WO2006025298A1 - 中継器及び中継方法 - Google Patents

中継器及び中継方法 Download PDF

Info

Publication number
WO2006025298A1
WO2006025298A1 PCT/JP2005/015623 JP2005015623W WO2006025298A1 WO 2006025298 A1 WO2006025298 A1 WO 2006025298A1 JP 2005015623 W JP2005015623 W JP 2005015623W WO 2006025298 A1 WO2006025298 A1 WO 2006025298A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
repeater
circuit
transmission
Prior art date
Application number
PCT/JP2005/015623
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Kashima
Houtao Zhu
Original Assignee
Nokia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Corporation filed Critical Nokia Corporation
Priority to EP05780861A priority Critical patent/EP1791270A1/en
Priority to US11/660,688 priority patent/US20090116415A1/en
Publication of WO2006025298A1 publication Critical patent/WO2006025298A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/1555Selecting relay station antenna mode, e.g. selecting omnidirectional -, directional beams, selecting polarizations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels

Definitions

  • the present invention relates to a technique for relaying signals exchanged between communication devices in wireless communication.
  • Wireless communication fields such as mobile phones and wireless LANs are the most active technical fields in recent years.
  • the communication speed that the cellular phone network is capable of was several tens of kbps at most several years ago, but with the introduction of the third generation network (3G), communication of several Mbps became possible.
  • 3G third generation network
  • the communication speed of lGbps Development is progressing with the aim of In wireless LANs, it is said that the speed will be increased from 11 Mbps in the currently popular IEEE802.lib standard to 54 Mbps in the 802.11a and 802.11g standards, and a communication speed of several hundred Mbps will be possible with 802.1 In coming in the future. It has been broken.
  • Mobile communication terminals such as mobile phones and wireless LAN terminals are connected to mobile phone networks and wireless LAN access points (or base stations).
  • wireless LAN access points or base stations.
  • the frequency of radio waves used for communication increases, the effect of shielding radio waves by obstacles increases, so the communicable range that can be covered by one access point decreases.
  • Access points are expensive, so adding too much would be too expensive. Therefore, it is considered to install an inexpensive repeater for relaying radio waves between the access point base station and the mobile communication terminal.
  • next-generation repeaters have a status such as whether or not the relay partner is in their communicable area. It is required to recognize the state and relay it in a form suitable for the state.
  • the repeater since the repeater has a transmission function and a reception function, it is desirable to pay sufficient attention to possible interference between the transmission side and the reception side.
  • a repeater placed in the middle of a communication path between a first communication device and a second communication device
  • a transmitter circuit that converts baseband signals into RF signals for transmission
  • a baseband signal derived from an RF signal received from one of the first or second communication devices is acquired from the reception side circuit, and communication data included in the baseband signal is obtained.
  • a communication control unit for transmitting the communication data to the other communication device for the one through the transmission side circuit,
  • a repeater is provided.
  • the switching unit can be configured to switch between the first state and the second state in accordance with a predetermined timing.
  • the first state and the second state are changed according to the switching timing of the downlink and the uplink. It is preferable to configure the switching unit to switch.
  • the communication control unit can be configured to perform transmission through the transmission side circuit and simultaneously perform reception through the reception side circuit.
  • the predetermined processing includes determining whether or not the communication data should be relayed, determining whether or not the communication device to which the communication data should reach is within its communicable range, and the communication data. It is preferable to include those related to one or more of the judgments based on the distance between the communication device to be reached and oneself.
  • the communication control unit can be configured to hold the information acquired in the current first state and transmit the held information in the first state after the next time. Similarly, the communication control unit can be configured to hold the information acquired in the current second state and transmit the held information in the second state after the next time.
  • a repeater provided by the first aspect of the present invention includes a first duplicating unit that makes a duplication of the transmission RF signal by branching the transmission RF signal output from the transmission side circuit, and the duplication It is possible to adopt a configuration including a first interference reduction unit that adjusts the amplitude or Z and phase of the adjusted RF signal and subtracts the RF signal force that inputs the adjusted RF signal to the receiving circuit.
  • the first interference cancellation circuit transmits the amplitude or Z and phase of the duplicated transmission RF signal into the antenna connected to the reception side circuit from the antenna connected to the transmission side circuit. It can be configured to adjust to the amplitude or Z and phase of the RF signal.
  • the repeater provided by the first aspect of the present invention includes a second duplicating unit that creates a duplication of the transmission signal by branching the transmission signal before being converted into the transmission RF signal by the transmission side circuit. And a second interference removal circuit that adjusts the strength or Z and phase of the duplicated transmission signal and subtracts the reception signal force after the RF signal force conversion in the receiving side circuit. Configuration can be taken.
  • the second interference cancellation circuit transmits the intensity or Z and phase of the duplicated transmission signal to the reception side circuit via the antenna force connected to the transmission side circuit and the antenna connected to the reception side circuit. It can be configured to adjust to signal strength or Z and phase.
  • the first antenna and the Z or second antenna are preferably antennas having directivity.
  • the first antenna and / or the second antenna has a plurality of antenna force structures. It may be a group of antennas (for example, MIMO (Multiple Input Multiple Output)).
  • the first antenna may be used for communication with the first communication device, and the second antenna may be used for communication with the second communication device.
  • the repeater provided by the first aspect of the present invention includes, for example, a repeater that relays communication between an access point and a terminal in a wireless LAN, and an access point in a cellular radio telephone.
  • the present invention can be applied to a repeater that relays communication between terminals and a repeater that relays communication between terminals in a multi-hop network.
  • the repeater provided by the first aspect of the present invention can be implemented integrally with a communication terminal.
  • the signal exchanged between the first communication device and the second communication device that performs communication using the time division duplex method is relayed by the repeater. • During the first downlink,
  • the first communication device transmits a first RF signal to the repeater
  • the repeater receives the first RF signal and extracts a first baseband signal included in the first RF signal,
  • the second communicator transmits a second RF signal to the repeater
  • the repeater receives the second RF signal and extracts a second baseband signal included in the second RF signal;
  • the first communicator transmits a third RF signal to the repeater
  • the repeater converts the first baseband signal into an RF signal for transmission, transmits the signal to the second communication device, receives the third RF signal, and receives a third base signal included in the third signal. Take out the band signal,
  • the second communicator transmits a fourth RF signal to the repeater
  • the repeater converts the second baseband signal into an RF signal for transmission and transmits it to the first communication device, receives the fourth signal, and is included in the fourth signal.
  • the fourth baseband signal converts the second baseband signal into an RF signal for transmission and transmits it to the first communication device, receives the fourth signal, and is included in the fourth signal.
  • a relay method is provided.
  • the repeater is provided with a first antenna used for communication with the first communication device and a second antenna used for communication with the second communication device, and the first antenna is provided during downlink. Connect to the receiver circuit of the repeater and connect the second antenna to the transmitter circuit of the repeater. In uplink, connect the first antenna to the transmitter circuit and connect the second antenna to the receiver circuit.
  • a repeater placed in the middle of the communication path between the first communication device and the second communication device,
  • a transmitter circuit connected to one of the first antenna and the second antenna and converting a baseband signal into an RF signal for transmission;
  • a communication control unit that performs transmission through the transmission side circuit and reception through the reception side circuit
  • a first interference cancellation circuit that adjusts the amplitude or Z and phase of the replicated RF signal and subtracts the adjusted RF signal from the RF signal input to the receiver circuit;
  • the first interference canceling circuit transmits the amplitude or Z and phase of the duplicated transmitting RF signal to the antenna connected to the receiving circuit from the antenna power connected to the transmitting circuit. It can be configured to adjust to the amplitude or Z and phase of the RF signal.
  • the communication device is placed in the middle of the communication path between the communication device and the second communication device. «I device,
  • a communication control unit that performs transmission through the transmission side circuit and reception through the reception side circuit
  • a second duplicating unit for making a duplication of the transmission signal by branching the transmission signal before being converted into the transmission RF signal in the transmission side circuit
  • a second interference removal circuit that adjusts the strength or Z and phase of the duplicated transmission signal, and subtracts the adjusted transmission signal, after receiving the RF signal strength converted in the receiving side circuit;
  • a repeater is provided.
  • the second interference cancellation circuit mixes the intensity or Z and phase of the duplicated transmission signal into the reception side circuit through the antenna connected to the reception side circuit from the antenna connected to the transmission side circuit. It can be configured to adjust to the intensity or Z and phase of the transmitted signal.
  • the first antenna and / or the second antenna is preferably an antenna having directivity.
  • the first antenna and / or the second antenna may be an antenna group composed of a plurality of antennas (for example, MIMO (Multiple Input Multiple Output)).
  • the first antenna may be used for communication with the first communication device, and the second antenna may be used for communication with the second communication device.
  • the repeater provided by the third and fourth aspects of the present invention includes a first antenna in which the first antenna is connected to the transmission side circuit and the second antenna is connected to the reception side circuit.
  • a configuration may be provided that includes a switching unit that switches between a state and a second state in which the first antenna is connected to the receiving circuit and the second antenna is connected to the transmitting circuit.
  • the repeater provided by the third aspect and the fourth aspect of the present invention includes a repeater that relays communication using a time division duplex method and a communication that uses a frequency division duplex method. It can also be applied to a repeater that relays.
  • repeaters that relay communications between access points and terminals in wireless LANs, relays that relay communications between access points and terminals in cellular radio telephones, and multi-hop networks! It can be applied to repeaters that relay communications between terminals. Furthermore, it is possible to carry out by implementing the communication terminal together.
  • FIG. 1 is a diagram for explaining an example of a situation in which the present invention is used.
  • 1 is an access point used in a cellular phone network
  • 2 is a repeater according to the present invention
  • 3 is a mobile communication terminal.
  • the access point 1 is connected to a higher-level network, receives data to be transmitted to the mobile communication terminal as well as higher-level network power, and transmits data from the mobile communication terminal 3 to the higher-level network.
  • the access point 1 may be called a base station (Base Station, BS or Base Transceiver State, BTS) in addition to an access point (Access Point).
  • Base Station Base Station
  • BTS Base Transceiver State
  • access point 1 wants to communicate with mobile communication terminal 3.
  • Power mobile communication terminal 3 is not in communicable range 4 of access point 1.
  • the communicable range 5 of the repeater 2 covers both the access point 1 and the mobile communication terminal 3. Therefore, repeater 2 is used to relay communication between access point 1 and mobile communication terminal 3.
  • the repeater 2 receives the radio signal from the access point 1 and retransmits it to the mobile communication terminal 3, and conversely receives the radio signal from the mobile communication terminal 3 and retransmits it to the access point 1.
  • FIG. 2 is a block diagram for explaining the first embodiment of the repeater according to the present invention.
  • the repeater 10 in the present embodiment is a repeater that relays communication using time division duplex (TDD).
  • the repeater 10 includes a communication control unit 11, a memory 12, a transmission side circuit 13, a reception side circuit 14, a first antenna 15, a second antenna 16, an antenna switch 17, and the like. It is desirable that the first antenna 15 and the second antenna 16 are directional antennas, for example, the first antenna 15 is directional in the direction of the access point, and the second antenna 16 is vice versa. It has directivity in the direction in which the mobile communication terminal should exist.
  • the first antenna 15 and the second antenna 16 should be installed with great care so that interference is minimized.
  • the transmission side circuit 13 is a part that converts the information to be transmitted into an RF signal for transmission through baseband processing, frequency conversion processing, etc., and includes a transmission RF circuit 21, a DA converter 22, a digital modulation circuit 23 , Channel encoder 24 etc. are provided.
  • the receiving side circuit 14 is a part for extracting the data to be relayed through the received RF signal power frequency conversion and baseband processing.
  • the channel encoder 24 assembles data to be transmitted into a frame according to a communication standard and performs processing such as error control code interleaving.
  • the digital modulation circuit 23 digitally modulates the output signal of the channel encoder 24 by a method according to the communication standard.
  • the transmission RF circuit 21 converts the output of the digital modulation circuit 23 converted into an analog signal by the DA converter 22 into a carrier frequency and amplifies it to a necessary amplitude.
  • the reception RF circuit 25 amplifies the received RF signal and performs frequency conversion.
  • the digital demodulation circuit 27 demodulates the output signal of the reception RF circuit 25 digitized by the A-D converter 26 by a method according to the communication standard, and extracts a baseband signal.
  • the channel decoder 28 performs processing such as error control decoding, dingtery, frame analysis, and header information separation on the baseband signal demodulated by the digital demodulation circuit 27.
  • the communication control unit 11 receives the data processed by the channel decoder 28 and performs a predetermined process on the data.
  • the content of processing varies depending on the embodiment.For example, whether the received information is the information to be relayed, whether the communication partner to which the received data is to be delivered is within the communicable category, the communication partner How far is you from , Etc. can be implemented.
  • Data passed to the communication control unit 11 is stored in the memory 12. When the repeater 10 performs transmission, the communication control unit 11 reads data to be transmitted from the memory 12 and passes it to the channel encoder 24.
  • the communication control unit 11 does not transmit the data. For this reason, the communication path where extra radio waves are not radiated on the communication path is not contaminated. It also leads to power savings.
  • the communication control unit 11 can further have a function of controlling the signal amplification factor in the transmission RF circuit 21 and the reception RF circuit 25 in accordance with the distance to the communication partner.
  • the antenna switch 17 includes a first state in which the first antenna 15 is connected to the transmission side circuit 13 and the second antenna 16 is connected to the reception side circuit 14, and the first antenna 15 is connected to the reception side circuit 1.
  • the second state in which the second antenna 16 is connected to the transmission side circuit 13 while being connected to 4 is switched. This is shown in Figure 3.
  • the first antenna 15 is connected to the transmission side circuit 13 and the second antenna 16 is connected to the reception side circuit 14.
  • the first antenna 15 is connected to the receiving circuit 14 and the second antenna 16 is connected to the transmitting circuit 13.
  • switching between the first state shown in Fig. 3 (a) and the second state shown in Fig. 3 (b) may be performed in accordance with a predetermined timing. However, it may be configured to be switched under the control of the communication control unit 11. However, since the repeater 10 in the present embodiment is a repeater that relays communication using the TDD scheme, the antenna switch 17 switches between the first state and the second state according to the switching timing of the downlink and the uplink. Is configured to switch between.
  • step 1 the communication direction becomes downlink. In other words, it is time to transmit data from the access point to the mobile communication terminal.
  • the antenna switch 17 connects the directivity on the access point side of the first antenna 15 and the second antenna 16 to the reception side circuit 14 and sets the directivity on the mobile communication terminal side. Connect what you have to the transmitter circuit 13.
  • the state of the antenna switch 17 in step 2 is as shown in FIG. 3 (b). Set to state.
  • steps S3 to S8, which are operations on the receiving side, and steps S9 to S13, which are operations on the transmitting side, are performed in parallel.
  • a radio signal from the access point is received by the first antenna 15 (step S3).
  • processing such as frequency conversion of the received radio signal is performed by the receiving side circuit 14 (step S4), and further, digital demodulation processing by the digital demodulation circuit 27 ⁇ channel decoder 28 ⁇ error control decoding 'frame Analysis ⁇ Baseband processing such as header information separation is performed (step S5).
  • step S6 the communication control unit 11 checks the output data of the channel decoder 28, and whether or not the data is the data to be relayed. Analyze, etc.
  • step S14 If the data is not to be relayed, or if the communication partner to which the data is to be delivered is not within the communicable range, the data is discarded and step S14 is awaited. If the data is to be relayed and the communication partner to which the data is to be delivered is within its communicable range, the data is stored in the memory 12.
  • the communication control unit 11 On the transmission side after step S2, the communication control unit 11 first determines whether there is data to be transmitted! If there is no data to send, wait for step S14. If there is data to be transmitted, the data is read from the memory 12 and passed to the channel encoder 24 (step S10). Next, the channel encoder 24 and the subsequent digital modulation circuit 23 perform baseband processing such as frame construction “error control coding” digital modulation on the data passed from the communication control unit 11 (step S 11 ). The data that has undergone the baseband processing is converted into an analog signal and transferred to the RF circuit 21 for transmission. The transmission RF circuit 21 performs processing such as high-frequency conversion and amplification on the signal, and passes the second antenna 16 to the mobile communication terminal. Send to.
  • baseband processing such as frame construction “error control coding” digital modulation
  • the repeater 10 can perform the reception operation and the transmission operation in parallel, so that the communication rate between the access point and the mobile communication terminal is halved by the relay. That's not true.
  • Step S14 indicates the timing when the communication direction changes to the uplink. In other words, from now on, the mobile communication terminal power is also the timing to transmit data to the access point. Then, the antenna switch 17 connects the first antenna 15 having directivity on the access point side to the transmission side circuit 13 and connects the second antenna 16 having directivity on the mobile communication terminal side to the reception side circuit 14. (Step S15). That is, in step S15, the antenna switch 17 is in the state shown in FIG.
  • steps S16 to S21 which are operations on the reception side
  • steps S22 to S26 which are operations on the transmission side
  • steps S3 to S8 and steps S9 to S13 described above, respectively.
  • reception is performed through the second antenna 16
  • transmission is performed through the first antenna 15.
  • step S27 the communication direction changes again to the downlink. Then, the operation returns to step S2, the antenna switch 17 switches the connection, and the transmission / reception operation is repeated again.
  • the communication control unit 11 holds the output data of the channel decoder 28 obtained in the current downlink period in the memory 12 and reads out the data from the memory 12 and transmits it in the next downlink period.
  • the information received by the reception operation belonging to step S1 is transmitted in the transmission operation belonging to the next step S27 rather than being transmitted according to the transmission operation belonging to step S1. The same applies to the applink.
  • AP is an access point
  • RS is a repeater 10 according to the present invention
  • MT is a mobile communication terminal
  • DL is a downlink
  • UL is an uplink period. The time is assumed to progress from top to bottom.
  • Step S31 is a downlink period. Therefore, the antenna switch 17 is in the state shown in Fig. 3 (b).
  • RS has the power to receive AP signal 41. No transmission operation is performed.
  • RS holds signal 41 temporarily.
  • Step S32 is the uplink period. Therefore, the antenna switch 17 is switched to the state shown in Fig. 3 (a).
  • the RS does not have any information to transmit to the AP that can receive the signal 42 from the MT, so no transmission is performed.
  • RS also holds signal 42 temporarily.
  • Step S33 is the downlink period. The antenna switch 17 switches to the state shown in Fig. 3 (b).
  • the RS receives and holds the signal 43 from the AP, and transmits the signal 41 held in step S31, which is the previous downlink period, to the MT.
  • Step S34 is the uplink period. Therefore, the antenna switch 17 is switched to the state shown in FIG.
  • the RS receives and holds the signal 44 from the MT, and transmits the signal 42 held in step S32, which is the previous uplink period, to the AP.
  • signal 43 is transmitted to the MT in the next downlink period, step S35, and signal 44 is transmitted to the AP in step S36, the next uplink period.
  • the signal to be transmitted from the AP to the MT during one downlink period arrives at the MT with a delay of one cycle, but the throughput The decline does not occur.
  • a decrease in throughput between the repeater and the repeater does not occur in principle. Therefore, even in such a multi-hop network, it is possible to minimize the decrease in throughput.
  • a mobile communication terminal may also serve as a repeater. Therefore, when using the present invention in such a case, the mobile communication terminal and the repeater according to the present invention may be integrated. Prefer U ,.
  • FIG. 51 is an access point
  • 52 is a repeater according to the present invention
  • 54 is a mobile communication terminal
  • 53 is a mobile communication terminal and a repeater according to the present invention, and the functions of the communication terminal and the repeater according to the present invention are It is integrated.
  • Mobile communication terminal 54 is a force that wants to communicate with access point 51.
  • Mobile communication terminal 54 is neither in communication range 55 of access point 51 nor in communication range 56 of repeater 52.
  • the communicable range 57 of the repeater / mobile terminal 53 covers the repeater 52 and the mobile terminal 54, the mobile terminal 53 also serves as a repeater.
  • the data transmitted from the relay 51 is relayed by the relay 52 and the relay / mobile terminal 53 and reaches the mobile terminal 54.
  • the data transmitted from the mobile terminal 54 also reaches the access point 51 by the repeater / mobile terminal 53 and the repeater 52.
  • communication may be performed via a plurality of repeaters.
  • a decrease in throughput due to relay does not occur in principle. Multiple repeaters can be used without sacrificing.
  • FIG. 7 is a block diagram for explaining a second embodiment of the relay according to the present invention.
  • the repeater 60 includes a communication control unit 61, a memory 62, a transmission side circuit 63, a reception side circuit 64, a first antenna 65, a second antenna 66, and the like. These blocks have the same functions as the corresponding blocks of the repeater 10 described in FIG.
  • the transmission side circuit 63 converts the information to be transmitted into an RF signal for transmission of baseband signal power.
  • the transmission RF circuit 67, the DA converter 68, A digital modulation circuit 69, a channel encoder 70, etc. are provided.
  • the reception side circuit 64 is also a part for extracting the baseband signal from the received RF signal power.
  • the reception RF circuit 71, AD converter 72, digital demodulation circuit 73, channel A decoder 74 and the like are provided.
  • Each block of the transmitting circuit 63 and the receiving circuit 64 has the same function as the corresponding block in FIG.
  • the repeater 60 includes an RF level interference cancellation circuit 79.
  • the RF level interference canceling circuit 79 captures the output RF signal of the transmitting side circuit 63 radiated from the first antenna 65 connected to the transmitting side circuit 63 to the second antenna 66 connected to the receiving side circuit 64. This is to eliminate the interference caused by the RF signal that enters the receiving circuit 64 side.
  • the interference cancellation circuit 79 includes an RF signal branching unit 75, a gain adjuster 76, a delay unit 77, and an adder 78.
  • the RF signal branching section 75 branches the output RF signal of the transmission side circuit 63. Thus, a replica of the output RF signal of the transmission side circuit 63 is made.
  • the gain adjuster 76 adjusts the copied RF signal in accordance with the amplitude of the transmission RF signal mixed on the receiving side through the second antenna from the first antenna.
  • the delay unit 77 adjusts the phase of the copied RF signal so that the phase is opposite to the phase of the transmission RF signal mixed on the receiving side from the first antenna through the second antenna.
  • Adder 78 synthesizes the replica RF signal with the amplitude and phase adjusted. Accordingly, the RF level interference canceling circuit 79 can substantially remove the RF signal mixed from the transmitting side to the receiving side from the received RF signal cover. In determining the adjustment amount of the gain adjuster 76 and the delay device 77, it is necessary to examine in advance the amplitude and phase of the transmission RF signal mixed from the transmission side to the reception side.
  • the RF level interference cancel circuit 79 creates an interference component to be subtracted from the received signal by directly replicating the signal that causes interference, that is, the transmission signal. For this reason, it is possible to demonstrate a high interference removal capability that does not require the interference component to be estimated and created.
  • the repeater 60 includes a digital level interference canceling circuit 83.
  • the digital level interference elimination circuit 83 is for removing a signal mixed from the transmission side to the reception side at the digital signal stage.
  • the digital level interference canceling circuit 83 includes a digital signal branching unit 80, a delay unit 81, and an interference canceling unit 82.
  • the digital signal branching unit 80 branches the output signal of the digital modulation circuit 69 to create a copy thereof.
  • the delay unit 81 outputs the phase of the duplicated digital signal to the output of the digital signal AD converter 72 that is the source of the duplication mixed into the receiving side through RF processing and the first antenna 65 and the second antenna 66. Adjust to the phase that appears.
  • the interference canceller 82 adjusts the amplitude of the duplicate signal whose phase is adjusted, and subtracts the output signal force of the AD converter 72.
  • the intensity and phase of the signal appearing at the output of the AD converter 72 via the first antenna 65 and the second antenna 66 should be investigated in advance! Good !, but it is also possible to investigate while relaying by a method such as examining the correlation between the output signal of the AD converter 72 and the duplicate signal.
  • the digital level interference canceling circuit 83 also creates an interference component to be subtracted from the received signal by directly duplicating the signal causing the interference, that is, the transmission signal. For this reason, it is not necessary to estimate and make interference components. The ability to eliminate interference can be demonstrated.
  • the digital level interference canceling circuit 83 is provided between the analog-digital converter and the digital modulation / demodulation demodulating circuit.
  • the present invention is not limited to the baseband processing. You may install in other places.
  • the repeater 60 includes both the RF level interference cancellation circuit 79 and the digital level interference cancellation circuit 83, but may be an embodiment in which only one of them is provided.
  • the first antenna 65 and the second antenna 66 should be installed with great care so that interference is minimized.
  • the RF level interference canceling circuit 79 and the digital level interference canceling circuit 83 are particularly effective when the interference cannot be sufficiently reduced, such as when the distance between the first antenna 65 and the second antenna 66 is small.
  • FIG. 8 is a block diagram for explaining a third embodiment of the repeater according to the present invention.
  • the repeater 90 includes a communication control unit 92, a memory 93, an antenna 94, a transmission frequency band-pass filter 96, a reception frequency band-pass filter 97, a transmission-side RF'DAC unit 98, and a reception-side RF 'ADC unit. 99, a transmission-side baseband processing unit 100, and a reception-side baseband processing unit 101. Since the repeater 90 is an FDD communication device, it is necessary to have two transmitter circuits and two receiver circuits.
  • the repeater 90 further includes an antenna 104, an antenna switch 105, a transmission frequency bandpass filter 106, a reception frequency bandpass filter 107, a transmission side RF'DAC unit 108, a reception side RF'ADC unit 109, and a transmission side.
  • a baseband processing unit 110 and a receiving baseband processing unit 111 are provided.
  • the antenna 94 has directivity in the direction of the access point.
  • the transmission frequency band-pass filter 96 is a band-pass filter that passes the uplink frequency fl.
  • the transmission side RF'DAC unit 98 corresponds to the transmission RF circuit 67 and the DA converter 68 of the repeater 60 in FIG.
  • the transmission-side baseband processing unit 100 corresponds to the digital modulation circuit 69 and the channel encoder 70 of the repeater 60 in FIG.
  • the reception frequency bandpass filter 97 is a bandpass filter that passes the downlink frequency 1. Ruta.
  • the receiving-side RF 'ADC unit 99 is the receiving RF circuit 71 and the A-D converter 72 of the repeater 60 in FIG. It corresponds to the decoder 74.
  • the antenna 104 has directivity in the direction of the mobile communication terminal.
  • the transmission frequency bandpass filter 96 is a bandpass filter for the downlink frequency 1.
  • the transmission side RF'DAC unit 108 corresponds to the transmission side RF'DAC unit 98
  • the transmission side baseband processing unit 110 corresponds to the transmission side baseband processing unit 100.
  • the reception frequency bandpass filter 107 is a bandpass filter that passes the uplink frequency fl.
  • the reception side RF ⁇ ADC unit 109 is the reception side RF ⁇ ADC unit 99
  • the reception side baseband processing unit 111 is the reception side. This corresponds to the baseband processing unit 101.
  • the repeater 90 receives the RF signal of frequency 1 transmitted from the access point through the antenna 94 and the band pass filter 97, and the received RF signal is frequency-converted by the receiving RF'ADC unit 99. Digital conversion is performed, and the baseband processing unit 101 on the receiving side performs digital demodulation / error control decoding, frame analysis, and the like. The finally obtained data is transferred to the communication control unit 92, where predetermined processing is performed and stored in the memory. Further, the repeater 90 extracts data to be transmitted from the memory, passes it to the transmission-side baseband processing unit 110, constructs a frame in accordance with the communication standard, performs error control coding and digital modulation, and further performs digital control. The modulated data is put on a carrier wave by the transmission side RF'DAC unit 108, the 12 component of the frequency is extracted by the band pass filter 106, and transmitted to the mobile communication terminal through the antenna 104.
  • the repeater 90 receives the RF signal of the frequency fl transmitted from the access point through the antenna 104 and the bandpass filter 107, and converts the RF signal into a digital signal by the receiving-side RF 'ADC unit 109. Then, the receiver baseband processing unit 111 performs digital demodulation, error control decoding, frame analysis, and the like. The finally obtained data is transferred to the communication control unit 92, where predetermined processing is performed and the data is stored in memory. Further, the repeater 90 retrieves data to be transmitted from the memory and passes it to the transmission-side baseband processing unit 100 to perform frame construction, error control coding, digital modulation, etc. To the node passphrase The frequency fl component is extracted by the filter 96 and transmitted to the mobile communication terminal through the antenna 94.
  • the intermediary relay 90 that prevents this interference has a circuit equivalent to the RF level interference canceling circuit 79 in FIG. 7 between the transmitting side RF ⁇ DAC unit 98 and the receiving side RF ⁇ ADC unit 109.
  • This circuit includes an RF signal branching unit 121, a gain adjuster 122, a delay unit 123, and an adder provided in front of the receiving side RF'ADC unit 109.
  • the repeater 90 has a circuit corresponding to the digital level interference canceling circuit 83 in FIG. 7 between the transmission side RF′DAC unit 98 and the reception side RF′ADC unit 109.
  • This circuit is composed of a digital signal branching unit 124, a delay circuit 125, and an interference canceling unit 137 provided in the preceding stage of the transmitting-side RF / DAC unit 98.
  • These functions correspond to the digital signal branching unit 80, the delay unit 81, and the interference canceling unit 82 in FIG.
  • the repeater 90 has two RF level interference cancellation circuits and digital level interference cancellation circuits between the transmission side RF DAC section 98 and the reception side RF ADC section 109. An embodiment having only one of them may be used.
  • the receiving side RF'ADC unit 99 and the transmitting side RF'DAC unit 108 communicate with each other using the same frequency 1, so that the output RF signal power of the transmitting side RF'DAC unit 108 is received on the receiving side RF'ADC.
  • Part 99 may cause interference. Therefore, the beg repeater 90 for preventing this interference has a circuit corresponding to the RF level interference elimination circuit 79 in FIG. 7 between the reception side RF ⁇ ADC unit 99 and the transmission side RF ⁇ DAC unit 108.
  • This circuit includes an RF signal branching unit 131, a gain adjuster 132, a delay unit 133, and an adder provided before the receiving side RF'ADC unit 109. It consists of 136.
  • the repeater 90 includes a circuit corresponding to the digital level interference canceling circuit 83 in FIG. 7 between the reception side RF ′ ADC unit 99 and the transmission side RF ′ DAC unit 108.
  • This circuit is It is composed of a digital signal branching unit 134, a delay circuit 135, and an interference canceling unit 127 provided in the preceding stage of the transmission side RF ⁇ DAC unit 108.
  • These functions correspond to the digital signal branching unit 80, the delay unit 81, and the interference canceling unit 82 in FIG.
  • the repeater 90 has two RF level interference cancellation circuits and digital level interference cancellation circuits between the reception side RF'ADC unit 99 and the transmission side RF / DAC unit 108. An embodiment having only one may be used.
  • FIG. 9 is a block diagram of a repeater in a profitable embodiment of the present invention.
  • the repeater 150 in the present embodiment is a repeater that relays communication using a time division duplex (TDD) system, similar to the repeater 10 of FIG.
  • the repeater 150 includes a communication control unit 151, a memory 152, a transmission side circuit 153, a reception side circuit 154, a first antenna 155, a second antenna 156, an antenna switch 157, and the like. These functional blocks have the same functions as the corresponding functional blocks in FIG.
  • the first antenna 155 and the second antenna 156 have directivity, the first antenna 155 has directivity in the direction of the access point, and the second antenna 156 has the opposite, that is, the direction in which the mobile communication terminal should exist. Has directivity.
  • the transmission side circuit 153 includes a transmission RF circuit 161, a DA converter 162, a digital modulation circuit 163, a channel encoder 164, and the like.
  • the reception side circuit 154 includes a reception RF circuit 165, an AD converter 166, a digital demodulation circuit 167, a channel decoder 168, and the like. These functional blocks have the same functions as the corresponding functional blocks in FIG.
  • repeater 150 has a circuit corresponding to RF level interference cancellation circuit 79 in FIG. 7 between transmission side circuit 153 and reception side circuit 154.
  • This circuit includes an RF signal branching unit 175, a gain adjuster 176, a delay unit 177, and an adder 178 provided in the previous stage of the reception side circuit 154 provided in the next stage of the transmission side circuit 153.
  • These functions correspond to the RF signal branching unit 75, the gain adjuster 76, the delay unit 77, and the adder 78 in FIG.
  • the repeater 150 is connected between the transmission side circuit 153 and the reception side circuit 154 with the digital level interference elimination shown in FIG. A circuit corresponding to the last circuit 83 is included.
  • This circuit includes a digital signal branching unit 180, a delay circuit 181, and an interference removing unit 182 provided at the next stage of the digital modulation circuit 163. These functions correspond to the digital signal branching unit 80, the delay unit 81, and the interference removing unit 82 in FIG.
  • the repeater 150 is provided with two RF level interference cancellation circuits and digital level interference cancellation circuits between the transmission side circuit 153 and the reception side circuit 154. Only one of these is provided. In the embodiment that comprises.
  • the present invention is suitably used for relaying radio waves in wireless communication such as a mobile phone network and a wireless LAN.
  • wireless communication such as a mobile phone network and a wireless LAN.
  • the present invention is not limited to the embodiments described above, and various embodiments are conceivable within the scope of the idea of the present invention.
  • the present invention is a promising technology as a repeater in a general multi-hop network, not only as a repeater for IEEE802.il wireless LAN.
  • the present invention can be implemented as a mobile terminal having both a terminal and a repeater by incorporating the present invention in the mobile terminal, and is a promising embodiment.
  • the first and second antennas that are often used are not only sector antennas, adaptive array antennas, but also multiple antennas such as MIMO (Multiple Input Multiple Output). Embodiments using are possible.
  • FIG. 1 is a diagram for explaining an example of a situation in which the present invention is used.
  • FIG. 2 is a block diagram for explaining a first embodiment of a repeater according to the present invention.
  • FIG. 3 is an explanatory diagram showing the operation of the antenna switch.
  • FIG. 4 is a diagram for explaining the operation of the repeater shown in FIG.
  • FIG. 5 is a diagram for explaining a state of communication relay by the repeater shown in FIG. 2.
  • FIG. 6 is a diagram for explaining an example of a situation in which the present invention is used.
  • FIG. 7 is a block diagram for explaining a second embodiment of the repeater according to the present invention.
  • FIG. 8 is a block diagram for explaining a third embodiment of a repeater according to the present invention.
  • FIG. 9 is a block diagram for explaining a fourth embodiment of a repeater according to the present invention. Explanation of symbols

Abstract

 本発明の1つの側面によれば、第1のアンテナと、第2のアンテナと、ベースバンド信号を送信用RF信号に変換する送信側回路と、受信したRF信号からベースバンド信号を取り出す受信側回路と、該第1のアンテナが該送信側回路に接続されると共に該第2のアンテナが該受信側回路に接続される第1状態と、第1のアンテナが該受信側回路に接続されると共に該第2のアンテナが該送信側回路に接続される第2状態とを切り替える切り替え部と、第1又は第2の通信機のいずれか一方の通信機から受信したRF信号から該受信側回路が作成したベースバンド信号を取得し、該ベースバンド信号に含まれる通信データについて所定の処理を行なった後、該通信データを該送信側回路を通じて他方の通信機に送信する通信制御部と、を備える中継器が提供される。

Description

明 細 書
中継器及び中継方法
技術分野
[0001] 本発明は、無線通信における通信機の間でやりとりされる信号を中継する技術に関 する。
背景技術
[0002] 携帯電話や無線 LANなどの無線通信分野は、近年最も活気のある技術分野である 。携帯電話ネットワークが可能な通信速度は、数年前にはせいぜい数 10kbpsであつ たのが、第三世代ネットワーク(3G)の導入と共に数 Mbpsの通信が可能となり、第四 世代では lGbpsの通信速度を目指して開発が進められている。無線 LANにおいても 、現在最も普及している IEEE802. lib規格の 11Mbpsから、 802.11 aや 802.11 g規格で は 54Mbpsまで高速化され、将来登場する 802.1 Inでは数 100Mbpsの通信速度が可 能になると言われている。
[0003] 携帯電話や無線 LAN端末などの移動通信端末が接続する相手は、携帯電話ネット ワークや無線 LANのアクセスポイント(又は基地局)である。しかし、通信に使用する 電波の周波数が高くなると、障害物によって電波が遮蔽される効果が大きくなるので 、 1つのアクセスポイントがカバーできる通信可能範囲は小さくなる。この問題をカバ 一するために、アクセスポイントの数を増やすことが考えられる力 アクセスポイントは 高価であるので、あまり増やしてはコストがかかり過ぎてしまう。そこで、アクセスポイン トゃ基地局と移動通信端末との間に、電波を中継する安価な中継器を設置すること が考えられている。
[0004] 中 ϋ器には、単純に受信した電波を増幅して再送信するリピータ一がある。しかし、 1つのアクセスポイントに対して複数のリピータ一を設置した場合、従来のリピータ一 は受信した電波を単純に増幅して再送信するだけなので、アクセスポイントが送信し た電波を当該複数のリピータ一全てが増幅 ·再送信することになり、電力に無駄が多 V、のみならず、不要な電波を増やして他の通信との干渉問題を増える可能性がある 。そこで、次世代の中継器は、中継相手が自分の通信可能領域にいるか否か等の状 態を認識し、その状態に適合した形で中継を行なうことが求められる。
[0005] また、通信路の途中に中継器を置くに当たっては、中継によって通信レートの低下 を招くことのな 、ことが望まし 、。
[0006] さらに、中継器は送信機能と受信機能を有するので、送信側と受信側の間に起こり うる干渉にも十分留意したものであることが望まし 、。
発明の開示
[0007] そこで、中継する信号に適応した中継を可能とする中継器であって、通信レートの 低下又は z及び干渉に留意した中継器が必要とされている。
[0008] 本発明の第 1の側面によれば、第 1の通信機と第 2の通信機との通信路の途中に置 かれる中継器であって、
• 第 1のアンテナと、
• 第 2のアンテナと、
• ベースバンド信号を送信用 RF信号に変換する送信側回路と、
• 受信した RF信号力 ベースバンド信号を取り出す受信側回路と、
• 該第 1のアンテナが該送信側回路に接続されると共に該第 2のアンテナが該受信 側回路に接続される第 1状態と、該第 1のアンテナが該受信側回路に接続されると共 に該第 2のアンテナが該送信側回路に接続される第 2状態とを切り替える切り替え部 と、
• 前記第 1又は第 2の通信機のいずれか一方の通信機から受信した RF信号に由来 するベースバンド信号を前記受信側回路から取得し、該ベースバンド信号に含まれ る通信データにっ 、て所定の処理を行なった後、該通信データを該送信側回路を 通じて該一方に対する他方の通信機に送信する通信制御部と、
を備える中継器が提供される。
[0009] 上記切り替え部は、所定のタイミングに合わせて第 1状態と第 2状態とを切り替える ように構成することができる。この場合において、上記中継器を時分割複信方式によ る通信を中継する中継器に利用する場合は、ダウンリンクとアップリンクの切り替えタ イミングに合わせて、第 1状態と第 2状態とを切り替えるように上記切り替え部を構成 することが好ましい。 [0010] 上記通信制御部は、送信側回路を通じて送信を行なうと同時に、受信側回路を通 じて受信を行なうように構成することができる。また上記所定の処理には、前記通信 データが中継すべきものである力否かの判断、前記通信データが到達すべき通信機 が自らの通信可能範囲に存在する力否かの判断、前記通信データが到達すべき通 信機と自分との距離に基づく判断、のいずれか 1つ以上に関わるものを含むことが好 ましい。
[0011] また上記通信制御部は、今回の第 1状態において取得した情報を保持し、次回以 降の第 1状態において、該保持した情報を送信するように構成することができる。同 様に上記通信制御部は、今回の第 2状態において取得した情報を保持し、次回以降 の第 2状態において、該保持した情報を送信するように構成することができる。
[0012] 本発明の第 1の側面によって提供される中継器は、送信側回路から出力される送信 用 RF信号を分岐して該送信用 RF信号の複製を作る第 1複製部と、該複製した RF 信号の振幅又は Z及び位相を調節し、調節した RF信号を受信側回路に入力する R F信号力も差し引く第 1干渉低減部とを備えるという構成をとることができる。この場合 において、第 1干渉除去回路は、複製した送信用 RF信号の振幅又は Z及び位相を 、送信側回路に接続されたアンテナカゝら受信側回路に接続されたアンテナに入り込 む送信用 RF信号の振幅又は Z及び位相に合わせて調節するように構成することが できる。
[0013] さらに本発明の第 1の側面によって提供される中継器は、送信側回路によって送信 用 RF信号に変換される前の送信信号を分岐して該送信信号の複製を作る第 2複製 部と、該複製した送信信号の強度又は Z及び位相を調節し、受信側回路において R F信号力 変換された後の受信信号力 該調節した送信信号を差し引く第 2干渉除 去回路と、を備えるという構成をとることができる。このばあいにおいて、第 2干渉除去 回路は、複製した送信信号の強度又は Z及び位相を、送信側回路に接続されたァ ンテナ力 受信側回路に接続されたアンテナを通じて受信側回路に混入する送信信 号の強度又は Z及び位相に合わせて調節するように構成することができる。
[0014] 第 1のアンテナ及び Z又は第 2のアンテナは指向性を持つことアンテナであることが 好ましい。また第 1のアンテナ及び/又は第 2のアンテナは、複数のアンテナ力 構 成されるアンテナ群(例えば MIMO (Multiple Input Multiple Output) )であってもよい 。また第 1のアンテナは第 1の通信機との通信に用い、第 2のアンテナは第 2の通信 機との通信に用いるように構成しても良 、。
[0015] 本発明の第 1の側面によって提供される中継器は、例えば、ワイヤレス LANにおけ るアクセスポイントと端末との間の通信を中継する中継器や、セルラ方式の無線電話 におけるアクセスポイントと端末との間の通信を中継する中継器や、マルチホップネッ トワークにおいて端末間の通信を中継する中継器などに応用することができる。
[0016] さらに本発明の第 1の側面によって提供される中継器は、通信端末に一体ィ匕して実 施することが可能である。
[0017] 本発明の第 2の側面によれば、時分割複信方式を用いた通信を行なう第 1の通信 機と第 2の通信機との間にやりとりされる信号を、中継器で中継する方法であって、 • 第 1ダウンリンク時において、
前記第 1の通信機は前記中継器へ第 1RF信号を送信し、
前記中継器は前記第 1RF信号を受信すると共に、前記第 1RF信号に含まれ る第 1ベースバンド信号を取り出し、
• 前記第 1ダウンリンク時の後の第 1アップリンク時において、
前記第 2の通信機は前記中継器へ第 2RF信号を送信し、
前記中継器は前記第 2RF信号を受信すると共に、前記第 2RF信号に含まれ る第 2ベースバンド信号を取り出し、
• 前記第 1アップリンク時の後の第 2ダウンリンク時において、
前記第 1の通信機は前記中継器へ第 3RF信号を送信し、
前記中継器は前記第 1ベースバンド信号を送信用の RF信号へ変換して前記 第 2の通信機へ送信すると共に、前記第 3RF信号を受信して、前記第 3信号に含ま れる第 3ベースバンド信号を取り出し、
• 該第 2ダウンリンク時の後の第 2アップリンク時において、
前記第 2の通信機は前記中継器へ第 4RF信号を送信し、
前記中継器は、前記第 2ベースバンド信号を送信用の RF信号へ変換して前 記第 1の通信機へ送信すると共に、前記第 4信号を受信して、前記第 4信号に含まれ る第 4ベースバンド信号を取り出す、
中継方法が提供される。
[0018] この場合において、ベースバンド信号を送信すべき通信機が中継器の通信可能範 囲に存在しな ヽ場合は、該ベースバンド信号を送信用の RF信号へ変換せずに破棄 してもよい。また、中継器に第 1の通信機との通信に用いる第 1のアンテナと、第 2の 通信機との通信に用いる第 2のアンテナとを設け、ダウンリンク時においては第 1のァ ンテナを中継器の受信回路に接続すると共に第 2のアンテナを中継器の送信回路へ 接続し、アップリンク時においては第 1のアンテナを送信回路に接続すると共に第 2 のアンテナを受信回路へ接続するようにしてもよ!、。
[0019] 本発明の第 3の側面によれば、第 1の通信機と第 2の通信機との通信路の途中に置 かれる中継器であって、
• 第 1のアンテナと、
• 第 2のアンテナと、
• 第 1のアンテナと第 2のアンテナとのいずれか一方のアンテナに接続され、ベース バンド信号を送信用 RF信号に変換する送信側回路と、
• 該一方に対する他方のアンテナに接続され、受信した RF信号力 ベースバンド 信号を取り出す受信側回路と、
• 該送信側回路を通じて送信を行なうと同時に該受信側回路を通じて受信を行なう 通信制御部と、
• 該送信側回路から出力される送信用 RF信号を分岐して該送信用 RF信号の複製 を作る第 1複製部と、
• 該複製した RF信号の振幅又は Z及び位相を調節し、該調節した RF信号を該受 信側回路に入力する RF信号から差し引く第 1干渉除去回路と、
を備える中継器が提供される。この場合において、該第 1干渉除去回路を、複製した 送信用 RF信号の振幅又は Z及び位相を、送信側回路に接続されたアンテナ力ゝら受 信側回路に接続されたアンテナに入り込む送信用 RF信号の振幅又は Z及び位相 に合わせて調節するように構成することができる。
[0020] 本発明の第 4の側面によれば、通信機と第 2の通信機との通信路の途中に置かれ る中 «I器であって、
• 第 1のアンテナと、
• 第 2のアンテナと、
• 該第 1のアンテナと該第 2のアンテナとのいずれか一方のアンテナに接続され、ベ ースバンド信号を送信用 RF信号に変換する送信側回路と、
• 該一方に対する他方のアンテナに接続され、受信した RF信号力 ベースバンド 信号を取り出す受信側回路と、
• 該送信側回路を通じて送信を行なうと同時に該受信側回路を通じて受信を行なう 通信制御部と、
• 該送信側回路において、送信用 RF信号に変換される前の送信信号を分岐して該 送信信号の複製を作る第 2複製部と、
• 該複製した送信信号の強度又は Z及び位相を調節し、該受信側回路において R F信号力 変換された後の受信信号力 該調節した送信信号を差し引く第 2干渉除 去回路と、
を備える中継器が提供される。この場合において、該第 2干渉除去回路を、複製した 送信信号の強度又は Z及び位相を、送信側回路に接続されたアンテナカゝら受信側 回路に接続されたアンテナを通じて受信側回路に混入する送信信号の強度又は Z 及び位相に合わせて調節するように構成することができる。
[0021] 本発明の第 3の側面及び第 4の側面によって提供される中 «器において、第 1のァ ンテナ及び/又は第 2のアンテナは指向性を持つことアンテナであることが好ましい 。また第 1のアンテナ及び/又は第 2のアンテナは、複数のアンテナから構成される アンテナ群(例えば MIMO (Multiple Input Multiple Output) )であってもよい。また第 1のアンテナは第 1の通信機との通信に用い、第 2のアンテナは第 2の通信機との通 信に用いるように構成しても良 、。
[0022] 本発明の第 3の側面及び第 4の側面によって提供される中継器は、第 1のアンテナ が送信側回路と接続されると共に第 2のアンテナが受信側回路と接続される第 1状態 と、第 1のアンテナが受信側回路と接続されると共に第 2のアンテナが送信側回路と 接続される第 2状態とを切り替える切り替え部を備えるような構成をとることができる。 [0023] 本発明の第 3の側面及び第 4の側面によって提供される中継器は、時分割複信方 式を用いた通信を中継する中継器にも、周波数分割複信方式を用いた通信を中継 する中継器にも応用することができる。また、ワイヤレス LANにおけるアクセスポイント と端末との間の通信を中継する中継器や、セルラ方式の無線電話におけるアクセス ポイントと端末との間の通信を中継する中継器や、マルチホップネットワークにお!/、て 端末間の通信を中継する中継器などに応用することができる。さらに、通信端末に一 体ィ匕して実施することが可能である。
[0024] 本発明によって、中継する信号に適応した中継を可能とする中継器であって、通信 レートの低下又は Z及び干渉に留意した中継器を実現することができる。
好適な実施形態の説明
[0025] 以下、添付図面を参照して本発明の好適な実施形態を説明する。
[0026] 図 1は本発明が使用される状況の一例を説明するための図である。 1は携帯電話ネ ットワークで用いられるアクセスポイント、 2は本発明による中継器、 3は移動通信端末 である。アクセスポイント 1はより上位のネットワークと接続されており、移動通信端末 へ送信すべきデータを上位ネットワーク力も受け取るとともに、移動通信端末 3からの データを上位ネットワークに伝える。アクセスポイント 1は、通信方式によって、ァクセ スポイント (Access Point)の他に、基地局(Base Station, BS又は Base Transceiver Stat ion, BTS)と呼ばれる場合もある。
[0027] 図 1において、アクセスポイント 1は、移動通信端末 3と通信したいのである力 移動 通信端末 3は、アクセスポイント 1の通信可能範囲 4にはいない。ところが、中継器 2の 通信可能範囲 5は、アクセスポイント 1と移動通信端末 3の両方をカバーしている。そ こで、中継器 2がアクセスポイント 1と移動通信端末 3との通信を中継するために用い られる。中継器 2は、アクセスポイント 1からの電波信号を受信して移動通信端末 3へ と再送信し、逆に移動通信端末 3からの電波信号を受信してアクセスポイント 1へと再 送信する。
[0028] 以下に本発明による中継器の 4つの実施例を説明する力 これらの実施例は、いず れも図 1のような状況で使用される。
実施例 1 [0029] 図 2は、本発明による中継器の第 1の実施形態を説明するためのブロック図である。 本実施形態における中継器 10は、時分割複信方式 (TDD)による通信を中継する 中継器である。中継器 10は、通信制御部 11,メモリ 12,送信側回路 13,受信側回 路 14,第 1アンテナ 15,第 2アンテナ 16,アンテナスィッチ 17等を備える。第 1アンテ ナ 15と第 2アンテナ 16は指向性を有するアンテナであることが望ましぐ例えば第 1 アンテナ 15はアクセスポイントの方向に指向性を有し、第 2アンテナ 16はその逆、つ まり移動通信端末が存するべき方向に指向性を有する。また、第 1アンテナ 15と第 2 アンテナ 16とは、干渉が最小限になるように、よく注意して設置すべきである。送信 側回路 13は、送信する情報をベースバンド処理や周波数変換処理等を経て送信用 の RF信号に変換する部分であって、送信用 RF回路 21, D— Aコンバータ 22,デジ タル変調回路 23,チャネルエンコーダ 24等を備えている。受信側回路 14は、受信し た RF信号力 周波数変換やベースバンド処理を経て中継すべきデータを取り出す 部分であって、受信用 RF回路 25, A— Dコンバータ 26,デジタル復調回路 27,チヤ ネルデコーダ 28等を備えて 、る。
[0030] チャネルエンコーダ 24は、送信すべきデータを通信規格に応じたフレームに組み 立てると共にエラー制御符号ィ匕ゃインターリーブなどの処理を行なう。デジタル変調 回路 23は、チャネルエンコーダ 24の出力信号を通信規格に応じた方法でデジタル 変調する。送信用 RF回路 21は D— Aコンバータ 22でアナログ変換されたデジタル 変調回路 23の出力を搬送周波数へと周波数変換すると共に必要な振幅に増幅する 。受信用 RF回路 25は受信した RF信号を増幅して周波数変換を行なう。デジタル復 調回路 27は A—Dコンバータ 26によってデジタル化された受信用 RF回路 25の出力 信号を、通信規格に応じた方法で復調してベースバンド信号を取り出す。チャネルデ コーダ 28は、デジタル復調回路 27が復調したベースバンド信号に対してエラー制御 復号化、ディンタリーブ、フレーム解析、ヘッダ情報の分離などの処理を行なう。通信 制御部 11は、チャネルデコーダ 28によって処理されたデータを受け取り、そのデー タに対して所定の処理を行なう。処理の内容は実施態様によって様々である力 例え ば受信した情報が中継すべき情報である力否か、受信したデータを届けるべき通信 相手は自らの通信可能範隨こいるか否力、通信相手と自分との距離はどのくらいか 、等の解析処理を実装することができる。通信制御部 11に渡されたデータは、ー且メ モリ 12に保管される。中継器 10が送信を行なう場合は、通信制御部 11は送信すベ きデータをメモリ 12から読み出し、チャネルェンコーダ 24に渡す。
[0031] 通信制御部 11は、受信したデータを届けるべき通信相手が自らの通信可能範囲 にいない場合は、当該データを送信しない。このため、通信路に余計な電波が放射 されることがなぐ通信路を汚さない。また、電力の節減にもつながる。通信制御部 11 はさらに、通信相手との距離に応じて送信用 RF回路 21や受信用 RF回路 25におけ る信号増幅率を制御する機能を持たせることもできる。
[0032] アンテナスィッチ 17は、第 1アンテナ 15が送信側回路 13に接続されると共に第 2ァ ンテナ 16が受信側回路 14に接続される第 1状態と、第 1アンテナ 15が受信側回路 1 4に接続されると共に第 2アンテナ 16が送信側回路 13に接続される第 2状態とを切り 替える。この様子を図 3に示す。図 3 (a)では、第 1アンテナ 15が送信側回路 13に接 続されると共に第 2アンテナ 16が受信側回路 14に接続されている。これに対して図 3 (b)では、第 1アンテナ 15が受信側回路 14に接続されると共に第 2アンテナ 16が送 信側回路 13に接続されて!ヽる。
[0033] 一般的には、図 3 (a)が示す第 1状態と、図 3 (b)が示す第 2状態との切り替えは、所 定のタイミングに合わせて行なわれるように構成してもよ ヽし、通信制御部 11の制御 によって切り替えるように構成しても良い。しかし本実施例における中継器 10は、 TD D方式を利用した通信を中継する中継器であるため、アンテナスィッチ 17は、ダウン リンクとアップリンクの切り替えタイミングに合わせて第 1状態と第 2状態とを切り替える ように構成されている。
[0034] 次に図 4を用いて中継器 10の動作を説明する。まず、ステップ 1において、通信方 向がダウンリンクになったとする。つまり、アクセスポイントから移動通信端末へデータ を送信するタイミングになったとする。すると、ステップ 2において、アンテナスィッチ 1 7は、第 1アンテナ 15と第 2アンテナ 16のうち、アクセスポイント側に指向性を有するも のを受信側回路 14接続し、移動通信端末側に指向性を有するものを送信側回路 13 に接続する。本実施例にお ヽては第 1アンテナ 15がアクセスポイント側に指向性を持 つものとすると、ステップ 2におけるアンテナスィッチ 17の状態は、図 3 (b)に示す状 態に設定される。
[0035] ステップ 2以降は、受信側の動作であるステップ S3〜S8と、送信側の動作であるス テツプ S9〜S13が、同時並行的に行なわれる。受信側では、まず第 1アンテナ 15に よって、アクセスポイントからの電波信号を受信する (ステップ S3)。次に、受信した電 波信号を受信側回路 14によって周波数変換するなどの処理を行な ヽ (ステップ S4) 、さらにデジタル復調回路 27 ·チャネルデコーダ 28によってデジタル復調処理 ·エラ 一制御復号化 'フレーム分析 ·ヘッダ情報分離等のベースバンド処理を行なう(ステツ プ S5)。ステップ S6では、通信制御部 11がチャネルデコーダ 28の出力データを調 ベ、当該データが中継すべきデータである力否力 当該データを届けるべき通信相 手は自らの通信可能範隨こいるか否か、などを解析する。もし当該データが中継す べきデータではない場合や、当該データを届けるべき通信相手が自らの通信可能範 囲にいない場合は、当該データを破棄してステップ S14を待つ。もし当該データが中 継すべきデータであって、当該データを届けるべき通信相手が自らの通信可能範囲 にいる場合は、当該データをメモリ 12に格納する。
[0036] ステップ S2の後の送信側では、まず通信制御部 11が送信すべきデータあるかな!/ヽ かを判断する。もし送信すべきデータがない場合は、ステップ S14を待つ。もし送信 すべきデータがある場合は、当該データをメモリ 12から読み出し、チャネルェンコ一 ダ 24に渡す (ステップ S10)。次に、チャネルエンコーダ 24やその後段のデジタル変 調回路 23は、通信制御部 11から渡されたデータに対してフレーム構築'エラー制御 符号化'デジタル変調などのベースバンド処理を行なう(ステップ S 11)。ベースバン ド処理を終えたデータはアナログ信号に変換されて送信用 RF回路 21に渡され、送 信用 RF回路 21はその信号を高周波変換'増幅などの処理を加え、第 2アンテナ 16 を通じて移動通信端末へ送信する。
[0037] このように、本発明による中継器 10は、受信動作と送信動作を同時並行的に行なう ことができるため、アクセスポイントと移動通信端末の間の通信レートが中継によって 半分になるようなことはな 、。
[0038] ステップ S14は、通信方向がアップリンクに変わるタイミングを示している。つまり、こ こからは移動通信端末力もアクセスポイントへデータを送信するタイミングである。す るとアンテナスィッチ 17は、アクセスポイント側に指向性を有する第 1アンテナ 15を送 信側回路 13に接続し、移動通信端末側に指向性を有する第 2アンテナ 16を受信側 回路 14に接続する(ステップ S 15)。すなわちステップ S 15においてアンテナスィッチ 17は、図 3 (a)の状態になる。
[0039] ステップ S15以降は、受信側の動作であるステップ S16〜S21と、送信側の動作で あるステップ S22〜S26が、同時並行的に行なわれる。これらはそれぞれ前に説明し たステップ S3〜S8及びステップ S9〜S13に対応するものである。ただし、ステップ S 14以前とは異なり、受信は第 2アンテナ 16を通じて行なわれ、送信は第 1アンテナ 1 5を通じて行なわれる。ステップ S15以降においても受信動作と送信動作は同時並 行的に行なわれるため、アクセスポイントと移動通信端末の間の通信レートが中継に よって半分になるようなことはない。ステップ S27では、通信方向が再びダウンリンク へと変わる。すると、動作はステップ S2に戻り、アンテナスィッチ 17が接続を切り替え て、再び送受信動作が繰り返される。
[0040] TDD方式の通信においては、ダウンリンクとアップリンクのタイミングを厳密に合わ せる必要があるため、データが中継器 10において中継されることによってこれらのタ イミングがずれることがあると、不都合を生ずる場合がある。
そこで通信制御部 11は、今回のダウンリンク期間において得られたチャネルデコー ダ 28の出力データをー且メモリ 12に保持し、次回のダウンリンク期間において当該 データをメモリ 12から読み出して、送信する。図 4を用いて説明すれば、ステップ S1 に属する受信動作で受信した情報は、ステップ S1に属する送信動作にぉ 、て送信 されるのではなぐ次のステップ S27に属する送信動作において送信される。アツプリ ンクの場合も同様である。
[0041] 次に、図 5を用いて中継器 10による通信の中継の様子を説明する。図中、 APはァ クセスポイント、 RSは本発明による中継器 10、 MTは移動通信端末を示し、また DL はダウンリンク、 ULはアップリンクの期間を示す。時間は上から下へ進んでいるものと する。
[0042] ステップ S31はダウンリンク期間である。そこで、アンテナスィッチ 17は図 3 (b)の状 態になっている。 RSは AP力 の信号 41を受信する力 MTへ送信すべき情報は持 つていないので、送信動作は行なわない。 RSは信号 41を一時的に保持しておく。ス テツプ S32はアップリンク期間である。そこで、アンテナスィッチ 17は図 3 (a)の状態 に切り替わる。 RSは MTからの信号 42を受信する力 APへ送信すべき情報は持つ ていないので、送信動作は行なわない。 RSは信号 42も一時的に保持しておく。ステ ップ S33はダウンリンク期間である。アンテナスィッチ 17は図 3 (b)の状態に切り替わ る。ここで RSは、 APからの信号 43を受信して保持する共に、前回のダウンリンク期 間であるステップ S31で保持しておいた信号 41を、 MTへと送信する。ステップ S34 はアップリンク期間である。そこでアンテナスィッチ 17は図 3 (a)の状態に切り替わる。 RSは、 MTからの信号 44を受信して保持すると共に、前回のアップリンク期間である ステップ S32で保持しておいた信号 42を、 APへと送信する。同様に、信号 43は、次 のダウンリンク期間であるステップ S35で MTへと送信され、信号 44は次のアップリン ク期間であるステップ S36に APへと送信される。
[0043] このように、もし中継器 10がなければ 1つのダウンリンク期間の間に APから MTへと 送信されるべき信号が、 1周期遅れて MTへと到達することにはなるが、スループット の低下は起こらない。さらに、 APと MTとの間に複数の中継器が置かれる場合であつ ても、本発明を用いれば、中継器と中継器との間のスループットの低下は原理的に 起こらない。従ってこのようなマルチホップネットワークの場合であっても、スループッ トの低下を最小限に抑えることができる。マルチホップネットワークにおいては、移動 通信端末が中継器の役割も担うことがあるので、このような場合に本発明を利用する 場合は、移動通信端末と本発明による中継器を一体ィ匕することが好ま U、。
[0044] 図 6を用いて本発明をマルチホップネットワークにおける中継器に応用する場合の 態様を説明する。 51はアクセスポイント、 52は本発明による中継器、 54は移動通信 端末であるが、 53は移動通信端末であると共に本発明による中継器であり、通信端 末の機能と本発明による中継器が一体化されて 、る。
[0045] 移動通信端末 54はアクセスポイント 51と通信したいのである力 移動通信端末 54 は、アクセスポイント 51の通信可能範囲 55にも中継器 52の通信可能範囲 56にもい ない。しかし、中継器兼移動端末 53の通信可能範囲 57が、中継器 52と移動端末 54 をカバーしているので、移動端末 53も、中継器としての役割を果たす。アクセスボイ ント 51から送信されたデータは、中継器 52と中継器兼移動端末 53によって中継され て、移動端末 54へと到達する。また移動端末 54から送信されたデータも、中継器兼 移動端末 53と中継器 52によってアクセスポイント 51へと到達する。このように、マル チホップネットワークにおいては、複数の中継器を経由して通信が行われる場合があ る力 本発明の中継方法では、中継によるスループットの低下が原理的に起こらない ため、通信速度を犠牲にせずに複数の中継器を用いることができる。
実施例 2
[0046] 次に、図 7を用いて本発明の第 2の実施形態を説明する。図 7は、本発明による中 継器の第 2の実施形態を説明するためのブロック図である。中継器 60は、図 2に説明 した中継器 10と同様に、通信制御部 61,メモリ 62,送信側回路 63,受信側回路 64 ,第 1アンテナ 65,第 2アンテナ 66等を備える。これらのブロックは、図 2に説明した 中継器 10の対応するブロックと同様の機能を有する。また第 1アンテナ 65や第 2アン テナ 66も指向性を有するアンテナであることが望ましぐ例えば第 1アンテナ 65はァ クセスポイントの方向に指向性を有し、第 2アンテナ 66はその逆、つまり移動通信端 末が存するべき方向に指向性を有する。送信側回路 63は図 2の送信側回路 13と同 様に、送信する情報をベースバンド信号力 送信用の RF信号に変換する部分であ つて、送信用 RF回路 67, D— Aコンバータ 68,デジタル変調回路 69,チャネルェン コーダ 70等を備えている。受信側回路 64も図 2の受信側回路 14と同様に、受信した RF信号力もベースバンド信号を取り出す部分であって、受信用 RF回路 71, A— Dコ ンバータ 72,デジタル復調回路 73,チャネルデコーダ 74等を備えている。送信側回 路 63や受信側回路 64の各ブロックも、図 2の対応するブロックと同様の機能を有する
[0047] しかし中継器 60は、中継器 10と異なり、 RFレベル干渉除去回路 79を備える。 RF レベル干渉除去回路 79は、送信側回路 63に接続された第 1アンテナ 65より放射さ れた送信側回路 63の出力 RF信号のうち、受信側回路 64に接続された第 2アンテナ 66に捕えられて受信側回路 64側に入り込む RF信号による干渉を除去するためのも のである。干渉除去回路 79は、 RF信号分岐部 75,ゲイン調整器 76,遅延器 77,加 算器 78とを有する。 RF信号分岐部 75は、送信側回路 63の出力 RF信号を分岐させ ることにより、送信側回路 63の出力 RF信号の複製を作る。ゲイン調整器 76は、複製 した RF信号を、第一アンテナカゝら第二アンテナを通じて受信側に混入する送信 RF 信号の振幅に合わせて調節する。遅延器 77は、第一アンテナから第二アンテナを通 じて受信側に混入する送信 RF信号の位相の逆位相になるように、複製した RF信号 の位相を調節する。加算器 78は、振幅'位相が調節された複製 RF信号とを合成す る。従って、実質的に RFレベル干渉除去回路 79は、送信側から受信側に混入する RF信号を、受信した RF信号カゝら除去することができる。ゲイン調整器 76や遅延器 7 7の調節量を定めるに当たっては、送信側から受信側に混入する送信 RF信号の振 幅や位相を、予め調べておく必要がある。
[0048] RFレベル干渉除去回路 79は、受信信号から差し引くべき干渉成分を、干渉の原 因となる信号すなわち送信信号を直接に複製して作っている。このため、干渉成分を わざわざ推定して作る必要がなぐ高い干渉除去能力を発揮できる。
[0049] さらに中継器 60は、デジタルレベル干渉除去回路 83を備える。デジタルレベル干 渉除去回路 83は、送信側から受信側に混入する信号を、デジタル信号の段階で除 去するためのものである。デジタルレベル干渉除去回路 83は、デジタル信号分岐部 80,遅延器 81,干渉除去部 82とを有する。デジタル信号分岐部 80は、デジタル変 調回路 69の出力信号を分岐させることにより、その複製を作成する。遅延器 81は、 複製したデジタル信号の位相を、 RF処理や第 1アンテナ 65及び第 2アンテナ 66を 通じて受信側に混入する複製の元になつたデジタル信号力 A—Dコンバータ 72の 出力に現れる位相に合わせて調節する。干渉除去部 82は、位相を調節した複製信 号の振幅を調節し、 A—Dコンバータ 72の出力信号力 差し引く。デジタル変調回路 69の出力信号のうち、第 1アンテナ 65 ·第 2アンテナ 66を経由して A—Dコンバータ 72の出力に現れる信号の強度や位相につ 、ては予め調べてお!、ても良!、が、 A— Dコンバータ 72の出力信号と当該複製信号との相関を調べるなどの方法で、中継を 行な 、ながら調べることもできる。
[0050] デジタルレベル干渉除去回路 83も RFレベル干渉除去回路 79と同様に、受信信号 から差し引くべき干渉成分を、干渉の原因となる信号すなわち送信信号を直接に複 製して作っている。このため、干渉成分をわざわざ推定して作る必要がなぐ高い干 渉除去能力を発揮できる。
[0051] 本実施例において、デジタルレベル干渉除去回路 83は、アナログ デジタル変換 器とデジタル変復調復調回路との間に設けられたが、本発明はここに設置することに 限るわけではなぐベースバンド処理の他の場所に設置しても良い。
[0052] 中継器 60は、 RFレベル干渉除去回路 79とデジタルレベル干渉除去回路 83の 両方を備えているが、どちらか一方のみを設ける実施形態でもよい。
[0053] 中継器 60において、第 1アンテナ 65と第 2アンテナ 66とは、干渉が最小限になるよ うに、よく注意して設置すべきである。しかし、 RFレベル干渉除去回路 79やデジタル レベル干渉除去回路 83は、第 1アンテナ 65と第 2アンテナ 66との距離が小さいなど 、干渉を十分に小さくできない場合に、特に威力を発揮する。
実施例 3
[0054] 次に、本発明による干渉除去装置を、周波数分割複信 (FDD)方式の通信を中継 する中継器に応用する第 3の実施例を説明する。図 8は本発明による中継器の第 3 の実施例を説明するためのブロック図である。
[0055] 中継器 90は、通信制御部 92,メモリ 93,アンテナ 94,送信周波数用バンドパスフィ ルタ 96,受信周波数用バンドパスフィルタ 97,送信側 RF'DAC部 98,受信側 RF' ADC部 99,送信側ベースバンド処理部 100,受信側ベースバンド処理部 101を備 える。中継器 90は、 FDD方式の通信機であるので、送信側回路と受信側回路を 2つ ずつ持つ必要がある。このため中継器 90はさらに、アンテナ 104,アンテナスィッチ 1 05,送信周波数用バンドパスフィルタ 106,受信周波数用バンドパスフィルタ 107, 送信側 RF'DAC部 108,受信側 RF'ADC部 109,送信側ベースバンド処理部 110 ,受信側ベースバンド処理部 111を備える。
[0056] アンテナ 94はアクセスポイントの方向に指向性を有する。送信周波数用バンドパス フィルタ 96は、アップリンク用周波数 flを通過させるバンドパスフィルタである。送信 側 RF'DAC部 98は、図 7における中継器 60の送信用 RF回路 67及び D— Aコンパ ータ 68に相当するものである。さらに送信側ベースバンド処理部 100は、図 7におけ る中継器 60のデジタル変調回路 69及びチャネルエンコーダ 70に相当する。受信周 波数用バンドパスフィルタ 97は、ダウンリンク用周波数 1 を通過させるバンドパスフィ ルタである。受信側 RF' ADC部 99は図 7における中継器 60の受信用 RF回 71及び A— Dコンバータ 72に、受信側ベースバンド処理部 101は図 7における中 ϋ器 60の デジタル変調回路 73及びチャネルデコーダ 74に相当する。
[0057] 同様に、アンテナ 104は移動通信端末の方向に指向性を有する。送信周波数用バ ンドパスフィルタ 96は、ダウンリンク周波数 1用のバンドパスフィルタである。また送信 側 RF'DAC部 108は送信側 RF'DAC部 98に、送信側ベースバンド処理部 110は 送信側ベースバンド処理部 100にそれぞれ対応する。さらに受信周波数用バンドパ スフィルタ 107は、アップリンク周波数 flを通過させるバンドパスフィルタであり、受信 側 RF · ADC部 109は受信側 RF · ADC部 99に、受信側ベースバンド処理部 111は 受信側ベースバンド処理部 101に対応する。
[0058] ダウンリンクチャネルにおいて、中継器 90はアンテナ 94及びバンドパスフィルタ 97 を通じてアクセスポイントから送信された周波数 1 の RF信号を受け取り、当該 RF信 号を受信側 RF'ADC部 99によって周波数変換'デジタル変換を行ない、さらに受信 側ベースバンド処理部 101によってデジタル復調 ·エラー制御復号化 'フレーム解析 等を行なう。最終的に得られたデータは通信制御部 92へ渡し、所定の処理を行なう と共にメモリに格納する。さらに中継器 90は、送信すべきデータをメモリから取り出し て送信側ベースバンド処理部 110に渡し、通信規格に応じたフレームに構築してェ ラー制御符号化やデジタル変調を行な ヽ、さらにデジタル変調されたデータを送信 側 RF'DAC部 108によって搬送波へと乗せ、バンドパスフィルタ 106で周波数 12成 分を取り出して,アンテナ 104を通じて移動通信端末へと送信する。
[0059] アップリンクチャネルにおいて、中継器 90はアンテナ 104及びバンドパスフィルタ 1 07を通じてアクセスポイントから送信された周波数 flの RF信号を受け取り、当該 RF 信号を受信側 RF 'ADC部 109によってデジタル信号に変換し、さらに受信側ベース バンド処理部 111によってデジタル復調 ·エラー制御復号化 ·フレーム解析等を行な う。最終的に得られたデータは通信制御部 92へ渡し、所定の処理を行なうと共にメモ リに格納する。さらに中継器 90は、送信すべきデータをメモリから取り出して送信側 ベースバンド処理部 100に渡し、フレーム構築 ·エラー制御符号化 ·デジタル変調等 を行ない、さらに送信側 RF'DAC部 98によって RF信号へと変換し、ノ ンドパスフィ ルタ 96で周波数 fl成分を取り出して,アンテナ 94を通じて移動通信端末へと送信す る。
[0060] 上記のように、送信側 RF.DAC部 98と受信側 RF.ADC部 109は同じ周波数 flを 用いて通信を行なうので、送信側 RF.DAC部 98の出力 RF信号力 受信側 RF'AD C部 109に混入し、干渉を引きおこす可能性がある。そこで、この干渉を防ぐベぐ中 継器 90は、送信側 RF · DAC部 98と受信側 RF · ADC部 109との間に図 7の RFレべ ル干渉除去回路 79に相当する回路を有する。この回路は、送信側 RF'DAC部 98 の次段に設けられた RF信号分岐部 121,ゲイン調整器 122,遅延器 123,及び受 信側 RF'ADC部 109の前段に設けられた加算器 136とからなる。これらの機能は、 それぞれ図 7の RF信号分岐部 75,ゲイン調整器 76,遅延器 77,加算器 78に相当 する。さらに中継器 90は、送信側 RF'DAC部 98と受信側 RF'ADC部 109との間に 、図 7のデジタルレベル干渉除去回路 83に相当する回路を有する。この回路は、送 信側 RF · DAC部 98の前段に設けられたデジタル信号分岐部 124,遅延回路 125, 干渉除去部 137とから構成される。これらの機能はそれぞれ図 7のデジタル信号分 岐部 80,遅延器 81,干渉除去部 82に相当する。図 8において中継器 90は、送信側 RF · DAC部 98と受信側 RF · ADC部 109との間に、 RFレベル干渉除去回路とデジ タルレベル干渉除去回路の 2つを備えている力 これらのうちいずれか一方のみを備 える実施形態でもよい。
[0061] 同様に、受信側 RF'ADC部 99と送信側 RF'DAC部 108は同じ周波数 1を用いて 通信を行なうので、送信側 RF'DAC部 108の出力 RF信号力 受信側 RF'ADC部 99に混入し、干渉を引きおこす可能性がある。そこで、この干渉を防ぐベぐ中継器 9 0は、受信側 RF · ADC部 99と送信側 RF · DAC部 108との間に図 7の RFレベル干 渉除去回路 79に相当する回路を有する。この回路は、送信側 RF'DAC部 108の次 段に設けられた RF信号分岐部 131,ゲイン調整器 132,遅延器 133,及び受信側 R F'ADC部 109の前段に設けられた加算器 136とから構成される。これらの機能は、 それぞれ図 7の RF信号分岐部 75,ゲイン調整器 76,遅延器 77,加算器 78に相当 する。さらに中継器 90は、受信側 RF'ADC部 99と送信側 RF'DAC部 108との間に 、図 7のデジタルレベル干渉除去回路 83に相当する回路を有する。この回路は、送 信側 RF · DAC部 108の前段に設けられたデジタル信号分岐部 134,遅延回路 135 ,干渉除去部 127とから構成される。これらの機能はそれぞれ図 7のデジタル信号分 岐部 80,遅延器 81,干渉除去部 82に相当する。中継器 90は、受信側 RF'ADC部 99と送信側 RF · DAC部 108との間に、 RFレベル干渉除去回路とデジタルレベル干 渉除去回路の 2つを備えている力 これらのうちいずれか一方のみを備える実施形態 でもよい。
実施例 4
[0062] 次に、図 9を用いて、図 2における実施例 1と図 7における実施例 2の、両方の特徴 を備える実施例を説明する。図 9は、本発明のカゝかる実施例における中継器のブロッ ク図である。
[0063] 本実施例における中継器 150は、図 2の中継器 10と同様、時分割複信方式 (TDD )による通信を中継する中継器である。中継器 150は、通信制御部 151,メモリ 152, 送信側回路 153,受信側回路 154,第 1アンテナ 155,第 2アンテナ 156,アンテナ スィッチ 157等を備える。これらの機能ブロックは、図 2において対応する機能ブロッ クと同様の機能を有する。また第 1アンテナ 155と第 2アンテナ 156は指向性を有し、 第 1アンテナ 155はアクセスポイントの方向に指向性を有し、第 2アンテナ 156はその 逆、つまり移動通信端末が存するべき方向に指向性を有する。
[0064] 送信側回路 153は、送信用 RF回路 161, D— Aコンバータ 162,デジタル変調回 路 163,チャネルエンコーダ 164等を備える。また受信側回路 154は、受信用 RF回 路 165, A—Dコンバータ 166,デジタル復調回路 167,チャネルデコーダ 168等を 備えている。これらの機能ブロックは、図 2において対応する機能ブロックと同様の機 能を有する。
[0065] さらに中継器 150は、送信側回路 153と受信側回路 154との間に図 7の RFレベル 干渉除去回路 79に相当する回路を有する。この回路は、送信側回路 153の次段に 設けられた RF信号分岐部 175,ゲイン調整器 176,遅延器 177,及び受信側回路 1 54の前段に設けられた加算器 178とからなる。これらの機能は、それぞれ図 7の RF 信号分岐部 75,ゲイン調整器 76,遅延器 77,加算器 78に相当する。さらに中継器 150は、送信側回路 153と受信側回路 154との間に、図 7のデジタルレベル干渉除 去回路 83に相当する回路を有する。この回路は、デジタル変調回路 163の次段に 設けられたデジタル信号分岐部 180,遅延回路 181,干渉除去部 182とから構成さ れる。これらの機能はそれぞれ図 7のデジタル信号分岐部 80,遅延器 81,干渉除去 部 82に相当する。図 9において中継器 150は、送信側回路 153と受信側回路 154と の間に、 RFレベル干渉除去回路とデジタルレベル干渉除去回路の 2つを備えている 力 これらのうち 、ずれか一方のみを備える実施形態でもよ 、。
[0066] 本発明は、以上の実施例で示されたように、携帯電話ネットワークや無線 LAN等の 無線通信における電波の中継に、好適に使用される。しかし、本発明は上記に説明 した実施例に限定される訳ではなぐ本発明の思想の範囲内で様々な実施形態が 考えられることは言うまでもない。例えば、本発明は IEEE802.ilの無線 LANの中継器 としてのみではなぐ一般のマルチホップネットワークにおける中継器として有望な技 術である。また本発明を移動端末に組み込み、端末と中継器を兼ね備えた移動端末 として実施すること可能であり、また有望な実施態様である。さらに、図 2などに描か れて 、る第 1アンテナや第 2アンテナとして、よく用いられるセクタアンテナゃァダプテ イブアレーアンテナのみならず、 MIMO (Multiple Input Multiple Output)のような多重 ィ匕されたアンテナを用いる実施形態が可能である。
図面の簡単な説明
[0067] [図 1]本発明が使用される状況の一例を説明するための図である。
[図 2]本発明による中継器の第 1の実施形態を説明するためのブロック図である。
[図 3]アンテナスィッチの動作を示すための説明図である。
[図 4]図 2に示される中継器の動作を説明するための図である。
[図 5]図 2に示される中継器による通信の中継の様子を説明するための図である。
[図 6]本発明が使用される状況の一例を説明するための図である。
[図 7]本発明による中継器の第 2の実施形態を説明するためのブロック図である。
[図 8]本発明による中継器の第 3の実施形態を説明するためのブロック図である。
[図 9]本発明による中継器の第 4の実施形態を説明するためのブロック図である。 符号の説明
[0068] 10 中継器 通信制御部 メモリ
送信側回路 受信側回路 第 1アンテナ 第 2アンテナ アンテナスィッチ 送信用 RF回路
D— Aコンバータ デジタル変調回路 チャネルエンコーダ 受信用 RF回路
A—Dコンバータ デジタル復調回路 チャネルデコーダ

Claims

請求の範囲
[1] 第 1の通信機と第 2の通信機との通信路の途中に置かれる中継器であって、 • 第 1のアンテナと、
• 第 2のアンテナと、
• ベースバンド信号を送信用 RF信号に変換する送信側回路と、
• 受信した RF信号力 ベースバンド信号を取り出す受信側回路と、
• 該第 1のアンテナが該送信側回路に接続されると共に該第 2のアンテナが該受信 側回路に接続される第 1状態と、該第 1のアンテナが該受信側回路に接続されると共 に該第 2のアンテナが該送信側回路に接続される第 2状態とを切り替える切り替え部 と、
• 前記第 1又は第 2の通信機のいずれか一方の通信機から受信した RF信号に由来 するベースバンド信号を前記受信側回路から取得し、該ベースバンド信号に含まれ る通信データにっ 、て所定の処理を行なった後、該通信データを該送信側回路を 通じて該一方に対する他方の通信機に送信する通信制御部と、
を備える中継器。
[2] 前記切り替え部は、所定のタイミングに合わせて前記第 1状態と前記第 2状態とを 切り替える、請求項 1に記載の中継器。
[3] 前記通信制御部は、前記送信側回路を通じて送信を行なうと同時に、前記受信 側回路を通じて受信を行なう、請求項 1又は 2に記載の中継器。
[4] 前記所定の処理は、前記通信データが中継すべきものである力否かの判断、前 記通信データが到達すべき通信機が自らの通信可能範囲に存在する力否かの判断 、前記通信データが到達すべき通信機と自分との距離に基づく判断、のいずれか 1 つ以上に関わる、請求項 1から 3のいずれかに記載の中継器。
[5] 前記通信制御部は、今回の前記第 1状態において取得した前記情報を保持し、 次回以降の前記第 1状態において、該保持した情報を送信する、請求項 1から 4のい ずれかに記載の中継器。
[6] 前記通信制御部は、今回の前記第 2状態にお 、て取得した前記情報を保持し、 次回以降の前記第 2状態において、該保持した情報を送信する、請求項 1から 5のい ずれかに記載の中継器。
[7] 前記中継器は、時分割複信方式を用いた通信を中継する中継器であって、前記 切り替え部は、ダウンリンクとアップリンクの切り替えタイミングに合わせて、前記第 1状 態と前記第 2状態とを切り替える、請求項 1から 6のいずれかに記載の中継器。
[8] 前記送信側回路カゝら出力される送信用 RF信号を分岐して該送信用 RF信号の複 製を作る第 1複製部と、該複製した RF信号の振幅又は Z及び位相を調節し、該調節 した RF信号を前記受信側回路に入力する RF信号力 差し引く第 1干渉低減部とを 備える、請求項 1から 7のいずれかに記載の中継器。
[9] 前記第 1干渉除去回路は、前記複製した RF信号の振幅又は Z及び位相を、前 記送信側回路に接続されたアンテナカゝら前記受信側回路に接続されたアンテナに 入り込む前記送信用 RF信号の振幅又は Z及び位相に合わせて調節する、請求項 8 に記載の中継器。
[10] 前記送信側回路によって送信用 RF信号に変換される前の送信信号を分岐して 該送信信号の複製を作る第 2複製部と、該複製した送信信号の強度又は Z及び位 相を調節し、前記受信側回路において RF信号力 変換された後の受信信号力 該 調節した送信信号を差し引く第 2干渉除去回路と、を備える請求項 1から 9のいずれ かに記載の中継器。
[11] 前記第 2干渉除去回路は、前記複製した送信信号の強度又は Z及び位相を、前 記送信側回路に接続されたアンテナカゝら前記受信側回路に接続されたアンテナを 通じて前記受信側回路に混入する前記送信信号の強度又は Z及び位相に合わせ て調節する、請求項 10に記載の中継器。
[12] 前記第 1のアンテナ及び Z又は前記第 2のアンテナは指向性を持つ、請求項 1か ら 11の 、ずれかに記載の中継器。
[13] 前記第 1のアンテナ及び Z又は前記第 2のアンテナは、複数のアンテナ力 構成 されるアンテナ群である、請求項 1から 12の 、ずれかに記載の中継器。
[14] 前記第 1のアンテナは前記第 1の通信機との通信に用い、前記第 2のアンテナは前 記第 2の通信機との通信に用いる、請求項 1から 13のいずれかに記載の中継器。
[15] ワイヤレス LANにおけるアクセスポイントと端末との間の通信を中継する請求項 1 から 14の!、ずれかに記載の中継器。
[16] セルラ方式の無線電話におけるアクセスポイントと端末との間の通信を中継する 請求項 1から 14のいずれかに記載の中継器。
[17] マルチホップネットワークにおいて、端末間の通信を中継する請求項 1から 14の いずれか〖こ記載の中継器。
[18] 請求項 1から 17のいずれかに記載の中継器を備える通信端末。
[19] 時分割複信方式を用いた通信を行なう第 1の通信機と第 2の通信機との間にやり とりされる信号を、中継器で中継する方法であって、
• 第 1ダウンリンク時において、
前記第 1の通信機は前記中継器へ第 1RF信号を送信し、 前記中継器は前記第 1RF信号を受信すると共に、前記第 1RF信号に含まれる第 1ベースバンド信号を取り出し、
• 前記第 1ダウンリンク時の後の第 1アップリンク時において、
前記第 2の通信機は前記中継器へ第 2RF信号を送信し、
前記中継器は前記第 2RF信号を受信すると共に、前記第 2RF信号に含まれる第 2ベースバンド信号を取り出し、
• 前記第 1アップリンク時の後の第 2ダウンリンク時において、
前記第 1の通信機は前記中継器へ第 3RF信号を送信し、
前記中継器は前記第 1ベースバンド信号を送信用の RF信号へ変換して前記第 2 の通信機へ送信すると共に、前記第 3RF信号を受信して、前記第 3信号に含まれる 第 3ベースバンド信号を取り出し、
• 該第 2ダウンリンク時の後の第 2アップリンク時において、
前記第 2の通信機は前記中継器へ第 4RF信号を送信し、
前記中継器は、前記第 2ベースバンド信号を送信用の RF信号へ変換して前記第 1の通信機へ送信すると共に、前記第 4信号を受信して、前記第 4信号に含まれる第 4ベースバンド信号を取り出す、
中継方法。 前記中継器にぉ 、て、前記取り出したベースバンド信号を送信すべき通信機が 前記中継器の通信可能範囲に存在しな ヽ場合は、該ベースバンド信号を送信用の R F信号へ変換せずに破棄する、請求項 19に記載の中継方法。 前記中継器に、前記第 1の通信機との通信に用いる第 1のアンテナと、前記第 2 の通信機との通信に用いる第 2のアンテナとを設け、ダウンリンク時においては前記 第 1のアンテナを前記中 «I器の受信回路に接続すると共に前記第 2のアンテナを前 記中継器の送信回路へ接続し、アップリンク時においては前記第 1のアンテナを前 記送信回路に接続すると共に前記第 2のアンテナを前記受信回路へ接続する、請求 項 19又は 20に記載の中継方法。 [22] 第 1の通信機と第 2の通信機との通信路の途中に置かれる中継器であって、 • 第 1のアンテナと、
• 第 2のアンテナと、
• 前記第 1のアンテナと前記第 2のアンテナとの 、ずれか一方のアンテナに接続さ れ、ベースバンド信号を送信用 RF信号に変換する送信側回路と、
• 前記一方に対する他方のアンテナに接続され、受信した RF信号力 ベースバン ド信号を取り出す受信側回路と、
• 前記送信側回路を通じて送信を行なうと同時に前記受信側回路を通じて受信を 行なう通信制御部と、
• 前記送信側回路カゝら出力される送信用 RF信号を分岐して該送信用 RF信号の複 製を作る第 1複製部と、
• 該複製した RF信号の振幅又は Z及び位相を調節し、該調節した RF信号を前記 受信側回路に入力する RF信号から差し引く第 1干渉除去回路と、
を備える、中継器。
[23] 前記第 1干渉除去回路は、前記複製した RF信号の振幅又は Z及び位相を、前 記送信側回路に接続されたアンテナカゝら前記受信側回路に接続されたアンテナに 入り込む前記送信用 RF信号の振幅又は Z及び位相に合わせて調節する、請求項 2 2に記載の中継器。
[24] 第 1の通信機と第 2の通信機との通信路の途中に置かれる中継器であって、 • 第 1のアンテナと、
• 第 2のアンテナと、
• 前記第 1のアンテナと前記第 2のアンテナとの 、ずれか一方のアンテナに接続さ れ、ベースバンド信号を送信用 RF信号に変換する送信側回路と、
• 前記一方に対する他方のアンテナに接続され、受信した RF信号力 ベースバン ド信号を取り出す受信側回路と、 • 前記送信側回路を通じて送信を行なうと同時に前記受信側回路を通じて受信を 行なう通信制御部と、
• 前記送信側回路によって送信用 RF信号に変換される前の送信信号を分岐して該 送信信号の複製を作る第 2複製部と、
• 該複製した送信信号の強度又は Z及び位相を調節し、前記受信側回路において RF信号力 変換された後の受信信号力 該調節した送信信号を差し引く第 2干渉除 去回路と、
を備える、中継器。
[25] 前記第 2干渉除去回路は、前記複製した送信信号の強度又は Z及び位相を、前 記送信側回路に接続されたアンテナカゝら前記受信側回路に接続されたアンテナを 通じて前記受信側回路に混入する前記送信信号の強度又は Z及び位相に合わせ て調節する、請求項 24に記載の中継器。
[26] 前記第 1のアンテナ及び Z又は前記第 2のアンテナは指向性を持つ、請求項 22 から 25の!、ずれかに記載の中継器。
[27] 前記第 1のアンテナ及び Z又は前記第 2のアンテナは、複数のアンテナ力 構成 されるアンテナ群である、請求項 22から 26の 、ずれかに記載の中継器。
[28] 前記第 1のアンテナが前記送信側回路と接続されると共に前記第 2のアンテナが 前記受信側回路と接続される第 1状態と、前記第 1のアンテナが前記受信側回路と 接続されると共に前記第 2のアンテナが前記送信側回路と接続される第 2状態とを切 り替える切り替え部を備える、請求項 22から 27の 、ずれかに記載の中継器。
[29] 時分割複信方式を用いた通信を中継する中継器である、請求項 22から 28の 、 ずれかに記載の中継器。 [30] 周波数分割複信方式を用いた通信を中継する中継器である、請求項 22から 28 のいずれか〖こ記載の中継器。
[31] ワイヤレス LANにおけるアクセスポイントと端末との間の通信を中継する請求項 2 2から 30の!、ずれかに記載の中継器。
[32] セルラ方式の無線電話におけるアクセスポイントと端末との間の通信を中継する 請求項 22から 30の!ヽずれかに記載の中継器。
[33] マルチホップネットワークにおいて、端末間の通信を中継する請求項 22から 30の いずれか〖こ記載の中継器。
[34] 請求項 22から 33のいずれかに記載の中継器を備える通信端末。
PCT/JP2005/015623 2004-09-01 2005-08-29 中継器及び中継方法 WO2006025298A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05780861A EP1791270A1 (en) 2004-09-01 2005-08-29 Relay, and relaying method
US11/660,688 US20090116415A1 (en) 2004-09-01 2005-08-29 Relay, and relaying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004254322A JP2007180597A (ja) 2004-09-01 2004-09-01 中継器及び中継方法
JP2004-254322 2004-09-01

Publications (1)

Publication Number Publication Date
WO2006025298A1 true WO2006025298A1 (ja) 2006-03-09

Family

ID=35999952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015623 WO2006025298A1 (ja) 2004-09-01 2005-08-29 中継器及び中継方法

Country Status (6)

Country Link
US (1) US20090116415A1 (ja)
EP (1) EP1791270A1 (ja)
JP (1) JP2007180597A (ja)
CN (1) CN101027855A (ja)
TW (1) TWI287367B (ja)
WO (1) WO2006025298A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952138B2 (ja) * 2006-08-17 2012-06-13 富士通株式会社 中継局、無線基地局及び通信方法
CN101997599B (zh) * 2009-08-17 2015-03-18 上海贝尔股份有限公司 中继方法及其设备
US8452232B2 (en) * 2009-08-18 2013-05-28 Intel Corporation Automatic on-off switching repeater for MIMO networks
JP2011139268A (ja) * 2009-12-28 2011-07-14 Fujitsu Ltd 無線中継装置、無線中継方法
CN102149205B (zh) * 2010-02-09 2016-06-15 中兴通讯股份有限公司 一种中继节点的状态管理方法及系统
US9294165B2 (en) 2011-04-19 2016-03-22 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
KR20140043824A (ko) * 2011-08-30 2014-04-10 인텔 코포레이션 무선 통신용 무선 협업 장치, 시스템 및 방법
CN102404879B (zh) * 2011-11-04 2016-04-13 惠州Tcl移动通信有限公司 一种移动通讯终端
CN102684864B (zh) * 2012-05-02 2017-04-19 惠州Tcl移动通信有限公司 一种移动通讯终端
JP2014003473A (ja) * 2012-06-19 2014-01-09 Nec Access Technica Ltd 無線中継装置およびその制御方法
WO2014151737A1 (en) * 2013-03-14 2014-09-25 Robert Bosch Gmbh Wireless device charging system having a shared antenna
CN105493416A (zh) 2013-08-29 2016-04-13 库姆网络公司 全双工中继装置
US10673519B2 (en) 2013-08-29 2020-06-02 Kuma Networks, Inc. Optically enhanced self-interference cancellation
US10009211B1 (en) * 2015-10-08 2018-06-26 Juan Roberto Barrera Radio interference eliminator circuit
KR101889408B1 (ko) * 2016-07-26 2018-08-17 (주)바이컴 근거리 디지털 무선중계 기반의 철도 재난방송 시스템
JP2018182448A (ja) 2017-04-07 2018-11-15 富士通株式会社 中継装置及び干渉抑制方法
US10845477B2 (en) 2017-05-10 2020-11-24 Google Llc Power management using a low-power radar
US10795009B2 (en) 2017-05-31 2020-10-06 Google Llc Digital beamforming for radar sensing using wireless communication chipset
US10782390B2 (en) 2017-05-31 2020-09-22 Google Llc Full-duplex operation for radar sensing using wireless communication chipset
TWI681644B (zh) * 2017-05-31 2020-01-01 美商谷歌有限責任公司 使用無線通訊晶片組之用於雷達感測之全雙工操作
US10754005B2 (en) 2017-05-31 2020-08-25 Google Llc Radar modulation for radar sensing using a wireless communication chipset
US11101970B2 (en) * 2018-05-25 2021-08-24 Solid, Inc. Repeater and operating method thereof
KR102175374B1 (ko) * 2018-11-07 2020-11-06 주식회사 랜컴테크놀로지 반이중 무선 중계 장치 및 방법
KR102175362B1 (ko) * 2018-11-07 2020-11-06 주식회사 랜컴테크놀로지 반이중 무선 중계 장치 및 방법
KR102175384B1 (ko) * 2018-11-13 2020-11-06 주식회사 랜컴테크놀로지 광역 서비스를 위한 반이중 무선 중계 장치 및 방법
KR102175387B1 (ko) * 2018-11-13 2020-11-06 주식회사 랜컴테크놀로지 반이중 무선 중계 장치 및 방법
KR102175386B1 (ko) * 2018-11-13 2020-11-06 주식회사 랜컴테크놀로지 광역 서비스를 위한 반이중 무선 중계 장치 및 방법
CN113614676B (zh) 2019-05-20 2024-03-26 谷歌有限责任公司 用于提供多模式界面的基于移动设备的雷达系统及其方法
KR20210132132A (ko) 2019-06-17 2021-11-03 구글 엘엘씨 멀티 모드 인터페이스에 상이한 전력 모드를 적용하기 위한 모바일 디바이스 기반 레이더 시스템

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287120A (ja) * 1987-05-19 1988-11-24 Matsushita Electric Works Ltd 無線デ−タの中継制御方式
JPH06244837A (ja) * 1993-02-19 1994-09-02 Nippon Telegr & Teleph Corp <Ntt> 無線中継装置
WO1997015991A1 (fr) * 1995-10-26 1997-05-01 Ntt Mobile Communications Network Inc. Reemetteur
JPH10285095A (ja) * 1997-04-09 1998-10-23 Kokusai Electric Co Ltd トンネル用中継増幅装置
JPH10303667A (ja) * 1997-04-24 1998-11-13 Nippon Denki Ido Tsushin Kk ブースタ中継装置
JP2000134143A (ja) * 1998-10-23 2000-05-12 Fujitsu Ltd 時分割多元接続−時分割双方向伝送方式を利用した無線中継システム
JP2002111571A (ja) * 2000-09-28 2002-04-12 Nippon Telegr & Teleph Corp <Ntt> 無線中継器
JP2003273788A (ja) * 2002-03-18 2003-09-26 Nec Corp 無線マルチホップネットワークにおける送信ノード、中継ノード及び通信システム
JP2004007411A (ja) * 2002-04-10 2004-01-08 Miyoshi Electronics Corp 無線lan中継装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2224035A1 (en) * 1996-12-19 1998-06-19 J. Leland Langston Repeater node network system and method
US5912644A (en) * 1997-08-05 1999-06-15 Wang; James J. M. Spread spectrum position determination, ranging and communication system
EP1188336B1 (en) * 1999-05-01 2006-08-16 Nokia Corporation A method of directional radio communication
JP4052835B2 (ja) * 2001-12-28 2008-02-27 株式会社日立製作所 多地点中継を行う無線伝送システム及びそれに使用する無線装置
US7212788B2 (en) * 2002-08-13 2007-05-01 Atheros Communications, Inc. Method and apparatus for signal power loss reduction in RF communication systems
US7155178B2 (en) * 2004-01-29 2006-12-26 Mediatek Inc. Circuit system for wireless communications
US7436790B2 (en) * 2004-03-25 2008-10-14 Research In Motion Limited Wireless access point methods and apparatus for reduced power consumption and cost

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287120A (ja) * 1987-05-19 1988-11-24 Matsushita Electric Works Ltd 無線デ−タの中継制御方式
JPH06244837A (ja) * 1993-02-19 1994-09-02 Nippon Telegr & Teleph Corp <Ntt> 無線中継装置
WO1997015991A1 (fr) * 1995-10-26 1997-05-01 Ntt Mobile Communications Network Inc. Reemetteur
JPH10285095A (ja) * 1997-04-09 1998-10-23 Kokusai Electric Co Ltd トンネル用中継増幅装置
JPH10303667A (ja) * 1997-04-24 1998-11-13 Nippon Denki Ido Tsushin Kk ブースタ中継装置
JP2000134143A (ja) * 1998-10-23 2000-05-12 Fujitsu Ltd 時分割多元接続−時分割双方向伝送方式を利用した無線中継システム
JP2002111571A (ja) * 2000-09-28 2002-04-12 Nippon Telegr & Teleph Corp <Ntt> 無線中継器
JP2003273788A (ja) * 2002-03-18 2003-09-26 Nec Corp 無線マルチホップネットワークにおける送信ノード、中継ノード及び通信システム
JP2004007411A (ja) * 2002-04-10 2004-01-08 Miyoshi Electronics Corp 無線lan中継装置

Also Published As

Publication number Publication date
JP2007180597A (ja) 2007-07-12
US20090116415A1 (en) 2009-05-07
TW200623681A (en) 2006-07-01
TWI287367B (en) 2007-09-21
CN101027855A (zh) 2007-08-29
EP1791270A1 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
WO2006025298A1 (ja) 中継器及び中継方法
US10063364B2 (en) Wireless full-duplex system and method using sideband test signals
US7061854B2 (en) Efficient OFDM communications with interference immunity
US6404775B1 (en) Band-changing repeater with protocol or format conversion
Iwamura et al. Relay technology in LTE-advanced
US9866334B2 (en) Method to control the effects of out-of-cell interference in a wireless cellular system using backhaul transmission of decoded data and formats
JP2004511124A (ja) 共用チャネル通信システムにおいて複数のユーザを分離する方法および装置
CN112994744B (zh) 一种增强通信能力的双模通信方法及装置
WO2008077719A1 (en) Multi-antenna relay station with two-way channel
WO2017139347A1 (en) Interference cancellation in radio transceivers
Alves et al. Brief survey on full-duplex relaying and its applications on 5G
Jiang et al. Toward URLLC: A full duplex relay system with self-interference utilization or cancellation
KR20070087654A (ko) 중계기를 사용하여 무선으로 메시지를 전송하기 위한 방법
US20160112078A1 (en) Terminal and power charching method thereof
CN102197673B (zh) 再利用信道资源的无线通信方法、系统以及装置
US6459725B1 (en) Wireless repeater with improved diversity
KR100717220B1 (ko) 다운샘플링된 신호를 셀룰러 무선전화 기지국에서 셀룰러 무선 교환국으로 업링크전송하는 셀룰러 무선전화 통신 시스템 및 방법
EP2407003B1 (en) Mobile ad-hoc network having interference mitigation and related methods
JP2023532052A (ja) 人工知能に基づいて同期を獲得する中継装置及びその中継装置の動作方法
Duan et al. A Full‐Duplex Relay System for URLLC with Adaptive Self‐Interference Processing
JP5699151B2 (ja) 無線通信を容易にする方法、無線信号リピータ装置、無線通信方法及び移動局装置
KR20160058714A (ko) 전이중 시스템의 신호 송수신 장치 및 방법
KR20220013205A (ko) 하이브리드 plc/w 통신 시스템에서의 보안 장치 및 방법
KR100293242B1 (ko) 무선가입자망 무선접속장치 수신시스템 및 수신전력 제어방법
Gummineni et al. Implementation of software-based communication system using SDR and GNU radio

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005780861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580032057.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005780861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWE Wipo information: entry into national phase

Ref document number: 11660688

Country of ref document: US