JP5676152B2 - Optical fiber and manufacturing method thereof - Google Patents

Optical fiber and manufacturing method thereof Download PDF

Info

Publication number
JP5676152B2
JP5676152B2 JP2010136613A JP2010136613A JP5676152B2 JP 5676152 B2 JP5676152 B2 JP 5676152B2 JP 2010136613 A JP2010136613 A JP 2010136613A JP 2010136613 A JP2010136613 A JP 2010136613A JP 5676152 B2 JP5676152 B2 JP 5676152B2
Authority
JP
Japan
Prior art keywords
glass
optical fiber
core
sio
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010136613A
Other languages
Japanese (ja)
Other versions
JP2012002959A (en
Inventor
井本 克之
克之 井本
石井 太
太 石井
保 矢嶋
保 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Priority to JP2010136613A priority Critical patent/JP5676152B2/en
Publication of JP2012002959A publication Critical patent/JP2012002959A/en
Application granted granted Critical
Publication of JP5676152B2 publication Critical patent/JP5676152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02781Hollow fibres, e.g. holey fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • C03B2203/04Polygonal outer cross-section, e.g. triangular, square
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、レーザ光を伝送させてより高寸法精度なライン形状のパターニング、物質表面の表面改質、物質のアニーリング、物質のスクライブ加工などに好適な矩形状のフラットトッププロファイルを実現することができる横断面が矩形状のコアを有する光ファイバおよびその製造方法に関する。   The present invention can realize a rectangular flat top profile suitable for patterning of a line shape with higher dimensional accuracy, surface modification of a material surface, material annealing, material scribe processing, etc. by transmitting laser light. The present invention relates to an optical fiber having a rectangular core with a rectangular cross section and a method for manufacturing the same.

従来、光ファイバは、屈折率の高い円形断面のコアと、その外周を覆う屈折率の低いクラッドからなるものが一般的に用いられてきた。この光ファイバは全体として円形断面構造を有し、コア径、コアとクラッドとの屈折率分布、伝搬モードなどによって、シングルモードファイバ、マルチモードファイバ、ステップインデックス型ファイバ、集束型ファイバなどとして用いられ、光通信用はもちろんの事、光ファイバセンサ、光計測、光情報機器,光加工、光医療などの分野で実用化されて来た。   Conventionally, an optical fiber is generally used which has a core with a circular section having a high refractive index and a clad with a low refractive index covering the outer periphery thereof. This optical fiber has a circular cross-sectional structure as a whole, and is used as a single mode fiber, multimode fiber, step index type fiber, focusing type fiber, etc., depending on the core diameter, the refractive index distribution between the core and the clad, the propagation mode, etc. It has been put to practical use in fields such as optical fiber sensors, optical measurement, optical information equipment, optical processing, and optical medicine as well as for optical communications.

一方、レーザ光を光ファイバ内に伝送させてライン形状のパターニング、物質表面の表面改質、物質のアニーリング、物質のスクライブ加工などに好適な矩形形状のフラットトッププロファイルを実現することができる光ファイバとして横断面が矩形状のコアを有する、いわゆる矩形コアファイバが注目されている(特許文献1,2参照)。そして、国内の電線メーカ(住友電工、フジクラ電線、古河電工、三菱電線工業など)から製品が発表されている。矩形コアファイバの代表的な構造を図11および図12に示す。   On the other hand, an optical fiber that can transmit a laser beam into an optical fiber to realize a rectangular flat top profile suitable for line-shaped patterning, surface modification of the material, material annealing, material scribe processing, etc. In particular, so-called rectangular core fibers having a rectangular core in cross section are attracting attention (see Patent Documents 1 and 2). And products have been announced by domestic wire manufacturers (Sumitomo Electric, Fujikura Electric, Furukawa Electric, Mitsubishi Electric, etc.). A typical structure of a rectangular core fiber is shown in FIGS.

矩形コアファイバは全体として円形断面構造を有し、屈折率の高い、矩形断面を有するコア20が石英ガラスからなり、その外周を覆う屈折率の低いクラッド21が、F(フッ素)を添加したSiOガラスからなる。図11に示すコア20は横断面が正方形状をしており、図12に示すコア20は横断面が長方形状をしている。 The rectangular core fiber has a circular cross-sectional structure as a whole, the core 20 having a high refractive index and a rectangular cross section is made of quartz glass, and the cladding 21 having a low refractive index covering the outer periphery is made of SiO added with F (fluorine). 2 glass. The core 20 shown in FIG. 11 has a square cross section, and the core 20 shown in FIG. 12 has a rectangular cross section.

これらの矩形コアファイバの製造方法はまだ公表されていないが、従来技術を適用することによって図13に示す手順で製造されていると考えられる。まず石英ガラスロッドを切削加工して矩形断面の石英ガラスブロック22を作成し、ついでその石英ガラスブロック22の外周にFを添加したSiOガラス層23を形成してファイバプリフォーム24を得る。ガラス層23の形成は、VAD(Vapor Phase Axial Deposition)法、外付け法などを用いることができる。そのあと、上記ファイバプリフォーム24を先端から高温電気炉25内に矢印26で示すように速度Pで挿入し、上記電気炉25内で溶融した上記ファイバプリフォーム24の先端部を矢印27で示すように速度Vで延伸してドラム29に巻きつけ、ドラム29を回転することによって上記矩形コアファイバ28を得る。 Although the manufacturing method of these rectangular core fibers has not been published yet, it is considered that the manufacturing method is performed according to the procedure shown in FIG. 13 by applying the prior art. First, a quartz glass rod 22 is cut to form a quartz glass block 22 having a rectangular cross section, and then an SiO 2 glass layer 23 to which F is added is formed on the outer periphery of the quartz glass block 22 to obtain a fiber preform 24. The glass layer 23 can be formed using a VAD (Vapor Phase Axial Deposition) method, an external method, or the like. Thereafter, the fiber preform 24 is inserted from the tip into the high-temperature electric furnace 25 at a speed P as indicated by an arrow 26, and the tip of the fiber preform 24 melted in the electric furnace 25 is indicated by an arrow 27. Thus, the rectangular core fiber 28 is obtained by stretching at a speed V, winding the drum 29 on the drum 29, and rotating the drum 29.

特開2009-168914号公報JP 2009-168914 A 特開2009-169110号公報JP 2009-169110

前述した矩形コアファイバの構造およびその製造方法には次のような課題が存在する。
(1)コアとクラッドとの比屈折率差Δ《Δ=[(コアの屈折率―クラッドの屈折率)/コアの屈折率]×100%》は最大でも0.5%程度にしか出来ない。そのために矩形コア内への光の閉じ込めが弱い。その結果、ファイバの使用中にファイバが曲がったり、揺れたりするとコア内の光の分布が変化したり、クラッドへの光の漏れ込みが生じ易い。また、矩形状のレーザ光を正確に加工物に照射して加工することが難しい。
(2)レーザ光のファイバ内への結合効率が低く、レーザ光を有効に加工に利用することが難しい。
(3)ファイバが曲げられたときにコア内への光閉じ込め状態が変動しやすいので、曲げ損失が生じやすい。
本発明が解決しようとする課題は、コア内に安定して光を閉じ込めておくことができる、曲げ損失が小さい光ファイバおよびその製造方法を提供することである。
The structure of the rectangular core fiber described above and the manufacturing method thereof have the following problems.
(1) The relative refractive index difference between the core and the clad Δ << Δ = [(core refractive index−cladding refractive index) / core refractive index] × 100% >> can only be about 0.5% at maximum. . Therefore, light confinement in the rectangular core is weak. As a result, when the fiber is bent or shaken during use of the fiber, the distribution of light in the core is likely to change or light leaks into the cladding. Moreover, it is difficult to accurately irradiate a workpiece with a rectangular laser beam.
(2) The coupling efficiency of the laser beam into the fiber is low, and it is difficult to effectively use the laser beam for processing.
(3) Since the optical confinement state in the core is likely to change when the fiber is bent, bending loss is likely to occur.
The problem to be solved by the present invention is to provide an optical fiber that can stably confine light in a core and has a small bending loss, and a method for manufacturing the same.

第1の発明は、ガラス管と、
前記ガラス管内に配置された、横断面が矩形状のガラスコアと
を有し、
前記ガラスコアが、前記ガラス管の内周面に少なくとも2箇所の接触部で接し、該接触部以外のガラスコアとガラス管の間は長手方向に延びる空隙部であることを特徴とする光ファイバである。
この場合、前記ガラス管の横断面の外形は略円形状或いは略矩形状にするとよい。また、前記ガラスコアは前記ガラス管の屈折率よりも高い値を有することが好ましい。さらに、前記ガラス管は高珪酸ガラス(最低でもSiOを96%含むガラス)から形成することが好ましく、矩形状のガラスコアにはSiOガラスを用いることが好ましい。
第1の発明に係る光ファイバでは空隙部がクラッドとして機能し、光信号はガラスコア内を伝搬する。
The first invention is a glass tube;
A glass core having a rectangular cross section disposed in the glass tube,
An optical fiber, wherein the glass core is in contact with an inner peripheral surface of the glass tube at at least two contact portions, and a gap extending between the glass core and the glass tube other than the contact portion extends in a longitudinal direction. It is.
In this case, the outer shape of the cross section of the glass tube is preferably substantially circular or rectangular. The glass core preferably has a value higher than the refractive index of the glass tube. Furthermore, the glass tube is preferably formed from high silicate glass (glass containing at least 96% SiO 2 ), and SiO 2 glass is preferably used for the rectangular glass core.
In the optical fiber according to the first invention, the gap functions as a cladding, and the optical signal propagates in the glass core.

第2の発明は、第1の発明において前記ガラスコアを前記ガラス管の内周面と4箇所の接触部で接するようにしたものである。   According to a second invention, in the first invention, the glass core is in contact with the inner peripheral surface of the glass tube at four contact portions.

第3の発明は、第1又は第2の発明において、ガラス管の内周面にF(フッ素)が添加されたSiO膜を形成し、前記ガラスコアは上記F(フッ素)が添加されたSiO膜と少なくとも2箇所の接触部で接するようにしたものである。 According to a third invention, in the first or second invention, an SiO 2 film to which F (fluorine) is added is formed on the inner peripheral surface of the glass tube, and the F (fluorine) is added to the glass core. The SiO 2 film is in contact with at least two contact portions.

第4の発明は、第1又は第2の発明において前記ガラスコアの外周面にFが添加されたSiO膜を形成し、前記ガラスコアが、前記Fが添加されたSiO膜を介して前記ガラス管の内周面と少なくとも2箇所の接触部で接するようにしたものである。 According to a fourth invention, in the first or second invention, an SiO 2 film to which F is added is formed on the outer peripheral surface of the glass core, and the glass core passes through the SiO 2 film to which the F is added. The glass tube is in contact with the inner peripheral surface of at least two contact portions.

第1〜第4の発明に係る光ファイバにおいては、前記ガラス管の横断面が矩形状或いは円形状の貫通孔を有すると良い。また、前記ガラス管の横断面の外形を矩形状にすると良い。   In the optical fibers according to the first to fourth inventions, the glass tube preferably has a rectangular or circular through-hole. Also, the outer shape of the cross section of the glass tube may be rectangular.

第5の発明は、一端側から他端側まで延びる貫通孔を有するガラス管材の前記貫通孔部に、前記ガラス管材と少なくとも2箇所で接するように横断面が矩形状のガラスコア材を挿入してファイバプリフォームを得る工程、該ファイバプリフォームの先端を加熱して溶融し、該プリフォームの先端部を所定速度で延伸しながら光ファイバに線引きする工程から成ることを特徴とする光ファイバの製造方法である。   According to a fifth aspect of the present invention, a glass core material having a rectangular cross section is inserted into the through-hole portion of the glass tube material having a through-hole extending from one end side to the other end side so as to contact at least two places with the glass tube material. An optical fiber comprising: a step of obtaining a fiber preform; and a step of heating and melting the tip of the fiber preform and drawing the optical fiber while drawing the tip of the preform at a predetermined speed. It is a manufacturing method.

第6の発明は、一端側から他端側まで延びる貫通孔を有するガラス管材の内周面にFが添加されたSiO膜を形成する工程、
前記ガラス管材内に、前記Fが添加されたSiO膜と少なくとも2箇所で接するように横断面が矩形状のガラスコア材を挿入してファイバプリフォームを得る工程、前記ファイバプリフォームの先端を加熱して溶融し、該プリフォームの先端部を所定速度で延伸しながら光ファイバに線引きする工程から成ることを特徴とする光ファイバの製造方法である。
A sixth invention is the step of forming the SiO 2 film F is added to the inner peripheral surface of the glass tube material having a through hole extending from one end to the other end,
A step of obtaining a fiber preform by inserting a glass core material having a rectangular cross section so as to be in contact with the SiO 2 film to which the F is added in at least two places in the glass tube material, and a tip of the fiber preform A method of manufacturing an optical fiber, comprising: heating and melting, and drawing the optical fiber while drawing the tip of the preform at a predetermined speed.

第7の発明は、横断面が矩形状のガラスコア材の外周にFを添加したSiO膜を形成する工程、
一端側から他端側まで延びる貫通孔を有するガラス管材内に、該ガラス管材の内周面と少なくとも2箇所で接するように、前記SiO膜が外周に形成されたガラスコア材を挿入してファイバプリフォームを得る工程、
前記ファイバプリフォームの先端を加熱して溶融し、該プリフォームの先端部を所定速度で延伸しながら光ファイバに線引きする工程から成ることを特徴とする光ファイバの製造方法である。
A seventh aspect of the invention, the step of cross-section to form a SiO 2 film doped with F in the outer periphery of the rectangular glass core material,
The glass core material having the SiO 2 film formed on the outer periphery is inserted into a glass tube material having a through hole extending from one end side to the other end side so as to be in contact with the inner peripheral surface of the glass tube material at at least two locations. Obtaining a fiber preform;
A method of manufacturing an optical fiber, comprising: heating and melting the tip of the fiber preform, and drawing the optical fiber while drawing the tip of the preform at a predetermined speed.

第8の発明は、一端側から他端側に向かって延びる貫通孔を有する細管と、
前記細管の貫通孔に配置された、横断面が多角形状のコアとを有し、
前記コアは、前記細管の内周面に少なくとも2箇所の接触部で接触し、該接触部以外の前記コアと前記細管の間は長手方向に延びる空隙部であることを特徴とする光ファイバである。前記細管や前記コアは、ガラスや樹脂を用いて形成することができる。
The eighth invention comprises a thin tube having a through hole extending from one end side toward the other end side;
A transverse section having a polygonal core disposed in the through hole of the thin tube,
The optical fiber is characterized in that the core is in contact with the inner peripheral surface of the thin tube at at least two contact portions, and is a gap portion extending in the longitudinal direction between the core other than the contact portion and the thin tube. is there. The narrow tube and the core can be formed using glass or resin.

本発明は下記に示すような効果を有している。
まず第1発明は、ガラス管の内周面に少なくとも2箇所の接触部で接するように当該ガラス管の内部に横断面が矩形状のガラスコアを配置し、前記接触部以外は長手方向に延びる空隙部になるようにした。従って、光信号が伝搬する矩形状のガラスコアの大部分の外周が空隙部、つまり空気層になり、例えば、SiOガラスからガラスコアを形成した場合は、該ガラスコアと空隙部との比屈折率差が約30%になる。そのため、光信号は、多くが矩形状のガラスコアに閉じ込められて、かつガラスコアの断面内の光分布がほぼ均一な矩形パターンを有するように伝搬し、加工物体面に照射される。従って、その加工物体面を高寸法精度の矩形状に加工することができる。なお、ガラス管の材料としてB(ホウ素)を添加したSiOガラスか、SiOガラスを用いると、ガラス管と矩形状のガラスコアとの屈折率差は小さい値かほとんど無いが、ガラス管とガラスコアとの接触部はほぼ線接触に近いため、空隙部に比して接触面積は無視できるほど極めて小さくなる。したがって、光信号は大部分が矩形状のガラスコアに閉じ込められて、かつほぼ均一な矩形状の光分布でガラスコア内を伝搬する。
The present invention has the following effects.
First, in the first invention, a glass core having a rectangular cross section is arranged inside the glass tube so as to be in contact with the inner peripheral surface of the glass tube at at least two contact portions, and the other portions than the contact portions extend in the longitudinal direction. It was made to be a void. Therefore, the outer periphery of most of the rectangular glass core through which the optical signal propagates becomes a void, that is, an air layer. For example, when the glass core is formed from SiO 2 glass, the ratio of the glass core to the void The difference in refractive index is about 30%. Therefore, most of the optical signal is confined in the rectangular glass core and propagates so that the light distribution in the cross section of the glass core has a substantially uniform rectangular pattern, and is irradiated onto the processed object surface. Therefore, the processed object surface can be processed into a rectangular shape with high dimensional accuracy. When SiO 2 glass added with B (boron) or SiO 2 glass is used as the material of the glass tube, the difference in refractive index between the glass tube and the rectangular glass core is small or almost not. Since the contact portion with the glass core is almost close to line contact, the contact area is extremely small as compared with the gap portion. Therefore, most of the optical signal is confined in the rectangular glass core and propagates in the glass core with a substantially uniform rectangular light distribution.

ここで、第2の発明の光ファイバのように、理想的にはガラス管の内周面と4箇所の接触部で接するように矩形状のガラスコアをガラス管内に配置し、該4箇所の接触部以外は空隙になっている構成がもっとも好ましい。ただし、2箇所の接触部で接する構成でも矩形状のガラスコアをガラス管の内周面に保持することができる。   Here, like the optical fiber of the second invention, a rectangular glass core is ideally arranged in the glass tube so as to be in contact with the inner peripheral surface of the glass tube at the four contact portions. The structure which becomes a space | gap except a contact part is the most preferable. However, the rectangular glass core can be held on the inner peripheral surface of the glass tube even in a configuration where the two contact portions are in contact with each other.

第3の発明のように、ガラス管の内周面にFを添加したSiO膜を形成すると、接触部での屈折率差は第1の発明よりももう少し大きくとることができる。従って、光信号をさらに矩形状のガラスコアに閉じ込めて、かつほぼ均一な矩形状光分布となってガラスコア内を伝搬させることができる。 As in the third invention, when the SiO 2 film to which F is added is formed on the inner peripheral surface of the glass tube, the refractive index difference at the contact portion can be made slightly larger than in the first invention. Therefore, the optical signal can be further confined in the rectangular glass core and propagated in the glass core with a substantially uniform rectangular light distribution.

第4の発明のように、矩形状のガラスコアの外周にFが添加されたSiO膜を形成すると、光信号を矩形状のガラスコア内により強く閉じ込めて伝送させることができる。また、矩形状のガラスコアをFが添加されたSiO膜で覆ったことにより、長期的に空隙部から空気中の水分が矩形状のガラスコア内に混入していくのを抑えることができる。さらに、空気中の不純物が矩形状のガラスコアの表面に付着して光損失を増加させるのを抑えることができる。 As in the fourth invention, when an SiO 2 film to which F is added is formed on the outer periphery of a rectangular glass core, an optical signal can be more tightly confined and transmitted in the rectangular glass core. In addition, by covering the rectangular glass core with the SiO 2 film to which F is added, it is possible to prevent moisture in the air from being mixed into the rectangular glass core from the gap for a long time. . Furthermore, it can suppress that the impurity in air adheres to the surface of a rectangular glass core, and increases optical loss.

第1〜4の発明において、ガラス管が、横断面が円形状の貫通孔を有すると、ガラス管の内面に少なくとも2箇所の接触部で接するように矩形状のガラスコアを容易に保持することができると共に、該接触部以外は大きな面積の空隙部を形成することができる。従って、光信号をガラスコアに閉じ込めて、かつほぼ均一な矩形状光分布を有して伝搬させ、加工物体面を高寸法精度で加工することができる。   In the first to fourth inventions, when the glass tube has a through-hole having a circular cross section, the rectangular glass core is easily held so as to be in contact with the inner surface of the glass tube at at least two contact portions. In addition to the contact portion, it is possible to form a void portion having a large area other than the contact portion. Therefore, the optical signal can be confined in the glass core and propagated with a substantially uniform rectangular light distribution, and the processed object surface can be processed with high dimensional accuracy.

また、ガラス管が横断面が矩形状の貫通孔を有する構成にした場合も、ガラス管の内面に少なくとも2箇所か4箇所の接触部で接するように矩形状のガラスコアを容易に保持することができる。そして、接触部以外は大きな面積の空隙部とすることができるので、光信号を矩形状のガラスコア内に閉じこめて伝搬させることができる。   In addition, even when the glass tube has a through-hole having a rectangular cross section, it is easy to hold the rectangular glass core so as to contact the inner surface of the glass tube with at least two or four contact portions. Can do. And since it can be set as the space | gap part of a large area except a contact part, an optical signal can be confined and propagated in a rectangular glass core.

上記した光ファイバを製造する際は、貫通孔を有するガラス管材及び横断面が矩形状のガラスコア材を用いるが、例えば横断面の外形が略円形あるいは略矩形からなるガラス管材は従来のガラス加工技術を用いて容易に実現することができる。また、矩形状のガラスコア材も従来のガラス加工技術を用いて容易に実現することができる。ついで、上記ガラス管材の内面に少なくとも2箇所か、4箇所で接するように矩形状のガラスコア材を挿入してファイバプリフォームを得る工程では、上記ガラス管材の外周を加熱することで上記ガラス管材の内面に矩形状のガラスコア材を固定、保持させることができる。そして、前記ファイバプリフォームを高温電気炉内に所定速度で挿入しながら加熱、溶融させ、該プリフォームの先端部を所定速度で延伸しながら線引きする工程を経ることによって上記光ファイバを実現することができる。すなわち、簡易な工程と安価な方法で高性能な矩形コアファイバを得ることができる。   When manufacturing the above optical fiber, a glass tube material having a through hole and a glass core material having a rectangular cross section are used. For example, a glass tube material having a substantially circular or substantially rectangular cross section is a conventional glass processing material. It can be easily realized using technology. Also, a rectangular glass core material can be easily realized by using a conventional glass processing technique. Next, in the step of obtaining a fiber preform by inserting a rectangular glass core material so as to be in contact with the inner surface of the glass tube material at least at two or four locations, the glass tube material is heated by heating the outer periphery of the glass tube material. A rectangular glass core material can be fixed and held on the inner surface of the substrate. The fiber preform is heated and melted while being inserted into a high-temperature electric furnace at a predetermined speed, and the optical fiber is realized through a process of drawing the preform while drawing the tip of the preform at a predetermined speed. Can do. That is, a high-performance rectangular core fiber can be obtained by a simple process and an inexpensive method.

さらに、上記光ファイバは、ガラス管材の内面に予めFを添加したSiO膜を形成する工程、該膜面に少なくとも2箇所で接するように横断面が矩形状のガラスコアを挿入してファイバプリフォームを得る工程、該ファイバプリフォームを高温電気炉内に所定速度で挿入しながら加熱、溶融して該プリフォームの先端部を所定速度で延伸しながら線引きする工程を経ることによって実現することができる。ここで、上記ガラス管材の内面に予めFを添加したSiO膜を形成する方法には、従来用いられている気相化学反応法を用いることができる。矩形状のガラスコア材の外周に予めFを添加したSiO膜を気相化学反応法を利用して形成しておくことにより、より低損失で長期的に信頼性の高い光ファイバを得ることができる。 Further, the optical fiber includes a step of forming a SiO 2 film to which F has been added in advance on the inner surface of the glass tube material, and inserting a glass core having a rectangular cross section so as to be in contact with the film surface at at least two locations. It can be realized by a step of obtaining a reform, a step of drawing the fiber preform while drawing and stretching the tip of the preform at a predetermined speed while being heated and melted while being inserted into a high-temperature electric furnace at a predetermined speed. it can. Here, a conventionally used gas phase chemical reaction method can be used as a method of forming a SiO 2 film in which F is added in advance on the inner surface of the glass tube material. By forming a SiO 2 film in which F is added in advance on the outer periphery of a rectangular glass core material by using a gas phase chemical reaction method, an optical fiber having a lower loss and a long-term reliability can be obtained. Can do.

本発明の第1の実施例に係る光ファイバを示し、(a)は横断面図、同図(b)は外観図。The optical fiber which concerns on the 1st Example of this invention is shown, (a) is a cross-sectional view, (b) is an external view. 本発明の第2の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 4th Example of this invention. 本発明の第5の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 5th Example of this invention. 本発明の第6の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 6th Example of this invention. 本発明の第7の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 7th Example of this invention. 本発明の第8の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 8th Example of this invention. 本発明の第9の実施例に係る光ファイバを示す横断面図。The cross-sectional view which shows the optical fiber which concerns on the 9th Example of this invention. 本発明の一実施例に係る光ファイバの製造方法を説明するための図。The figure for demonstrating the manufacturing method of the optical fiber which concerns on one Example of this invention. 従来の光ファイバ(矩形コアファイバ)の構造を示し、(a)は横断面図、同図(b)は外観図。The structure of the conventional optical fiber (rectangular core fiber) is shown, (a) is a cross-sectional view, (b) is an external view. 従来の別の矩形コアファイバの構造を示す図。The figure which shows the structure of another conventional rectangular core fiber. 従来の矩形コアファイバの製造方法を示す図。The figure which shows the manufacturing method of the conventional rectangular core fiber.

以下、本発明の具体的な実施例について説明する。   Hereinafter, specific examples of the present invention will be described.

図1は本発明の第1の実施例に係る光ファイバ10を示し、同図(a)は横断面図、同図(b)は外観図である。この光ファイバ10は横断面が円形状の貫通孔を有するガラス管3と、前記貫通孔に配置された、横断面が矩形状のSiOガラスから成るガラスコア1から構成されている。ガラス管3は、たとえばホウ素(B)を添加した二酸化ケイ素ガラス(以下「高珪酸ガラス」という)或いは石英ガラスから形成されている。高珪酸ガラスは、最低でもSiOを96%含む、SiOガラスの屈折率よりもわずかに低い屈折率を有するガラスであり、高珪酸ガラス管は商品名バイコールガラス管として市販されている。ガラス管3の内面には気相化学反応法を用いてフッ素(F)が添加されたSiO膜2が形成されており、その膜2と4箇所の接触部5a,5b,5c,5dで接するように前記ガラス管3内にガラスコア1が形成されている。このような構成により、ガラス管3とガラスコア1との間にはガラス管3の一端側から他端側に延びる4個の空隙部4が形成される。上記構成の光ファイバでは、空隙部4がクラッドとして機能し、光信号はガラスコア1内を伝搬する。 1A and 1B show an optical fiber 10 according to a first embodiment of the present invention, in which FIG. 1A is a cross-sectional view and FIG. 1B is an external view. The optical fiber 10 is composed of a glass tube 3 having a through hole having a circular cross section and a glass core 1 made of SiO 2 glass having a rectangular cross section disposed in the through hole. The glass tube 3 is made of, for example, silicon dioxide glass to which boron (B) is added (hereinafter referred to as “high silicate glass”) or quartz glass. High silica glass is at least containing SiO 2 96%, a glass having a slightly lower refractive index than the refractive index of the SiO 2 glass, high silica glass tubes are commercially available as trade name Vycor glass tube. An SiO 2 film 2 to which fluorine (F) is added is formed on the inner surface of the glass tube 3 using a gas phase chemical reaction method, and the film 2 and four contact portions 5a, 5b, 5c, 5d are formed. A glass core 1 is formed in the glass tube 3 so as to be in contact therewith. With such a configuration, four gap portions 4 extending from one end side of the glass tube 3 to the other end side are formed between the glass tube 3 and the glass core 1. In the optical fiber configured as described above, the gap 4 functions as a cladding, and the optical signal propagates through the glass core 1.

ガラスコア1は膜2と4箇所の接触部5a,5b,5c,5dで接しているがこの接触部は、後述するように、プリフォームを高温電気炉内に所定望速度で挿入しながら溶融してきたガラスを所定望速度で線引きしながらファイバを実現する際にガラスが溶融されて固定されている。このように、本実施例に係る光ファイバは矩形状のガラスコア1が4箇所の接触部以外は空隙部4によって覆われているので、ガラスコア1とその隣接する媒体との比屈折率差が極めて大きなマルチモードファイバである。   The glass core 1 is in contact with the membrane 2 at four contact portions 5a, 5b, 5c, and 5d. As will be described later, this contact portion melts while inserting the preform into the high-temperature electric furnace at a predetermined desired speed. The glass is melted and fixed when realizing the fiber while drawing the drawn glass at a predetermined desired speed. As described above, in the optical fiber according to the present embodiment, the rectangular glass core 1 is covered with the gaps 4 except for the four contact portions, so that the relative refractive index difference between the glass core 1 and its adjacent medium. Is a very large multimode fiber.

本実施例に係る光ファイバ10は、当該光ファイバ10内にレーザ光を伝送させて加工物質に照射し、より高寸法精度なライン形状のパターニング、物質表面の表面改質、物質のアニーリング、物質のスクライブ加工などを行うために用いられる。従って、ガラスコア1の形状とそのサイズは、被加工物の加工サイズに依存して設定すると良く、具体的には、2μm角くらいから500μm角の範囲が好ましい。本実施例に係る光ファイバ10は通信用のファイバではないので、取り扱い可能範囲、線引き可能範囲、曲げやすさなどを考慮に入れると、当該光ファイバの直径は50μmから700μmの範囲が好ましい。特に、本実施例の光ファイバは、矩形状のガラスコア1が、膜2と接する4箇所以外は空隙、つまり空気層によって覆われるため、ガラスコア1と隣接する媒体との比屈折率差が極めて大きくなる。従って、光信号は矩形状のガラスコア1内をほぼ全反射に近い状態で伝搬し、当該ガラスコア1内の光パワ分布はほぼ矩形のフラットトップビームプロファイルを形成する。そのために光ファイバを小さな曲げ半径で曲げても光損失の増大が少なく、また矩形状のガラスコア1内の光分布も変動しにくい。さらに、大きな断面積の空隙があるために曲げによる機械強度も強い、という特徴があるため、より大きな直径の光ファイバを実現することができる。   The optical fiber 10 according to the present embodiment transmits a laser beam into the optical fiber 10 to irradiate a processed material, patterning of a line shape with higher dimensional accuracy, surface modification of the material surface, material annealing, material It is used to perform scribe processing. Therefore, the shape and size of the glass core 1 may be set depending on the processing size of the workpiece, and specifically, a range of about 2 μm square to 500 μm square is preferable. Since the optical fiber 10 according to the present embodiment is not a communication fiber, the diameter of the optical fiber is preferably in the range of 50 μm to 700 μm in consideration of the handleable range, the drawable range, the bendability, and the like. In particular, in the optical fiber of the present embodiment, the rectangular glass core 1 is covered with a gap, that is, an air layer, except for four places in contact with the film 2, so that there is a relative refractive index difference between the glass core 1 and the adjacent medium. Become very large. Therefore, the optical signal propagates in the rectangular glass core 1 in a state of almost total reflection, and the optical power distribution in the glass core 1 forms a substantially rectangular flat top beam profile. Therefore, even if the optical fiber is bent with a small bending radius, the increase in light loss is small, and the light distribution in the rectangular glass core 1 is not easily changed. In addition, since there is a gap with a large cross-sectional area, the mechanical strength by bending is strong, so that an optical fiber having a larger diameter can be realized.

なお、この実施例に係る光ファイバ10は、実際に製造および使用される際には通信用のファイバのように外周面に高分子材料や金属材料などが被覆される。
また、例えばこのファイバ10を波長の短い紫外線領域のレーザ光を伝搬させて使用する場合には、矩形状のガラスコア1には、塩素処理を施してOH基の含有量を極めて少なくした材料(OH基の含有量は100ppb以下が好ましい。)を用いるのがよい。
ガラス管3の材料に例えばホウ素(B)が添加されたSiOガラスを用いた場合には、フッ素(F)が添加されたSiO膜2は無くてもよい。
When the optical fiber 10 according to this embodiment is actually manufactured and used, the outer peripheral surface is coated with a polymer material, a metal material, or the like like a communication fiber.
For example, when this fiber 10 is used by propagating a laser beam in the ultraviolet region with a short wavelength, the rectangular glass core 1 is made of a material that has been subjected to chlorine treatment so that the content of OH groups is extremely reduced ( The OH group content is preferably 100 ppb or less.
When, for example, SiO 2 glass added with boron (B) is used as the material of the glass tube 3, the SiO 2 film 2 added with fluorine (F) may be omitted.

本実施例の光ファイバ10の以下の試作例について、波長350nmと632.8nmのレーザ光を用いて損失を測定した結果、42dB/kmと7dB/kmの値を得ることができた。またこのファイバを曲げ半径5mmまで曲げても光損失の増加はほとんど無かった。さらに、矩形状のガラスコア1内における光パワ分布の変動もきわめて小さいことがわかった。
(試作例)
・ガラスコア1のサイズ:50μm角
・ガラスコア1の成分中のOH基の含有量:約50ppb
・Fが添加されたSiO膜2の膜厚:約8μm
・光ファイバ全体の直径:150μm
With respect to the following prototype of the optical fiber 10 of the present example, the loss was measured using laser beams with wavelengths of 350 nm and 632.8 nm, and as a result, values of 42 dB / km and 7 dB / km could be obtained. Even when this fiber was bent to a bending radius of 5 mm, there was almost no increase in optical loss. Furthermore, it was found that the fluctuation of the optical power distribution in the rectangular glass core 1 was very small.
(Prototype example)
Glass core 1 size: 50μm square ・ Contents of OH groups in glass core 1 components: approx. 50ppb
-The thickness of the SiO 2 film 2 to which F is added: about 8 μm
・ Diameter of optical fiber: 150μm

図2は本発明の第2の実施例に係る光ファイバ10の横断面図を示す。この光ファイバが第1の実施例の構造と異なる点は、矩形状のガラスコア1の横断面が長方形をしていることである。このような構造の光ファイバは幅の広いパターニング、物質表面の表面改質、物質のアニーリング、物質のスクライブ加工などを行うのに有効である。したがって、第2の実施例では、ガラスコア1の長方形のサイズは、幅が5μm程度から500μm程度、高さが2μm程度から300μm程度のものが好適である。   FIG. 2 shows a cross-sectional view of an optical fiber 10 according to a second embodiment of the present invention. This optical fiber is different from the structure of the first embodiment in that the rectangular glass core 1 has a rectangular cross section. The optical fiber having such a structure is effective for performing wide patterning, surface modification of the material surface, material annealing, material scribing, and the like. Therefore, in the second embodiment, the rectangular size of the glass core 1 is preferably a width of about 5 μm to about 500 μm and a height of about 2 μm to about 300 μm.

図3に本発明の第3の実施例に係る光ファイバ10の横断面を示す。この光ファイバが第1の実施例と異なる点は、ガラス管3の貫通孔の横断面が矩形状であることである。第3の実施例においても、ガラス管3の内周面Fを添加したSiO膜2が形成されており、その膜2に4箇所の接触部5a,5b,5c,5dで接するように矩形状のガラスコア1が保持されている。ガラス管3の貫通孔の横断面を矩形状に加工する簡単な方法として、ガラスロッドの内面を切削加工し、その後に洗浄し、温度1200℃の塩素雰囲気で熱処理を行える電気炉内で約8時間塩素雰囲気処理を施す方法があるが、ガラスロッドの内面を研磨加工する方法でもよい。あるいはガラスロッドの内面を切削加工して実現してもよい。 FIG. 3 shows a cross section of an optical fiber 10 according to a third embodiment of the present invention. This optical fiber is different from the first embodiment in that the cross section of the through hole of the glass tube 3 is rectangular. Also in the third embodiment, the SiO 2 film 2 to which the inner peripheral surface F of the glass tube 3 is added is formed, and the rectangular shape so as to contact the film 2 at the four contact portions 5a, 5b, 5c, and 5d. A glass core 1 having a shape is held. As a simple method of processing the cross-section of the through hole of the glass tube 3 into a rectangular shape, the inner surface of the glass rod is cut and then cleaned, and is cleaned in an electric furnace that can be heat-treated in a chlorine atmosphere at a temperature of 1200 ° C. Although there is a method of performing a time chlorine atmosphere treatment, a method of polishing the inner surface of the glass rod may be used. Or you may implement | achieve by cutting the inner surface of a glass rod.

図4に本発明の第4の実施例に係る光ファイバ10の横断面を示す。この光ファイバ10が第1の実施例の構造と異なる点は、ガラス管3の内周面に代えてガラスコア1の外周面にFを添加したSiO膜2を形成したことである。第4の実施例に係る光ファイバにおいては、ガラスコア1はFを添加したSiO膜2を介してガラス管3の内周面に4箇所の接触部5a,5b,5c,5dで接するように配置されている。従って、ガラスコア1は、該接触部以外では空隙部4(空気層)と隣接し、光信号は矩形状のガラスコア1内を伝搬する。 FIG. 4 shows a cross section of an optical fiber 10 according to a fourth embodiment of the present invention. The optical fiber 10 is different from the structure of the first embodiment in that the SiO 2 film 2 to which F is added is formed on the outer peripheral surface of the glass core 1 instead of the inner peripheral surface of the glass tube 3. In the optical fiber according to the fourth embodiment, the glass core 1 is in contact with the inner peripheral surface of the glass tube 3 through four contact portions 5a, 5b, 5c, and 5d through the SiO 2 film 2 to which F is added. Is arranged. Accordingly, the glass core 1 is adjacent to the gap 4 (air layer) except for the contact portion, and the optical signal propagates through the rectangular glass core 1.

この光ファイバ10においても、光信号を矩形状のガラスコア1内により強く閉じ込めて伝送させることができる。また、ガラスコア1の外周面をFを添加したSiO膜2で被覆したため、長期的に空隙中の空気に含まれる水分が矩形状のガラスコア1内に拡散、混入していくのを抑えることができる。また空気中の不純物が矩形状のガラスコア1の表面に付着して光損失を増加させるのを抑えることができる。
なお、この実施例では、矩形状のガラスコア1の外周面に予めFを添加したSiO膜2が形成されているので、ガラス管3には石英ガラスを用いている。これは、石英ガラスを用いた方がより低損失な光ファイバを実現できるからである。
In this optical fiber 10 as well, an optical signal can be transmitted more tightly confined in the rectangular glass core 1. Further, since the outer peripheral surface of the glass core 1 is covered with the SiO 2 film 2 to which F is added, it is possible to prevent moisture contained in the air in the gap from diffusing and mixing into the rectangular glass core 1 for a long time. be able to. Moreover, it can suppress that the impurity in air adheres to the surface of the rectangular glass core 1, and increases optical loss.
In this embodiment, the glass tube 3 is made of quartz glass because the SiO 2 film 2 to which F is added in advance is formed on the outer peripheral surface of the rectangular glass core 1. This is because an optical fiber with lower loss can be realized by using quartz glass.

図5に本発明の第5の実施例に係る光ファイバ10の横断面を示す。この光ファイバ10が第1の実施例の構造と異なる点は、ガラス管3の横断面の外形が略矩形状であることである。そして、この光ファイバにおいてもガラス管3の内周面にFを添加したSiO膜2が形成されており、その膜2の内面の4箇所の接触部5a,5b,5c,5dで接するように矩形状のガラスコア1が該ガラス管3内に保持されている。 FIG. 5 shows a cross section of an optical fiber 10 according to a fifth embodiment of the present invention. The optical fiber 10 is different from the structure of the first embodiment in that the outer shape of the cross section of the glass tube 3 is substantially rectangular. Also in this optical fiber, the SiO 2 film 2 to which F is added is formed on the inner peripheral surface of the glass tube 3, and the four contact portions 5a, 5b, 5c, 5d on the inner surface of the film 2 are in contact with each other. A rectangular glass core 1 is held in the glass tube 3.

ここで、横断面の外形が略矩形状のガラス管3は、横断面の外形が円形状の石英ガラス管材を用意し、このガラス管材の外周の4面を研削して実現した。そして、このガラス管材から得たファイバプリフォームを線引きしてファイバにすることにより、4つの角が丸まった構造の光ファイバにすることが出来る。
本発明の光ファイバを種々の加工に利用する場合は、ミクロンオーダの極めて高寸法精度と高精細なパターンの加工を必要とする超高精度加工装置に取り付けられる。そのため、狭い領域にしっかりと光ファイバを固定して位置変動の生じないようにしなければならず、しかも超小型な工具で光ファイバを固持しなければならない。本実施例のように光ファイバの横断面の外形が略矩形構造になっていると、径方向、軸方向にぶれ難く、しかも超小型な工具で光ファイバを固持することが容易であり、種々の加工に適している。
Here, the glass tube 3 having a substantially rectangular outer cross-section was prepared by preparing a quartz glass tube having a circular outer cross-section and grinding the four outer surfaces of the glass tube. Then, by drawing a fiber preform obtained from the glass tube material into a fiber, an optical fiber having a structure with four rounded corners can be obtained.
When the optical fiber of the present invention is used for various processing, it is attached to an ultra-high-precision processing apparatus that requires processing of extremely high dimensional accuracy and high-definition patterns on the order of microns. For this reason, it is necessary to fix the optical fiber firmly in a narrow area so as not to cause position fluctuations, and to hold the optical fiber with an ultra-small tool. When the outer shape of the cross section of the optical fiber has a substantially rectangular structure as in this embodiment, it is difficult to shake in the radial direction and the axial direction, and it is easy to hold the optical fiber with an ultra-small tool. Suitable for processing.

図6に本発明の第6の実施例に係る光ファイバ10の横断面図を示す。この光ファイバ10は、横断面が矩形状である貫通孔を有するガラス管3を用いた点、そして、ガラス管3の内面にFを添加したSiO膜2が形成されている点が第5の実施例の構造と異なる。この光ファイバにおいても、膜2と4箇所の接触部5a,5b,5c,5dで接するように矩形状のガラスコア1がガラス管3内に保持されている。 FIG. 6 shows a cross-sectional view of an optical fiber 10 according to a sixth embodiment of the present invention. The optical fiber 10 has a fifth point in that a glass tube 3 having a through-hole having a rectangular cross section is used, and a SiO 2 film 2 to which F is added is formed on the inner surface of the glass tube 3. This is different from the structure of the embodiment. Also in this optical fiber, the rectangular glass core 1 is held in the glass tube 3 so as to be in contact with the film 2 at the four contact portions 5a, 5b, 5c, and 5d.

図7に本発明の第7の実施例に係る光ファイバ10の横断面図を示す。この光ファイバ10は、ガラス管3の材料としてB(ホウ素)を添加したSiOガラス管(商品名:バイコールガラス管)を用いた点が第6の実施例と異なる。それ以外の構成は第6の実施例と同一である。 FIG. 7 shows a cross-sectional view of an optical fiber 10 according to a seventh embodiment of the present invention. This optical fiber 10 is different from the sixth embodiment in that an SiO 2 glass tube (trade name: Vycor glass tube) to which B (boron) is added is used as the material of the glass tube 3. The other configuration is the same as that of the sixth embodiment.

図8に本発明の第8の実施例に係る光ファイバ10の横断面図を示す。この光ファイバ10は横断面の外形が略円形のガラス管3(Bを添加したSiOガラス管で、商品名:バイコールガラス管)を用いた実施例である。ガラス管3の内部には横断面がほぼ矩形の貫通孔が形成されている。ガラス管3内には、そのガラス管3の内面と4箇所の接触部5a,5b,5c,5dで接するように矩形状のガラスコア1が配置されている。この実施例の光ファイバは、ガラス管3の内周面、及びガラスコア1の外周面のいずれにもFを添加したSiO膜が形成されていない。 FIG. 8 shows a cross-sectional view of an optical fiber 10 according to an eighth embodiment of the present invention. This optical fiber 10 is an embodiment using a glass tube 3 (a trade name: Vycor glass tube, which is a SiO 2 glass tube to which B is added) having a substantially circular outer cross section. A through hole having a substantially rectangular cross section is formed inside the glass tube 3. A rectangular glass core 1 is disposed in the glass tube 3 so as to be in contact with the inner surface of the glass tube 3 at four contact portions 5a, 5b, 5c, and 5d. In the optical fiber of this example, the SiO 2 film added with F is not formed on either the inner peripheral surface of the glass tube 3 or the outer peripheral surface of the glass core 1.

図9に本発明の第9の実施例に係る光ファイバ10の横断面図を示す。この光ファイバ10は、ガラス管3の貫通孔の横断面が長方形状であり、ガラスコア1の横断面が正方形状である点が第8の実施例と異なる。このような構成により、ガラスコア1は、ガラス管3の内周面と2箇所の接触部5a、5bで接するように該ガラス管3内に配置される。   FIG. 9 shows a cross-sectional view of an optical fiber 10 according to a ninth embodiment of the present invention. This optical fiber 10 is different from the eighth embodiment in that the cross section of the through hole of the glass tube 3 is rectangular and the cross section of the glass core 1 is square. With such a configuration, the glass core 1 is disposed in the glass tube 3 so as to be in contact with the inner peripheral surface of the glass tube 3 at the two contact portions 5a and 5b.

図10は本発明の光ファイバの製造方法の実施例を示す。この製造方法は、大きく分けて4つの工程からなっている。まず、(a)は横断面が矩形状のガラスコア1を作成する工程である。材料となるガラスコア材1Aは、VAD(Vapor Phase Axial Deposition)法と塩素雰囲気下での1200℃の高温で脱OH基の処理を施して作成した直径が12mmの石英ガラス棒を、研削加工して約8mm角の形状に加工して得た。   FIG. 10 shows an embodiment of the optical fiber manufacturing method of the present invention. This manufacturing method is roughly divided into four steps. First, (a) is a step of creating a glass core 1 having a rectangular cross section. The glass core material 1A, which is the material, is obtained by grinding a quartz glass rod with a diameter of 12 mm, which is made by the VAD (Vapor Phase Axial Deposition) method and de-OH group treatment at a high temperature of 1200 ° C in a chlorine atmosphere. And processed into a shape of about 8 mm square.

次に(b)に示すように、直径が12mm、肉厚が1.5mmの石英ガラス管材3A内に従来のMCVD(Modified Chemical Vapor Deposition)法を用いてFを添加したSiOガラス膜(波長0.63μmでの屈折率が1.445)を約50μm形成した。 Next, as shown in (b), a SiO 2 glass film (wavelength 0.63) in which F is added using a conventional MCVD (Modified Chemical Vapor Deposition) method in a quartz glass tube 3A having a diameter of 12 mm and a wall thickness of 1.5 mm. A refractive index of 1.445) at about 50 μm was formed.

その後に(c)に示すように、(b)で作成した、Fを添加したSiOガラス膜を形成した石英ガラス管材3Aの内面の膜に4箇所で接するように、(a)で作成した矩形状のガラスコア材1Aを挿入した。そしてこのガラス管材3Aの外周を加熱して上記4箇所の接する部分が膜面に固定されるようにしてファイバプリフォーム6を実現した。 After that, as shown in (c), it was prepared in (a) so as to come into contact with the film on the inner surface of the quartz glass tube 3A formed with SiO 2 glass film added with F as shown in (b) at four locations. A rectangular glass core material 1A was inserted. And the fiber preform 6 was implement | achieved by heating the outer periphery of this glass-tube material 3A, and fixing the part which the said 4 places contact to a film surface.

そして最後に、このファイバプリフォーム6を最高温度が1980℃に加熱された高温電気炉7内の炉心管8内に10mm/minで挿入し、上記高温電気炉の炉心管8内で溶融したプリフォームの先端部を50m/minでファイバ状に線引きしながらドラム9に巻きつけて光ファイバ(矩形コアファイバ)10を実現することができた。   Finally, the fiber preform 6 is inserted at 10 mm / min into the core tube 8 in the high-temperature electric furnace 7 heated to a maximum temperature of 1980 ° C., and melted in the core tube 8 of the high-temperature electric furnace. An optical fiber (rectangular core fiber) 10 could be realized by winding the tip of the reformer around the drum 9 while drawing the fiber at 50 m / min.

なお、本発明は上記実施例に限定されない。光ファイバのガラスコア(矩形コア)のサイズ、光ファイバ全体の直径は上記実施例に限定されない。光ファイバの外周には、高分子材料や、金属材料から成る保護膜等が被覆されていてもよい。
また、上記説明では、空隙部4内には空気が存在するとしたが、実際に光ファイバを使用する際にはレーザ入射側から光ファイバ内(空隙部内)に不活性ガスを流してもよい。またファイバの両端面には薄い石英ガラス薄膜が貼り付けられていてもよい。
In addition, this invention is not limited to the said Example. The size of the glass core (rectangular core) of the optical fiber and the diameter of the entire optical fiber are not limited to the above embodiments. The outer periphery of the optical fiber may be covered with a protective film made of a polymer material or a metal material.
In the above description, air is present in the gap 4. However, when an optical fiber is actually used, an inert gas may flow from the laser incident side into the optical fiber (in the gap). A thin quartz glass thin film may be attached to both end faces of the fiber.

上記実施例では、横断面の形状が正方形や長方形の矩形コアをガラス管内に該ガラス管と少なくとも2箇所の接触部で接するように配置したが、正方形や長方形以外の四角形(台形やひし形等)でも良く、四角形以外の多角形(三角形や五角形等)などの横断面形状のガラスコアをガラス管内に配置しても良い。要は、ガラス管の内周面の全体とガラスコアの外周面全体とガラス管の内周面全体が接するのではなく、ガラスコアが少なくとも2箇所で線接触した状態でガラス管内に固定・保持され、この結果、ガラス管の内周面とガラスコアの外周面との間に空隙部が形成されれば良い。   In the above embodiment, a rectangular core having a square or rectangular cross section is disposed in the glass tube so as to be in contact with the glass tube at at least two contact portions, but a square other than a square or a rectangle (such as a trapezoid or a rhombus). Alternatively, a glass core having a cross-sectional shape such as a polygon other than a quadrangle (triangle, pentagon, etc.) may be arranged in the glass tube. In short, the entire inner peripheral surface of the glass tube, the entire outer peripheral surface of the glass core, and the entire inner peripheral surface of the glass tube are not in contact with each other, but the glass core is fixed and held in the glass tube with at least two points in line contact. As a result, it is sufficient that a gap is formed between the inner peripheral surface of the glass tube and the outer peripheral surface of the glass core.

また、本発明は、紫外線領域から近赤外領域のレーザ光を伝搬させて加工、アニーリング、表面改質に有用な光ファイバを提供することを主目的とすることから、上記実施例では、コアの材料としてSiOガラスを用いたが、それ以外の用途にも本発明の光ファイバは適用可能であり、その場合は、ガラスコアに限らず樹脂製コアにすることも可能である。さらに、空隙部を形成しつつコアを固定・保持できるのであれば、ガラス管に代えて樹脂製の細管を用いることも可能である。 Further, the present invention mainly aims to provide an optical fiber useful for processing, annealing, and surface modification by propagating laser light from the ultraviolet region to the near infrared region. Although the SiO 2 glass is used as the material, the optical fiber of the present invention can be applied to other uses, and in that case, it is possible to use not only the glass core but also a resin core. Further, if the core can be fixed and held while forming the gap, it is possible to use a resin thin tube instead of the glass tube.

1…ガラスコア
1A…ガラスコア材
2…Fが添加されたSiO
3…ガラス管
3A…ガラス管材
4…空隙部
5a、5b、5c、5d…接触部
6…ファイバプリフォーム
7…電気炉
8…炉心管
9…ドラム
10…光ファイバ
1 ... glass core 1A ... glass core material 2 ... F SiO was added 2 film 3 ... glass tube 3A ... glass tubing 4 ... void portion 5a, 5b, 5c, 5d ... contact portions 6 fiber preform 7 ... electric furnace 8 ... Core tube 9 ... Drum 10 ... Optical fiber

Claims (6)

横断面が正方形状の貫通孔を有し、横断面の外形が正方形状であるガラス管と、
前記ガラス管の前記貫通孔内に配置された、横断面が矩形状のガラスコアと
を有し、
前記ガラス管の内周面には、前記ガラスコアよりも低屈折率である、Fが添加されたSiO膜が形成されており、前記ガラスコアは前記Fが添加されたSiO膜と4箇所の接触部で接し、該接触部以外の前記ガラスコアと前記Fが添加されたSiO2膜の間は長手方向に延びる横断面が三角形状の空隙部が4個形成されていることを特徴とする光ファイバ。
A glass tube having a through-hole having a square cross section and a square outer shape of the cross section ;
A glass core having a rectangular cross section disposed in the through hole of the glass tube;
Wherein the inner peripheral surface of the glass tube is a low refractive index than said glass core, F are formed SiO 2 film is added, the glass core and the SiO 2 film in which the F is added 4 contact with the contact portion of the point, characterized in that the air gap cross-section extending in the longitudinal direction of the triangular shape between the SiO2 film where the said glass core other than the contact portion F is added is four formed And optical fiber.
横断面が正方形状の貫通孔を有し、横断面の外形が正方形状であるガラス管と、
前記ガラス管の前記貫通孔内に配置された、横断面が矩形状のガラスコアと
を有し、
前記ガラスコアの外周面には、該ガラスコアよりも低屈折率である、Fが添加されたSiO膜が形成されており、前記ガラスコアは前記Fが添加されたSiOを介して前記ガラス管と4箇所の接触部で接し、該接触部以外の前記ガラス管と前記Fが添加されたSiO2膜の間は長手方向に延びる横断面が直角三角形状の空隙部が4個形成されていることを特徴とする光ファイバ。
A glass tube having a through-hole having a square cross section and a square outer shape of the cross section ;
A glass core having a rectangular cross section disposed in the through hole of the glass tube;
On the outer peripheral surface of the glass core, a SiO 2 film added with F, which has a lower refractive index than the glass core, is formed, and the glass core passes through the SiO 2 film added with F. the contact with the contact portion of the glass tube and at four, the gap portion cross-section extending in the longitudinal direction of the right-angled triangle between the SiO2 film where the said glass tube other than the contact portion F is added four forms An optical fiber characterized by being made .
請求項1又は2に記載の光ファイバにおいて、
前記ガラス管は、SiOを最低でも96%含むガラスから形成され、矩形状のガラスコアはSiOガラスが用いられていることを特徴とする光ファイバ。
The optical fiber according to claim 1 or 2 ,
The glass tube is made of glass containing at least 96% SiO 2 , and the rectangular glass core is made of SiO 2 glass.
一端側から他端側まで延びる横断面が正方形状の貫通孔を有し、横断面の外形が正方形状であるガラス管材の内周面にFが添加されたSiO膜を形成する工程、
前記ガラス管材内に、前記Fが添加されたSiO膜と箇所で接するように横断面が矩形状のガラスコア材を挿入してファイバプリフォームを得る工程、
前記ファイバプリフォームの先端を加熱して溶融し、該プリフォームの先端部を所定速度で延伸しながら光ファイバに線引きする工程から成ることを特徴とする光ファイバの製造方法。
Step cross section extending from one end to the other end have a square-shaped through hole, the outer shape of the cross-section to form a SiO 2 film F is added to the inner peripheral surface of the glass tubing is square,
A step of obtaining a fiber preform by inserting a glass core material having a rectangular cross section so as to come into contact with the SiO 2 film to which the F is added in four places in the glass tube material,
A method of manufacturing an optical fiber, comprising: heating and melting the tip of the fiber preform, and drawing the optical fiber while drawing the tip of the preform at a predetermined speed.
横断面が矩形状のガラスコア材の外周にFが添加されたSiO膜を形成する工程、
一端側から他端側まで延びる横断面が正方形状の貫通孔を有し、横断面の外形が正方形状であるガラス管材内に、該ガラス管材の内周面と箇所で接するように、前記Fが添加されたSiO膜が外周に形成された横断面が正方形状のガラスコア材を挿入してファイバプリフォームを得る工程、
前記ファイバプリフォームの先端を加熱して溶融し、該プリフォームの先端部を所定速度で延伸しながら光ファイバに線引きする工程から成ることを特徴とする光ファイバの製造方法。
Forming a SiO 2 film in which F is added to the outer periphery of a glass core material having a rectangular cross section;
Cross-section extending to the other end have a square-shaped through-hole from one side, in the transverse plane glass tubing outer shape is square, so as to contact the inner circumferential surface and four places of the glass tubing, the A step of obtaining a fiber preform by inserting a glass core material having a square cross section formed on the outer periphery of a SiO 2 film to which F is added;
A method of manufacturing an optical fiber, comprising: heating and melting the tip of the fiber preform, and drawing the optical fiber while drawing the tip of the preform at a predetermined speed.
請求項4又は5に記載の光ファイバの製造方法において、
前記ガラス管材は、最低でもSiOを96%含むガラスから形成され、矩形状のガラスコアはSiOガラスが用いられていることを特徴とする光ファイバの製造方法。
In the manufacturing method of the optical fiber according to claim 4 or 5 ,
The glass tube material is formed of glass containing at least 96% SiO 2 , and the rectangular glass core is made of SiO 2 glass.
JP2010136613A 2010-06-15 2010-06-15 Optical fiber and manufacturing method thereof Active JP5676152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136613A JP5676152B2 (en) 2010-06-15 2010-06-15 Optical fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136613A JP5676152B2 (en) 2010-06-15 2010-06-15 Optical fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012002959A JP2012002959A (en) 2012-01-05
JP5676152B2 true JP5676152B2 (en) 2015-02-25

Family

ID=45535024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136613A Active JP5676152B2 (en) 2010-06-15 2010-06-15 Optical fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5676152B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031484A1 (en) * 2011-08-26 2013-03-07 湖北工業株式会社 Fiber
DE102012000670A1 (en) * 2012-01-17 2013-07-18 Heraeus Quarzglas Gmbh & Co. Kg Fused quartz glass semi-finished product for an optical component and method for producing the semifinished product
JP5384679B2 (en) * 2012-01-19 2014-01-08 湖北工業株式会社 Method for manufacturing optical fiber preform and optical fiber preform
JP5819266B2 (en) * 2012-07-11 2015-11-18 湖北工業株式会社 Manufacturing method of single mode fiber
JP5587959B2 (en) * 2012-10-25 2014-09-10 湖北工業株式会社 Optical fiber preform manufacturing method
JP5603519B1 (en) * 2014-06-03 2014-10-08 湖北工業株式会社 Optical fiber preform
CN113121105B (en) * 2021-05-10 2022-08-09 浙江富通光纤技术有限公司 Machining method of mandrel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712705A (en) * 1971-05-28 1973-01-23 Bell Telephone Labor Inc Air clad optical fiber waveguide
JPS5748762B2 (en) * 1973-05-23 1982-10-18
JPS5056139U (en) * 1973-09-22 1975-05-27
JPS50116052A (en) * 1974-02-25 1975-09-11
JPS50137751A (en) * 1974-04-20 1975-11-01
JPS50143536A (en) * 1974-05-07 1975-11-19
JPS5638537B2 (en) * 1974-05-07 1981-09-07
JPS54134128A (en) * 1978-04-04 1979-10-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of basic material for light transmitting fiber
JPH04164836A (en) * 1990-10-25 1992-06-10 Sumitomo Electric Ind Ltd Production of glass preform for optical fiber
JP2003329869A (en) * 2002-05-17 2003-11-19 Mitsubishi Cable Ind Ltd Double-clad fiber and method for manufacturing the same

Also Published As

Publication number Publication date
JP2012002959A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5676152B2 (en) Optical fiber and manufacturing method thereof
JP5921504B2 (en) Glass large core optical fiber
EP2292566B1 (en) Rare earth doped optical fibres and large effective area optical fibers for fiber lasers and amplifiers
JP5409928B2 (en) Polarization-maintaining optical fiber
US8031999B2 (en) Photonic band-gap fiber
US9014522B2 (en) Optical couplers and methods for making same
JP5612654B2 (en) Rare earth doped optical fibers for fiber lasers and fiber amplifiers
JP4974165B2 (en) Manufacturing method of optical fiber connection structure
JP2008076685A (en) End-surface closely arranged multicore optical fiber and manufacturing method therefor
Lai et al. CO 2 laser applications in optical fiber components fabrication and treatment: A review
JP2009271108A (en) Optical combiner, and method for manufacturing the same
JP5555134B2 (en) Optical fiber
JP5539594B2 (en) Fiber and fiber manufacturing method
JP2008076655A (en) Polarization maintaining optical fiber
US11982835B2 (en) Apparatuses for scattering light and methods of forming apparatuses for scattering light
JP6666882B2 (en) Method of manufacturing single-core optical fiber preform and method of manufacturing single-core optical fiber
JP2006010961A (en) Photonic crystal fiber and laser processing machine
JP3983971B2 (en) Double clad fiber
JP2003029072A (en) Plane-of-polarization preservation type optical fiber
JP2004325656A (en) Method for manufacturing optical fiber coupler
JP2001311842A (en) Optical fiber terminal and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250