WO2006025144A1 - Bundle fiber - Google Patents

Bundle fiber Download PDF

Info

Publication number
WO2006025144A1
WO2006025144A1 PCT/JP2005/010970 JP2005010970W WO2006025144A1 WO 2006025144 A1 WO2006025144 A1 WO 2006025144A1 JP 2005010970 W JP2005010970 W JP 2005010970W WO 2006025144 A1 WO2006025144 A1 WO 2006025144A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
bundle
bundle fiber
face
side end
Prior art date
Application number
PCT/JP2005/010970
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Otosaka
Jun Abe
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2006025144A1 publication Critical patent/WO2006025144A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • F24D13/022Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
    • F24D13/024Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements in walls, floors, ceilings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to a bundle fiber. More specifically, the present invention relates to a bundle fiber formed by bundling a plurality of optical fibers.
  • Patent Document 1 describes that a plurality of optical fibers are filled through a quartz sleeve and the ends of the bundle are melted together. It has been proposed to eliminate gaps between individual optical fibers.
  • Patent Document 1 Japanese Patent Laid-Open No. 08-304642
  • core filling factor the ratio of the core to the waveguide at the incident side end face
  • a typical optical fiber used for a bundle fiber has a core diameter of about 200 ⁇ m and a cladding diameter of about 240 m. Described in Patent Document 1 using such an optical fiber When a bundle fiber with this structure is manufactured, its core filling factor is only about 69.4%. As described above, since the coupling rate at the incident-side end face is low, the overall transmission efficiency of the bundle fiber, which is a high-density optical transmission medium, is sufficiently high.
  • a bundle fiber in which a plurality of optical fibers are bundled, and a material for forming a core of the optical fiber on the incident side end face of the guided light!
  • a bundled fiber characterized in that the ratio of area occupied by it is 90% or more and 100% or less in terms of area ratio.
  • the optical fibers are integrated with each other at the incident side end face by melting.
  • the incident-side end surfaces are united, and all the light incident on the bundle fiber becomes guided light.
  • the bundle fiber can be efficiently coupled.
  • the optical fiber in the bundle fiber, is a holey fiber.
  • the member forming the incident side end face of the bundle fiber is formed of a single material from the beginning, and the incident side end face of a single material can be formed by simple processing.
  • the incident-side end face is formed of a holey fiber in which the holes are collapsed.
  • the incident-side end face of the bundle fiber is formed of a waveguide material having no defects, and high-efficiency coupling can be achieved.
  • the material of the holey fiber is pure quartz glass.
  • the bundle fiber is quartz glass doped with at least one of fluorine and hydroxyl groups.
  • each of the optical fibers is made of pure silica glass, or a core that also has a quartz glass power doped with at least one of fluorine and a hydroxyl group, and a cladding that also has a silica glass power doped with fluorine. And have.
  • the incident side end face of the bundle fiber can be formed of a material suitable for guided light, and, for example, a bundle fiber with little deterioration against ultraviolet rays or the like is realized.
  • each of the optical fibers is partially or entirely removed from each clad on the incident side end face.
  • the portion on the incident side end face of the bundle fiber that does not contribute to the waveguide of incident light can be reduced, and highly efficient coupling can be achieved.
  • the cladding is removed by chemical etching at each incident side end face of the optical fiber.
  • the cladding can be removed without applying physical stress to each optical fiber.
  • the properties of the surface to be coated are smooth according to chemical etching, the optical characteristics of the remaining core and clad are not deteriorated.
  • the bundle fiber of the present invention can guide more light at the incident side end face by coupling it to the core. This bundle fiber is easy to manufacture and contributes to cost reduction.
  • FIG. 1 is a cross-sectional view showing a structure of a single holey fiber 100.
  • FIG. 2 is a side view showing an embodiment of a bundle fiber 200 using a holey fiber 100.
  • FIG. 3 is a cross-sectional view for explaining processing into a conventional optical fiber 300 used for the bundle fiber 200.
  • FIG. 4 is a side view showing the structure of a bundle fiber 400 formed of an optical fiber having a clad 320.
  • a conventional optical fiber that is widely used has a solid structure in which a region having a high refractive index called a core is provided at the center of quartz glass or the like.
  • the holey fiber 100 is provided with a plurality of holes 112 in the axial direction of the fiber, and the central part of the stone glass part 110 is a high refractive index core part.
  • the air layer in the hole 112 is a clad portion having a low refractive index. Since the refractive index difference between air and glass is extremely large, a high numerical aperture can be obtained and more incident light can be guided into the optical fiber.
  • FIG. 1 shows a single layer of holes 112 arranged concentrically with the optical fiber itself, the holes 112 may be provided in multiple layers concentrically, and the cross-sectional shape of the holes 112 The arrangement may not be circular.
  • a porous glass base material is manufactured by depositing glass fine particles generated by a flame hydrolysis reaction of a glass raw material.
  • the obtained porous glass base material is heated at 1100 to 1450 ° C during dehydration treatment or after dehydration treatment as necessary to shrink the porous glass base material to a bulk density suitable for drilling.
  • the end face is polished and drilled in the axial direction with a carbide drill, diamond drill, etc., and then dehydrated, purified, and transparentized.
  • Holey fiber Examples of 100 materials include pure quartz glass and quartz glass doped with at least one of fluorine and hydroxyl groups.
  • a holey fiber can be formed from quartz glass having a single composition doped with at least one of fluorine and a hydroxyl group, which has excellent ultraviolet resistance when transmitting ultraviolet light.
  • the force near the end of the holey fiber 100 and the protective coating 120 are removed, and then in an atmosphere gas or a reduced pressure atmosphere.
  • the pores 112 are crushed into a solid glass fiber.
  • the bundled end portions are further heated and melted to form an integral flange portion 130.
  • the gap between the holey fibers 100 is eliminated. Further, the end face of the integral part 130 is formed of a single composition glass.
  • “collapse” means filling the gap between the optical fibers and the hole 112 of the holey fiber 100 by melting and crushing the bundled optical fibers (holey fiber 100).
  • a carbon heater, an oxyhydrogen flame, or the like can be used as a heating means for forming the integral flange 130. Further, by removing the protective coating 120 in the vicinity of the end portion and heating and melting the bundled holey fiber 100, the collapse of the air holes 112 and the integral flange portion 130 can be simultaneously formed.
  • the core filling rate of the bundle fiber can be improved even when the conventional optical fiber 300 is used.
  • the protective coating 330 is first removed near the end of the light incident end side, and then part or all of the cladding 320 of the optical fiber 300 is removed. Further, the core 310 is melted and integrated in the vicinity of the end.
  • the bundle fiber obtained in this way can increase the core filling factor of the light incident part up to 100%.
  • Such a bundle fiber is formed by using a plurality of conventional optical fibers having a core portion and a clad portion, and a bundle fiber having a core filling rate of 90% or more on the incident side end face.
  • Aiba One of Aiba.
  • a method in which the optical fiber 300 is immersed in a hydrofluoric acid solution and chemically etched is used.
  • etching is performed so that the core filling rate at the end face of each optical fiber 300 is 90% or more, preferably 80% or more, and more preferably 100%.
  • the core is made of pure silica glass or quartz glass doped with at least one of fluorine and a hydroxyl group, and the glass is doped with fluorine. Is preferable.
  • FIG. 4 is a side view schematically showing the structure of the bundle fiber 400 formed by the optical fiber 300 having the clad 320.
  • the optical fiber forming the bundle fiber 400 has the clad 320 removed in the vicinity of the incident end as shown in FIG. Therefore, the incident end of the bundle fiber 400 is formed as an aggregate portion 430 in which the cores 310 of the optical fiber 300 are densely aggregated.
  • Such a bundle fiber is also one of bundle fibers formed by using a plurality of conventional optical fibers having a core part and a clad part, and having a core filling rate of 90% or more on the incident side end face.
  • a bundle fiber having a high core filling factor on the incident side end face can be obtained easily and at low cost.
  • a bundle fiber with a high core filling factor can guide much of the incident light, so high V and transmission efficiency can be obtained.
  • a bundle fiber is produced using an optical fiber made of a quartz material, it can be suitably used for transmitting ultraviolet rays.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

Disclosed is a bundle fiber (200) obtained by tying a plurality of optical fibers (100) in a bundle. In the end face of an integrated part (130) which is formed in the end portion on the guided light incident side, the area ratio of the material constituting waveguides is not less than 90% and not more than 100%. Consequently, more light can be introduced into the bundle fiber from the incident end face.

Description

明 細 書  Specification
バンドルファイバ 技術分野  Bundled fiber technology
[0001] 本発明はバンドルファイバに関する。より詳細には、複数本の光ファイバを束ねて 形成されたバンドルファイバに関する。  [0001] The present invention relates to a bundle fiber. More specifically, the present invention relates to a bundle fiber formed by bundling a plurality of optical fibers.
[0002] なお、文献の参照による組み込みが認められる指定国については、下記の出願に 記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。 特願 2004— 256031号(出願日:平成 16年 9月 2日)  [0002] Regarding designated countries where incorporation by reference of documents is permitted, the contents described in the following application are incorporated into this application by reference and made a part of the description of this application. Japanese Patent Application No. 2004-256031 (Filing date: September 2, 2004)
背景技術  Background art
[0003] 光の伝送に用いる媒体のひとつとして、光ファイバを束ねたバンドルファイバがある 。バンドルファイバの端面に照射された光は、その全てがバンドルファイバに結合さ れて導波されるわけではない。その理由は、光ファイバは円形の断面形状を有する ので、それを束ねたバンドルファイバでは個々の光ファイバの間に隙間があり、この 隙間部分に照射された光は、光ファイバ内で導波されることがないからである。  [0003] As one of media used for light transmission, there is a bundle fiber in which optical fibers are bundled. The light irradiated on the end face of the bundle fiber is not all guided into the bundle fiber. The reason is that since the optical fiber has a circular cross-sectional shape, there is a gap between the individual optical fibers in the bundle fiber in which the optical fiber is bundled, and the light irradiated to the gap is guided in the optical fiber. This is because there is nothing to do.
[0004] バンドルファイバに対する導波光の入射効率を上げる対策として、特許文献 1は、 複数本の光ファイバを石英製スリーブ内に通して充填し、バンドルの端部を溶融'一 体ィ匕して個々の光ファイバ間の隙間を無くすことを提案している。  [0004] As a measure for increasing the incident efficiency of guided light to a bundle fiber, Patent Document 1 describes that a plurality of optical fibers are filled through a quartz sleeve and the ends of the bundle are melted together. It has been proposed to eliminate gaps between individual optical fibers.
特許文献 1:特開平 08 - 304642号公報  Patent Document 1: Japanese Patent Laid-Open No. 08-304642
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 多くの光ファイバは、導波光をコア部に閉じ込めるために必要な低屈折率のクラッド 部をコアの周囲に有している。このクラッド部に入射された光は基本的にはコア中に 導波されることはない。従って、特許文献 1の方法で光ファイバ間の隙間を無くしたと しても、入射側端面において導波に与るコアの占める割合 (以下、「コア充填率」と記 載する)は、依然として 100%ではない。 Many optical fibers have a low refractive index cladding portion around the core necessary for confining the guided light in the core portion. The light incident on the cladding is not basically guided into the core. Therefore, even if the gap between the optical fibers is eliminated by the method of Patent Document 1, the ratio of the core to the waveguide at the incident side end face (hereinafter referred to as “core filling factor”) is still Not 100%.
[0006] 例えば、バンドルファイバに用いられる代表的な光ファイバは、コア径が 200 μ m、 クラッド径が 240 m程度である。このような光ファイバを使用して特許文献 1に記載 の構造のバンドルファイバを製造した場合、そのコア充填率は、 69. 4%程度に過ぎ ない。このように、入射側端面における結合率が低いために、高密度な光伝送媒体と されているバンドルファイバの総合的な伝送効率は十分に高くはな力つた。 [0006] For example, a typical optical fiber used for a bundle fiber has a core diameter of about 200 μm and a cladding diameter of about 240 m. Described in Patent Document 1 using such an optical fiber When a bundle fiber with this structure is manufactured, its core filling factor is only about 69.4%. As described above, since the coupling rate at the incident-side end face is low, the overall transmission efficiency of the bundle fiber, which is a high-density optical transmission medium, is sufficiently high.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題に鑑み、本発明の第 1の形態として、複数本の光ファイバを束ねたバンド ルファイバであって、導波光の入射側端面にお!、て光ファイバのコアを形成する材料 の占める割合力 面積比で 90%以上且つ 100%以下であることを特徴とするバンド ルファイバが提供される。これにより、バンドルファイバの入射側端面の多くが導波路 材料により形成されることになるので、端面に入射した光は効率よく導波路に結合さ れる。 In view of the above problems, as a first embodiment of the present invention, a bundle fiber in which a plurality of optical fibers are bundled, and a material for forming a core of the optical fiber on the incident side end face of the guided light! Provided is a bundled fiber characterized in that the ratio of area occupied by it is 90% or more and 100% or less in terms of area ratio. As a result, most of the incident-side end face of the bundle fiber is formed of the waveguide material, so that the light incident on the end face is efficiently coupled to the waveguide.
[0008] また、ひとつの実施形態として、上記バンドルファイバにお 、て、入射側端面にお いて、光ファイバが溶融により相互に一体ィ匕されている。これにより、入射側端面が一 体となり、バンドルファイバに入射した光がすべて導波光となる。また、入射光路上に 異物が存在しな 、ので、バンドルファイバを効率よく結合することができる。  [0008] Further, as one embodiment, in the bundle fiber, the optical fibers are integrated with each other at the incident side end face by melting. As a result, the incident-side end surfaces are united, and all the light incident on the bundle fiber becomes guided light. In addition, since there is no foreign matter on the incident optical path, the bundle fiber can be efficiently coupled.
[0009] また、他の実施形態として、上記バンドルファイバにおいて、光ファイバはホーリー ファイバである。これにより、バンドルファイバの入射側端面を形成する部材が当初よ り単一の材料で形成されることになり、簡単な加工で単一材料の入射側端面を形成 できる。  [0009] In another embodiment, in the bundle fiber, the optical fiber is a holey fiber. As a result, the member forming the incident side end face of the bundle fiber is formed of a single material from the beginning, and the incident side end face of a single material can be formed by simple processing.
[0010] また、他の実施形態として、上記バンドルファイバにおいて、入射側端面が、その空 孔をコラプスされたホーリーファイバにより形成されている。これにより、バンドルフアイ バの入射側端面が、欠陥の無い導波路材料により形成されることになり、効率の高い 結合ができる。  [0010] As another embodiment, in the bundle fiber, the incident-side end face is formed of a holey fiber in which the holes are collapsed. As a result, the incident-side end face of the bundle fiber is formed of a waveguide material having no defects, and high-efficiency coupling can be achieved.
[0011] また、他の実施形態として、上記バンドルファイバにおいて、ホーリーファイバの材 料は純粋石英ガラスである。また、更に他の実施形態として、上記バンドルファイバに おいて、ホーリーファイバの材料力 フッ素および水酸基の少なくともひとつをドープ された石英ガラスである。また更に、他の実施形態として、前記光ファイバの各々が、 純粋石英ガラス、もしくは、フッ素および水酸基の少なくともひとつをドープされた石 英ガラス力もなるコアと、フッ素をドープされた石英ガラス力もなるクラッドとを有する。 これにより、導波光に適した材料でバンドルファイバの入射側端面を形成することが でき、例えば、紫外線等に対しても劣化の少ないバンドルファイバが実現される。 [0011] As another embodiment, in the above-mentioned bundle fiber, the material of the holey fiber is pure quartz glass. In still another embodiment, the bundle fiber is quartz glass doped with at least one of fluorine and hydroxyl groups. Furthermore, as another embodiment, each of the optical fibers is made of pure silica glass, or a core that also has a quartz glass power doped with at least one of fluorine and a hydroxyl group, and a cladding that also has a silica glass power doped with fluorine. And have. As a result, the incident side end face of the bundle fiber can be formed of a material suitable for guided light, and, for example, a bundle fiber with little deterioration against ultraviolet rays or the like is realized.
[0012] また、他の実施形態として、上記バンドルファイバにおいて、光ファイバの各々が、 入射側端面において、各々のクラッドの一部または全部を除去されている。これによ り、バンドルファイバにおける入射側端面において、入射光の導波に寄与しない部分 を低減でき、効率の高い結合ができる。  [0012] As another embodiment, in the above-mentioned bundle fiber, each of the optical fibers is partially or entirely removed from each clad on the incident side end face. As a result, the portion on the incident side end face of the bundle fiber that does not contribute to the waveguide of incident light can be reduced, and highly efficient coupling can be achieved.
[0013] また、他の実施形態として、上記バンドルファイバにおいて、光ファイバの各々の入 射側端面で、クラッドが化学エッチングにより除去されている。これにより、各光フアイ バに物理的な応力を作用させることなくクラッドを除去できる。また、化学エッチングに よれば被カ卩工面の性状が滑らかなので、残ったコアおよびクラッドの光学的特性が劣 ィ匕することちない。  [0013] In another embodiment, in the bundle fiber, the cladding is removed by chemical etching at each incident side end face of the optical fiber. As a result, the cladding can be removed without applying physical stress to each optical fiber. In addition, since the properties of the surface to be coated are smooth according to chemical etching, the optical characteristics of the remaining core and clad are not deteriorated.
[0014] 上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではな 、。また 、これらの特徴群のサブコンビネーションもまた、発明となり得る。  [0014] The above summary of the invention does not enumerate all necessary features of the present invention. Also, a sub-combination of these feature groups can also be an invention.
発明の効果  The invention's effect
[0015] 本発明のバンドルファイバは、その入射側端面において、より多くの光をコアに結合 させて導波できる。また、このバンドルファイバは、製造が容易で、コスト低減にも寄与 する。  [0015] The bundle fiber of the present invention can guide more light at the incident side end face by coupling it to the core. This bundle fiber is easy to manufacture and contributes to cost reduction.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]単体のホーリーファイバ 100の構造を示す断面図である。 FIG. 1 is a cross-sectional view showing a structure of a single holey fiber 100.
[図 2]ホーリーファイバ 100を用いたバンドルファイバ 200の実施形態を示す側面図 である。  FIG. 2 is a side view showing an embodiment of a bundle fiber 200 using a holey fiber 100.
[図 3]バンドルファイバ 200に用いる従来型の光ファイバ 300への加工を説明する断 面図である。  FIG. 3 is a cross-sectional view for explaining processing into a conventional optical fiber 300 used for the bundle fiber 200.
[図 4]クラッド 320を有する光ファイバで形成したバンドルファイバ 400の構造を示す 側面図である。  FIG. 4 is a side view showing the structure of a bundle fiber 400 formed of an optical fiber having a clad 320.
符号の説明  Explanation of symbols
[0017] 100 ホーリーファイバ、 [0017] 100 holey fiber,
110 石英ガラス部、 112 空孔、 110 quartz glass part, 112 holes,
120、 330 保護被覆、  120, 330 protective coating,
130 一体化部、  130 integrated part,
200、 400 ノ ンドノレフ: Γイノく、  200, 400 Nondolev: Γinoku,
300 光ファイバ、  300 optical fiber,
310 コア、  310 cores,
320 クラッド、  320 clad,
430 集合部  430 Meeting part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、実施形態を挙げて説明するが、以下の実施形態は特許請求の範囲に係る 発明を限定するものではない。また、各実施形態における特徴の全てが必須の構成 要件であるとは限らない。  [0018] Hereinafter, embodiments will be described, but the following embodiments do not limit the invention according to the claims. In addition, all the features in each embodiment are not necessarily essential configuration requirements.
[0019] 広く使用されている従来型の光ファイバは、石英ガラス等の中心部にコアと称される 屈折率の高い領域を持たせた、中実の構造を有している。これに対してホーリーファ ィバ 100は、図 1に示すように、ファイバの軸方向に複数の空孔 112が設けられ、石 英ガラス部 110の中央部を高屈折率のコア部とし、空孔 112中の空気層を低屈折率 のクラッド部とする。空気とガラスの屈折率差は極めて大きいので、高い開口数が得 られ、より多くの入射光を光ファイバ内に導波できる。なお、その導波原理は、クラッド を有する従来の光ファイバと同様に、コアの外周に形成された境界における全反射 である。図 1には、光ファイバ自体と同心円状に配置された 1層の空孔 112が示され ているが、空孔 112は同心円状に多層に設けてもよぐまた、空孔 112の断面形状お よび配置は円形でなくてもよい。  [0019] A conventional optical fiber that is widely used has a solid structure in which a region having a high refractive index called a core is provided at the center of quartz glass or the like. On the other hand, as shown in FIG. 1, the holey fiber 100 is provided with a plurality of holes 112 in the axial direction of the fiber, and the central part of the stone glass part 110 is a high refractive index core part. The air layer in the hole 112 is a clad portion having a low refractive index. Since the refractive index difference between air and glass is extremely large, a high numerical aperture can be obtained and more incident light can be guided into the optical fiber. The guiding principle is total reflection at the boundary formed on the outer periphery of the core, as in a conventional optical fiber having a cladding. Although FIG. 1 shows a single layer of holes 112 arranged concentrically with the optical fiber itself, the holes 112 may be provided in multiple layers concentrically, and the cross-sectional shape of the holes 112 The arrangement may not be circular.
[0020] ホーリーファイバ 100を製造するには、例えば以下のような方法がある。まず、ガラ ス原料の火炎加水分解反応で生成したガラス微粒子を堆積させて多孔質ガラス母材 を製造する。次に、得られた多孔質ガラス母材を必要に応じて脱水処理時、または脱 水処理後に 1100〜1450°Cで加熱して多孔質ガラス母材を削孔に適した嵩密度に 収縮させる。さらに、端面を研磨してその軸方向に、超硬ドリル、ダイヤモンドドリル等 で孔開け加工した後、脱水 ·高純度化処理および透明化処理する。ホーリーファイバ 100の材料としては、純粋石英ガラス、フッ素および水酸基の少なくともひとつをドー プされた石英ガラスなどが例示される。 [0020] In order to manufacture the holey fiber 100, for example, there are the following methods. First, a porous glass base material is manufactured by depositing glass fine particles generated by a flame hydrolysis reaction of a glass raw material. Next, the obtained porous glass base material is heated at 1100 to 1450 ° C during dehydration treatment or after dehydration treatment as necessary to shrink the porous glass base material to a bulk density suitable for drilling. . In addition, the end face is polished and drilled in the axial direction with a carbide drill, diamond drill, etc., and then dehydrated, purified, and transparentized. Holey fiber Examples of 100 materials include pure quartz glass and quartz glass doped with at least one of fluorine and hydroxyl groups.
[0021] なお、従来型の光ファイバのように、コアおよびクラッドに互いに糸且成の異なるガラス を用いる場合には、コアまたはクラッドの 、ずれかに光の導波には最適ではな ヽガラ スを用いざるを得なかった。これに対して、ホーリーファイバの場合は、伝送する光の 波長に最も適したガラスだけを用いることができる。例えば、紫外線を伝送する場合 の耐紫外線性に優れる、フッ素および水酸基の少なくともひとつをドープした単一の 組成の石英ガラスでホーリーファイバを形成できる。  [0021] In the case where different cores and glasses are used for the core and the clad as in the conventional optical fiber, the core or the clad is not optimal for guiding light. I had to use it. On the other hand, in the case of holey fiber, only the glass most suitable for the wavelength of the transmitted light can be used. For example, a holey fiber can be formed from quartz glass having a single composition doped with at least one of fluorine and a hydroxyl group, which has excellent ultraviolet resistance when transmitting ultraviolet light.
[0022] 上記のようなホーリーファイバ 100でバンドルファイバ 200を製造するには、まず、ホ 一リーファイバ 100の端部近傍力も保護被覆 120を除去した上で、雰囲気ガスもしく は減圧雰囲気中で加熱してコラブスすることにより空孔 112を潰し、中実なガラスファ ィバとする。次に、図 2に示すように、束ねた端部をさらに加熱溶融して一体ィ匕部 130 を形成する。  [0022] In order to manufacture the bundle fiber 200 with the holey fiber 100 as described above, first, the force near the end of the holey fiber 100 and the protective coating 120 are removed, and then in an atmosphere gas or a reduced pressure atmosphere. By heating and collaborating, the pores 112 are crushed into a solid glass fiber. Next, as shown in FIG. 2, the bundled end portions are further heated and melted to form an integral flange portion 130.
[0023] これらの工程により、ホーリーファイバ 100の相互の隙間がなくなる。また、一体ィ匕 部 130の端面は単一組成のガラスにより形成される。なお、ここでいう「コラプス」とは 、束ねた光ファイバ (ホーリーファイバ 100)を溶融させて潰すことにより、光ファイバ 相互の間隙およびホーリーファイバ 100の空孔 112を埋めることを意味している。  [0023] By these steps, the gap between the holey fibers 100 is eliminated. Further, the end face of the integral part 130 is formed of a single composition glass. Here, “collapse” means filling the gap between the optical fibers and the hole 112 of the holey fiber 100 by melting and crushing the bundled optical fibers (holey fiber 100).
[0024] なお、一体ィ匕部 130を形成するための加熱手段としては、カーボンヒーター、酸水 素火炎等を用いることができる。また、端部近傍の保護被覆 120を除去した上で予め 束ねておいたホーリーファイバ 100を加熱、溶融することにより、空孔 112のコラプス と一体ィ匕部 130の形成を同時に行うこともできる。  [0024] It should be noted that a carbon heater, an oxyhydrogen flame, or the like can be used as a heating means for forming the integral flange 130. Further, by removing the protective coating 120 in the vicinity of the end portion and heating and melting the bundled holey fiber 100, the collapse of the air holes 112 and the integral flange portion 130 can be simultaneously formed.
[0025] また、本発明によれば、従来型の光ファイバ 300を用いてもバンドルファイバのコア 充填率を改善できる。図 3に断面で示すように、光の入射端側の端部近傍で、まず、 保護被覆 330を除去し、次いで、光ファイバ 300のクラッド 320の一部または全部を 除去する。更に、端部近傍においてコア 310を溶融一体ィ匕する。こうして得られるバ ンドルファイバは、光の入射部分のコア充填率を最大 100%まで高めることができる。 このようなバンドルファイバは、コア部およびクラッド部を有する従来型の光ファイバを 複数本使用して形成され、入射側端面におけるコア充填率が 90%以上のバンドルフ アイバのひとつである。 [0025] Further, according to the present invention, the core filling rate of the bundle fiber can be improved even when the conventional optical fiber 300 is used. As shown in a cross section in FIG. 3, the protective coating 330 is first removed near the end of the light incident end side, and then part or all of the cladding 320 of the optical fiber 300 is removed. Further, the core 310 is melted and integrated in the vicinity of the end. The bundle fiber obtained in this way can increase the core filling factor of the light incident part up to 100%. Such a bundle fiber is formed by using a plurality of conventional optical fibers having a core portion and a clad portion, and a bundle fiber having a core filling rate of 90% or more on the incident side end face. One of Aiba.
[0026] なお、光ファイバ 300の入射側端面近傍のクラッド 320の一部または全部を除去す るには、例えば、光ファイバ 300をフッ化水素酸溶液に浸けて、化学的にエッチング する方法が挙げられる。このとき、各光ファイバ 300の端面におけるコア充填率が 90 %以上、好ましくは 80%以上さらに好ましくは 100%となるようにエッチングするとよ い。  [0026] In order to remove a part or all of the cladding 320 in the vicinity of the incident side end face of the optical fiber 300, for example, a method in which the optical fiber 300 is immersed in a hydrofluoric acid solution and chemically etched is used. Can be mentioned. At this time, etching is performed so that the core filling rate at the end face of each optical fiber 300 is 90% or more, preferably 80% or more, and more preferably 100%.
[0027] また、紫外線の伝送に適したバンドルファイバとするには、コアを純粋石英ガラス、 もしくはフッ素および水酸基の少なくともひとつがドープされた石英ガラスとし、クラッ ドにはフッ素がドープされた石英ガラスとするのが好ましい。  [0027] In addition, in order to obtain a bundle fiber suitable for the transmission of ultraviolet rays, the core is made of pure silica glass or quartz glass doped with at least one of fluorine and a hydroxyl group, and the glass is doped with fluorine. Is preferable.
[0028] 図 4は、クラッド 320を有する光ファイバ 300で形成したバンドルファイバ 400の構造 を模式的に示す側面図である。同図に示すように、このバンドルファイバ 400を形成 する光ファイバは、図 3に示したように、入射端近傍でクラッド 320を除去されている。 従って、バンドルファイバ 400の入射端は、光ファイバ 300のコア 310を緻密に集合 させた集合部 430として形成されて ヽる。  FIG. 4 is a side view schematically showing the structure of the bundle fiber 400 formed by the optical fiber 300 having the clad 320. As shown in FIG. 3, the optical fiber forming the bundle fiber 400 has the clad 320 removed in the vicinity of the incident end as shown in FIG. Therefore, the incident end of the bundle fiber 400 is formed as an aggregate portion 430 in which the cores 310 of the optical fiber 300 are densely aggregated.
[0029] このバンドルファイノ 00では入射側端面を溶融 ·一体化して ヽな 、が、それでも、 コア 310によるコア充填率は 90%以上になる。このようなバンドルファイバも、コア部 およびクラッド部を有する従来型の光ファイバを複数本使用して形成され、入射側端 面におけるコア充填率が 90%以上のバンドルファイバのひとつである。  [0029] In this bundle fino 00, the end surface on the incident side should be melted and integrated, but the core filling rate by the core 310 is still 90% or more. Such a bundle fiber is also one of bundle fibers formed by using a plurality of conventional optical fibers having a core part and a clad part, and having a core filling rate of 90% or more on the incident side end face.
産業上の利用可能性  Industrial applicability
[0030] このように入射側端面のコア充填率の高いバンドルファイバが容易且つ低コストに 得られる。コア充填率の高いバンドルファイバは、入射光の多くを導波できるので、高 V、伝送効率が得られる。石英系材料の光ファイバを用いてバンドルファイバを作製し た場合は、紫外線の伝送に好適に使用できる。 [0030] In this way, a bundle fiber having a high core filling factor on the incident side end face can be obtained easily and at low cost. A bundle fiber with a high core filling factor can guide much of the incident light, so high V and transmission efficiency can be obtained. When a bundle fiber is produced using an optical fiber made of a quartz material, it can be suitably used for transmitting ultraviolet rays.

Claims

請求の範囲 The scope of the claims
[1] 複数本の光ファイバを束ねたバンドルファイバであって、導波光の入射側端面にお いて前記光ファイバのコアを形成する材料の占める割合力 面積比で 90%以上且 つ 100%以下であることを特徴とするバンドルファイバ。  [1] A bundle fiber in which a plurality of optical fibers are bundled, and the ratio force area ratio of the material forming the core of the optical fiber on the incident side end face of the guided light is 90% or more and 100% or less Bundle fiber characterized by being.
[2] 前記入射側端面において、前記光ファイバが溶融により相互に一体化されている 請求項 1に記載のバンドルファイバ。 2. The bundle fiber according to claim 1, wherein the optical fibers are integrated with each other at the incident side end face by melting.
[3] 前記光ファイバがホーリーファイバである請求項 1または請求項 2に記載のバンドル ファイバ。 [3] The bundle fiber according to claim 1 or 2, wherein the optical fiber is a holey fiber.
[4] 前記入射側端面が、その空孔をコラプスされた前記ホーリーファイバにより形成され て 、る請求項 3に記載のバンドルファイバ。  4. The bundle fiber according to claim 3, wherein the incident side end face is formed by the holey fiber having its holes collapsed.
[5] 前記ホーリーファイバの材料が純粋石英ガラスである請求項 3または請求項 4の ヽ ずれ力 1項に記載のバンドルファイバ。 [5] The bundle fiber according to [3] or [4], wherein the material of the holey fiber is pure silica glass.
[6] 前記ホーリーファイバの材料力 フッ素および水酸基の少なくともひとつをドープさ れた石英ガラスである請求項 3または請求項 4に記載のバンドルファイバ。 [6] The fiber strength of the holey fiber according to claim 3 or 4, wherein the fiber is quartz glass doped with at least one of fluorine and a hydroxyl group.
[7] 前記光ファイバが、純粋石英ガラス、もしくは、フッ素および水酸基の少なくともひと つをドープされた石英ガラス力 なるコアと、フッ素をドープされた石英ガラス力 なる クラッドとを有する請求項 1または請求項 2に記載のバンドルファイバ。 [7] The optical fiber includes pure silica glass or a core made of quartz glass that is doped with at least one of fluorine and a hydroxyl group, and a clad made of quartz glass that is doped with fluorine. The bundle fiber according to Item 2.
[8] 前記光ファイバの各々力 前記入射側端面において、各々のクラッドの一部または 全部を除去されている請求項 7に記載のバンドルファイバ。 [8] The bundle fiber according to [7], wherein a part or all of each clad is removed from each force on the incident side end face of the optical fiber.
[9] 前記光ファイバの各々の前記入射側端面にお!、て、前記クラッドが化学エッチング により除去されて 、る請求項 8に記載のバンドルファイバ。 9. The bundle fiber according to claim 8, wherein the clad is removed by chemical etching on the incident side end face of each of the optical fibers.
PCT/JP2005/010970 2004-09-02 2005-06-15 Bundle fiber WO2006025144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-256031 2004-09-02
JP2004256031A JP2006072025A (en) 2004-09-02 2004-09-02 Bundled fiber

Publications (1)

Publication Number Publication Date
WO2006025144A1 true WO2006025144A1 (en) 2006-03-09

Family

ID=35999809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010970 WO2006025144A1 (en) 2004-09-02 2005-06-15 Bundle fiber

Country Status (4)

Country Link
JP (1) JP2006072025A (en)
KR (1) KR20060043019A (en)
TW (1) TW200613229A (en)
WO (1) WO2006025144A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027994A (en) * 2009-07-24 2011-02-10 Mitsubishi Cable Ind Ltd Optical fiber for mode coupling, and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655128B2 (en) 2007-03-22 2014-02-18 Fujikura Ltd. Optical fiber bundle and optical irradiator
JP2010072485A (en) * 2008-09-19 2010-04-02 Fujikura Ltd Optical fiber bundle and optical irradiation device
JP5555134B2 (en) * 2010-10-26 2014-07-23 湖北工業株式会社 Optical fiber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055345A (en) * 1973-06-14 1975-05-15
JPS55121409A (en) * 1979-03-13 1980-09-18 Showa Electric Wire & Cable Co Ltd Production of bundled fiber end part
JPS5797504A (en) * 1980-12-10 1982-06-17 Furukawa Electric Co Ltd:The Forming method for end part of light guide
JPS57144510A (en) * 1981-03-03 1982-09-07 Takashi Mori Structure of end face of optical conductor
JPS6138604U (en) * 1984-08-10 1986-03-11 日本電子株式会社 light guide
JPS63136004A (en) * 1986-11-28 1988-06-08 Furukawa Electric Co Ltd:The Terminal part of multiple optical fiber
JPH04245203A (en) * 1991-01-30 1992-09-01 Asahi Glass Co Ltd Light guide
JP2002243972A (en) * 2001-02-19 2002-08-28 Mitsubishi Cable Ind Ltd Method for splicing photonic crystal fiber, its splicing structure, and photonic crystal fiber
JP2002531867A (en) * 1998-12-02 2002-09-24 スリーエム イノベイティブ プロパティズ カンパニー Illumination device and method of manufacturing the same
JP2002333531A (en) * 2001-05-07 2002-11-22 Mitsubishi Cable Ind Ltd Large diameter fiber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055345A (en) * 1973-06-14 1975-05-15
JPS55121409A (en) * 1979-03-13 1980-09-18 Showa Electric Wire & Cable Co Ltd Production of bundled fiber end part
JPS5797504A (en) * 1980-12-10 1982-06-17 Furukawa Electric Co Ltd:The Forming method for end part of light guide
JPS57144510A (en) * 1981-03-03 1982-09-07 Takashi Mori Structure of end face of optical conductor
JPS6138604U (en) * 1984-08-10 1986-03-11 日本電子株式会社 light guide
JPS63136004A (en) * 1986-11-28 1988-06-08 Furukawa Electric Co Ltd:The Terminal part of multiple optical fiber
JPH04245203A (en) * 1991-01-30 1992-09-01 Asahi Glass Co Ltd Light guide
JP2002531867A (en) * 1998-12-02 2002-09-24 スリーエム イノベイティブ プロパティズ カンパニー Illumination device and method of manufacturing the same
JP2002243972A (en) * 2001-02-19 2002-08-28 Mitsubishi Cable Ind Ltd Method for splicing photonic crystal fiber, its splicing structure, and photonic crystal fiber
JP2002333531A (en) * 2001-05-07 2002-11-22 Mitsubishi Cable Ind Ltd Large diameter fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027994A (en) * 2009-07-24 2011-02-10 Mitsubishi Cable Ind Ltd Optical fiber for mode coupling, and method of manufacturing the same

Also Published As

Publication number Publication date
KR20060043019A (en) 2006-05-15
JP2006072025A (en) 2006-03-16
TW200613229A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
JP6052897B2 (en) Multi-core optical fiber ribbon and manufacturing method thereof
FI77217C (en) Process for producing a polarization preserving optical fiber
EP2292566B1 (en) Rare earth doped optical fibres and large effective area optical fibers for fiber lasers and amplifiers
US4494968A (en) Method of forming laminated single polarization fiber
EP0213829B1 (en) Fiber optic coupler and method
JP5409928B2 (en) Polarization-maintaining optical fiber
JP2010520497A (en) Photonic crystal fiber and method of manufacturing the same
JPH0283505A (en) Optical fiber-coupler and manufacture thereof
WO2006047316A2 (en) Fabrication of high air fraction photonic band gap fibers
JP4158391B2 (en) Optical fiber and manufacturing method thereof
JP2002145634A (en) Method of manufacturing optical fiber and optical fiber
WO2006025144A1 (en) Bundle fiber
JP5676152B2 (en) Optical fiber and manufacturing method thereof
JP2004020836A (en) Optical fiber and its manufacturing method
JP5941430B2 (en) Method for producing porous glass preform for optical fiber
JP2002293562A (en) Method for producing optical fiber
WO2013031484A1 (en) Fiber
US6775450B2 (en) Micro-structured optical fibers
JP3858007B2 (en) Optical fiber and optical fiber connector
JP6216263B2 (en) Multi-core fiber preform, multi-core fiber using the same, multi-core fiber preform manufacturing method, and multi-core fiber manufacturing method using the same
JP2003222752A (en) Polarized wave preserving photonic crystal fiber and its manufacturing method
JP5879842B2 (en) Optical fiber manufacturing method
JP5721938B2 (en) Mode coupling optical fiber and manufacturing method thereof
CN1242080A (en) Optical couplers with multilayer fibers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase