by coating and drying, and a 12 m polypropylene film was laminated thereon.
  • the body was prepared. Further, in the same manner as in Example 1, the total light transmittance and haze value of the pattern forming material with respect to light having a wavelength of 405 nm were measured, and the pattern forming material and the laminate were laminated. The adhesion and pattern defects were evaluated. The results are shown in Table 3.
  • the amount of light energy required for curing the photosensitive layer of Example 3 was 2 mjZcm 2 and the shortest development time was 20 seconds.
  • Example 1 a cushion layer composition coating solution having the following composition was prepared, and 400 A 15-m thick cushion layer is formed using the filtrate filtered using a fresh filter, and a Noria layer composition coating solution having the following compositional power is also prepared, and the filtrate filtered using a 400 mesh filter is used.
  • the pattern forming material of Example 4 and the laminate were prepared in the same manner as Example 1 except that a 1.5 m thick noria layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the pattern forming material and the laminate were laminated. Resolution, adhesion, and pattern defects were evaluated. The results are shown in Table 3.
  • Example 4 the amount of light energy required to cure the photosensitive layer was 2 OmjZcm 2 and the shortest development time was 40 seconds.
  • Fluorosurfactant (trade name: F177P, manufactured by Dainippon Ink Co., Ltd.) 0.3 parts by mass' Methanol 30.0 parts by mass
  • Example 5 In Example 1, except that the micro lens array of the pattern forming apparatus was used, the pattern forming material and the laminate were analyzed for resolution, adhesion, And pattern defects were evaluated. The results are shown in Table 3.
  • Example 1 a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution was applied without filtering and a tack layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the laminate, resolution, Adhesion and pattern defects were evaluated. The results are shown in Table 3.
  • Example 2 a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution was applied without filtering and a tack layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the laminate, resolution, Adhesion and pattern defects were evaluated. The results are shown in Table 3.
  • Example 3 a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution was applied without filtering and a tack layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the laminate, resolution, Adhesion and pattern defects were evaluated. The results are shown in Table 3.
  • Example 4 a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution and the barrier layer coating solution were applied without filtering to form a cushion layer. did. Further, in the same manner as in Example 1, the pattern forming material The total light transmittance and haze value of the cushion layer in the material with respect to light having a wavelength of 405 nm were measured, and the pattern forming material and the laminate were evaluated for laminating properties, resolution, adhesion, and pattern defects. The results are shown in Table 3.
  • Examples 1 to 5 are cushion layers formed by filtering the cushion layer composition coating solution as compared with the pattern forming materials and laminates of Comparative Examples 1 to 4. It was found that the pattern forming material and the laminate can obtain a high-definition pattern having no defects after development by making the cushion layer compatible with suitable laminating properties (protrusion following unevenness) and transparency. Further, the pattern of Example 5 formed by a pattern forming apparatus not using a microlens array was inferior in resolution as compared with Example 1.
  • the pattern forming material, pattern forming apparatus, and pattern forming method of the present invention have a cushion layer and a photosensitive layer in this order on a support, and the total light transmittance and haze value in the cushion layer.
  • a pattern forming material that has a certain numerical range, and suppressing distortion of the image formed on the photosensitive layer, it is possible to achieve both concave-convex followability and high resolution, and to produce a high-definition pattern without defects. Since it can be formed efficiently, it forms various patterns, wiring patterns, protective films, interlayer insulating films, solder resist patterns, etc., liquid crystals such as color filters, pillar materials, rib materials, spacers, partition walls, etc. It can be suitably used for the manufacture of structural members, holograms, micromachines, proofs, etc. It can be used suitably for forming fine wiring patterns and manufacturing color filters.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)

Abstract

Disclosed is a pattern-forming material which enables to efficiently form a defect-free, very fine pattern having both surface roughness following properties and high resolution. Also disclosed are a pattern-forming apparatus employing such a pattern-forming material and a pattern-forming method using such a pattern-forming material. Specifically disclosed is a pattern-forming material which is characterized by having a cushion layer and a photosensitive layer on a supporting body in this order. The pattern-forming material is further characterized in that the cushion layer has a total light reflectance of not less than 86% and a haze value of not more than 10%. Also disclosed are a pattern-forming apparatus employing such a pattern-forming material and a pattern-forming method wherein exposure is performed using such a pattern-forming material.

Description

パターン形成材料、並びにパターン形成装置及びパターン形成方法 技術分野  Pattern forming material, pattern forming apparatus and pattern forming method
[0001] 本発明は、プリント配線基板やカラーフィルタ一等の製造に好適なパターン形成材 料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成 材料を用いたパターン形成方法に関する。  [0001] The present invention relates to a pattern forming material suitable for manufacturing a printed wiring board, a color filter, and the like, a pattern forming apparatus provided with the pattern forming material, and a pattern forming method using the pattern forming material.
背景技術  Background art
[0002] 従来より、プリント配線パターン、ソルダーレジストパターン、カラーフィルターのカラ 一画素パターンを形成するに際して、支持体上に感光性榭脂組成物を塗布、乾燥 することにより感光層を形成させたパターン形成材料が用いられている。前記パター ンの形成方法としては、例えば、パターンが形成される基体上に、前記パターン形成 材料を積層させて積層体を形成し、該積層体における前記感光層に対して露光を行 い、該感光層を現像することによって、パターンを形成させ、その後エッチング処理 等を行うことにより永久パターンが形成される。  Conventionally, when forming a printed wiring pattern, a solder resist pattern, and a color filter color pixel pattern, a pattern in which a photosensitive resin composition is applied to a support and dried to form a photosensitive layer. Forming material is used. As a method for forming the pattern, for example, a layered body is formed by laminating the pattern forming material on a substrate on which a pattern is formed, and the photosensitive layer in the layered body is exposed to light, and then the pattern is formed. A pattern is formed by developing the photosensitive layer, and then a permanent pattern is formed by performing an etching process or the like.
[0003] 近年では、前記永久パターンの高精細化が進むに伴い、前記パターン形成材料に 対しても高感度で転写不良を生じさせない性能が強く要求されている。 [0003] In recent years, as the permanent pattern is highly refined, there is a strong demand for the pattern forming material with high sensitivity and performance that does not cause transfer failure.
複数の着色層を有するカラーフィルター用パターン形成材料においては、 1色目の パターン形成後、 2色目のパターン形成時に、既に形成された 1色目のパターンが 2 色目の感光層のラミネーシヨン性を損なうという問題があり、また、プリント配線基板用 ノ ターン形成材料 (ドライフィルムレジスト)においては、高解像度を得るために感光 層を薄くすると、金属基体の表面に存在する凹凸によって、ラミネート性が損なわれ るという問題がある。  In a pattern forming material for a color filter having a plurality of colored layers, after forming the first color pattern, when the second color pattern is formed, the already formed first color pattern impairs the lamination property of the second color photosensitive layer. There is a problem, and in the printed wiring board pattern forming material (dry film resist), if the photosensitive layer is made thin in order to obtain high resolution, the laminating property is impaired by the unevenness on the surface of the metal substrate. There is a problem.
[0004] これらの問題に対して、基体の凹凸への追従性を改善し、高精細なパターン形成 を可能にするために、感光層と支持体との間に、クッション層 (熱可塑性榭脂層)を設 けたパターン形成材料が開発されている(特許文献 1〜16参照)。前記クッション層 の存在により、既に形成されたパターンや基体への追従性が向上し、気泡を生ずるこ となく感光層を積層することができる。 [0005] しカゝしながら、前記パターン形成材料が基体上へ積層された後、前記クッション層 が露光前に剥離される場合 (例えば、特許文献 2〜10、及び 15〜16)、高解像度を 得るために薄く形成された感光層上から、前記感光層を破損することなく前記クッショ ン層を剥離するためには困難を伴う。また、前記クッション層は露光前に剥離除去さ れるため、その光透過性やヘイズ値は開示されていない。一方、前記基体上に積層 した後に前記クッション層を剥離せず、前記クッション層上力 露光が行われる場合( 例えば、特許文献 1、及び 11〜14)においても、高精細なパターンを得るために、前 記クッション層自体の光透過性やヘイズ値を規定することは何ら開示されて 、な!/、。 [0004] For these problems, in order to improve the followability to the unevenness of the substrate and enable high-definition pattern formation, a cushion layer (thermoplastic resin) is provided between the photosensitive layer and the support. A pattern forming material having a layer) has been developed (see Patent Documents 1 to 16). Due to the presence of the cushion layer, the followability to an already formed pattern or substrate is improved, and the photosensitive layer can be laminated without generating bubbles. [0005] When the pattern forming material is laminated on the substrate, the cushion layer is peeled off before exposure (for example, Patent Documents 2 to 10, and 15 to 16). It is difficult to peel off the cushion layer without damaging the photosensitive layer from the thin photosensitive layer to obtain the above. In addition, since the cushion layer is peeled and removed before exposure, its light transmittance and haze value are not disclosed. On the other hand, in order to obtain a high-definition pattern even when the cushion layer upper force exposure is performed without peeling off the cushion layer after being laminated on the substrate (for example, Patent Documents 1 and 11 to 14). Nothing is disclosed to define the light transmittance and haze value of the cushion layer itself!
[0006] よって、前記クッション層における全光線透過率とヘイズ値とを調整することにより、 凹凸追従性と高解像度とが両立され、かつ、欠陥のない高精細なパターンを効率よ く形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン形成 装置及び前記パターン形成材料を用いたパターン形成方法は未だ提供されておら ず、更なる改良開発が望まれているのが現状である。  [0006] Therefore, by adjusting the total light transmittance and the haze value in the cushion layer, it is possible to achieve both an uneven followability and a high resolution, and to efficiently form a high-definition pattern without defects. A pattern forming material, a pattern forming apparatus including the pattern forming material, and a pattern forming method using the pattern forming material have not been provided yet, and further improvement and development are desired at present.
[0007] 特許文献 1 :特開平 5— 173320号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-173320
特許文献 2:特開平 7 - 20309号公報  Patent Document 2: Japanese Patent Laid-Open No. 7-20309
特許文献 3:特開平 11― 72908号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-72908
特許文献 4:特開平 11 109124号公報  Patent Document 4: JP-A-11 109124
特許文献 5:特開平 11 174220号公報  Patent Document 5: Japanese Patent Laid-Open No. 11 174220
特許文献 6 :特開平 11 338133号公報  Patent Document 6: Japanese Patent Laid-Open No. 11 338133
特許文献 7:特開 2000 - 250222号公報  Patent Document 7: Japanese Patent Laid-Open No. 2000-250222
特許文献 8:特開 2000— 250221号公報  Patent Document 8: Japanese Patent Laid-Open No. 2000-250221
特許文献 9:特開 2000— 266925号公報  Patent Document 9: Japanese Unexamined Patent Publication No. 2000-266925
特許文献 10:特開 2001— 142223号公報  Patent Document 10: Japanese Patent Laid-Open No. 2001-142223
特許文献 11:特開 2003 - 5364号公報  Patent Document 11: Japanese Patent Laid-Open No. 2003-5364
特許文献 12:特開 2003— 215793号公報  Patent Document 12: Japanese Unexamined Patent Publication No. 2003-215793
特許文献 13:特開 2003— 228165号公報  Patent Document 13: Japanese Patent Laid-Open No. 2003-228165
特許文献 14:特開 2003 - 302765号公報  Patent Document 14: Japanese Patent Laid-Open No. 2003-302765
特許文献 15:特開 2003 - 307845号公報 特許文献 16:特開平 5— 72724号公報 Patent Document 15: Japanese Patent Application Laid-Open No. 2003-307845 Patent Document 16: Japanese Patent Laid-Open No. 5-72724
発明の開示  Disclosure of the invention
[0008] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。即ち、本発明は、支持体上にクッショ ン層と感光層とをこの順に有し、該クッション層における全光線透過率とヘイズ値とが 一定の数値範囲であることにより、凹凸追従性と高解像度とが両立され、かつ、欠陥 のな 、高精細なパターンを効率よく形成可能なパターン形成材料、並びに該パター ン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパター ン形成方法を提供することを目的とする。  [0008] The present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention has a cushion layer and a photosensitive layer on the support in this order, and the total light transmittance and haze value in the cushion layer are within a certain numerical range, so that the uneven follow-up property and the high sensitivity can be achieved. A pattern forming material that is compatible with resolution and that can efficiently form a high-definition pattern without defects, a pattern forming apparatus including the pattern forming material, and a pattern forming method using the pattern forming material The purpose is to provide.
[0009] 前記課題を解決するための手段としては、以下の通りである。即ち、 Means for solving the above-described problems are as follows. That is,
< 1 > 支持体上にクッション層と感光層とをこの順に有し、該クッション層における 全光線透過率が 86%以上、かつ、ヘイズ値が 10%以下であることを特徴とするパタ ーン形成材料である。  <1> A pattern having a cushion layer and a photosensitive layer on a support in this order, wherein the cushion layer has a total light transmittance of 86% or more and a haze value of 10% or less. Forming material.
< 2> クッション層の全光線透過率及びヘイズ値を求める場合の光の波長力 40 5nmである前記く 1 >に記載のパターン形成材料である。  <2> The pattern forming material according to the above <1>, wherein the wavelength power of light when determining the total light transmittance and haze value of the cushion layer is 405 nm.
< 3 > クッション層中に含まれる微粒子の平均粒子径が 1 μ m未満である前記く 1 >から < 2 >のいずれかに記載のパターン形成材料である。該 < 3 >に記載のパタ ーン形成材料にぉ ヽては、クッション層中に含まれる前記微粒子の平均粒子径が所 定範囲であることにより、前記クッション層上力も露光を行った場合に、欠陥のないパ ターンが形成される。  <3> The pattern forming material according to any one of <1> to <2>, wherein an average particle size of the fine particles contained in the cushion layer is less than 1 μm. In the pattern forming material according to <3>, when the average particle diameter of the fine particles contained in the cushion layer is within a predetermined range, the cushion layer upper force is also exposed. As a result, a defect-free pattern is formed.
<4> クッション層力 ガラス転移温度 (Tg)及び軟ィ匕点のいずれかが 80°C以下 の熱可塑性榭脂を含有する前記 < 1 >から < 3 >のいずれかに記載のパターン形成 材料である。  <4> Cushion layer strength The pattern forming material according to any one of <1> to <3>, wherein the glass transition temperature (Tg) and the softening point include a thermoplastic resin having a temperature of 80 ° C or less. It is.
< 5 > クッション層の厚み力 6〜100 111でぁる前記< 1 >から<4>のぃずれ かに記載のパターン形成材料である。  <5> The pattern forming material according to any one of <1> to <4>, wherein the thickness force of the cushion layer is 6 to 100111.
< 6 > クッション層と感光層との間に、物質の移動を抑制可能なノ リア層を有する 前記 < 1 >から < 5 >の!、ずれかに記載のパターン形成材料である。該 < 6 >に記 載のパターン形成材料にぉ ヽては、該パターン形成材料が前記バリア層を有するこ とにより、前記感光層の感度低下が抑制される。 <6> The pattern forming material according to any one of <1> to <5> above, which has a noble layer capable of suppressing the movement of a substance between the cushion layer and the photosensitive layer. For the pattern forming material described in <6>, the pattern forming material has the barrier layer. As a result, a decrease in sensitivity of the photosensitive layer is suppressed.
< 7> クッション層上に、第一感光層、及び該第一感光層よりも硬化させるための 光エネルギー量が少ない第二感光層がこの順に積層されてなる前記 < 1 >からく 6 >のいずれかに記載のパターン形成材料である。該 < 7 >に記載のパターン形成材 料においては、画像の内部で厚みが異なる三次元造形や、所望の領域のみの膜の 強度を高くする、あるいは所望の領域のみの画像濃度を高める等の特性を付与した 硬化榭脂画像などを、一種類のパターン形成材料で形成することができる。  <7> On the cushion layer, the first photosensitive layer and the second photosensitive layer having a smaller amount of light energy for curing than the first photosensitive layer are laminated in this order. The pattern forming material according to any one of the above. In the pattern forming material described in <7>, three-dimensional modeling with different thicknesses inside the image, increasing the strength of the film only in the desired region, or increasing the image density only in the desired region, etc. It is possible to form a cured resin image or the like having characteristics imparted with one kind of pattern forming material.
< 8 > 第一感光層と第二感光層との間に、バリア層を有する前記 < 7 >に記載の パターン形成材料である。  <8> The pattern forming material according to <7>, wherein a barrier layer is provided between the first photosensitive layer and the second photosensitive layer.
< 9 > クッション層力 該クッション層に含まれる組成物が溶解、乳化、又は分散さ れたクッション層組成物塗布液を、フィルターで濾過した後、支持体上に塗布、乾燥 して形成される前記 < 1 >から < 8 >に記載のパターン形成材料である。該 < 9 >に 記載のパターン形成材料にお!、ては、前記クッション層組成物塗布液中に含まれる 微細な異物やゲルィヒ物等の微粒子をフィルターで除去することにより、前記クッショ ン層上力 露光を行った場合に、前記微粒子による影の発生や光の散乱を抑制でき 、欠陥のない高精細なパターンが形成される。  <9> Cushion layer strength Formed by applying a cushion layer composition coating solution, in which the composition contained in the cushion layer is dissolved, emulsified, or dispersed, through a filter, and then coating and drying on a support. The pattern forming material according to <1> to <8>. In the pattern forming material according to <9>, the fine particles such as fine foreign matters and gellic substances contained in the cushion layer composition coating solution are removed by a filter, so that the cushion layer composition is coated on the cushion layer composition. When force exposure is performed, generation of shadows and light scattering by the fine particles can be suppressed, and a high-definition pattern having no defect is formed.
< 10> フィルターの孔径が 30 μ m以下である前記 < 9 >に記載のパターン形成 材料である。  <10> The pattern forming material according to <9>, wherein the filter has a pore size of 30 μm or less.
< 11 > 前記 < 1 >からく 10 >のいずれかに記載のパターン形成材料を備えて おり、  <11> The pattern forming material according to any one of the above <1> Karaku 10>,
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形 成材料における感光層に対して露光を行う光変調手段とを少なくとも有することを特 徴とするパターン形成装置である。該く 11 >に記載のパターン形成装置においては Pattern formation characterized by comprising at least light irradiation means capable of irradiating light and light modulation means for modulating light from the light irradiation means and exposing the photosensitive layer in the pattern forming material. Device. In the pattern forming apparatus described in 11>
、前記光照射手段が、前記光変調手段に向けて光を照射する。前記光変調手段が 、前記光照射手段から受けた光を変調する。前記光変調手段により変調した光が前 記感光層に対して露光される。例えば、その後、前記感光層を現像すると、高精細な パターンが形成される。 The light irradiating means irradiates light toward the light modulating means. The light modulation means modulates light received from the light irradiation means. The light modulated by the light modulating means is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
< 12> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 11 >に記載のバタ ーン形成装置である。該< 12>に記載のパターン形成装置においては、前記光変 調手段が前記パターン信号生成手段を有することにより、前記光照射手段から照射 される光が該パターン信号生成手段により生成した制御信号に応じて変調される。 <12> The light modulation means generates a control signal based on the pattern information to be formed The pattern forming device according to <11>, further comprising a pattern signal generation unit, wherein the light emitted from the light irradiation unit is modulated according to a control signal generated by the pattern signal generation unit. . In the pattern forming apparatus according to <12>, since the light modulation unit includes the pattern signal generation unit, light emitted from the light irradiation unit is converted into a control signal generated by the pattern signal generation unit. Modulated accordingly.
< 13 > 光変調手段が、 n個の描素部を有してなり、該 n個の描素部の中から連続 的に配置された任意の n個未満の前記描素部を、形成するパターン情報に応じて制 御可能である前記く 11 >からく 12 >のいずれかに記載のパターン形成装置である 。該< 13 >に記載のパターン形成装置においては、前記光変調手段における n個 の描素部の中から連続的に配置された任意の n個未満の描素部をパターン情報に 応じて制御することにより、前記光照射手段力 の光が高速で変調される。  <13> The light modulation means has n pixel parts, and forms any less than n pixel parts continuously arranged from the n pixel parts. The pattern forming apparatus according to any one of the above 11> Karaku 12>, which can be controlled according to pattern information. In the pattern forming apparatus according to <13>, an arbitrary less than n pixel portions arranged continuously from n pixel portions in the light modulation unit are controlled according to pattern information. As a result, the light of the light irradiation means power is modulated at high speed.
< 14> 光変調手段が、空間光変調素子である前記く 11 >からく 13 >のいずれ かに記載のパターン形成装置である。  <14> The pattern forming apparatus according to any one of the items <11> to <13>, wherein the light modulation unit is a spatial light modulation element.
< 15 > 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記く 14 >に記載のパターン形成装置である。  <15> The pattern forming apparatus according to 14>, wherein the spatial light modulation element is a digital 'micromirror' device (DMD).
< 16 > 描素部が、マイクロミラーである前記く 11 >からく 15 >のいずれかに記 載のパターン形成装置である。  <16> The pattern forming apparatus according to any one of <11>, <15>, wherein the picture element portion is a micromirror.
< 17> 光照射手段が、 2以上の光を合成して照射可能である前記く 11 >からく 16 >のいずれかに記載のパターン形成装置である。該く 17>に記載のパターン形 成装置においては、前記光照射手段が 2以上の光を合成して照射可能であることに より、露光が焦点深度の深い露光光によって行われる。この結果、前記パターン形成 材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像する と、極めて高精細なパターンが形成される。  <17> The pattern forming apparatus according to any one of the items <11> to <16>, wherein the light irradiation unit can synthesize and irradiate two or more lights. In the pattern forming apparatus described in <17>, exposure is performed by exposure light having a deep focal depth because the light irradiation means can synthesize and irradiate two or more lights. As a result, the pattern forming material is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
< 18 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザビームを集光して前記マルチモード光ファイバ に結合させる集合光学系とを有する前記く 11 >からく 17 >の 、ずれかに記載のパ ターン形成装置である。該< 18 >に記載のパターン形成装置においては、前記光 照射手段が、前記複数のレーザ力 それぞれ照射されたレーザビームが前記集合 光学系により集光され、前記マルチモード光ファイバに結合可能であることにより、露 光が焦点深度の深い露光光で行われる。この結果、前記パターン形成材料への露 光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて 高精細なパターンが形成される。 <18> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber. The pattern forming apparatus according to any one of the above items 11> Karaku 17>. In the pattern forming apparatus according to <18>, the light irradiation unit is configured to receive the laser beams irradiated with the plurality of laser forces. Since the light is condensed by an optical system and can be coupled to the multimode optical fiber, exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the pattern forming material is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
< 19 > 前記 < 1 >から < 10 >のいずれかに記載のパターン形成材料を、加熱 及び加圧の少なくともいずれかにより基体上に積層する積層工程と、  <19> A laminating step of laminating the pattern forming material according to any one of <1> to <10> on a substrate by at least one of heating and pressurization;
前記積層工程により積層された少なくとも感光層を、光照射手段から照射される光 により露光する露光工程と、  An exposure step of exposing at least the photosensitive layer laminated by the laminating step with light irradiated from a light irradiation means;
前記露光工程により露光された感光層を現像する現像工程とを有することを特徴と するパターン形成方法である。  And a development step for developing the photosensitive layer exposed in the exposure step.
< 20> 積層工程後に、支持体をクッション層上力も剥離する剥離工程を有し、次 いで、クッション層上から感光層を露光工程により露光する前記く 19 >に記載のパ ターン形成方法である。  <20> The pattern forming method according to the above <19>, wherein after the laminating step, there is a peeling step of peeling the support also on the cushion layer, and then the photosensitive layer is exposed from the cushion layer by the exposure step. .
く 21 > 露光が、形成するパターン情報に基づいて像様に行われる前記く 19 > からく 20 >のいずれかに記載のパターン形成方法である。  <21> The pattern forming method according to any one of <19>, <20>, wherein the exposure is performed imagewise based on pattern information to be formed.
< 22> 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信 号に応じて変調させた光を用いて行われる前記く 19 >からく 21 >のいずれかに記 載のパターン形成方法である。該く 22 >に記載のパターン形成方法においては、 形成するパターン形成情報に基づ!、て制御信号が生成され、該制御信号に応じて 光が変調される。  <22> The exposure according to any one of the above 19> Karaku 21>, wherein the exposure is performed using light modulated based on the pattern information to be formed and modulated according to the control signal. This is a pattern forming method. In the pattern formation method described in 22>, a control signal is generated based on pattern formation information to be formed, and light is modulated in accordance with the control signal.
< 23 > 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて 前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる前記 < 19 >から < 22>の!、ずれかに記載のパターン形成方法である。  <23> From <19> to <22>, wherein the exposure is performed using light irradiation means for irradiating light and light modulation means for modulating light emitted from the light irradiation means based on pattern information to be formed > !! The pattern forming method described in any of the above.
< 24> 露光工程が、光照射手段からの光を受光し出射する描素部を n個有する 光変調手段により、前記光照射手段からの光を変調させた後に、前記描素部におけ る出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列され たマイクロレンズアレイを通過させた光によって行われる前記く 19 >からく 23 >の いずれかに記載のパターン形成方法である。該く 24 >に記載のパターン形成方法 においては、前記光変調手段により変調した光が、前記マイクロレンズアレイにおけ る前記非球面を通ることにより、前記描素部における出射面の歪みによる収差が補 正される。この結果、ノターン形成材料上に結像させる像の歪みが抑制され、該パタ ーン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を 現像すると、極めて高精細なパターンが形成される。 <24> After the exposure step modulates the light from the light irradiation means by the light modulation means having n picture elements for receiving and emitting the light from the light irradiation means, The pattern forming method according to any one of the above 19> Karaku 23>, which is performed by light passing through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface are arranged. . The pattern forming method according to 24> In this case, the light modulated by the light modulation means passes through the aspherical surface in the microlens array, so that the aberration due to the distortion of the exit surface in the pixel portion is corrected. As a result, distortion of the image formed on the pattern forming material is suppressed, and exposure to the pattern forming material is performed with extremely high definition. For example, when the photosensitive layer is developed thereafter, an extremely fine pattern is formed.
< 25 > 非球面が、トーリック面である前記く 24 >に記載のパターン形成方法で ある。該く 25 >に記載のパターン形成方法においては、前記非球面がトーリック面 であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され 、ノターン形成材料上に結像させる像の歪みが効率よく抑制される。この結果、前記 パターン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光 層を現像すると、極めて高精細なパターンが形成される。  <25> The pattern forming method according to <24>, wherein the aspherical surface is a toric surface. In the pattern forming method described in 25>, since the aspherical surface is a toric surface, the aberration due to the distortion of the radiation surface in the pixel portion is efficiently corrected, and the image formed on the noturn forming material is imaged. Is efficiently suppressed. As a result, the pattern forming material is exposed with extremely high precision. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
< 26 > 露光が、アパーチャアレイを通して行われる前記く 19 >からく 25 >のい ずれかに記載のパターン形成方法である。該く 26 >に記載のパターン形成方法に おいては、露光が前記アパーチャアレイを通して行われることにより、消光比が向上 する。この結果、露光が極めて高精細に行われる。例えば、その後、前記感光層を現 像すると、極めて高精細なパターンが形成される。  <26> The pattern forming method according to any one of the above items <19>, <25>, wherein the exposure is performed through an aperture array. Further, in the pattern forming method described in 26>, the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
< 27> 露光が、露光光と感光層とを相対的に移動させながら行われる前記く 19 >からく 26 >の 、ずれか〖こ記載のパターン形成方法である。該く 27 >に記載のパ ターン形成方法においては、前記変調させた光と前記感光層とを相対的に移動させ ながら露光することにより、露光が高速に行われる。例えば、その後、前記感光層を 現像すると、高精細なパターンが形成される。  <27> The pattern forming method according to <19>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive layer. In the pattern forming method described in the above item 27>, exposure is performed at a high speed by performing exposure while relatively moving the modulated light and the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
< 28 > 露光が、感光層の一部の領域に対して行われる前記 < 19 >から < 27> の!、ずれかに記載のパターン形成方法である。  <28> The pattern forming method according to <19> to <27>, wherein the exposure is performed on a partial region of the photosensitive layer.
< 29 > 現像が行われた後、永久パターンの形成を行う前記く 19 >からく 28 > の!、ずれかに記載のパターン形成方法である。  <29> The pattern forming method according to the above [19], [28], wherein a permanent pattern is formed after development.
< 30> 永久パターンが、配線パターンであり、該永久パターンの形成がエツチン グ処理及びメツキ処理の少なくともいずれかにより行われる前記く 29 >に記載のパ ターン形成方法である。 < 31 > 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれ かを形成する前記く 29 >に記載のパターン形成方法である。 <30> The pattern formation method according to <29>, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process. <31> The pattern forming method according to <29>, wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
[0012] 本発明によると、従来における問題を解決することができ、支持体上にクッション層 と感光層とをこの順に有し、該クッション層における全光線透過率とヘイズ値とが一定 の数値範囲であることにより、凹凸追従性と高解像度とが両立され、かつ、欠陥のな V、高精細なパターンを効率よく形成可能なパターン形成材料、並びに該パターン形 成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパターン形 成方法を提供することができる。 [0012] According to the present invention, the conventional problems can be solved, and the cushion layer and the photosensitive layer are provided on the support in this order, and the total light transmittance and the haze value in the cushion layer are constant numerical values. If it is within the range, a pattern forming material capable of simultaneously forming unevenness followability and high resolution, and capable of efficiently forming a defect-free V and high-definition pattern, and a pattern forming apparatus provided with the pattern forming material And a pattern forming method using the pattern forming material.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は、デジタル ·マイクロミラー ·デバイス(DMD)の構成を示す部分拡大図の 一例である。  [0013] FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD).
[図 2A]図 2Aは、 DMDの動作を説明するための説明図の一例である。  FIG. 2A is an example of an explanatory diagram for explaining the operation of the DMD.
[図 2B]図 2Bは、図 2Aと同様の DMDの動作を説明するための説明図の一例である  2B is an example of an explanatory diagram for explaining the operation of the DMD similar to FIG. 2A.
[図 3A]図 3Aは、 DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビーム の配置及び走査線を比較して示した平面図の一例である。 [FIG. 3A] FIG. 3A is an example of a plan view showing the arrangement of the exposure beam and the scanning line in a case where the DMD is not inclined and in a case where the DMD is inclined.
[図 3B]図 3Bは、図 3Aと同様の DMDを傾斜配置しない場合と傾斜配置する場合と で、露光ビームの配置及び走査線を比較して示した平面図の一例である。  [FIG. 3B] FIG. 3B is an example of a plan view showing a comparison of exposure beam arrangement and scanning lines when the DMD similar to FIG. 3A is not inclined and when it is inclined.
[図 4A]図 4Aは、 DMDの使用領域の例を示す図の一例である。  FIG. 4A is an example of a diagram illustrating an example of a DMD usage area.
[図 4B]図 4Bは、図 4Aと同様の DMDの使用領域の例を示す図の一例である。  FIG. 4B is an example of a diagram showing an example of a DMD usage area similar to FIG. 4A.
[図 5]図 5は、スキャナによる 1回の走査でパターン形成材料を露光する露光方式を 説明するための平面図の一例である。  [FIG. 5] FIG. 5 is an example of a plan view for explaining an exposure method in which a pattern forming material is exposed by one scanning by a scanner.
[図 6A]図 6Aは、スキャナによる複数回の走査でパターン形成材料を露光する露光 方式を説明するための平面図の一例である。  [FIG. 6A] FIG. 6A is an example of a plan view for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner.
[図 6B]図 6Bは、図 6Aと同様のスキャナによる複数回の走査でパターン形成材料を 露光する露光方式を説明するための平面図の一例である。  FIG. 6B is an example of a plan view for explaining an exposure method for exposing the pattern forming material by a plurality of scans by the same scanner as in FIG. 6A.
[図 7]図 7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。  FIG. 7 is an example of a schematic perspective view showing an appearance of an example of a pattern forming apparatus.
[図 8]図 8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。 [図 9A]図 9Aは、パターン形成材料に形成される露光済み領域を示す平面図の一例 である。 FIG. 8 is an example of a schematic perspective view showing the configuration of the scanner of the pattern forming apparatus. [FIG. 9A] FIG. 9A is an example of a plan view showing an exposed region formed in a pattern forming material.
[図 9B]図 9Bは、各露光ヘッドによる露光エリアの配列を示す図の一例である。  FIG. 9B is an example of a diagram showing an arrangement of exposure areas by each exposure head.
[図 10]図 10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例であ る。  FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means.
[図 11]図 11は、図 10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断 面図の一例である。  FIG. 11 is an example of a sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG.
[図 12]図 12は、パターン情報に基づいて、 DMDの制御をするコントローラの一例で ある。  FIG. 12 shows an example of a controller that controls DMD based on pattern information.
[図 13A]図 13Aは、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った 断面図の一例である。  FIG. 13A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system.
[図 13B]図 13Bは、マイクロレンズアレイ等を使用しな ヽ場合に被露光面に投影され る光像を示す平面図の一例である。  [FIG. 13B] FIG. 13B is an example of a plan view showing an optical image projected onto the exposure surface when a microlens array or the like is not used.
[図 13C]図 13Cは、マイクロレンズアレイ等を使用した場合に被露光面に投影される 光像を示す平面図の一例である。  [FIG. 13C] FIG. 13C is an example of a plan view showing an optical image projected onto an exposed surface when a microlens array or the like is used.
[図 14]図 14は、 DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図 の一例である。  [FIG. 14] FIG. 14 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines.
[図 15A]図 15Aは、前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方 向につ 、て示すグラフの一例である。  FIG. 15A is an example of a graph showing distortion of the reflecting surface of the micromirror in two diagonal directions of the mirror.
[図 15B]図 15Bは、図 15Aと同様の前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方向について示すグラフの一例である。  FIG. 15B is an example of a graph showing distortion of the reflecting surface of the micromirror similar to that in FIG. 15A in two diagonal directions of the mirror.
[図 16A]図 16Aは、パターン形成装置に用いられたマイクロレンズアレイの正面図の 一例である。  FIG. 16A is an example of a front view of a microlens array used in the pattern forming apparatus.
[図 16B]図 16Bは、パターン形成装置に用いられたマイクロレンズアレイの側面図の 一例である。  FIG. 16B is an example of a side view of the microlens array used in the pattern forming apparatus.
[図 17A]図 17Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。  FIG. 17A is an example of a front view of a microlens constituting a microlens array.
[図 17B]図 17Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。 [FIG. 17B] FIG. 17B is an example of a side view of a microlens constituting a microlens array. is there.
[図 18A]図 18Aは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。  [FIG. 18A] FIG. 18A is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
[図 18B]図 18Bは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。  [FIG. 18B] FIG. 18B is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
[図 19A]図 19Aは、本発明のマイクロレンズの集光位置近傍におけるビーム径をシミ ユレーシヨンした結果を示す図の一例である。  FIG. 19A is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens of the present invention.
[図 19B]図 19Bは、図 19Bと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 19B is an example of a diagram showing the same simulation results as in FIG. 19B, but at different positions.
[図 19C]図 19Cは、図 19Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  [FIG. 19C] FIG. 19C is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
[図 19D]図 19Dは、図 19Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  [FIG. 19D] FIG. 19D is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
[図 20A]図 20Aは、従来のパターン形成方法において、マイクロレンズの集光位置近 傍におけるビーム径をシミュレーションした結果を示す図の一例である。  FIG. 20A is an example of a diagram showing a result of simulating the beam diameter in the vicinity of the condensing position of the microlens in the conventional pattern forming method.
[図 20B]図 20Bは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。 [FIG. 20B] FIG. 20B is an example of a diagram showing the same simulation results as in FIG. 20A but at different positions.
[図 20C]図 20Cは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 20C is an example of a diagram illustrating the simulation result similar to FIG. 20A at another position.
[図 20D]図 20Dは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 20D is an example of a diagram showing a simulation result similar to FIG. 20A at another position.
[図 21]図 21は、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 21 is an example of a plan view showing another configuration of the combined laser light source.
[図 22A]図 22Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。  FIG. 22A is an example of a front view of a microlens constituting a microlens array.
[図 22B]図 22Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。  FIG. 22B is an example of a side view of a microlens constituting a microlens array.
[図 23A]図 23Aは、図 22A及び図 22Bのマイクロレンズによる集光状態を 1つの断面 内について示す概略図の一例である。 [図 23B]図 23Bは、図 23Aの一例と別の断面内について示す概略図の一例である。 [FIG. 23A] FIG. 23A is an example of a schematic view showing a condensing state by the microlens of FIG. 22A and FIG. 22B in one cross section. FIG. 23B is an example of a schematic diagram showing another cross section of the example of FIG. 23A.
[図 24A]図 24Aは、光量分布補正光学系による補正の概念についての説明図の一 例である。 [FIG. 24A] FIG. 24A is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
[図 24B]図 24Bは、光量分布補正光学系による補正の概念についての説明図の一 例である。  [FIG. 24B] FIG. 24B is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
[図 24C]図 24Cは、光量分布補正光学系による補正の概念についての説明図の一 例である。  [FIG. 24C] FIG. 24C is an example of an explanatory diagram of the concept of correction by the light quantity distribution correction optical system.
[図 25]図 25は、光照射手段がガウス分布でかつ光量分布の補正を行わない場合の 光量分布を示すグラフの一例である。  FIG. 25 is an example of a graph showing a light amount distribution when the light irradiation means is a Gaussian distribution and the light amount distribution is not corrected.
[図 26]図 26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例 である。  FIG. 26 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system.
[図 27A]図 27A(A)は、ファイバアレイ光源の構成を示す斜視図であり、図 27A(B) は、(A)の部分拡大図の一例であり、図 27A(C)及び (D)は、レーザ出射部におけ る発光点の配列を示す平面図の一例である。  [FIG. 27A] FIG. 27A (A) is a perspective view showing the configuration of the fiber array light source, and FIG. 27A (B) is an example of a partially enlarged view of (A), and FIG. 27A (C) and (D ) Is an example of a plan view showing an array of light emitting points in the laser emitting portion.
[図 27B]図 27Bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す 正面図の一例である。  [FIG. 27B] FIG. 27B is an example of a front view showing an array of light emitting points in a laser emitting section of a fiber array light source.
[図 28]図 28は、マルチモード光ファイバの構成を示す図の一例である。  FIG. 28 is an example of a diagram showing a configuration of a multimode optical fiber.
[図 29]図 29は、合波レーザ光源の構成を示す平面図の一例である。  FIG. 29 is an example of a plan view showing a configuration of a combined laser light source.
[図 30]図 30は、レーザモジュールの構成を示す平面図の一例である。  FIG. 30 is an example of a plan view showing a configuration of a laser module.
[図 31]図 31は、図 30に示すレーザモジュールの構成を示す側面図の一例である。  FIG. 31 is an example of a side view showing the configuration of the laser module shown in FIG. 30.
[図 32]図 32は、図 30に示すレーザモジュールの構成を示す部分側面図である。  FIG. 32 is a partial side view showing the configuration of the laser module shown in FIG. 30.
[図 33]図 33は、レーザアレイの構成を示す斜視図の一例である。  FIG. 33 is an example of a perspective view showing a configuration of a laser array.
[図 34A]図 34Aは、マルチキヤビティレーザの構成を示す斜視図の一例である。  FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser.
[図 34B]図 34Bは、図 34Aに示すマルチキヤビティレーザをアレイ状に配列したマル チキヤビティレーザレイの斜視図の一例である。  FIG. 34B is an example of a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. 34A are arranged in an array.
[図 35]図 35は、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 35 is an example of a plan view showing another configuration of the combined laser light source.
[図 36A]図 36Aは、合波レーザ光源の他の構成を示す平面図の一例である。 FIG. 36A is an example of a plan view showing another configuration of the combined laser light source.
[図 36B]図 36Bは、図 36Aの光軸に沿った断面図の一例である。 [図 37A]図 37Aは、従来の露光装置における焦点深度と本発明のパターン形成方法 (パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。 FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 36A. FIG. 37A is an example of a cross-sectional view along the optical axis showing the difference between the depth of focus in a conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention.
[図 37B]図 37Bは、従来の露光装置における焦点深度と本発明のパターン形成方法 (パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。  FIG. 37B is an example of a cross-sectional view along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] (パターン形成材料)  [0014] (Pattern forming material)
本発明のパターン形成材料は、支持体上にクッション層と感光層とをこの順に有し The pattern forming material of the present invention has a cushion layer and a photosensitive layer in this order on a support.
、必要に応じて適宜選択したその他の層を有していてもよぐ前記クッション層の全光 線透過率が 86%以上、かつ、ヘイズ値が 10%以下であることを満たす。 The cushion layer, which may have other layers appropriately selected as necessary, satisfies the total light transmittance of 86% or more and a haze value of 10% or less.
[0015] <クッション層 > [0015] <Cushion layer>
前記クッション層としては、全光線透過率が 86%以上、かつ、ヘイズ値が 10%以下 である限り、特に制限はなぐ目的に応じて適宜選択することができるが、例えば、熱 可塑性榭脂を含むものが好ましい。ここで、前記全光線透過率及び前記ヘイズ値を 求める場合の光の波長は、 405nmであることが好まし!/、。  The cushion layer can be appropriately selected according to the purpose without particular limitation as long as the total light transmittance is 86% or more and the haze value is 10% or less. For example, thermoplastic resin is used as the cushion layer. The inclusion is preferred. Here, the wavelength of light when obtaining the total light transmittance and the haze value is preferably 405 nm! /.
[0016] 前記クッション層に対し、 405nmの光を照射する場合における該クッション層の全 光線透過率としては、 86%以上が好ましぐ 87%以上がより好ましぐ 89%以上が特 に好ましい。 [0016] When the cushion layer is irradiated with light of 405 nm, the total light transmittance of the cushion layer is preferably 86% or more, more preferably 87% or more, and particularly preferably 89% or more. .
前記全光線透過率が、 86%未満となると、前記感光層に到達するエネルギーが減 少し、露光量不足となったり、前記クッション層内での光散乱量が増加し、解像性の 低下を招 、たりすることがある。  When the total light transmittance is less than 86%, the energy reaching the photosensitive layer decreases, the exposure amount becomes insufficient, the amount of light scattering in the cushion layer increases, and the resolution decreases. You may be invited.
[0017] 前記クッション層に対し、 405nmの光を照射する場合における該クッション層のへ ィズ値としては、 10%以下が好ましぐ 7%以下がより好ましぐ 5%以下がさらに好ま しぐ 3%以下が特に好ましぐ 1%以下が最も好ましい。 [0017] When the cushion layer is irradiated with 405 nm light, the cushion layer has a haze value of 10% or less, preferably 7% or less, more preferably 5% or less. 3% or less is particularly preferred, and 1% or less is most preferred.
前記ヘイズ値が、 10%を超えると、前記クッション層内の光散乱量が増加し、解像 性が低下すると共に、欠陥が生じるなど、レジスト形状が劣ることがある。  When the haze value exceeds 10%, the amount of light scattering in the cushion layer increases, the resolution decreases, and the resist shape may be inferior, such as defects.
[0018] 前記全光線透過率の測定方法としては、特に制限はなぐ目的に応じて適宜選択 することができるが、例えば、積分球と、 405nmの光を照射可能な分光光度計 (例え ば、島津製作所社製、 UV— 2400)とを用いて測定する方法が挙げられる。 [0018] The method for measuring the total light transmittance is appropriately selected according to the purpose without any particular limitation. For example, a measurement method using an integrating sphere and a spectrophotometer capable of irradiating light of 405 nm (for example, UV-2400 manufactured by Shimadzu Corporation) may be mentioned.
前記ヘイズ値の測定方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができる力 例えば、以下に説明する方法が挙げられる。  As a method for measuring the haze value, a force that can be appropriately selected according to the purpose for which there is no particular limitation, for example, the method described below can be cited.
まず、(1)前記全光線透過率の測定方法において、前記積分球を使用しない以外 は前記全光線透過率の測定方法と同様にして平行光線透過率を測定する。次に、 ( 2)次計算式、前記全光線透過率一前記平行光線透過率、から求められる拡散光透 過率を計算し、(3)次計算式、前記拡散光透過率 Z前記全光線透過率 X 100、から 前記ヘイズ値を求めることができる。  First, (1) in the total light transmittance measurement method, the parallel light transmittance is measured in the same manner as the total light transmittance measurement method except that the integrating sphere is not used. Next, (2) Calculate the diffuse light transmittance obtained from the following calculation formula, the total light transmittance—the parallel light transmittance, and (3) the following calculation formula, the diffuse light transmittance Z, the total light: From the transmittance X 100, the haze value can be determined.
[0019] < <微粒子 > > [0019] <<Fine particle>>
前記クッション層中に存在する微粒子及びその凝集体としては、例えば、クッション 層組成物塗布液の製造工程中に発生した析出粒子、及びゲル状物などが挙げられ る。  Examples of the fine particles and aggregates thereof present in the cushion layer include precipitated particles and gel-like substances generated during the production process of the cushion layer composition coating liquid.
前記析出粒子、及び前記ゲル状物などが存在すると、露光時、感光層にボイドが 生じ、形成されたパターンに欠陥を生じることがある。  If the precipitated particles, the gel-like material, and the like are present, voids may be generated in the photosensitive layer during exposure, and defects may be generated in the formed pattern.
[0020] 前記析出粒子や前記ゲル状物とは、原料ポリマー製造時の触媒や、原料ポリマー 製造時に局部的に生成する高重合度ポリマーや熱分解物である。 [0020] The precipitated particles and the gel-like substance are a catalyst at the time of producing the raw material polymer, a high polymerization degree polymer or a thermal decomposition product locally generated at the time of producing the raw material polymer.
[0021] 前記クッション層中に存在することが許容される微粒子及びその凝集体の平均粒 子径としては、 1 μ m未満であること力 S好ましく、 0. 5 m未満力 Sより好ましく、 0. 2 m未満が特に好ましい。 [0021] The average particle size of the fine particles allowed to be present in the cushion layer and the aggregates thereof is preferably a force S of less than 1 μm, more preferably a force S of less than 0.5 m, Particularly preferred is less than 2 m.
前記クッション層中に存在する微粒子及びその凝集体の平均粒子径が 1 μ mを超 えた場合、露光光の散乱によって解像度が低下することがある。また、平均粒子径が If the average particle size of the fine particles and aggregates present in the cushion layer exceeds 1 μm, the resolution may decrease due to scattering of exposure light. In addition, the average particle size is
1 μ mを超えない場合においても、多量に含まれる場合にはヘイズ値が低下すること がある。 Even if it does not exceed 1 μm, the haze value may decrease if it is contained in a large amount.
前記微粒子及びその凝集体の平均粒子径の測定方法としては、例えば、走査型 電子顕微鏡 (SEM)により多数の異物の写真を撮影し、その写真上で異物の径を測 定する方法などが挙げられる。  Examples of the method for measuring the average particle diameter of the fine particles and the aggregates thereof include a method of taking a photograph of a large number of foreign matters with a scanning electron microscope (SEM) and measuring the diameter of the foreign matters on the photograph. It is done.
[0022] < <熱可塑性榭脂 > > 前記熱可塑性榭脂としては、ガラス転移温度 (Tg)及び軟化点の!/、ずれかが 80°C 以下の熱可塑性榭脂を含有することが好ましい。具体的には、 Vicat法 (アメリカ材料 試験法 ASTMD1235によるポリマー軟ィ匕点測定法)による前記熱可塑性榭脂の軟 化点が 80°C以下であることが好ましぐ 60°C以下であることがより好ましぐ 50°C以下 であることが特に好ましい。 <0022><Thermoplasticresin> The thermoplastic resin preferably contains a thermoplastic resin having a glass transition temperature (Tg) and a softening point of at least 80 ° C. Specifically, the softening point of the thermoplastic resin is preferably 80 ° C or less, preferably 60 ° C or less, according to the Vicat method (American material test method ASTMD1235 polymer softening point measurement method). It is particularly preferable that the temperature is 50 ° C or less.
前記 Vicat法による軟ィ匕点が 80°C以上の熱可塑性榭脂を用いた場合は、前記パ ターン形成材料を高温下で基体上に積層する必要が生じ、作業上不利である。  When a thermoplastic resin having a softness point by the Vicat method of 80 ° C. or higher is used, it is necessary to laminate the pattern forming material on a substrate at a high temperature, which is disadvantageous in terms of work.
[0023] 前記熱可塑性榭脂としては、ポリエチレン、ポリプロピレン等のポリオレフイン、及び それらの共重合体;エチレン 酢酸ビニル共重合体、エチレン 酢酸ビニル共重合 体ケンィヒ物等のエチレン共重合体;エチレン アクリル酸エステル共重合体、及びそ のケン化物;ポリ塩化ビニル;塩化ビニルー酢酸ビニル共重合体、及びそのケン化物 等の塩化ビニル共重合体;ポリ塩ィヒビユリデン;塩化ビ-リデン共重合体;ポリスチレ ン;スチレン (メタ)アクリル酸エステル共重合体、及びそのケン化物等のスチレン共 重合体;ポリビュルトルエン;ビュルトルエン (メタ)アクリル酸エステル共重合体、及 びそのケンィ匕物等のビュルトルエン共重合体;ポリ(メタ)アクリル酸エステル;(メタ)ァ クリル酸ブチルと酢酸ビュル等の(メタ)アクリル酸エステル共重合体;酢酸ビニル共 重合体ナイロン、共重合ナイロン; N アルコキシメチル化ナイロン; N ジメチルアミ ノ化ナイロン等のポリアミド榭脂、など力も選ばれる少なくとも 1種であることが好ましい また、前記軟化点が 80°C以下の熱可塑性榭脂としては、上述した熱可塑性榭脂の 他、「プラスチック性能便覧」(日本プラスチック工業連盟、全日本プラスチック成形ェ 業連合会編著、工業調査会発行、 1968年 10月 25日発行)による軟化点が約 80°C 以下の有機高分子が挙げられる。 [0023] Examples of the thermoplastic resin include polyolefins such as polyethylene and polypropylene, and copolymers thereof; ethylene copolymers such as ethylene vinyl acetate copolymer, ethylene vinyl acetate copolymer kenich; ethylene acrylic acid Ester copolymer and saponified product thereof; polyvinyl chloride; vinyl chloride copolymer such as vinyl chloride-vinyl acetate copolymer and saponified product thereof; polysalt vinylidene; vinylidene chloride copolymer; polystyrene; Styrene copolymer such as styrene (meth) acrylate ester and saponified product thereof; polytoluene toluene; butyltoluene; methacrylic acid ester copolymer and butyltoluene copolymer such as kenicate Poly (meth) acrylic acid esters; butyl (meth) acrylate and butyl acetate (meth ) Acrylate ester copolymer; Vinyl acetate copolymer nylon, Copolymer nylon; N Alkoxymethylated nylon; N Polyamide resin such as dimethylaminated nylon, etc. The thermoplastic resin having a softening point of 80 ° C or less includes the above-mentioned thermoplastic resin, “Plastic Performance Handbook” (edited by the Japan Plastics Industry Federation, All Japan Plastics Molding Industry Federation, published by the Industrial Research Council, Organic polymers with a softening point of about 80 ° C or less as of October 25, 1968).
[0024] また、軟ィ匕点が 80°C以上の熱可塑性榭脂にぉ 、ても、該熱可塑性榭脂と相溶性 のある各種の可塑剤を添加して実質的な軟ィ匕点を 80°C以下に下げることができる。 前記可塑剤としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、ポリプロピレングリコール、ポリエチレングリコール、ジォクチルフタレート、ジ へプチノレフタレート、ジブチノレフタレート、トリクレジルフォスフェート、クレジノレジフエ -ルフォスフェート、ビフエ-ルジフエ-ルフォスフェート等のアルコール類やエステ ル類;トルエンスルホンアミド等のアミド類、などが挙げられる。 [0024] Further, even if the thermoplastic resin having a soft softening point of 80 ° C or higher, various plasticizers compatible with the thermoplastic resin are added to obtain a substantial soft softening point. Can be lowered below 80 ° C. The plasticizer is not particularly limited and may be appropriately selected according to the purpose. For example, polypropylene glycol, polyethylene glycol, dioctyl phthalate, diheptino phthalate, dibutino phthalate, tricresyl phosphate , Krezhno Regihue -Alcohols and esters such as ruphosphate and biphenyl diphosphate; amides such as toluenesulfonamide and the like.
[0025] 前記クッション層は、前記熱可塑性榭脂及び必要に応じて他の成分を溶剤に溶解 して塗布液 (クッション層組成物塗布液)を調製し、公知の塗布方法により仮支持体 上に塗布等して形成することができる。前記溶剤としては、メチルェチルケトン、 1—メ トキシ— 2—プロパノール等の有機溶剤、水、水と混和性の有機溶剤と水との混合溶 液などが挙げられる。  [0025] The cushion layer is prepared by dissolving the thermoplastic resin and, if necessary, other components in a solvent to prepare a coating solution (cushion layer composition coating solution). It can be formed by coating or the like. Examples of the solvent include organic solvents such as methyl ethyl ketone and 1-methoxy-2-propanol, water, and a mixed solution of water and an organic solvent miscible with water.
前記熱可塑性榭脂の溶解特性は、後述する前記感光層の組成物の溶解特性に一 致させてもよぐ前記感光層の組成物が全く溶解しない溶剤に可溶な溶解特性であ つてもよい。  The thermoplastic resin may have a solubility characteristic that is soluble in a solvent in which the composition of the photosensitive layer does not dissolve at all. Good.
また、製造時の有機溶剤排ガス防止 (環境負荷低減)、製造機の乾燥ゾーン中の 有機溶剤ガス濃度の防爆管理 (作業安全)の観点から、前記クッション層組成物塗布 液は、前記熱可塑性榭脂のポリマー微粒子の水分散液であることが好ま 、。  In addition, from the viewpoint of organic solvent exhaust gas prevention during production (reducing environmental impact) and explosion-proof management of the organic solvent gas concentration in the drying zone of the production machine (work safety), the cushion layer composition coating liquid is used as the thermoplastic layer. Preferred is an aqueous dispersion of oily polymer fine particles.
[0026] 前記クッション層は、アルカリ性液に対して、膨潤性乃至可溶性であってもよく、不 溶性であってもよい。 [0026] The cushion layer may be swellable or soluble in an alkaline liquid, or may be insoluble.
前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には、前記 熱可塑性榭脂としては、アルカリ可溶性の熱可塑性ポリマーを主に含んでなり、必要 に応じて他の成分を含んで 、てもよ 、。  When the cushion layer is swellable or soluble in an alkaline liquid, the thermoplastic resin mainly contains an alkali-soluble thermoplastic polymer, and optionally contains other components. .
[0027] 前記熱可塑性ポリマーの酸価 (mgKOH/g)は、特に制限はなぐ 目的に応じて適 宜選択することができる力 50〜300力 S好ましく、 60〜270カ Sより好ましく、 70〜250 が特に好ましい。酸価が前記範囲にあることにより、前記クッション層の現像性を確保 することができる。酸価が 50未満であると、現像不良を生じる場合があり、 300を超え ると、前記クッション層が硬くなりすぎ、凹凸追従性やラミネート性が低下する場合が ある。 [0027] The acid value (mgKOH / g) of the thermoplastic polymer is not particularly limited. A force that can be appropriately selected according to the purpose 50 to 300 force S, preferably 60 to 270 parts S, more preferably 70 to 250 is particularly preferred. When the acid value is within the above range, the developability of the cushion layer can be ensured. When the acid value is less than 50, development failure may occur. When the acid value exceeds 300, the cushion layer becomes too hard, and uneven followability and laminating properties may be deteriorated.
[0028] また、前記熱可塑性ポリマーの重量平均分子量は、特に制限は無ぐ 目的に応じて 適宜選択すること力 Sできる力 1, 000〜300, 000力 S好ましく、 3, 000〜200, 000 力 り好ましぐ 5, 000-150, 000が特に好ましい。重量平均分子量が前記範囲に あることにより、前記クッション層の現像性を確保することができ、前記粘性率 r? を調 節することが容易となる。さらに、上記酸価の範囲との組合せによって、より一層その 効果が得られる。重量平均分子量が 1, 000未満であると、膜が脆弱になったり、ラミ ネート時に前記クッション層の染み出しが起こったりする場合がある。 300, 000を超 えると、前記クッション層が硬くなりすぎ、凹凸追従性やラミネート性が低下する場合 がある。 [0028] The weight average molecular weight of the thermoplastic polymer is not particularly limited and may be appropriately selected according to the purpose. Force S capable of being 1,000 to 300,000 power S, preferably 3,000 to 200,000 A force of 5,000 to 150,000 is particularly preferred. When the weight average molecular weight is in the above range, developability of the cushion layer can be ensured, and the viscosity r? It becomes easy to save. Further, the effect can be further obtained by the combination with the above acid value range. If the weight average molecular weight is less than 1,000, the membrane may become fragile or the cushion layer may exude during lamination. If it exceeds 300,000, the cushion layer may become too hard, and the unevenness followability and laminating properties may deteriorate.
[0029] また、カルボン酸含有モノマーと (メタ)アクリル酸エステルモノマーとの共重合体も 用いることができる。カルボン酸含有モノマーとしては、例えば、アクリル酸、メタクリル 酸、及びこれらの誘導体が挙げられる。(メタ)アクリル酸エステルモノマーとしては、メ チル (メタ)アタリレート、ェチル (メタ)アタリレート、ブチル (メタ)アタリレート、ベンジル (メタ)アタリレート、及び 2—ェチルへキシル (メタ)アタリレート等が挙げられる。  [0029] A copolymer of a carboxylic acid-containing monomer and a (meth) acrylic acid ester monomer can also be used. Examples of the carboxylic acid-containing monomer include acrylic acid, methacrylic acid, and derivatives thereof. (Meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Etc.
[0030] 共重合体としては、カルボン酸含有モノマーとアクリル酸エステルモノマーとの 2元 重合体でも、多元重合体でもよぐメタクリル酸に対してメチルメタタリレート、 2—ェチ ルへキシルメタタリレート、ベンジルメタタリレートを 1種以上共重合させたものが好ま しぐメタクリル酸 Zメチルメタタリレート Z2—ェチルへキシルアタリレート Zベンジル メタタリレート共重合体が特に好まし 、。  [0030] The copolymer may be a binary polymer of a carboxylic acid-containing monomer and an acrylate ester monomer or a multi-polymer, such as methyl metatalate or 2-ethylhexyl meta methacrylic acid. A methacrylic acid Z-methyl methacrylate / Z2-ethylhexyl acrylate / Z-benzyl methacrylate copolymer is particularly preferred.
[0031] また、前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には 、前記パターン形成材料の層間接着力としては、特に制限はなぐ 目的に応じて適 宜選択することができるが、例えば、各層の層間接着力の中で、前記支持体と前記ク ッシヨン層との間の層間接着力力 最も小さいことが好ましい。このような層間接着力 とすることにより、前記積層体から前記支持体のみを剥離し、前記クッション層を介し て前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像すること ができる。また、前記支持体を残したまま、前記感光層を露光した後、前記積層体か ら前記支持体のみを剥離し、アルカリ性の現像液を用いて該感光層を現像することも できる。 [0031] When the cushion layer is swellable or soluble in an alkaline liquid, the interlayer adhesive force of the pattern forming material is not particularly limited and can be appropriately selected according to the purpose. However, for example, it is preferable that the interlayer adhesive force between the support and the cushion layer is the smallest among the interlayer adhesive strengths of the respective layers. With such an interlayer adhesive strength, only the support is peeled off from the laminate, the photosensitive layer is exposed through the cushion layer, and then the photosensitive layer is developed using an alkaline developer. be able to. In addition, after exposing the photosensitive layer while leaving the support, only the support is peeled off from the laminate, and the photosensitive layer can be developed using an alkaline developer.
[0032] 前記層間接着力の調整方法としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、前記熱可塑性榭脂中に公知のポリマー、過冷却物質、密着改 良剤、界面活性剤、離型剤などを添加する方法が挙げられる。 [0033] 前記クッション層がアルカリ性液に対して不溶性である場合には、前記熱可塑性榭 脂としては、例えば、主成分がエチレンを必須の共重合成分とする共重合体が挙げ られる。 [0032] The method for adjusting the interlayer adhesive force is not particularly limited and may be appropriately selected depending on the purpose. For example, a known polymer, supercooling substance, or adhesion improver in the thermoplastic resin is used. , A method of adding a surfactant, a release agent and the like. [0033] When the cushion layer is insoluble in an alkaline liquid, examples of the thermoplastic resin include a copolymer whose main component is an essential copolymer component of ethylene.
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなぐ目的 に応じて適宜選択することができる力 例えば、エチレン 酢酸ビニル共重合体 (EV A)、エチレン—ェチルアタリレート共重合体 (EEA)などが挙げられる。  The copolymer having ethylene as an essential copolymer component is a force that can be appropriately selected according to the purpose without any particular limitation. For example, ethylene vinyl acetate copolymer (EV A), ethylene-ethyl acrylate. Copolymer (EEA) and the like.
[0034] 前記クッション層がアルカリ性液に対して不溶性である場合には、前記パターン形 成材料の層間接着力としては、特に制限はなぐ目的に応じて適宜選択することがで きるが、例えば、各層の層間接着力の中で、前記感光層と前記クッション層との接着 力が、最も小さいことが好ましい。このような層間接着力とすることにより、前記支持体 を残したまま、前記感光層を露光した後、前記積層体から前記支持体と前記クッショ ン層を剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。また、 前記積層体から前記支持体及びクッション層を剥離し、前記感光層を露光した後、ァ ルカリ性の現像液を用いて該感光層を現像することもできる。  [0034] When the cushion layer is insoluble in an alkaline liquid, the interlayer adhesive force of the pattern forming material can be appropriately selected according to the purpose without any particular limitation. Of the interlayer adhesive strength of each layer, the adhesive strength between the photosensitive layer and the cushion layer is preferably the smallest. With such an interlayer adhesion, the photosensitive layer is exposed while leaving the support, and then the support and the cushion layer are peeled off from the laminate, and an alkaline developer is used. The photosensitive layer can also be developed. In addition, after peeling the support and the cushion layer from the laminate and exposing the photosensitive layer, the photosensitive layer can be developed using an alkaline developer.
[0035] 前記層間接着力の調整方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、前記熱可塑性榭脂中に各種のポリマー、過冷却物質、密着改 良剤、界面活性剤、離型剤などを添加する方法、以下に説明するエチレン共重合比 を調整する方法などが挙げられる。  [0035] The method for adjusting the interlayer adhesive force can be appropriately selected according to the purpose without any particular limitation. For example, various polymers, supercooling substances, adhesion improvers in the thermoplastic resin can be selected. , A method of adding a surfactant, a release agent, and the like, and a method of adjusting the ethylene copolymerization ratio described below.
[0036] 前記エチレンを必須の共重合成分とする共重合体におけるエチレン共重合比とし ては、特に制限はなぐ目的に応じて適宜選択することができる力 例えば、 60〜90 質量%が好ましぐ 60〜80質量%がより好ましぐ 65〜80質量%が特に好ましい。 前記エチレンの共重合比が、 60質量%未満になると、前記クッション層と前記感光 層との層間接着力が高くなり、該クッション層と該感光層との界面で剥離することが困 難となることがあり、 90質量%を超えると、前記クッション層と前記感光層との層間接 着力が小さくなりすぎるため、該クッション層と該感光層との間で非常に剥離しやすく なり、前記クッション層を含むパターン形成材料の製造が困難となることがある。  [0036] The ethylene copolymerization ratio in the copolymer having ethylene as an essential copolymerization component is a force that can be appropriately selected according to the purpose without any particular limitation. For example, 60 to 90% by mass is preferable. 60-80% by mass is more preferred. 65-80% by mass is particularly preferred. When the ethylene copolymerization ratio is less than 60% by mass, the interlayer adhesive force between the cushion layer and the photosensitive layer increases, and it becomes difficult to peel off at the interface between the cushion layer and the photosensitive layer. If the amount exceeds 90% by mass, the indirect adhesion between the cushion layer and the photosensitive layer becomes too small, and the cushion layer and the photosensitive layer are very easily peeled off. It may be difficult to produce a pattern forming material containing
[0037] 前記クッション層がアルカリ性液に対して不溶性であり、かつ、前記クッション層と前 記感光層との間にバリア層が存在する場合には、各層の層間接着力の中で、前記感 光層と前記バリア層との層間接着力が最も小さ!、ことが好ま 、。このような層間接着 力とすることにより、前記支持体を剥離せずに残したまま、前記クッション層を介して 前記感光層を露光した後、前記積層体から前記支持体、前記クッション層、及び前 記バリア層を剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。 また、前記積層体から、前記支持体、前記クッション層、及び前記バリア層を剥離し、 前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像することも できる。 [0037] When the cushion layer is insoluble in an alkaline solution and a barrier layer is present between the cushion layer and the photosensitive layer, the sensitivity is increased in the interlayer adhesion of each layer. It is preferable that the interlayer adhesion between the optical layer and the barrier layer is the smallest! By setting such an interlayer adhesive force, the photosensitive layer is exposed through the cushion layer while leaving the support without peeling, and then the support, the cushion layer, and It is also possible to peel off the barrier layer and develop the photosensitive layer using an alkaline developer. Moreover, after peeling the said support body, the said cushion layer, and the said barrier layer from the said laminated body and exposing the said photosensitive layer, this photosensitive layer can also be developed using an alkaline developing solution.
[0038] 前記層間接着力の調整方法としては、特に制限はなぐ目的に応じて適宜選択す ることができるが、例えば、前記感光層に離形剤を含有させる方法、前記クッション層 と前記バリア層との接着面を表面処理する方法、前記支持体と前記クッション層との 接着面を表面処理する方法、各層の少なくともいずれかに含まれる成分の中から選 択される少なくとも 1種の含有量を調整する方法、及び、接着力を向上させる成分を 含有させる乃至塗布する方法などが挙げられ、これらの方法は 1種単独で使用しても よぐ 2種以上を併用してもよい。  [0038] The method for adjusting the interlayer adhesive force can be appropriately selected according to the purpose without any particular limitation. For example, a method of containing a release agent in the photosensitive layer, the cushion layer and the barrier Content of at least one selected from a method for surface-treating an adhesive surface with a layer, a method for surface-treating an adhesive surface between the support and the cushion layer, and a component contained in at least one of the layers And a method of containing or applying a component for improving the adhesive strength. These methods may be used alone or in combination of two or more.
[0039] 前記離形剤としては、特に制限はなぐ公知の離形剤の中から適宜選択することが でき、例えば、シリコーンィ匕合物、弗素化アルキル基を有する化合物などが挙げられ る。  [0039] The release agent can be appropriately selected from known release agents without particular limitations, and examples thereof include silicone compounds and compounds having a fluorinated alkyl group.
[0040] 前記シリコーン化合物としては、例えば、ダイセル UCB社製、エベクリル 1360、同 350、東芝シリコーン社製ジメチルシリコーンオイル TSF400、メチルフエ-ルシリコ 一ン才ィノレ TSF4300、
Figure imgf000019_0001
TSF4446, T SF4460、 TSF4452等力挙げられる。
[0040] Examples of the silicone compound include Daicel UCB, Evecril 1360, 350, Toshiba Silicone Dimethyl Silicone Oil TSF400, Methylphenol Silco 1-year-old Inole TSF4300,
Figure imgf000019_0001
TSF4446, TSF4460, TSF4452 etc. are listed.
[0041] 前記弗素化アルキル基を有する化合物としては、例えば、弗素系界面活性剤(例 えば、大日本インキ化学工業社製パーフルォロアルキル基'親水性基含有オリゴマ 一 F—171、パーフルォロアルキル基'親油性基含有オリゴマー F— 173、パーフル ォロアルキル基.親水性基.親油性基含有オリゴマー F— 177、パーフルォロアルキ ル基 '親油性基含有ウレタン F— 183、 F— 184、弗素系グラフトポリマー等)、弗素系 グラフトポリマー(例えば、東亜合成化学社製、ァロン GF— 300、 GF— 150等)が挙 げられる。 [0042] 前記表面処理としては、例えば、プラズマ処理、電子線処理、グロ一放電処理、コ ロナ放電処理、紫外線照射処理などが挙げられる。 [0041] Examples of the compound having a fluorinated alkyl group include a fluorine-based surfactant (for example, perfluoroalkyl group 'hydrophilic group-containing oligomer F-171, manufactured by Dainippon Ink & Chemicals, Inc. Fluoroalkyl group 'Olipophilic group-containing oligomer F-173, perfluoroalkyl group.Hydrophilic group.Olipophilic group-containing oligomer F-177, Perfluoroalkyl group' Lipophilic group-containing urethane F-183, F — 184, fluorine-based graft polymers, etc.) and fluorine-based graft polymers (for example, ALON GF-300, GF-150, etc., manufactured by Toa Gosei Chemical Co., Ltd.). [0042] Examples of the surface treatment include plasma treatment, electron beam treatment, glow discharge treatment, corona discharge treatment, and ultraviolet irradiation treatment.
[0043] 前記各層の少なくともいずれかに含まれる成分の中力 選択される少なくとも 1種の 含有量を調整する方法としては、例えば、前記クッション層が前記エチレンを必須と する共重合体を含む場合には、前記共重合体におけるエチレン共重合比を 60質量 %未満とする方法が挙げられる。  [0043] As a method for adjusting the content of at least one selected from among the components contained in at least one of the layers, for example, when the cushion layer contains a copolymer essentially containing ethylene Includes a method in which the ethylene copolymerization ratio in the copolymer is less than 60% by mass.
[0044] 前記接着力を向上させる成分としては、例えば、フエノール性物質 (例えば、クレゾ 一ルノボラック榭脂、フエノールレジン等)、ポリ塩ィ匕ビユリデン榭脂、スチレンブタジ ェンゴム、ゼラチン、ポリビュルアルコール、セルロース類などが挙げられる。これらは 、必要に応じて、前記支持体、クッション層、及びバリア層の少なくともいずれかに含 有させてもよぐ前記支持体と前記クッション層との接触面、前記クッション層と前記バ リア層との接触面に対して塗布してもよい。  [0044] Examples of the component for improving the adhesive strength include phenolic substances (for example, cresol monovolak resin, phenol resin, and the like), polysalt-vinylidene resin, styrene butadiene rubber, gelatin, polybulal alcohol, cellulose. And the like. These may be included in at least one of the support, the cushion layer, and the barrier layer as needed, and the contact surface between the support and the cushion layer, the cushion layer, and the barrier layer. You may apply | coat with respect to a contact surface.
[0045] 前記架橋剤としては、例えば、硼砂、硼酸、硼酸塩 (例えば、オルト硼酸塩、 InBO  [0045] Examples of the crosslinking agent include borax, boric acid, borates (for example, orthoborate, InBO
3 Three
、 ScBO、 YBO、 LaBO、 Mg (BO ) 、 Co (BO ) 、二硼酸塩(例えば、 Mg B O, ScBO, YBO, LaBO, Mg (BO), Co (BO), diborate (eg Mg B 2 O
3 3 3 3 3 2 3 3 2 2 23 3 3 3 3 2 3 3 2 2 2
、 Co B O )、メタ硼酸塩(例えば、 LiBO、 Ca (BO ) 、 NaBO、 KBO )、四硼酸, Co B O), metaborates (eg LiBO, Ca (BO), NaBO, KBO), tetraboric acid
5 2 2 5 2 2 2 2 2 塩(例えば、 Na Β Ο · 10Η 0)、五硼酸塩(例えば、 KB Ο ·4Η 0、 Ca Β Ο · 7 5 2 2 5 2 2 2 2 2 Salt (eg Na Β Ο · 10Η 0), pentaborate (eg KB Ο · 4Η 0, Ca Β Ο · 7
2 4 7 2 5 8 2 2 6 11 2 4 7 2 5 8 2 2 6 11
Η 0、 CsB Ο )等のホウ素化合物が挙げられる。これらの中でも、速やかに架橋反Boron compounds such as Η0 and CsBΟ) are mentioned. Among these, the cross-linking reaction
2 5 5 2 5 5
応を起こすことができる点で、硼砂、硼酸、硼酸塩が好ましぐ硼酸がより好ましい。ま た、ホルムアルデヒド、グリオキザール、グルタールアルデヒド等のアルデヒド系化合 物;ジァセチル、シクロペンタンジオン等のケトン系化合物;ビス (2-クロ口ェチル尿 素)ー2 ヒドロキシ 4, 6 ジクロロー 1, 3, 5 トリアジン、 2, 4 ジクロロー 6— S —トリァジン'ナトリウム塩等の活性ハロゲン化合物;ジビニルスルホン酸、 1, 3 ビ- ルスルホ-ルー 2—プロパノール、 Ν, Ν,一エチレンビス(ビ-ルスルホ-ルァセタミ ド)、 1, 3, 5 トリアタリロイル—へキサヒドロ S トリァジン等の活性ビュル化合物; ジメチロール尿素、メチロールジメチルヒダントイン等の Ν—メチロール化合物;メラミ ン榭脂(例えば、メチロールメラミン、アルキル化メチロールメラミン);エポキシ榭脂; 1 , 6—へキサメチレンジイソシァネート等のイソシァネート系化合物;米国特許明細書 第 3017280号、同第 2983611号に記載のアジリジン系化合物;米国特許明細書第 3100704号に記載のカルボキシイミド系化合物;グリセロールトリグリシジルエーテル 等のエポキシ系化合物; 1, 6 へキサメチレン— N, N,—ビスエチレン尿素等のェ チレンイミノ系化合物;ムコクロル酸、ムコフエノキシクロル酸等のハロゲン化カルボキ シアルデヒド系化合物; 2, 3 ジヒドロキシジォキサン、 2, 3 ジヒドロキシ— 1, 4— ジォキサン等のジォキサン系化合物;乳酸チタン、硫酸アルミ、クロム明ばん、カリ明 ばん、酢酸ジルコニル、酢酸クロム等の金属含有化合物、テトラエチレンペンタミン等 のポリアミン化合物、アジピン酸ジヒドラジド等のヒドラジドィ匕合物、ォキサゾリン基を 2 個以上含有する低分子又はポリマー、などが挙げられる。これらは、 1種単独で使用 してもよく、 2種以上を併用してもよい。 Boric acid, more preferably borax, boric acid, and borate, is more preferred because it can cause a reaction. Aldehyde compounds such as formaldehyde, glyoxal, and glutaraldehyde; ketone compounds such as diacetyl and cyclopentanedione; bis (2-chlorodiethylurea) -2 hydroxy 4, 6 dichloro 1, 3, 5 Active halogen compounds such as triazine, 2, 4 dichloro-6-S-triazine 'sodium salt; divinylsulfonic acid, 1,3 berylsulfoluol 2-propanol, Ν, Ν, monoethylenebis (birusulfuluolacetamide) ), 1, 3, 5 Triarylloyl-hexahydro S Triazine and other active bur compounds; dimethylol urea, methyloldimethylhydantoin and other Ν-methylol compounds; melamine linseed (eg, methylol melamine, alkylated methylol melamine); Epoxy resin; 1, 6-hexamethylene diisocyanate and other isocyanates Over preparative compounds; U.S. Pat. No. 3017280, aziridine compounds described in JP same first 2983611; U.S. Pat. No. Carboximide compounds described in No. 3100704; epoxy compounds such as glycerol triglycidyl ether; 1, 6 hexamethylene-N, N, -ethyleneimino compounds such as bisethyleneurea; mucochloric acid, mucophenoxycyclolic acid Halogenated carboxylic aldehyde compounds such as 2,3 dihydroxydioxane, 2,3 dihydroxy-1,4-dioxane, etc .; titanium lactate, aluminum sulfate, chromium alum, potassium alum, zirconyl acetate And metal-containing compounds such as chromium acetate, polyamine compounds such as tetraethylenepentamine, hydrazide compounds such as adipic acid dihydrazide, and low molecules or polymers containing two or more oxazoline groups. These may be used alone or in combination of two or more.
[0046] 前記シランカップリング剤としては、例えば、 N— 2 (アミノエチル) 3 ァミノプロピル メチルジメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルトリメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルトリエトキシシラン、 3 ァミノプロピルトリメトキシシ ラン、 3 ァミノプロピルトリエトキシシラン、 3 トリエトキシシリル一 N— (1, 3 ジメチ [0046] Examples of the silane coupling agent include N-2 (aminoethyl) 3 aminopropyl methyldimethoxysilane, N-2 (aminoethyl) 3 aminopropyltrimethoxysilane, N-2 (aminoethyl) 3 Minopropyltriethoxysilane, 3 aminopropyltrimethoxysilane, 3 aminopropyltriethoxysilane, 3 triethoxysilyl mono N— (1, 3 dimethyl)
N— (ビュルベンジル) 2 アミノエチル一 3 ァミノプロピルトリメトキシシランなどが 挙げられる。また、信越ィ匕学社製のシランカップリング剤も好適に使用することができ る。 N- (Buylbenzyl) 2 aminoethyl 1 3 aminopropyltrimethoxysilane and the like. In addition, a silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd. can be suitably used.
[0047] 前記架橋剤及びシランカップリング剤の少なくともいずれかを含有させる層としては 、特に制限はなぐ目的に応じて適宜選択することができるが、例えば、前記クッショ ン層及び前記ノリア層が好ましぐ前記クッション層単独がより好ましい。  [0047] The layer containing at least one of the cross-linking agent and the silane coupling agent can be appropriately selected according to the purpose without any particular limitation. For example, the cushion layer and the noria layer are preferable. More preferably, the cushion layer alone is more preferable.
[0048] ま、上述の方法以外にも、前記支持体に含まれる成分の少なくとも 1種と、前記タツ シヨン層に含まれる成分から選択される少なくとも 1種と、前記バリア層に含まれる成 分から選択される少なくとも 1種とを親水性の物質にし、前記感光層に含まれる成分 から選択される少なくとも 1種を疎水性の物質にする方法、前記支持体に含まれる成 分の少なくとも 1種と、前記クッション層に含まれる成分力 選択される少なくとも 1種と 、前記バリア層に含まれる成分から選択される少なくとも 1種とを疎水性の物質にし、 前記感光層に含まれる成分から選択される少なくとも 1種を親水性の物質にする方法 などが挙げられる。 [0049] 前記成分が、ポリビュルアルコールである場合には、該ポリビュルアルコールのけ ん化度が 85%以下のものや、変性ポリビュルアルコールを適宜選択して使用するこ とができる。また、前記ポリビュルアルコールは、前記架橋剤や前記シランカップリン グ剤等と併用してもよい。 [0048] Besides the above-described method, at least one selected from the components included in the support layer, at least one selected from the components included in the tack layer, and the components included in the barrier layer. A method of making at least one selected from a hydrophilic substance and at least one selected from the components contained in the photosensitive layer into a hydrophobic substance, at least one of the components contained in the support; The component force contained in the cushion layer is selected from the components contained in the photosensitive layer, wherein at least one selected from the component force and at least one selected from the components contained in the barrier layer are made into a hydrophobic substance. For example, there is a method of making at least one kind of hydrophilic substance. [0049] In the case where the component is polybulal alcohol, the polybulal alcohol having a saponification degree of 85% or less, or a modified polybulal alcohol can be appropriately selected and used. Further, the polybulal alcohol may be used in combination with the crosslinking agent, the silane coupling agent, or the like.
前記変性ポリビュルアルコールとしては、例えば、ァ-オン変性ポリビュルアルコー ル(例えば、カルボキシ変性ポリビュルアルコール等)、カチオン変性ポリビュルアル コール、ァセトァセチル化ポリビュルアルコール、シラノール変性ポリビュルアルコー ル、疎水基変性ポリビュルアルコール(例えば、末端アルキルポリビュルアルコール 等)、親水基変性ポリビニルアルコール (例えば、エチレンオキサイド変性ポリビュル アルコール等)、末端チオールポリビュルアルコール、ェクセバール (クラレネ土製)、な どが挙げられる。  Examples of the modified polybulal alcohol include cation-modified polybulal alcohol (for example, carboxy-modified polybulal alcohol), cation-modified polybulal alcohol, acetoacetylated polybulal alcohol, silanol-modified polybulal alcohol, hydrophobic group-modified polybutyl alcohol. Examples include polybulal alcohol (for example, terminal alkylpolybulal alcohol), hydrophilic group-modified polyvinyl alcohol (for example, ethylene oxide-modified polybulal alcohol), terminal thiol polybulal alcohol, exeval (manufactured by KURARENE), and the like.
[0050] 上述した前記熱可塑性榭脂の中でも、基体へのラミネーシヨン性がよぐノリア層と の剥離性がよぐ前記感光層成分の移行防止性に優れ、さらに製造上有利である点 から、エチレン酢酸ビニル共重合体、及びォレフィンアイオノマーが特に好ましい。  [0050] Among the thermoplastic resins described above, the laminating property to the substrate is good, the releasability from the noria layer is good, and the photosensitive layer component migration prevention property is excellent, and the production is advantageous. , Ethylene vinyl acetate copolymer and olefin fin ionomer are particularly preferred.
[0051] 前記クッション層は、上述した組成物が溶解、乳化、又は分散されたクッション層組 成物塗布液を、フィルターで濾過した後、支持体上に塗布、乾燥して形成されること が好ましい。また、前記フィルタ一は、孔径が 30 m以下であることが好ましい。 [0051] The cushion layer may be formed by filtering a cushion layer composition coating solution in which the above-described composition is dissolved, emulsified, or dispersed, through a filter, and coating and drying on a support. preferable. The filter preferably has a pore diameter of 30 m or less.
[0052] 前記クッション層の厚みとしては、特に制限はなぐ目的に応じて適宜選択すること ができるが、 f列; tは、、 6〜: LOO /z m力 S女子ましく、 10〜50 111カ0り女子ましく、 15〜40[0052] The thickness of the cushion layer can be appropriately selected according to the purpose for which there is no particular limitation, but f column; t is 6 to: LOO / zm force S girlish, 10 to 50 111 15 to 40
/z mが特に好ましい。 / z m is particularly preferred.
前記厚みが、 6 m未満であると、基体の表面における凹凸や、気泡等への凹凸 追従性が低下し、高精細な永久パターンを形成できないことがあり、 100 /z mを超え ると、製造上の乾燥負荷増大等の不具合が生じることがある。  If the thickness is less than 6 m, unevenness on the surface of the substrate or unevenness followability to bubbles and the like may be deteriorated, and a high-definition permanent pattern may not be formed. Problems such as increased drying load may occur.
[0053] <感光層> [0053] <Photosensitive layer>
前記感光層としては、特に制限はなぐ公知のパターン形成材料の中から適宜選 択することができるが、例えば、ノインダ一と、重合性化合物と、光重合開始剤とを含 み、適宜選択したその他の成分を含むものが好ましい。  The photosensitive layer can be appropriately selected from known pattern forming materials with no particular restrictions. For example, the photosensitive layer includes a noinder, a polymerizable compound, and a photopolymerization initiator, and is appropriately selected. Those containing other components are preferred.
また、感光層の積層数としては、特に制限はなぐ目的に応じて適宜選択すること ができ、例えば、 1層であってもよぐ 2層以上であってもよい。 In addition, the number of photosensitive layers to be laminated is appropriately selected according to the purpose for which there is no particular limitation. For example, it may be a single layer or two or more layers.
[0054] <バインダー > [0054] <Binder>
前記ノインダ一としては、例えば、アルカリ性水溶液に対して膨潤性であることが好 ましぐアルカリ性水溶液に対して可溶性であることがより好ましい。  For example, the noinder is preferably swellable in an alkaline aqueous solution and more preferably soluble in an alkaline aqueous solution.
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、 酸性基を有するものが好適に挙げられる。  As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.
[0055] 前記酸性基としては、特に制限はなぐ 目的に応じて適宜選択することができ、例え ば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボ キシノレ基が好ましい。 [0055] The acidic group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyxenore group is preferable. .
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビ- ル共重合体、ポリウレタン榭脂、ポリアミド酸榭脂、変性エポキシ榭脂などが挙げられ 、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜 物性の調整の容易さ等の観点力 カルボキシル基を有するビニル共重合体が好まし い。  Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, polyurethane resin, polyamic acid resin, and modified epoxy resin. Among these, solubility in a coating solvent, Viewpoints such as solubility in alkaline developer, suitability for synthesis, and ease of adjustment of film properties. Vinyl copolymers having a carboxyl group are preferred.
[0056] 前記カルボキシル基を有するビニル共重合体は、少なくとも( 1)カルボキシル基を 有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得る ことができる。  [0056] The vinyl copolymer having a carboxyl group can be obtained by copolymerization of at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith.
[0057] 前記カルボキシル基を有するビュルモノマーとしては、例えば、(メタ)アクリル酸、ビ -ル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、ィタコン酸 、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体 (例えば、 2—ヒドロ キシェチル (メタ)アタリレート等)と環状無水物(例えば、無水マレイン酸や無水フタ ル酸、シクロへキサンジカルボン酸無水物)との付カ卩反応物、 ω—カルボキシーポリ 力プロラタトンモノ (メタ)アタリレートなどが挙げられる。これらの中でも、共重合性ゃコ スト、溶解性などの観点から (メタ)アクリル酸が特に好ま 、。  [0057] Examples of the butyl monomer having a carboxyl group include (meth) acrylic acid, belbenzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid. A dimer, a monomer having a hydroxyl group (for example, 2-hydroxychetyl (meth) acrylate) and a cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride).卩 Reactant, ω-Carboxy-poly force prolatathone mono (meth) acrylate, etc. Among these, (meth) acrylic acid is particularly preferred from the viewpoint of copolymerization cost and solubility.
また、カルボキシル基の前駆体として無水マレイン酸、無水ィタコン酸、無水シトラコ ン酸等の無水物を有するモノマーを用いてもょ 、。  Alternatively, monomers having anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, etc. may be used as the precursor of the carboxyl group.
[0058] 前記その他の共重合可能なモノマーとしては、特に制限はなぐ 目的に応じて適宜 選択することができる力 例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類 、ビュルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、ィタコン酸ジ エステル類、(メタ)アクリルアミド類、ビュルエーテル類、ビュルアルコールのエステ ル類、スチレン類、(メタ)アクリロニトリル、ビニル基が置換した複素環式基 (例えば、 ビュルピリジン、ビュルピロリドン、ビ-ルカルバゾール等)、 N ビュルホルムアミド、 N ビュルァセトアミド、 N ビュルイミダゾール、ビュル力プロラタトン、 2—アクリルァ ミド— 2—メチルプロパンスルホン酸、リン酸モノ(2—アタリロイルォキシェチルエステ ル)、リン酸モノ(1ーメチルー 2—アタリロイルォキシェチルエステル)、官能基 (例え ば、ウレタン基、ウレァ基、スルホンアミド基、フエノール基、イミド基)を有するビュル モノマーなどが挙げられる。 [0058] The other copolymerizable monomers are not particularly limited and can be appropriately selected depending on the purpose. For example, (meth) acrylic acid esters, crotonic acid esters , Butyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, butyl ethers, butyl alcohol esters, styrenes, (meth) acrylonitrile, vinyl groups Heterocyclic groups (eg, pyridine, pyrrolidone, carbcarbazole, etc.), N bisformamide, N bisacetamide, N benzimidazole, butyl prolataton, 2-acrylamido-2-methylpropanesulfonic acid , Phosphoric acid mono (2-Atalyloxyxetyl ester), phosphoric acid mono (1-methyl-2-Atalyloxyxetyl ester), functional group (for example, urethane group, urea group, sulfonamide group, Examples include butyl monomers having phenol groups and imide groups).
前記 (メタ)アクリル酸エステル類としては、例えば、メチル (メタ)アタリレート、ェチル (メタ)アタリレート、 n—プロピル (メタ)アタリレート、イソプロピル (メタ)アタリレート、 n —ブチル (メタ)アタリレート、イソブチル (メタ)アタリレート、 t—ブチル (メタ)アタリレー ト、 n—へキシル (メタ)アタリレート、シクロへキシル (メタ)アタリレート、 t—ブチルシク 口へキシル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、 tーォクチル (メ タ)アタリレート、ドデシル (メタ)アタリレート、ォクタデシル (メタ)アタリレート、ァセトキ シェチル (メタ)アタリレート、フエ-ル (メタ)アタリレート、 2—ヒドロキシェチル (メタ)ァ タリレート、 2—メトキシェチル (メタ)アタリレート、 2—エトキシェチル (メタ)アタリレート 、 2— (2—メトキシエトキシ)ェチル (メタ)アタリレート、 3 フエノキシ 2 ヒドロキシ プロピル (メタ)アタリレート、ベンジル (メタ)アタリレート、ジエチレングリコールモノメチ ルエーテル (メタ)アタリレート、ジエチレングリコールモノェチルエーテル (メタ)アタリ レート、ジエチレングリコールモノフエ-ルエーテル(メタ)アタリレート、トリエチレングリ コールモノメチルエーテル(メタ)アタリレート、トリエチレングリコールモノェチルエー テル (メタ)アタリレート、ポリエチレングリコールモノメチルエーテル (メタ)アタリレート、 ポリエチレングリコールモノェチルエーテル (メタ)アタリレート、 β—フエノキシェトキ シェチルアタリレート、ノユルフェノキシポリエチレングリコール (メタ)アタリレート、ジシ クロペンタ-ル (メタ)アタリレート、ジシクロペンテ-ル (メタ)アタリレート、ジシクロペン テュルォキシェチル (メタ)アタリレート、トリフロロェチル (メタ)アタリレート、オタタフ口 口ペンチル(メタ)アタリレート、パーフロロォクチルェチル(メタ)アタリレート、トリブロモ フエ-ル (メタ)アタリレート、トリブロモフエ-ルォキシェチル (メタ)アタリレートなどが 挙げられる。 Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate. , Isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butyl hex hexyl (meth) acrylate, 2 —Ethylhexyl (meth) acrylate, t-octyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, aceto-chetyl (meth) acrylate, phenol (meth) acrylate, 2-hydroxyethyl (meth) ate, 2-methoxyethyl (meth) ate, 2-eth Shetyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3 phenoxy 2 hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, Diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, polyethylene glycol Monomethyl ether (meth) acrylate, polyethylene glycol monoethyl ether (meth) acrylate, β-phenoloxy chelyl acrylate, nourphenoxy polyethylene Recall (Meth) Atalylate, Dicyclopental (Meth) Atalylate, Dicyclopentayl (Meth) Atalylate, Dicyclopentyl Tuchoxetyl (Meth) Atalylate, Trifluoroethyl (Meth) Atalylate, Ottaf Mouth Pentil ( (Meta) attalylate, perfluorooctylethyl (meth) acrylate, tribromo Examples include phenol (meth) acrylate and tribromophenol chelate (meth) acrylate.
[0060] 前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸へキシル などが挙げられる。  [0060] Examples of the crotonic acid esters include butyl crotonic acid and hexyl crotonic acid.
[0061] 前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、 ビュルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。  [0061] Examples of the vinyl esters include vinyl acetate, vinyl propionate, butyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.
[0062] 前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジ ェチル、マレイン酸ジブチルなどが挙げられる。  [0062] Examples of the maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.
[0063] 前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジェチ ル、フマル酸ジブチルなどが挙げられる。  [0063] Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate, and the like.
[0064] 前記ィタコン酸ジエステル類としては、例えば、ィタコン酸ジメチル、ィタコン酸ジェ チル、ィタコン酸ジブチルなどが挙げられる。  [0064] Examples of the itaconic acid diesters include dimethyl itaconate, dimethyl itaconate, and dibutyl itaconate.
[0065] 前記 (メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、 N—メチル (メタ) アクリルアミド、 N ェチル (メタ)アクリルアミド、 N プロピル (メタ)アクリルアミド、 N イソプロピル (メタ)アクリルアミド、 N—n—ブチルアクリル (メタ)アミド、 N—t—ブチ ル (メタ)アクリルアミド、 N シクロへキシル (メタ)アクリルアミド、 N— (2—メトキシェ チル)(メタ)アクリルアミド、 N, N ジメチル (メタ)アクリルアミド、 N, N ジェチル (メ タ)アクリルアミド、 N フエ-ル (メタ)アクリルアミド、 N ベンジル (メタ)アクリルアミド 、(メタ)アタリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。  [0065] Examples of the (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-Butylacrylic (meth) amide, N-t-butyl (meth) acrylamide, N cyclohexyl (meth) acrylamide, N— (2-methoxyethyl) (meth) acrylamide, N, N dimethyl (meth) acrylamide N, N Jetyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) attalyloylmorpholine, diacetone acrylamide and the like.
[0066] 前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリ メチルスチレン、ェチルスチレン、イソプロピノレスチレン、ブチルスチレン、ヒドロキシス チレン、メトキシスチレン、ブトキシスチレン、ァセトキシスチレン、クロロスチレン、ジク ロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基 (例えば、 t-Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、 a—メ チルスチレンなどが挙げられる。  [0066] Examples of the styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropylene styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, aceto styrene, chlorostyrene, Examples thereof include dichlorostyrene, bromostyrene, chloromethylstyrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc, etc.), methyl vinylbenzoate, and a-methylstyrene.
[0067] 前記ビュルエーテル類としては、例えば、メチルビ-ルエーテル、ブチルビ-ルェ 一テル、へキシルビ-ルエーテル、メトキシェチルビ-ルエーテルなどが挙げられる。  [0067] Examples of the butyl ethers include methyl butyl ether, butyl benzene ether, hexyl butyl ether, methoxyethyl butyl ether, and the like.
[0068] 前記官能基としてウレタン基又はウレァ基を有するビニルモノマーの合成方法とし ては、例えば、イソシアナ一ト基と水酸基又はアミノ基の付加反応が挙げられ、具体 的には、イソシアナ一ト基を有するモノマーと、水酸基を 1個含有する化合物又は 1級 若しくは 2級アミノ基を 1個有する化合物との付加反応、水酸基を有するモノマー又 は 1級若しくは 2級アミノ基を有するモノマーと、モノイソシァネートとの付加反応が挙 げられる。 [0068] A method for synthesizing a vinyl monomer having a urethane group or a urea group as the functional group. Examples thereof include an addition reaction of an isocyanate group and a hydroxyl group or an amino group. Specifically, a monomer having an isocyanate group and a compound containing one hydroxyl group or a primary or secondary amino group Addition reaction with a compound having one of these, and addition reaction of a monomer having a hydroxyl group or a monomer having a primary or secondary amino group with a monoisocyanate.
[0069] 前記イソシアナ一ト基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で 表される化合物が挙げられる。  [0069] Examples of the monomer having an isocyanate group include compounds represented by the following structural formulas (1) to (3).
[0070] [化 1]  [0070] [Chemical 1]
H R1 HR 1
NCO  NCO
C=C一 C〇〇' 構造式 ( 1 )  C = C One COO 'Structural formula (1)
H  H
[0071] [化 2]  [0071] [Chemical 2]
H R1 HR 1
C=C-CO-NCO 構造式 (2 )  C = C-CO-NCO Structural formula (2)
H  H
[0072] [化 3] 構造式 (3 ) [0072] [Chemical 3] Structural formula (3)
Figure imgf000026_0001
Figure imgf000026_0001
[0073] 但し、前記構造式(1)〜(3)中、 R1は水素原子又はメチル基を表す。 However, in the structural formulas (1) to (3), R 1 represents a hydrogen atom or a methyl group.
[0074] 前記モノイソシァネートとしては、例えば、シクロへキシノレイソシァネート、 n—ブチノレ イソシァネート、トルィルイソシァネート、ベンジルイソシァネート、フエニルイソシァネ ート等が挙げられる。 [0074] Examples of the monoisocyanate include cyclohexylenoisocyanate, n-butynoleisocyanate, tolylisocyanate, benzylisocyanate, phenylisocyanate, and the like.
[0075] 前記水酸基を有するモノマーとしては、例えば、下記構造式 (4)〜(12)で表される 化合物が挙げられる。 [0075] Examples of the monomer having a hydroxyl group include compounds represented by the following structural formulas (4) to (12).
[0076] [化 4] [0076] [Chemical 4]
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0003
Figure imgf000027_0004
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0003
Figure imgf000027_0004
[0080] [化 8]
Figure imgf000027_0005
[0080] [Chemical 8]
Figure imgf000027_0005
[0082] [化 10] 構造式 (1 0 )
Figure imgf000028_0001
[0082] [Chemical 10] Structural formula (1 0)
Figure imgf000028_0001
[0083] [化 11]  [0083] [Chemical 11]
構造式 (1 1 )
Figure imgf000028_0002
Structural formula (1 1)
Figure imgf000028_0002
[0084] [化 12] 構造式 (1 2 )
Figure imgf000028_0003
[0084] [Chemical 12] Structural formula (1 2)
Figure imgf000028_0003
[0085] 但し、前記構造式 (4)〜(12)中、 R1は水素原子又はメチル基を表し、 n、 nl及び n 2は 1以上の整数を表す。 In the structural formulas (4) to (12), R 1 represents a hydrogen atom or a methyl group, and n, nl, and n 2 represent an integer of 1 or more.
[0086] 前記水酸基を 1個含有する化合物としては、例えば、アルコール類 (例えば、メタノ ール、エタノール、 n—プロパノール、 i プロパノール、 n—ブタノール、 sec ブタノ ール、 tーブタノール、 n—へキサノール、 2—ェチルへキサノール、 n—デカノール、 n—ドデカノール、 n—ォクタデカノール、シクロペンタノール、シクロへキサノール、ベ ンジルアルコール、フエ-ルエチルアルコール等)、フエノール類(例えば、フエノー ル、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリ フロロエタノール、メトキシエタノール、フエノキシエタノール、クロ口フエノーノレ、ジクロ 口フエノール、メトキシフエノール、ァセトキシフエノール等が挙げられる。 [0086] Examples of the compound containing one hydroxyl group include alcohols (for example, methanol, ethanol, n -propanol, i-propanol, n-butanol, sec-butanol, t-butanol, n-hexanol). 2-ethylhexanol, n-decanol, n-dodecanol, n-octadecanol, cyclopentanol, cyclohexanol, benzyl alcohol, phenol ethyl alcohol, etc.), phenols (eg, phenol, cresol, Naphthol and the like, and those further containing a substituent include fluoroethanol, trifluoroethanol, methoxyethanol, phenoxyethanol, black mouth phenol, dichloro phenol, methoxy phenol, and acetophenol.
[0087] 前記 1級又は 2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルァミン などが挙げられる。  [0087] Examples of the monomer having a primary or secondary amino group include vinylbenzylamine.
[0088] 前記 1級又は 2級アミノ基を 1個含有する化合物としては、例えば、アルキルアミン( メチルァミン、ェチルァミン、 n—プロピルァミン、 i プロピルァミン、 n—ブチルァミン 、 sec ブチルァミン、 tーブチルァミン、へキシルァミン、 2—ェチルへキシルァミン、 デシルァミン、ドデシルァミン、ォクタデシルァミン、ジメチルァミン、ジェチルァミン、 ジブチルァミン、ジォクチルァミン)、環状アルキルアミン(シクロペンチルァミン、シク 口へキシルァミン等)、ァラルキルァミン(ベンジルァミン、フエネチルァミン等)、ァリー ルァミン(ァ-リン、トルィルァミン、キシリルァミン、ナフチルァミン等)、更にこれらの 組合せ (N—メチル—N ベンジルァミン等)、更に置換基を含むアミン(トリフロロェ チノレアミン、へキサフロロイソプロピルァミン、メトキシァニリン、メトキシプロピルァミン 等)などが挙げられる。 [0088] Examples of the compound containing one primary or secondary amino group include alkylamines (methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, sec-butylamine, t-butylamine, hexylamine, 2 —Ethylhexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, jetylamine, Dibutylamine, dioctylamine), cyclic alkylamines (cyclopentylamine, cyclohexylamine, etc.), aralkylamines (benzylamine, phenethylamine, etc.), arylamines (allin, tolylamine, xylylamine, naphthylamine, etc.), and combinations thereof (N— Methyl-N benzylamine, etc.), and amines having further substituents (trifluoroethylamine, hexafluoroisopropylamine, methoxyaniline, methoxypropylamine, etc.).
[0089] また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)ァ クリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸ブチル、 (メタ)アクリル酸べ ンジル、 (メタ)アクリル酸 2—ェチルへキシル、スチレン、クロルスチレン、ブロモスチ レン、ヒドロキシスチレンなどが好適に挙げられる。  [0089] Examples of the other copolymerizable monomers other than those described above include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and benzyl (meth) acrylate. Suitable examples include (meth) acrylic acid 2-ethylhexyl, styrene, chlorostyrene, bromostyrene, hydroxystyrene and the like.
[0090] 前記その他の共重合可能なモノマーは、 1種単独で使用してもよぐ 2種以上を併 用してちょい。  [0090] The other copolymerizable monomers may be used alone or in combination of two or more.
[0091] 前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従 つて共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒 中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法 (溶液重 合法)を利用することにより調製することができる。また、水性媒体中に前記モノマー を分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することが できる。  [0091] The vinyl copolymer can be prepared by copolymerizing the corresponding monomers by a known method according to a conventional method. For example, it can be prepared by using a method (solution polymerization method) in which the monomer is dissolved in a suitable solvent and a radical polymerization initiator is added thereto to polymerize in a solution. Further, it can be prepared by utilizing polymerization such as so-called emulsion polymerization in a state where the monomer is dispersed in an aqueous medium.
[0092] 前記溶液重合法で用いられる適当な溶媒としては、特に制限はなぐ使用するモノ マー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば 、メタノール、エタノール、プロパノール、イソプロパノール、 1ーメトキシ 2—プロパノ ール、アセトン、メチルェチルケトン、メチルイソブチルケトン、メトキシプロピルァセテ ート、乳酸ェチル、酢酸ェチル、ァセトニトリル、テトラヒドロフラン、ジメチルホルムアミ ド、クロ口ホルム、トルエンなどが挙げられる。これらの溶媒は、 1種単独で使用しても よぐ 2種以上を併用してもよい。  [0092] The suitable solvent used in the solution polymerization method can be appropriately selected according to the monomer to be used without particular limitation and the solubility of the copolymer to be produced. For example, methanol, ethanol , Propanol, isopropanol, 1-methoxy 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methoxypropyl acetate, lactic acid ethyl, ethyl acetate, acetonitrile, tetrahydrofuran, dimethylformamide, black mouth form, And toluene. These solvents may be used alone or in combination of two or more.
[0093] 前記ラジカル重合開始剤としては、特に制限はなぐ例えば、 2, 2'ーァゾビス (イソ ブチ口-トリル)(AIBN)、 2, 2,—ァゾビス— (2, 4,—ジメチルバレ口-トリル)等のァ ゾ化合物、ベンゾィルパーォキシド等の過酸ィ匕物、過硫酸カリウム、過硫酸アンモ- ゥム等の過硫酸塩などが挙げられる。 [0093] The radical polymerization initiator is not particularly limited. For example, 2, 2'-azobis (isobutyoritol-tolyl) (AIBN), 2,2, -azobis- (2,4, -dimethylbarrole-tolyl) ), Etc., peroxy compounds such as benzoyl peroxide, potassium persulfate, ammonium persulfate Persulfates such as um.
[0094] 前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率とし ては、特に制限はなぐ 目的に応じて適宜選択することができる力 例えば、 5〜50 モル0 /0が好ましぐ 10〜40モル0 /0がより好ましぐ 15〜35モル0 /0が特に好ましい。 前記含有率が、 5モル%未満であると、アルカリ水への現像性が不足することがあり 、 50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。 [0094] is the content of the polymerizable compound having a carboxyl group in the vinyl copolymer, a force such as especially limited can be appropriately selected depending on the Nag purpose, preferably 5 to 50 mol 0/0 ingredients 10 to 40 mole 0/0, more preferably tool 15-35 mole 0/0 are particularly preferred. When the content is less than 5 mol%, the developability to alkaline water may be insufficient, and when it exceeds 50 mol%, the developer resistance of the cured portion (image portion) may be insufficient.
[0095] 前記カルボキシル基を有するバインダーの分子量としては、特に制限はなぐ 目的 に応じて適宜選択することができる力 例えば、質量平均分子量として、 2, 000〜3 00, 000力好ましく、 4, 000〜150, 000力 ^より好まし!/ヽ。 [0095] The molecular weight of the binder having a carboxyl group is not particularly limited. The force can be appropriately selected according to the purpose. For example, the mass average molecular weight is preferably 2,000 to 300,000, and preferably 4,000. ~ 150,000 power ^ Preferred more! / ヽ.
前記質量平均分子量が、 2, 000未満であると、膜の強度が不足しやすぐまた安 定な製造が困難になることがあり、 300, 000を超えると、現像性が低下することがあ る。  If the mass average molecular weight is less than 2,000, the strength of the film may be insufficient and stable production may be difficult immediately. If it exceeds 300,000, developability may be deteriorated. The
[0096] 前記カルボキシル基を有するノインダ一は、 1種単独で使用してもよぐ 2種以上を 併用してもよい。前記バインダーを 2種以上併用する場合としては、例えば、異なる共 重合成分力 なる 2種以上のバインダー、異なる質量平均分子量の 2種以上のノ ィ ンダ一、異なる分散度の 2種以上のバインダー、などの組合せが挙げられる。  [0096] The noinder having a carboxyl group may be used alone or in combination of two or more. Examples of the case where two or more binders are used in combination include, for example, two or more binders having different copolymer component forces, two or more binders having different mass average molecular weights, two or more binders having different dispersities, And the like.
[0097] 前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部 が塩基性物質で中和されていてもよい。また、前記バインダーは、さらにポリエステル 榭脂、ポリアミド榭脂、ポリウレタン榭脂、エポキシ榭脂、ポリビニルアルコール、ゼラ チン等の構造の異なる榭脂を併用してもよい。  [0097] In the binder having a carboxyl group, a part or all of the carboxyl group may be neutralized with a basic substance. The binder may be used in combination with different types of resins such as polyester resin, polyamide resin, polyurethane resin, epoxy resin, polyvinyl alcohol, and gelatin.
[0098] また、前記バインダーとしては、特許 2873889号等に記載のアルカリ水溶液に可 溶な榭脂などを用いることができる。  [0098] As the binder, for example, a resin soluble in an alkaline aqueous solution described in Japanese Patent No. 2873889 can be used.
[0099] 前記感光層における前記バインダーの含有量としては、特に制限はなぐ 目的に応 じて適宜選択することができる力 例えば、 10〜90質量%が好ましぐ 20〜80質量[0099] The content of the binder in the photosensitive layer is not particularly limited, and can be appropriately selected according to the purpose. For example, 10 to 90% by mass is preferable 20 to 80% by mass
%がより好ましぐ 40〜80質量%が特に好ましい。 40 to 80% by mass is particularly preferable.
前記含有量が 10質量%未満であると、アルカリ現像性やプリント配線板形成用基 板 (例えば、銅張積層板)との密着性が低下することがあり、 90質量%を超えると、現 像時間に対する安定性や、硬化膜 (テント膜)の強度が低下することがある。なお、前 記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含 有量であってもよい。 If the content is less than 10% by mass, the alkali developability and the adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. The stability against image time and the strength of the cured film (tent film) may be reduced. The above content may be the total content of the binder and the polymer binder used in combination as necessary.
[0100] 前記バインダーの酸価としては、特に制限はなぐ 目的に応じて適宜選択すること ができるが、例えば、 70〜250 (mgKOH/g)が好ましぐ 90~200 (mgKOH/g) がより好ましぐ 100〜180 (mgKOH/g)が特に好ましい。  [0100] The acid value of the binder is not particularly limited and can be appropriately selected according to the purpose. For example, 70 to 250 (mgKOH / g) is preferable, and 90 to 200 (mgKOH / g) is preferable. More preferred is 100 to 180 (mg KOH / g).
前記酸価が、 70 (mgKOHZg)未満であると、現像性が不足したり、解像性が劣り 、配線パターン等の永久パターンを高精細に得ることができないことがあり、 250 (mg KOH/g)を超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪 化し、配線パターン等の永久パターンを高精細に得ることができな 、ことがある。  If the acid value is less than 70 (mgKOHZg), developability may be insufficient, resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained in high definition, and 250 (mg KOH / If g) is exceeded, at least one of the developer resistance and adhesion of the pattern may deteriorate, and a permanent pattern such as a wiring pattern may not be obtained with high definition.
[0101] <重合性化合物 >  [0101] <Polymerizable compound>
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、ウレタン基及びァリール基の少なくともいずれかを有するモノマー又 はオリゴマーが好適に挙げられる。また、これらは、重合性基を 2種以上有することが 好ましい。  The polymerizable compound is not particularly limited and may be appropriately selected according to the purpose. For example, a monomer or oligomer having at least one of a urethane group and an aryl group is preferably exemplified. These preferably have two or more polymerizable groups.
[0102] 前記重合性基としては、例えば、エチレン性不飽和結合 (例えば、(メタ)アタリロイ ル基、(メタ)アクリルアミド基、スチリル基、ビュルエステルやビュルエーテル等のビ- ル基、ァリルエーテルゃァリルエステル等のァリル基など)、重合可能な環状エーテ ル基 (例えば、エポキシ基、ォキセタン基等)などが挙げられ、これらの中でもェチレ ン性不飽和結合が好まし 、。  [0102] Examples of the polymerizable group include an ethylenically unsaturated bond (for example, a (meth) atarylyl group, a (meth) acrylamide group, a styryl group, a beryl group such as a bull ester or a bull ether, Aryl groups such as aryl esters) and polymerizable cyclic ether groups (for example, epoxy groups, oxetane groups, etc.), among which ethylenically unsaturated bonds are preferred.
[0103] ウレタン基を有するモノマ一一  [0103] Monomers having urethane groups
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無 く、 目的に応じて適宜選択することができるが、例えば、特公昭 48— 41708、特開昭 The monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose. For example, JP-B-48-41708,
51— 37193、特公平 5— 50737、特公平 7— 7208、特開 2001— 154346、特開 251-37193, JP 5-50737, JP 7-7208, JP 2001-154346, JP 2
001— 356476号公報等に記載されている化合物などが挙げられ、例えば、分子中 に 2個以上のイソシァネート基を有するポリイソシァネートイ匕合物と分子中に水酸基を 有するビニルモノマーとの付加物などが挙げられる。 [0104] 前記分子中に 2個以上のイソシァネート基を有するポリイソシァネートイ匕合物として は、例えば、へキサメチレンジイソシァネート、トリメチルへキサメチレンジイソシァネー ト、イソホロンジイソシァネート、キシレンジイソシァネート、トルエンジイソシァネート、 フエ-レンジイソシァネート、ノルボルネンジイソシァネート、ジフエ-ルジイソシァネ ート、ジフエ-ルメタンジイソシァネート、 3, 3'ジメチルー 4, 4'ージフエニルジイソシ ァネート等のジイソシァネート;該ジイソシァネートを更に 2官能アルコールとの重付 加物(この場合も両末端はイソシァネート基);該ジイソシァネートのビュレット体やイソ シァヌレート等の 3量体;該ジイソシァネート若しくはジイソシァネート類と、トリメチロー ルプロパン、ペンタエリスルトール、グリセリン等の多官能アルコール、又はこれらのェ チレンォキシド付加物等の得られる他官能アルコールとの付加体などが挙げられる。 001-356476 and the like, for example, addition of a polyisocyanate compound having two or more isocyanate groups in the molecule and a vinyl monomer having a hydroxyl group in the molecule Such as things. [0104] Examples of polyisocyanate compounds having two or more isocyanate groups in the molecule include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate. , Xylene diisocyanate, toluene diisocyanate, phenol diisocyanate, norbornene diisocyanate, diphenyl diisocyanate, diphenol methane diisocyanate, 3, 3 'dimethyl 4, 4 Diisocyanates such as' -diphenyl diisocyanate; an adduct of the diisocyanate with a bifunctional alcohol (in this case, both ends are also isocyanate groups); a trimer such as a burette or isocyanurate of the diisocyanate; Diisocyanate or diisocyanates and trimethylolpropane, penta Examples thereof include adducts with other functional alcohols such as polyfunctional alcohols such as erythritol and glycerin, or these ethylene oxide adducts.
[0105] 前記分子中に水酸基を有するビュルモノマーとしては、例えば、 2—ヒドロキシェチ ル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリレート、 4—ヒドロキシブチル( メタ)アタリレート、ジエチレングリコールモノ(メタ)アタリレート、トリエチレングリコール モノ (メタ)アタリレート、テトラエチレンダリコールモノ (メタ)アタリレート、オタタエチレ ングリコールモノ(メタ)アタリレート、ポリエチレングリコールモノ(メタ)アタリレート、ジ プロピレングリコールモノ(メタ)アタリレート、トリプロピレングリコールモノ(メタ)アタリレ ート、テトラプロピレングリコールモノ(メタ)アタリレート、ォクタプロピレングリコールモ ノ (メタ)アタリレート、ポリプロピレングリコールモノ (メタ)アタリレート、ジブチレングリコ ールモノ (メタ)アタリレート、トリブチレングリコールモノ (メタ)アタリレート、テトラブチレ ングリコールモノ(メタ)アタリレート、オタタブチレングリコールモノ(メタ)アタリレート、 ポリブチレンダリコールモノ (メタ)アタリレート、トリメチロールプロパンジ (メタ)アタリレ ート、ペンタエリスリトールトリ(メタ)アタリレートなどが挙げられる。また、エチレンォキ シドとプロピレンォキシドの共重合体 (ランダム、ブロック等)などの異なるアルキレン ォキシド部を有するジオール体の片末端 (メタ)アタリレート体などが挙げられる。  [0105] Examples of the butyl monomer having a hydroxyl group in the molecule include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, diethylene glycol mono ( (Meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene dallicol mono (meth) acrylate, otaethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, dipropylene glycol mono ( (Meth) acrylate, tripropylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, polypropylene glycol mono ) Atalylate, dibutylene glycol mono (meth) acrylate, tribubutylene glycol mono (meth) acrylate, tetrabutylene glycol mono (meth) acrylate, otatabylene glycol mono (meth) acrylate, polybutylene glycol mono (Meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate and the like. In addition, one-terminal (meth) acrylates of diols having different alkylene oxide parts such as copolymers of ethylene oxide and propylene oxide (random, block, etc.) can be mentioned.
[0106] また、前記ウレタン基を有するモノマーとしては、トリ ( (メタ)アタリロイルォキシェチ ル)イソシァヌレート、ジ (メタ)アクリル化イソシァヌレート、エチレンォキシド変性イソシ ァヌル酸のトリ(メタ)アタリレート等のイソシァヌレート環を有する化合物が挙げられる 。これらの中でも、下記構造式式(13)、又は構造式(14)で表される化合物が好まし ぐテント性の観点から、前記構造式(14)で示される化合物を少なくとも含むことが 特に好ましい。また、これらの化合物は、 1種単独で使用してもよぐ 2種以上を併用 してちよい。 [0106] Further, as the monomer having a urethane group, tri ((meth) acryloyloxy) isocyanurate, di (meth) acrylated isocyanurate, ethylene oxide-modified isocyanuric acid tri (meth) atalyte. Examples thereof include compounds having an isocyanurate ring such as a rate. Among these, compounds represented by the following structural formula (13) or structural formula (14) are preferable. From the viewpoint of tentability, it is particularly preferable that at least the compound represented by the structural formula (14) is included. In addition, these compounds may be used alone or in combination of two or more.
[0107] [化 13] 構造式 (1 3 )  [0107] [Chemical 13] Structural formula (1 3)
Figure imgf000033_0001
Figure imgf000033_0001
[0109] 前記構造式(13)及び(14)中、!^〜 は、それぞれ水素原子又はメチル基を表す 。 X〜Xは、アルキレンオキサイドを表し、 1種単独でもよぐ 2種以上を併用してもよ [0109] In the structural formulas (13) and (14),! ^ ~ Represents a hydrogen atom or a methyl group, respectively. X to X represent alkylene oxides, which may be used alone or in combination of two or more.
1 3 13
い。  Yes.
[0110] 前記アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンォ キサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、へキシレンオキサイド基 、これらを組み合わせた基 (ランダム、ブロックのいずれに組み合わされてもよい)など が好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、 ブチレンオキサイド基、又はこれらの組み合わせた基が好ましぐエチレンオキサイド 基、プロピレンオキサイド基がより好ましい。  [0110] Examples of the alkylene oxide group include, for example, an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, a combination of these (random and block combinations) Among them, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a combination thereof is more preferable an ethylene oxide group or a propylene oxide group.
[0111] 前記構造式(13)及び(14)中、 ml〜m3は、 1〜60の整数を表し、 2〜30が好まし く、 4〜15力より好まし!/ヽ。  [0111] In the structural formulas (13) and (14), ml to m3 represent an integer of 1 to 60, preferably 2 to 30, more preferably 4 to 15 force! / ヽ.
[0112] 前記構造式(13)及び(14)中、 Y1及び Y2は、炭素原子数 2〜30の 2価の有機基を 表し、例えば、アルキレン基、ァリーレン基、ァルケ-レン基、アルキニレン基、カルボ ニル基(一 CO )、酸素原子(一 O )、硫黄原子(一 S )、ィミノ基(一 NH )、イミ ノ基の水素原子が 1価の炭化水素基で置換された置^ミノ基、スルホニル基( S o一)又はこれらを組み合わせた基などが好適に挙げられ、これらの中でも、アルキ[0112] In the structural formulas (13) and (14), Y 1 and Y 2 represent a divalent organic group having 2 to 30 carbon atoms, such as an alkylene group, an arylene group, an alkkelene group, Alkynylene group, carbonyl group (one CO), oxygen atom (one O), sulfur atom (one S), imino group (one NH), imino group hydrogen atom is replaced with monovalent hydrocarbon group ^ Mino group, sulfonyl group (So) or a combination of these are preferred, and among these, alkyl
2 2
レン基、ァリーレン基、又はこれらを組み合わせた基が好ましい。 [0113] 前記アルキレン基は、分岐構造又は環状構造を有していてもよぐ例えば、メチレン 基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペン チレン基、ネオペンチレン基、へキシレン基、トリメチルへキシレン基、シクロへキシレ ン基、ヘプチレン基、オタチレン基、 2—ェチルへキシレン基、ノニレン基、デシレン 基、ドデシレン基、ォクタデシレン基、又は下記に示すいずれかの基などが好適に挙 げられる。 Rene group, arylene group, or a combination of these is preferred. [0113] The alkylene group may have a branched structure or a cyclic structure. For example, a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a pentylene group, a neopentylene group, Xylene group, trimethylhexylene group, cyclohexylene group, heptylene group, octylene group, 2-ethylhexylene group, nonylene group, decylene group, dodecylene group, octadecylene group, or any of the following groups are suitable Listed.
[0114] [化 15]
Figure imgf000034_0001
[0114] [Chemical 15]
Figure imgf000034_0001
[0115] 前記ァリーレン基としては、炭化水素基で置換されていてもよぐ例えば、フエ-レ ン基、トリレン基、ジフエ-レン基、ナフチレン基、又は下記に示す基などが好適に挙 げられる。  [0115] Examples of the arylene group that may be substituted with a hydrocarbon group include, for example, a phenylene group, a tolylene group, a diphenylene group, a naphthylene group, and the following groups. It is done.
[0116] [化 16]
Figure imgf000034_0002
[0116] [Chemical 16]
Figure imgf000034_0002
[0117] 前記これらを組み合わせた基としては、例えば、キシリレン基などが挙げられる。  [0117] Examples of the group in which these are combined include a xylylene group.
[0118] 前記アルキレン基、ァリーレン基、又はこれらを組み合わせた基としては、更に置換 基を有していてもよぐ該置換基としては、例えば、ハロゲン原子 (例えば、フッ素原 子、塩素原子、臭素原子、ヨウ素原子)、ァリール基、アルコキシ基 (例えば、メトキシ 基、エトキシ基、 2—エトキシエトキシ基)、ァリールォキシ基 (例えば、フエノキシ基)、 ァシル基 (例えば、ァセチル基、プロピオニル基)、ァシルォキシ基 (例えば、ァセトキ シ基、ブチリルォキシ基)、アルコキシカルボ-ル基(例えば、メトキシカルボ-ル基、 エトキシカルボ-ル基)、ァリールォキシカルボ-ル基(例えば、フエノキシカルボ-ル 基)などが挙げられる。 [0118] The alkylene group, arylene group, or a combination of these may further have a substituent. Examples of the substituent include a halogen atom (for example, a fluorine atom, a chlorine atom, Bromine atom, iodine atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group Groups (for example, acetooxy groups, butyryloxy groups), alkoxy carbo yl groups (for example, methoxy carbo yl groups, ethoxy carbo ol groups), aryl carbo yl groups (for example, phenoxy carbo ol groups), etc. Is mentioned.
[0119] 前記構造式(13)及び(14)中、 nは 3〜6の整数を表し、重合性モノマーを合成す るための原料供給性などの観点から、 3、 4又は 6が好ましい。  [0119] In the structural formulas (13) and (14), n represents an integer of 3 to 6, and 3, 4 or 6 is preferable from the viewpoint of the raw material supply ability for synthesizing the polymerizable monomer.
[0120] 前記構造式(13)及び(14)中、 Zは n価(3価〜 6価)の連結基を表し、例えば、下 記に示すいずれかの基などが挙げられる。 [0121] [化 17]
Figure imgf000035_0001
[0120] In the structural formulas (13) and (14), Z represents an n-valent (trivalent to hexavalent) linking group, and examples thereof include any of the groups shown below. [0121] [Chemical 17]
Figure imgf000035_0001
但し、 Xはアルキレンオキサイドを表す。 m4は、 1〜20の整数を表す。 nは、 3〜6 However, X represents an alkylene oxide. m4 represents an integer of 1 to 20. n is 3-6
4 Four
の整数を表す。 Aは、 n価(3価〜 6価)の有機基を表す。  Represents an integer. A represents an n-valent (trivalent to hexavalent) organic group.
[0122] 前記 Aとしては、例えば、 n価の脂肪族基、 n価の芳香族基、又はこれらとアルキレ ン基、ァリーレン基、ァルケ-レン基、アルキ-レン基、カルボ-ル基、酸素原子、硫 黄原子、イミノ基、ィミノ基の水素原子が 1価の炭化水素基で置換された置 ミノ基 、又はスルホ-ル基とを組み合わせた基が好ましぐ n価の脂肪族基、 n価の芳香族 基、又はこれらとアルキレン基、ァリーレン基、酸素原子とを組み合わせた基がより好 ましぐ n価の脂肪族基、 n価の脂肪族基とアルキレン基、酸素原子とを組み合わせた 基が特に好ましい。 [0122] Examples of A include, for example, an n-valent aliphatic group, an n-valent aromatic group, or an alkylene group, an arylene group, an alkylene group, an alkylene group, a carbonyl group, oxygen, and the like. Preferred is an atom, sulfur atom, imino group, a substituted amino group in which a hydrogen atom of an imino group is substituted with a monovalent hydrocarbon group, or a group in combination with a sulfo group, an n-valent aliphatic group, An n-valent aromatic group or a group in which these are combined with an alkylene group, an arylene group, or an oxygen atom is more preferable. An n-valent aliphatic group, or a combination of an n-valent aliphatic group with an alkylene group or an oxygen atom. The group is particularly preferred.
[0123] 前記 Aの炭素原子数としては、例えば、 1〜100の整数が好ましぐ 1〜50の整数 力 り好ましぐ 3〜30の整数が特に好ましい。  [0123] The number of carbon atoms of A is preferably an integer of 1 to 100, for example, an integer of 1 to 50, more preferably an integer of 3 to 30 is particularly preferable.
[0124] 前記 n価の脂肪族基としては、分岐構造又は環状構造を有していてもよい。  [0124] The n-valent aliphatic group may have a branched structure or a cyclic structure.
前記脂肪族基の炭素原子数としては、例えば、 1〜30の整数が好ましぐ 1〜20の 整数がより好ましぐ 3〜 10の整数が特に好ましい。  As the number of carbon atoms of the aliphatic group, for example, an integer of 1 to 30 is preferable, and an integer of 1 to 20 is more preferable, and an integer of 3 to 10 is particularly preferable.
前記芳香族基の炭素原子数としては、 6〜: L00の整数が好ましぐ 6〜50の整数が より好ましぐ 6〜30の整数が特に好ましい。  As the number of carbon atoms of the aromatic group, an integer of 6 to: an integer of L00 is preferred An integer of 6 to 50 is more preferred An integer of 6 to 30 is particularly preferred.
[0125] 前記 n価の脂肪族基、又は芳香族基は、更に置換基を有していてもよぐ該置換基 としては、例えば、ヒドロキシル基、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭 素原子、ヨウ素原子)、ァリール基、アルコキシ基 (例えば、メトキシ基、エトキシ基、 2 エトキシエトキシ基)、ァリールォキシ基 (例えば、フエノキシ基)、ァシル基 (例えば [0125] The n-valent aliphatic group or aromatic group may further have a substituent. Examples of the substituent include a hydroxyl group and a halogen atom (for example, a fluorine atom, a chlorine atom, Oxygen atom, iodine atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example,
、ァセチル基、プロピオニル基)、ァシルォキシ基 (例えば、ァセトキシ基、ブチリルォ キシ基)、アルコキシカルボ-ル基(例えば、メトキシカルボ-ル基、エトキシカルボ- ル基)、ァリールォキシカルボ-ル基 (例えば、フエノキシカルボニル基)などが挙げら れる。 [0126] 前記アルキレン基は、分岐構造又は環状構造を有していてもよい。 , Acetyl group, propionyl group), acyloxy group (for example, acetooxy group, butyryloxy group), alkoxy carbo yl group (for example, methoxy carbo yl group, ethoxy carbo yl group), aryloxy carboxy group (For example, phenoxycarbonyl group) and the like. [0126] The alkylene group may have a branched structure or a cyclic structure.
前記アルキレン基の炭素原子数としては、例えば、 1〜18の整数が好ましぐ 1〜1 0の整数がより好ましい。  As the number of carbon atoms of the alkylene group, for example, an integer of 1 to 18 is preferable, and an integer of 1 to 10 is more preferable.
[0127] 前記ァリーレン基は、炭化水素基で更に置換されていてもよい。 [0127] The arylene group may be further substituted with a hydrocarbon group.
前記ァリーレン基の炭素原子数としては、 6〜18の整数が好ましぐ 6〜10の整数 力 り好ましい。  The number of carbon atoms of the arylene group is preferably an integer of 6 to 18, more preferably an integer of 6 to 10.
[0128] 前記置換イミノ基の 1価の炭化水素基の炭素原子数としては、 1〜18の整数が好ま しぐ 1〜10の整数がより好ましい。  [0128] The number of carbon atoms of the monovalent hydrocarbon group of the substituted imino group is preferably an integer of 1 to 18, more preferably an integer of 1 to 10.
[0129] 前記 Aの好ましい例は以下の通りである。 [0129] Preferred examples of A are as follows.
[0130] [化 18]
Figure imgf000036_0001
[0130] [Chemical 18]
Figure imgf000036_0001
CH2-CH2-CH— CH CH3— CH2-CH2-CH— CH-CH: CH2— CH2-CH2-CH2-CH-CHCH 2 -CH 2 -CH— CH CH 3 — CH 2 -CH 2 -CH— CH-CH : CH 2 — CH2-CH2-CH2-CH-CH
- CH2- CH— CH— ύΗ2 -CH 2 -CH— CH— ύΗ 2
Figure imgf000036_0002
Figure imgf000036_0002
[0131] 前記構造式(13)及び(14)で表される化合物としては、例えば下記構造式(15) ·  [0131] Examples of the compounds represented by the structural formulas (13) and (14) include the following structural formulas (15)
(34)で表される化合物などが挙げられる。  And the compound represented by (34).
[0132] [化 19]
Figure imgf000037_0001
[0132] [Chemical 19]
Figure imgf000037_0001
[0133] [化 20] [0133] [Chemical 20]
Figure imgf000037_0002
Figure imgf000037_0002
構造式 (1 8)  Structural formula (1 8)
[0136] [化 23]
Figure imgf000037_0003
[0136] [Chemical 23]
Figure imgf000037_0003
構造式 (1 9)  Structural formula (1 9)
[0137] [化 24]  [0137] [Chemical 24]
Figure imgf000037_0004
Figure imgf000037_0004
構造式 (20) Structural formula (20)
Figure imgf000038_0001
Figure imgf000038_0001
Figure imgf000038_0002
Figure imgf000038_0003
Figure imgf000038_0002
Figure imgf000038_0003
構造式 (23)
Figure imgf000038_0004
(24)
Figure imgf000038_0005
[0143] [化 30]
Structural formula (23)
Figure imgf000038_0004
(twenty four)
Figure imgf000038_0005
[0143] [Chemical 30]
Figure imgf000039_0001
Figure imgf000039_0001
[0147] [化 34] [0147] [Chemical 34]
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0003
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0003
[0150] [化 37] [0150] [Chemical 37]
Figure imgf000041_0001
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0002
構造式 (3 4 )  Structural formula (3 4)
[0152] 但し、前記構造式(15)〜(34)中、 n、 nl、 n2及び mは、 1〜60を意味し、 1は、 1〜 20を意味し、 Rは、水素原子又はメチル基を表す。  [0152] In the structural formulas (15) to (34), n, nl, n2 and m represent 1 to 60, 1 represents 1 to 20, and R represents a hydrogen atom or methyl. Represents a group.
[0153] ーァリール基を有するモノマ一一  [0153] Monomer having a reel group
前記ァリール基を有するモノマーとしては、ァリール基を有する限り、特に制限はな く、 目的に応じて適宜選択することができるが、例えば、ァリール基を有する多価アル コール化合物、多価アミンィ匕合物及び多価ァミノアルコールィ匕合物の少なくともいず れカと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。  The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected depending on the purpose. For example, a polyhydric alcohol compound having an aryl group, a polyvalent amine compound. And esters or amides of unsaturated carboxylic acids with at least any of the above compounds and polyamino amino alcohol compounds.
[0154] 前記ァリール基を有する多価アルコールィヒ合物、多価アミンィヒ合物又は多価アミノ アルコール化合物としては、例えば、ポリスチレンオキサイド、キシリレンジオール、ジ — —ヒドロキシエトキシ)ベンゼン、 1, 5 ジヒドロキシ一 1, 2, 3, 4—テトラヒドロ ナフタレン、 2、 2 ジフエ二ルー 1, 3 プロパンジオール、ヒドロキシベンジルアルコ ール、ヒドロキシェチルレゾルシノール、 1 フエ二ルー 1, 2 エタンジオール、 2, 3 , 5, 6—テトラメチルー ρ キシレン α , α '—ジオール、 1, 1, 4, 4ーテトラフエ二 ノレ 1, 4 ブタンジォーノレ、 1, 1, 4, 4ーテトラフヱニノレー 2 ブチン 1, 4ージォ ール、 1, 1 '—ビー 2—ナフトール、ジヒドロキシナフタレン、 1, 1 'ーメチレンージー2 ナフトール、 1, 2, 4 ベンゼントリオール、ビフエノール、 2, 2,一ビス(4ーヒドロキ シフエ-ル)ブタン、 1, 1—ビス(4 ヒドロキシフエ-ル)シクロへキサン、ビス(ヒドロキ シフエ-ル)メタン、カテコール、 4—クロルレゾルシノール、ハイドロキノン、ヒドロキシ ベンジルアルコール、メチルハイドロキノン、メチレン 2, 4, 6 トリヒドロキシベンゾ エート、フロログリシノール、ピロガロール、レゾルシノール、 α - (1—アミノエチル) ρ ヒドロキシベンジルアルコール、 α - (1—アミノエチル) ρ ヒドロキシベンジル アルコール、 3—アミノー 4—ヒドロキシフエ-ルスルホンなどが挙げられる。また、この 他、キシリレンビス (メタ)アクリルアミド、ノボラック型エポキシ榭脂ゃビスフエノール A ジグリシジルエーテル等のグリシジル化合物に 0;、 β 不飽和カルボン酸を付カロし て得られる化合物、フタル酸ゃトリメリット酸などと分子中に水酸基を含有するビニル モノマー力 得られるエステル化物、フタル酸ジァリル、トリメリット酸トリアリル、ベンゼ ンジスルホン酸ジァリル、重合性モノマーとしてカチオン重合性のジビュルエーテル 類(例えば、ビスフエノール Αジビュルエーテル)、エポキシ化合物(例えば、ノボラッ ク型エポキシ榭脂、ビスフエノール Aジグリシジルエーテル等)、ビュルエステル類(例 えば、ジビュルフタレート、ジビュルテレフタレート、ジビニルベンゼン 1, 3 ジスル ホネート等)、スチレン化合物(例えば、ジビュルベンゼン、 p ァリルスチレン、 p—ィ ソプロペンスチレン等)が挙げられる。これらの中でも下記構造式(35)で表される化 合物が好ましい。 [0154] Examples of the polyhydric alcohol compound, polyhydric amine compound or polyhydric amino alcohol compound having an aryl group include polystyrene oxide, xylylenediol, di--hydroxyethoxy) benzene, 1, 5 Dihydroxy mono 1, 2, 3, 4-tetrahydronaphthalene, 2, 2 diphenyl 2, 1, 3 propanediol, hydroxybenzyl alcohol, hydroxyethyl resorcinol, 1 phenyl 1, 2 ethanediol, 2, 3, 5, 6-tetramethyl-ρ-xylene α, α'-diol, 1, 1, 4, 4-tetraphenol 2-nor 1, 4-butanediol, 1, 1, 4, 4-tetrafluoro ninole 2 butyne 1, 4-diol 1, 1'—Bee 2—Naphthol, dihydroxynaphthalene, 1, 1'-methylene oji 2 Naphthol, 1, 2, 4 benzenetriol, biphenol, 2,2,1bis (4-hydroxyphenyl) butane, 1,1-bis (4 hydroxyphenyl) cyclohexane, bis (hydroxyphenyl) Methane, catechol, 4-chlororesorcinol, hydroquinone, hydroxy benzyl alcohol, methyl hydroquinone, methylene 2, 4, 6 trihydroxybenzoate, phloroglicinol, pyrogallol, resorcinol, α-(1-aminoethyl) ρ hydroxybenzyl alcohol, α- (1-aminoethyl) ρ hydroxybenzyl alcohol, 3-amino-4-hydroxyphenylsulfone and the like can be mentioned. In addition, xylylene bis (meth) acrylamide, novolac-type epoxy resin bisphenol A diglycidyl ether and other glycidyl compounds 0 ;, compounds obtained by adding β unsaturated carboxylic acid, phthalic acid N trimellit Vinyl monomers that contain acid and other hydroxyl groups in the molecule Esterified products obtained, diallyl phthalate, triallyl trimellitic acid, diallyl benzendisulfonate, cationically polymerizable dibule ethers as polymerizable monomers (for example, bisphenol Α Dibutyl ether), epoxy compounds (for example, novolak type epoxy resin, bisphenol A diglycidyl ether, etc.), bur esters (for example, dibutyl phthalate, dibuter terephthalate, divinylbenzene 1,3 disulfonate, etc.) , Still Compounds such as dibutenebenzene, p-aryl styrene, p-isopropene styrene and the like. Among these, a compound represented by the following structural formula (35) is preferable.
[0155] [化 39] 構造式(35)
Figure imgf000042_0001
[0155] [Chemical 39] Structural formula (35)
Figure imgf000042_0001
前記構造式 (35)中、 R4、 R5は、水素原子又はアルキル基を表す。 In the structural formula (35), R 4 and R 5 represent a hydrogen atom or an alkyl group.
[0156] 前記構造式(35)中、 X及び Xは、アルキレンオキサイド基を表し、 1種単独でもよ [0156] In the structural formula (35), X and X each represents an alkylene oxide group, and may be one kind alone.
5 6  5 6
ぐ 2種以上を併用してもよい。該アルキレンオキサイド基としては、例えば、エチレン オキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド 基、へキシレンオキサイド基、これらを組み合わせた基 (ランダム、ブロックのいずれに 組み合わされてもよい)、などが好適に挙げられ、これらの中でも、エチレンォキサイ ド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらを組み合わせた基 が好ましぐエチレンオキサイド基、プロピレンオキサイド基がより好ましい。 Two or more types may be used in combination. Examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, and a combination of these (which may be combined in any of random and block), Among them, among these, ethylene oxide An ethylene oxide group and a propylene oxide group, which are preferred are a group, a propylene oxide group, a butylene oxide group, or a combination thereof.
[0157] 前記構造式(35)中、 m5、 m6は、 1〜60の整数が好ましぐ 2〜30の整数がより好 ましぐ 4〜 15の整数が特に好ましい。  [0157] In the structural formula (35), m5 and m6 are preferably integers of 1 to 60, more preferably integers of 2 to 30, and particularly preferably integers of 4 to 15.
[0158] 前記構造式(35)中、 Tは、 2価の連結基を表し、例えば、メチレン、エチレン、 MeC[0158] In the structural formula (35), T represents a divalent linking group, for example, methylene, ethylene, MeC
Me、 CF CCF、 CO、 SOなどが挙げられる。 Examples include Me, CF CCF, CO, and SO.
3 3 2  3 3 2
[0159] 前記構造式(35)中、 ΑΛ Ar2は、置換基を有していてもよいァリール基を表し、例 えば、フエ-レン、ナフチレンなどが挙げられる。前記置換基としては、例えば、アル キル基、ァリール基、ァラルキル基、ハロゲン基、アルコキシ基、又はこれらの組合せ などが挙げられる。 In the structural formula (35), ΑΛ Ar 2 represents an aryl group which may have a substituent, and examples thereof include phenylene and naphthylene. Examples of the substituent include an alkyl group, an aryl group, an aralkyl group, a halogen group, an alkoxy group, or a combination thereof.
[0160] 前記ァリール基を有するモノマーの具体例としては、 2, 2 ビス〔4一(3 (メタ)ァ クリルォキシ 2 ヒドロキシプロポキシ)フエ-ル〕プロパン、 2, 2 ビス〔4 ((メタ) アクリルォキシエトキシ)フエ-ル〕プロパン、フエノール性の OH基 1個に置換させた エトキシ基の数が 2から 20である 2, 2 ビス (4— ( (メタ)アタリロイルォキシポリエトキ シ)フエ-ル)プロパン(例えば、 2, 2 ビス(4 ((メタ)アタリロイルォキシジエトキシ )フエ-ル)プロパン、 2, 2 ビス(4— ( (メタ)アタリロイルォキシテトラエトキシ)フエ- ル)プロパン、 2, 2 ビス(4— ( (メタ)アタリロイルォキシペンタエトキシ)フエ-ル)プ 口パン、 2, 2 ビス(4— ( (メタ)アタリロイルォキシデカエトキシ)フエ-ル)プロパン、 2, 2 ビス(4— ( (メタ)アタリロイルォキシペンタデカエトキシ)フエ-ル)プロパン等) 、 2, 2 ビス〔4 ((メタ)アクリルォキシプロポキシ)フエ-ル〕プロパン、フエノール性 の OH基 1個に置換させたエトキシ基の数が 2から 20である 2, 2 ビス (4— ( (メタ)ァ クリロイルォキシポリプロポキシ)フエ-ル)プロパン(例えば、 2, 2 ビス(4 ((メタ) アタリロイルォキシジプロポキシ)フエ-ル)プロパン、 2, 2 ビス(4— ( (メタ)アタリ口 ィルォキシテトラプロポキシ)フエ-ル)プロパン、 2, 2 ビス(4— ( (メタ)アタリロイル ォキシペンタプロボキシ)フエ-ル)プロパン、 2, 2 ビス(4— ( (メタ)アタリロイルォキ シデカプロポキシ)フエ-ル)プロパン、 2, 2 ビス(4— ( (メタ)アタリロイルォキシぺ ンタデ力プロポキシ)フエ-ル)プロパン等)、又はこれらの化合物のポリエーテル部位 として同一分子中にポリエチレンォキシド骨格とポリプロピレンォキシド骨格の両方を 含む化合物(例えば、 WO01/98832号公報に記載の化合物等、又は、市販品とし て、新中村化学工業社製、 BPE 200、 BPE 500、 BPE— 1000)、ビスフエノー ル骨格とウレタン基とを有する重合性ィ匕合物などが挙げられる。なお、これらは、ビス フエノール A骨格に由来する部分をビスフエノール F又はビスフエノール S等に変更し た化合物であってもよい。 [0160] Specific examples of the monomer having an aryl group include 2, 2 bis [4 (3 (meth) acryloxy 2 hydroxypropoxy) phenol] propane, 2, 2 bis [4 ((meth) acrylic. Oxyethoxy) phenol] propane, a phenolic OH group, substituted with 2 to 20 ethoxy groups, 2, 2 bis (4-(((meth)) allyloyloxypolyethoxy) Phenol) propane (eg, 2, 2 bis (4 ((meth) acryloyloxydiethoxy) phenol) propane, 2, 2 bis (4— ((meth) acryloyloxytetraethoxy) phenol) -Ru) propane, 2,2 bis (4-(((meth)) aryloxypentaethoxy) fele) pouch pan, 2,2 bis (4 — (((meth) attayloxydedecaethoxy) wee -Lu) propane, 2,2bis (4 — ((meth) atarylloyl) Xypentadecaethoxy) phenol) propane), 2, 2 bis [4 ((meth) acryloxypropoxy) phenol] propane, the number of ethoxy groups substituted by one phenolic OH group 2 to 20 2,2 bis (4-((meth) acryloyloxypolypropoxy) phenol) propane (eg, 2, 2 bis (4 ((meth) attaroyloxydipropoxy) -Propane), 2,2bis (4-(((meth)) atyloxytetrapropoxy) phenol) propane, 2,2bis (4-(((meth)) aryloxypentapropoxy) phenol- Propane, 2,2bis (4-(((meth)) aryloxysidecapropoxy) phenol) propane, 2,2bis (4-(((meth)) aryloxypentadepropoxy) phenol) Propane), or of these compounds Both polyethylene O dimethylsulfoxide backbone and polypropylene O sulfoxide skeleton in the same molecule as Rieteru site Compounds (for example, compounds described in WO01 / 98832 etc., or commercially available, Shin-Nakamura Chemical Co., Ltd., BPE 200, BPE 500, BPE-1000), having a bisphenol skeleton and a urethane group Examples thereof include polymerizable compounds. These may be compounds obtained by changing the portion derived from the bisphenol A skeleton to bisphenol F or bisphenol S.
[0161] 前記ビスフエノール骨格とウレタン基とを有する重合性ィ匕合物としては、例えば、ビ スフエノールとエチレンォキシド又はプロピレンォキシド等の付加物、重付加物として 得られる末端に水酸基を有する化合物にイソシァネート基と重合性基とを有する化 合物(例えば、 2—イソシァネートェチル (メタ)アタリレート、 α、 α—ジメチル—ビ- ルベンジルイソシァネート等)などが挙げられる。  [0161] Examples of the polymerizable compound having a bisphenol skeleton and a urethane group include a hydroxyl group at the terminal obtained as an adduct such as bisphenol and ethylene oxide or propylene oxide, or a polyaddition product. Examples of the compound include a compound having an isocyanate group and a polymerizable group (for example, 2-isocyanate ethyl (meth) acrylate, α, α-dimethyl-benzylbenzyl isocyanate) and the like.
[0162] その他の重合性モノマ  [0162] Other polymerizable monomers
本発明のパターン形成方法には、前記パターン形成材料としての特性を悪化させ ない範囲で、前記ウレタン基を含有するモノマー、ァリール基を有するモノマー以外 の重合性モノマーを併用してもょ 、。  In the pattern forming method of the present invention, a polymerizable monomer other than the monomer containing a urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the pattern forming material are not deteriorated.
[0163] 前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノ マーとしては、例えば、不飽和カルボン酸 (例えば、アクリル酸、メタクリル酸、ィタコン 酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのェ ステル、不飽和カルボン酸と多価アミンィ匕合物とのアミドなどが挙げられる。  [0163] Examples of the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring include an unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, And an amide of an unsaturated carboxylic acid and a polyvalent amine compound.
[0164] 前記不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルのモノマーとし ては、例えば、(メタ)アクリル酸エステルとして、エチレングリコールジ (メタ)アタリレー ト、エチレン基の数が 2〜18であるポリエチレングリコールジ (メタ)アタリレート(例え ば、ジエチレングリコールジ (メタ)アタリレート、トリエチレングリコールジ (メタ)アタリレ ート、テトラエチレングリコールジ(メタ)アタリレート、ノナエチレングリコールジ (メタ)ァ タリレート、ドデカエチレングリコールジ (メタ)アタリレート、テトラデカエチレングリコー ルジ (メタ)アタリレート等)、プロピレングリコールジ (メタ)アタリレート、プロピレン基の 数が 2から 18であるポリプロピレングリコールジ (メタ)アタリレート(例えば、ジプロピレ ングリコールジ (メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリレート、テトラ プロピレングリコールジ (メタ)アタリレート、ドデカプロピレングリコールジ (メタ)アタリレ ート等)、ネオペンチルダリコールジ (メタ)アタリレート、エチレンォキシド変性ネオべ ンチルダリコールジ (メタ)アタリレート、プロピレンォキシド変性ネオペンチルグリコー ルジ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、トリメチロールプ 口パンジ (メタ)アタリレート、トリメチロールプロパントリ((メタ)アタリロイルォキシプロピ ル)エーテル、トリメチロールェタントリ(メタ)アタリレート、 1, 3—プロパンジオールジ( メタ)アタリレート、 1, 3—ブタンジオールジ (メタ)アタリレート、 1, 4—ブタンジオール ジ (メタ)アタリレート、 1, 6—へキサンジオールジ (メタ)アタリレート、テトラメチレンダリ コールジ (メタ)アタリレート、 1, 4—シクロへキサンジオールジ (メタ)アタリレート、 1, 2 , 4—ブタントリオールトリ(メタ)アタリレート、 1, 5—ベンタンジオール (メタ)アタリレー ト、ペンタエリスリトールジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート 、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)ァク リレート、ジペンタエリスリトールへキサ (メタ)アタリレート、ソルビトールトリ(メタ)アタリ レート、ソルビトールテトラ(メタ)アタリレート、ソルビトールペンタ(メタ)アタリレート、ソ ルビトールへキサ(メタ)アタリレート、ジメチロールジシクロペンタンジ (メタ)アタリレー ト、トリシクロデカンジ (メタ)アタリレート、ネオペンチルグリコールジ (メタ)アタリレート、 ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アタリレート、エチレングリ コール鎖 Zプロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコ ール鎖のジ (メタ)アタリレート (例えば、 WO01/98832号公報に記載の化合物等)、 エチレンオキサイド及びプロピレンオキサイドの少なくとも ヽずれかを付加したトリメチ ロールプロパンのトリ(メタ)アクリル酸エステル、ポリブチレングリコールジ (メタ)アタリ レート、グリセリンジ (メタ)アタリレート、グリセリントリ(メタ)アタリレート、キシレノールジ (メタ)アタリレートなどが挙げられる。 [0164] Examples of the ester monomer of the unsaturated carboxylic acid and the aliphatic polyhydric alcohol compound include, for example, (meth) acrylic acid ester, ethylene glycol di (meth) atrelate, and a number of ethylene groups of 2 to Polyethylene glycol di (meth) acrylate (eg, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) ) Phthalate, dodecaethylene glycol di (meth) acrylate, tetradeca ethylene glycol di (meth) acrylate, etc.), propylene glycol di (meth) acrylate, polypropylene glycol di (2-18 propylene groups) (Meta) attalate (eg Jipuropire glycol di (meth) Atari rate, tripropylene glycol di (meth) Atari rate, tetrapropylene glycol di (meth) Atari rate, dodecamethylene glycol di (meth) Atarire ), Neopentyl dallicol di (meth) acrylate, ethylene oxide modified neo pentyl diol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, trimethylolpropane tri (Meth) Athalylate, Trimethylol Propane (M) Atalylate, Trimethylol Propane Tri ((Meth) Athyloxypropyl) Ether, Trimethylol Ethane Tri (Meth) Atalylate, 1,3-Propane Diol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, tetramethylene Dali cold di (meth) acrylate, 1,4-cyclohexanediol di (meth) Talylate, 1, 2, 4-Butanetriol tri (meth) acrylate, 1,5-Bentanediol (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, sorbitol tri (meth) acrylate, sorbitol tetra (meth) acrylate, sorbitol penta (meth) acrylate Rate, sorbitol hexa (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol modified Trimethylolpropane di (meth) acrylate, ethylene glycol chain Z dialkylene glycol chain di (meth) acrylate having at least one propylene glycol chain (for example, compounds described in WO01 / 98832) ), Tri (methyl) propane tri (meth) acrylate, polybutylene glycol di (meth) acrylate, glycerin di (meth) acrylate, glycerol tri (meth) with at least one of ethylene oxide and propylene oxide added Examples include attalylate and xylenol di (meth) acrylate.
前記 (メタ)アクリル酸エステル類の中でも、その入手の容易さ等の観点から、ェチレ ングリコールジ (メタ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、プロピ レングリコールジ(メタ)アタリレート、ポリプロピレングリコールジ (メタ)アタリレート、ェ チレングリコール鎖 Zプロピレングリコール鎖を少なくとも各々一つずつ有するアルキ レンダリコール鎖のジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、 ペンタエリスリトールテトラ(メタ)アタリレート、ペンタエリスリトールトリアタリレート、ペン タエリスリトールジ (メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレート、 ジペンタエリスリトールへキサ(メタ)アタリレート、グリセリントリ(メタ)アタリレート、ジグ リセリンジ (メタ)アタリレート、 1, 3 プロパンジオールジ (メタ)アタリレート、 1, 2, 4— ブタントリオールトリ(メタ)アタリレート、 1, 4 シクロへキサンジオールジ (メタ)アタリ レート、 1, 5 ペンタンジオール(メタ)アタリレート、ネオペンチルグリコールジ(メタ) アタリレート、エチレンオキサイド付加したトリメチロールプロパンのトリ(メタ)アクリル酸 エステルなどが好ましい。 Among the (meth) acrylic acid esters, from the viewpoint of easy availability, etc., ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, ethylene glycol chain Z Dialkyl (ethylene) chain with at least one propylene glycol chain (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra ( (Meta) Atalylate, Pentaerythritol Triatalylate, Pen Taerythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerol tri (meth) acrylate, diglycerol di (meth) acrylate, 1, 3 propane Diol di (meth) acrylate, 1, 2, 4-butanetriol tri (meth) acrylate, 1, 4 cyclohexanediol di (meth) acrylate, 1, 5 pentane diol (meth) acrylate, neopentyl Glycol di (meth) acrylate, trimethylol propane tri (meth) acrylic acid ester to which ethylene oxide is added are preferred.
[0166] 前記ィタコン酸と前記脂肪族多価アルコールィ匕合物とのエステル (ィタコン酸エステ ル)としては、例えば、エチレングリコールジイタコネート、プロピレングリコールジイタ コネート、 1, 3 ブタンジオールジイタコネート、 1, 4一ブタンジオールジイタコネート 、テトラメチレングリコールジイタコネート、ペンタエリスリトールジイタコネート、及びソ ルビトールテトライタコネートなどが挙げられる。  [0166] Examples of the ester (itaconic acid ester) of the itaconic acid and the aliphatic polyhydric alcohol compound include ethylene glycol diitaconate, propylene glycol diitaconate, and 1,3 butanediol diitaco. 1,4,1 butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate, and sorbitol tetritaconate.
[0167] 前記クロトン酸と前記脂肪族多価アルコールィ匕合物とのエステル (クロトン酸エステ ル)としては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジク ロトネート、ペンタエリスリトールジクロトネート、ソルビトールテトラジクロトネートなどが 挙げられる。  [0167] Examples of the ester (crotonic acid ester) of the crotonic acid and the aliphatic polyhydric alcohol compound include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol. Examples include tetradicrotonate.
[0168] 前記イソクロトン酸と前記脂肪族多価アルコールィ匕合物とのエステル (イソクロトン酸 エステル)としては、例えば、エチレングリコールジイソクロトネート、ペンタエリスリトー ルジイソクロトネート、ソルビトールテトライソクロトネートなどが挙げられる。  [0168] Examples of the ester (isocrotonic acid ester) of the isocrotonic acid and the aliphatic polyhydric alcohol compound include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, and sorbitol tetraisocrotonate. Etc.
[0169] 前記マレイン酸と前記脂肪族多価アルコールィ匕合物とのエステル (マレイン酸エス テル)としては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレ ート、ペンタエリスリトールジマレート、ソルビトールテトラマレートなどが挙げられる。  [0169] Examples of the ester (maleic acid ester) of the maleic acid and the aliphatic polyhydric alcohol compound include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate and sorbitol. Examples include tetramaleate.
[0170] 前記多価アミンィ匕合物と前記不飽和カルボン酸類力も誘導されるアミドとしては、例 サメチレンビス (メタ)アクリルアミド、オタタメチレンビス (メタ)アクリルアミド、ジェチレ ントリアミントリス (メタ)アクリルアミド、ジエチレントリァミンビス (メタ)アクリルアミド、な どが挙げられる。  [0170] Examples of the amide from which the polyvalent amine compound and the unsaturated carboxylic acid compound are also derived include, for example, Samethylene bis (meth) acrylamide, Ottamethylene bis (meth) acrylamide, Jetylene triamine tris (meth) acrylamide, Diethylene Triamine bis (meth) acrylamide.
[0171] また、上記以外にも、前記重合性モノマーとして、例えば、ブタンジォールー 1, 4 ジグリシジルエーテル、シクロへキサンジメタノールグリシジルエーテル、エチレングリ コールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピ レングリコールジグリシジルエーテル、へキサンジオールジグリシジルエーテル、トリメ チロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテ ル、グリセリントリグリシジルエーテル等のグリシジル基含有ィ匕合物に α , β—不飽和 カルボン酸を付カ卩して得られる化合物、特開昭 48— 64183号、特公昭 49 43191 号、特公昭 52— 30490号各公報に記載されているようなポリエステルアタリレートや ポリエステル (メタ)アタリレートオリゴマー類、エポキシィ匕合物(例えば、ブタンジォー ルー 1 , 4ージグリシジルエーテル、シクロへキサンジメタノールグリシジルエーテル、 ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルェ 一テル、へキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジ ルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセリントリグリシジル エーテルなど)と (メタ)アクリル酸を反応させたエポキシアタリレート類等の多官能の アタリレー卜やメタタリレー卜、 曰本接着協会誌 vol.20、 Νο.7、 300〜308ページ(19 84年)に記載の光硬化性モノマー及びオリゴマー、ァリルエステル (例えば、フタル 酸ジァリル、アジピン酸ジァリル、マロン酸ジァリル、ジァリルアミド(例えば、ジァリル ァセトアミド等)、カチオン重合性のジビュルエーテル類 (例えば、ブタンジオール 1 , 4ージビュルエーテル、シクロへキサンジメタノールジビュルエーテル、エチレングリ コールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリ コーノレジビニノレエーテノレ、へキサンジォーノレジビニノレエーテノレ、 トリメチローノレプロパ ントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、グリセリントリビニル エーテル等)、エポキシ化合物(例えば、ブタンジオール 1 , 4ージグリシジルエー テル、シクロへキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジ ノレエーテノレ、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジ グリシジルエーテル、へキサンジオールジグリシジルエーテル、トリメチロールプロパ ントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセリント リグリシジルエーテル等)、ォキセタン類 (例えば、 1, 4 ビス〔(3 ェチルー 3—ォキ セタ -ルメトキシ)メチル〕ベンゼン等)、エポキシィ匕合物、ォキセタン類 (例えば、 WO 01/22165号公報に記載の化合物)、 N— β—ヒドロキシェチル— β - (メタクリルァ ミド)ェチルアタリレート、 Ν, Ν—ビス(j8—メタクリロキシェチル)アクリルアミド、ァリル メタタリレート等の異なったエチレン性不飽和二重結合を 2個以上有する化合物など が挙げられる。 [0171] In addition to the above, examples of the polymerizable monomer include butanediol 1, 4 Diglycidyl ether, cyclohexane dimethanol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether , Compounds obtained by adding α, β-unsaturated carboxylic acid to glycidyl group-containing compounds such as glyceryl triglycidyl ether, JP-A 48-64183, JP-B 49 43191, JP-B Polyester acrylate, polyester (meth) acrylate oligomers and epoxy compounds (for example, butanediol 1,4-diglycidyl ether, Hexane dimethanol glycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc. ) Photo-curing properties described in polyfunctional atarelates such as epoxy acrylates reacted with acrylic acid and metatareres 卜, Journal of the Adhesion of Japan, vol.20, Νο.7, pages 300 to 308 (1984) Monomers and oligomers, allylic esters (eg, diaryl phthalate, diaryl adipate, diaryl malonate, diaryl amide (eg, diaryl acetate amide), cationically polymerizable dibule ethers (eg, butanedio 1,4-dibutyl ether, cyclohexane dimethanol dibulle ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, dipropylene glycol Conorozorino Resinino Reinenore, Hexan di Resorinino Reinenore , Trimethylonorepropan trivinyl ether, pentaerythritol tetravinyl ether, glycerin trivinyl ether, etc.), epoxy compounds (for example, butanediol 1,4-diglycidyl ether, cyclohexane dimethanol glycidyl ether, ethylene glycol diglycidinoate ethere, Diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropan trig Sidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc.), oxetanes (eg, 1,4 bis [(3 ethyl-3-oxeta-lmethoxy) methyl] benzene, etc.), epoxy compounds, oxetane Class (e.g. WO Compounds described in Japanese Patent No. 01/22165), N-β-hydroxyethyl-β- (methacrylamide) ethyl acrylate, Ν, —-bis (j8-methacryloxetyl) acrylamide, aryl methacrylate, etc. And compounds having two or more different ethylenically unsaturated double bonds.
[0172] 前記ビュルエステル類としては、例えば、ジビニルサクシネート、ジビュルアジぺー トなどが挙げられる。  [0172] Examples of the bull esters include divinyl succinate, dibula adipate and the like.
[0173] これらの多官能モノマー又はオリゴマーは、 1種単独で使用してもよぐ 2種以上を 併用してちょい。  [0173] These polyfunctional monomers or oligomers may be used alone or in combination of two or more.
[0174] 前記重合性モノマーは、必要に応じて、分子内に重合性基を 1個含有する重合性 化合物(単官能モノマー)を併用してもょ 、。  [0174] The polymerizable monomer may be used in combination with a polymerizable compound (monofunctional monomer) containing one polymerizable group in the molecule, if necessary.
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示したィ匕合 物、特開平 6— 236031号公報に記載されている 2塩基のモノ ((メタ)アタリロイルォキ シアルキルエステル)モノ(ノヽロヒドロキシアルキルエステル)等の単官能モノマー(例 えば、 γ—クロロー j8—ヒドロキシプロピル j8 ' —メタクリロイルォキシェチルー o— フタレー卜等)、特許 2744643号公報、 WOOOZ52529号公報、特許 2548016号 公報等に記載の化合物が挙げられる。  Examples of the monofunctional monomer include a compound exemplified as a raw material for the binder, a dibasic mono ((meth) atallylooxyalkyl ester) mono (noro) described in JP-A-6-236031. Monofunctional monomers such as hydroxyalkyl esters (for example, γ-chloro-j8-hydroxypropyl j8′-methacryloyloxychetilo o-phthalate, etc.), Patent 2744643, WOOOZ52529, Patent 2548016, etc. And the compounds described.
[0175] 前記感光層における重合性ィ匕合物の含有量としては、例えば、 5〜90質量%が好 ましぐ 15〜60質量%がより好ましぐ 20〜50質量%が特に好ましい。  [0175] The content of the polymerizable compound in the photosensitive layer is, for example, preferably 5 to 90% by mass, more preferably 15 to 60% by mass, and particularly preferably 20 to 50% by mass.
前記含有量が、 5質量%となると、テント膜の強度が低下することがあり、 90質量% を超えると、保存時のエッジフュージョン(ロール端部力 のしみだし故障)が悪化す ることがある。  If the content is 5% by mass, the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (extruding failure of the roll end force) may be deteriorated. is there.
また、重合性化合物中に前記重合性基を 2個以上有する多官能モノマーの含有量 としては、 5〜: LOO質量%が好ましぐ 20〜: LOO質量%がより好ましぐ 40〜: LOO質量 %が特に好ましい。  Moreover, as content of the polyfunctional monomer which has 2 or more of the said polymeric groups in a polymeric compound, 5-: LOO mass% is preferable 20-: LOO mass% is more preferable 40-: LOO Mass% is particularly preferred.
[0176] <光重合開始剤 > [0176] <Photoinitiator>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、約 300〜800nm (より好ましくは 330〜500nm)の範 囲内に少なくとも約 50の分子吸光係数を有する成分を少なくとも 1種含有して ヽるこ とが好ましい。 The photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Photoexcitations that are sensitive to visible light are preferred. It may be an activator that causes some action with the sensitizer and generates active radicals. An initiator that initiates cationic polymerization according to the type of monomer may be used. The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
[0177] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの等)、へキサァリールビイミ ダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォニ ゥム塩、メタ口セン類などが挙げられる。これらの中でも、感光層の感度、保存性、及 び感光層とプリント配線板形成用基板との密着性等の観点から、トリァジン骨格を有 するハロゲンィ匕炭化水素、ォキシム誘導体、ケトンィ匕合物、へキサァリールビイミダゾ ール系化合物が好ましい。  [0177] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like. Among these, from the viewpoints of the sensitivity and storage stability of the photosensitive layer and the adhesion between the photosensitive layer and the printed wiring board forming substrate, a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred.
[0178] 前記へキサァリールビイミダゾールとしては、例えば、 2, 2' ビス(2 クロ口フエ -ル) 4, 4' , 5, 5' —テトラフエ-ルビイミダゾール、 2, 2' —ビス(o フロロフ ェ -ル) 4, 4' , 5, 5' —テトラフエ-ルビイミダゾール、 2, 2' —ビス(2 ブロモ フエ-ル)一 4, 4' , 5, 5' —テトラフエ-ルビイミダゾール、 2, 2' —ビス(2, 4 ジ クロ口フエ-ル)一 4, 4' , 5, 5' —テトラフエ-ルビイミダゾール、 2, 2' —ビス(2 —クロ口フエ-ル)一 4, 4' , 5, 5' —テトラ(3—メトキシフエ-ル)ビイミダゾール、 2 , 2' —ビス(2 クロ口フエ-ル)一 4, 4' , 5, 5' —テトラ(4—メトキシフエ-ル)ビ イミダゾール、 2, 2' —ビス(4—メトキシフエ-ル)一 4, 4' , 5, 5' —テトラフエ-ル ビイミダゾール、 2, 2' —ビス(2, 4 ジクロロフエ-ル)一 4, 4' , 5, 5' —テトラフ ェ-ルビイミダゾール、 2, 2' —ビス(2 -トロフエ-ル)一 4, 4' , 5, 5' —テトラフ ェ-ルビイミダゾール、 2, 2' —ビス(2—メチルフエ-ル)— 4, 4' , 5, 5' —テトラ フエ-ルビイミダゾール、 2, 2' ビス(2 トリフルォロメチルフエ-ル)—4, 4' , 5 , 5' —テトラフエ-ルビイミダゾール、 WOOO/52529号公報に記載の化合物など が挙げられる。 [0178] Examples of the hexarylbiimidazole include 2, 2 'bis (2-clonal phenol) 4, 4', 5, 5'-tetraphenyl biimidazole, 2, 2'-bis ( o Fluoro-phenyl) 4, 4 ', 5, 5' — Tetraphenyl bibiimidazole, 2, 2 ′ — Bis (2 bromophenol) 1, 4, 4 ', 5, 5' — Tetra-phenol biimidazole, 2, 2 '— Bis (2, 4 Diclonal Membrane) 4, 4', 5, 5 '— Tetraphenol Biimidazole, 2, 2' — Bis (2 — Diclonal Membrane) 4 , 4 ', 5, 5' — Tetra (3-methoxyphenol) biimidazole, 2, 2 '— Bis (2-chlorophenol) 1, 4, 4', 5, 5 '— Tetra (4-methoxyphenol) -L) biimidazole, 2,2'-bis (4-methoxyphenol) 1,4 ', 5,5'-tetraphenol biimidazole, 2,2'-bis (2,4 dichlorophenol) 1, 4, 4 ', 5, 5' —tetraferrubiimidazole 2, 2 '— Bis (2-trophenol) 1, 4, 4', 5, 5 '— Tetraphenol biimidazole, 2, 2 ′ — Bis (2-methylphenol) — 4, 4', 5 , 5 ′ —tetraphenylbiimidazole, 2, 2 ′ bis (2 trifluoromethylphenol) —4, 4 ′, 5, 5 ′ —tetraphenylbiimidazole, compounds described in WOOO / 52529 And so on.
[0179] 前記ビイミダゾール類は、例えば、 Bull. Chem. Soc. Japan, 33, 565 (1960)、 及び J. Org. Chem, 36 (16) 2262 (1971)に開示されている方法により容易に合 成することができる。 [0179] The biimidazoles can be easily prepared by the method disclosed in Bull. Chem. Soc. Japan, 33, 565 (1960), and J. Org. Chem, 36 (16) 2262 (1971), for example. Together Can be made.
[0180] トリァジン骨格を有するハロゲンィ匕炭化水素化合物としては、例えば、若林ら著、 B ull. Chem. Soc. Japan, 42、 2924 (1969)記載のィ匕合物、英国特許 1388492号 明細書記載の化合物、特開昭 53— 133428号公報記載の化合物、独国特許 3337 024号明細書記載の化合物、 F. C. Schaefer等による J. Org. Chem. ; 29、 1527 (1964)記載の化合物、特開昭 62— 58241号公報記載の化合物、特開平 5— 281 728号公報記載の化合物、特開平 5— 34920号公報記載化合物、米国特許第 421 2976号明細書に記載されている化合物が挙げられる。  [0180] Examples of halogenated hydrocarbon compounds having a triazine skeleton include compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), and described in British Patent 1388492. A compound described in JP-A-53-133428, a compound described in DE 3337 024, a compound described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer et al. Examples thereof include compounds described in JP-A-62-58241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, and compounds described in US Pat. No. 421 2976.
[0181] 前記若林ら著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載の化合物とし ては、例えば、 2 フエ-ル— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2 — (4 クロルフエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- ( 4 トリル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシフ ェ-ル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (2, 4 ジクロル フエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2, 4, 6 トリス(トリ クロルメチル)—1, 3, 5 トリアジン、 2—メチル—4, 6 ビス(トリクロルメチル)—1, [0181] Examples of the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include, for example, 2 phenol-4, 6 bis (trichloromethyl) -1, 3, 5 Triazine, 2 — (4 Chlorphenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4 Tolyl) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2— (4-Methoxyphenyl) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2,4 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2, 4, 6 Tris (trichloromethyl) -1, 3, 5 Triazine, 2-methyl-4, 6 Bis (trichloromethyl) -1,
3, 5 トリアジン、 2— n—ノ-ル—4, 6 ビス(トリクロルメチル)—1 , 3, 5 トリアジ ン、及び 2— , α , β—トリクロルェチル) -4, 6 ビス(トリクロルメチル)—1, 3, 5—トリァジンなどが挙げられる。 3, 5 Triazine, 2-n-nor-4,6 bis (trichloromethyl) -1,3,5 triazine, and 2-, α, β-trichloroethyl) -4,6 bis (trichloromethyl) ) -1, 3, 5-triazine.
[0182] 前記英国特許 1388492号明細書記載の化合物としては、例えば、 2—スチリルー [0182] Examples of the compounds described in the British Patent 1388492 include 2-styryl
4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メチルスチリル)— 4, 6 —ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4, 6 - ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4 ァミノ — 6 トリクロルメチル—1, 3, 5 トリァジンなどが挙げられる。 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4-Methylstyryl) — 4, 6 —Bis (trichloromethyl) —1, 3, 5 Triazine, 2— (4-Methoxystyryl) — 4, 6-bis (trichloromethyl) -1,3,5 triazine, 2— (4-methoxystyryl) —4 amino—6 trichloromethyl-1,3,5 triazine.
[0183] 前記特開昭 53— 133428号公報記載の化合物としては、例えば、 2— (4—メトキシ —ナフト— 1—ィル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (4- エトキシ—ナフ卜— 1—ィル)—4, 6 ビス(卜リクロルメチル)—1, 3, 5 卜リアジン、 2 -〔4— (2—エトキシェチル)—ナフトー 1—ィル〕—4, 6 ビス(トリクロルメチル) 1 , 3, 5 トリァジン、 2- (4, 7 ジメトキシ一ナフトー 1—ィル) 4, 6 ビス(トリクロ ルメチル)— 1, 3, 5 卜リアジン、及び 2— (ァセナフ卜— 5—ィル)—4, 6 ビス(トリ クロルメチル)—1, 3, 5 トリァジンなどが挙げられる。 Examples of the compound described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine. , 2- (4-Ethoxy-naphtho-1-yl) -4,6 bis (卜 chloromethyl) -1,3,5 riadine, 2- [4- (2-ethoxyethyl) -naphtho-1-yl ] -4,6 bis (trichloromethyl) 1,3,5 triazine, 2- (4,7 dimethoxymononaphtho-1-yl) 4,6 bis (trichloro) Rumethyl) —1, 3, 5 卜 lyazine, and 2- (acenaphtho-5-yl) -4,6 bis (trichloromethyl) -1, 3, 5 triazine.
[0184] 前記独国特許 3337024号明細書記載の化合物としては、例えば、 2—(4ースチリ ノレフエ二ノレ) 4、 6 ビス(トリクロロメチノレ)一 1, 3, 5 トリァジン、 2- (4— (4—メト キシスチリル)フエ-ル)—4、 6 ビス(トリクロロメチル)—1, 3, 5 トリァジン、 2- (1 —ナフチルビ-レンフエ-ル)一 4、 6 ビス(トリクロロメチル) 1, 3, 5 トリァジン、 2 クロロスチリルフエ-ル一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4 チォフェン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5— トリアジン、 2— (4 チォフェン一 3 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチ ル)一 1 , 3, 5 トリアジン、 2— (4 フラン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリ クロロメチル) 1, 3, 5 トリァジン、及び 2— (4 ベンゾフラン一 2 ビ-レンフエ- ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが挙げられる。  [0184] Examples of the compounds described in the specification of the German Patent 3337024 include 2- (4-Styrene Norefiniore) 4, 6 bis (trichloromethinole) -1,3,5 Triazine, 2- (4— (4-methoxystyryl) phenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (1-naphthyl vinylenephenol) 1,4 bis (trichloromethyl) 1,3 , 5 Triazine, 2 Chlorostyryl 1,4,6 Bis (trichloromethyl) 1, 3,5 Triazine, 2— (4 Thiophene-1,2 Bilenphenol) 1,4,6 Bis (trichloromethyl) 1, 3, 5— Triazine, 2— (4 thiophene, 3 bilenphenol), 1, 4, 6 Bis (trichloromethyl), 1, 3, 5 Triazine, 2— (4 furan, 1 biphenylene) 1,6 bis (trichloromethyl) 1, 3,5 triazine, and 2— (4 benzofuran - Le) 4, 6-bis (trichloromethyl) 1, 3, and 5 Toriajin the like.
[0185] 前記 F. C. Schaefer等による J. Org. Chem. ; 29、 1527 (1964)記載のィ匕合物 としては、例えば、 2—メチルー 4, 6 ビス(トリブロモメチル)一1, 3, 5 トリァジン、 2, 4, 6 トリス(トリブロモメチル)一1, 3, 5 トリアジン、 2, 4, 6 トリス(ジブロモメ チル) 1, 3, 5 トリアジン、 2 ァミノ— 4—メチル—6 トリ(ブロモメチル)— 1, 3, 5 トリァジン、及び 2—メトキシ一 4—メチル 6 トリクロロメチル一 1, 3, 5 トリア ジンなどが挙げられる。 前記特開昭 62— 58241号公報記載の化合物としては、例えば、 2— (4—フエニル ェチ -ルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2— (4— ナフチルー 1ーェチュルフエ-ルー 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジ ン、 2— (4— (4 トリルェチュル)フエ-ル)— 4, 6 ビス(トリクロロメチル)—1 , 3, 5 —トリァジン、 2- (4— (4—メトキシフエ-ル)ェチュルフエ-ル) 4, 6—ビス(トリク 口ロメチル) 1, 3, 5 トリァジン、 2— (4— (4—イソプロピルフエ-ルェチュル)フエ -ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4— (4 ェチルフ ェ -ルェチュル)フエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなど が挙げられる。 [0187] 前記特開平 5— 281728号公報記載の化合物としては、例えば、 2— (4 トリフル ォロメチルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2, 6 —ジフルオロフェ-ル)—4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジクロロフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジブロモフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが 挙げられる。 [0185] Examples of the compound described in FC Schaefer et al., J. Org. Chem .; 29, 1527 (1964) include 2-methyl-4,6 bis (tribromomethyl) -1,3,5 Triazine, 2, 4, 6 Tris (tribromomethyl) 1, 3, 5 Triazine, 2, 4, 6 Tris (dibromomethyl) 1, 3, 5 Triazine, 2 Amamino-4-methyl-6 Tri (Bromomethyl) — 1, 3, 5 triazine and 2-methoxy-4-methyl 6-trichloromethyl 1, 3, 5 triazine. Examples of the compounds described in JP-A-62-58241 include 2- (4-phenylethyl-sulfur) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- ( 4—Naphthyru 1-Ethurhu-Lu 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 Trilluture) Fuel) — 4, 6 Bis (Trichloromethyl) —1, 3, 5 —Triazine, 2- (4— (4-Methoxyphenyl) 4,4-methyl (4-methoxyphenyl) 4,6-triphenyl) 1,6,5-triazine, 2— (4— (4-Isopropylphenol) (Phenol) 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4-Ethylfe-Luture) Fehl) 1, 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine And so on. [0187] Examples of the compound described in JP-A-5-281728 include 2- (4 trifluoromethylphenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6—Difluorophenol) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2, 6 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine 2- (2, 6 dibromophenol) 1,6,6 bis (trichloromethyl) 1, 3, 5 triazine and the like.
[0188] 前記特開平 5— 34920号公報記載化合物としては、例えば、 2, 4 ビス(トリクロ口 メチル)— 6— [4— (N, N—ジエトキシカルボ-ルメチルァミノ)—3—ブロモフエ-ル ]— 1, 3, 5 トリァジン、米国特許第 4239850号明細書に記載されているトリハロメ チル— s トリァジン化合物、更に 2, 4, 6 トリス(トリクロロメチル)—s トリァジン、 2 - (4—クロ口フエ-ル) 4, 6—ビス(トリブロモメチル) s トリァジンなどが挙げら れる。  [0188] Examples of the compound described in JP-A-5-34920 include 2,4 bis (trichloromethyl) -6- [4- (N, N-diethoxycarboromethylamino) -3-bromophenol. ] — 1, 3, 5 triazine, trihalomethyl-s triazine compounds described in US Pat. No. 4,239,850, and 2, 4, 6 tris (trichloromethyl) —s triazine, 2- (4-chloro) (Fuel) 4, 6-bis (tribromomethyl) s triazine.
[0189] 前記米国特許第 4212976号明細書に記載されている化合物としては、例えば、ォ キサジァゾール骨格を有する化合物(例えば、 2 トリクロロメチル— 5 フエ二ルー 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4 クロ口フエ二ル)一 1, 3, 4 —ォキサジァゾール、 2 トリクロロメチル一 5— (1—ナフチル) 1, 3, 4—ォキサジ ァゾール、 2 トリクロロメチル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール、 2 トリブ口モメチルー 5—フエ二ルー 1, 3, 4 ォキサジァゾール、 2 トリブ口モメチ ル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール; 2 トリクロロメチル— 5—ス チリル— 1, 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (4 クロルスチリル) —1, 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4—メトキシスチリル)一 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (1—ナフチル)—1, 3, 4—ォ キサジァゾール、 2 トリクロロメチル— 5— (4— n—ブトキシスチリル)— 1, 3, 4—ォ キサジァゾール、 2 トリプロメメチルー 5—スチリルー 1, 3, 4 ォキサジァゾール等 )などが挙げられる。  [0189] Examples of the compounds described in the above-mentioned US Pat. No. 4,212,976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl 1,3,4-oxadiazole, 2 trichloromethyl). 1-5— (4 Phenyl Phenyl) 1 1, 3, 4 — Oxadiazole, 2 Trichloromethyl 1 5— (1—Naphtyl) 1, 3, 4-Oxadiazole, 2 Trichloromethyl— 5— (2 Naphthyl) —1, 3, 4—Oxadiazole, 2 trimethyl oral methyl-5-phenyl 2, 3, 4 oxadiazole, 2 trimethyl oral — 5— (2 naphthyl) —1, 3, 4-oxadiazole; 2 Trichloromethyl— 5—Styryl— 1, 3, 4-Oxadiazole, 2 Trichloromethyl— 5— (4 Chlorstyryl) —1, 3, 4-Oxadiazole, 2 Trichloromethyl mono 5-— (4-Methoxystyryl) 1,3,4-Oxadiazole, 2 Trichloromethyl-5- (1-Naphtyl) -1,3,4-Oxadiazole, 2Trichloromethyl-5- (4-n-Butoxystyryl) — 1, 3, 4— Oxadiazole, 2 tripromemethyl-5-styryl-1,3,4 oxadiazole, etc.).
[0190] 本発明で好適に用いられるォキシム誘導体としては、例えば、下記構造式(36)〜( 69)で表される化合物が挙げられる。 [0191] [化 40] [0190] Examples of the oxime derivative suitably used in the present invention include compounds represented by the following structural formulas (36) to (69). [0191] [Chemical 40]
Figure imgf000053_0001
Figure imgf000053_0001
構造式(36) 構造式(37)  Structural formula (36) Structural formula (37)
Figure imgf000053_0002
Figure imgf000053_0002
構造式(38) 構造式(39)  Structural formula (38) Structural formula (39)
Figure imgf000053_0003
Figure imgf000053_0003
構造式(40) 構造式(41)  Structural formula (40) Structural formula (41)
Figure imgf000053_0004
Figure imgf000053_0004
構造式(42) 構造式(43) 5
Figure imgf000053_0005
Structural formula (42) Structural formula (43) 5
Figure imgf000053_0005
構造式(44)  Structural formula (44)
構造式(45)
Figure imgf000053_0006
Structural formula (45)
Figure imgf000053_0006
構造式(46)  Structural formula (46)
[0192] [化 41]
Figure imgf000054_0001
[0192] [Chemical 41]
Figure imgf000054_0001
構造式 (49)
Figure imgf000054_0002
Structural formula (49)
Figure imgf000054_0002
Figure imgf000054_0003
Figure imgf000054_0003
Figure imgf000054_0004
Figure imgf000054_0004
Figure imgf000055_0001
Figure imgf000055_0002
Figure imgf000055_0003
Figure imgf000055_0004
Figure imgf000055_0001
Figure imgf000055_0002
Figure imgf000055_0003
Figure imgf000055_0004
[0194] [化 43] [0194] [Chemical 43]
Figure imgf000056_0001
Figure imgf000056_0001
OOMM -R OOMM -R
R R
構造式(64) n-C3H7 Structural formula (64) nC 3 H 7
構造式 (65) n-CsHi7  Structural formula (65) n-CsHi7
構造式 (66) カンファー  Structural formula (66) camphor
構造式 (67 ) p- H3 6H4 Structural formula (67) p- H3 6H 4
Figure imgf000056_0002
Figure imgf000056_0002
R  R
構造式 (68) n-C3H7 Structural formula (68) nC 3 H 7
構造式(69) p-CH3C6H4 Structural formula (69) p-CH 3 C 6 H 4
前記ケトン化合物としては、例えば、ベンゾフエノン、 2 メチルベンゾフエノン、 3 メチルベンゾフエノン、 4 メチルベンゾフエノン、 4ーメトキシベンゾフエノン、 2 クロ 口べンゾフエノン、 4 クロ口べンゾフエノン、 4 ブロモベンゾフエノン、 2—カノレボキ シベンゾフエノン、 2—エトキシカルボニルベンゾルフェノン、ベンゾフエノンテトラカル ボン酸又はそのテトラメチルエステル、 4, 4, 一ビス(ジアルキルァミノ)ベンゾフエノン 類(例えば、 4, 4, 一ビス(ジメチルァミノ)ベンゾフエノン、 4, 4, 一ビスジシクロへキシ ルァミノ)ベンゾフエノン、 4, 4, 一ビス(ジェチルァミノ)ベンゾフエノン、 4, 4, 一ビス( ジヒドロキシェチルァミノ)ベンゾフエノン、 4—メトキシ一 4 '—ジメチルァミノべンゾフエ ノン、 4, 4 '—ジメトキシベンゾフエノン、 4—ジメチルァミノべンゾフエノン、 4—ジメチ ルアミノアセトフエノン、ベンジル、アントラキノン、 2—t—ブチルアントラキノン、 2—メ チノレアントラキノン、フエナントラキノン、キサントン、チォキサントン、 2—クロノレーチォ キサントン、 2, 4 ジェチルチオキサントン、フルォレノン、 2 べンジルージメチルァ ミノー 1一 (4一モルホリノフエ-ル)一 1ーブタノン、 2—メチルー 1一 〔4一(メチルチオ )フエ-ル〕 2 モルホリノ一 1—プロパノン、 2 ヒドロキシー 2—メチルー〔4— ( 1— メチルビ-ル)フエ-ル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類 (例えば、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインプロピ ノレエーテノレ、ベンゾインイソプロピノレエーテノレ、ベンゾインフエ-ノレエーテノレ、ベンジ ルジメチルケタール)、アタリドン、クロロアタリドン、 N—メチルアタリドン、 N ブチル アタリドン、 N ブチル一クロロアタリドンなどが挙げられる。 Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzo Phenon, 2-Kanoreboki Cibenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenone tetracarboxylic acid or its tetramethyl ester, 4, 4, monobis (dialkylamino) benzophenones (eg, 4, 4, monobis (dimethylamino) benzophenone, 4, 4, 1-bisdicyclohexylamino) benzophenone, 4, 4, 1-bis (jetylamino) benzophenone, 4, 4, 1-bis (dihydroxyethylamino) benzophenone, 4-methoxy-1-4′-dimethylaminobenzophenone, 4, 4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methinoanthraquinone, phenanthraquinone, xanthone, Thioxanthone, 2-Chrono 1-butanone, 2-methyl-1 1 [4 (methylthio) phenol] 2 morpholino 1-butanone 2-methyl-1 1- (4- (methylthio) phenol) 2 morpholino 1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenol] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ether, benzoin propyleneate, benzoin isopropylene Noreethenore, benzoinphenol-Noreetenore, benzyl dimethyl ketal), attaridone, chloroataridon, N-methylattaridone, N-butyl attaridone, N-butyl monochloro attaridone and the like.
[0196] 前記メタ口セン類としては、例えば、ビス( 7? 5— 2, 4—シクロペンタジェン一 1—ィ ル)—ビス(2, 6 ジフロロ 3— ( 1H ピロール— 1—ィル)—フエ-ル)チタニウム 、 7? 5 シクロペンタジェ -ル一 6 タメ-ルーアイアン(1 + ) —へキサフロロホスフ エート(1 )、特開昭 53— 133428号公報、特公昭 57— 1819号公報、同 57— 609 6号公報、及び米国特許第 3615455号明細書に記載された化合物などが挙げられ る。 [0196] Examples of the meta-octenes include bis (7? 5-2, 4-cyclopentagen 1-yl) -bis (2, 6 difluoro 3- (1H pyrrole-1-yl). —Phenol) Titanium, 7? 5 Cyclopentagel-6 Tame-Lu Iron (1 +) —Hexafluorophosphate (1), JP-A-53-133428, JP-B-57-1819, And compounds described in US Pat. No. 57-6096 and US Pat. No. 3,615,455.
[0197] また、上記以外の光重合開始剤として、アタリジン誘導体 (例えば、 9 フエ-ルァク リジン、 1 , 7 ビス(9、 9,—アタリジ-ル)ヘプタン等)、 N フエ-ルグリシン等、ポリ ハロゲン化合物(例えば、四臭化炭素、フエ-ルトリブ口モメチルスルホン、フエ-ルト リクロロメチルケトン等)、クマリン類(例えば、 3— (2—ベンゾフロイル)—7—ジェチ ルァミノクマリン、 3— (2 ベンゾフロイル) - 7 - ( 1—ピロリジ -ル)クマリン、 3 ベン ゾィル 7 ジェチルァミノクマリン、 3— (2—メトキシベンゾィル) 7 ジェチルアミ ノクマリン、 3—(4ージメチルァミノべンゾィル) 7—ジェチルァミノクマリン、 3,3,一 カルボ-ルビス(5, 7—ジ—n—プロポキシクマリン)、 3, 3,—カルボ-ルビス(7—ジ ェチルァミノクマリン)、 3—ベンゾィル 7—メトキシクマリン、 3— (2—フロイル) 7 ージェチルァミノクマリン、 3—(4ージェチルァミノシンナモイル) 7—ジェチルアミ ノクマリン、 7—メトキシ一 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル 5, 7 —ジプロポキシクマリン、 7 ベンゾトリアゾール 2—イルクマリン、また、特開平 5-1 9475号、特開平 7 - 271028号、特開 2002 - 363206号、特開 2002 - 363207号、 特開 2002- 363208号、特開 2002- 363209号公報等に記載のクマリン化合物など )、アミン類 (例えば、 4ージメチルァミノ安息香酸ェチル、 4ージメチルァミノ安息香酸 n—ブチル、 4ージメチルァミノ安息香酸フエネチル、 4ージメチルァミノ安息香酸 2— フタルイミドエチル、 4ージメチルァミノ安息香酸 2—メタクリロイルォキシェチル、ペン タメチレンビス(4 ジメチルァミノべンゾエート)、 3 ジメチルァミノ安息香酸のフエネ チル、ペンタメチレンエステル、 4 ジメチルァミノべンズアルデヒド、 2 クロル一 4— ジメチルァミノべンズアルデヒド、 4—ジメチルァミノべンジルアルコール、ェチル(4— ジメチルァミノべンゾィル)アセテート、 4—ピベリジノアセトフエノン、 4—ジメチルアミ ノベンゾイン、 N, N—ジメチルー 4—トルイジン、 N, N ジェチルー 3—フエネチジ ン、トリベンジルァミン、ジベンジルフエ-ルァミン、 N—メチル N—フエ-ルペンジ ルァミン、 4—ブロム一 Ν,Ν—ジメチルァニリン、トリドデシルァミン、ァミノフルオラン 類(ODB, ODBII等)、クリスタルバイオレツトラクトン、ロイコクリスタルバイオレット等) 、ァシルホスフィンォキシド類(例えば、ビス(2, 4, 6 トリメチルベンゾィル)—フエ二 ルホスフィンォキシド、ビス(2, 6 ジメトキシベンゾィル)一2, 4, 4 トリメチル一ぺ ンチルフエ-ルホスフィンォキシド、 LucirinTPOなど)などが挙げられる。 [0197] In addition, as photopolymerization initiators other than the above, atalidine derivatives (for example, 9-phenol lysine, 1,7 bis (9,9, -ataridyl) heptane, etc.), N-phenol glycine, Halogen compounds (eg, carbon tetrabromide, felt rib mouth methylsulfone, felt trichloromethyl ketone, etc.), coumarins (eg, 3- (2-benzofuroyl) -7-jetylaminocoumarin, 3- (2 Benzofuroyl)-7-(1-Pyrrolidyl) coumarin, 3 Ben Zoyl 7 Jetylaminocoumarin, 3— (2-Methoxybenzoyl) 7 Jetylamino Nocoumarin, 3 -— (4-Dimethylaminobenzol) 7—Jetylaminocoumarin, 3,3, 1 Carborubbis (5, 7 —Di-n-propoxycoumarin), 3, 3, -carborubis (7-deethylaminocoumarin), 3-benzoyl 7-methoxycoumarin, 3- (2-furoyl) 7-jetylaminocoumarin , 3- (4-Jetylaminocinnamoyl) 7-Jetylaminonocoumarin, 7-Methoxy-1-3- (3-Pyridylcarbol) coumarin, 3-Benzyl 5, 7-dipropoxycoumarin, 7 Benzotriazole 2— Irkulin, also described in JP-A-5-9475, JP-A-7-271028, JP-A-2002-363206, JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, etc. Of coumarin compounds) Amines (e.g., ethyl 4-dimethylaminobenzoate, n-butyl 4-dimethylaminobenzoate, phenethyl 4-dimethylaminobenzoate, 2-dimethylaminobenzoic acid 2-phthalimidoethyl, 4-dimethylaminobenzoic acid 2-methacryloyloxychetyl, pentamethylenebis (4 Dimethylaminobenzoate), 3 Dimethylaminobenzoic acid phenethyl, pentamethylene ester, 4 Dimethylaminobenzaldehyde, 2 Chlorone 4-Dimethylaminobenzaldehyde, 4-Dimethylaminobenzil alcohol, Ethyl (4-dimethylaminobenzoyl) acetate , 4-piberidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl-4-toluidine, N, N jetyl 3-phenethylidine, tribenzylamine, dibenzylphenol Eramine, N-Methyl N-Ferpendilumamine, 4-Bromine, Ν-Dimethylaniline, Tridodecylamine, Aminofluoranes (ODB, ODBII, etc.), Crystal violet lactone, Leuo crystal violet, etc. , Acylphosphine oxides (eg, bis (2, 4, 6 trimethylbenzoyl) -phenylphosphine oxide, bis (2, 6 dimethoxybenzoyl) -1,2,4,4 trimethyl monopentylphenol -Luphosphinoxide, LucirinTPO, etc.).
更に、米国特許第 2367660号明細書に記載されているビシナルポリケタルド-ル 化合物、米国特許第 2448828号明細書に記載されて 、るァシロインエーテルィ匕合 物、米国特許第 2722512号明細書に記載されている oc—炭化水素で置換された芳 香族ァシロインィ匕合物、米国特許第 3046127号明細書及び同第 2951758号明細 書に記載の多核キノンィ匕合物、特開 2002— 229194号公報に記載の有機ホウ素化 合物、ラジカル発生剤、トリアリールスルホ-ゥム塩 (例えば、へキサフロロアンチモン やへキサフロロホスフェートとの塩)、ホスホ-ゥム塩化合物(例えば、(フエ-ルチオ フエ-ル)ジフエ-ルスルホ-ゥム塩等)(カチオン重合開始剤として有効)、 WO01/ 71428号公報記載のォ-ゥム塩ィ匕合物などが挙げられる。 Further, the vicinal polyketaldol compound described in US Pat. No. 2,367,660, the acyloin etheric compound described in US Pat. No. 2,488,828, US Pat. No. 2,722,512 Oc-hydrocarbon substituted aromatic acyloyne compounds described in the specification, polynuclear quinone compounds described in U.S. Pat. Nos. 3046127 and 2951758, JP-A-2002- Organoboronation described in 229194 Compounds, radical generators, triarylsulfo salts (eg, salts with hexafluoroantimony or hexafluorophosphate), phospho-salt compounds (eg, (phenylthiophenol) diphenols) Rusulfo-um salt, etc.) (effective as a cationic polymerization initiator), and om- salt salts described in WO01 / 71428.
[0199] 前記光重合開始剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。 2種 以上の組合せとしては、例えば、米国特許第 3549367号明細書に記載のへキサァ リールビイミダゾールと 4 アミノケトン類との組合せ、特公昭 51—48516号公報に 記載のベンゾチアゾール化合物とトリハロメチルー s—トリァジン化合物の組合せ、ま た、芳香族ケトン化合物 (例えば、チォキサントン等)と水素供与体 (例えば、ジアルキ ルァミノ含有ィ匕合物、フエノール化合物等)の組合せ、へキサァリールビイミダゾール とチタノセンとの組合せ、クマリン類とチタノセンとフエ-ルグリシン類との組合せなど が挙げられる。 [0199] The photopolymerization initiators may be used singly or in combination of two or more. Examples of combinations of two or more include, for example, a combination of hexarylbiimidazole and 4 aminoketones described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516 and trihalomethyl-s— A combination of a triazine compound, a combination of an aromatic ketone compound (for example, thixanthone) and a hydrogen donor (for example, a dialkamino-containing compound, a phenol compound, etc.), a hexarylbiimidazole and a titanocene. Combinations, and combinations of coumarins, titanocene, and ferroglycines.
[0200] 前記感光層における光重合開始剤の含有量としては、 0. 1〜30質量%が好ましく 、0. 5〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい。  [0200] The content of the photopolymerization initiator in the photosensitive layer is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass.
[0201] <その他の成分 >  [0201] <Other ingredients>
前記その他の成分としては、例えば、増感剤、熱重合禁止剤、可塑剤、発色剤、着 色剤、熱架橋剤などが挙げられ、更に基体表面への密着促進剤、及びその他の助 剤類 (例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レべリング剤、剥離促 進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤等)を併用してもよい。これ らの成分を適宜含有させることにより、 目的とするパターン形成材料の安定性、写真 性、焼きだし性、膜物性等の性質を調整することができる。  Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, color formers, colorants, thermal crosslinking agents, and the like, and further adhesion promoters to the substrate surface and other auxiliary agents. (For example, pigments, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.) Also good. By appropriately containing these components, properties such as the stability, photographic properties, print-out properties, and film properties of the target pattern forming material can be adjusted.
[0202] 増感剤ー  [0202] Sensitizer
前記増感剤は、後述する光照射手段として可視光線や紫外光'可視光レーザなど により適宜選択することができる。  The sensitizer can be appropriately selected by using visible light, ultraviolet light, visible light laser, or the like as light irradiation means described later.
前記増感剤は、活性エネルギー線により励起状態となり、他の物質 (例えば、ラジカ ル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)するこ とにより、ラジカルや酸等の有用基を発生することが可能である。  The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
[0203] 前記増感剤としては、特に制限はなぐ公知の増感剤の中から適宜選択することが できるが、例えば、公知の多核芳香族類 (例えば、ピレン、ペリレン、トリフエ二レン)、 キサンテン類(例えば、フルォレセイン、ェォシン、エリス口シン、ローダミン B、ローズ ベンガル)、シァニン類(例えば、インドカルボシァニン、チアカルボシァニン、ォキサ カルボシァニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チア ジン類(例えば、チォニン、メチレンブルー、トルイジンブルー)、アタリジン類(例えば 、アタリジンオレンジ、クロロフラビン、ァクリフラビン)、アントラキノン類(例えば、アント ラキノン)、スクァリウム類 (例えば、スクァリウム)、アタリドン類 (例えば、アタリドン、クロ ロアタリドン、 N—メチルアタリドン、 N ブチルアタリドン、 N ブチル一クロロアクリド ン等)、クマリン類(例えば、 3—(2 べンゾフロイル) 7 ジェチルァミノクマリン、 3 - (2 ベンゾフロイル) 7— (1—ピロリジ -ル)クマリン、 3 ベンゾィル 7 ジェ チルァミノクマリン、 3- (2—メトキシベンゾィル) 7 ジェチルァミノクマリン、 3— (4 —ジメチルァミノべンゾィル) 7—ジェチルァミノクマリン、 3,3,一カルボニルビス(5 , 7—ジ n—プロポキシクマリン)、 3, 3,一カルボニルビス(7—ジェチルァミノタマリ ン)、 3—ベンゾィル 7—メトキシクマリン、 3— (2—フロイル) 7—ジェチルアミノク マリン、 3—(4ージェチルァミノシンナモイル) 7—ジェチルァミノクマリン、 7—メトキ シ— 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル—5, 7—ジプロポキシクマ リン等があげられ、他に特開平 5- 19475号、特開平 7- 271028号、特開 2002- 363 206号、特開 2002 - 363207号、特開 2002 - 363208号、特開 2002 - 363209号 等の各公報に記載のクマリンィ匕合物など)が挙げられる。 [0203] The sensitizer may be appropriately selected from known sensitizers without particular limitations. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), xanthenes (for example, fluorescein, eosin, erythrucine, rhodamine B, rose bengal), cyanines (for example, indocarbo Cyanine, thiacarbocyanine, oxacarbyanine), merocyanines (eg, merocyanine, carbomerocyanine), thiazines (eg, thionine, methylene blue, toluidine blue), atalidines (eg, atalidine orange, chloroflavin, acriflavine) ), Anthraquinones (eg, anthraquinone), squaliums (eg, squalium), attaridones (eg, attaridone, chloroatalidone, N-methyl attaridone, N butyl attaridone, N butyl monochloro acrylate) ), Coumarins (eg 3— (2 benzofuroyl) 7 jetylaminocoumarin, 3-(2 benzofuroyl) 7— (1-pyrrolidyl) coumarin, 3 benzoyl 7 jetylaminocoumarin, 3 -(2-Methoxybenzoyl) 7-Jetylaminocoumarin, 3-- (4-Dimethylaminobenzol) 7-Jetylaminocoumarin, 3,3,1-carbonylbis (5,7-di-n-propoxycoumarin) ), 3, 3, monocarbonylbis (7-jetylaminotamarin), 3-benzoyl 7-methoxycoumarin, 3- (2-furoyl) 7-jetylaminocoumarin, 3- (4-jetylaminominocinna) Moyl) 7-Jetylaminocoumarin, 7-methoxy-3- (3-pyridylcarbol) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, and others. 19475, JP-A-7- 271028, JP 2002-363 206, JP 2002-363207, JP 2002-363208, JP 2002-363209, and the like.
[0204] 前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開 2001 - 3057 34号公報に記載の電子移動型開始系 [ (1)電子供与型開始剤及び増感色素、 (2) 電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容 型開始剤 (三元開始系)]などの組合せが挙げられる。  [0204] Examples of combinations of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like.
[0205] 前記増感剤の含有量としては、感光性榭脂組成物の全成分に対し、 0. 05〜30質 量%が好ましぐ 0. 1〜20質量%がより好ましぐ 0. 2〜10質量%が特に好ましい。 前記含有量が、 0. 05質量%未満となると、活性エネルギー線への感度が低下し、 露光プロセスに時間がかかり、生産性が低下することがあり、 30質量%を超えると、 前記感光層から保存時に析出することがある。 [0206] 熱重合禁止剤 [0205] The content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on all components of the photosensitive resin composition. 2-10% by weight is particularly preferred. When the content is less than 0.05% by mass, the sensitivity to active energy rays decreases, the exposure process takes time, and the productivity may decrease. When the content exceeds 30% by mass, the photosensitive layer May precipitate during storage. [0206] Thermal polymerization inhibitor
前記熱重合禁止剤は、前記感光層における前記重合性化合物の熱的な重合又は 経時的な重合を防止するために添加してもよ 、。  The thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
前記熱重合禁止剤としては、例えば、 4—メトキシフエノール、ハイドロキノン、アル キルまたはァリール置換ノヽイドロキノン、 tーブチルカテコール、ピロガロール、 2—ヒド ロキシベンゾフエノン、 4—メトキシ一 2 ヒドロキシベンゾフエノン、塩化第一銅、フエ ノチアジン、クロラニル、ナフチルァミン、 13 ナフトール、 2, 6 ジ tーブチルー 4 クレゾール、 2, 2,ーメチレンビス(4ーメチルー 6 t—ブチルフエノール)、ピリジン 、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、 4ートルイジン、メチレンブルー、銅と 有機キレート剤反応物、サリチル酸メチル、及びフエノチアジン、ニトロソィ匕合物、 -ト 口ソィ匕合物と A1とのキレート等が挙げられる。  Examples of the thermal polymerization inhibitor include 4-methoxyphenol, hydroquinone, alkyl or aryl substituted nanoquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6 di-tert-butyl-4 cresol, 2,2, -methylenebis (4-methyl-6-tert-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, copper and organic chelating agent reactants, methyl salicylate, and phenothiazine, nitrosoy compounds, -tosoy compounds and chelates of A1.
[0207] 前記熱重合禁止剤の含有量としては、前記感光層の前記重合性化合物に対して 0 . 001〜5質量%が好ましぐ 0. 005〜2質量%がより好ましぐ 0. 01〜1質量%が 特に好ましい。  [0207] The content of the thermal polymerization inhibitor is preferably 0.005 to 5% by mass, more preferably 0.005 to 2% by mass, based on the polymerizable compound of the photosensitive layer. 01 to 1% by mass is particularly preferred.
前記含有量が、 0. 001質量%未満であると、保存時の安定性が低下することがあ り、 5質量%を超えると、活性エネルギー線に対する感度が低下することがある。  When the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.
[0208] 可塑剤 [0208] Plasticizer
前記可塑剤は、前記感光層の膜物性 (可撓性)をコントロールするために添加して ちょい。  The plasticizer should be added to control the film physical properties (flexibility) of the photosensitive layer.
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソプチ ルフタレート、ジヘプチルフタレート、ジォクチルフタレート、ジシクロへキシルフタレ ート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジ フエ-ルフタレート、ジァリルフタレート、ォクチルカプリールフタレート等のフタル酸ェ ステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート 、ジメチルダリコースフタレート、ェチノレフタリーノレエチノレグリコレート、メチルフタリー ルェチルダリコレート、ブチノレフタリーノレブチノレグリコレート、トリエチレングリコールジ カブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフエ-ル ホスフェート等のリン酸エステル類; 4 トルエンスルホンアミド、ベンゼンスルホンアミ ド、 N—n—ブチルベンゼンスルホンアミド、 N—n—ブチルァセトアミド等のアミド類; ジイソブチルアジペート、ジォクチルアジペート、ジメチルセバケート、ジブチルセパ ケート、ジォクチルセパケート、ジォクチルァゼレート、ジブチルマレート等の脂肪族 二塩基酸エステル類;タエン酸トリエチル、タエン酸トリブチル、グリセリントリァセチル エステル、ラウリン酸ブチル、 4, 5 ジエポキシシクロへキサン 1, 2 ジカルボン酸 ジォクチル等、ポリエチレングリコール、ポリプロピレングリコール等のダリコール類が 挙げられる。 Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisopropyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diphenyl phthalate. Phthalic acid esters such as ril phthalate and octyl capryl phthalate; triethylene glycol diacetate, tetraethylene glycol diacetate, dimethyl dallicose phthalate, ethino retino eno ethino reglycolate, methyl phthal yl acetyl dalicolate, buty Glycol esters such as norephthalino lebutinoglycolate and triethylene glycol dicabrylate; tricresyl phosphate, triphenyl Phosphate esters such as sulfate; 4 Toluenesulfonamide, Benzenesulfonamide Amides such as N-n-butylbenzenesulfonamide, N-n-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sebacate, dioctyl sepacate, dioctylase Aliphatic dibasic acid esters such as acrylate and dibutyl malate; triethyl taenoate, tributyl taenoate, glycerin triacetyl ester, butyl laurate, 4,5 diepoxycyclohexane 1,2 dicarboxylate dioctyl, etc., polyethylene glycol And Daricols such as polypropylene glycol.
[0209] 前記可塑剤の含有量としては、前記感光層の全成分に対して 0. 1〜50質量%が 好ましく、 0. 5〜40質量%がより好ましぐ 1〜30質量%が特に好ましい。  [0209] The content of the plasticizer is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, and particularly preferably 1 to 30% by mass with respect to all components of the photosensitive layer. preferable.
[0210] 一発色剤  [0210] One color former
前記発色剤は、露光後の前記感光層に可視像を与える (焼きだし機能)ために添 カロしてちょい。  The color former should be added to give a visible image (printing function) to the photosensitive layer after exposure.
前記発色剤としては、例えば、トリス (4—ジメチルァミノフエ-ル)メタン (ロイコクリス タルバイオレット)、トリス(4—ジェチルァミノフエ-ル)メタン、トリス(4—ジメチルァミノ - 2 メチルフエ-ル)メタン、トリス(4 -ジェチルァミノ 2 メチルフエ-ル)メタン、 ビス(4 ジブチルァミノフエ-ル)一〔4一(2 シァノエチル)メチルァミノフエ-ル〕メ タン、ビス(4 ジメチルァミノフエ-ル) 2 キノリルメタン、トリス(4 ジプロピルアミ ノフエ-ル)メタン等のアミノトリアリールメタン類; 3, 6—ビス(ジメチルァミノ) 9—フ ェ -ルキサンチン、 3—ァミノ 6 ジメチルァミノ一 2—メチル 9— (2 クロ口フエ二 ル)キサンチン等のアミノキサンチン類; 3, 6 ビス(ジェチルァミノ) 9 (2 ェトキ シカルボ-ルフエ-ル)チォキサンテン、 3, 6—ビス(ジメチルァミノ)チォキサンテン 等のアミノチォキサンテン類; 3, 6 ビス(ジェチルァミノ) 9, 10 ジヒドロー 9ーフ ェ-ルアタリジン、 3, 6 ビス(ベンジルァミノ)一 9, 10 ジビドロ一 9—メチルアタリ ジン等のアミノー 9, 10 ジヒドロアクリジン類; 3, 7 ビス(ジェチルァミノ)フエノキサ ジン等のアミノフエノキサジン類; 3, 7—ビス(ェチルァミノ)フエノチアゾン等のアミノフ エノチアジン類; 3, 7 ビス(ジェチルァミノ) 5 へキシルー 5, 10 ジヒドロフエナ ジン等のアミノジヒドロフエナジン類;ビス(4 -ジメチルァミノフエ-ル)ァ-リノメタン等 のァミノフエ-ルメタン類; 4 アミノー 4'ージメチルアミノジフエ-ルァミン、 4ーァミノ — a、 β一ジシァノヒドロケィ皮酸メチルエステル等のアミノヒドロケィ皮酸類; 1一(2 ナフチル) 2 フエ-ルヒドラジン等のヒドラジン類; 1 , 4 ビス(ェチルァミノ) 2 , 3 ジヒドロアントラキノン類のアミノ一 2, 3 ジヒドロアントラキノン類; Ν, Ν ジェ チル 4 フエネチルァ-リン等のフエネチルァ-リン類; 10 ァセチル 3, 7 ビ ス(ジメチルァミノ)フエノチアジン等の塩基性 ΝΗを含むロイコ色素のァシル誘導体; トリス(4 ジェチルァミノ 2 トリル)エトキシカルボ-ルメンタン等の酸化しうる水素 を有して!/、な 、が、発色化合物に酸ィ匕しうるロイコ様ィ匕合物;ロイコインジゴイド色素; 米国特許 3, 042, 515号及び同第 3, 042, 517号に記載されているような発色形に 酸化しうるような有機アミン類(例、 4, 4,一エチレンジァミン、ジフエ-ルァミン、 Ν, Ν ジメチルァニリン、 4, 4'ーメチレンジァミントリフエニルァミン、 Ν ビニルカルバゾ ール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン 系化合物が好ましい。 Examples of the color former include tris (4-dimethylaminophenol) methane (leucocrystal violet), tris (4-jetylaminophenol) methane, and tris (4-dimethylamino-2-methylphenol). ) Methane, Tris (4-Jetylamino 2-methylphenol) Methane, Bis (4-dibutylaminophenol) One [4 (2-Cyanethyl) methylaminophenol] Methane, Bis (4-dimethylaminophenol) 2 Aminotriarylmethanes such as quinolylmethane and tris (4 dipropylaminophenol) methane; 3, 6-bis (dimethylamino) 9-phenyl-xanthine, 3 —amino 6 dimethylamino mono 2-methyl 9— (2 Mouthphenyl) Aminoxanthines such as xanthine; 3, 6 bis (jetylamino) 9 (2 etoxycarbol) thixanthene, 3, 6-bis Aminothioxanthenes such as (dimethylamino) thixanthene; 3,6 Bis (jetylamino) 9,10 Dihydro-9-fertalaridin, 3,6 Bis (benzylamino) -1,9,10 Dividro-9-methylatalidine, etc. 9, 10 Dihydroacridine; 3, 7 Aminophenoxazines such as bis (jetylamino) phenoxazine; Aminophenothiazines such as 3, 7-bis (ethylamino) phenothiazone; 3, 7 Bis (jetylamino) 5 Hexilou 5 , 10 Aminodihydrophenazines such as dihydrophenazine; Aminophenols such as bis (4-dimethylaminophenol) -linomethane; 4 Amino-4'-dimethylaminodiphenylamine, 4-amino — A, aminohydrocaffeic acids such as β-dicyanohydrocynamic acid methyl ester; 1 hydrazines such as 1 (2 naphthyl) 2 -phenol hydrazine; 1, 4 bis (ethylamino) 2, 3 dihydroanthraquinone Amino 1, 2, 3 dihydroanthraquinones; Ν, Ν phenethyl 4 phenethylaline such as phenethylaline; 10 acetyl, leuco dyes containing basic の such as acetyl 3,7 bis (dimethylamino) phenothiazine A leuco-like compound that has an oxidizable hydrogen such as tris (4 jetylamino 2 tolyl) ethoxycarbo-mentholene, but can oxidize to a chromogenic compound; leucoin digoid dye; Organic amines that can be oxidized to a colored form as described in Patents 3, 042, 515 and 3, 042, 517 (eg 4, 4, monoethylenediamine, diethylene Eluamine, Ν, Ν dimethylaniline, 4,4'-methylenediamine triphenylamine, ビ ニ ル vinyl carbazole), and among these, triarylmethane compounds such as leucocrystal violet are preferred. .
更に、前記発色剤は、前記ロイコ体を発色させるためなどの目的で、ハロゲンィ匕合 物と組み合わせることが一般に知られて 、る。  Furthermore, it is generally known that the color former is combined with a halogen compound for the purpose of coloring the leuco body.
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素 、ョードホルム、臭化工チレン、臭ィ匕メチレン、臭化ァミル、臭ィ匕イソァミル、ヨウィ匕アミ ル、臭化イソブチレン、ヨウ化ブチル、臭化ジフエ-ルメチル、へキサクロロェタン、 1, 2—ジブロモェタン、 1, 1, 2, 2—テトラブロモェタン、 1, 2—ジブ口モー 1, 1, 2—ト リクロロエタン、 1, 2, 3トリブロモプロノくン、 1—ブロモ 4 クロロブタン、 1, 2, 3, 4 ーテトラブロモブタン、テトラクロロシクロプロペン、へキサクロロシクロペンタジェン、ジ ブロモシキロへキサン、 1, 1, 1—トリクロ口一 2, 2 ビス(4 クロ口フエ-ル)ェタンな ど);ハロゲン化アルコール化合物(例えば、 2, 2, 2—トリクロ口エタノール、トリブロモ エタノーノレ、 1, 3 ジクロロ一 2 プロパノーノレ、 1, 1, 1—トリクロ口一 2 プロパノー ル、ジ(ョードへキサメチレン)ァミノイソプロパノール、トリブロモー t—ブチルアルコー ル、 2, 2, 3 トリクロロブタン 1, 4ージオールなど);ハロゲン化カルボ-ル化合物 (例えば 1, 1ージクロ口アセトン、 1, 3 ジクロ口アセトン、へキサクロ口アセトン、へキ サブロモアセトン、 1, 1, 3, 3—テトラクロ口アセトン、 1, 1, 1 トリクロ口アセトン、 3, 4 ジブ口モー 2 ブタノン、 1, 4ージクロロー 2 ブタノン ジブ口モシクロへキサノ ン等);ハロゲン化エーテル化合物(例えば 2—ブロモェチルメチルエーテル、 2—ブ ロモェチノレエチノレエーテノレ、ジ (2—ブロモェチノレ)エーテノレ、 1, 2—ジクロロェチノレ ェチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモェチル、トリクロ 口酢酸ェチル、トリクロ口酢酸トリクロロェチル、 2, 3 ジブロモプロピルアタリレートの ホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロェチル、 a , j8—ジグロ 口アクリル酸ェチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモア セトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロ口 ェチルトリクロロアセトアミド、 2—ブロモイソプロピオンアミド、 2, 2, 2—トリクロ口プロ ピオンアミド、 N クロロスクシンイミド、 N—ブロモスクシンイミドなど);硫黄やリンを有 する化合物(例えば、トリブロモメチルフエ-ルスルホン、 4 -トロフエ-ルトリブロモ メチルスルホン、 4 クロルフエニルトリブ口モメチルスルホン、トリス(2, 3 ジブロモ プロピル)ホスフェート等)、 2, 4 ビス(トリクロロメチル) 6 フエ-ルトリアゾールなど が挙げられる。有機ハロゲンィ匕合物では、同一炭素原子に結合した 2個以上のハロ ゲン原子を持つハロゲンィ匕合物が好ましぐ 1個の炭素原子に 3個のハロゲン原子を 持つハロゲンィ匕合物がより好ましい。前記有機ハロゲン化合物は、 1種単独で使用し てもよく、 2種以上を併用してもよい。これらの中でも、トリブロモメチルフエ-ルスルホ ン、 2, 4 ビス(トリクロロメチル) 6 フエ-ルトリアゾールが好ましい。 Examples of the halogen compound include halogenated hydrocarbons (for example, carbon tetrabromide, iodine form, bromoethylene, odorous methylene, amyl bromide, odorous isoamyl, yowiyamyl, isobutylene bromide, iodine Butyl bromide, diphenylmethyl bromide, hexachloroethane, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, 1,2-dib-mouthed 1,1,2-trichloroethane, 1, 2,3-tribromopronokun, 1-bromo-4-chlorobutane, 1,2,3,4-tetrabromobutane, tetrachlorocyclopropene, hexachlorocyclopentadiene, dibromocyclohexane, 1, 1,1-trichrome 1, 2, bis (4-chlorophenol), etc .; halogenated alcohol compounds (eg, 2, 2, 2-trichloroethanol, tribromoethanol, 1,3 dichloro-1,2) Ropanole, 1, 1, 1-trichloro mouth 2 propanol, di (ordhexhexamethylene) aminoisopropanol, tribromo-t-butyl alcohol, 2, 2, 3 trichlorobutane 1,4-diol, etc.); halogenated carbo- (E.g., 1,1-dichloroacetone, 1,3 dichroic acetone, hexacloacetone, hexabromoacetone, 1,1,3,3-tetrachloroacetone, 1,1,1 3, 4 Jib Mouth 2 Butanone, 1, 4-Dichloro-2 Butanone Jib Mouth Mocyclohexano Halogenated ether compounds (for example, 2-bromoethynyl methyl ether, 2-bromoethylenoethylenoateol, di (2-bromoethylenole) etherol, 1,2-dichloroethylenoethyl ether, etc.); halogenated esters Compounds (eg, bromoethyl acetate, trichloroethyl acetate, trichloroethyl acetate, homopolymers and copolymers of 2,3 dibromopropyl acrylate, trichloroethyl dibromopropionate, a, j8-diethyl ethyl acrylate Halogenated amide compounds (for example, chloroacetamide, bromoacetamide, dichloroacetamide, trichloroacetamide, tribromoacetamide, trichloroacetyl chloroacetamide, 2-bromoisopropionamide, 2, 2, 2-triclomouth propylene N-amide, N-chlorosuccinimide, N-bromosuccinimide, etc.); Compounds containing sulfur or phosphorus (eg, tribromomethylphenylsulfone, 4-trifluorotribromomethylsulfone, 4-chlorophenyltrimethylcarbamoylsulfone, tris ( 2,3 dibromopropyl) phosphate), 2,4 bis (trichloromethyl) 6-phenol triazole. Among organic halogen compounds, halogen compounds having two or more halogen atoms bonded to the same carbon atom are preferred. Halogen compounds having three halogen atoms per carbon atom are more preferable. . The organic halogen compounds may be used alone or in combination of two or more. Among these, tribromomethyl phenol sulfonate and 2,4 bis (trichloromethyl) 6 phenol triazole are preferable.
[0212] 前記発色剤の含有量としては、前記感光層の全成分に対して 0. 01〜20質量%が 好ましぐ 0. 05〜10質量%がより好ましぐ 0. 1〜5質量%が特に好ましい。また、 前記ハロゲンィ匕合物の含有量としては、前記感光層の全成分に対し 0. 001〜5質 量%が好ましぐ 0. 005〜1質量%がより好ましい。  [0212] The content of the color former is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass with respect to all components of the photosensitive layer, and 0.1 to 5% by mass. % Is particularly preferred. The content of the halogen compound is preferably 0.005 to 5% by mass, more preferably 0.001 to 1% by mass, based on all components of the photosensitive layer.
[0213] 一着色剤  [0213] One colorant
前記着色剤としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、例えば、赤色、緑色、青色、黄色、紫色、マゼンタ色、シアン色、黒色等の公 知の顔料又は染料が挙げられ、具体的には、ビクトリア ·ピュアブルー BO (C. I. 425 95)、オーラミン(C. I. 41000)、フアツ卜 ·ブラック HB (C. I. 26150)、モノライ卜 'ェ ロー GT(C. I.ビグメント 'イェロー 12)、パーマネント 'エロー GR(C. I.ビグメント 'ィ エロー 17)、パーマネント 'エロー HR (C. I.ピグメント 'イェロー 83)、パーマネント' カーミン FBB (C. I.ビグメント 'レッド 146)、ホスターバームレッド ESB (C. I.ピグメ ント 'バイオレット 19)、パーマネント 'ルビー FBH (C. I.ビグメント 'レッド 11)、ファス テル'ピンク Bスプラ(C. I.ビグメント 'レッド 81)、モナストラル'ファースト 'ブルー(C . I.ビグメント 'ブルー 15)、モノライト'ファースト 'ブラック B (C. I.ビグメント 'ブラックThe colorant is not particularly limited and can be appropriately selected according to the purpose. For example, a known pigment such as red, green, blue, yellow, purple, magenta, cyan, black, etc. Examples include dyes such as Victoria · Pure Blue BO (CI 425 95), Auramin (CI 41000), Huatu · Black HB (CI 26150), Monorai 'Yellow GT (CI Pigment' Yellow 12) , Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent ' Carmine FBB (CI Pigment 'Red 146), Hoster Balm Red ESB (CI Pigment' Violet 19), Permanent 'Ruby FBH (CI Pigment' Red 11), Fastel 'Pink B Supra (CI Pigment' Red 81), Monastral 'First' Blue (C.I. Pigment 'Blue 15), Monolite' First 'Black B (CI Pigment' Black
1)、カーボンブラックが挙げられる。 1) and carbon black.
[0214] また、カラーフィルターの作製に好適な前記着色剤として、例えば、 C. I.ビグメント [0214] Further, as the colorant suitable for producing a color filter, for example, C. I. pigment
'レッド 97、 C. I.ビグメント 'レッド 122、 C. I.ビグメント 'レッド 149、 C. I.ビグメントレッド 168、 C. I.ビグメント 'レッド 177、 C. I.ビグメント 'レッド 180、 C. I.ビグメントレッド 192、 C. I.ピグメント.レッド 215、 C. I.ピグメント.グリーン 7、 C. I.ピグメント. グリーン 36、 C. I.ピグメント.ブルー 15 : 1、 C. I.ピグメント.ブルー 15 : 4、 C. I.ビグ メント.ブルー 15 : 6、 C. I.ピグメント.ブルー 22、 C. I.ピグメント.ブルー 60、 C. I. ビグメント ·ブルー 64、 C. I.ビグメント 'イェロー 139、 C. I.ビグメント 'イェロー 83、 C. I.ビグメン卜 -ノ ィォレツ卜 23、特開 2002— 162752号公報の(0138)〜(0141) に記載のもの等が挙げられる。前記着色剤の平均粒径としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 例えば、 5 μ m以下が好ましぐ 1 μ m以下 力 り好ましい。また、カラーフィルターを作製する場合は、前記平均粒子径として、 0 . 5 /z m以下が好ましい。  'Red 97, CI Pigment' Red 122, CI Pigment 'Red 149, CI Pigment Red 168, CI Pigment' Red 177, CI Pigment 'Red 180, CI Pigment Red 192, CI Pigment. Red 215, CI Pigment.Green 7, CI Pigment. Green 36, CI Pigment Blue 15: 1, CI Pigment Blue 15: 4, CI Pigment Blue 15: 6, CI Pigment Blue 22, CI Pigment Blue 60, CI Pigment Blue 64 CI pigment “Yellow 139”, CI pigment “Yellow 83”, CI pigment “Nooret” 23, and those described in JP-A-2002-162752 (0138) to (0141). The average particle size of the colorant is not particularly limited, and can be appropriately selected according to the purpose. For example, the force is preferably 5 μm or less, more preferably 1 μm or less. In the case of producing a color filter, the average particle diameter is preferably 0.5 / zm or less.
[0215] 染料  [0215] Dye
前記感光層には、取り扱い性の向上のために感光性榭脂組成物を着色し、又は保 存安定性を付与する目的に、染料を用いることができる。  In the photosensitive layer, a dye can be used for the purpose of coloring the photosensitive resin composition for improving handleability or imparting storage stability.
前記染料としては、ブリリアントグリーン (例えば、その硫酸塩)、ェォシン、ェチルバ ィォレット、エリス口シン B、メチルグリーン、クリスタルバイオレット、べィシックフクシン 、フエノールフタレイン、 1 , 3 ジフエニルトリアジン、ァリザリンレッド S、チモールフタ レイン、メチルバイオレット 2B、キナルジンレッド、ローズベンガル、メタ-ルーイエロ 一、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジ IV、ジ フエニルチロカルバゾン、 2, 7 ジクロ口フルォレセイン、パラメチルレッド、コンゴ一 レッド、ベンゾプルプリン 4B、 a ナフチルーレッド、ナイルブルー A、フエナセタリン 、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー # 603 (オリエン ト化学工業社製)、ローダミン B、ロータミン 6G、ビクトリア 'ピュアブルー BOHなどを 挙げることができ、これらの中でもカチオン染料 (例えば、マラカイトグリーンシユウ酸 塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対ァ-オンとしては、 有機酸又は無機酸の残基であればよぐ例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シ ユウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(ァ-オン)などが挙げられる Examples of the dye include brilliant green (for example, sulfate thereof), eosin, ethyl violet, erythine cin B, methyl green, crystal violet, basic fuchsin, phenolphthalein, 1,3 diphenyltriazine, alizarin red S, Thymolphthalein, methyl violet 2B, quinaldine red, rose bengal, meta-louero, thymolsulfophthalein, xylenol blue, methyl orange, orange IV, diphenyltylocarbazone, 2, 7 diclonal fluorescein, paramethyl red , Congo Red, Benzopurpurin 4B, a Naphthyl Red, Nile Blue A, Phenacetalin , Methyl violet, malachite green, parafuchsin, oil blue # 603 (manufactured by Orient Chemical Industries), rhodamine B, rotamine 6G, Victoria 'pure blue BOH, etc., among which cationic dyes (for example, malachite green) Preferred are oxalate and malachite green sulfate. The cationic dye may be a residue of an organic acid or an inorganic acid, such as bromic acid, iodic acid, sulfuric acid, phosphoric acid, oxalic acid, methanesulfonic acid, toluenesulfonic acid, etc. Such as residues
[0216] 前記染料の含有量としては、前記感光層の全成分に対して 0. 001〜10質量%が 好ましぐ 0. 01〜5質量%がより好ましぐ 0. 1〜2質量%が特に好ましい。 [0216] The content of the dye is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on all components of the photosensitive layer, and 0.1 to 2% by mass. Is particularly preferred.
[0217] 熱架橋剤  [0217] Thermal crosslinking agent
前記熱架橋剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、 前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために 、現像性等などに悪影響を与えない範囲で、例えば、 1分子内に少なくとも 2つのォ キシラン基を有するエポキシ榭脂化合物、 1分子内に少なくとも 2つのォキセタ-ル基 を有するォキセタンィ匕合物を用いることができる。  The thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability, etc. For example, an epoxy resin compound having at least two oxsilane groups in one molecule and an oxetane compound having at least two oxetal groups in one molecule can be used. .
前記エポキシ榭脂化合物としては、例えば、ビキシレノール型もしくはビフエノール 型エポキシ榭脂 ( ΓΥΧ4000;ジャパンエポキシレジン社製」等)又はこれらの混合物 、イソシァヌレート骨格等を有する複素環式エポキシ榭脂(「TEPIC ;日産化学工業 社製」、「ァラルダイト PT810 ;チバ'スペシャルティ'ケミカルズ社製」等)、ビスフエノ ール A型エポキシ榭脂、ノボラック型エポキシ榭脂、ビスフエノール F型エポキシ榭脂 、水添ビスフエノール A型エポキシ榭脂、グリシジノレアミン型エポキシ榭脂、ヒダントイ ン型エポキシ榭脂、脂環式エポキシ榭脂、トリヒドロキシフエニルメタン型エポキシ榭 脂、ビスフエノール S型エポキシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、テ トラフエ-ロールエタン型エポキシ榭脂、グリシジルフタレート榭脂、テトラグリシジル キシレノィルエタン榭脂、ナフタレン基含有エポキシ榭脂(「ESN— 190, ESN— 36 0 ;新曰鉄ィ匕学ネ土製」、「HP— 4032, EXA-4750,: EXA— 4700 ;大日本インキイ匕 学工業社製」等)、ジシクロペンタジェン骨格を有するエポキシ榭脂(「HP— 7200, HP- 7200H;大日本インキ化学工業社製」等)、グリシジルメタアタリレート共重合 系エポキシ榭脂(「CP— 50S, CP- 50M ;日本油脂社製」等)、シクロへキシルマレ イミドとグリシジルメタアタリレートとの共重合エポキシ榭脂などが挙げられる力、これら に限られるものではない。これらのエポキシ榭脂は、 1種単独で使用してもよいし、 2 種以上を併用してもよい。 Examples of the epoxy resin compound include bixylenol type or biphenol type epoxy resin (ΓΥΧ4000; manufactured by Japan Epoxy Resin Co., Ltd.) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; "Nissan Chemical Industry Co., Ltd.", "Araldite PT810; Ciba 'Specialty' Chemicals Co., Ltd."), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A Type epoxy resin, glycidinoreamine type epoxy resin, hydantoin type epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenylmethane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolak Type epoxy resin, tetraf-roll ethane type epoxy resin, glycid Ruphthalate resin, tetraglycidyl xylenol ethane resin, naphthalene group-containing epoxy resin ("ESN-190, ESN- 36 0; Shin-Iron Iron &Steel","HP-4032, EXA-4750, : EXA-4700; manufactured by Dainippon Ink & Chemicals, Inc.), epoxy resin having a dicyclopentagen skeleton (HP-7200, HP-7200H; manufactured by Dainippon Ink & Chemicals, Inc.), glycidyl meta Atalylate copolymer -Based epoxy resin (“CP-50S, CP-50M; manufactured by Nippon Oil & Fats”, etc.), the ability to include copolymer epoxy resin of cyclohexylmaleimide and glycidyl metatalylate, etc. Absent. These epoxy resins may be used alone or in combination of two or more.
[0218] 前記ォキセタンィ匕合物としては、例えば、ビス [ (3—メチルー 3—ォキセタニルメトキ シ)メチル]エーテル、ビス [ ( 3—ェチル— 3—ォキセタ -ルメトキシ)メチル]エーテル 、 1, 4 ビス [ (3—メチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 1, 4 ビス [ ( 3 -ェチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 ( 3 -メチル 3—ォキセ タ -ル)メチルアタリレート、 (3ーェチルー 3ーォキセタ -ル)メチルアタリレート、 (3- メチル 3—ォキセタ -ル)メチルメタタリレート、 ( 3 ェチル 3—ォキセタ -ル)メチ ルメタタリレート又はこれらのオリゴマーあるいは共重合体等の多官能ォキセタン類の 他、ォキセタン基と、ノボラック榭脂、ポリ(p ヒドロキシスチレン)、カルド型ビスフエノ 一ノレ類、カリックスァレーン類、カリックスレゾノレシンアレーン類、シノレセスキォキサン 等の水酸基を有する榭脂など、とのエーテルィ匕合物が挙げられ、この他、ォキセタン 環を有する不飽和モノマーとアルキル (メタ)アタリレートとの共重合体なども挙げられ る。 [0218] Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1, 4-bis [(3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl acrylate , (3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methylate Rume Tatari rate or oligomers thereof or copolymers In addition to the polyfunctional oxetanes, oxetane groups, novolac resin, poly (p-hydroxystyrene), cardo-type bisphenol mononoles, calixarenes, calixrezonole Examples include ether compounds with hydroxyl groups such as synarenes and cinolesesquioxanes, and copolymers of unsaturated monomers having an oxetane ring with alkyl (meth) acrylate. Also mentioned.
[0219] 前記エポキシ榭脂化合物又はォキセタンィ匕合物の前記感光性組成物固形分中の 固形分含有量は、 1〜50質量%が好ましぐ 3〜30質量%がより好ましい。該固形分 含有量が 1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化を生ずる 、あるいは、半田耐熱性ゃ耐無電解メツキ性等などが低下することがあり、 50質量% を超えると、現像性の悪ィ匕ゃ露光感度の低下が生ずることがあり、好ましくない。  [0219] The solid content in the photosensitive composition solid content of the epoxy resin compound or oxetane compound is preferably 1 to 50 mass%, more preferably 3 to 30 mass%. If the solid content is less than 1% by mass, the hygroscopicity of the cured film is increased, resulting in deterioration of insulation, or solder heat resistance, electroless resistance to plating, etc. If it exceeds 50% by mass, poor developability may cause a reduction in exposure sensitivity, which is not preferable.
[0220] また、前記エポキシ榭脂化合物や前記ォキセタンィ匕合物の熱硬化を促進するため 、例えば、ジシアンジアミド、ベンジルジメチルァミン、 4— (ジメチルァミノ) N, N— ジメチルベンジルァミン、 4ーメトキシ N, N ジメチルベンジルァミン、 4ーメチルー N, N ジメチルベンジルァミン等のアミン化合物;トリェチルベンジルアンモ-ゥムク ロリド等の 4級アンモ-ゥム塩化合物;ジメチルァミン等のブロックイソシァネートイ匕合 物;イミダゾール、 2—メチルイミダゾール、 2 ェチルイミダゾール、 2 ェチルー 4 メチルイミダゾール、 2 フエ-ルイミダゾール、 4 フエ-ルイミダゾール、 1—シァノ ェチルー 2 フエ-ルイミダゾール、 1一(2 シァノエチル) 2 ェチルー 4ーメチ ルイミダゾール等のイミダゾール誘導体二環式アミジンィ匕合物及びその塩;トリフエ- ルホスフィン等のリン化合物;メラミン、グアナミン、ァセトグアナミン、ベンゾグアナミン 等のグアナミン化合物; 2, 4 ジァミノ 6 メタクリロイルォキシェチル S トリアジ ン、 2 ビュル一 2, 4 ジァミノ一 S トリアジン、 2 ビュル一 4, 6 ジァミノ一 S ト リアジン'イソシァヌル酸付カ卩物、 2, 4 ジアミノー 6—メタクリロイルォキシェチルー S -トリァジン'イソシァヌル酸付加物等の S -トリァジン誘導体;などを用いることができ る。これらは 1種単独で使用してもよぐ 2種以上を併用してもよい。なお、前記ェポキ シ榭脂化合物や前記ォキセタン化合物の硬化触媒、あるいは、これらとカルボキシル 基の反応を促進することができるものであれば、特に制限はなぐ上記以外の熱硬化 を促進可能な化合物を用いてもょ 、。 [0220] Further, in order to promote thermal curing of the epoxy resin compound or the oxetane compound, for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxy N , N Amine compounds such as dimethylbenzylamine, 4-methyl-N, N dimethylbenzylamine; Quaternary ammonium salt compounds such as triethylbenzylammochloride; Block isocyanate compounds such as dimethylamine Imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenolimidazole, 4-phenolimidazole, 1-cyan Ethyl 2-phenol imidazole, 1- (2-cyanethyl) 2 Ethyl 4-methyl imidazole and other imidazole derivative bicyclic amidine compounds and salts thereof; Phosphorus compounds such as triphenylphosphine; Melamine, guanamine, acetate guanamine, benzoguanamine 2, 4 diamino 6 methacryloyloxychetyl S triazine, 2 bul 1, 2, 4 diamino 1 S triazine, 2 bul 1, 4, 6 diamino 1 S triazine 'carried with isocyanuric acid, 2 , 4 Diamino-6-methacryloyloxychetyl S-triazine derivatives such as S-triazine 'isocyanuric acid adducts; These may be used alone or in combination of two or more. The epoxy resin compound or the oxetane compound may be a curing catalyst, or a compound capable of promoting thermal curing other than the above as long as it can promote the reaction of these with a carboxyl group. Use it.
前記エポキシ榭脂、前記ォキセタンィ匕合物、及びこれらとカルボン酸との熱硬化を 促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常 0. 01〜 15質量%でぁる。  The solid content in the solid content of the photosensitive composition of the epoxy resin, the oxetane compound, and a compound capable of accelerating the thermal curing of these with a carboxylic acid is usually 0.01 to 15% by mass. Ah.
[0221] また、前記熱架橋剤としては、特開平 5— 9407号公報記載のポリイソシァネートイ匕 合物を用いることができ、該ポリイソシァネートイ匕合物は、少なくとも 2つのイソシァネ 一ト基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されて いてもよい。具体的には、 1, 3 フエ-レンジイソシァネートと 1, 4 フエ-レンジイソ シァネートとの混合物、 2, 4 及び 2, 6 トルエンジイソシァネート、 1, 3 及び 1, 4 キシリレンジイソシァネート、ビス(4 イソシァネート フエ-ル)メタン、ビス(4 イソシァネートシクロへキシル)メタン、イソフォロンジイソシァネート、へキサメチレンジ イソシァネート、トリメチルへキサメチレンジイソシァネート等の 2官能イソシァネート; 該 2官能イソシァネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等と の多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記 2 官能イソシァネートとの付加体;へキサメチレンジイソシァネート、へキサメチレン 1 , 6 ジイソシァネート及びその誘導体等の環式三量体;などが挙げられる。  [0221] Further, as the thermal crosslinking agent, a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is composed of at least two isocyanates. It may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing a monoto group. Specifically, a mixture of 1,3 phenolic diisocyanate and 1,4 phenolic diisocyanate, 2, 4 and 2,6 toluene diisocyanate, 1, 3 and 1,4 xylylene diisocyanate Bis (4 isocyanate chain) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, etc .; Polyfunctional alcohols of a bifunctional isocyanate and trimethylolpropane, pentalysitol, glycerin, etc .; an alkylene oxide adduct of the polyfunctional alcohol and an adduct of the bifunctional isocyanate; hexamethylene diisocyanate, Cyclic trimers such as xamethylene 1,6 diisocyanate and its derivatives; It is.
[0222] 更に、本発明の感光性組成物、あるいは、本発明の感光性フィルムの保存性を向 上させることを目的として、前記ポリイソシァネート及びその誘導体のイソシァネート基 にブロック剤を反応させて得られる化合物を用いてもょ 、。 [0222] Furthermore, for the purpose of improving the storage stability of the photosensitive composition of the present invention or the photosensitive film of the present invention, the isocyanate groups of the polyisocyanate and its derivatives are used. Use a compound obtained by reacting with a blocking agent.
前記イソシァネート基ブロック剤としては、イソプロパノール、 tert. —ブタノール等 のアルコール類; ε —力プロラタタム等のラタタム類;フエノール、クレゾール、 ρ— tert . —ブチノレフエノーノレ、 p— sec. —ブチノレフエノーノレ、 p— sec. —アミノレフエノーノレ、 p -ォクチルフエノール、 p -ノ-ルフエノール等のフエノール類; 3 -ヒドロキシピリジ ン、 8—ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メ チルェチルケトキシム、ァセチルアセトン、アルキルァセトアセテートォキシム、ァセト ォキシム、シクロへキサノンォキシム等の活性メチレンィ匕合物;などが挙げられる。こ れらの他、特開平 6 - 295060号公報記載の分子内に少なくとも 1つの重合可能な 二重結合及び少なくとも 1つのブロックイソシァネート基のいずれかを有する化合物 などを用いることができる。 Examples of the isocyanate group blocking agent include alcohols such as isopropanol, tert.-butanol; ε— ratatas such as force prolatatum; phenol, cresol, ρ-tert.-butinolephenol, p-sec.—butino Phenenoles, p-sec. —Phenols such as amino enoenole, p-octylphenol, p-norphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridin, 8-hydroxyquinoline; dialkyl Active methylene compounds such as malonate, methyl ethyl ketoxime, acetyl acetone, alkylacetoacetoxime, acetoxime, cyclohexanone oxime; and the like. In addition to these, compounds having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
[0223] また、アルデヒド縮合生成物、榭脂前駆体などを用いることができる。具体的には、 N, N,—ジメチロール尿素、 N, N,—ジメチロールマロンアミド、 N, N,—ジメチロー ルスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、へキサメチロールメ ラミン、 1, 3— N, N,一ジメチロールテレフタルアミド、 2, 4, 6 トリメチロールフエノ ール、 2, 6 ジメチロール— 4—メチロア-ノール、 1, 3 ジメチロール— 4, 6 ジィ ソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、 対応するェチルもしくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステル を使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるへ キサメトキシメチロールメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルェ 一テルなどを使用してもょ 、。  [0223] Further, aldehyde condensation products, rosin precursors, and the like can be used. Specifically, N, N, —dimethylolurea, N, N, —dimethylolmalonamide, N, N, —dimethylolsuccinimide, trimethylolmelamine, tetramethylolmelamine, hexamethylolmelamine, 1, 3— N, N, monodimethylol terephthalamide, 2,4,6 trimethylol phenol, 2,6 dimethylol—4-methyloanol, 1,3 dimethylol—4,6 dipropylpropylbenzene. Instead of these methylol compounds, the corresponding ethyl or butyl ether, or acetic acid or propionic acid ester may be used. You can also use hexamethoxymethylol melamine, which consists of a formaldehyde condensation product of melamine and urea, or butyl ether of melamine and formaldehyde condensation product.
[0224] 前記熱架橋剤の前記感光性組成物固形分中の固形分含有量は、 1〜40質量% が好ましぐ 3〜20質量%がより好ましい。該固形分含有量が 1質量%未満であると、 硬化膜の膜強度の向上が認められず、 40質量%を超えると、現像性の低下や露光 感度の低下を生ずることがある。  [0224] The solid content of the thermal crosslinking agent in the solid content of the photosensitive composition is preferably 1 to 40% by mass, more preferably 3 to 20% by mass. When the solid content is less than 1% by mass, no improvement in the strength of the cured film is observed, and when it exceeds 40% by mass, the developability and the exposure sensitivity may decrease.
[0225] 密着促進剤 [0225] Adhesion promoter
各層間の密着性、又はパターン形成材料と基体との密着性を向上させるために、 各層に公知の 、わゆる密着促進剤を用いることができる。 In order to improve the adhesion between each layer or the adhesion between the pattern forming material and the substrate, A well-known adhesion promoter can be used for each layer.
[0226] 前記密着促進剤としては、例えば、特開平 5— 11439号公報、特開平 5— 34153 2号公報、及び特開平 6—43638号公報等に記載の密着促進剤が好適挙げられる 。具体的には、ベンズイミダゾール、ベンズォキサゾール、ベンズチアゾール、 2—メ ルカプトべンズイミダゾール、 2—メルカプトべンズォキサゾール、 2—メルカプトベン ズチアゾール、 3 モルホリノメチルー 1 フエ二ルートリアゾールー 2 チオン、 3— モルホリノメチル 5 フエニル ォキサジァゾール 2 チオン、 5 アミノー 3 モ ルホリノメチル チアジアゾール - 2-チオン、及び 2 メルカプト 5—メチルチオ ーチアジアゾール、トリァゾール、テトラゾール、ベンゾトリァゾール、カルボキシベン ゾトリァゾール、アミノ基含有べンゾトリァゾール、シランカップリング剤などが挙げられ る。  [0226] Preferred examples of the adhesion promoter include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3 morpholinomethyl-1 phenyl diuriazole-2 thione, 3-morpholinomethyl 5 phenyl oxadiazole 2 thione, 5 amino 3 morpholinomethyl thiadiazole-2-thione, and 2 mercapto 5-methylthiothiadiazole, triazole, tetrazole, benzotriazole, carboxybenzazotriazole, amino group-containing benzotriazole, silane cup Examples include ring agents.
[0227] 前記密着促進剤の含有量としては、前記感光層の全成分に対して 0. 001質量% 〜20質量%が好ましぐ 0. 01〜10質量%がより好ましぐ 0. 1質量%〜5質量%が 特に好ましい。  [0227] The content of the adhesion promoter is preferably 0.001% by mass to 20% by mass with respect to all components of the photosensitive layer, and more preferably 0.01 to 10% by mass. A mass% to 5 mass% is particularly preferred.
[0228] 前記感光層は、例えば、 J.コーサ一著「ライトセンシティブシステムズ」第 5章に記 載されているような有機硫黄ィ匕合物、過酸化物、レドックス系化合物、ァゾ又はジァゾ 化合物、光還元性色素、有機ハロゲンィ匕合物などを含んでいてもよい。  [0228] The photosensitive layer may be, for example, an organic sulfur compound, peroxide, redox compound, azo or diazo as described in Chapter 5 of "Light Sensitive Systems" by J. Kosa. It may contain a compound, a photoreducing dye, an organic halogen compound, and the like.
[0229] 前記有機硫黄ィ匕合物としては、例えば、ジー n ブチルジサルファイド、ジベンジル ジサルファイド、 2—メルカプロべンズチアゾール、 2—メルカプトべンズォキサゾール 、チォフエノール、ェチルトリクロロメタンスルフエネート、 2—メルカプトべンズイミダゾ ールなどが挙げられる。  [0229] Examples of the organic sulfur compound include di-n-butyl disulfide, dibenzyl disulfide, 2-mercaprobenthiazole, 2-mercaptobenzoxazole, thiophenol, etyltrichloromethanesulfate, 2- Examples include mercaptobens imidazole.
[0230] 前記過酸化物としては、例えば、ジー t ブチルパーオキサイド、過酸化ベンゾィル 、メチルェチルケトンパーオキサイドを挙げることができる。  [0230] Examples of the peroxide include diethyl butyl peroxide, benzoyl peroxide, and methyl ethyl ketone peroxide.
[0231] 前記レドックス化合物は、過酸ィ匕物と還元剤の組合せ力もなるものであり、第一鉄ィ オンと過硫酸イオン、第二鉄イオンと過酸ィ匕物などを挙げることができる。  [0231] The redox compound also serves as a combination force of peracid compounds and reducing agents, and examples thereof include ferrous ions and persulfate ions, ferric ions and peracid compounds. .
[0232] 前記ァゾ及びジァゾィ匕合物としては、例えば、 α , α '—ァゾビスイリブチ口-トリル 、 2 ァゾビス一 2—メチルブチ口-トリル、 4 アミノジフエニルァミンのジァゾニゥム 類が挙げられる。 [0233] 前記光還元性色素としては、例えば、ローズベンガル、エリス口シン、ェォシン、ァク リフラビン、リボフラビン、チォニンが挙げられる。 [0232] Examples of the azo and diazo compounds include α, α'-azobis-ylibuchi-tolyl, 2-azobis-2-methylbutyguchi-tolyl, and diaminonium of 4-aminodiphenylamine. [0233] Examples of the photoreducible dyes include rose bengal, erythricin, eosin, acriflavine, riboflavin, and thionine.
[0234] 界面活性剤 [0234] Surfactant
本発明の前記パターン形成材料を製造する際に発生する面状ムラを改善させるた めに、公知の界面活性剤を添加することができる。  In order to improve the surface unevenness that occurs when the pattern forming material of the present invention is produced, a known surfactant can be added.
前記界面活性剤としては、例えば、ァニオン系界面活性剤、カチオン系界面活性 剤、ノ-オン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜 選択できる。  The surfactant can be appropriately selected from, for example, an anionic surfactant, a cationic surfactant, a non-one surfactant, an amphoteric surfactant, and a fluorine-containing surfactant.
[0235] 前記界面活性剤の含有量としては、感光性榭脂組成物の固形分に対し、 0. 001 〜 10質量%が好ましい。  [0235] The content of the surfactant is preferably 0.001 to 10 mass% with respect to the solid content of the photosensitive resin composition.
前記含有量が、 0. 001質量%未満になると、面状改良の効果が得られなくことがあ り、 10質量%を超えると、密着性が低下することがある。  When the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be lowered.
[0236] 前記界面活性剤としては、上述の界面活性剤の他、フッ素系の界面活性剤として、 炭素鎖 3〜20でフッ素原子を 40質量%以上含み、かつ、非結合末端から数えて少 なくとも 3個の炭素原子に結合した水素原子がフッ素置換されているフルォロ脂肪族 基を有するアタリレート又はメタタリレートを共重合成分として有する高分子界面活性 剤も好適に挙げられる。  [0236] As the surfactant, in addition to the above-mentioned surfactant, a fluorosurfactant contains 40 mass% or more of fluorine atoms in a carbon chain of 3 to 20, and is small from the number of non-bonded ends. Preferable examples also include polymer surfactants having acrylate or metatalylate having a fluoroaliphatic group in which a hydrogen atom bonded to at least 3 carbon atoms is fluorine-substituted as a copolymerization component.
[0237] 前記感光層は、第一感光層、及び該第一感光層よりも硬化させるための光ェネル ギー量が少な!/、第二感光層がこの順に前記クッション層上に積層されて 、てもよ 、。 感光層が N層(感光層の数が N)である場合、支持体に近い側の感光層の感度に比 ベて、支持体力 離れた側の感光層の感度が相対的に高い感光性転写シートを用 いれば、 N段階の異なる厚みを有するパターンを、一種類のパターン形成材料で形 成することが可能になる。 [0237] The photosensitive layer has a smaller amount of light energy for curing than the first photosensitive layer and the first photosensitive layer! /, And the second photosensitive layer is laminated on the cushion layer in this order. Anyway. When the number of photosensitive layers is N (the number of photosensitive layers is N), the sensitivity of the photosensitive layer on the side away from the support is relatively high compared to the sensitivity of the photosensitive layer on the side close to the support. If a sheet is used, patterns having different thicknesses in N stages can be formed with one kind of pattern forming material.
前記感光層が複数である場合、それぞれの感光層間にバリア層を有していてもよ い。  When there are a plurality of photosensitive layers, a barrier layer may be provided between each photosensitive layer.
[0238] 前記感光層の厚みとしては、特に制限はなぐ目的に応じて適宜選択することがで きるが、例えば、 1-100 μ mが好ましぐ 2〜50 μ mがより好ましぐ 4〜30 μ mが特 に好ましい。 [0238] The thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. For example, 1-100 μm is preferable, and 2-50 μm is more preferable. ~ 30 μm is special Is preferred.
前記感光層が、第一感光層、及び該第一感光層よりも硬化させるための光ェネル ギー量が少ない第二感光層がこの順に前記クッション層上に積層されてなる場合、 第一感光層及び第二感光層の厚みはそれぞれ、目的に応じて適宜選択することが できる。ただし、前記第一感光層は、 1〜: L00 mの範囲の厚みを有するのが好まし く、さらに 5〜80 μ mの範囲の厚みを有するのが好ましぐ特に 10〜50 μ mの範囲 の厚みを有するのが好ましい。前記第一感光層の厚みが 1 μ mより薄いと、膜強度を 強くするには不適当となる場合があり、厚みが 100 mを超えると現像残渣が残りや すくなるなどの現像上の問題がでてくる場合がある。前記第一感光層の厚みは、前 記第二感光層の厚みよりも大き 、ほうが好ま 、。  When the photosensitive layer is formed by laminating the first photosensitive layer and the second photosensitive layer having a smaller amount of light energy for curing than the first photosensitive layer in this order on the cushion layer, the first photosensitive layer The thickness of the second photosensitive layer can be appropriately selected depending on the purpose. However, the first photosensitive layer preferably has a thickness in the range of 1 to L00 m, and more preferably in the range of 5 to 80 μm, particularly 10 to 50 μm. Preferably it has a thickness in the range. If the thickness of the first photosensitive layer is less than 1 μm, it may be inappropriate for increasing the film strength, and if the thickness exceeds 100 m, development problems such as development residue may remain. May come out. The thickness of the first photosensitive layer is preferably larger than the thickness of the second photosensitive layer.
[0239] <バリア層 >  [0239] <Barrier layer>
前記バリア層は、物質の移動を抑制可能である限り、特に制限はなぐ目的に応じ て適宜選択することができ、水溶性乃至水分散性であってもよぐアルカリ性液に対 して可溶性であってもよぐ不溶性であってもよい。なお、前記物質の移動を抑制可 能とは、前記ノリア層を有しない場合と比較して、前記ノリア層と隣接する層におけ る目的物質の含有量の増加又は減少力 抑制されていることを意味する。  The barrier layer can be appropriately selected according to the purpose without particular limitation as long as the movement of the substance can be suppressed, and is soluble in an alkaline liquid which may be water-soluble or water-dispersible. It may be insoluble. Note that the ability to suppress the movement of the substance means that the increase or decrease in the content of the target substance in the layer adjacent to the noria layer is suppressed as compared to the case where the noria layer is not provided. Means.
[0240] 前記物質としては、特に制限はなぐ目的に応じて適宜選択することができるが、例 えば、酸素、水、前記感光層及びクッション層の少なくともいずれかに含まれる物質 が挙げられる。  [0240] The substance can be appropriately selected according to the purpose without any particular limitation, and examples thereof include substances contained in at least one of oxygen, water, the photosensitive layer and the cushion layer.
[0241] 前記バリア層が、水溶性乃至水分散性である場合には、水溶性乃至水分散性の榭 脂を含むことが好ましぐアルカリ性液に対して可溶性である場合には、アルカリ性液 に対して可溶性の榭脂を含むことが好ましい。なお、前記水溶性の程度としては、例 えば、 25°Cの水に対し、 0. 1質量%以上溶解するものが好ましぐ 1質量%以上溶 解するものがより好ましい。  [0241] When the barrier layer is water-soluble or water-dispersible, when the barrier layer is soluble in an alkaline liquid that preferably contains a water-soluble or water-dispersible resin, the alkaline liquid It is preferable to contain soluble greaves. The water solubility is preferably, for example, preferably 0.1% by mass or more, and more preferably 1% by mass or more, with respect to 25 ° C. water.
[0242] 前記榭脂としては、特に制限はなぐ目的に応じて適宜選択することができるが、例 えば、各種のアルコール可溶性榭脂、水溶性榭脂、アルコール分散性榭脂、水分散 性榭脂、乳化性榭脂、アルカリ性液に対して可溶性の榭脂などが挙げられ、具体的 には、ビュル重合体(例えば、ポリビュルアルコール(変性ポリビュルアルコール類も 含む)、ポリビニルピロリドン等)、上述のビニル共重合体、水溶性ポリアミド、ゼラチン[0242] The rosin can be appropriately selected according to the purpose for which there is no particular restriction. Examples thereof include various alcohol-soluble varieties, water-soluble varieties, alcohol-dispersible varieties, and water-dispersible varieties. Examples thereof include fats, emulsifiable fats, and fats that are soluble in alkaline liquids. Specific examples include bulle polymers (for example, polybulal alcohols (modified polybulal alcohols are also included). ), Polyvinyl pyrrolidone, etc.), the above-mentioned vinyl copolymers, water-soluble polyamide, gelatin
、セルロース、これらの誘導体などが挙げられる。また、特許 2794242号に記載の熱 可塑性榭脂ゃ中間層に使用されている化合物、前記バインダーなどを使用すること もできる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。 , Cellulose, and derivatives thereof. Further, the thermoplastic resin described in Japanese Patent No. 2794242 and the compounds used in the intermediate layer, the binder, and the like can also be used. These may be used alone or in combination of two or more.
[0243] 前記バリア層が、アルカリ性液に対して不溶性である場合には、アルカリ性液に対 して不溶性の榭脂を含むことが好まし 、。  [0243] In the case where the barrier layer is insoluble in the alkaline liquid, it is preferable that the barrier layer contains a resin insoluble in the alkaline liquid.
前記アルカリ性液に対して不溶性の榭脂としては、例えば、主成分がエチレンを必 須の共重合成分とする共重合体が挙げられる。  Examples of the resin insoluble in the alkaline liquid include a copolymer whose main component is ethylene as a necessary copolymer component.
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなぐ 目的 に応じて適宜選択することができる力 例えば、エチレン 酢酸ビニル共重合体 (EV A)、エチレン—ェチルアタリレート共重合体 (EEA)などが挙げられる。  The copolymer having ethylene as an essential copolymer component is not particularly limited and can be appropriately selected according to the purpose. For example, ethylene vinyl acetate copolymer (EV A), ethylene-ethyl acrylate. Copolymer (EEA) and the like.
[0244] 前記バリア層の厚みとしては、特に制限はなぐ 目的に応じて適宜選択することが できるが、例えば、 10 μ m未満が好ましぐ 0. 1〜6 μ mがより好ましぐ 1〜5 μ mが 特に好ましい。  [0244] The thickness of the barrier layer is not particularly limited and may be appropriately selected depending on the purpose. For example, the thickness is preferably less than 10 μm, more preferably 0.1 to 6 μm 1 ˜5 μm is particularly preferred.
前記厚みが、 10 /z m以上となると、露光の際、前記バリア層で光散乱が生じ、解像 度及び密着性の少なくともいずれかが悪ィ匕することがある。  When the thickness is 10 / z m or more, light scattering occurs in the barrier layer during exposure, and at least one of resolution and adhesion may be deteriorated.
[0245] <支持体及び保護フィルム > [0245] <Support and protective film>
前記支持体としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 光の透過性が良好であるものが好ましぐ更に表面の平滑性が良好であることがより 好ましい。  The support is not particularly limited and may be appropriately selected depending on the purpose, but preferably has good light transmittance and more preferably has smooth surface.
[0246] 前記支持体は、合成樹脂製で、かつ透明であるものが好ましぐ例えば、ポリエチレ ンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セ ルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アタリ ル酸エステル共重合体、ポリ塩化ビュル、ポリビュルアルコール、ポリカーボネート、 ポリスチレン、セロファン、ポリ塩ィ匕ビユリデン共重合体、ポリアミド、ポリイミド、塩ィ匕ビ -ル '酢酸ビュル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セル口 ース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これら の中でも、ポリエチレンテレフタレートが特に好ましい。これらは、 1種単独で使用して もよぐ 2種以上を併用してもよい。 [0246] The support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic. Alkyl ester, poly (meth) acrylate ester copolymer, polychlorinated butyl, polybulal alcohol, polycarbonate, polystyrene, cellophane, polysalt-vinylidene copolymer, polyamide, polyimide, salt-vinyl '' Various plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose-based film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These can be used alone 2 or more types may be used in combination.
[0247] 前記支持体の厚みとしては、特に制限はなぐ 目的に応じて適宜選択することがで さる力 f列; tは、、 2- 150 μ m力 S女子ましく、 5〜: LOO μ m力 S Jり女子ましく、 8〜50 μ m力 S 特に好ましい。 [0247] The thickness of the support is not particularly limited, and can be appropriately selected according to the purpose. F column; t is 2-150 μm force S girlish, 5-: LOO μ m force SJ-like girls, 8-50 μm force S Particularly preferred.
[0248] 前記支持体の形状としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなぐ 例えば、 10m〜20000mの長さのものが挙げられる。  [0248] The shape of the support is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably long. The length of the long support is not particularly limited, and examples thereof include a length of 10 m to 20000 m.
[0249] 前記パターン形成材料は、前記感光層上に保護フィルムを形成してもよい。 [0249] The pattern forming material may form a protective film on the photosensitive layer.
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、紙、ポリエチレ ン、ポリプロピレン力ラミネートされた紙、などが挙げられ、これらの中でも、ポリエチレ ンフィルム、ポリプロピレンフィルムが好ましい。  Examples of the protective film include those used for the support, paper, polyethylene, paper laminated with polypropylene, and the like. Among these, a polyethylene film and a polypropylene film are preferable.
前記保護フィルムの厚みとしては、特に制限はなぐ 目的に応じて適宜選択するこ とができる力 例えば、 5〜: LOO /z m力好ましく、 8〜50 111カょり好ましく、 10〜30 /z mが特に好ましい。  The thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. For example, 5 to: LOO / zm force is preferable, 8 to 50 111 is preferable, and 10 to 30 / zm is preferable. Particularly preferred.
前記保護フィルムを用 ヽる場合、該保護フィルムと前記感光層との層間接着力は、 他の各層の層間接着力の中で、最も小さ!/、ことが好ま 、。  When the protective film is used, it is preferable that the interlayer adhesive strength between the protective film and the photosensitive layer is the smallest among the interlayer adhesive strengths of the other layers.
前記支持体と保護フィルムとの組合せ (支持体 Z保護フィルム)としては、例えば、 ポリエチレンテレフタレート zポリプロピレン、ポリエチレンテレフタレート zポリエチレ ン、ポリ塩化ビュル Zセロファン、ポリイミド Zポリプロピレン、ポリエチレンテレフタレ ート zポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルム の少なくとも 、ずれかを表面処理することにより、上述のような接着力の関係を満たす ことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施 されてもよぐ例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理 、高周波照射処理、グロ一放電照射処理、活性プラズマ照射処理、レーザ光線照射 処理などを挙げることができる。  Examples of the combination of the support and the protective film (support Z protective film) include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc. In addition, the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment, One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
[0250] また、前記支持体と前記保護フィルムとの静摩擦係数としては、 0. 3〜1. 4が好ま しく、 0. 5〜1. 2力より好まし!/ヽ。  [0250] The coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / !.
前記静摩擦係数が、 0. 3未満であると、滑り過ぎるため、ロール状にした場合に卷 ズレが発生することがあり、 1. 4を超えると、良好なロール状に巻くことが困難となるこ とがある。 If the coefficient of static friction is less than 0.3, it will slip too much, so Deviation may occur, and if it exceeds 1.4, it may be difficult to wind in a good roll shape.
[0251] 前記パターン形成材料は、例えば、円筒状の卷芯に巻き取って、長尺状でロール 状に巻かれて保管されることが好ましい。前記長尺状のパターン形成材料の長さとし ては、特に制限はなぐ例えば、 10m〜20, OOOmの範囲力 適宜選択することがで きる。また、ユーザーが使いやすいようにスリット加工し、 100m〜l, OOOmの範囲の 長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になる ように巻き取られることが好ましい。また、前記ロール状のパターン形成材料をシート 状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点か ら、端面にはセパレーター (特に防湿性のもの、乾燥剤入りのもの)を設置することが 好ましぐまた梱包も透湿性の低 、素材を用いる事が好ま 、。  [0251] The pattern forming material is preferably stored, for example, wound around a cylindrical core and wound into a long roll. The length of the long pattern forming material is not particularly limited, and can be appropriately selected, for example, a range force of 10 m to 20, OOOm. In addition, slitting may be performed so that it is easy for the user to use, and a long body in the range of 100 m to l, OOOm may be rolled. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped pattern forming material may be slit into a sheet shape. In order to protect the end face and prevent edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face, and the packaging has low moisture permeability. I prefer to use materials.
[0252] 前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために 表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオ ルガノシロキサン、弗素化ポリオレフイン、ポリフルォロエチレン、ポリビュルアルコー ル等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗 布液を前記保護フィルムの表面に塗布した後、 30〜150°C (特に 50〜120°C)で 1 〜30分間乾燥させることにより形成させることができる。  [0252] The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed on the surface of the protective film. The undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (particularly 50 to 120 ° C) for 1 to 30 minutes. Can do.
[0253] また、本発明のパターン形成材料は、前記感光層、前記クッション層、前記バリア層 、前記支持体、前記保護フィルムの他に、剥離層、接着層、光吸収層、表面保護層 などの層を有してもよい。また、前記各層は、 1層有していてもよぐ 2層以上有してい てもよい。  [0253] In addition to the photosensitive layer, the cushion layer, the barrier layer, the support, and the protective film, the pattern forming material of the present invention includes a release layer, an adhesive layer, a light absorption layer, a surface protective layer, and the like. You may have a layer of. Each of the layers may have one layer or two or more layers.
[0254] [パターン形成材料の製造方法]  [0254] [Method for producing pattern forming material]
前記パターン形成材料は、例えば、次のようにして製造することができる。 まず、上述の各種材料を、水又は溶剤に溶解、乳化又は分散させて塗布液を調製 する。  The pattern forming material can be manufactured, for example, as follows. First, the above-mentioned various materials are dissolved, emulsified or dispersed in water or a solvent to prepare a coating solution.
[0255] 前記塗布液を調製するための溶剤としては、特に制限はなぐ目的に応じて適宜選 択することができ、例えば、メタノール、エタノール、 n—プロパノール、イソプロパノー ル、 n—ブタノール、 sec—ブタノール、 n—へキサノール等のアルコール類;アセトン 、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン、ジイソプチルケトン などのケトン類;酢酸ェチル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオ ン酸ェチル、フタル酸ジメチル、安息香酸ェチル、及びメトキシプロピルアセテートな どのエステル類;トルエン、キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水 素類;四塩ィ匕炭素、トリクロロエチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩ィ匕 メチレン、モノクロ口ベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジェチ ノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレ エーテル、 1ーメトキシー2—プロパノールなどのエーテル類;ジメチルホルムアミド、 ジメチルァセトアミド、ジメチルスルホキシド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性剤を添 カロしてちょい。 [0255] The solvent for preparing the coating solution can be appropriately selected according to the purpose without any particular limitation. For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec- Alcohols such as butanol and n-hexanol; acetone , Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, And esters such as methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, and ethylbenzene; tetrasalt-carbon, trichloroethylene, chloroform, 1, 1, 1-trichloroethane, salt Halogenated hydrocarbons such as methylene, monochlorobenzene, etc .; ethers such as tetrahydrofuran, jetinoreethenole, ethyleneglycolmonomethenoreethenore, ethyleneglycololemonoethylenol ether, 1-methoxy-2-propanol; dimethylformamide, dimethyla Toamido, dimethyl sulfoxide, and sulfolane. These may be used alone or in combination of two or more. Also, add a known surfactant.
[0256] 前記クッション層の組成物が溶解、乳化、又は分散されたクッション層組成物塗布 液、及びバリア層の組成物が溶解、乳化、又は分散されたバリア層組成物塗布液は 、フィルタ一等で濾過することにより、固形分である前記微粒子及びその凝集体など が除去されることが好ま 、。  [0256] The cushion layer composition coating solution in which the cushion layer composition is dissolved, emulsified or dispersed, and the barrier layer composition coating solution in which the barrier layer composition is dissolved, emulsified or dispersed are used in a filter. It is preferable that the fine particles and the aggregates thereof, which are solid contents, are removed by filtering with a filter.
濾過に用いられる前記フィルターの有効孔径としては、 30 m以下であることが好 ましく、 0. 05〜1 μ m力より好ましく、 0. 25〜0. 3 μ m力 ^特に好まし!/、。  The effective pore size of the filter used for filtration is preferably 30 m or less, more preferably 0.05 to 1 μm force, and more preferably 0.25 to 0.3 μm force ^ / ,.
前記フィルターの材質としては、前記塗布液が溶剤系の場合は、例えば、四フツイ匕 エチレン榭脂、ポリプロピレン、ポリエーテルスルホン、及びステンレススチールなど が挙げられ、四フッ化工チレン榭脂、及びポリプロピレンが好ましい。また、前記塗布 液が水溶性又は水分散性の場合は、水系溶媒用に作製されたフィルターが好ま 、 。特に、ゴミの発生しにくいポリマー材料で作製されたフィルターが好ましい。  Examples of the material of the filter include, when the coating solution is solvent-based, for example, tetrafluoroethylene resin, polypropylene, polyethersulfone, stainless steel, and the like. preferable. In addition, when the coating solution is water-soluble or water-dispersible, a filter prepared for an aqueous solvent is preferred. In particular, a filter made of a polymer material that hardly generates dust is preferable.
前記フィルターの形状としては、例えば、ディスク型、ロール型、円筒型、プリーツ型 などが挙げられる。  Examples of the shape of the filter include a disk type, a roll type, a cylindrical type, and a pleated type.
[0257] 前記フィルターを用いて濾過する方法としては、前記塗布液を送液によりフィルター を通過させてもよぐ加圧又は減圧によりフィルターを通過させてもよい。  [0257] As a method of filtering using the filter, the coating solution may be passed through the filter by feeding or pressurized or reduced pressure.
前記塗布液は、前記濾過により空気が取り込まれ、塗布乾燥後の膜中に気泡が生 成することがあるため、濾過後に脱泡を行うことが好ましい。前記脱泡の方法としては 、濾過後に前記塗布液を静置することにより脱泡する方法、超音波により脱泡する方 法、減圧により脱泡する方法、加熱により脱泡する方法などが挙げられる。前記超音 波による脱泡は、 30秒〜 2時間行われることが好ましぐ 5分〜 1時間行われることが 好ましい。また、前記加熱による脱泡は、 30〜50°Cで 3時間以上静置することが好ま しい。 The coating solution is preferably defoamed after filtration because air is taken in by the filtration and bubbles may be formed in the film after coating and drying. As the defoaming method, Examples of the method include defoaming by allowing the coating solution to stand after filtration, a method of defoaming with ultrasonic waves, a method of defoaming under reduced pressure, and a method of defoaming by heating. The defoaming by the ultrasonic wave is preferably performed for 30 seconds to 2 hours, and is preferably performed for 5 minutes to 1 hour. Further, the defoaming by heating is preferably allowed to stand at 30 to 50 ° C. for 3 hours or more.
上述した作業は、作業時の異物の混入を防ぐために、クリーンルーム内やクリーン ベンチ内で行われることが好ましぐクラス 1000以下のクリーン度のスペースで行わ れることが好ましい。前記クリーン度は、ダストカウンタ一により測定される値である。  The work described above is preferably performed in a clean space of class 1000 or less, preferably in a clean room or clean bench, in order to prevent foreign matter from entering during the work. The cleanness is a value measured by a dust counter.
[0258] 次に、前記支持体上に、前記フィルターで濾過した前記クッション層組成物塗布液 を塗布し、乾燥させて前記クッション層を形成し、該クッション層上に、前記バリア層を 形成する場合には、バリア層組成物塗布液を塗布し、乾燥させてバリア層を形成し、 該ノ リア層上又は前記クッション層上に前記感光性榭脂組成物溶液を塗布し、乾燥 させて感光層を形成し、パターン形成材料を製造することができる。  [0258] Next, the cushion layer composition coating solution filtered by the filter is applied onto the support and dried to form the cushion layer, and the barrier layer is formed on the cushion layer. In this case, a barrier layer composition coating solution is applied and dried to form a barrier layer, and the photosensitive resin composition solution is applied onto the noor layer or the cushion layer and dried to be photosensitive. Layers can be formed to produce patterning materials.
[0259] 前記塗布液の塗布方法としては、特に制限はなぐ 目的に応じて適宜選択すること ができる力 例えば、スプレー法、ロールコート法、回転塗布法、スリットコート法、エタ ストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート法、ワイヤー バーコート法、ナイフコート法等の各種の塗布方法が挙げられる。  [0259] The coating method of the coating solution is not particularly limited, and can be appropriately selected according to the purpose. For example, spray method, roll coating method, spin coating method, slit coating method, etasion coating method, Examples of the coating method include a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。  The drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
[0260] 前記パターン形成材料は、プリント配線板、保護膜、層間絶縁膜、及びソルダーレ ジストパターン、カラーフィルターや柱材、リブ材、スぺーサ一、隔壁などのディスプレ ィ用部材、ホログラム、マイクロマシン、プルーフなどのパターン形成用として広く用い ることができ、特に本発明のパターン形成方法及びパターン形成装置に好適に用い ることがでさる。 [0260] The pattern forming material includes a printed wiring board, a protective film, an interlayer insulating film, a solder resist pattern, a color filter, a column material, a rib material, a spacer, a display member such as a partition, a hologram, and a micromachine. It can be widely used for pattern formation such as proofing, and can be particularly suitably used for the pattern forming method and pattern forming apparatus of the present invention.
[0261] (パターン形成装置、パターン形成方法) [0261] (Pattern forming apparatus, pattern forming method)
本発明のパターン形成装置は、本発明の前記パターン形成材料を備えており、光 照射手段と光変調手段とを少なくとも有する。  The pattern forming apparatus of the present invention includes the pattern forming material of the present invention, and has at least light irradiation means and light modulation means.
本発明のパターン形成方法は、積層工程と、露光工程と、現像工程とを少なくとも 含み、適宜選択したその他の工程を含む。 The pattern forming method of the present invention comprises at least a laminating step, an exposing step, and a developing step. Including other processes appropriately selected.
なお、本発明の前記パターン形成装置は、本発明の前記パターン形成方法の説明 を通じて明らかにする。  In addition, the said pattern formation apparatus of this invention is clarified through description of the said pattern formation method of this invention.
[0262] [積層工程] [0262] [Lamination process]
前記積層工程は、前記パターン形成材料を、加熱及び加圧の少なくともいずれか により基体上に積層する工程であり、前記基体上に前記パターン形成材料を積層し てなる積層体を形成する工程である。  The laminating step is a step of laminating the pattern forming material on a substrate by at least one of heating and pressurization, and a step of forming a laminate formed by laminating the pattern forming material on the substrate. .
前記積層体における層構成としては、特に制限はなぐ目的に応じて適宜選択する ことができるが、例えば、前記基体と前記感光層と前記バリア層と前記クッション層と 前記支持体とをこの順有する層構成が好まし ヽ。  The layer structure of the laminate can be appropriately selected according to the purpose without any particular limitation. For example, the layered body, the photosensitive layer, the barrier layer, the cushion layer, and the support are included in this order. Layer structure is preferred ヽ.
[0263] <基体> [0263] <Substrate>
前記基体としては、特に制限はなぐ公知の材料の中から表面平滑性の高いもの 力 凸凹のある表面を有するものまで適宜選択することができるが、板状の基体 (基 板)が好ましぐ具体的には、公知のプリント配線板形成用基板 (例えば、銅張積層板 )、ガラス板 (例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが 挙げられる。  The substrate can be appropriately selected from known materials having no particular limitation to materials having high surface smoothness, and having a rough surface. A plate-like substrate (substrate) is preferred. Specifically, known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic resin films, paper, metal plates, and the like can be given.
[0264] <積層体> [0264] <Laminate>
前記積層体の形成方法としては、前記基体上に前記パターン形成材料を加熱及 び加圧の少なくとも ヽずれかを行!、ながら、前記基体上に前記パターン形成材料に おける感光層が重なるようにして積層される限り、特に制限はなぐ目的に応じて適 宜選択することができる。  As the method of forming the laminate, the pattern forming material is heated and pressed at least slightly on the substrate, while the photosensitive layer in the pattern forming material overlaps the substrate. As long as they are laminated, they can be selected appropriately according to the purpose without any particular limitation.
前記加熱温度としては、特に制限はなぐ目的に応じて適宜選択することができる 力 例えば、 15〜180°Cが好ましぐ 60〜140°Cがより好ましい。  The heating temperature can be appropriately selected according to the purpose for which there is no particular restriction. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
前記加圧の圧力としては、特に制限はなぐ目的に応じて適宜選択することができ る力 f列; tは、、 0. 1〜1. OMPa力好ましく、 0. 2〜0. 8MPa力 ^より好まし!/ヽ。  The pressure of the pressurization is a force that can be appropriately selected according to the purpose for which there is no particular limitation. F column; t is preferably 0.1 to 1. OMPa force, 0.2 to 0.8 MPa force ^ More preferred! / ヽ.
[0265] 前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなぐ目 的に応じて適宜選択することができ、例えば、ラミネーター(例えば、大成ラミネータ 社製、 VP— Π)などが好適に挙げられる。 [0266] [露光工程] [0265] The apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose of restriction, for example, a laminator (for example, Taisei Laminator). A product made by the company, VP-Π) is preferable. [0266] [Exposure process]
前記露光工程は、前記積層工程により積層された感光層を、光照射手段から照射 される光により露光する工程であり、前記感光層としては、前記パターン形成材料に おける前記感光層であることが好まし 、。  The exposing step is a step of exposing the photosensitive layer laminated in the laminating step with light irradiated from a light irradiation means, and the photosensitive layer is the photosensitive layer in the pattern forming material. I like it.
また、前記積層工程後に、前記支持体を前記クッション層上から剥離する剥離工程 を行い、クッション層上から感光層を露光することが好ましい。  Moreover, it is preferable to perform the peeling process which peels the said support body from the said cushion layer after the said lamination process, and to expose a photosensitive layer from a cushion layer.
[0267] 前記露光としては、特に制限はなぐ目的に応じて適宜選択することができ、デジタ ル露光、アナログ露光等が挙げられる力 これらの中でもデジタル露光が好ましい。 [0267] The exposure can be appropriately selected according to the purpose without any particular limitation, and powers such as digital exposure, analog exposure, etc. Among these, digital exposure is preferable.
[0268] 前記デジタル露光としては、特に制限はなぐ目的に応じて適宜選択することがで きるが、例えば、光照射手段からの光を受光し出射する描素部を η個有する光変調 手段により、前記光照射手段からの光を変調させた後に、前記描素部における出射 面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイク 口レンズアレイを通過させた光によって行われることが好ましい。 [0268] The digital exposure can be appropriately selected depending on the purpose without any particular limitation. For example, the digital exposure can be performed by a light modulation unit having η pixel portions that receive and emit light from the light irradiation unit. After the light from the light irradiating means is modulated, the light is passed by the microphone lens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface in the picture element portion are arranged. Are preferred.
[0269] 一光変調手段 [0269] Single light modulation means
前記光変調手段としては、 η個の描素部を有する限り、特に制限はなぐ目的に応 じて適宜選択することができ、例えば、空間光変調素子等が好適に挙げられる。 前記空間光変調素子としては、例えば、デジタル ·マイクロミラー ·デバイス (DMD) 、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S LM ; Special Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。  As the light modulation means, as long as it has η pixel portions, it can be appropriately selected according to the purpose without any restriction. For example, a spatial light modulation element or the like is preferable. Examples of the spatial light modulation element include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulation element (SLM; Special Light Modulator), and modulated transmitted light by an electro-optic effect. Optical elements (PLZT elements), liquid crystal light shirts (FLC), and the like. Among these, DMD is preferable.
[0270] 以下、前記光変調手段の一例について図面を参照しながら説明する。  [0270] Hereinafter, an example of the light modulation means will be described with reference to the drawings.
DMD50は図 1に示すように、 SRAMセル (メモリセル) 60上〖こ、各々描素(ピクセ ル)を構成する多数 (例えば、 1024個 X 768個)の微小ミラー(マイクロミラー) 62が 格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支 柱に支えられたマイクロミラー 62が設けられており、マイクロミラー 62の表面にはアル ミニゥム等の反射率の高い材料が蒸着されている。なお、マイクロミラー 62の反射率 は 90%以上であり、その配列ピッチは縦方向、横方向とも一例として 13. であ る。また、マイクロミラー 62の直下には、ヒンジおよびヨークを含む支柱を介して通常 の半導体メモリの製造ラインで製造されるシリコンゲートの CMOSの SRAMセル 60 が配置されており、全体はモノリシックに構成されている。 As shown in FIG. 1, the DMD 50 has an SRAM cell (memory cell) 60, and a large number (eg, 1024 x 768) of micromirrors 62, each of which constitutes a pixel. It is a mirror device arranged in a shape. In each pixel, a micromirror 62 supported by a support column is provided at the top, and the surface of the micromirror 62 is provided with an Al. A highly reflective material such as minium is deposited. Note that the reflectance of the micromirror 62 is 90% or more, and the arrangement pitch thereof is 13. as an example in both the vertical and horizontal directions. In addition, a silicon gate CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke. The entire structure is monolithically configured. ing.
[0271] DMD50の SRAMセル 60にデジタル信号が書き込まれると、支柱に支えられたマ イク口ミラー 62が、対角線を中心として DMD50が配置された基板側に対して ±ひ度 (例えば ± 12度)の範囲で傾けられる。図 2Aは、マイクロミラー 62がオン状態である + α度に傾いた状態を示し、図 2Βは、マイクロミラー 62がオフ状態である α度に 傾いた状態を示す。したがって、パターン情報に応じて、 DMD50の各ピクセルにお けるマイクロミラー 62の傾きを、図 1に示すように制御することによって、 DMD50に入 射したレーザ光 Βはそれぞれのマイクロミラー 62の傾き方向へ反射される。  [0271] When a digital signal is written to the SRAM cell 60 of the DMD50, the microphone mirror 62 supported by the support column is ±± degrees (eg ± 12 °) from the substrate side on which the DMD50 is placed with the diagonal line as the center. ) Tilted within the range. FIG. 2A shows a state tilted to + α degrees when the micromirror 62 is in the on state, and FIG. 2B shows a state tilted to α degrees when the micromirror 62 is in the off state. Therefore, by controlling the inclination of the micromirror 62 in each pixel of the DMD 50 as shown in FIG. 1 according to the pattern information, the laser light incident on the DMD 50 is inclined in the direction of the inclination of each micromirror 62. Reflected to.
[0272] なお、図 1には、 DMD50の一部を拡大し、マイクロミラー 62が + α度又は α度 に制御されて ヽる状態の一例を示す。それぞれのマイクロミラー 62のオンオフ制御は 、 DMD50に接続されたコントローラ 302 (図 12参照)によって行われる。また、オフ 状態のマイクロミラー 62で反射したレーザ光 Βが進行する方向には、光吸収体(図示 せず)が配置されている。  FIG. 1 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + α degrees or α degrees. On / off control of each micromirror 62 is performed by a controller 302 (see FIG. 12) connected to the DMD 50. Further, a light absorber (not shown) is disposed in the direction in which the laser beam reflected by the micromirror 62 in the off state travels.
[0273] また、 DMD50は、その短辺が副走査方向と所定角度 Θ (例えば、 0. 1° 〜5° ) を成すように僅かに傾斜させて配置するのが好まし 、。図 3Αは DMD50を傾斜させ ない場合の各マイクロミラーによる反射光像 (露光ビーム) 53の走査軌跡を示し、図 3 Βは DMD50を傾斜させた場合の露光ビーム 53の走査軌跡を示している。  [0273] In addition, it is preferable that the DMD 50 be arranged with a slight inclination so that the short side forms a predetermined angle Θ (for example, 0.1 ° to 5 °) with the sub-scanning direction. Fig. 3 (b) shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and Fig. 3 (b) shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
[0274] DMD50には、長手方向にマイクロミラーが多数個(例えば、 1024個)配列された マイクロミラー列力 短手方向に多数^ 1_ (例えば、 756糸且)配列されている力 図 3Bに 示すように、 DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム 53の 走査軌跡(走査線)のピッチ P 1S DMD50を傾斜させない場合の走査線のピッチ P  [0274] In DMD50, micromirror array force with a number of micromirrors arranged in the longitudinal direction (eg, 1024) A force with a lot of ^ 1_ (eg, 756 threads) arranged in the short direction Figure 3B As shown, by tilting the DMD 50, the pitch P of the scanning trajectory (scan line) of the exposure beam 53 by each micromirror P 1S, the pitch P of the scanning line when the DMD 50 is not tilted
1 2 より狭くなり、解像度を大幅に向上させることができる。一方、 DMD50の傾斜角は微 小であるので、 DMD50を傾斜させた場合の走査幅 Wと、 DMD50を傾斜させない  It is narrower than 1 2 and can greatly improve the resolution. On the other hand, since the tilt angle of DMD50 is very small, the scan width W when DMD50 is tilted and DMD50 are not tilted.
2  2
場合の走査幅 wとは略同一である。 [0275] 次に、前記光変調手段における変調速度を速くさせる方法 (以下「高速変調」と称 する)について説明する。 The scanning width w in this case is substantially the same. Next, a method for increasing the modulation speed in the optical modulation means (hereinafter referred to as “high-speed modulation”) will be described.
前記光変調手段は、前記 n個の描素の中から連続的に配置された任意の n個未満 の前記描素部をパターン情報に応じて制御可能であることが好まし 、。前記光変調 手段のデータ処理速度には限界があり、使用する描素数に比例して 1ライン当りの変 調速度が決定されるので、連続的に配列された任意の n個未満の描素部だけを使用 することで 1ライン当りの変調速度が速くなる。  It is preferable that the light modulation means can control any less than n pixel elements arranged continuously from the n pixel elements according to pattern information. There is a limit to the data processing speed of the light modulation means, and the modulation speed per line is determined in proportion to the number of pixels to be used. Using only this increases the modulation rate per line.
[0276] 以下、前記高速変調について図面を参照しながら更に説明する。  [0276] Hereinafter, the high-speed modulation will be further described with reference to the drawings.
ファイバアレイ光源 66から DMD50にレーザ光 Bが照射されると、 DMD50のマイク 口ミラーがオン状態のときに反射されたレーザ光は、レンズ系 54、 58により、前記積 層体におけるパターン形成材料の感光層 150 (以下、「パターン形成材料 150」とい う)上に結像される。このようにして、ファイバアレイ光源 66から出射されたレーザ光が 描素毎にオンオフされて、パターン形成材料 150が DMD50の使用描素数と略同数 の描素単位 (露光エリア 168)で露光される。また、パターン形成材料 150がステージ 152と共に一定速度で移動されることにより、ノターン形成材料 150がスキャナ 162 によりステージ移動方向と反対の方向に副走査され、露光ヘッド 166毎に帯状の露 光済み領域 170が形成される。  When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light reflected when the microphone mouth mirror of the DMD 50 is in the on state is reflected by the lens systems 54 and 58 on the pattern forming material in the stack. An image is formed on the photosensitive layer 150 (hereinafter referred to as “pattern forming material 150”). In this way, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in approximately the same number of pixel units (exposure area 168) as the number of pixels used in the DMD 50. . Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the non-turn forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region is provided for each exposure head 166. 170 is formed.
[0277] なお本例では、図 4A及び図 4Bに示すように、 DMD50には、主走査方向にマイク 口ミラーが 1024個配列されたマイクロミラー列が副走査方向に 768組配列されてい る力 本例では、前記コントローラ 302 (図 12参照)により一部のマイクロミラー列(例 えば、 1024個 X 256列)だけが駆動するように制御がなされる。  In this example, as shown in FIGS. 4A and 4B, the DMD 50 has a force in which 768 pairs of micro mirror arrays in which 1024 microphone aperture mirrors are arranged in the main scanning direction are arranged in the sub scanning direction. In this example, the controller 302 (see FIG. 12) performs control so that only a part of the micromirror rows (for example, 1024 × 256 rows) is driven.
[0278] この場合、図 4Aに示すように DMD50の中央部に配置されたマイクロミラー列を使 用してもよぐ図 4Bに示すように、 DMD50の端部に配置されたマイクロミラー列を使 用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生して いないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適 宜変更してもよい。  In this case, as shown in FIG. 4B, the micromirror array arranged at the end of the DMD50 may be used as shown in FIG. 4B. May be used. In addition, when a defect occurs in some of the micromirrors, the micromirror array used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.
[0279] DMD50のデータ処理速度には限界があり、使用する描素数に比例して 1ライン当 りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで 1ライ ン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動 させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。 [0279] The data processing speed of the DMD50 is limited, and the modulation speed per line is determined in proportion to the number of pixels used. Modulation rate per channel increases. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
[0280] スキャナ 162によるパターン形成材料 150の副走査が終了し、センサ 164でパター ン形成材料 150の後端が検出されると、ステージ 152は、ステージ駆動装置 304によ り、ガイド 158に沿ってゲート 160の最上流側にある原点に復帰し、再度、ガイド 158 に沿ってゲート 160の上流側から下流側に一定速度で移動される。  [0280] When the sub-scan of the pattern forming material 150 by the scanner 162 is completed and the rear end of the pattern forming material 150 is detected by the sensor 164, the stage 152 is moved along the guide 158 by the stage driving device 304. Returning to the origin on the uppermost stream side of the gate 160, it is moved again along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed.
[0281] 例えば、 768組のマイクロミラー列の内、 384組だけ使用する場合には、 768組全 部使用する場合と比較すると 1ライン当り 2倍速く変調することができる。また、 768組 のマイクロミラー列の内、 256組だけ使用する場合には、 768組全部使用する場合と 比較すると 1ライン当り 3倍速く変調することができる。  [0281] For example, when only 384 sets of 768 micromirror arrays are used, modulation can be performed twice as fast per line as compared to using all 768 sets. Also, when only 256 pairs are used in the 768 micromirror array, modulation can be performed three times faster per line than when all 768 pairs are used.
[0282] 以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミ ラーが 1, 024個配列されたマイクロミラー列力 副走査方向に 768糸且配列された D MDを備えている力 コントローラにより一部のマイクロミラー列だけが駆動されるよう に制御することにより、全部のマイクロミラー列を駆動する場合に比べて、 1ライン当り の変調速度が速くなる。  [0282] As described above, according to the pattern forming method of the present invention, the micromirror array force in which 1024 micromirrors are arranged in the main scanning direction is provided with the DMD arranged in 768 threads in the subscanning direction. By controlling so that only a part of the micromirror array is driven by the force controller, the modulation speed per line becomes faster than when all the micromirror arrays are driven.
[0283] また、 DMDのマイクロミラーを部分的に駆動する例について説明した力 所定方向 に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各 々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが 2次元状に 配列された細長い DMDを用いても、反射面の角度を制御するマイクロミラーの個数 が少なくなるので、同様に変調速度を速くすることができる。  [0283] Also, the force described in the example of partially driving the micromirror of the DMD has a length in the direction corresponding to the predetermined direction is longer than the length in the direction intersecting the predetermined direction. Even if a long and narrow DMD in which a number of micromirrors that can change the angle of the reflecting surface are arranged in two dimensions is used, the number of micromirrors that control the angle of the reflecting surface is reduced. Can be fast.
[0284] また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行う ことが好ましぐこの場合、前記高速変調と併用することが好ましい。これにより、短時 間で高速の露光を行うことができる。  [0284] In addition, it is preferable that the exposure method is performed while relatively moving the exposure light and the photosensitive layer. In this case, the exposure method is preferably used in combination with the high-speed modulation. Thereby, high-speed exposure can be performed in a short time.
[0285] その他、図 5に示すように、スキャナ 162による X方向への 1回の走査でパターン形 成材料 150の全面を露光してもよぐ図 6A及び図 6Bに示すように、スキャナ 162に よりパターン形成材料 150を X方向へ走査した後、スキャナ 162を Y方向に 1ステップ 移動し、 X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で パターン形成材料 150の全面を露光するようにしてもよい。なお、この例では、スキヤ ナ 162は 18個の露光ヘッド 166を備えている。なお、露光ヘッドは、前記光照射手 段と前記光変調手段とを少なくとも有する。 In addition, as shown in FIG. 5, the entire surface of the pattern forming material 150 may be exposed by one scan in the X direction by the scanner 162, as shown in FIGS. 6A and 6B. After scanning the pattern forming material 150 in the X direction, the scanner 162 is moved one step in the Y direction, and scanning is performed in the X direction. The entire surface of 150 may be exposed. In this example, the skier The na 162 has 18 exposure heads 166. The exposure head has at least the light irradiation means and the light modulation means.
[0286] 前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が 硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領 域が除去され、パターンが形成される。 [0286] The exposure is performed on a partial area of the photosensitive layer, whereby the partial area is cured, and in the development step described later, an uncured area other than the cured partial area. The area is removed and a pattern is formed.
[0287] 次に、前記光変調手段を含むパターン形成装置の一例について図面を参照しな がら説明する。 [0287] Next, an example of a pattern forming apparatus including the light modulation means will be described with reference to the drawings.
前記光変調手段を含むパターン形成装置は、図 7に示すように、シート状のパター ン形成材料 150を表面に吸着して保持する平板状のステージ 152を備えている。  As shown in FIG. 7, the pattern forming apparatus including the light modulating means includes a flat plate stage 152 for adsorbing and holding a sheet-like pattern forming material 150 on the surface.
4本の脚部 154に支持された厚い板状の設置台 156の上面には、ステージ移動方 向に沿って延びた 2本のガイド 158が設置されている。ステージ 152は、その長手方 向がステージ移動方向を向くように配置されると共に、ガイド 158によって往復移動 可能に支持されている。なお、前記パターン形成装置には、ステージ 152をガイド 15 8に沿って駆動するための図示しな 、駆動装置を有して 、る。  Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-like installation table 156 supported by the four legs 154. The stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 158 so as to be reciprocally movable. The pattern forming apparatus includes a driving device (not shown) for driving the stage 152 along the guide 158.
[0288] 設置台 156の中央部には、ステージ 152の移動経路を跨ぐようにコ字状のゲート 1 60が設けられている。コ字状のゲート 160の端部の各々は、設置台 156の両側面に 固定されている。このゲート 160を挟んで一方の側にはスキャナ 162が設けられ、他 方の側にはパターン形成材料 150の先端及び後端を検知する複数 (例えば、 2個) の検知センサ 164が設けられている。スキャナ 162及び検知センサ 164は、ゲート 16 0に各々取り付けられて、ステージ 152の移動経路の上方に固定配置されている。な お、スキャナ 162及び検知センサ 164は、これらを制御する図示しないコントローラに 接続されている。 [0288] A U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each end of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the pattern forming material 150 are provided on the other side. Yes. The scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152. The scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.
[0289] スキャナ 162は、図 8及び図 9Bに示すように、 m行 n列(例えば、 3行 5列)の略マトリ ックス状に配列された複数 (例えば、 14個)の露光ヘッド 166を備えている。この例で は、パターン形成材料 150の幅との関係で、 3行目には 4個の露光ヘッド 166を配置 した。なお、 m行目の n列目に配列された個々の露光ヘッドを示す場合は、露光へッ ド 166 と表記する。  As shown in FIGS. 8 and 9B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (eg, 3 rows and 5 columns). I have. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the pattern forming material 150. When individual exposure heads arranged in the m-th row and the n-th column are shown, they are expressed as an exposure head 166.
mn  mn
[0290] 露光ヘッド 166による露光エリア 168は、副走査方向を短辺とする矩形状である。 従って、ステージ 152の移動に伴い、パターン形成材料 150には露光ヘッド 166毎 に帯状の露光済み領域 170が形成される。なお、 m行目の n列目に配列された個々 の露光ヘッドによる露光エリアを示す場合は、露光エリア 168 [0290] An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction. Accordingly, as the stage 152 moves, a strip-shaped exposed region 170 is formed in the pattern forming material 150 for each exposure head 166. If the exposure area by each exposure head arranged in the m-th row and the n-th column is shown, the exposure area 168
mnと表記する。  Indicated as mn.
また、図 9A及び図 9Bに示すように、帯状の露光済み領域 170が副走査方向と直 交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は 、配列方向に所定間隔 (露光エリアの長辺の自然数倍、本例では 2倍)ずらして配置 されている。このため、 1行目の露光エリア 168 と露光エリア 168 との間の露光でき  Further, as shown in FIGS. 9A and 9B, each of the exposure heads in each row arranged in a line is arranged in the arrangement direction so that the strip-shaped exposed areas 170 are arranged without gaps in the direction perpendicular to the sub-scanning direction. Are shifted by a predetermined interval (a natural number multiple of the long side of the exposure area, twice in this example). Therefore, exposure between the exposure area 168 and the exposure area 168 in the first row is not possible.
11 12  11 12
ない部分は、 2行目の露光エリア 168 と 3行目の露光エリア 168 とにより露光する  Unexposed areas are exposed using the exposure area 168 in the second row and the exposure area 168 in the third row.
21 31  21 31
ことができる。  be able to.
[0292] 露光ヘッド 166 [0292] Exposure head 166
11〜166 各々は、図 10及び図 11に示すように、入射された光ビ mn  11 to 166, as shown in FIG. 10 and FIG.
ームをパターン情報に応じて前記光変調手段 (各描素毎に変調する空間光変調素 子)として、米国テキサス 'インスツルメンッ社製のデジタル 'マイクロミラ一'デバイス( As a light modulation means (spatial light modulation element that modulates each pixel in accordance with pattern information), a digital 'micromirror' device (manufactured by Texas Instruments Inc., USA)
DMD) 50を備えている。 DMD50は、データ処理部とミラー駆動制御部とを備えた 前記コントローラ 302 (図 12参照)に接続されている。このコントローラ 302のデータ 処理部では、入力されたパターン情報に基づいて、露光ヘッド 166毎に DMD50の 制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制 御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処 理部で生成した制御信号に基づいて、露光ヘッド 166毎に DMD50の各マイクロミラ 一の反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。 DMD) 50. The DMD 50 is connected to the controller 302 (see FIG. 12) having a data processing unit and a mirror drive control unit. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The areas to be controlled will be described later. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.
[0293] DMD50の光入射側には、光ファイバの出射端部 (発光点)が露光エリア 168の長 辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバァ レイ光源 66、ファイバアレイ光源 66から出射されたレーザ光を補正して DMD上に集 光させるレンズ系 67、レンズ系 67を透過したレーザ光を DMD50に向けて反射する ミラー 69がこの順に配置されている。なお、図 10では、レンズ系 67を概略的に示し てある。 [0293] On the light incident side of the DMD 50, a fiber array light source including a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 for correcting the laser light emitted from the fiber array light source 66 and collecting it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order. . In FIG. 10, the lens system 67 is schematically shown.
[0294] レンズ系 67は、図 11に詳しく示すように、ファイバアレイ光源 66から出射した照明 光としてのレーザ光 Bを集光する集光レンズ 71、集光レンズ 71を通過した光の光路 に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータと 、う)As shown in detail in FIG. 11, the lens system 67 includes a condensing lens 71 that condenses laser light B as illumination light emitted from the fiber array light source 66, and an optical path of light that has passed through the condensing lens 71. Rod-shaped optical integrator inserted into the rod (hereinafter referred to as rod integrator)
72、及びロッドインテグレータ 72の前方つまりミラー 69側に配置された結像レンズ 74 力も構成されている。集光レンズ 71、ロッドインテグレータ 72及び結像レンズ 74は、 ファイバアレイ光源 66から出射したレーザ光を、平行光に近くかつビーム断面内強 度が均一化された光束として DMD50に入射させる。このロッドインテグレータ 72の 形状や作用については、後に詳しく説明する。 72, and the imaging lens 74 force arranged in front of the rod integrator 72, that is, on the mirror 69 side, is also configured. The condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform intensity in the beam cross section. The shape and action of the rod integrator 72 will be described in detail later.
[0295] レンズ系 67から出射したレーザ光 Bはミラー 69で反射し、 TIR (全反射)プリズム 70 を介して DMD50に照射される。なお、図 10では、この TIRプリズム 70は省略してあ る。 The laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70. In FIG. 10, the TIR prism 70 is omitted.
[0296] また、 DMD50の光反射側には、 DMD50で反射されたレーザ光 Bを、パターン形 成材料 150上に結像する結像光学系 51が配置されて 、る。この結像光学系 51は、 図 10では概略的に示してあるが、図 11に詳細を示すように、レンズ系 52, 54からな る第 1結像光学系と、レンズ系 57, 58からなる第 2結像光学系と、これらの結像光学 系の間に挿入されたマイクロレンズアレイ 55と、アパーチャアレイ 59と力も構成されて いる。  In addition, an imaging optical system 51 that images the laser beam B reflected by the DMD 50 onto the pattern forming material 150 is disposed on the light reflection side of the DMD 50. This imaging optical system 51 is schematically shown in FIG. 10, but as shown in detail in FIG. 11, the first imaging optical system consisting of lens systems 52 and 54 and lens systems 57 and 58 are used. The second imaging optical system, the microlens array 55 inserted between these imaging optical systems, and the aperture array 59 are also configured.
[0297] マイクロレンズアレイ 55は、 DMD50の各描素に対応する多数のマイクロレンズ 55 aが 2次元状に配列されてなるものである。本例では、後述するように DMD50の 102 4個 X 768列のマイクロミラーのうち 1024個 X 256列だけが駆動されるので、それに 対応させてマイクロレンズ 55aは 1024個 X 256列配置されている。またマイクロレン ズ 55aの配置ピッチは縦方向、横方向とも 41 μ mである。このマイクロレンズ 55aは、 一例として焦点距離が 0. 19mm、NA (開口数)が 0. 11で、光学ガラス BK7から形 成されている。なおマイクロレンズ 55aの形状については、後に詳しく説明する。 そして、各マイクロレンズ 55aの位置におけるレーザ光 Bのビーム径は、 41 μ mであ る。  [0297] The microlens array 55 is formed by two-dimensionally arranging a number of microlenses 55a corresponding to each picture element of the DMD 50. In this example, as will be described later, only 1024 x 256 rows of the 1024 x 768 rows of micromirrors of the DMD50 are driven, and accordingly, the microlens 55a is arranged by 1024 x 256 rows. . The arrangement pitch of microlenses 55a is 41 μm in both the vertical and horizontal directions. As an example, the micro lens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed of the optical glass BK7. The shape of the microlens 55a will be described in detail later. The beam diameter of the laser beam B at the position of each microlens 55a is 41 μm.
[0298] また、アパーチャアレイ 59は、マイクロレンズアレイ 55の各マイクロレンズ 55aに対 応する多数のアパーチャ(開口) 59aが形成されてなるものである。アパーチャ 59aの 径は、例えば、 10 mである。  Further, the aperture array 59 is formed by forming a large number of apertures (openings) 59a corresponding to the respective microlenses 55a of the microlens array 55. The diameter of the aperture 59a is, for example, 10 m.
[0299] 前記第 1結像光学系は、 DMD50による像を 3倍に拡大してマイクロレンズアレイ 5 5上に結像する。そして、前記第 2結像光学系は、マイクロレンズアレイ 55を経た像を 1. 6倍に拡大してパターン形成材料 150上に結像、投影する。したがって全体では 、 DMD50による像が 4. 8倍に拡大してパターン形成材料 150上に結像、投影され ることになる。 [0299] The first imaging optical system magnifies the image by the DMD 50 by a factor of 3 to obtain a microlens array 5 5 forms an image. Then, the second imaging optical system forms an image on the pattern forming material 150 and projects it by enlarging the image that has passed through the microlens array 55 by 1.6 times. Therefore, as a whole, the image formed by the DMD 50 is magnified by 4.8 times and is formed and projected on the pattern forming material 150.
[0300] なお、前記第 2結像光学系とパターン形成材料 150との間にプリズムペア 73が配 設され、このプリズムペア 73を図 11中で上下方向に移動させることにより、パターン 形成材料 150上における像のピントを調節可能となって 、る。なお同図中にお 、て、 パターン形成材料 150は矢印 F方向に副走査送りされる。  [0300] A prism pair 73 is disposed between the second imaging optical system and the pattern forming material 150. By moving the prism pair 73 in the vertical direction in FIG. You can adjust the focus of the image above. In the figure, the pattern forming material 150 is sub-scan fed in the direction of arrow F.
[0301] 前記描素部としては、前記光照射手段からの光を受光し出射することができる限り 、特に制限はなぐ目的に応じて適宜選択することができるが、例えば、本発明のパ ターン形成方法により形成されるパターンが画像パターンである場合には、画素であ り、前記光変調手段が DMDを含む場合にはマイクロミラーである。  [0301] The picture element portion can be appropriately selected according to the purpose without particular limitation as long as it can receive and emit light from the light irradiation means. For example, the pattern portion of the present invention can be selected. When the pattern formed by the forming method is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror.
前記光変調素子が有する描素部の数 (前記 n)としては、特に制限はなぐ目的に 応じて適宜選択することができる。  The number of picture element portions (n mentioned above) of the light modulation element can be appropriately selected according to the purpose without particular limitation.
前記光変調素子における描素部の配列としては、特に制限はなぐ目的に応じて 適宜選択することができるが、例えば、 2次元状に配列していることが好ましぐ格子 状に配列して 、ることがより好ま 、。  The arrangement of the picture element portions in the light modulation element can be appropriately selected according to the purpose for which there is no particular limitation. For example, a two-dimensional arrangement is preferably arranged in a lattice shape. More preferred to be.
[0302] —マイクロレンズアレイ一  [0302] —Micro lens array
前記マイクロレンズアレイとしては、前記描素部における出射面の歪みによる収差 を補正可能な非球面を有するマイクロレンズを配列している限り、特に制限はなぐ目 的に応じて適宜選択することができる。  The microlens array can be appropriately selected depending on the purpose without any limitation as long as microlenses having an aspheric surface capable of correcting aberration due to distortion of the exit surface in the pixel portion are arranged. .
[0303] 前記非球面としては、特に制限はなぐ目的に応じて適宜選択することができるが、 例えば、トーリック面が好ましい。  [0303] The aspherical surface can be appropriately selected depending on the purpose without particular limitation, and for example, a toric surface is preferable.
[0304] 以下、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等 について図面を参照しながら説明する。  Hereinafter, the microlens array, the aperture array, the imaging optical system, and the like will be described with reference to the drawings.
[0305] 図 13Aは、 DMD50、 DMD50にレーザ光を照射する光照射手段 144、 DMD50 で反射されたレーザ光を拡大して結像するレンズ系(結像光学系) 454、 458、 DM D50の各描素部に対応して多数のマイクロレンズ 474が配置されたマイクロレンズァ レイ 472、マイクロレンズアレイ 472の各マイクロレンズに対応して多数のアパーチャ 4 78が設けられたアパーチャアレイ 476、アパーチャを通過したレーザ光を被露光面 5 6に結像するレンズ系(結像光学系) 480、 482で構成される露光ヘッドを表す。 ここで図 14に、 DMD50を構成するマイクロミラー 62の反射面の平面度を測定した 結果を示す。同図においては、反射面の同じ高さ位置を等高線で結んで示してあり 、等高線のピッチは 5nmである。なお同図に示す X方向及び y方向は、マイクロミラー 62の 2つ対角線方向であり、マイクロミラー 62は y方向に延びる回転軸を中心として 前述のように回転する。また、図 15A及び図 15Bにはそれぞれ、上記 X方向、 y方向 に沿ったマイクロミラー 62の反射面の高さ位置変位を示す。 [0305] Fig. 13A shows DMD50, light irradiation means 144 for irradiating DMD50 with laser light, and a lens system (imaging optical system) 454, 458, DM D50 for enlarging and imaging the laser light reflected by DMD50. A microlens with multiple microlenses 474 corresponding to each pixel part Aperture array 476 provided with a number of apertures 478 corresponding to each of the microlenses of ray 472 and microlens array 472, and a lens system that forms an image of laser light that has passed through the apertures on exposed surface 56 (imaging optics) System) Represents an exposure head composed of 480 and 482. Here, FIG. 14 shows the result of measuring the flatness of the reflection surface of the micromirror 62 constituting the DMD 50. In the figure, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. Note that the X direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above. 15A and 15B show the height position displacement of the reflection surface of the micromirror 62 along the X direction and the y direction, respectively.
[0306] 図 14、図 15A、及び図 15Bに示した通り、マイクロミラー 62の反射面には歪みが存 在し、そして特にミラー中央部に注目してみると、 1つの対角線方向(y方向)の歪み 1S 別の対角線方向(X方向)の歪みよりも大きくなつている。このため、マイクロレンズ アレイ 55のマイクロレンズ 55aで集光されたレーザ光 Bの集光位置における形状が歪 むという問題が発生し得る。  [0306] As shown in FIGS. 14, 15A, and 15B, the reflection surface of the micromirror 62 is distorted, and when attention is paid particularly to the center of the mirror, one diagonal direction (y direction) ) Distortion 1S The distortion is larger than the distortion in another diagonal direction (X direction). For this reason, the problem that the shape in the condensing position of the laser beam B condensed by the microlens 55a of the microlens array 55 may be distorted.
[0307] 本発明のパターン形成方法においては前記問題を防止するために、マイクロレン ズアレイ 55のマイクロレンズ 55aが、従来とは異なる特殊な形状とされている。以下、 その点について詳しく説明する。  In the pattern forming method of the present invention, in order to prevent the above problem, the microlens 55a of the microlens array 55 has a special shape different from the conventional one. This will be described in detail below.
[0308] 図 16A及び図 16Bはそれぞれ、マイクロレンズアレイ 55全体の正面形状及び側面 形状を詳しく示すものである。これらの図にはマイクロレンズアレイ 55の各部の寸法も 記入してあり、それらの単位は mmである。本発明のパターン形成方法では、先に図 4を参照して説明したように DMD50の 1024個 X 256列のマイクロミラー 62が駆動さ れるものであり、それに対応させてマイクロレンズアレイ 55は、横方向に 1024個並ん だマイクロレンズ 55aの列を縦方向に 256列並設して構成されている。なお、図 16A では、マイクロレンズアレイ 55の並び順を横方向については jで、縦方向については kで示している。  FIG. 16A and FIG. 16B respectively show the front shape and the side shape of the entire microlens array 55 in detail. These figures also show the dimensions of each part of the microlens array 55, and their units are mm. In the pattern forming method of the present invention, as described above with reference to FIG. 4, the 1024 × 256 micromirrors 62 of the DMD 50 are driven. It consists of 1024 microlenses 55a aligned in the vertical direction and 256 vertical rows. In FIG. 16A, the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction.
[0309] また、図 17A及び図 17Bはそれぞれ、マイクロレンズアレイ 55における 1つのマイク 口レンズ 55aの正面形状及び側面形状を示すものである。なお図 17Aには、マイクロ レンズ 55aの等高線を併せて示してある。各マイクロレンズ 55aの光出射側の端面は 、マイクロミラー 62の反射面の歪みによる収差を補正する非球面形状とされて ヽる。 より具体的には、マイクロレンズ 55aはトーリックレンズとされており、上記 X方向に光 学的に対応する方向の曲率半径 Rx=—0. 125mm,上記 y方向に対応する方向の 曲率半径 Ry=— 0. 1mmである。 FIG. 17A and FIG. 17B show the front shape and the side shape of one microphone opening lens 55a in the microlens array 55, respectively. FIG. 17A also shows the contour lines of the micro lens 55a. The end face of each microlens 55a on the light exit side is In other words, it is an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = −0.125 mm in the direction optically corresponding to the X direction, and a radius of curvature Ry = in the direction corresponding to the y direction. — 0.1 mm.
[0310] したがって、上記 X方向及び y方向に平行な断面内におけるレーザ光 Bの集光状態 は、概略、それぞれ図 18A及び図 18Bに示す通りとなる。つまり、 X方向に平行な断 面内と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 55 aの曲率半径がより小であって、焦点距離がより短くなつている。  [0310] Therefore, the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively. In other words, comparing the cross section parallel to the X direction and the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. ing.
[0311] マイクロレンズ 55aを前記形状とした場合の、該マイクロレンズ 55aの集光位置(焦 点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図 19A 〜図 19Dに示す。また比較のために、マイクロレンズ 55aが曲率半径 Rx=Ry=— 0 . 1mmの球面形状である場合について、同様のシミュレーションを行った結果を図 2 OA〜図 20D〖こ示す。なお、各図における zの値は、マイクロレンズ 55aのピント方向 の評価位置を、マイクロレンズ 55aのビーム出射面からの距離で示している。  [0311] FIGS. 19A to 19D show simulation results of the beam diameter in the vicinity of the condensing position (focus position) of the microlens 55a when the microlens 55a has the above-described shape. For comparison, FIG. 2OA to FIG. 20D show the results of the same simulation when the microlens 55a has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. Note that the value of z in each figure indicates the evaluation position in the focus direction of the microlens 55a by the distance from the beam exit surface of the microlens 55a.
[0312] また、前記シミュレーションに用いたマイクロレンズ 55aの面形状は、下記計算式で 計算される。  [0312] Further, the surface shape of the microlens 55a used in the simulation is calculated by the following calculation formula.
[数 1]  [Number 1]
C 2 X 2+ C y 2 Y 2 C 2 X 2 + C y 2 Y 2
― 1 + S Q R T ( 1 - C 2 X 2 - C y 2 Y 2 ) ― 1 + SQRT (1-C 2 X 2 -C y 2 Y 2 )
[0313] 但し、前記計算式において、 Cxは、 X方向の曲率( = lZRx)を意味し、 Cyは、 y方 向の曲率( = lZRy)を意味し、 Xは、 X方向に関するレンズ光軸 O力もの距離を意味 し、 Yは、 y方向に関するレンズ光軸 O力 の距離を意味する。 [0313] However, in the above formula, Cx means the curvature in the X direction (= lZRx), Cy means the curvature in the y direction (= lZRy), and X is the lens optical axis in the X direction. This means the distance of O force, and Y means the distance of the lens optical axis O force in the y direction.
[0314] 図 19A〜図 19Dと、図 20A〜図 20Dとを比較すると明らかなように、本発明のパタ ーン形成方法ではマイクロレンズ 55aを、 y方向に平行な断面内の焦点距離力 方向 に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位 置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高 精細な画像をパターン形成材料 150に露光可能となる。また、図 19A〜図 19Dに示 す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより 大であることが分かる。 [0314] As is apparent from a comparison between Figs. 19A to 19D and Figs. 20A to 20D, in the pattern forming method of the present invention, the microlens 55a is placed in the direction of the focal length force in the cross section parallel to the y direction. By using a toric lens smaller than the focal length in the cross section parallel to the beam, distortion of the beam shape in the vicinity of the condensing position is suppressed. If so, the pattern forming material 150 can be exposed to a higher-definition image without distortion. Further, in the present embodiment shown in FIGS. 19A to 19D, the region where the beam diameter is small is wider, that is, the depth of focus is larger. It turns out that it is big.
[0315] なお、マイクロミラー 62の X方向及び y方向に関する中央部の歪の大小関係力 上 記と逆になつている場合は、 X方向に平行な断面内の焦点距離が y方向に平行な断 面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様 に、歪みの無い、より高精細な画像をパターン形成材料 150に露光可能となる。  [0315] Note that when the micro-mirror 62 is in the opposite direction to the distortion in the center in the X and y directions, the focal length in the cross section parallel to the X direction is parallel to the y direction. If the microlens is made up of a toric lens that is smaller than the focal length in the cross section, similarly, a higher definition image without distortion can be exposed to the pattern forming material 150.
[0316] また、マイクロレンズアレイ 55の集光位置近傍に配置されたアパーチャアレイ 59は 、その各アパーチャ 59aに、それと対応するマイクロレンズ 55aを経た光のみが入射 するように配置されたものである。すなわち、このアパーチャアレイ 59が設けられてい ることにより、各アパーチャ 59aに、それと対応しない隣接のマイクロレンズ 55aからの 光が入射することが防止され、消光比が高められる。  [0316] The aperture array 59 arranged in the vicinity of the condensing position of the microlens array 55 is arranged so that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. . That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
[0317] 本来、上記目的で設置されるアパーチャアレイ 59のアパーチャ 59aの径をある程 度小さくすれば、マイクロレンズ 55aの集光位置におけるビーム形状の歪みを抑制す る効果も得られる。しカゝしそのようにした場合は、アパーチャアレイ 59で遮断される光 量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ 55a を非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれ る。  [0317] Essentially, if the diameter of the aperture 59a of the aperture array 59 installed for the above purpose is reduced to some extent, the effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a can also be obtained. However, if this is done, the amount of light blocked by the aperture array 59 will increase and the light utilization efficiency will decrease. On the other hand, when the microlens 55a has an aspherical shape, the light utilization efficiency is kept high because light is not blocked.
[0318] また、本発明のパターン形成方法において、マイクロレンズ 55aは、 2次の非球面形 状であってもよぐより高次 (4次、 6次 · · の非球面形状であってもよい。前記高次の 非球面形状を採用することにより、ビーム形状をさらに高精細にすることができる。  [0318] In the pattern forming method of the present invention, the microlens 55a may be a secondary aspherical shape or a higher order (4th, 6th order, aspherical shape). By adopting the higher-order aspherical shape, the beam shape can be further refined.
[0319] また、以上説明した実施形態では、マイクロレンズ 55aの光出射側の端面が非球面  [0319] In the embodiment described above, the end surface of the light exit side of the micro lens 55a is aspheric.
(トーリック面)とされているが、 2つの光通過端面の一方を球面とし、他方をシリンドリ カル面としたマイクロレンズカゝらマイクロレンズアレイを構成して、上記実施形態と同 様の効果を得ることもできる。  Although a microlens array is configured with one of the two light-passing end surfaces being a spherical surface and the other being a cylindrical surface, the same effect as in the above embodiment can be obtained. It can also be obtained.
[0320] さらに、以上説明した実施形態においては、マイクロレンズアレイ 55のマイクロレン ズ 55aが、マイクロミラー 62の反射面の歪みによる収差を補正する非球面形状とされ ているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成す る各マイクロレンズに、マイクロミラー 62の反射面の歪みによる収差を補正する屈折 率分布を持たせても、同様の効果を得ることができる。 [0321] そのようなマイクロレンズ 155aの一例を図 22A及び図 22Bに示す。図 22A及び図 22Bは、それぞれ、このマイクロレンズ 155aの正面形状及び側面形状を示すもので あり、図示の通りこのマイクロレンズ 155aの外形形状は平行平板状である。なお、同 図における x、 y方向は、既述した通りである。 [0320] Furthermore, in the embodiment described above, the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. The same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflection surface of the micromirror 62 instead of adopting the spherical shape. . [0321] An example of such a microlens 155a is shown in Figs. 22A and 22B. 22A and 22B show the front shape and the side shape of the microlens 155a, respectively, and the external shape of the microlens 155a is a parallel plate as shown in the figure. The x and y directions in the figure are as described above.
[0322] また、図 23A及び図 23Bは、このマイクロレンズ 155aによる上記 x方向及び y方向 に平行な断面内におけるレーザ光 Bの集光状態を概略的に示している。このマイクロ レンズ 155aは、光軸 O力も外方に向かって次第に増大する屈折率分布を有するもの であり、同図においてマイクロレンズ 155a内に示す破線は、その屈折率が光軸 Oか ら所定の等ピッチで変化した位置を示している。図示の通り、 X方向に平行な断面内 と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 155aの 屈折率変化の割合がより大であって、焦点距離がより短くなつている。このような屈折 率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズ アレイ 55を用いる場合と同様の効果を得ることが可能である。  FIG. 23A and FIG. 23B schematically show the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the microlens 155a. The microlens 155a has a refractive index distribution in which the optical axis O force gradually increases outward, and the broken line shown in the microlens 155a in FIG. The positions changed at equal pitches are shown. As shown in the figure, when comparing the cross section parallel to the X direction and the cross section parallel to the y direction, the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is larger. It is getting shorter. Even when a microlens array composed of such a gradient index lens is used, the same effect as when the microlens array 55 is used can be obtained.
[0323] なお、先に図 17A、図 17B、図 18A、及び図 18Bに示したマイクロレンズ 55aのよう に面形状を非球面としたマイクロレンズにぉ 、て、併せて上述のような屈折率分布を 与え、面形状と屈折率分布の双方によって、マイクロミラー 62の反射面の歪みによる 収差を補正するようにしてもょ ヽ。  Note that a refractive index as described above is also applied to a microlens having an aspherical surface shape like the microlens 55a previously shown in FIGS. 17A, 17B, 18A, and 18B. It is possible to give a distribution and correct aberration due to distortion of the reflecting surface of the micromirror 62 by both the surface shape and the refractive index distribution.
[0324] また、上記の実施形態では、 DMD50を構成するマイクロミラー 62の反射面の歪み による収差を補正しているが、 DMD以外の空間光変調素子を用いる本発明のバタ ーン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場 合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じるこ とを防止可能である。  [0324] In the above embodiment, the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected. However, in the pattern forming method of the present invention using a spatial light modulation element other than the DMD. However, if there is distortion on the surface of the picture element portion of the spatial light modulator, the present invention can be applied to correct the aberration due to the distortion and prevent the beam shape from being distorted.
[0325] 次に、前記結像光学系について更に説明する。  Next, the imaging optical system will be further described.
前記露光ヘッドでは、光照射手段 144からレーザ光が照射されると、 DMD50によ りオン方向に反射される光束線の断面積が、レンズ系 454、 458により数倍 (例えば、 2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ 472の各マイクロレ ンズにより DMD50の各描素部に対応して集光され、アパーチャアレイ 476の対応す るアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系 480、 482に より被露光面 56上に結像される。 In the exposure head, when the laser beam is irradiated from the light irradiation means 144, the cross-sectional area of the beam line reflected in the ON direction by the DMD 50 is several times (for example, twice) by the lens systems 454 and 458. Enlarged. The expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476. The laser beam that has passed through the aperture enters the lens systems 480 and 482. Further, an image is formed on the exposed surface 56.
[0326] この結像光学系では、 DMD50により反射されたレーザ光は、拡大レンズ 454、 45 8により数倍に拡大されて被露光面 56に投影されるので、全体の画像領域が広くな る。このとき、マイクロレンズアレイ 472及びアパーチャアレイ 476が配置されていなけ れば、図 13Bに示すように、被露光面 56に投影される各ビームスポット BSの 1描素 サイズ (スポットサイズ)が露光エリア 468のサイズに応じて大きなものとなり、露光エリ ァ 468の鮮鋭度を表す MTF (Modulation Transfer Function)特性が低下する In this imaging optical system, the laser beam reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 and projected onto the exposed surface 56, so that the entire image area is widened. . At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected onto the exposed surface 56 is the exposure area. MTF (Modulation Transfer Function), which represents the sharpness of exposure area 468, decreases as the size of 468 increases.
[0327] 一方、マイクロレンズアレイ 472及びアパーチャアレイ 476を配置した場合には、 D MD50により反射されたレーザ光は、マイクロレンズアレイ 472の各マイクロレンズに より DMD50の各描素部に対応して集光される。これにより、図 13Cに示すように、露 光エリアが拡大された場合でも、各ビームスポット BSのスポットサイズを所望の大きさ (例えば、 lO ^ mX lO ^ m)に縮小することができ、 MTF特性の低下を防止して高 精細な露光を行うことができる。なお、露光エリア 468が傾いているのは、描素間の隙 間を無くす為に DMD50を傾けて配置しているからである。 On the other hand, when the microlens array 472 and the aperture array 476 are arranged, the laser light reflected by the DMD50 corresponds to each pixel part of the DMD50 by each microlens of the microlens array 472. Focused. As a result, as shown in FIG. 13C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, lO ^ mX lO ^ m). It is possible to perform high-definition exposure by preventing deterioration of characteristics. The exposure area 468 is tilted because the DMD 50 is tilted in order to eliminate gaps between pixels.
[0328] また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによつ て被露光面 56上でのスポットサイズが一定の大きさになるようにビームを整形するこ とができると共に、各描素に対応して設けられたアパーチャアレイを通過させることに より、隣接する描素間でのクロストークを防止することができる。  [0328] Even if the beam is thick due to the aberration of the micro lens, the aperture array can shape the beam so that the spot size on the exposed surface 56 is constant. At the same time, by passing through an aperture array provided corresponding to each pixel, crosstalk between adjacent pixels can be prevented.
[0329] 更に、光照射手段 144に後述する高輝度光源を使用することにより、レンズ 458か らマイクロレンズアレイ 472の各マイクロレンズに入射する光束の角度が小さくなるの で、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光 比を実現することができる。  [0329] Furthermore, by using a high-intensity light source, which will be described later, as the light irradiation means 144, the angle of the light beam incident on each microlens of the microlens array 472 from the lens 458 becomes small, so It is possible to prevent a part of the light beam from entering. That is, a high extinction ratio can be realized.
[0330] その他の光学系  [0330] Other optical systems
本発明のパターン形成方法では、公知の光学系の中から適宜選択したその他の光 学系と併用してもよぐ例えば、 1対の組合せレンズからなる光量分布補正光学系な どが挙げられる。 前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束 幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅 を変化させて、光照射手段からの平行光束を DMDに照射するときに、被照射面で の光量分布が略均一になるように補正する。以下、前記光量分布補正光学系につい て図面を参照しながら説明する。 The pattern forming method of the present invention may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light quantity distribution correcting optical system composed of a pair of combination lenses. The light quantity distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis is smaller on the exit side than on the entrance side. When the DMD is irradiated with the parallel light beam from the light irradiation means, the light amount distribution on the irradiated surface is corrected so as to be substantially uniform. Hereinafter, the light quantity distribution correcting optical system will be described with reference to the drawings.
[0331] まず、図 23Aに示したように、入射光束と出射光束とで、その全体の光束幅 (全光 束幅) HO、 HIが同じである場合について説明する。なお、図 23Aにおいて、符号 5 1、 52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮 想的に示したものである。 First, as shown in FIG. 23A, the case where the entire luminous flux width (total luminous flux width) HO and HI is the same for the incident luminous flux and the outgoing luminous flux will be described. In FIG. 23A, the portions denoted by reference numerals 51 and 52 virtually represent the entrance surface and the exit surface of the light quantity distribution correcting optical system.
[0332] 前記光量分布補正光学系において、光軸 Z1に近い中心部に入射した光束と、周 辺部に入射した光束とのそれぞれの光束幅 hO、 hi力 同一であるものとする(hO = hl)。前記光量分布補正光学系は、入射側において同一の光束幅 hO, hiであった 光に対し、中心部の入射光束については、その光束幅 hOを拡大し、逆に、周辺部の 入射光束に対してはその光束幅 hiを縮小するような作用を施す。すなわち、中心部 の出射光束の幅 hlOと、周辺部の出射光束の幅 hl lとについて、 hl l <hlOとなるよ うにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部 の光束幅の比「hllZhlO」力 入射側における比(hlZhO= l)に比べて小さくな つている((hllZhlO)く 1)。  [0332] In the light quantity distribution correcting optical system, the light flux width hO and hi force of the light beam incident on the central part near the optical axis Z1 and the light beam incident on the peripheral part are the same (hO = hl). The light quantity distribution correcting optical system expands the light flux width hO of the incident light flux at the central portion with respect to the light having the same light flux width hO, hi on the incident side. On the other hand, it acts to reduce the luminous flux width hi. That is, the width hlO of the outgoing light beam in the central portion and the width hl l of the outgoing light beam in the peripheral portion are set to satisfy hl l <hlO. In terms of the ratio of the luminous flux width, the ratio of the luminous flux width in the peripheral part to the luminous flux width in the central part on the exit side is smaller than the ratio (hlZhO = l) on the incident side (hllZhlO). ).
[0333] このように光束幅を変化させることにより、通常では光量分布が大きくなつている中 央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利 用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは 、例えば、有効領域内における光量ムラが 30%以内、好ましくは 20%以内となるよう にする。  [0333] By changing the light flux width in this way, the central light flux, which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the light utilization as a whole is improved. The light amount distribution on the irradiated surface is made substantially uniform without reducing the use efficiency. The degree of uniformity is, for example, such that the unevenness in the amount of light within the effective area is within 30%, preferably within 20%.
[0334] 前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束 幅を変える場合(図 24B及び図 24C)においても同様である。  [0334] The actions and effects of the light quantity distribution correcting optical system are the same when the entire luminous flux width is changed between the incident side and the exit side (FIGS. 24B and 24C).
[0335] 図 24Bは、入射側の全体の光束幅 H0を、幅 H2に"縮小"して出射する場合 (H0 [0335] Figure 24B shows the case where the total beam width H0 on the incident side is “reduced” to the width H2 before being emitted (H0
>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 h0、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hi 1が中心部に比べて小 さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を 周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大き くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「H11ZH10」が、入射側における比 (hlZhO= l)に比べて小さくなる(( hllZhlO)く 1)。 > H2). Even in such a case, the light quantity distribution correcting optical system is The light beam with the same luminous flux width h0, hi on the side has a larger luminous flux width hlO in the central part than the peripheral part on the outgoing side, and conversely, the luminous flux width hi 1 in the peripheral part is larger than that in the central part. Try to be small. Considering the reduction rate of the luminous flux, the reduction rate for the incident light flux in the central portion is made smaller than that in the peripheral portion, and the reduction rate for the incident light flux in the peripheral portion is made larger than that in the central portion. Also in this case, the ratio “H11ZH10” of the light flux width in the peripheral part to the light flux width in the central part is smaller than the ratio (hlZhO = l) on the incident side ((hllZhlO) 1).
[0336] 図 24Cは、入射側の全体の光束幅 H0を、幅 H3に"拡大"して出射する場合 (H0 く H3)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 h0、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hi 1が中心部に比べて小 さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を 周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さ くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「hllZhlO」力 入射側における比 (hlZhO= l)に比べて小さくなる((h llZhlO) < l)。  FIG. 24C shows a case where the entire light flux width H0 on the incident side is “expanded” to the width H3 and emitted (H0 and H3). Even in such a case, the light quantity distribution correcting optical system has the same light flux width h0, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side. Conversely, the light flux width hi 1 at the peripheral part is made smaller than that at the central part. Considering the expansion ratio of the luminous flux, the expansion ratio for the incident luminous flux in the center is increased compared to the peripheral area, and the expansion ratio for the incident luminous flux in the peripheral area is reduced compared to the central area. Also in this case, the ratio of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (hlZhO = l) on the incident side (hllZhlO) force ((h llZhlO) <l).
[0337] このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、 光軸 Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出 射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、 出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅 は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことが でき、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された 光束断面を形成することができる。  As described above, the light quantity distribution correction optical system changes the light flux width at each emission position, and outputs the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis Z1 compared to the incident side. Since the emission side is smaller, the light having the same luminous flux width on the incident side has a larger luminous flux width in the central part than in the peripheral part on the outgoing side, and the luminous flux width in the peripheral part is Smaller than the center. As a result, the light beam in the central part can be utilized to the peripheral part, and a light beam cross-section with a substantially uniform light quantity distribution can be formed without reducing the light use efficiency of the entire optical system.
[0338] 次に、前記光量分布補正光学系として使用する 1対の組合せレンズの具体的なレ ンズデータの 1例を示す。この例では、前記光照射手段がレーザアレイ光源である場 合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータ を示す。なお、シングルモード光ファイバの入射端に 1個の半導体レーザを接続した 場合には、光ファイノからの射出光束の光量分布がガウス分布になる。本発明のパ ターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファ ィバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に 近 、中心部の光量が周辺部の光量よりも大き!/、場合にも適用可能である。 [0338] Next, an example of specific lens data of a pair of combination lenses used as the light quantity distribution correcting optical system is shown. In this example, lens data is shown in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution, as in the case where the light irradiation means is a laser array light source. When one semiconductor laser is connected to the incident end of a single mode optical fiber, the light intensity distribution of the emitted light beam from the optical fino becomes a Gaussian distribution. The parameters of the present invention The turn forming method can be applied in such a case. Also applicable to cases where the core diameter is close to the optical axis by reducing the core diameter of the multimode optical fiber and approaching the configuration of the single mode optical fiber, etc. It is.
下記表 1に基本レンズデータを示す。  Table 1 below shows basic lens data.
[0339] [表 1] [0339] [Table 1]
Figure imgf000094_0001
Figure imgf000094_0001
[0340] 表 1から分力るように、 1対の組合せレンズは、回転対称の 2つの非球面レンズから 構成されている。光入射側に配置された第 1のレンズの光入射側の面を第 1面、光出 射側の面を第 2面とすると、第 1面は非球面形状である。また、光出射側に配置され た第 2のレンズの光入射側の面を第 3面、光出射側の面を第 4面とすると、第 4面が 非球面形状である。 [0340] As shown in Table 1, a pair of combination lenses is composed of two rotationally symmetric aspherical lenses. If the light incident side surface of the first lens arranged on the light incident side is the first surface and the light output side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.
[0341] 表 1にお!/、て、面番号 Siは i番目(i= 1〜4)の面の番号を示し、曲率半径 riは i番目 の面の曲率半径を示し、面間隔 diは i番目の面と i+ 1番目の面との光軸上の面間隔 を示す。面間隔 di値の単位はミリメートル (mm)である。屈折率 Niは i番目の面を備え た光学要素の波長 405nmに対する屈折率の値を示す。  [0341] In Table 1,! /, The surface number Si indicates the number of the i-th surface (i = 1 to 4), the radius of curvature ri indicates the radius of curvature of the i-th surface, and the surface spacing di is The distance between the i-th surface and the (i + 1) -th surface on the optical axis. The unit of the surface distance di value is millimeter (mm). Refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
下記表 2に、第 1面及び第 4面の非球面データを示す。  Table 2 below shows the aspherical data for the first and fourth surfaces.
[0342] [表 2] 非球面データ [0342] [Table 2] Aspheric data
第 1面 第 4面  1st side 4th side
C -1. 4098E-02 - 9, 8506E-03  C -1. 4098E-02-9, 8506E-03
K -4. 2192E+00 -3. 6253E+01 a 3 -1. 0027E-04 -8. 980E-05 a 4 3, 0591E-05 2. 3060E-05 a 5 -4* 5115E-07 2, 2860E 06 a 6 - 8, 2819E-09 8. 7661E- 08 a 7 4. 1020E-12 4, 4028E-10 a 8 L 2231E-13 1. 3624E-12 a 9 5. 3753E-16 3. 3965E- 15  K -4. 2192E + 00 -3. 6253E + 01 a 3 -1. 0027E-04 -8. 980E-05 a 4 3, 0591E-05 2. 3060E-05 a 5 -4 * 5115E-07 2, 2860E 06 a 6-8, 2819E-09 8. 7661E- 08 a 7 4. 1020E-12 4, 4028E-10 a 8 L 2231E-13 1. 3624E-12 a 9 5. 3753E-16 3. 3965E-15
1 0 1, 6315E-18 7. 4823E-18  1 0 1, 6315E-18 7. 4823E-18
[0343] 上記の非球面データは、非球面形状を表す下記式 (A)における係数で表される。 [0343] The above-mentioned aspheric surface data is represented by a coefficient in the following equation (A) representing the aspheric surface shape.
[0344] [数 2]
Figure imgf000095_0001
[0344] [Equation 2]
Figure imgf000095_0001
[0345] 上記式 (Α)にお 、て各係数を以下の通り定義する。  [0345] In the above equation (Α), each coefficient is defined as follows.
Ζ :光軸から高さ ρの位置にある非球面上の点から、非球面の頂点の接平面 (光軸に 垂直な平面)に下ろした垂線の長さ(mm)  Ζ: Length of perpendicular line (mm) drawn from a point on the aspheric surface at a height ρ from the optical axis to the tangential plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
P:光軸からの距離 (mm)  P: Distance from optical axis (mm)
K:円錐係数  K: Conic coefficient
じ:近軸曲率(17 r:近軸曲率半径)  J: paraxial curvature (17 r: paraxial radius of curvature)
ai:第 i次 (i= 3〜: LO)の非球面係数  ai: i-th order (i = 3 ~: LO) aspheric coefficient
表 2に示した数値において、記号" E"は、その次に続く数値が 10を底とした"べき指 数グであることを示し、その 10を底とした指数関数で表される数値力 E"の前の数値 に乗算されることを示す。例えば、「1. OE— 02」であれば、「1. 0 X 10 」であること を示す。 In the numerical values shown in Table 2, the symbol “E” indicates that the next numerical value is a power index with a base of 10, and the numerical force expressed by an exponential function with the base of 10 Number before E " To be multiplied. For example, “1. OE-02” indicates “1.0 X 10”.
[0346] 図 26は、前記表 1及び表 2に示す 1対の組合せレンズによって得られる照明光の光 量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。な お、比較のために、図 25に、補正を行わな力つた場合の照明光の光量分布 (ガウス 分布)を示す。図 25及び図 26から分力ゝるように、光量分布補正光学系で補正を行う ことにより、補正を行わな力つた場合と比べて、略均一化された光量分布が得られて いる。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行う ことができる。  FIG. 26 shows the light quantity distribution of illumination light obtained by the pair of combination lenses shown in Table 1 and Table 2. The horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%). For comparison, Fig. 25 shows the light intensity distribution (Gaussian distribution) of illumination light when correction is applied. As can be seen from FIG. 25 and FIG. 26, the light amount distribution correction optical system corrects the light amount distribution, which is substantially uniform as compared with the case where the correction is not performed. As a result, it is possible to perform uniform exposure with uniform laser light without reducing the light utilization efficiency.
[0347] 一光照射手段  [0347] Single light irradiation means
前記光照射手段としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED,半導体レーザ等の公知光源、又は 2以上の光を合成して照 射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段が 好ましい。  The light irradiation means can be appropriately selected according to the purpose without any particular limitation. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copier, etc. fluorescent tube, LED, A known light source such as a semiconductor laser or means capable of combining and irradiating two or more lights can be mentioned. Among these, means capable of combining and irradiating two or more lights are preferable.
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ (以下、「合波レーザ」と称する ことがある)がより好ましい。また支持体を剥離して力も光照射を行う場合でも、同様の 光を用いることができる。  The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred. Laser that combines two or more lights (hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
[0348] 前記紫外力も可視光線の波長としては、例えば、 300〜1500nmが好ましぐ 320 〜800mn力より好ましく、 330ηπ!〜 650mn力 ^特に好まし!/、。 [0348] As the wavelength of the visible light, the ultraviolet power is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and 330 ηπ! ~ 650mn force ^ especially preferred!
前記レーザ光の波長としては、例えば、 200〜1500nm力 S好ましく、 300〜800nm 力 Sより好ましく、 330ΠΠ!〜 500mn力更に好ましく、 400ηπ!〜 450mn力 ^特に好まし!/、  The wavelength of the laser beam is, for example, preferably 200 to 1500 nm force S, more preferably 300 to 800 nm force S, and 330 mm! ~ 500mn force more preferred, 400ηπ! ~ 450mn power ^ especially preferred! /,
[0349] 前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモー ド光ファイバと、該複数のレーザ力 それぞれ照射したレーザ光を集光して前記マル チモード光ファイバに結合させる集合光学系とを有する手段が好ましい。 [0349] Means capable of irradiating the combined laser include, for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces to collect the multi-beam. Means having a collective optical system coupled to the bimode optical fiber is preferred.
[0350] 以下、前記合波レーザを照射可能な手段 (ファイバアレイ光源)につ 、て図を参照 しながら説明する。  [0350] Hereinafter, means (fiber array light source) capable of irradiating the combined laser will be described with reference to the drawings.
[0351] ファイバアレイ光源 66は図 27Aに示すように、複数(例えば、 14個)のレーザモジュ ール 64を備えており、各レーザモジュール 64には、マルチモード光ファイバ 30の一 端が結合されている。マルチモード光ファイバ 30の他端には、コア径がマルチモード 光ファイバ 30と同一で且つクラッド径がマルチモード光ファイバ 30より小さい光フアイ バ 31が結合されている。図 27Bに詳しく示すように、マルチモード光ファイバ 31の光 ファイバ 30と反対側の端部は副走査方向と直交する主走査方向に沿って 7個並べら れ、それが 2列に配列されてレーザ出射部 68が構成されている。  [0351] The fiber array light source 66 includes a plurality of (for example, 14) laser modules 64 as shown in FIG. 27A, and one end of the multimode optical fiber 30 is coupled to each laser module 64. ing. The other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30. As shown in detail in FIG. 27B, the end portion of the multimode optical fiber 31 opposite to the optical fiber 30 is arranged along the main scanning direction orthogonal to the sub-scanning direction, and is arranged in two rows. A laser emitting unit 68 is configured.
[0352] マルチモード光ファイバ 31の端部で構成されるレーザ出射部 68は、図 27Bに示す ように、表面が平坦な 2枚の支持板 65に挟み込まれて固定されている。また、マルチ モード光ファイバ 31の光出射端面には、その保護のために、ガラス等の透明な保護 板が配置されるのが望ましい。マルチモード光ファイバ 31の光出射端面は、光密度 が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面 への塵埃の付着を防止し、また劣化を遅らせることができる。  [0352] As shown in Fig. 27B, the laser emitting portion 68 constituted by the end of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. Further, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection. The light exit end face of the multimode optical fiber 31 is easy to collect dust and easily deteriorate due to its high light density, but the protective plate as described above prevents the dust from adhering to the end face and prevents deterioration. Can be delayed.
[0353] この例では、クラッド径が小さい光ファイバ 31の出射端を隙間無く 1列に配列するた めに、クラッド径が大きい部分で隣接する 2本のマルチモード光ファイバ 30の間にマ ルチモード光ファイバ 30を積み重ね、積み重ねられたマルチモード光ファイバ 30に 結合された光ファイバ 31の出射端が、クラッド径が大きい部分で隣接する 2本のマル チモード光ファイバ 30に結合された光ファイバ 31の 2つの出射端の間に挟まれるよう に配列されている。  [0353] In this example, in order to arrange the output ends of the optical fibers 31 with a small cladding diameter in a single row without a gap, the multimode optical fibers 30 adjacent to each other with a large cladding diameter are multimode. The optical fiber 30 is stacked, and the output end of the optical fiber 31 coupled to the stacked multimode optical fiber 30 is connected to the two multimode optical fibers 30 adjacent to each other at the portion where the cladding diameter is large. They are arranged so as to be sandwiched between the two exit ends.
[0354] このような光ファイバは、例えば、図 28に示すように、クラッド径が大きいマルチモー ド光ファイバ 30のレーザ光出射側の先端部分に、長さ l〜30cmのクラッド径が小さ い光ファイバ 31を同軸的に結合することにより得ることができる。 2本の光ファイバは、 光ファイバ 31の入射端面力 マルチモード光ファイバ 30の出射端面に、両光フアイ バの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ 3 1のコア 31aの径は、マルチモード光ファイバ 30のコア 30aの径と同じ大きさである。 [0355] また、長さが短くクラッド径が大きい光ファイバにクラッド径カ 、さい光ファイバを融 着させた短尺光ファイバを、フェルールゃ光コネクタ等を介してマルチモード光フアイ バ 30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、ク ラッド径カ 、さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光 ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ 31を、 マルチモード光ファイバ 30の出射端部と称する場合がある。 For example, as shown in FIG. 28, such an optical fiber has a light with a small cladding diameter of 1 to 30 cm in length at the tip of the multimode optical fiber 30 with a large cladding diameter on the laser light emission side. It can be obtained by coupling the fibers 31 coaxially. The two optical fibers are fused and bonded to the incident end face force of the optical fiber 31 and the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide. As described above, the diameter of the core 31a of the optical fiber 31 is the same as the diameter of the core 30a of the multimode optical fiber 30. [0355] Also, a short optical fiber obtained by fusing an optical fiber having a short length and a large clad diameter to which the clad diameter is fused and the optical fiber is fused is connected to the output end of the multimode optical fiber 30 via a ferrule or optical connector. May be combined. By detachably coupling using a connector or the like, the tip portion can be easily replaced when the diameter of the clad or the optical fiber is broken, and the cost required for exposure head maintenance can be reduced. Hereinafter, the optical fiber 31 may be referred to as an emission end portion of the multimode optical fiber 30.
[0356] マルチモード光ファイバ 30及び光ファイバ 31としては、ステップインデックス型光フ アイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい 。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いること ができる。本実施の形態では、マルチモード光ファイバ 30及び光ファイバ 31は、ステ ップインデックス型光ファイバであり、マルチモード光ファイバ 30は、クラッド径 = 125
Figure imgf000098_0001
πι, NA=0. 2、入射端面コートの透過率 = 99. 5%以上であり 、光ファイバ 31は、クラッド径 =60 μ m、コア径 = 50 μ m、 NA=0. 2である。
[0356] The multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index optical fibers, and the multimode optical fiber 30 has a cladding diameter of 125.
Figure imgf000098_0001
πι, NA = 0.2, the transmittance of the incident end face coat = 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2.
[0357] 一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失 が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されて いる。し力しながら、波長が短いほど伝搬損失は少なくなり、 GaN系半導体レーザか ら出射された波長 405nmのレーザ光では、クラッドの厚み { (クラッド径一コア径) Z2 }を 800nmの波長帯域の赤外光を伝搬させる場合の 1Z2程度、通信用の 1.  In general, with laser light in the infrared region, propagation loss increases as the cladding diameter of the optical fiber is reduced. For this reason, a suitable cladding diameter is determined according to the wavelength band of the laser beam. However, the shorter the wavelength, the smaller the propagation loss. With laser light with a wavelength of 405 nm emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter, one core diameter) Z2} is set to the 800 nm wavelength band. About 1Z2 when propagating infrared light, 1.
の波長帯域の赤外光を伝搬させる場合の約 1Z4にしても、伝搬損失は殆ど増加し ない。従って、クラッド径を 60 mと小さくすることができる。  Even if it is about 1Z4 when infrared light in the wavelength band is propagated, the propagation loss hardly increases. Therefore, the cladding diameter can be reduced to 60 m.
[0358] 但し、光ファイバ 31のクラッド径は 60 μ mには限定されない。従来のファイバアレイ 光源に使用されている光ファイバのクラッド径は 125 mである力 クラッド径が小さく なるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は 80 m 以下が好ましぐ 60 m以下がより好ましぐ 40 m以下が更に好ましい。一方、コア 径は少なくとも 3〜4 μ m必要であることから、光ファイバ 31のクラッド径は 10 μ m以 上が好ましい。  However, the cladding diameter of the optical fiber 31 is not limited to 60 μm. Conventional fiber array The optical fiber used in the light source has a cladding diameter of 125 m. The smaller the cladding diameter, the deeper the focal depth. Therefore, the cladding diameter of multimode optical fibers is preferably 80 m or less. m is preferably 40 m or less. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 31 is preferably 10 μm or more.
[0359] レーザモジュール 64は、図 29に示す合波レーザ光源(ファイバアレイ光源)によつ て構成されている。この合波レーザ光源は、ヒートブロック 10上に配列固定された複 数(例えば、 7個)のチップ状の横マルチモード又はシングルモードの GaN系半導体 レーザ LD1, LD2, LD3, LD4, LD5, LD6,及び LD7と、 GaN系半導体レーザ L D1〜: LD7の各々に対応して設けられたコリメータレンズ 11, 12, 13, 14, 15, 16, 及び 17と、 1つの集光レンズ 20と、 1本のマルチモード光ファイバ 30と、から構成され ている。なお、半導体レーザの個数は 7個には限定されない。例えば、クラッド径 =6 O ^ m,コア径 = 50 πι、 NA=0. 2のマルチモード光ファイバには、 20個もの半導 体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光 ファイバ本数をより減らすことができる。 [0359] The laser module 64 includes a combined laser light source (fiber array light source) shown in FIG. This combined laser light source is a multiple array array fixed on the heat block 10. Several (for example, 7) chip-shaped lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6, and LD7, and GaN-based semiconductor lasers LD1 to LD7 The collimator lenses 11, 12, 13, 14, 15, 16, and 17 are provided correspondingly, one condenser lens 20, and one multimode optical fiber 30. The number of semiconductor lasers is not limited to seven. For example, a multimode optical fiber with a cladding diameter of 6 O ^ m, a core diameter of 50 πι, and NA = 0.2 can receive as many as 20 semiconductor laser beams, which requires an exposure head. The amount of light can be realized and the number of optical fibers can be further reduced.
[0360] GaN系半導体レーザ LD1〜LD7は、発振波長が総て共通(例えば、 405nm)で あり、最大出力も総て共通(例えば、マルチモードレーザでは 100mW、シングルモ 一ドレーザでは 30mW)である。なお、 GaN系半導体レーザ LD1〜LD7としては、 3 50nm〜450nmの波長範囲で、上記の 405nm以外の発振波長を備えるレーザを 用いてもよい。 [0360] The GaN semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also common (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above-described 405 nm in a wavelength range of 350 nm to 450 nm may be used.
[0361] 前記合波レーザ光源は、図 30及び図 31に示すように、他の光学要素と共に、上方 が開口した箱状のパッケージ 40内に収納されている。パッケージ 40は、その開口を 閉じるように作成されたパッケージ蓋 41を備えており、脱気処理後に封止ガスを導入 し、ノ ッケージ 40の開口をパッケージ蓋 41で閉じることにより、パッケージ 40とパッケ ージ蓋 41とにより形成される閉空間 (封止空間)内に上記合波レーザ光源が気密封 止されている。  [0361] As shown in Fig. 30 and Fig. 31, the combined laser light source is housed in a box-shaped package 40 having an upper opening, together with other optical elements. The package 40 is provided with a package lid 41 created so as to close the opening thereof. After the degassing process, a sealing gas is introduced, and the opening of the knock 40 is closed by the package lid 41, whereby the package 40 and the package 40 are packaged. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by the cage lid 41.
[0362] パッケージ 40の底面にはベース板 42が固定されており、このベース板 42の上面に は、前記ヒートブロック 10と、集光レンズ 20を保持する集光レンズホルダー 45と、マ ルチモード光ファイバ 30の入射端部を保持するファイバホルダー 46とが取り付けら れている。マルチモード光ファイバ 30の出射端部は、ノ ッケージ 40の壁面に形成さ れた開口からパッケージ外に引き出されている。  [0362] A base plate 42 is fixed to the bottom surface of the package 40. On the top surface of the base plate 42, the heat block 10, the condensing lens holder 45 that holds the condensing lens 20, and the multimode light. A fiber holder 46 that holds the incident end of the fiber 30 is attached. The exit end of the multimode optical fiber 30 is drawn out of the package through an opening formed in the wall surface of the knock 40.
[0363] また、ヒートブロック 10の側面にはコリメータレンズホルダー 44が取り付けられており 、コリメータレンズ 11〜17が保持されている。パッケージ 40の横壁面には開口が形 成され、この開口を通して GaN系半導体レーザ LD1〜LD7に駆動電流を供給する 配線 47がパッケージ外に引き出されている。 [0364] なお、図 31においては、図の煩雑化を避けるために、複数の GaN系半導体レーザ のうち GaN系半導体レーザ LD7にのみ番号を付し、複数のコリメータレンズのうちコ リメータレンズ 17にのみ番号を付している。 Further, a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held. An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening. [0364] In FIG. 31, in order to avoid complication of the drawing, only the GaN semiconductor laser LD7 among the plurality of GaN semiconductor lasers is numbered, and the collimator lens 17 among the plurality of collimator lenses is assigned. Only numbered.
[0365] 図 32は、前記コリメータレンズ 11〜17の取り付け部分の正面形状を示すものであ る。コリメータレンズ 11〜17の各々は、非球面を備えた円形レンズの光軸を含む領 域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメ一 タレンズは、例えば、榭脂又は光学ガラスをモールド成形することによって形成するこ とができる。コリメータレンズ 11〜17は、長手方向が GaN系半導体レーザ LD1〜LD 7の発光点の配列方向(図 32の左右方向)と直交するように、上記発光点の配列方 向に密接配置されている。  FIG. 32 shows the front shape of the mounting portion of the collimator lenses 11-17. Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into an elongated shape with a parallel plane. This elongated collimator lens can be formed, for example, by molding a resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the longitudinal direction is perpendicular to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 32). .
[0366] 一方、 GaN系半導体レーザ LD1〜LD7としては、発光幅が 2 μ mの活性層を備え 、活性層と平行な方向、直角な方向の拡がり角が各々例えば 10° 、30° の状態で 各々レーザ光 B1〜B7を発するレーザが用いられている。これら GaN系半導体レー ザ LD1〜LD7は、活性層と平行な方向に発光点が 1列に並ぶように配設されている  [0366] On the other hand, the GaN-based semiconductor lasers LD1 to LD7 have an active layer with an emission width of 2 μm, and the divergence angles in a direction parallel to the active layer and a direction perpendicular to the active layer are, for example, 10 ° and 30 °, respectively. The lasers that emit laser beams B1 to B7 are used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
[0367] したがって、各発光点から発せられたレーザ光 B1〜B7は、上述のように細長形状 の各コリメータレンズ 11〜17に対して、拡がり角度が大きい方向が長手方向と一致し 、拡がり角度が小さい方向が幅方向(長手方向と直交する方向)と一致する状態で入 射することになる。つまり、各コリメータレンズ 11〜17の幅が 1. lmm、長さが 4. 6m mであり、それらに入射するレーザ光 B1〜B7の水平方向、垂直方向のビーム径は 各々 0. 9mm、 2. 6mmである。また、コリメータレンズ 11〜17の各々は、焦点距離 f [0367] Therefore, the laser beams B1 to B7 emitted from the respective light emission points have a direction in which the direction of the larger divergence angle coincides with the longitudinal direction of each of the elongated collimator lenses 11 to 17 as described above. The incident light is incident in a state in which the direction with the smaller width coincides with the width direction (direction perpendicular to the longitudinal direction). In other words, the width of each collimator lens 11 to 17 is 1. lmm and the length is 4.6 mm, and the beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2 respectively. 6mm. Each of the collimator lenses 11 to 17 has a focal length f
1 1
= 3mm、 NA=0. 6、レンズ配置ピッチ = 1. 25mmである。 = 3mm, NA = 0.6, Lens arrangement pitch = 1.25mm.
[0368] 集光レンズ 20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細 長く切り取って、コリメータレンズ 11〜17の配列方向、つまり水平方向に長ぐそれと 直角な方向に短い形状に形成されている。この集光レンズ 20は、焦点距離 f = 23m [0368] The condensing lens 20 is obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a thin plane in a parallel plane and perpendicular to the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction. It is formed in a shape that is short in the direction. This condenser lens 20 has a focal length f = 23m
2 m、 NA=0. 2である。この集光レンズ 20も、例えば、榭脂又は光学ガラスをモールド 成形することにより形成される。  2 m, NA = 0.2. The condensing lens 20 is also formed, for example, by molding a resin or optical glass.
[0369] また、 DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部を アレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深 い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバァ レイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光 源数が少なくなり、パターン形成装置の低コストィ匕が図られる。 [0369] Further, the light emitting means for illuminating the DMD is provided with the output end of the optical fiber of the combined laser light source. Since high-intensity fiber array light sources arranged in an array are used, a pattern forming apparatus having a high output and a deep focal depth can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced.
[0370] また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので 、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、 より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビー ム径 1 μ m以下、解像度 0. 1 μ m以下の超高解像度露光の場合にも、深い焦点深 度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が 必要とされる薄膜トランジスタ (TFT)の露光工程に好適である。  [0370] Further, since the cladding diameter of the output end of the optical fiber is made smaller than the cladding diameter of the incident end, the diameter of the light emitting section is further reduced, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep focal depth can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.
[0371] また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ 光源に限定されず、例えば、 1個の発光点を有する単一の半導体レーザから入射さ れたレーザ光を出射する 1本の光ファイバを備えたファイバ光源をアレイ化したフアイ バアレイ光源を用いることができる。  [0371] Further, the light irradiation means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, laser light incident from a single semiconductor laser having one light emitting point A fiber array light source in which a fiber light source including one optical fiber emitting light is arrayed can be used.
[0372] また、複数の発光点を備えた光照射手段としては、例えば、図 33に示すように、ヒ ートブロック 100上に、複数(例えば、 7個)のチップ状の半導体レーザ LD1〜: LD7を 配列したレーザアレイを用いることができる。また、図 34Aに示す、複数 (例えば、 5個 )の発光点 110aが所定方向に配列されたチップ状のマルチキヤビティレーザ 110が 知られている。マルチキヤビティレーザ 110は、チップ状の半導体レーザを配列する 場合と比べ、発光点を位置精度良く配列できるので、各発光点力 出射されるレー ザ光を合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキヤビティレー ザ 110に橈みが発生し易くなるため、発光点 110aの個数は 5個以下とするのが好ま しい。  [0372] Further, as a light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 33, a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 on a heat block 100: LD7 Can be used. A chip-shaped multi-cavity laser 110 shown in FIG. 34A in which a plurality of (for example, five) light emitting points 110a are arranged in a predetermined direction is known. In the multi-cavity laser 110, the light emitting points can be arranged with higher positional accuracy than in the case where the chip-shaped semiconductor lasers are arranged, so that the laser beams emitted from the respective light emitting point forces can be easily combined. However, as the number of light emitting points increases, it becomes easy for the multi-cavity laser 110 to stagnate during laser manufacturing. Therefore, the number of light emitting points 110a is preferably 5 or less.
[0373] 前記光照射手段としては、このマルチキヤビティレーザ 110や、図 34Bに示すように 、ヒートブロック 100上に、複数のマルチキヤビティレーザ 110が各チップの発光点 11 Oaの配列方向と同じ方向に配列されたマルチキヤビティレーザアレイを、レーザ光源 として用いることができる。  As the light irradiating means, as shown in FIG. 34B, a plurality of multi-cavity lasers 110 are arranged on the heat block 100 as shown in FIG. 34B. A multi-cavity laser array arranged in the same direction can be used as a laser light source.
[0374] また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光 を合波するものには限定されない。例えば、図 21に示すように、複数 (例えば、 3個) の発光点 110aを有するチップ状のマルチキヤビティレーザ 110を備えた合波レーザ 光源を用いることができる。この合波レーザ光源は、マルチキヤビティレーザ 110と、 1 本のマルチモード光ファイバ 130と、集光レンズ 120と、を備えて構成されている。マ ルチキヤビティレーザ 110は、例えば、発振波長が 405nmの GaN系レーザダイォー ドで構成することができる。 [0374] Further, the combined laser light source is a laser beam emitted from a plurality of chip-shaped semiconductor lasers. It is not limited to what combines. For example, as shown in FIG. 21, a combined laser light source including a chip-shaped multi-cavity laser 110 having a plurality of (for example, three) emission points 110a can be used. The combined laser light source includes a multi-cavity laser 110, a single multimode optical fiber 130, and a condenser lens 120. The multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.
[0375] 前記構成では、マルチキヤビティレーザ 110の複数の発光点 110aの各々力も出射 したレーザ光 Bの各々は、集光レンズ 120によって集光され、マルチモード光フアイ バ 130のコア 130aに入射する。コア 130aに入射したレーザ光は、光ファイバ内を伝 搬し、 1本に合波されて出射する。  [0375] In the above-described configuration, each of the laser beams B also emitted from each of the plurality of light emitting points 110a of the multi-cavity laser 110 is collected by the condenser lens 120 and is incident on the core 130a of the multimode optical fiber 130. To do. The laser light incident on the core 130a is propagated in the optical fiber, combined into one, and emitted.
[0376] マルチキヤビティレーザ 110の複数の発光点 110aを、上記マルチモード光フアイ ノ 130のコア径と略等しい幅内に並設すると共に、集光レンズ 120として、マルチモ ード光ファイバ 130のコア径と略等しい焦点距離の凸レンズや、マルチキヤビティレ 一ザ 110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレ ンズを用 、ることにより、レーザ光 Bのマルチモード光ファイバ 130への結合効率を上 げることができる。  [0376] A plurality of light emitting points 110a of the multi-cavity laser 110 are juxtaposed within a width substantially equal to the core diameter of the multi-mode optical fiber 130, and as the condenser lens 120, the multi-mode optical fiber 130 By using a convex lens with a focal length approximately equal to the core diameter or a rod lens that collimates the outgoing beam from the multi-cavity laser 110 only in a plane perpendicular to its active layer, the multimode of laser light B The coupling efficiency to the optical fiber 130 can be increased.
[0377] また、図 35に示すように、複数 (例えば、 3個)の発光点を備えたマルチキヤビティレ 一ザ 110を用い、ヒートブロック 111上に複数(例えば、 9個)のマルチキヤビティレー ザ 110が互いに等間隔で配列されたレーザアレイ 140を備えた合波レーザ光源を用 いることができる。複数のマルチキヤビティレーザ 110は、各チップの発光点 110aの 配列方向と同じ方向に配列されて固定されている。  [0377] As shown in FIG. 35, a plurality of (for example, nine) multi-carriers are provided on the heat block 111 using a multi-cavity laser 110 having a plurality of (for example, three) emission points. A combined laser light source having a laser array 140 in which the bit lasers 110 are arranged at equal intervals can be used. The plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.
[0378] この合波レーザ光源は、レーザアレイ 140と、各マルチキヤビティレーザ 110に対応 させて配置した複数のレンズアレイ 114と、レーザアレイ 140と複数のレンズアレイ 11 4との間に配置された 1本のロッドレンズ 113と、 1本のマルチモード光ファイバ 130と 、集光レンズ 120と、を備えて構成されている。レンズアレイ 114は、マルチキヤビティ レーザ 110の発光点に対応した複数のマイクロレンズを備えて 、る。  [0378] This combined laser light source is arranged between the laser array 140, the plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and the laser array 140 and the plurality of lens arrays 114. Further, it is configured to include one rod lens 113, one multimode optical fiber 130, and a condensing lens 120. The lens array 114 includes a plurality of microlenses corresponding to the emission points of the multi-cavity laser 110.
[0379] 上記の構成では、複数のマルチキヤビティレーザ 110の複数の発光点 10aの各々 力も出射したレーザ光 Bの各々は、ロッドレンズ 113により所定方向に集光された後、 レンズアレイ 114の各マイクロレンズにより平行光化される。平行光化されたレーザ光 Lは、集光レンズ 120によって集光され、マルチモード光ファイバ 130のコア 130aに 入射する。コア 130aに入射したレーザ光は、光ファイバ内を伝搬し、 1本に合波され て出射する。 [0379] In the above configuration, each of the laser beams B that has also emitted the respective powers of the plurality of light emitting points 10a of the plurality of multi-cavity lasers 110 is condensed in a predetermined direction by the rod lens 113; The light is collimated by each microlens of the lens array 114. The collimated laser beam L is collected by the condensing lens 120 and enters the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
[0380] 更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図 36A及び図 36B に示すように、略矩形状のヒートブロック 180上に光軸方向の断面が L字状のヒートブ ロック 182が搭載され、 2つのヒートブロック間に収納空間が形成されている。 L字状 のヒートブロック 182の上面には、複数の発光点(例えば、 5個)がアレイ状に配列さ れた複数(例えば、 2個)のマルチキヤビティレーザ 110力 各チップの発光点 110a の配列方向と同じ方向に等間隔で配列されて固定されて 、る。  [0380] Still another example of the combined laser light source will be described. As shown in FIGS. 36A and 36B, this combined laser light source has a heat block 182 having an L-shaped cross section in the optical axis direction mounted on a substantially rectangular heat block 180, and is stored between two heat blocks. A space is formed. On the upper surface of the L-shaped heat block 182, a plurality of (for example, two) multi-cavity lasers in which a plurality of light-emitting points (for example, five) are arranged in an array form 110 power light-emitting points for each chip 110a It is fixed and arranged at equal intervals in the same direction as the direction of arrangement.
[0381] 略矩形状のヒートブロック 180には凹部が形成されており、ヒートブロック 180の空 間側上面には、複数の発光点 (例えば、 5個)がアレイ状に配列された複数 (例えば、 2個)のマルチキヤビティレーザ 110が、その発光点がヒートブロック 182の上面に配 置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。  [0381] The substantially rectangular heat block 180 has a recess, and a plurality of light emitting points (for example, five) are arranged on the space side upper surface of the heat block 180 (for example, five). The two multi-cavity lasers 110 are arranged so that their emission points are located on the same vertical plane as the emission points of the laser chips arranged on the upper surface of the heat block 182.
[0382] マルチキヤビティレーザ 110のレーザ光出射側には、各チップの発光点 110aに対 応してコリメートレンズが配列されたコリメートレンズアレイ 184が配置されている。コリ メートレンズアレイ 184は、各コリメートレンズの長手方向とレーザ光の拡がり角が大き い方向(速軸方向)とが一致し、各コリメートレンズの幅方向が、拡がり角が小さい方 向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ 化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出 力化が図られると共に、部品点数が減少し低コストィ匕することができる。  [0382] On the laser beam emission side of the multi-cavity laser 110, a collimating lens array 184 in which collimating lenses are arranged corresponding to the light emitting points 110a of the respective chips is arranged. In the collimating lens array 184, the longitudinal direction of each collimating lens coincides with the direction in which the laser beam has a large divergence angle (fast axis direction), and the width direction of each collimating lens is in the direction in which the divergence angle is small (slow axis). Direction). As described above, the collimating lenses are integrated into an array to improve the space utilization efficiency of the laser light, increase the output of the combined laser light source, reduce the number of parts, and reduce the cost. it can.
[0383] また、コリメートレンズアレイ 184のレーザ光出射側には、 1本のマルチモード光ファ ィバ 130と、このマルチモード光ファイバ 130の入射端にレーザ光を集光して結合す る集光レンズ 120と、が配置されている。  [0383] In addition, on the laser light emission side of the collimating lens array 184, there is a single multimode optical fiber 130 and a condensing unit that condenses the laser light at the incident end of the multimode optical fiber 130. An optical lens 120 is disposed.
[0384] 前記構成では、レーザブロック 180、 182上に配置された複数のマルチキヤビティ レーザ 110の複数の発光点 10aの各々力も出射したレーザ光 Bの各々は、コリメート レンズアレイ 184により平行光化され、集光レンズ 120によって集光されて、マルチモ ード光ファイバ 130のコア 130aに入射する。コア 130aに入射したレーザ光は、光フ アイバ内を伝搬し、 1本に合波されて出射する。 [0384] In the above-described configuration, each of the laser beams B also emitted from each of the plurality of light emitting points 10a of the plurality of multi-cavity lasers 110 arranged on the laser blocks 180 and 182 is converted into parallel light by the collimating lens array 184. Is collected by the condenser lens 120 and is It enters the core 130a of the optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
[0385] 前記合波レーザ光源は、上記の通り、マルチキヤビティレーザの多段配置とコリメ一 トレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を 用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成する ことができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源 として特に好適である。 [0385] As described above, the combined laser light source can achieve particularly high output by the multistage arrangement of multi-cavity lasers and the array of collimating lenses. By using this combined laser light source, a higher-intensity fiber array light source or bundle fiber light source can be formed, which is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.
[0386] なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ 13 0の出射端部をそのケーシングから引き出したレーザモジュールを構成することがで きる。  [0386] It is possible to constitute a laser module in which each of the combined laser light sources is housed in a casing and the emission end of the multimode optical fiber 130 is drawn out from the casing.
[0387] また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモー ド光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光フアイ バを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、 クラッド径が 125 m、 80 m、 60 μ m等のマルチモード光ファイバを、出射端に他 の光ファイバを結合せずに使用してもよい。  [0387] Further, a fiber array is formed by coupling another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source. The example of increasing the brightness of the light source has been explained. For example, a multimode optical fiber with a cladding diameter of 125 m, 80 m, 60 μm, etc., can be used without connecting another optical fiber to the output end. Also good.
[0388] ここで、本発明の前記パターン形成方法について更に説明する。  Here, the pattern forming method of the present invention will be further described.
スキャナ 162の各露光ヘッド 166において、ファイバアレイ光源 66の合波レーザ光 源を構成する GaN系半導体レーザ LD1〜LD7の各々力 発散光状態で出射したレ 一ザ光 Bl, B2, B3, B4, B5, B6,及び B7の各々は、対応するコリメータレンズ 11 〜17によって平行光化される。平行光化されたレーザ光 B1〜B7は、集光レンズ 20 によって集光され、マルチモード光ファイバ 30のコア 30aの入射端面に収束する。  In each exposure head 166 of the scanner 162, laser light Bl, B2, B3, B4, GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66 is emitted in the state of divergent light. Each of B5, B6, and B7 is collimated by the corresponding collimator lenses 11-17. The collimated laser beams B1 to B7 are collected by the condenser lens 20 and converge on the incident end face of the core 30a of the multimode optical fiber 30.
[0389] 本例では、コリメータレンズ 11〜17及び集光レンズ 20によって集光光学系が構成 され、その集光光学系とマルチモード光ファイバ 30とによって合波光学系が構成さ れている。即ち、集光レンズ 20によって上述のように集光されたレーザ光 B1〜B7が 、このマルチモード光ファイノく 30のコア 30aに入射して光ファイバ内を伝搬し、 1本の レーザ光 Bに合波されてマルチモード光ファイバ 30の出射端部に結合された光ファ ィバ 31から出射する。  In this example, the collimator lenses 11 to 17 and the condenser lens 20 constitute a condensing optical system, and the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 condensed as described above by the condenser lens 20 are incident on the core 30a of the multimode optical fiber 30 and propagate through the optical fiber. The light is output from the optical fiber 31 combined and coupled to the output end of the multimode optical fiber 30.
[0390] 各レーザモジュールにおいて、レーザ光 B1〜: B7のマルチモード光ファイバ 30へ の結合効率が 0. 85で、 GaN系半導体レーザ LD1〜LD7の各出力が 30mWの場 合には、アレイ状に配列された光ファイバ 31の各々について、出力 180mW( = 30 mWX O. 85 X 7)の合波レーザ光 Bを得ることができる。従って、 6本の光ファイバ 31 がアレイ状に配列されたレーザ出射部 68での出力は約 1W ( = 180mW X 6)である [0390] In each laser module, laser light B1 to: B7 multimode optical fiber 30 When the output efficiency of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, the output power of each of the optical fibers 31 arranged in an array is 180 mW (= 30 mWX O. 85 X The combined laser beam B of 7) can be obtained. Therefore, the output at the laser emitting section 68 in which the six optical fibers 31 are arranged in an array is about 1 W (= 180 mW × 6).
[0391] ファイバアレイ光源 66のレーザ出射部 68には、この通り高輝度の発光点が主走査 方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を 1本の 光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなけ れば所望の出力を得ることができな力つた力 前記合波レーザ光源は高出力である ため、少数列、例えば 1列でも所望の出力を得ることができる。 [0391] In the laser emitting section 68 of the fiber array light source 66, the high-luminance light emitting points are arranged in a line along the main scanning direction as described above. A conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has low output, so if the multiple rows are not arranged, the desired force cannot be obtained. Since the wave laser light source has high output, a desired output can be obtained even with a small number of columns, for example, one column.
[0392] 例えば、半導体レーザと光ファイバを 1対 1で結合させた従来のファイバ光源では、 通常、半導体レーザとしては出力 30mW (ミリワット)程度のレーザが使用され、光ファ ィバとしてはコア径 50 m、クラッド径 125 m、 NA (開口数) 0. 2のマルチモード光 ファイバが使用されているので、約 1W (ワット)の出力を得ようとすれば、マルチモー ド光ファイバを 48本(8 X 6)束ねなければならず、発光領域の面積は 0. 62mm2 (0. 675mm X O. 925mm)である力ら、レーザ出射部 68での輝度は 1. 6 X 106 (W/m 2)、光ファイバ 1本当りの輝度は 3. 2 X 106(WZm2)である。 [0392] For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser with an output of about 30 mW (milliwatt) is usually used as the semiconductor laser, and the core diameter is used as the optical fiber. Multimode optical fiber with 50 m, clad diameter 125 m, NA (numerical aperture) 0.2 is used, so if you want to obtain an output of about 1 W (watt), 48 multimode optical fibers ( 8 X 6) The luminous area is 0.62 mm 2 (0.675 mm X O. 925 mm), and the brightness at the laser emitting section 68 is 1.6 X 10 6 (W / m 2), brightness per optical fiber is 3.2 X 10 6 (WZm 2 ).
[0393] これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マ ルチモード光ファイノ 6本で約 1Wの出力を得ることができ、レーザ出射部 68での発 光領域の面積は 0. 0081mm2 (0. 325mmX 0. 025mm)であるから、レーザ出射 部 68での輝度は 123 X 106(WZm2)となり、従来に比べ約 80倍の高輝度化を図る ことができる。また、光ファイバ 1本当りの輝度は 90 X 106(WZm2)であり、従来に比 ベ約 28倍の高輝度化を図ることができる。 [0393] On the other hand, when the light irradiation means is a means capable of irradiating a combined laser, an output of about 1 W can be obtained with six multimode optical finos. Since the area of the optical region is 0.0081 mm 2 (0.325 mm X 0.025 mm), the brightness at the laser emission section 68 is 123 X 10 6 (WZm 2 ), which is about 80 times higher than the conventional brightness. Can be achieved. In addition, the luminance per optical fiber is 90 X 10 6 (WZm 2 ), which is about 28 times higher than before.
[0394] ここで、図 37A及び図 37Bを参照して、従来の露光ヘッドと本実施の形態の露光 ヘッドとの焦点深度の違いにっ 、て説明する。従来の露光ヘッドのバンドル状フアイ バ光源の発光領域の副走査方向の径は 0. 675mmであり、露光ヘッドのファイバァ レイ光源の発光領域の副走査方向の径は 0. 025mmである。図 37Aに示すように、 従来の露光ヘッドでは、光照射手段 (バンドル状ファイバ光源) 1の発光領域が大き いので、 DMD3へ入射する光束の角度が大きくなり、結果として走査面 5へ入射する 光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径 が太りやすい。 Here, with reference to FIG. 37A and FIG. 37B, the difference in depth of focus between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emission area of the bundled fiber light source of the conventional exposure head is 0.675 mm, and the diameter of the light emission area of the fiber array light source of the exposure head is 0.025 mm. As shown in FIG. 37A, in the conventional exposure head, the light emitting area of the light irradiation means (bundle-shaped fiber light source) 1 is large. Therefore, the angle of the light beam incident on the DMD 3 increases, and as a result, the angle of the light beam incident on the scanning surface 5 increases. For this reason, the beam diameter tends to increase with respect to the condensing direction (shift in the focus direction).
[0395] 一方、図 37Bに示すように、本発明のパターン形成装置における露光ヘッドでは、 ファイバアレイ光源 66の発光領域の副走査方向の径カ 、さいので、レンズ系 67を通 過して DMD50へ入射する光束の角度が小さくなり、結果として走査面 56へ入射す る光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副 走査方向の径は従来の約 30倍になっており、略回折限界に相当する焦点深度を得 ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は 、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面 に投影された 1描素サイズは 10 m X 10 mである。なお、 DMDは反射型の空間 光変調素子であるが、図 37A及び図 37Bは、光学的な関係を説明するために展開 図とした。  On the other hand, as shown in FIG. 37B, in the exposure head in the pattern forming apparatus of the present invention, the diameter of the light emission region of the fiber array light source 66 in the sub-scanning direction is reduced. As a result, the angle of the light beam incident on the scanning surface 56 is decreased. That is, the depth of focus becomes deep. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot. The effect on the depth of focus becomes more significant and effective as the required light quantity of the exposure head increases. In this example, the size of one pixel projected on the exposure surface is 10 m x 10 m. The DMD is a reflective spatial light modulator, but FIGS. 37A and 37B are developed views for explaining the optical relationship.
[0396] 露光パターンに応じたパターン情報力 DMD50に接続された図示しないコント口 ーラに入力され、コントローラ内のフレームメモリにー且記憶される。このパターン情 報は、画像を構成する各描素の濃度を 2値 (ドットの記録の有無)で表したデータであ る。  [0396] Pattern information power corresponding to the exposure pattern is inputted to a controller (not shown) connected to the DMD 50, and is stored in a frame memory in the controller. This pattern information is data that represents the density of each pixel constituting the image as binary values (whether or not dots are recorded).
[0397] ノターン形成材料 150を表面に吸着したステージ 152は、図示しない駆動装置に より、ガイド 158に沿ってゲート 160の上流側から下流側に一定速度で移動される。 ステージ 152がゲート 160下を通過する際に、ゲート 160に取り付けられた検知セン サ 164によりパターン形成材料 150の先端が検出されると、フレームメモリに記憶され たパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出された パターン情報に基づいて各露光ヘッド 166毎に制御信号が生成される。そして、ミラ 一駆動制御部により、生成された制御信号に基づいて露光ヘッド 166毎に DMD50 のマイクロミラーの各々がオンオフ制御される。  [0397] The stage 152 having adsorbed the non-turn forming material 150 on its surface is moved along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed by a driving device (not shown). When the leading edge of the pattern forming material 150 is detected by the detection sensor 164 attached to the gate 160 while the stage 152 passes under the gate 160, the pattern information stored in the frame memory is sequentially read for each of a plurality of lines. A control signal is generated for each exposure head 166 based on the pattern information read out and read out by the data processing unit. Then, each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 based on the generated control signal by the mirror drive control unit.
[0398] ファイバアレイ光源 66から DMD50にレーザ光が照射されると、 DMD50のマイク 口ミラーがオン状態のときに反射されたレーザ光は、レンズ系 54、 58によりパターン 形成材料 150の被露光面 56上に結像される。このようにして、ファイバアレイ光源 66 力も出射されたレーザ光が描素毎にオンオフされて、ノターン形成材料 150が DM D50の使用描素数と略同数の描素単位 (露光エリア 168)で露光される。また、バタ ーン形成材料 150がステージ 152と共に一定速度で移動されることにより、パターン 形成材料 150がスキャナ 162によりステージ移動方向と反対の方向に副走査され、 露光ヘッド 166毎に帯状の露光済み領域 170が形成される。 [0398] When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the microphone mouth mirror of the DMD 50 is turned on is exposed to the surface of the pattern forming material 150 by the lens systems 54 and 58. Imaged on 56. In this way, the fiber array light source 66 The laser beam from which the force is also emitted is turned on / off for each pixel, and the pattern forming material 150 is exposed in approximately the same number of pixel units (exposure area 168) as the number of pixels used in DM D50. Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure is performed for each exposure head 166. Region 170 is formed.
[0399] [現像工程]  [0399] [Development process]
前記現像工程は、前記露光工程により前記パターン形成材料を被処理基体上に 積層してなる積層体の前記感光層を露光し、該感光層の露光した領域を硬化させた 後、未効果領域を除去することにより現像し、パターンを形成する工程である。  The developing step exposes the photosensitive layer of a laminate formed by laminating the pattern forming material on a substrate to be processed in the exposing step, cures the exposed region of the photosensitive layer, and then forms an ineffective region. It is a process of developing by removing and forming a pattern.
[0400] 前記未硬化領域の除去方法としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。  [0400] The method for removing the uncured region is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method for removing using a developer.
[0401] 前記現像液としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも 、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例え ば、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、炭酸リチウム、炭酸ナトリウム 、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナト リウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる  [0401] The developer is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include an alkaline aqueous solution, an aqueous developer, and an organic solvent. Among these, a weak alkaline aqueous solution is used. preferable. Examples of the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid. Sodium, potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, borax, etc.
[0402] 前記弱アルカリ性の水溶液の pHとしては、例えば、約 8〜12が好ましぐ約 9〜11 力 り好ましい。前記弱アルカリ性の水溶液としては、例えば、 0. 1〜5質量%の炭酸 ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。 [0402] The pH of the weak alkaline aqueous solution is more preferably about 9 to 11 force, for example, about 8 to 12 is preferable. Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することが できるが、例えば、約 25°C〜40°Cが好ましい。  The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and for example, about 25 ° C. to 40 ° C. is preferable.
[0403] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、エチレンジァミン、ェタノ ールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレントリァミン、トリェチ レンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶 剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラタトン類 等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を 混合した水系現像液であってもよぐ有機溶剤単独であってもよ 、。 [0403] The developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) In order to accelerate development, an organic solvent (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination. Further, the developer contains water or an alkaline aqueous solution and an organic solvent. It can be a mixed aqueous developer or an organic solvent alone.
[0404] [その他工程]  [0404] [Other processes]
前記その他の工程としては、特に制限はなぐ公知のパターン形成における工程の 中から適宜選択することが挙げられる力 例えば、エッチング工程、メツキ工程、硬化 処理工程などが挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用し てもよい。  Examples of the other process include a force that can be appropriately selected from known processes for forming a pattern without limitation. Examples thereof include an etching process, a plating process, and a curing process. These may be used alone or in combination of two or more.
[0405] 前記エッチング工程としては、公知のエッチング処理方法の中力 適宜選択した方 法により行うことができる。  [0405] The etching step can be performed by a method appropriately selected from among known etching methods.
前記エッチング処理に用いられるエッチング液としては、特に制限はなぐ 目的に 応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合 には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系 エッチング液などが挙げられ、これらの中でも、エッチングファクターの点力 塩ィ匕第 二鉄溶液が好ましい。  The etching solution used for the etching treatment can be appropriately selected according to the purpose without any particular limitation. For example, when the metal layer is formed of copper, a cupric chloride solution, Examples thereof include a ferric solution, an alkaline etching solution, and a hydrogen peroxide-based etching solution. Among these, a point strength of etching factor—a salty ferric solution is preferable.
前記エッチング工程によりエッチング処理した後に前記パターンを除去することによ り、前記基体の表面に永久パターンを形成することができる。  A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
前記永久パターンとしては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、配線パターンなどが好適に挙げられる。  The permanent pattern is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include a wiring pattern.
[0406] 前記メツキ工程としては、公知のメツキ処理の中から適宜選択した適宜選択した方 法により行うことができる。 [0406] The plating step can be performed by an appropriately selected method selected from known plating processes.
前記メツキ処理としては、例えば、硫酸銅メツキ、ピロリン酸銅メツキ等の銅メツキ、ハ イスローはんだメツキ等のはんだメツキ、ヮット浴 (硫酸ニッケル -塩化ニッケル)メツキ 、スルファミン酸ニッケル等のニッケルメツキ、ハード金メッキ、ソフト金メッキ等の金メッ キなど処理が挙げられる。  Examples of the plating treatment include, for example, copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-speed solder plating, plating bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard plating. Examples include gold plating such as gold plating and soft gold plating.
前記メツキ工程によりメツキ処理した後に前記パターンを除去することにより、また更 に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に 永久パターンを形成することができる。  A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing a plating process in the plating process, and further removing unnecessary portions by an etching process or the like as necessary.
[0407] 前記硬化処理工程は、前記感光層に対し、前記現像工程が行われた後、形成され たパターンに対して硬化処理を行う工程である。 前記硬化処理としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、全面露光処理、全面加熱処理などが好適に挙げられる。 [0407] The curing treatment step is a step of performing a curing treatment on the formed pattern after the development step is performed on the photosensitive layer. The curing treatment can be appropriately selected according to the purpose without any particular restriction, and examples thereof include full-surface exposure treatment and full-surface heat treatment.
[0408] 前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記パターン が形成された前記感光性積層体上の全面を露光する方法が挙げられる。該全面露 光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、前記パ ターンの表面が硬化される。  [0408] Examples of the entire surface exposure processing method include a method of exposing the entire surface of the photosensitive laminate on which the pattern is formed after the developing step. The entire surface exposure accelerates the curing of the resin in the photosensitive composition forming the photosensitive layer, and the surface of the pattern is cured.
前記全面露光を行う装置としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、超高圧水銀灯などの UV露光機が好適に挙げられる。  The apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation. For example, a UV exposure machine such as an ultra-high pressure mercury lamp can be preferably used.
[0409] 前記全面加熱処理の方法としては、前記現像工程の後に、前記パターンが形成さ れた前記感光性積層体上の全面を加熱する方法が挙げられる。該全面加熱により、 前記パターンの表面の膜強度が高められる。 [0409] Examples of the entire surface heat treatment method include a method of heating the entire surface of the photosensitive laminate on which the pattern is formed after the developing step. By heating the entire surface, the film strength of the surface of the pattern is increased.
前記全面加熱における加熱温度としては、 120〜250でカ 子ましく、 120〜200°C 力 り好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が 得られないことがあり、 250°Cを超えると、前記感光性組成物中の樹脂の分解が生じ 、膜質が弱く脆くなることがある。  The heating temperature for the entire surface heating is 120 to 250, preferably 120 to 200 ° C. When the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. When the heating temperature exceeds 250 ° C, the resin in the photosensitive composition is decomposed and the film quality is weak. May become brittle.
前記全面加熱における加熱時間としては、 10〜120分が好ましぐ 15〜60分がよ り好ましい。  The heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。  The apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
[0410] 本発明のパターン形成方法は、パターン形成材料上に結像させる像の歪みを抑制 することにより、永久パターンを高精細に、かつ、効率よく形成可能であるため、高精 細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に 高精細な配線パターンの形成に好適に使用することができる。  [0410] The pattern forming method of the present invention can form a permanent pattern with high definition and efficiency by suppressing distortion of an image formed on the pattern forming material. It can be suitably used for forming various patterns that require a high degree of wiring, and can be particularly suitably used for forming high-definition wiring patterns.
[0411] 〔プリント配線板及びカラーフィルターの製造方法〕  [0411] [Production method of printed wiring board and color filter]
本発明の前記パターン形成方法は、プリント配線板の製造、特にスルーホール又 はビアホールなどのホール部を有するプリント配線板の製造、及び、カラーフィルタ 一の製造に好適に使用することができる。以下、本発明のパターン形成方法を利用 したプリント配線板の製造方法及びカラーフィルターの製造方法の一例について説 明する。 The pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole such as a through hole or a via hole, and for the production of a color filter. Hereinafter, the pattern forming method of the present invention is used. An example of a method for manufacturing a printed wiring board and a method for manufacturing a color filter will be described.
[0412] プリント配線板の製造方法  [0412] Method for manufacturing printed wiring board
特に、スルーホール又はビアホールなどのホール部を有するプリント配線板の製造 方法としては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に 、前記パターン形成材料を、その感光層が前記基体側となる位置関係にて積層して 積層体を形成し、(2)前記積層体の前記基体とは反対の側から、所望の領域に光照 射行 、感光層を硬化させ、 (3)前記積層体力 前記パターン形成材料における支持 体及びクッション層を除去し、(4)前記積層体における感光層を現像して、該積層体 中の未硬化部分を除去することによりパターンを形成することができる。  In particular, as a method of manufacturing a printed wiring board having a hole portion such as a through hole or a via hole, (1) the pattern forming material is placed on the substrate for forming a printed wiring board having the hole portion as the substrate, and the photosensitive layer thereof. (2) Light irradiation is performed on a desired region from the opposite side of the laminate to the substrate, and the photosensitive layer is cured. ) The laminated body force The support and the cushion layer in the pattern forming material are removed, and (4) the photosensitive layer in the laminated body is developed to form a pattern by removing the uncured portion in the laminated body. Can do.
[0413] なお、前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には 、前記クッション層の除去は、特に制限されず、前記(2)以降のどこで行っても良いが 、前期クッション層がアルカリ性液に不溶性である場合には、前記 (4)以前に除去さ れることが好ましい。  [0413] When the cushion layer is swellable or soluble in an alkaline liquid, the removal of the cushion layer is not particularly limited, and may be performed anywhere after (2) above. When the cushion layer is insoluble in the alkaline liquid, it is preferably removed before (4).
また、前記(3)における前記支持体の除去は、前記(2)と前記 (4)との間で行う代 わりに、前記(1)と前記(2)との間で行ってもよい。  Further, the removal of the support in (3) may be performed between (1) and (2) instead of between (2) and (4).
さらに、前記パターン形成材料がバリア層を有する場合、該バリア層は(3)におい て前記支持体とともに除去されてもよぐ(4)において現像時に除去されてもよい。  Further, when the pattern forming material has a barrier layer, the barrier layer may be removed together with the support in (3) or may be removed during development in (4).
[0414] その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント 配線板形成用基板をエッチング処理又はメツキ処理する方法 (例えば、公知のサブト ラタティブ法又はアディティブ法 (例えば、セミアディティブ法、フルアディティブ法)) により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線 板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線 板形成用基板に残存する硬化榭脂は剥離させ、また、前記セミアディティブ法の場 合は、剥離後さらに銅薄膜部をエッチングすることにより、所望のプリント配線板を製 造することができる。また、多層プリント配線板も、前記プリント配線板の製造法と同様 に製造が可能である。 [0414] Thereafter, in order to obtain a printed wiring board, a method of etching or plating the printed wiring board forming substrate using the formed pattern (for example, a known subtractive method or additive method (for example, Semi-additive method and full additive method)). Among these, the subtractive method is preferable in order to form a printed wiring board with industrially advantageous tenting. After the treatment, the cured resin remaining on the printed wiring board forming substrate is peeled off. In the case of the semi-additive method, the copper thin film portion is further etched after the peeling to produce a desired printed wiring board. can do. A multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.
[0415] 次に、前記パターン形成材料を用いたスルーホールを有するプリント配線板の製造 方法について、更に説明する。 [0415] Next, production of a printed wiring board having through holes using the pattern forming material The method will be further described.
[0416] まずスルーホールを有し、表面が金属メツキ層で覆われたプリント配線板形成用基 板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及び ガラス一エポキシなどの絶縁基材に銅メツキ層を形成した基板、又はこれらの基板に 層間絶縁膜を積層し、銅メツキ層を形成した基板 (積層基板)を用いることができる。  [0416] First, a printed wiring board forming board having through holes and having a surface covered with a metal plating layer is prepared. As the printed wiring board forming substrate, for example, a copper clad laminated substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed. A formed substrate (laminated substrate) can be used.
[0417] 次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルム を剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基 板の表面に接するようにして加圧ローラを用いて圧着する (積層工程)。これにより、 前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られる。 前記パターン形成材料の積層温度としては、特に制限はなぐ例えば、室温(15〜 30°C)、又は加熱下(30〜180°C)が挙げられ、これらの中でも、加温下(60〜140 °C)が好ましい。  [0417] Next, when a protective film is provided on the pattern forming material, the protective film is peeled off so that the photosensitive layer in the pattern forming material is in contact with the surface of the printed wiring board forming substrate. And press-bonding using a pressure roller (lamination process). Thereby, the laminated body which has the said board | substrate for printed wiring board formation and the said laminated body in this order is obtained. The lamination temperature of the pattern forming material is not particularly limited, for example, room temperature (15 to 30 ° C.) or under heating (30 to 180 ° C.). Among these, under heating (60 to 140 ° C.) ° C) is preferred.
前記圧着ロールのロール圧としては、特に制限はなぐ例えば、 0. l〜lMPaが好 ましい。  The roll pressure of the crimping roll is not particularly limited, for example, 0.1 to lMPa is preferable.
前記圧着の速度としては、特に制限はなぐ l〜3mZ分が好ましい。  The crimping speed is preferably 1 to 3 mZ, which is not particularly limited.
また、前記プリント配線板形成用基板を予備加熱しておいてもよぐまた、減圧下で 積層してちょい。  Alternatively, the printed wiring board forming substrate may be preheated or laminated under reduced pressure.
[0418] 次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。  [0418] Next, the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate.
なおこの際、必要に応じて (例えば、支持体の光透過性が不十分な場合など)前記 支持体を剥離して力 露光を行ってもょ 、。  At this time, if necessary (for example, when the light transmittance of the support is insufficient), the support may be peeled off and force exposure may be performed.
[0419] この時点で、前記支持体、前記クッション層、及び前記バリア層を未だ剥離して 、な い場合には、前記積層体から少なくとも前記支持体を剥離する (剥離工程)。  [0419] At this point, if the support, the cushion layer, and the barrier layer are not yet peeled, at least the support is peeled from the laminate (peeling step).
[0420] 次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液 にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用 硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出 させる(現像工程)。  [0420] Next, the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer, and the cured layer for forming the wiring pattern and the curing for protecting the metal layer of the through hole are performed. A layer pattern is formed to expose the metal layer on the surface of the printed wiring board forming substrate (development process).
[0421] また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反 応を更に促進させる処理をおこなってもよ 、。現像は上記のようなウエット現像法であ つてもよく、ドライ現像法であってもよい。 [0421] Further, after development, if necessary, post-heating treatment or post-exposure treatment may be performed to further accelerate the curing reaction of the cured portion. Development is a wet development method as described above. Or a dry development method.
[0422] 次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液 で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化榭脂組成物 (テ ント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホ ール内の金属メツキを腐食することなぐスルーホールの金属メツキは所定の形状で 残ることになる。これより、前記プリント配線板形成用基板に配線パターンが形成され る。  [0422] Next, the metal layer exposed on the surface of the printed wiring board forming substrate is dissolved and removed with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal coating of the through hole prevents the etching solution from entering the through hole and corroding the metal plating in the through hole. Will remain in the prescribed shape. Thereby, a wiring pattern is formed on the printed wiring board forming substrate.
[0423] 前記エッチング液としては、特に制限はなぐ 目的に応じて適宜選択することができ る力 例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩ィ匕 第二鉄溶液、アルカリエッチング溶液、過酸ィ匕水素系エッチング液などが挙げられ、 これらの中でも、エッチングファクターの点から塩ィ匕第二鉄溶液が好ましい。  [0423] The etching solution is not particularly limited and can be appropriately selected according to the purpose. For example, when the metal layer is formed of copper, a cupric chloride solution, a salt solution Examples thereof include a ferric solution, an alkaline etching solution, a hydrogen peroxide-based etching solution, and the like. Among these, a salty ferric solution is preferable from the viewpoint of an etching factor.
[0424] 次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板 形成用基板から除去する (硬化物除去工程)。  [0424] Next, the cured layer is removed from the printed wiring board forming substrate as a release piece with a strong alkaline aqueous solution or the like (cured product removing step).
前記強アルカリ水溶液における塩基成分としては、特に制限はなぐ例えば、水酸 化ナトリウム、水酸ィ匕カリウムなどが挙げられる。  The base component in the strong alkaline aqueous solution is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide.
前記強アルカリ水溶液の pHとしては、例えば、約 12〜14が好ましぐ約 13〜14が より好まし 、。  The pH of the strong alkaline aqueous solution is, for example, preferably about 13-14, more preferably about 12-14.
前記強アルカリ水溶液としては、特に制限はなぐ例えば、 1〜10質量%の水酸ィ匕 ナトリウム水溶液又は水酸ィ匕カリウム水溶液などが挙げられる。  The strong alkaline aqueous solution is not particularly limited, and examples thereof include 1 to 10% by mass of sodium hydroxide aqueous solution or potassium hydroxide aqueous solution.
[0425] また、プリント配線板は、多層構成のプリント配線板であってもよ 、。 [0425] The printed wiring board may be a multilayer printed wiring board.
なお、前記パターン形成材料は上記のエッチングプロセスのみでなぐメツキプロセ スに使用してもよい。前記メツキ法としては、例えば、硫酸銅メツキ、ピロリン酸銅メツキ 等の銅メツキ、ハイスローはんだメツキ等のはんだメツキ、ワット浴 (硫酸ニッケル—塩 ィ匕ニッケル)メツキ、スルファミン酸ニッケル等のニッケルメツキ、ハード金メッキ、ソフト 金メッキ等の金メッキなどが挙げられる。  Note that the pattern forming material may be used in a Meki process that is performed only by the etching process. Examples of the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-throw solder plating, watt bath (nickel sulfate-salt nickel) plating, nickel plating such as nickel sulfamate, Examples include hard gold plating and gold plating such as soft gold plating.
[0426] 一力ラーフィルターの製造方法 [0426] Manufacturing method of Isshiki Ra filter
ガラス基板等の基体上に、本発明の前記パターン形成材料における感光層を貼り 合わせ、該パターン形成材料から支持体を剥離する場合に、帯電した前記支持体( フィルム)と人体とが不快な電気ショックを受けることがあり、あるいは帯電した前記支 持体に塵埃が付着する等の問題がある。このため、前記支持体上に導電層を設けた り、前記支持体自体に導電性を付与する処理を施したりすることが好ましい。また、前 記導電層を前記感光層とは反対側の前記支持体上に設けた場合は、耐傷性を向上 させるために疎水性重合体層を設けることが好まし 、。 A photosensitive layer in the pattern forming material of the present invention is pasted on a substrate such as a glass substrate. In addition, when the support is peeled from the pattern forming material, the charged support (film) and the human body may receive an unpleasant electric shock, or dust may adhere to the charged support. There is a problem. For this reason, it is preferable to provide a conductive layer on the support or to perform a treatment for imparting conductivity to the support itself. Further, when the conductive layer is provided on the support opposite to the photosensitive layer, it is preferable to provide a hydrophobic polymer layer in order to improve scratch resistance.
[0427] 次に、前記感光層を赤、緑、青、黒のそれぞれに着色した赤色感光層を有するパ ターン形成材料と、緑色感光層を有するパターン形成材料と、青色感光層を有する パターン形成材料と、黒色感光層を有するパターン形成材料を調製する。赤画素用 の前記赤色感光層を有するパターン形成材料を用いて、赤色感光層を前記基体表 面に積層して積層体を形成した後、像様に露光、現像して赤の画素を形成する。赤 の画素を形成した後、前記積層体を加熱して未硬化部分を硬化させる。これを緑、 青の画素のついても同様にして行い、各画素を形成する。また、赤、緑、青の三種の 画素を配置する場合は、モザイク型、トライアングル型、 4画素配置型等どのような配 置であってもよい。 [0427] Next, a pattern forming material having a red photosensitive layer in which the photosensitive layer is colored red, green, blue, and black, a pattern forming material having a green photosensitive layer, and a pattern forming having a blue photosensitive layer, respectively. A material and a pattern forming material having a black photosensitive layer are prepared. Using the pattern forming material having the red photosensitive layer for red pixels, the red photosensitive layer is laminated on the substrate surface to form a laminate, and then exposed and developed imagewise to form red pixels. . After forming red pixels, the laminate is heated to cure the uncured portion. This is performed in the same manner for the green and blue pixels, and each pixel is formed. In addition, when arranging three types of pixels of red, green, and blue, any arrangement such as a mosaic type, a triangle type, and a four-pixel arrangement type may be used.
[0428] 前記画素を形成した面上に前記黒色感光層を有するパターン形成材料を積層し、 画素を形成して ヽな ヽ側から背面露光し、現像してブラックマトリックスを形成する。 該ブラックマトリックスを形成した積層体を加熱することにより、未硬化部分を硬化させ 、カラーフィルターを製造することができる。  [0428] A pattern forming material having the black photosensitive layer is laminated on the surface on which the pixels are formed, pixels are formed, and back exposure is performed from the other side, and development is performed to form a black matrix. By heating the laminated body in which the black matrix is formed, the uncured portion can be cured to produce a color filter.
[0429] 本発明のパターン形成方法及びパターン形成装置は、前記感光層の感度低下を 抑制でき、かつ、高精細なパターンを形成可能なパターン形成材料を用いるため、よ り小さいエネルギー量の光で露光することができ、露光スピードが上がるため、処理 スピードが上がる点で有利である。  [0429] The pattern forming method and pattern forming apparatus of the present invention uses a pattern forming material that can suppress a decrease in sensitivity of the photosensitive layer and can form a high-definition pattern. Since exposure is possible and the exposure speed is increased, it is advantageous in that the processing speed is increased.
[0430] 本発明の前記パターン形成方法は、本発明の前記パターン形成材料を用いるため 、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルター、 柱材、リブ材、スぺーサ一、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシ ン、プルーフなどの製造に好適に使用することができ、特に高精細な配線パターンの 形成に好適に使用することができる。本発明のパターン形成装置は、本発明の前記 パターン形成材料を備えているため、各種パターンの形成、配線パターン等の永久 パターンの形成、カラーフィルター、柱材、リブ材、スぺーサ一、隔壁等の液晶構造 部材の製造、ホログラム、マイクロマシン、プルーフなどの製造に好適に使用すること ができ、特に高精細な配線パターン、及びカラーフィルターの形成に好適に用いるこ とがでさる。 [0430] The pattern forming method of the present invention uses the pattern forming material of the present invention, so that various patterns are formed, permanent patterns such as wiring patterns are formed, color filters, pillar materials, rib materials, and spacers. It can be suitably used for the production of liquid crystal structural members such as partition walls, holograms, micromachines, proofs, etc. It can be used suitably for formation. Since the pattern forming apparatus of the present invention includes the pattern forming material of the present invention, it forms various patterns, forms permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, partition walls It can be suitably used for the production of liquid crystal structural members such as holograms, micromachines, and proofs, and is particularly suitable for the formation of high-definition wiring patterns and color filters.
[0431] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。  [0431] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0432] (実施例 1)  [0432] (Example 1)
[パターン形成材料の製造]  [Manufacture of pattern forming materials]
前記支持体として 25 μ m厚のポリエチレンテレフタレート(PET)フィルム上に、タツ シヨン層組成物塗布液としてォレフィン/アクリル酸ェマルジヨン (商品名:ケミパール S— 100、三井化学 (株)製、固形分濃度: 27質量%)を、孔径 0. 22 /z mのメンブレ ンフィルター(ミリポア社製)を用いて濾過して得た濾液を、ワイヤーバーを用いて塗 布し、乾燥させて、 20 m厚のクッション層を形成した。  On the 25 μm thick polyethylene terephthalate (PET) film as the support, olefin / emulsion acrylate (trade name: Chemipearl S-100, manufactured by Mitsui Chemicals, Inc., solid content concentration) : 27 mass%) was filtered using a membrane filter (manufactured by Millipore) with a pore size of 0.22 / zm, and the filtrate was applied using a wire bar, dried and dried. A cushion layer was formed.
[0433] 前記クッション層上に、下記の組成カゝらなる感光性榭脂組成物溶液を塗布し乾燥さ せて、 20 m厚の感光層を形成し、前記感光層の上に、前記保護フィルムとして 20 μ m厚のポリエチレンフィルムを積層し、前記パターン形成材料を製造した。  [0433] A photosensitive resin composition solution having the following composition is applied onto the cushion layer and dried to form a 20-m-thick photosensitive layer, and the protective layer is formed on the photosensitive layer. A 20 μm thick polyethylene film was laminated as a film to produce the pattern forming material.
[0434] [感光性榭脂組成物溶液の組成]  [Composition of photosensitive resin composition solution]
•メチルメタタリレート /2—ェチルへキシルアタリレート/ベンジルメタタリレート/ メタクリル酸共重合体 (共重合体組成 (質量比): 50Z20Z7Z23、質量平均分子 量: 90, 000、酸価 150) 15質量部  • Methylmetatalylate / 2-ethylhexyl talylate / benzyl metatalylate / methacrylic acid copolymer (copolymer composition (mass ratio): 50Z20Z7Z23, mass average molecular weight: 90,000, acid value 150) 15 Parts by mass
•2, 2 ビス(4 (メタクリロイルォキシペンタエトキシ)フエ-ル)プロパン (新中村化 学社製、 ΒΡΕ— 500) 7. 0質量部  • 2, 2 Bis (4 (methacryloyloxypentaethoxy) phenol) propane (manufactured by Shin-Nakamura Chemical Co., Ltd., ΒΡΕ-500) 7.0 parts by mass
•へキサメチレンジイソシァネートとテトラエチレンォキシドモノメタアタリレートの 1/2 モル比付加物 7. 0質量部  • 1/2 molar ratio adduct of hexamethylene diisocyanate and tetraethylene oxide monomethaacrylate 7.0 parts by mass
•Ν メチルアタリドン 0. 11質量部  • Ν Methyl Ataridon 0.11 parts by mass
•2, 2,一ビス(ο クロ口フエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール 2. 17質量部 • 2, 2, one bis (ο black mouth) 1, 4, 4, 5, 5, one tetraphenyl biimidazole 2.17 parts by mass
• 2—メルカプトべンズイミダゾール 0. 23質量部  • 2—0.2 parts by mass of mercaptobenzimidazole
'マラカイトグリーンシユウ酸塩 0. 02質量部  'Malachite green oxalate 0.02 parts by mass
•ロイコクリスタルバイオレット 0. 26質量部  • Royco Crystal Violet 0.26 parts by weight
'メチルェチルケトン 40質量部  'Methyl ethyl ketone 40 parts by mass
メトキシ 2—プロパノール 20質量部  20 parts by mass of methoxy 2-propanol
[0435] 前記基体として、表面を化学研磨した銅張積層板(日立化成工業社製、商品名: M CL— E— 67、スルーホールなし、銅厚み 12 m)を調製した。該銅張積層板上に、 該パターン形成材料の感光層が前記銅張積層板に接するようにして前記パターン形 成材料の保護フィルムを剥がしながら、ラミネーター(MODEL8B— 720— PH、大 成ラミネーター (株)製)を用いて積層させ、前記銅張積層板と、前記感光層と、前記 クッション層と、前記支持体とがこの順に積層された積層体を調製した。なお、前記銅 張積層板における前記感光層を積層した方の面について、 JIS B 0601に規定の 最大高さ(Rz)を測定したところ、該 Rzは 3 μ mであった。  [0435] A copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: MCL-E-67, no through-hole, copper thickness 12 m) whose surface was chemically polished was prepared as the substrate. A laminator (MODEL8B-720-PH, Taisei Laminator () is formed on the copper-clad laminate while peeling the protective film of the pattern-forming material so that the photosensitive layer of the pattern-forming material is in contact with the copper-clad laminate. And a laminate in which the copper-clad laminate, the photosensitive layer, the cushion layer, and the support are laminated in this order. When the maximum height (Rz) specified in JIS B 0601 was measured on the surface of the copper clad laminate on which the photosensitive layer was laminated, the Rz was 3 μm.
[0436] 圧着条件は、圧着ロール温度 105°C、圧着ロール圧力 0. 3MPa、ラミネート速 度 lmZ分とした。  [0436] The pressure bonding conditions were a pressure roll temperature of 105 ° C, a pressure roll pressure of 0.3 MPa, and a laminating speed of lmZ.
製造した前記パターン形成材料におけるクッション層につ 、て、 405nmの波長の 光に対する全光線透過率及びヘイズ値を測定し、製造した前記パターン形成材料 及び前記積層体について、ラミネート性、解像度、密着性、及びパターン欠陥の評価 を行った。結果を表 3に示す。  The cushion layer in the manufactured pattern forming material was measured for total light transmittance and haze value with respect to light having a wavelength of 405 nm, and the manufactured pattern forming material and the laminate were laminated, resolution, and adhesion. And pattern defects were evaluated. The results are shown in Table 3.
[0437] <クッション層の全光線透過率 > [0437] <Total light transmittance of cushion layer>
前記全光線透過率測定用サンプルは、テフロン (登録商標)シート上に、前記クッシ ヨン層組成物塗布液の濾液を 74gZm2の塗布量で塗布し、乾燥させてクッション層 ( 長さ 10cm、幅 10cm、厚み 20 m)を形成した後、該クッション層を前記テフロン(登 録商標)シートから剥離することにより調製した。 The sample for measuring the total light transmittance was applied to a cushion layer (length 10 cm, width) by applying the cushion layer composition coating liquid on a Teflon (registered trademark) sheet at a coating amount of 74 gZm 2 and drying. After the formation of 10 cm and a thickness of 20 m), the cushion layer was prepared by peeling from the Teflon (registered trademark) sheet.
前記クッション層の全光線透過率は、分光光度計(島津製作所社製、 UV- 2400) に積分球を組み込んだ装置を用いて、製造した前記クッション層に対して 405nmの レーザ光を照射することにより測定した。 [0438] <クッション層のヘイズ値 > The total light transmittance of the cushion layer is determined by irradiating the manufactured cushion layer with a laser beam of 405 nm using an apparatus incorporating an integrating sphere into a spectrophotometer (manufactured by Shimadzu Corporation, UV-2400). It was measured by. [0438] <Haze value of cushion layer>
前記全光線透過率の測定方法にぉ 、て、前記積分球を使用しな 、以外は前記全 光線透過率の測定方法と同様にして平行光線透過率を測定した。次に、次計算式、 拡散光透過率 =前記全光線透過率一前記平行光線透過率、を計算し、更に、次計 算式、ヘイズ値 =前記拡散光透過率 Z前記全光線透過率 X 100、を計算することに より求めた。  The parallel light transmittance was measured in the same manner as the total light transmittance measurement method except that the integrating sphere was not used for the total light transmittance measurement method. Next, the following calculation formula, diffuse light transmittance = the total light transmittance—one parallel light transmittance, and further, the following formula, haze value = diffuse light transmittance Z, total light transmittance X 100 It was obtained by calculating.
[0439] <ラミネート性(凹凸追従性) >  [0439] <Laminating properties (concave / convex followability)>
前記積層体について、前記感光層と前記基体との間の気泡の有無を光学顕微鏡 で観察し、シヮゃョレの有無を目視で観察し、下記基準により評価を行った。  With respect to the laminate, the presence or absence of bubbles between the photosensitive layer and the substrate was observed with an optical microscope, the presence or absence of stains was visually observed, and evaluation was performed according to the following criteria.
評価基準  Evaluation criteria
〇:気泡が全く存在せず、シヮ 'ョレもな力つた。  〇: There were no bubbles at all, and the power was strong.
△:気泡が若干存在した力 シヮ'ョレはなかった。  Δ: Force with some air bubbles
X:気泡が存在し、シヮ'ョレがみられた。  X: Bubbles were present and spilled.
[0440] <解像度 > [0440] <Resolution>
(1)最短現像時間の測定方法  (1) Measuring method of shortest development time
前記積層体から前記支持体及び前記クッション層を剥がし取り、銅張積層板上の 前記感光層の全面に 30°Cの 1質量%炭酸ナトリウム水溶液を 0. 15MPaの圧力にて スプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶 解除去されるまでに要した時間を測定し、これを最短現像時間とした。  The support and the cushion layer are peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate. The time required from the start of spraying of the aqueous solution to the dissolution and removal of the photosensitive layer on the copper clad laminate was measured, and this was taken as the shortest development time.
この結果、前記最短現像時間は、 15秒であった。  As a result, the shortest development time was 15 seconds.
[0441] (2)感度の測定 [0441] (2) Sensitivity measurement
前記積層体から前記支持体を剥がし取り、前記クッション層上から、以下に説明す るパターン形成装置を用いて、 0. lmjZcm2から 21/2倍間隔で lOOmiZcm2までの 光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させ た。室温にて 10分間静置した後、前記積層体力も前記クッション層を剥がし取り、銅 張積層板上の感光層の全面に、 30°Cの 1質量%炭酸ナトリウム水溶液をスプレー圧 0. 15MPaにて前記(1)で求めた最短現像時間の 2倍の時間スプレーし、未硬化の 領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、 硬化層の厚さとの関係をプロットして感度曲線を得る。こうして得た感度曲線力も硬化 領域の厚さが 5 mとなった時の光エネルギー量を、感光層を硬化させるために必要 な光エネルギー量とした。この結果、前記感光層を硬化させるために必要な光エネ ルギー量は、 2mjZcm2であった。 Peeled off the support from the laminate, from the cushion layer, a patterning device you described below, different amount of light energy from 0. LmjZcm 2 to LOOmiZcm 2 with 2 1/2 times the interval Light exposure was performed to cure a part of the photosensitive layer. After standing at room temperature for 10 minutes, the laminate strength also peeled off the cushion layer, and a 1 mass% sodium carbonate aqueous solution at 30 ° C was sprayed to a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate. Then, spraying was performed for twice the shortest development time determined in (1) above, and the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Next, the amount of light irradiation, A sensitivity curve is obtained by plotting the relationship with the thickness of the cured layer. For the sensitivity curve force thus obtained, the amount of light energy when the thickness of the cured region reached 5 m was determined as the amount of light energy required to cure the photosensitive layer. As a result, the amount of light energy required for curing the photosensitive layer was 2 mjZcm 2 .
[0442] パターン形成装置 [0442] Pattern forming apparatus
前記光照射手段として図 27A〜図 32に示す合波レーザ光源と、前記光変調手段 として図 4A及び図 4Bに示す主走査方向にマイクロミラーが 1024個配列されたマイ クロミラー列力 副走査方向に 768組配列された内、 1024個 X 256列のみを駆動す るように制御した DMD50と、図 13Aに示した一方の面がトーリック面であるマイクロ ィを通した光を前記パターン形成材料に結像する光学系 480、 482とを有するバタ ーン形成装置を用いた。  27A to 32 as the light irradiating means, and 1024 micromirrors arranged in the main scanning direction shown in FIGS. 4A and 4B as the light modulating means in the sub-scanning direction. DMD50 controlled to drive only 1024 x 256 rows out of 768 sets, and light that passed through a micro-surface with one side shown in FIG. A pattern forming device having optical systems 480 and 482 for imaging was used.
[0443] また、前記マイクロレンズにおけるトーリック面は以下に説明するものを用いた。 [0443] The toric surface of the microlens described below was used.
まず、 DMD50の前記描素部としてのマイクロレンズ 474の出射面における歪みを 補正するため、該出射面の歪みを測定した。結果を図 14に示した。図 14においては 、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは 5nmである 。なお同図に示す X方向及び y方向は、マイクロミラー 62の 2つ対角線方向であり、マ イク口ミラー 62は y方向に延びる回転軸を中心として回転する。また、図 15A及び図 1 5Bにはそれぞれ、上記 X方向、 y方向に沿ったマイクロミラー 62の反射面の高さ位置 変位を示した。  First, in order to correct the distortion on the exit surface of the microlens 474 serving as the pixel portion of the DMD 50, the strain on the exit surface was measured. The results are shown in FIG. In FIG. 14, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. Note that the X direction and the y direction shown in the figure are the two diagonal directions of the micromirror 62, and the microphone mirror 62 rotates around the rotation axis extending in the y direction. 15A and 15B show the height position displacement of the reflection surface of the micromirror 62 along the X direction and the y direction, respectively.
[0444] 図 14、図 15A、及び図 15Bに示した通り、マイクロミラー 62の反射面には歪みが存 在し、そして特にミラー中央部に注目してみると、 1つの対角線方向(y方向)の歪み 力 別の対角線方向(X方向)の歪みよりも大きくなつていることが判る。このため、この ままではマイクロレンズアレイ 55のマイクロレンズ 55aで集光されたレーザ光 Bの集光 位置における形状が歪んでしまうことが判る。  [0444] As shown in FIG. 14, FIG. 15A, and FIG. 15B, the reflection surface of the micromirror 62 is distorted, and when attention is paid particularly to the central portion of the mirror, one diagonal direction (y direction) ) Distortion force It can be seen that it is larger than the distortion in another diagonal direction (X direction). For this reason, it can be seen that the shape of the laser beam B collected by the microlens 55a of the microlens array 55 is distorted as it is.
[0445] 図 16A及び図 16Bには、マイクロレンズアレイ 55全体の正面形状及び側面形状を それぞれ詳しく示した。これらの図には、マイクロレンズアレイ 55の各部の寸法も記入 してあり、それらの単位は mmである。先に図 4A及び図 4Bを参照して説明したように DMD50の 1024個 X 256列のマイクロミラー 62が駆動されるものであり、それに対 応させてマイクロレンズアレイ 55は、横方向に 1024個並んだマイクロレンズ 55aの列 を縦方向に 256列並設して構成されている。なお、図 16Aでは、マイクロレンズアレイ 55の並び順を横方向につ!、ては jで、縦方向につ!ヽては kで示して!/、る。 FIG. 16A and FIG. 16B show the front shape and side shape of the entire microlens array 55 in detail. In these figures, the dimensions of each part of the microlens array 55 are also entered, and their unit is mm. As previously described with reference to Figures 4A and 4B The microlens array 55 of the DMD50 is driven by 1024 x 256 rows of micromirrors 62. In response to this, the microlens array 55 has 256 rows of 1024 microlenses 55a arranged in the horizontal direction. Configured. In FIG. 16A, the arrangement order of the microlens array 55 is indicated in the horizontal direction, indicated by j, and indicated in the vertical direction by k! /.
[0446] また、図 17A及び図 17Bには、マイクロレンズアレイ 55における 1つのマイクロレン ズ 55aの正面形状及び側面形状をそれぞれ示した。なお、図 17Aには、マイクロレン ズ 55aの等高線を併せて示してある。各マイクロレンズ 55aの光出射側の端面は、マ イク口ミラー 62の反射面の歪みによる収差を補正する非球面形状とされて 、る。より 具体的には、マイクロレンズ 55aはトーリックレンズとされており、前記 X方向に光学的 に対応する方向の曲率半径 Rx=— 0. 125mm,前記 y方向に対応する方向の曲率 半径 Ry=—0. 1mmである。  [0446] Also, FIGS. 17A and 17B show a front shape and a side shape of one microlens 55a in the microlens array 55, respectively. FIG. 17A also shows the contour lines of microlens 55a. The end surface on the light exit side of each microlens 55a is formed into an aspherical shape that corrects aberration due to distortion of the reflection surface of the microphone mirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = —0.15 mm in a direction optically corresponding to the X direction, and a radius of curvature Ry = —in a direction corresponding to the y direction. 0.1 mm.
[0447] したがって、前記 X方向及び y方向に平行な断面内におけるレーザ光 Bの集光状態 は、概略、それぞれ図 18A及び図 18Bに示す通りとなる。つまり、 X方向に平行な断 面内と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 55 aの曲率半径がより小であって、焦点距離がより短くなつていることが判る。  Therefore, the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively. In other words, comparing the cross section parallel to the X direction and the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. You can see that
[0448] なお、マイクロレンズ 55aを前記形状とした場合の、該マイクロレンズ 55aの集光位 置 (焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図 19八〜図190に示す。また比較のために、マイクロレンズ 55&が曲率半径1¾=1^= 0. 1mmの球面形状である場合について、同様のシミュレーションを行った結果を 図 20A〜図 20Dに示す。なお、各図における zの値は、マイクロレンズ 55aのピント方 向の評価位置を、マイクロレンズ 55aのビーム出射面からの距離で示している。  [0448] FIGS. 19-8 to 190 show the simulation results of the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above-described shape. For comparison, FIGS. 20A to 20D show the results of similar simulations for the case where the microlens 55 & has a spherical shape with a radius of curvature of 1¾ = 1 ^ = 0.1 mm. In each figure, the value z represents the evaluation position in the focus direction of the microlens 55a as a distance from the beam exit surface of the microlens 55a.
[0449] また、前記シミュレーションに用いたマイクロレンズ 55aの面形状は、下記計算式で 計算される。  [0449] The surface shape of the microlens 55a used in the simulation is calculated by the following calculation formula.
[数 3]  [Equation 3]
一 C 2 X 2+ C y 2 Y 2 C 2 X 2 + C y 2 Y 2
― 1 + S Q R T ( 1 - C χ 2 X 2 - C y 2 Y 2 ) ― 1 + SQRT (1-C χ 2 X 2 -C y 2 Y 2 )
[0450] 但し、前記計算式において、 Cxは、 X方向の曲率( = lZRx)を意味し、 Cyは、 y方 向の曲率( = lZRy)を意味し、 Xは、 X方向に関するレンズ光軸 O力もの距離を意味 し、 Yは、 y方向に関するレンズ光軸 Ο力 の距離を意味する。 [0450] However, in the above formula, Cx means the curvature in the X direction (= lZRx), Cy means the curvature in the y direction (= lZRy), and X is the lens optical axis in the X direction. Mean distance of O force Y represents the distance of the lens optical axis repulsion in the y direction.
[0451] 図 19A〜図 19Dと図 20Α〜図 20Dとを比較すると明らかなように、マイクロレンズ 5 [0451] As can be seen by comparing FIG. 19A to FIG. 19D with FIG.
5aを、 y方向に平行な断面内の焦点距離が X方向に平行な断面内の焦点距離よりも 小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪 みが抑制される。この結果、歪みの無い、より高精細なパターンをパターン形成材料By making 5a a toric lens in which the focal length in the cross section parallel to the y direction is smaller than the focal length in the cross section parallel to the X direction, distortion of the beam shape in the vicinity of the condensing position is suppressed. As a result, high-definition patterns without distortion can be formed into pattern forming materials.
150に露光可能となる。また、図 19A〜図 19Dに示す本実施形態の方力 ビーム径 の小さい領域がより広い、すなわち焦点深度がより大であることが判る。 150 exposure is possible. Also, it can be seen that the region where the direction beam diameter is small in this embodiment shown in FIGS. 19A to 19D is wider, that is, the depth of focus is larger.
[0452] また、マイクロレンズアレイ 55の集光位置近傍に配置されたアパーチャアレイ 59は [0452] The aperture array 59 disposed in the vicinity of the light collection position of the microlens array 55 is
、その各アパーチャ 59aに、それと対応するマイクロレンズ 55aを経た光のみが入射 するように配置されたものである。すなわち、このアパーチャアレイ 59が設けられてい ることにより、各アパーチャ 59aに、それと対応しない隣接のマイクロレンズ 55aからの 光が入射することが防止され、消光比が高められる。 Each of the apertures 59a is arranged so that only light that has passed through the corresponding microlens 55a is incident thereon. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
[0453] (3)解像度の測定  [0453] (3) Measurement of resolution
前記積層体を、室温(23°C、 55%RH)にて 10分間静置した後、前記支持体を剥 がし取り、前記クッション層上から、前記パターン形成装置を用いて、ライン Zスぺー ス = lZlでライン幅 5 μ m〜20 μ mまで 1 μ m刻みで各線幅の露光を行い、ライン 幅 20 μ m〜50 μ mまで 5 μ m刻みで各線幅の露光を行った。この際の露光量は、前 記(2)で測定した前記パターン形成材料の感光層を硬化させるために必要な光エネ ルギー量である。室温にて 10分間静置した後、前記現像液として炭酸ナトリウム水溶 液(30°C、 1質量%)をスプレー圧 0. 15MPaにて前記(1)で求めた最短現像時間の The laminate is allowed to stand at room temperature (23 ° C, 55% RH) for 10 minutes, and then the support is peeled off. From the cushion layer, using the pattern forming apparatus, a line Z strap is removed. Each line width was exposed in increments of 1 μm from 5 μm to 20 μm in line width at lZl, and each line width was exposed in steps of 5 μm from 20 μm to 50 μm in line width. The exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in the above (2). After standing at room temperature for 10 minutes, an aqueous solution of sodium carbonate (30 ° C, 1% by mass) was used as the developer at a spray pressure of 0.15 MPa for the shortest development time determined in (1) above.
2倍の時間スプレーし、未硬化領域を溶解除去した。この様にして得られた硬化榭脂 ノターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのライン にッマリ、ョレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像 度は数値が小さいほど良好である。結果を表 3に示す。 Sprayed for twice the time to dissolve away uncured areas. The surface of the copper clad laminate with a cured resin pattern obtained in this way is observed with an optical microscope, and the minimum line width without any abnormalities such as scumming or splaying is measured on the cured resin pattern line. The resolution. The smaller the numerical value, the better the resolution. The results are shown in Table 3.
[0454] <密着性> [0454] <Adhesion>
前記(1)の最短現像時間の評価方法と同じ方法及び条件で前記積層体を作成し、 室温(23°C、 55%RH)にて 10分間静置した。得られた積層体の前記支持体を剥が し取り、前記クッション層上から、前記パターン形成装置を用いて、ライン Zスペース = 1Z5でライン幅 10 μ m〜50 μ mまで 5 μ m刻みで各線幅の露光を行った。この際 の露光量は、前記(2)で測定した前記パターン形成材料の感光層を硬化させるため に必要な最小の光エネルギー量である。室温にて 10分間静置した後、前記積層体 力 前記クッション層を剥がし取った。銅張積層板上の感光層の全面に、前記現像 液として炭酸ナトリウム水溶液(30°C、 1質量0 /0)をスプレー圧 0. 2MPaにて前記(1) で求めた最短現像時間の 2倍の時間スプレーし、未硬化領域を溶解除去した。この 様にして得られたパターン付き銅張積層板の表面を光学顕微鏡で観察し、パターン のラインにッマリ、ョレ等の異常のない最小のライン幅を測定し、これを密着性とした。 該密着性は数値が小さ 、ほど良好である。 The laminate was prepared under the same method and conditions as in the method (1) for evaluating the shortest development time, and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. The support of the obtained laminate is peeled off, and the line Z space is formed on the cushion layer using the pattern forming device. = 1Z5, each line width was exposed in increments of 5 μm from 10 μm to 50 μm. The exposure amount at this time is the minimum amount of light energy necessary to cure the photosensitive layer of the pattern forming material measured in (2). After leaving still at room temperature for 10 minutes, the said laminated body force The said cushion layer was peeled off. The entire surface of the photosensitive layer on the copper-clad laminate 2 of the shortest developing time aqueous sodium carbonate (30 ° C, 1 wt 0/0) was determined by the at spray pressure 0. 2 MPa (1) as a developing solution Sprayed for twice the time to dissolve away uncured areas. The surface of the copper clad laminate with a pattern obtained in this way was observed with an optical microscope, and the minimum line width with no abnormalities such as short lines and creases was measured on the pattern line, and this was defined as adhesion. The smaller the value, the better the adhesion.
[0455] <パターン欠陥 >  [0455] <Pattern defect>
前記解像度の測定にぉ 、て形成したパターン面(50 m X 50 m)につ 、て走査 型電子顕微鏡 (SEM)により撮影し、形成したパターンの形状を観察し、欠陥の有無 を評価した。結果を表 3に示す。  For the measurement of the resolution, the pattern surface (50 m × 50 m) formed in this manner was photographed with a scanning electron microscope (SEM), the shape of the formed pattern was observed, and the presence or absence of defects was evaluated. The results are shown in Table 3.
[0456] (実施例 2)  [0456] (Example 2)
実施例 1において、下記の組成カゝらなるクッション層組成物塗布液を調整し、 400メ ッシュのフィルターを用いて濾過した濾液を用いてクッション層を形成した以外は、実 施例 1と同様にして実施例 2のパターン形成材料、及び積層体を調製した。また、実 施例 1と同様にして、前記パターン形成材料におけるクッション層の 405nmの波長の 光に対する全光線透過率及びヘイズ値を測定し、前記パターン形成材料及び前記 積層体について、ラミネート性、解像度、密着性、及びパターン欠陥の評価を行った 。結果を表 3に示す。  In Example 1, the same cushion layer composition coating solution as the following composition was prepared, and the cushion layer was formed using the filtrate filtered using a 400 mesh filter. Thus, the pattern forming material of Example 2 and the laminate were prepared. Further, in the same manner as in Example 1, the total light transmittance and haze value of the cushioning layer in the pattern forming material with respect to light having a wavelength of 405 nm were measured, and the pattern forming material and the laminate were laminated. , Adhesion, and pattern defects were evaluated. The results are shown in Table 3.
[0457] [クッション層組成物塗布液の組成]  [Composition of cushion layer composition coating solution]
.エバフレックス 45X (酢酸ビニル含有量 46質量0 /0、三井 ·デュポンポリケミカル (株)製) 17質量部 . EVAFLEX 45X (vinyl acetate content 46 mass 0/0, manufactured by Mitsui Du Pont Polychemical Co.) 17 parts by weight
'トルエン 73質量部  'Toluene 73 parts by mass
•メチルェチルケトン 10質量部  • 10 parts by mass of methyl ethyl ketone
[0458] (実施例 3)  [Example 3]
実施例 1にお ヽて、下記の組成カゝらなる感光性榭脂組成物溶液をクッション層上に 塗布乾燥し、 15 m厚の感光層を形成し、この上に 12 m厚のポリプロピレンフィル ムをラミネートで貼り合わせた以外は、実施例 1と同様にして実施例 3のパターン形成 材料、及び積層体を調製した。また、実施例 1と同様にして、前記パターン形成材料 におけるクッション層の 405nmの波長の光に対する全光線透過率及びヘイズ値を 測定し、前記パターン形成材料及び前記積層体について、ラミネート性、解像度、密 着性、及びパターン欠陥の評価を行った。結果を表 3に示す。 In Example 1, a photosensitive resin composition solution having the following composition was applied onto the cushion layer. The pattern forming material and laminate of Example 3 were the same as Example 1 except that a 15 m thick photosensitive layer was formed by coating and drying, and a 12 m polypropylene film was laminated thereon. The body was prepared. Further, in the same manner as in Example 1, the total light transmittance and haze value of the pattern forming material with respect to light having a wavelength of 405 nm were measured, and the pattern forming material and the laminate were laminated. The adhesion and pattern defects were evaluated. The results are shown in Table 3.
なお、実施例 3の感光層を硬化させるために必要な光エネルギー量は、 2mjZcm2 であり、最短現像時間は 20秒であった。 The amount of light energy required for curing the photosensitive layer of Example 3 was 2 mjZcm 2 and the shortest development time was 20 seconds.
[0459] [感光性榭脂組成物溶液の組成] [0459] [Composition of photosensitive resin composition solution]
•硫酸バリウム分散液 24. 75質量部  • Barium sulfate dispersion 24.75 parts by weight
'スチレン Z無水マレイン酸 Zブチルアタリレート共重合体(モル比 40Z32Z28) とベンジルァミン (該共重合体の無水物基に対して 1. 0当量)との付加反応物の 35 質  'Styrene Z Maleic anhydride Z Butyl atylate copolymer (molar ratio 40Z32Z28) and benzylamine (1.0 equivalent to the anhydride group of the copolymer) 35
量%メチルェチルケトン溶液 13. 36質量部  % Methyl ethyl ketone solution 13. 36 parts by mass
• R712 (日本化薬社製、 2官能アクリルモノマー) 3. 06質量部  • R712 (Nippon Kayaku Co., Ltd., bifunctional acrylic monomer) 3. 06 parts by mass
'ジペンタエリスリトールへキサアタリレート 4. 59質量部  'Dipentaerythritol hexaatalylate 4.59 parts by mass
•IRGACURE819 (チノく'スペシャルティ一'ケミカルズ製) 1. 98質量部  • IRGACURE819 (manufactured by Chinoku 'Specialty One' Chemicals) 1. 98 parts by mass
•F780F (大日本インキ社製)の 30質量0 /0メチルェチルケトン溶液 • F780F 30 mass of (manufactured by Dainippon Ink and Chemicals, Inc.) 0/0 methyl E chill ketone solution
0. 066質量咅  0.66 mass
•ハイドロキノンモノメチルエーテル 0. 024質量部  • Hydroquinone monomethyl ether 0.024 parts by mass
•メチルェチルケトン 8. 60質量部  • Methyl ethyl ketone 8.60 parts by mass
なお、上記硫酸バリウム分散液は、硫酸バリウム (堺ィ匕学社製、 B30) 30質量部と、 上記スチレン Z無水マレイン酸 Zブチルアタリレート共重合体の 35質量0 /0メチルェ チルケトン溶液 34. 29質量部と、 1—メトキシ— 2—プロピルアセテート 35. 71質量 部と、を予め混合した後、モーターミル M— 200 (アイガー社製)で、直径 1. Ommの ジルコユアビーズを用い、周速 9mZsにて 3. 5時間分散して調製した。 Incidentally, the barium sulfate dispersion, barium sulfate (Sakaii匕学Co., B30) and 30 parts by mass, 35 parts by mass of the styrene Z maleic acid Z butyl Atari rates copolymer 0/0 Mechirue ethyl ketone solution 34. 29 parts by mass and 35.71 parts by mass of 1-methoxy-2-propylacetate were mixed in advance, and the motor mill M-200 (manufactured by Eiger) was used to squeeze the zirconia beads with a diameter of 1. Omm. It was prepared by dispersing for 3.5 hours at a speed of 9 mZs.
[0460] (実施例 4) [0460] (Example 4)
実施例 1において、下記の組成カゝらなるクッション層組成物塗布液を調整し、 400メ ッシュのフィルターを用いて濾過した濾液を用いて 15 m厚のクッション層を形成し、 さらに下記の組成力もなるノリア層組成物塗布液を調製し、 400メッシュのフィルター を用いて濾過した濾液を用いて 1. 5 m厚のノリア層を形成した以外は、実施例 1と 同様にして実施例 4のパターン形成材料、及び積層体を調製した。また、実施例 1と 同様にして、前記パターン形成材料におけるクッション層の 405nmの波長の光に対 する全光線透過率及びヘイズ値を測定し、前記パターン形成材料及び前記積層体 について、ラミネート性、解像度、密着性、及びパターン欠陥の評価を行った。結果 を表 3に示す。 In Example 1, a cushion layer composition coating solution having the following composition was prepared, and 400 A 15-m thick cushion layer is formed using the filtrate filtered using a fresh filter, and a Noria layer composition coating solution having the following compositional power is also prepared, and the filtrate filtered using a 400 mesh filter is used. The pattern forming material of Example 4 and the laminate were prepared in the same manner as Example 1 except that a 1.5 m thick noria layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the pattern forming material and the laminate were laminated. Resolution, adhesion, and pattern defects were evaluated. The results are shown in Table 3.
各評価において、露光後にクッション層及びバリア層は剥離せず、現像を行った。 なお、実施例 4において、感光層を硬化させるために必要な光エネルギー量は、 2 OmjZcm2であり、最短現像時間は 40秒であった。 In each evaluation, the cushion layer and the barrier layer were not peeled off after the exposure and developed. In Example 4, the amount of light energy required to cure the photosensitive layer was 2 OmjZcm 2 and the shortest development time was 40 seconds.
[0461] [クッション層組成物塗布液の組成] [0461] [Composition of cushion layer composition coating solution]
•メチルメタタリレート /2—ェチルへキシルアタリレート/ベンジルメタタリレート/ メタクリル酸共重合体 (共重合組成比(モル比): 55Z11. 7/4. 5/28. 8、 質量平均分子量: 80000) 15. 0質量部  • Methyl metatalylate / 2-ethylhexyl talylate / benzyl metatalylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio): 55Z11. 7/4. 5 / 28.8, mass average molecular weight: 80000) 15.0 parts by mass
•2, 2 ビス(4 (メタクリロイルォキシペンタエトキシ)フエ-ル)プロパン(商 品名: BPE— 500、新中村化学社製) 7. 0質量部  • 2, 2 bis (4 (methacryloyloxypentaethoxy) phenol) propane (trade name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.) 7.0 parts by mass
•フッ素系界面活性剤 (商品名: F177P、大日本インキ (株)製) 0. 3質量部 'メタノール 30. 0質量部  • Fluorosurfactant (trade name: F177P, manufactured by Dainippon Ink Co., Ltd.) 0.3 parts by mass' Methanol 30.0 parts by mass
•メチルェチルケトン 19. 0質量部  • Methyl ethyl ketone 19.0 parts by mass
•1ーメトキシー2—プロパノール 10. 0質量部  • 1-Methoxy-2-propanol 10.0 parts by mass
[0462] [バリア層用塗布液の組成]  [0462] [Composition of coating solution for barrier layer]
•ポリビュルアルコール(クラレ(株)製、 PVA205、ケン化率: 80%)  • Polybulal alcohol (Kuraray Co., Ltd., PVA205, saponification rate: 80%)
130質量部  130 parts by mass
•ポリビニノレピロリドン(GAFコ一ポレーション社製、 K 90) 60質量部  • Polyvinylinolepyrrolidone (GAF Corporation, K 90) 60 parts by mass
'フッ素系界面活性剤 (旭硝子 (株)製、サーフロン S 10質量部 'Fluorosurfactant (Asahi Glass Co., Ltd., Surflon S 10 parts by mass
,蒸留水 3350質量咅 , Distilled water 3350 mass
[0463] (実施例 5) 実施例 1にお 、て、パターン形成装置のマイクロレンズアレイを用いな力つたこと以 外は、実施例 1と同様にして、前記パターン形成材料及び前記積層体について、解 像度、密着性、及びパターン欠陥の評価を行った。結果を表 3に示す。 [0463] (Example 5) In Example 1, except that the micro lens array of the pattern forming apparatus was used, the pattern forming material and the laminate were analyzed for resolution, adhesion, And pattern defects were evaluated. The results are shown in Table 3.
[0464] (比較例 1) [0464] (Comparative Example 1)
実施例 1にお 、て、クッション層組成物塗布液をフィルター濾過せずに塗布してタツ シヨン層を形成した以外は、実施例 1と同様にしてパターン形成材料及び積層体を 製造した。また、実施例 1と同様にして、前記パターン形成材料におけるクッション層 の 405nmの波長の光に対する全光線透過率及びヘイズ値を測定し、前記パターン 形成材料及び前記積層体について、ラミネート性、解像度、密着性、及びパターン 欠陥の評価を行った。結果を表 3に示す。  In Example 1, a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution was applied without filtering and a tack layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the laminate, resolution, Adhesion and pattern defects were evaluated. The results are shown in Table 3.
[0465] (比較例 2) [0465] (Comparative Example 2)
実施例 2にお 、て、クッション層組成物塗布液をフィルター濾過せずに塗布してタツ シヨン層を形成した以外は、実施例 1と同様にしてパターン形成材料及び積層体を 製造した。また、実施例 1と同様にして、前記パターン形成材料におけるクッション層 の 405nmの波長の光に対する全光線透過率及びヘイズ値を測定し、前記パターン 形成材料及び前記積層体について、ラミネート性、解像度、密着性、及びパターン 欠陥の評価を行った。結果を表 3に示す。  In Example 2, a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution was applied without filtering and a tack layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the laminate, resolution, Adhesion and pattern defects were evaluated. The results are shown in Table 3.
[0466] (比較例 3) [0466] (Comparative Example 3)
実施例 3にお 、て、クッション層組成物塗布液をフィルター濾過せずに塗布してタツ シヨン層を形成した以外は、実施例 1と同様にしてパターン形成材料及び積層体を 製造した。また、実施例 1と同様にして、前記パターン形成材料におけるクッション層 の 405nmの波長の光に対する全光線透過率及びヘイズ値を測定し、前記パターン 形成材料及び前記積層体について、ラミネート性、解像度、密着性、及びパターン 欠陥の評価を行った。結果を表 3に示す。  In Example 3, a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution was applied without filtering and a tack layer was formed. Further, in the same manner as in Example 1, the total light transmittance and haze value with respect to light having a wavelength of 405 nm of the cushion layer in the pattern forming material were measured, and the laminate, resolution, Adhesion and pattern defects were evaluated. The results are shown in Table 3.
[0467] (比較例 4) [0467] (Comparative Example 4)
実施例 4において、クッション層組成物塗布液、及びバリア層用塗布液をフィルター 濾過せずに塗布してクッション層を形成した以外は、実施例 1と同様にしてパターン 形成材料及び積層体を製造した。また、実施例 1と同様にして、前記パターン形成材 料におけるクッション層の 405nmの波長の光に対する全光線透過率及びヘイズ値 を測定し、前記パターン形成材料及び前記積層体について、ラミネート性、解像度、 密着性、及びパターン欠陥の評価を行った。結果を表 3に示す。 In Example 4, a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the cushion layer composition coating solution and the barrier layer coating solution were applied without filtering to form a cushion layer. did. Further, in the same manner as in Example 1, the pattern forming material The total light transmittance and haze value of the cushion layer in the material with respect to light having a wavelength of 405 nm were measured, and the pattern forming material and the laminate were evaluated for laminating properties, resolution, adhesion, and pattern defects. The results are shown in Table 3.
[0468] [表 3] [0468] [Table 3]
Figure imgf000124_0001
Figure imgf000124_0001
[0469] 表 3の結果より、比較例 1〜4のパターン形成材料及び積層体と比較して、クッショ ン層組成物塗布液を濾過して形成したクッション層カゝらなる実施例 1〜5のパターン 形成材料及び積層体は、クッション層が好適なラミネート性(凹凸追従性)と透明性と を両立することにより、現像後に欠陥のない高精細なパターンが得られることがわか つた。また、マイクロレンズアレイを用いないパターン形成装置により形成した実施例 5のパターンは、実施例 1と比較して、解像度に劣ることがわ力 た。  [0469] From the results shown in Table 3, Examples 1 to 5 are cushion layers formed by filtering the cushion layer composition coating solution as compared with the pattern forming materials and laminates of Comparative Examples 1 to 4. It was found that the pattern forming material and the laminate can obtain a high-definition pattern having no defects after development by making the cushion layer compatible with suitable laminating properties (protrusion following unevenness) and transparency. Further, the pattern of Example 5 formed by a pattern forming apparatus not using a microlens array was inferior in resolution as compared with Example 1.
産業上の利用可能性  Industrial applicability
[0470] 本発明のパターン形成材料、並びにパターン形成装置、及びパターン形成方法は 、支持体上にクッション層と感光層とをこの順に有し、該クッション層における全光線 透過率とヘイズ値とが一定の数値範囲であるパターン形成材料を用い、感光層上に 結像させる像の歪みを抑制することにより、凹凸追従性と高解像度とが両立され、か つ、欠陥のない高精細なパターンを効率よく形成可能であるため、各種パターンの 形成、配線パターン、保護膜、層間絶縁膜、及びソルダーレジストパターンなどの形 成、カラーフィルター、柱材、リブ材、スぺーサ一、隔壁等の液晶構造部材の製造、 ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができ、特に高 精細な配線パターンの形成及びカラーフィルターの製造に好適に用いることができる [0470] The pattern forming material, pattern forming apparatus, and pattern forming method of the present invention have a cushion layer and a photosensitive layer in this order on a support, and the total light transmittance and haze value in the cushion layer. By using a pattern forming material that has a certain numerical range, and suppressing distortion of the image formed on the photosensitive layer, it is possible to achieve both concave-convex followability and high resolution, and to produce a high-definition pattern without defects. Since it can be formed efficiently, it forms various patterns, wiring patterns, protective films, interlayer insulating films, solder resist patterns, etc., liquid crystals such as color filters, pillar materials, rib materials, spacers, partition walls, etc. It can be suitably used for the manufacture of structural members, holograms, micromachines, proofs, etc. It can be used suitably for forming fine wiring patterns and manufacturing color filters.

Claims

請求の範囲 The scope of the claims
[I] 支持体上にクッション層と感光層とをこの順に有し、該クッション層における全光線 透過率が 86%以上、かつ、ヘイズ値が 10%以下であることを特徴とするパターン形 成材料。  [I] A pattern formed by having a cushion layer and a photosensitive layer in this order on a support, and having a total light transmittance of 86% or more and a haze value of 10% or less in the cushion layer. material.
[2] クッション層の全光線透過率及びヘイズ値を求める場合の光の波長力 405nmで ある請求項 1に記載のパターン形成材料。  [2] The pattern forming material according to [1], which has a wavelength force of light of 405 nm when determining the total light transmittance and haze value of the cushion layer.
[3] クッション層中に含まれる微粒子の平均粒子径が 1 μ m未満である請求項 1から 2 の!、ずれかに記載のパターン形成材料。 [3] The pattern forming material according to [1] or [2], wherein the average particle size of the fine particles contained in the cushion layer is less than 1 μm.
[4] クッション層力 ガラス転移温度 (Tg)及び軟化点の!/ヽずれかが 80°C以下の熱可塑 性榭脂を含有する請求項 1から 3のいずれかに記載のパターン形成材料。 [4] Cushion layer force The pattern forming material according to any one of claims 1 to 3, comprising a thermoplastic resin having a glass transition temperature (Tg) and a softening point deviation of 80 / C or less.
[5] クッション層の厚み力 6〜: LOO μ mである請求項 1から 4のいずれかに記載のパタ ーン形成材料。 [5] The pattern forming material according to any one of claims 1 to 4, wherein the cushion layer has a thickness force of 6 to: LOO μm.
[6] クッション層と感光層との間に、物質の移動を抑制可能なバリア層を有する請求項 1 力も 5のいずれか〖こ記載のパターン形成材料。  [6] The pattern forming material according to any one of [5] above, wherein a barrier layer capable of suppressing the movement of a substance is provided between the cushion layer and the photosensitive layer.
[7] クッション層上に、第一感光層、及び該第一感光層よりも硬化させるための光エネ ルギー量が少ない第二感光層がこの順に積層されてなる請求項 1から 6のいずれか に記載のパターン形成材料。 7. The method according to any one of claims 1 to 6, wherein the first photosensitive layer and the second photosensitive layer having a smaller amount of light energy for curing than the first photosensitive layer are laminated in this order on the cushion layer. The pattern forming material according to 1.
[8] 第一感光層と第二感光層との間に、バリア層を有する請求項 7に記載のパターン形 成材料。 8. The pattern forming material according to claim 7, further comprising a barrier layer between the first photosensitive layer and the second photosensitive layer.
[9] クッション層が、該クッション層に含まれる組成物が溶解、乳化、又は分散されたタツ シヨン層組成物塗布液を、フィルターで濾過した後、支持体上に塗布、乾燥して形成 される請求項 1から 8のいずれか〖こ記載のパターン形成材料。  [9] The cushion layer is formed by filtering a solution for coating the composition of the composition in which the composition contained in the cushion layer is dissolved, emulsified or dispersed, and then applying the solution to a support and drying it. The pattern forming material according to any one of claims 1 to 8.
[10] フィルターの孔径が 30 μ m以下である請求項 9に記載のパターン形成材料。  10. The pattern forming material according to claim 9, wherein the pore size of the filter is 30 μm or less.
[II] 請求項 1から 10のいずれかに記載のパターン形成材料を備えており、  [II] The pattern forming material according to any one of claims 1 to 10,
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形 成材料における感光層に対して露光を行う光変調手段とを少なくとも有することを特 徴とするパターン形成装置。  Pattern formation characterized by comprising at least light irradiation means capable of irradiating light and light modulation means for modulating light from the light irradiation means and exposing the photosensitive layer in the pattern forming material. apparatus.
[12] 請求項 1から 10のいずれかに記載のパターン形成材料を、加熱及び加圧の少なく ともいずれかにより基体上に積層する積層工程と、 [12] The pattern forming material according to any one of claims 1 to 10 is less heated and pressurized. A laminating step of laminating on the substrate by either,
前記積層工程により積層された少なくとも感光層を、光照射手段から照射される光 により露光する露光工程と、  An exposure step of exposing at least the photosensitive layer laminated by the laminating step with light irradiated from a light irradiation means;
前記露光工程により露光された感光層を現像する現像工程とを有することを特徴と するパターン形成方法。  And a development step of developing the photosensitive layer exposed in the exposure step.
[13] 積層工程後に、支持体をクッション層上力 剥離する剥離工程を有し、次いで、タツ シヨン層上から感光層を露光工程により露光する請求項 12に記載のパターン形成方 法。  13. The pattern forming method according to claim 12, further comprising a peeling step of peeling the support on the cushion layer after the laminating step, and then exposing the photosensitive layer from above the tack layer by an exposure step.
[14] 露光工程が、光照射手段からの光を受光し出射する描素部を n個有する光変調手 段により、前記光照射手段からの光を変調させた後に、前記描素部における出射面 の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロ レンズアレイを通過させた光によって行われる請求項 12から 13のいずれかに記載の パターン形成方法。  [14] After the exposure step modulates the light from the light irradiation means by a light modulation means having n number of picture elements for receiving and emitting the light from the light irradiation means, the light is emitted from the light drawing part. 14. The pattern forming method according to claim 12, wherein the pattern forming method is performed by using light that has passed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to surface distortion are arranged.
[15] 非球面が、トーリック面である請求項 14に記載のパターン形成方法。  15. The pattern forming method according to claim 14, wherein the aspherical surface is a toric surface.
[16] 現像が行われた後、永久パターンの形成を行う請求項 12から 15のいずれかに記 載のパターン形成方法。 16. The pattern forming method according to any one of claims 12 to 15, wherein a permanent pattern is formed after development.
PCT/JP2005/015768 2004-09-01 2005-08-30 Pattern-forming material, pattern-forming apparatus and pattern-forming method WO2006025389A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-254907 2004-09-01
JP2004254907A JP2007327979A (en) 2004-09-01 2004-09-01 Pattern forming material, pattern formation apparatus, and pattern forming method

Publications (1)

Publication Number Publication Date
WO2006025389A1 true WO2006025389A1 (en) 2006-03-09

Family

ID=36000039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015768 WO2006025389A1 (en) 2004-09-01 2005-08-30 Pattern-forming material, pattern-forming apparatus and pattern-forming method

Country Status (3)

Country Link
JP (1) JP2007327979A (en)
TW (1) TW200619844A (en)
WO (1) WO2006025389A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513551B2 (en) 2009-01-29 2016-12-06 Digiflex Ltd. Process for producing a photomask on a photopolymeric surface

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066638A1 (en) 2007-11-20 2009-05-28 Hitachi Chemical Company, Ltd. Photosensitive resin composition, cured photosensitive resin product, photosensitive resin film, cured photosensitive resin film product, and optical waveguide produced by using those products
JP5782162B2 (en) * 2014-05-29 2015-09-24 三菱製紙株式会社 Photosensitive film for sandblasting
WO2020054075A1 (en) * 2018-09-14 2020-03-19 日立化成株式会社 Transfer-type photosensitive film, method for forming resin cured film, and method for producing sensor substrate with resin cured film
WO2021137444A1 (en) * 2019-12-31 2021-07-08 코오롱인더스트리 주식회사 Photosensitive laminate, method for manufacturing photosensitive laminate, and method for manufacturing circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720309A (en) * 1992-12-16 1995-01-24 Nippon Paper Ind Co Ltd Transfer material for photopolymer, color filter using the same and production thereof
JPH1172908A (en) * 1997-08-29 1999-03-16 Hitachi Chem Co Ltd Photosensitive element and production of color filter
JP2000250222A (en) * 1999-02-26 2000-09-14 Hitachi Chem Co Ltd Colored image forming photosensitive film and production of colored image using same
JP2002311208A (en) * 2001-04-17 2002-10-23 Jsr Corp Curing composition for antireflection film and antireflection film which uses the same
JP2003307845A (en) * 2002-04-17 2003-10-31 Hitachi Chem Co Ltd Photosensitive film for forming circuit and method for manufacturing printed-wiring board
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720309A (en) * 1992-12-16 1995-01-24 Nippon Paper Ind Co Ltd Transfer material for photopolymer, color filter using the same and production thereof
JPH1172908A (en) * 1997-08-29 1999-03-16 Hitachi Chem Co Ltd Photosensitive element and production of color filter
JP2000250222A (en) * 1999-02-26 2000-09-14 Hitachi Chem Co Ltd Colored image forming photosensitive film and production of colored image using same
JP2002311208A (en) * 2001-04-17 2002-10-23 Jsr Corp Curing composition for antireflection film and antireflection film which uses the same
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2003307845A (en) * 2002-04-17 2003-10-31 Hitachi Chem Co Ltd Photosensitive film for forming circuit and method for manufacturing printed-wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513551B2 (en) 2009-01-29 2016-12-06 Digiflex Ltd. Process for producing a photomask on a photopolymeric surface

Also Published As

Publication number Publication date
TW200619844A (en) 2006-06-16
JP2007327979A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
WO2006006671A1 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and method of pattern formation
JP4966528B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
WO2006028060A1 (en) Pattern forming material, and pattern forming device and pattern forming method
WO2005116774A1 (en) Pattern formation method
WO2006019089A1 (en) Photosensitive transfer material and pattern forming method and pattern
WO2006059534A1 (en) Pattern forming material and pattern forming method
JP4500657B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
WO2006051761A1 (en) Composition for pattern formation and pattern forming material, and pattern forming apparatus and pattern forming method
JP4646759B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2005249970A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006220863A (en) Pattern formation material, pattern formation apparatus and pattern formation method
JP2006154740A (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and method of pattern formation
WO2006075633A1 (en) Pattern forming material, pattern forming apparatus and permanent pattern forming method
WO2006025389A1 (en) Pattern-forming material, pattern-forming apparatus and pattern-forming method
JP2006243546A (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2007286480A (en) Pattern forming method
CN100478785C (en) Pattern forming method
JP2006251562A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007093796A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4546276B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006003436A (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2007140174A (en) Pattern forming material, and pattern forming apparatus and pattern forming method
JP4549891B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
WO2006009117A1 (en) Pattern forming material, and pattern forming device and pattern forming method
JP4401979B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP