WO2006022361A1 - Psf1 GENE-DEFICIENT ANIMAL AND METHOD OF USING THE SAME - Google Patents

Psf1 GENE-DEFICIENT ANIMAL AND METHOD OF USING THE SAME Download PDF

Info

Publication number
WO2006022361A1
WO2006022361A1 PCT/JP2005/015496 JP2005015496W WO2006022361A1 WO 2006022361 A1 WO2006022361 A1 WO 2006022361A1 JP 2005015496 W JP2005015496 W JP 2005015496W WO 2006022361 A1 WO2006022361 A1 WO 2006022361A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
psfl
deficient
human mammal
animal
Prior art date
Application number
PCT/JP2005/015496
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Takakura
Masaya Ueno
Original Assignee
National University Corporation Kanazawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kanazawa University filed Critical National University Corporation Kanazawa University
Publication of WO2006022361A1 publication Critical patent/WO2006022361A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Definitions

  • the present invention relates to a non-human mammal deficient in the function of the Psfl gene and a method for using the same. Background technology
  • the initiation of DNA replication in eukaryotic cells is controlled by the action of various proteins at the origin of replication.
  • 6 types of proteins (Orel-6) are bound to the replication origin, but Cdc6 and Mem complex bind here to form a pre-replication complex, and further, phosphorylation of Cdc6
  • the Cdc7 / Dbi4 complex then binds to this pre-replication complex, and the subsequent binding of Cdc45 serves as a signal, mobilizing DNA polymerase and starting DNA replication.
  • Dpbl l is a protein involved in the replication initiation mechanism (especially the S phase checkpoint) as a cofactor of DNA polymerase ⁇ .
  • Sld l / Dpb3, Sld2, Sld3, Sld4 / Cdc45, Sld5, Sld6 / Rad53, etc. have been identified as factors that interact with Dpbl l. It has been reported that binding to l is essential for DNA polymerase mobilization (Kamimura, Y., et al., EMBO J., 2001, 20 (8), p2097-2107) o
  • Psi l is a gene found in Dpbl l as a factor that binds to Sld5 (Partner of Sid Five).
  • Araki et al. Reported that a complex consisting of Sld5, Psf L Psf2, and Psf3 is incapable of DNA replication in Saccharomyces cerevisiae (Kubota, Y. et al., Genes & Development 2003, 17, pl l41-1152, Takayama, Y. et al., Genes & Development 2003, 17, pl l53-1165).
  • An object of the present invention is to elucidate the function of Psfl at the individual level, to elucidate various pathological conditions related to Psfl, and to provide a new research tool using Psfl.
  • the inventors established Psfl gene-deficient mice for the purpose of elucidating the functions of Psfl at the individual level. As a result of analyzing this mouse, it was found that the Psfl gene was lethal when it was deficient in homo, but when it was deficient in hetero, serious myelosuppression similar to myelosuppressive disease was observed. Completed the invention.
  • the present invention relates to a non-human mammal deficient in the function of the Psfl gene on the chromosome (Psfl gene deficient animal).
  • the function of the Psfl gene can be deficient by deletion or substitution of at least a part of the sequence on the Psfl gene or its expression control region, and insertion of Z or other sequences.
  • the Psil gene-deficient animal of the present invention is produced, for example, by the following steps.
  • the recombinant ES cell is introduced into an early embryo and developed to obtain a chimeric animal
  • the F1 heterozygous animals obtained by mating the above chimeric animals with wild-type animals are mated with each other, and an animal lacking the function of the Psil gene on the chromosome is obtained from the obtained F2 animals or their progeny.
  • a mouse is particularly preferable.
  • the Psil gene-deficient animal of the present invention can be suitably used not only for functional studies of the Psfl gene but also as a model animal for myelosuppressive disease.
  • myelosuppressive diseases include aplastic anemia, administration of anticancer agents, prolonged myelosuppression due to radiation exposure (irradiation), myelosuppression associated with autoimmune diseases, Examples include bone marrow suppression caused by bacteria and virus infection, bone marrow suppression as a side effect caused by pharmaceuticals, and bone marrow suppression of unknown cause.
  • hematopoietic stem cells can be easily obtained.
  • the obtained hematopoietic stem cells are useful for various research and screening systems.
  • the present invention also provides a screening method for a therapeutic agent for myelosuppressive disease using the Psfl gene-deficient animal of the present invention.
  • the method can evaluate the effect of the test substance as a therapeutic agent for myelosuppressive disease using as an index the difference in expression of the animal between the test substance administration condition and the non-administration condition.
  • an animal deficient in the function of the Psf l gene is provided.
  • This Psf l gene-deficient animal exhibits various symptoms due to bone marrow function suppression, and particularly similar to severe myelosuppression after administration of an anticancer drug by administration of 5-FU or the like. Therefore, it is useful for elucidating the pathology of such diseases, drug development, and drug screening.
  • hematopoietic stem cells can be easily prepared using the Psfl gene-deficient animal of the present invention.
  • Figure 1 shows the primary structure of the Psil protein. From the N-terminal side, there are coiled-coil domain, arginine-rich basic domain, and PEST-like domain.
  • Fig. 2 shows the results of expression analysis of the Psfl gene in mouse tissues and bone marrow cells.
  • BM bone marrow.
  • 3A and 3B show the localization in various tissues of Psfl gene-deficient mice. msn; mesenchymal cells, Hr; heart, AER; apical ectodermal ridge, DA; dorsal aorta.
  • Figure 4 shows the subcellular localization in NIH3T3 cells.
  • Figure 5 shows the construction of the Psil gene deficient evening vector.
  • E EcoRI cleavage site
  • B BamHI cleavage site.
  • DT Diphtheria toxin fragment A gene
  • neo Neomycin resistance gene.
  • Fig. 6A shows the results of Southern plot analysis (upper) and PCR analysis (lower) (upper middle left: wild-type allele, right: mutant allele).
  • Fig. 6B shows HE-stained tissue sections of post-implantation embryos (embryo 6.5 days).
  • Figure 7 shows the results of in vitro culture of Ps gene homo-deficient (-/-) embryos and hetero-deficient (+/-) embryos.
  • Fig. 8 shows the results of culturing embryos for 4 days, incorporating BrdU for 12 hours, and then detecting the incorporated BrdU with a specific antibody after fixation, as in Fig. 7.
  • An ICM that is actively split and incorporated BrdU is indicated by an arrow.
  • Fig. 9 is a graph comparing 9 A: survival rate, 98: blood 1 ⁇ 1] ⁇ (, 9 C: bone marrow MNC after administration of 5-FU in heterozygous mice lacking Psfl gene and wild type mice
  • Figure 10 shows FACS analysis of bone marrow cells after 5-FU administration in Psil gene heterozygous and wild-type mice 1.
  • OA analysis of bone marrow cell morphology by FSC and SSC 10 B is the analysis of the expression of Mac-1 in the stem cell population, and the stem cells are contained in the area enclosed by the square in the figure 10 C is the analysis of the stem cell DNA content
  • This specification includes the contents described in the specification of Japanese Patent Application No. 2004-242022, which is the basis of the priority of the present application.
  • the present invention relates to a non-human mammal deficient in the function of the Psfl gene on the chromosome.
  • the “Psil gene” according to the present invention is a gene found as a factor (Partner of Sid Five) that binds to SLD5 in research on the budding yeast Dpbll.
  • the complex formed by Sld5, Psfl, Psi2, and Psf3 has been reported to be essential for DNA replication in budding yeast, but its detailed function is unknown.
  • mouse Psfl gene has been registered as GenBank Accession No. AK013116 (ypote tical protein KIAA0186 omologue). Was completely consistent with the CDS of mouse Ps isolated and identified by the inventors.
  • the genomic gene of mouse Psil contains 7 exons and 6 introns, and encodes a Psil protein consisting of 196 aa amino acids in total length (SEQ ID NO: 1 is the Psil CDS identified by the present inventor (SEQ ID NO: 2 is the amino acid). Array)).
  • the Psfl gene can be cloned from the homology with a known Psil gene and sequenced by a conventional method. That is, the genome of the animal]) NA library is prepared, and the library is screened using a known Psfl gene derived from the genetically closest species or a part thereof as a probe. Identify the gene and determine its sequence.
  • the “Psil gene” includes all orthologs of the Psil gene as described above, and includes not only genomic DNA but also mRNA and cDNA.
  • “the function of the Psil gene is deficient” means that the Psil gene on the chromosome is destroyed and the function is not normally expressed. That is, not only when the Psfl gene product is not expressed at all, but also when the gene product is expressed, if it does not have a normal function as Psil, it means “the function of the Psil gene is deficient”.
  • Such disruption of the Psfl gene must be caused by alterations such as deletion, substitution, and / or insertion of other sequences on the Psil gene or on its expression control region including its transcriptional regulatory region and promoter region. You can.
  • the site where the deletion, substitution or insertion is performed, and the sequence where the deletion, substitution or insertion is performed are not particularly limited as long as the normal function of the Psil gene can be deleted.
  • the non-human mammal of the present invention has a defect in the Psil gene function in one allele (hetero) on the chromosome. This is because the loss of Psfl gene function in both alleles (homo) is lethal to animals.
  • non-human mammal is a mammal other than human.
  • rodents such as mice, rats, and rabbits are preferred.
  • mice Most preferred are mice in which ES cells are established and genetic recombination can be performed easily.
  • the Psfl gene-deficient animal of the present invention can be produced by using a technique such as gene targeting, Cre-XoX system, or somatic cell clone.
  • Gene targeting is a technique for introducing mutations into specific genes on chromosomes using homologous recombination (Capeccc i, MR Science, 244, 1288-1292, 1989, Thomas, KR & Cpeccchi, MR Cel, 44 419-428, 1986).
  • an evening-getting vector for deleting the Psi l gene is constructed.
  • This genomic DNA library must be an ES cell of the animal used or a library made from genomic DNA of the strain from which the cell is derived so that the frequency of recombination is not reduced due to polymorphisms, etc. .
  • a commercially available library (such as Stratagene's 129Sv / J Genome Library) can be used.
  • the Genome Library is screened using the target Psi cDNA or a partial sequence as a probe. To clone Psi l genomic DNA.
  • the cloned genomic DNA is subjected to sequencing, Southern plotting, restriction enzyme digestion, etc. to create a restriction enzyme map that clearly shows the position of each exoon, and to determine the site of mutation introduction.
  • a probe for screening homologous recombinants is set outside the homologous region used for the targeting vector.
  • the mutation (deletion, substitution, or insertion) introduced on the chromosome is not particularly limited as long as the normal function of the Psi l gene is impaired.
  • the sequence to be deleted or replaced may be an intron region or an exon region of the Psil gene, or an expression control region of the Psil gene.
  • mutations that delete or replace a substantial part of the exon region of the Psf gene can be deleted.
  • other sequences to be inserted are not particularly limited, but the following marker gene sequences are preferably used.
  • the targeting vector contains an appropriate selectable marker for selection of the recombinant along with the 3 'and 5' homologous regions of the mutagenesis site.
  • markers include neomycin resistance genes (pGI (neo, pMC lneo, etc.), positive selection markers such as hygromycin B phosphotransferase gene, LacZ, and expression of genes to be disrupted such as;
  • Negative selection markers such as reporter, simple herpesvirus thymidine kinase gene (HSV-TK), diphtheria toxin ⁇ fragment (DT-A), etc. are not limited to these. Appropriate restriction sites for linearization of the vector are included outside the homologous region.
  • Fig. 5 shows an example of a targeting vector for deletion of the mouse Psi l gene.
  • This construct does not mutate the intron 4 and intron 5 gene sequences of the Psf l gene, and is almost identical to the exon 5 of the Psf l gene (which corresponds to about 20% of the coding region of the mouse Psi l gene). All sequences are constructed to replace the LacZ gene as a reporter gene and the neomycin resistance gene as a positive selection marker.
  • the diphtheria toxin A fragment (DT) is inserted as a negative selection marker.
  • Such a targeting vector can be suitably constructed using a commercially available plasmid vector (for example, pBluescript 11 (manufactured by St ratagene)). 2) Introduction of targeting vector into ES cells
  • the constructed targeting vector is introduced into a totipotent cell such as an embryonic stem cell (ES cell).
  • ES cells have been established in mice, hamsters, pigs, etc.
  • Multiple cell lines, such as strains, are available.
  • embryonic carcinoma cells (EC cells) can be used instead of ES cells.
  • ES cells should be cultured in an appropriate medium prior to the introduction of the evening vector.
  • mouse fibroblasts and the like are used as feeder cells, and a liquid culture medium for ES cells (for example, manufactured by GIBC0) is added and co-cultured. To do.
  • ES cells into which a targeting vector has been introduced can be easily selected with a marker inserted into the vector.
  • a marker inserted into the vector For example, in the case of a cell in which a neomycin resistance gene is introduced as a marker, primary selection can be performed by culturing in a medium for ES cells supplemented with G418.
  • ES cells into which an evening-targeting vector has been introduced a part of the PsiI gene on the chromosome is replaced with the vector by homologous recombination, and the endogenous Psf1 gene is destroyed.
  • Whether or not the desired homologous recombination has been achieved can be determined by dienotype analysis using Southern plotting, PCR method or the like. Southern blotting can be performed using a probe (external probe) set outside the site of mutagenesis. Dienotype analysis by PCR can be performed by detecting specific amplification products of wild-type and mutant Psfl genes, respectively. ES cells into which the evening-getting vector has been appropriately introduced are cultured for the next stage.
  • An ES cell into which an evening-getting vector has been introduced is introduced into an early embryo derived from a different strain that has a distinct coat color from the strain from which the ES cell is derived. Generate as an animal. For example, in the case of a mouse, 129 strain-derived ES cells that have a gray hair color have various loci that have a black hair color and can be used as the best. It is desirable to use early embryos such as different C57BL / 6 mice. Thus, the chimera mouse can determine the chimera rate based on its hair color.
  • ES cells can be introduced into early embryos using the microinjection method (Hogan, B. et al. Manipulating the Mouse Embryo Cold Spring Habor Laboratory Press, 1988) or the aggregation method (Andra, N. et al. Proc. Natl. Acad. Sci. USA, 90, 8424-8428, 1993, Stephen, AW et al. Proc. Natl. Acad. Sci. USA, 90, 4582-4585, 1993) and the like.
  • the microinjection method uses ES cells from the 8-cell embryo to the blastocyst (blastocyst) This is a method of direct injection into the strike.
  • a recombinant embryonic stem cell is directly injected under a microscope into an embryo collected from an animal using a microphone-type manipulator or the like to produce a chimeric embryo. If this chimeric embryo is transplanted into the uterus of a foster parent (pseudopregnant animal) and developed, a desired chimeric animal can be obtained.
  • Chimera animals obtained from foster parents are further mated with wild-type animals of the same strain. About half of the resulting animals should have heterozygous Psil gene deleted chromosomes.
  • the dienotype of each individual can be determined temporarily by appearance characteristics such as hair color, and can also be determined by the above-described Southern blotting or dienotype analysis using the PCR method. Thus, once a heterozygous Psil gene-deficient animal is identified, the heterozygous Psfl gene-deficient animals can be crossed to obtain an animal having a Psil gene deficiency in the home.
  • Progeny of the Psfl gene-deficient animal produced as described above are also included in the Psfl gene-deficient animal of the present invention as long as the function of the Psil gene on the chromosome is deficient. 2.2 Use of Cre-loxP system
  • the loxP (locus of X-ing-over) sequence is a DNA sequence consisting of 34 base pairs and is a recognition sequence for Cre (Causes recombinat ion) recombination enzyme.
  • the two loxP sequences on the gene undergo specific recombination in the presence of the Cre protein.
  • the target gene to be deleted is replaced with a loxP sandwiched gene, and a Cre expression vector is incorporated, the target gene sandwiched between loxP is deleted due to the production of site-specific and time-specific Cre proteins. Can be made.
  • a targeting vector incorporating a marker gene such as a neomycin resistance gene sandwiched between the loxP gene on the 5 'side and the loxP gene on the 3' side of the Psfl gene region to be deleted according to 1) of the previous section 2.1).
  • a marker gene such as a neomycin resistance gene
  • ES cells can be selected by Southern blotting or PCR after selection by marker.
  • a Cre expression vector in which Cre protein is linked to a specific promoter is introduced into the homologous recombinant ES cells. From the obtained ES cells, an ES cell clone in which only the marker gene is deleted and the Psfl gene region is not deleted is identified by ⁇ recombination.
  • This ES cell is introduced into an animal according to 3) and 4) in the previous section 2.2 to obtain a Cre- ⁇ recombinant animal.
  • ⁇ -recombinant recombinant animals that have introduced a vector that has ⁇ genes at both ends of the Psf l 'gene and Cre-expressed recombinant animals that have introduced the Cre expression vector are prepared separately and mated. Depending on the situation, Cre-- ⁇ recombinant animals may be produced.
  • the Cre- Cre ⁇ recombinant animal thus obtained can be deficient in the Psfl gene in a site-specific and time-specific manner depending on the expression of the Cre protein. Therefore, it is extremely useful for functional analysis of the Psil gene at a specific time and at a specific site.
  • somatic cell clone is a clone generated by transplanting a nucleus extracted from a somatic cell into an enucleated unfertilized egg to produce a clone embryo, and then transplanting this cloned embryo into a foster mother's uterus.
  • a somatic cell clone is combined with a gene transfer technique, a desired recombinant animal clone can be obtained.
  • nuclei are removed from somatic cells that have been subjected to a recombination procedure that previously deletes the Psfl gene, and transplanted into enucleated unfertilized eggs to produce cloned embryos. If this cloned embryo is transferred to the uterus of a foster parent (pseudopregnant animal) to obtain a somatic cell cloned animal, this animal will have a Psil gene deficiency.
  • the Ps ⁇ gene-deficient animal of the present invention can be used as such a severe myelosuppression model. .
  • the model animal can be used for the development of drugs that restore myelosuppression (improving bone marrow function) and for screening such drugs.
  • Psi l gene-deficient animals are raised under test substance administration conditions and non-administration conditions, and changes in bone marrow function between the test substance administration conditions and non-administration conditions are determined by bone marrow MN C (mononuclear cells). Etc. are used as indicators.
  • a pile cancer drug such as 5-FU
  • the effect of the test substance as a bone marrow function improving agent can be evaluated.
  • hematopoietic stem cells are relatively increased in the bone marrow, so that it is possible to easily obtain a cell population containing hematopoietic stem cells at a high frequency without sorting the cells. Can do.
  • the resulting hematopoietic stem cells are useful for various experiments and drug screening.
  • the Psil gene is widely expressed in cells at the so-called stem cell level, and is predicted to control DNA replication in various stem cells. Therefore, the regulation of Psil genes—such as forced high expression of Psil genes—may induce stem cell self-renewal.
  • the Psf 1 gene is expressed in various stem cells including hematopoietic stem cells. It can also be applied to in vitro amplification technology for vesicles. In particular, in recent years, cancer is thought to be due to abnormalities in the stem cell system caused by cancer stem cells. By suppressing the function of the Psil gene, a method of inducing cancer stem cell death can also be developed.
  • the Psil gene-deficient animal of the present invention is useful for elucidating the function and action mechanism of Psil at the individual level. In order to elucidate the function at the individual level, in addition to the constant suppression of Psil expression, it is useful to suppress the expression of site-specific and time-specific Psil using the Cre-] oxP system described above.
  • Cdc45 is an essential protein for initiation of DNA replication, suggesting that Psfl has a similar function. Therefore, Psi protein and Psil gene can be used not only for the suppression of bone marrow function and treatment of diseases associated therewith, but also for the elucidation and treatment of DNA replication abnormalities and associated diseases.
  • bone marrow cells were purified with surface markers using FACS (Becton) and RT-PCR was performed in the same manner.
  • Differentiating antigens include Mac-1, Gr-1, Terll9, B220, CD4, I chose CD8. All differentiation antigens and specific antibodies against Sea-1 and c-kit were from Pharmingen.
  • the expression of Psil was also analyzed by RT-PCR in the leukemia cell line (BaF3) and melanoma cell line (B16).
  • Fig. 3 Paraffin-embedded sections of embryonic day 11 mice were prepared and immunostained using anti-Psfl antibodies.
  • Fig. 3 (A) anti-rabbit IgG antibody labeled with piotin was used as the secondary antibody, and ABC-HRP complex (manufactured by Dako) was used as the tertiary reagent. DAB (manufactured by Sigma) was used for color development.
  • Fig. 3 (B) an anti-rabbit IgG antibody labeled with Cy3 was used as the secondary antibody.
  • NIH3T3 cells were subjected to fluorescent immunostaining in the same manner as in FIG. 3 (B). Chromosomal DNA was stained with DAPI (Nacalai).
  • FIG. 2 shows the results of mouse Psfl expression analysis.
  • Psfl transcripts were found in bone marrow, thymus, testis, and ovary.
  • Differentiated and mature cells in bone marrow cells (Pii expression was not detected in Lii ⁇ , but undifferentiated cells (Lin + KIT ⁇ , Lin—KIT ⁇ Sca- ⁇ , LinllT ⁇ SCA-l 1 )
  • high expression of Psil was detected in the Lin IT ⁇ and Lin-KIT + Sca-1— cell groups, while Psfl expression was continually detected in tumor cell lines.
  • Figure 3 shows the localization of Psfl in fetal tissues.
  • Psil was expressed specifically in mesenchymal cells, AER region, heart and dorsal aorta.
  • Figure 4 shows the subcellular localization of Psfl in NIH3T3 cells.
  • the subcellular localization of Psfl varied depending on the cell cycle. In other words, Psil was localized in the nucleus during the interphase and in the cytoplasm during the M ′ phase.
  • Psfl gene-deficient mice were prepared by gene evening-targeting as follows. First, a genomic library of 129SV / J mice (Stratagene) was screened using the above mouse Psfl cDNA sequence (SEQ ID NO: 1) as a probe, and a plurality of mouse Psl genomic clones were identified. DNA was extracted from the resulting clone and subcloned into pBluescript l (Stratagene). Sequencing, restriction enzyme digestion, Southern blotting, etc. were performed to prepare a restriction enzyme map of the Psfl gene. Using the obtained Psfl genomic fragment, a targeting vector was prepared as follows.
  • the LacZ gene reporter; derived from pCMVb (Stratagene)
  • pGKneo positive selection marker; distributed by Kanazawa Univ., Masahide Asano
  • the short arm (5 'end region of intron 5)
  • LA2 (3' end region of intron 4) amplified in step 3 were connected to the 3 'and 5' sides, respectively.
  • a partial sequence of intron 4 and a diphtheria toxin fragment A gene (DT) as a negative selection marker were recombined on the 5 ′ side of LA2. With this targeting vector, almost all of exon 5 is replaced with LacZ_Neo cassette and approximately 20% of the amino acid is deleted (Fig. 5).
  • This evening-getting vector deletes the base sequence of 92781-92897 (exon 5) in the base sequence of mouse Psfl genomic DNA shown in GenBank Accession No. AL808125. Of the 196 amino acids, 39 amino acids will be deleted.
  • the prepared evening construction construct was introduced into ES cells derived from 129 mice by electroporation (E14.1; distributed by Kanazawa Univ., Asano), and contains G418 with mouse fibroblasts as feeder cells. Selection was performed with ES cell culture medium (GIBC0). The selected ES cells were further cultured and then subjected to DNA extraction according to a conventional method in order to identify homologous recombinants. The extracted DNA was subjected to Genotype screening by the above-mentioned Southern analysis. Southern plot analysis was performed using a labeled external probe (3 'probe) after digesting DNA with EcoRI. This external probe contains an outside of the homologous region used for the evening get vector. Exon 7 located at is used. Southern analysis revealed an approximately 7.5 kb band from the wild-type allele and an approximately 12.3 kb band from the mutant allele (Figure 6A).
  • ES cells in which homologous recombination was confirmed were aggregated with 8-cell embryos excised from C57B6 / J mice according to a conventional method to prepare chimeric embryos.
  • the chimeric embryo was established by transplanting the chimeric embryo into the uterine horn of a pseudopregnant ICR mouse, which was a foster parent.
  • the male mouse of the obtained mouse was mated with another female of wild type C57B6 / J mouse to obtain F1 mouse.
  • mice having a Psfl gene deficiency having a Psil gene deficiency in a heterozygote was selected from F1 mice, and these hetero mice were further mated.
  • Genotyping of mice was performed by PCR using DNA extracted from the mouse tail according to a conventional method. PCR conditions and the primers used are as follows. Wild Aril:
  • ReversPsf limer 5, -catcccagatcgttcttgttaacc-3 '(Guide II number 1 0)
  • Table 1 shows the results of genotyping.
  • the Psil gene-deficient animal of the present invention exhibits various symptoms caused by suppression of bone marrow function, and in particular, by administration of 5-FU or the like, symptoms similar to severe myelosuppression after administration of leukemia or anticancer drug are exhibited. . Therefore, it is useful for elucidating the pathology of such diseases, developing drugs, and screening drugs.
  • the PsiI gene-deficient animal of the present invention is useful as a source of hematopoietic stem cells. Sequence listing free text

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A nonhuman mammal lacking the function of Psf1 gene and a method of using the same. Namely, a nonhuman mammal lacking the function of Psf1 gene on its chromosome; utilization of this animal as a model animal of bone marrow-depression diseases; and a method of preparing hematopoietic stem cells and a method of screening a drug using the animal.

Description

明 細 書  Specification
Psi l遺伝子欠損動物およびその利用方法 技術分野 Psi l gene deficient animals and methods of use
本発明は、 Psf l遺伝子の機能が欠損した非ヒト哺乳動物とその利用方法に関 する。 背 景技術  The present invention relates to a non-human mammal deficient in the function of the Psfl gene and a method for using the same. Background technology
真核細胞における DNA複製の開始は、 複製開始点への種々のタンパク質の作 用によって制御されている。 M期後期、 複製開始点には 6種のタンパク質 (Orel- 6)が結合しているが、 ここに Cdc6と Mem複合体が結合して複製前複合 体を形成し、さらに Cdc6のリン酸化と分解を経て細胞は G 1期から S期に移行 する。 そして、 この複製前複合体に Cdc7/Dbi4複合体が結合し、 続く Cdc45の 結合がシグナルとなって、 DNAポリメラーゼが動員され、 DNA複製が開始される。  The initiation of DNA replication in eukaryotic cells is controlled by the action of various proteins at the origin of replication. In the late M phase, 6 types of proteins (Orel-6) are bound to the replication origin, but Cdc6 and Mem complex bind here to form a pre-replication complex, and further, phosphorylation of Cdc6 After degradation, the cells transition from the G1 phase to the S phase. The Cdc7 / Dbi4 complex then binds to this pre-replication complex, and the subsequent binding of Cdc45 serves as a signal, mobilizing DNA polymerase and starting DNA replication.
Dpbl lは DNAポリメラ一ゼ εの補助因子として、 複製開始機構 (特に S期の チェックポイント)に関与するタンパクである。出芽酵母を用いた研究で、 Dpbl l と相互作用する因子として、 Sld l/Dpb3、 Sld2、 Sld3、 Sld4/ Cdc45、 Sld5、 Sld6/Rad53等が同定されており、 さらに Sld3- Cdc45複合体と Dpbl l との結合 が DNAポリメラーゼの動員に不可欠であることが報告されている(Kamimura, Y., et al. , EMBO J. , 2001, 20 (8) , p2097-2107) o Dpbl l is a protein involved in the replication initiation mechanism (especially the S phase checkpoint) as a cofactor of DNA polymerase ε. In studies using Saccharomyces cerevisiae, Sld l / Dpb3, Sld2, Sld3, Sld4 / Cdc45, Sld5, Sld6 / Rad53, etc. have been identified as factors that interact with Dpbl l. It has been reported that binding to l is essential for DNA polymerase mobilization (Kamimura, Y., et al., EMBO J., 2001, 20 (8), p2097-2107) o
Psi lは、 Dpbl lに関する研究で、 Sld5に結合する因子 (Partner of Sid Five) として見出された遺伝子である。 Arakiらは、 Sld5、 Psf L Psf2、 Psf3からな る複合体が出芽酵母における DNA 複製に不可^であることを報告している (Kubota, Y. et al. , Genes & Deve lopment 2003, 17, pl l41- 1152、 Takayama, Y. et al. , Genes & Development 2003, 17, pl l53- 1165)。  Psi l is a gene found in Dpbl l as a factor that binds to Sld5 (Partner of Sid Five). Araki et al. Reported that a complex consisting of Sld5, Psf L Psf2, and Psf3 is incapable of DNA replication in Saccharomyces cerevisiae (Kubota, Y. et al., Genes & Development 2003, 17, pl l41-1152, Takayama, Y. et al., Genes & Development 2003, 17, pl l53-1165).
一方、 Psi lは、 ヒト、 マウス等の哺乳動物にも広くそのォーソログの存在が 確認されている。 しかしながら、それらは単に配列の相同性から酵母 Psi lのォ —ソログとして同定されただけで、 当該哺乳動物における機能は全く解明され ていない。 そればかりか、 酵母においても、 Psi lの詳細な機能はほとんど解明 されていない。 発 明 の 開 示 On the other hand, the existence of orthologs has been confirmed in mammals such as humans and mice. However, they were simply identified as homologues of yeast Psi l from sequence homology, and their function in the mammal has not been elucidated at all. Not only that, but also in yeast, the detailed functions of Psi l are almost unknown. It has not been. Disclosure of invention
本発明の課題は、 Psf lの個体レベルでの機能を解明し、 Psf lが関与する種々 の病態を解明するとともに、 Psf lを利用した新たな研究ツールを提供すること にある。  An object of the present invention is to elucidate the function of Psfl at the individual level, to elucidate various pathological conditions related to Psfl, and to provide a new research tool using Psfl.
発明者らは、 Psf lの個体レベルでの機能を解明する目的で、 Psf l遺伝子欠損 マウスを樹立した。 そして、 このマウスを解析した結果、 Psf l遺伝子はホモで 欠損すると致死的であるが、 ヘテロで欠損した場合は、 骨髄抑制疾患に良く似 た重篤な骨髄抑制がみられることを見出し、 本発明を完成させた。  The inventors established Psfl gene-deficient mice for the purpose of elucidating the functions of Psfl at the individual level. As a result of analyzing this mouse, it was found that the Psfl gene was lethal when it was deficient in homo, but when it was deficient in hetero, serious myelosuppression similar to myelosuppressive disease was observed. Completed the invention.
すなわち、本発明は、染色体上の Psf l遺伝子の機能が欠損している非ヒト哺 乳動物 (Psf l遺伝子欠損動物) に関する。  That is, the present invention relates to a non-human mammal deficient in the function of the Psfl gene on the chromosome (Psfl gene deficient animal).
前記動物において、 Psf l遺伝子の機能は、 Psf l遺伝子またはその発現制御領 域上における少なくとも一部の配列の欠失、 置換、 および Zまたは他の配列の 挿入によって欠損させることができる。  In the animal, the function of the Psfl gene can be deficient by deletion or substitution of at least a part of the sequence on the Psfl gene or its expression control region, and insertion of Z or other sequences.
本発明の Psil遺伝子欠損動物は、 例えば、 以下の工程で作製される。  The Psil gene-deficient animal of the present invention is produced, for example, by the following steps.
1 ) Psf l遺伝子またはその発現制御領域上における少なくとも一部の配列の欠 失、 置換、 および または他の配列の挿入を目的としたターゲッティングべク 夕一を作製する;  1) Create a targeting vector for the deletion, substitution, and / or insertion of at least some sequences on the Psfl gene or its expression control region;
2 ) 上記ベクターを ES細胞に導入し、 該ベクターで相同組換えされた ES細胞 を得る; 2) Introducing the vector into an ES cell to obtain an ES cell homologously recombined with the vector;
3 ) 上記組換え ES細胞を初期胚に導入し、 発生させてキメラ動物を得る; 3) The recombinant ES cell is introduced into an early embryo and developed to obtain a chimeric animal;
4 )上記キメラ動物を野生型動物と交配して得られる F1ヘテロ接合体動物同士 を交配し、 得られる F2動物またはその子孫から染色体上の Psil遺伝子の機能 が欠損している動物を得る。 4) The F1 heterozygous animals obtained by mating the above chimeric animals with wild-type animals are mated with each other, and an animal lacking the function of the Psil gene on the chromosome is obtained from the obtained F2 animals or their progeny.
本発明の Psil遺伝子欠損動物としては、 特にマウスが好ましい。  As the Psil gene-deficient animal of the present invention, a mouse is particularly preferable.
本発明の Psil遺伝子欠損動物は、 Psf l遺伝子の機能研究はもとより、 骨髄 抑制疾患のモデル動物としても好適に利用することができる。 そのような骨髄 抑制疾患としては、 例えば、 再生不良性貧血、 抗がん剤投与、 放射線被爆 (照 射) による遷延性の骨髄機能抑制症、 自己免疫疾患に伴う骨髄抑制、 種々の細 菌、 ウィルス感染による骨髄抑制、 医薬品による副作用としての骨髄抑制、 原 因不明の骨髄抑制等を挙げることができる。 The Psil gene-deficient animal of the present invention can be suitably used not only for functional studies of the Psfl gene but also as a model animal for myelosuppressive disease. Examples of such myelosuppressive diseases include aplastic anemia, administration of anticancer agents, prolonged myelosuppression due to radiation exposure (irradiation), myelosuppression associated with autoimmune diseases, Examples include bone marrow suppression caused by bacteria and virus infection, bone marrow suppression as a side effect caused by pharmaceuticals, and bone marrow suppression of unknown cause.
本発明の Psf l遺伝子動物は骨髄機能が抑制されているため、簡単に造血幹細 胞を取得することができる。 取得された造血幹細胞は、 種々の研究、 スクリー ニング系に有用である。  Since the Psfl gene animal of the present invention has suppressed bone marrow function, hematopoietic stem cells can be easily obtained. The obtained hematopoietic stem cells are useful for various research and screening systems.
本発明はまた、本発明の Psf l遺伝子欠損動物を利用した骨髄抑制疾患治療薬 のスクリーニング方法を提供する。 該方法は、 被験物質の投与条件下と非投与 条件下における動物の表現上の相違を指標として、 該被験物質の骨髄抑制疾患 治療薬としての効果を評価することができる。  The present invention also provides a screening method for a therapeutic agent for myelosuppressive disease using the Psfl gene-deficient animal of the present invention. The method can evaluate the effect of the test substance as a therapeutic agent for myelosuppressive disease using as an index the difference in expression of the animal between the test substance administration condition and the non-administration condition.
本発明により、 Psf l 遺伝子の機能が欠損した動物が提供される。 この Psf l 遺伝子欠損動物は骨髄機能抑制に起因する種々の症状を呈し、特に 5- FU等の投 与によって抗ガン剤投与後の重篤な骨髄抑制症状に良く似た症状を呈する。 し たがってかかる疾患の病態解明や薬剤開発、薬剤スクリーニングに有用である。 また、本発明の Psf l遺伝子欠損動物を利用すれば、容易に造血幹細胞を調製す ることができる。 ' 図面の簡単な説明  According to the present invention, an animal deficient in the function of the Psf l gene is provided. This Psf l gene-deficient animal exhibits various symptoms due to bone marrow function suppression, and particularly similar to severe myelosuppression after administration of an anticancer drug by administration of 5-FU or the like. Therefore, it is useful for elucidating the pathology of such diseases, drug development, and drug screening. In addition, hematopoietic stem cells can be easily prepared using the Psfl gene-deficient animal of the present invention. 'Brief description of the drawings
図 1は、 Psilタンパクの一次構造を示す。 N末端側から coiled- coi l ドメイ ン、 アルギニンに富む塩基性ドメイン、 PEST様ドメインがある。  Figure 1 shows the primary structure of the Psil protein. From the N-terminal side, there are coiled-coil domain, arginine-rich basic domain, and PEST-like domain.
図 2は、マウス各組織、骨髄細胞における Psf l遺伝子の発現解析結果を示す。 BM;骨髄。  Fig. 2 shows the results of expression analysis of the Psfl gene in mouse tissues and bone marrow cells. BM; bone marrow.
図 3 Aおよび 3 Bは、 Psf l遺伝子欠損マウスの各種組織内局在を示す。 msn; 間葉系細胞、 Hr;心臓、 AER; apical ectodermal ridge, DA; dorsal aorta。  3A and 3B show the localization in various tissues of Psfl gene-deficient mice. msn; mesenchymal cells, Hr; heart, AER; apical ectodermal ridge, DA; dorsal aorta.
図 4は、 NIH3T3細胞における細胞内局在を示す。  Figure 4 shows the subcellular localization in NIH3T3 cells.
図 5は、 Psil遺伝子欠損用夕ーゲッティングベクタ一のコンストラクトを示 す。 E ; EcoRI切断部位、 B; BamHI切断部位。 DT;ジフテリア毒素フラグメント A遺伝子、 neo;ネオマイシン耐性遺伝子。  Figure 5 shows the construction of the Psil gene deficient evening vector. E; EcoRI cleavage site, B; BamHI cleavage site. DT: Diphtheria toxin fragment A gene, neo: Neomycin resistance gene.
図 6 Aは、 サザンプロット解析 (上段)および PCR解析 (下段) の結果を示す (上段中左:野性型アレル、 右:変異アレル)。 図 6Bは着床後の胚 (胎生 6. 5 日) の組織切片を HE染色したものを示す。 図 7は、 Ps 遺伝子ホモ欠損 (- /- ) 胚と、 ヘテロ欠損 (+/- ) 胚の試験管内 培養の結果を示す。 Fig. 6A shows the results of Southern plot analysis (upper) and PCR analysis (lower) (upper middle left: wild-type allele, right: mutant allele). Fig. 6B shows HE-stained tissue sections of post-implantation embryos (embryo 6.5 days). Figure 7 shows the results of in vitro culture of Ps gene homo-deficient (-/-) embryos and hetero-deficient (+/-) embryos.
図 8は、図 7と同様に胚を 4日間培養し、その後 12時間 BrdUを取り込ませ、 固定後、 取り込まれた BrdU を特異抗体で検出した結果を示す。 盛んに分裂し BrdUを取り込んだ ICMを矢印で示す。  Fig. 8 shows the results of culturing embryos for 4 days, incorporating BrdU for 12 hours, and then detecting the incorporated BrdU with a specific antibody after fixation, as in Fig. 7. An ICM that is actively split and incorporated BrdU is indicated by an arrow.
図 9は、 Psfl遺伝子のヘテロ欠損マウスと野性型マウスの 5- FUを投与後の 9 A:生存率、 98 :血中1\1]^( 、 9 C:骨髄 MNCを比較したグラフである。 図 10は、 Psil遺伝子のヘテロ欠損マウスと野性型マウスの 5- FUを投与後 の骨髄中の細胞を FACSで解析したものである。 1.OAは骨髄細胞の形態を FSC および SSCで解析したものを示す。 10 Bは幹細胞集団について Mac- 1の発現 を解析したものである。 図中の四角で囲った領域に幹細胞が含まれる。 10 C は幹細胞の DNA含有量を解析したものを示す。 本明細書は、 本願の優先権の基礎である特願 2004-242022号の明 細書に記載された内容を包含する。 発明を実施するための最良の形態  Fig. 9 is a graph comparing 9 A: survival rate, 98: blood 1 \ 1] ^ (, 9 C: bone marrow MNC after administration of 5-FU in heterozygous mice lacking Psfl gene and wild type mice Figure 10 shows FACS analysis of bone marrow cells after 5-FU administration in Psil gene heterozygous and wild-type mice 1. OA analysis of bone marrow cell morphology by FSC and SSC 10 B is the analysis of the expression of Mac-1 in the stem cell population, and the stem cells are contained in the area enclosed by the square in the figure 10 C is the analysis of the stem cell DNA content This specification includes the contents described in the specification of Japanese Patent Application No. 2004-242022, which is the basis of the priority of the present application.
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
1. Psfl遺伝子欠損動物  1. Psfl gene deficient animals
本発明は、染色体上の Psfl遺伝子の機能が欠損している非ヒト哺乳動物に関 する。  The present invention relates to a non-human mammal deficient in the function of the Psfl gene on the chromosome.
本発明にかかる 「Psil遺伝子」 とは、 出芽酵母 Dpbllに関する研究で、 SLD5 に結合する因子(Partner of Sid Five) として見出された遺伝子である。 Sld5、 Psfl、 Psi2、 Psf3で形成される複合体は出芽酵母において DNA複製に不可欠で あることが報告されているが、 その詳細な機能はわかっていない。  The “Psil gene” according to the present invention is a gene found as a factor (Partner of Sid Five) that binds to SLD5 in research on the budding yeast Dpbll. The complex formed by Sld5, Psfl, Psi2, and Psf3 has been reported to be essential for DNA replication in budding yeast, but its detailed function is unknown.
Psil遺伝子は、 酵母のみならず、 マウス、 ヒト等の哺乳動物にもそのォーソ ログの存在が報告されている。 例えば、 ヒトの Psil ホモログは、 かずさ DNA バンクに KIAA0186として登録されている。  It has been reported that the Psil gene exists not only in yeast but also in mammals such as mice and humans. For example, the human Psil homolog is registered as KIAA0186 in Kazusa DNA Bank.
マウス Psfl 遺伝子は、 GenBank Accession No. AK013116 ( ypote tical protein KIAA0186 omologue) として登録されているものがあるが、 この配列 は発明者らが単離、同定したマウス Ps の CDSと完全に一致した。マウス Psil のゲノム遺伝子は、 7つのェクソンと 6つのイントロンを含み、 全長 196aaの アミノ酸からなる Psilタンパクをコードする(配列番号 1に本発明者が同定し た Psilの CDS (配列番号 2はそのアミノ酸配列) を示す)。 The mouse Psfl gene has been registered as GenBank Accession No. AK013116 (ypote tical protein KIAA0186 omologue). Was completely consistent with the CDS of mouse Ps isolated and identified by the inventors. The genomic gene of mouse Psil contains 7 exons and 6 introns, and encodes a Psil protein consisting of 196 aa amino acids in total length (SEQ ID NO: 1 is the Psil CDS identified by the present inventor (SEQ ID NO: 2 is the amino acid). Array)).
公共データベースにその配列が登録されていない動物であっても、 常法によ り、 既知の Psil遺伝子との相同性からその Psf l遺伝子をクローニングし、 配 列を決定することができる。 すなわち、 当該動物のゲノム]) NAライブラリーを 作製し、遺伝的に最も近い種に由来する既知の Psf l遺伝子、 またはその一部を プローブとして該ライブラリーをスクリーニングすれば、目的とする Ps Π遺伝 子を同定し、 配列を決定すればよい。  Even if an animal whose sequence is not registered in a public database, the Psfl gene can be cloned from the homology with a known Psil gene and sequenced by a conventional method. That is, the genome of the animal]) NA library is prepared, and the library is screened using a known Psfl gene derived from the genetically closest species or a part thereof as a probe. Identify the gene and determine its sequence.
本発明にかかる 「Psil遺伝子」 には、 上記のような Psil遺伝子の全てのォ —ソログを含み、 またゲノム DNAのみならず、 mRNA、 cDNAも含むものとする。 本発明において、「Psil遺伝子の機能が欠損している」とは、染色体上の Psil 遺伝子が破壊され、その機能が正常に発現されないことを意味する。すなわち、 Psf l遺伝子産物が全く発現されない場合だけでなく、当該遺伝子産物が発現さ れても Psilとして正常な機能を有しなければ、 「Psil遺伝子の機能が欠損して いる」 ことになる。 こうした Psf l遺伝子の破壊は、 Psil遺伝子上、 またはそ の転写調節領域やプロモーター領域を含む発現制御領域上の部分配列の欠失、 置換、 および または他の配列の挿入等の改変によって生じさせることができ る。  The “Psil gene” according to the present invention includes all orthologs of the Psil gene as described above, and includes not only genomic DNA but also mRNA and cDNA. In the present invention, “the function of the Psil gene is deficient” means that the Psil gene on the chromosome is destroyed and the function is not normally expressed. That is, not only when the Psfl gene product is not expressed at all, but also when the gene product is expressed, if it does not have a normal function as Psil, it means “the function of the Psil gene is deficient”. Such disruption of the Psfl gene must be caused by alterations such as deletion, substitution, and / or insertion of other sequences on the Psil gene or on its expression control region including its transcriptional regulatory region and promoter region. You can.
なお、 前記欠失、 置換、 または挿入を行う部位や、 欠失、 置換、 または挿入 される配列は、 Psil遺伝子の正常な機能が欠損しうる限り、特に限定されない。  The site where the deletion, substitution or insertion is performed, and the sequence where the deletion, substitution or insertion is performed are not particularly limited as long as the normal function of the Psil gene can be deleted.
Psf lゲノム遺伝子は長大であるため、そのコーディング領域の相当部分を欠失 あるいは置換するような変異は、確実に Psf l遺伝子の機能を損なわせることが できる。この Psf l遺伝子の機能を欠損させる手法については次項で詳細に説明 する。 Since the Psfl genomic gene is long, a mutation that deletes or replaces a substantial part of its coding region can surely impair the function of the Psfl gene. The method for deleting the function of the Psfl gene will be described in detail in the next section.
本発明の非ヒト哺乳動物は、前記 Psil遺伝子機能の欠損を染色体上の一方の アレル (ヘテロ) に有する。 両アレル (ホモ) での Psf l遺伝子機能の欠損は動 物にとつて致死的だからである。  The non-human mammal of the present invention has a defect in the Psil gene function in one allele (hetero) on the chromosome. This is because the loss of Psfl gene function in both alleles (homo) is lethal to animals.
また、 本発明にかかる 「非ヒト哺乳動物」 は、 ヒト以外の哺乳動物であれば 特に限定されないが、 マウス、 ラット、 ゥサギ等の齧歯動物が好ましく、 特にThe “non-human mammal” according to the present invention is a mammal other than human. Although not particularly limited, rodents such as mice, rats, and rabbits are preferred.
ES細胞が確立し、 遺伝子組換えが容易に実施できるマウスが最も好ましい。 Most preferred are mice in which ES cells are established and genetic recombination can be performed easily.
2 . Psf l遺伝子欠損動物の作製方法 2. Production method of Psf l gene deficient animals
本発明の Psf l遺伝子欠損動物は、 ジーンターゲッティング、 Cre- ΙοχΡシス テム、 体細胞クローン等の技術を利用することにより作製することができる。 2 . 1 ジーンターゲッティング  The Psfl gene-deficient animal of the present invention can be produced by using a technique such as gene targeting, Cre-XoX system, or somatic cell clone. 2.1 Gene targeting
ジーンターゲッティングは、 相同組換えを利用して染色体上の特定遺伝子に 変異を導入する手法である (Capeccc i, M. R. Science, 244, 1288-1292, 1989, Thomas, K. R. & Cpeccchi, M. R. Cel l, 44, 419-428, 1986)。  Gene targeting is a technique for introducing mutations into specific genes on chromosomes using homologous recombination (Capeccc i, MR Science, 244, 1288-1292, 1989, Thomas, KR & Cpeccchi, MR Cel, 44 419-428, 1986).
1 ) ターゲティングベクタ一の構築  1) Construction of one targeting vector
まず、 Psi l遺伝子を欠損させるための夕ーゲッティングベクターを構築する。 夕一ゲッティングベクターの構築に先立って、 使用する動物のゲノム DNAライ ブラリーを調製する。 このゲノム DNAライブラリ一は、 多型等による組換え頻 度の低下が起こらないよう、使用する動物の ES細胞、 または当該細胞が由来す る系統のゲノム DNAから作製したライブラリ一を用いる必要がある。 そのよう なライブラリ一としては市販のもの(例えば、 Stratagene社製 129Sv/Jゲノム ライブラリ一等)を用いてもよレ^ゲノムライブラリ一は、標的とする Psi l cDNA またはその部分配列をプローブとしてスクリーニングを行い、 Psi lゲノム DNA をクローニングする。  First, an evening-getting vector for deleting the Psi l gene is constructed. Prepare the genomic DNA library of the animal to be used prior to the construction of the getting vector. This genomic DNA library must be an ES cell of the animal used or a library made from genomic DNA of the strain from which the cell is derived so that the frequency of recombination is not reduced due to polymorphisms, etc. . A commercially available library (such as Stratagene's 129Sv / J Genome Library) can be used. The Genome Library is screened using the target Psi cDNA or a partial sequence as a probe. To clone Psi l genomic DNA.
クローニングされたゲノム DNAはシークェンシング、サザンプロッティング、 制限酵素消化等を行うことにより、 各ェクソンの位置を明示した制限酵素地図 を作成し、 変異導入部位等を決定する。 また、 ターゲッティングベクターに使 用する相同領域の外側には相同組換え体をスクリーニングするためのプローブ (external probe) を設定する。  The cloned genomic DNA is subjected to sequencing, Southern plotting, restriction enzyme digestion, etc. to create a restriction enzyme map that clearly shows the position of each exoon, and to determine the site of mutation introduction. In addition, a probe (external probe) for screening homologous recombinants is set outside the homologous region used for the targeting vector.
本発明において、染色体上に導入する変異(欠失、置換、 または挿入)は Psi l 遺伝子の正常な機能が損なわれる限り特に限定されない。 例えば、 欠失または 置換される配列は、 Psi l遺伝子のィントロン領域であってもェクソン領域であ つても、 あるいは Psi l遺伝子の発現制御領域であってもよい。 特に、 Psf l遺 伝子のェクソン領域の相当部分を欠失、 置換させるような変異であれば、 確実 に Psi l遺伝子の機能を欠損させることができる。また、挿入される他の配列も 特に限定されないが、以下のような各マーカー遺伝子配列が好適に用いられる。 ターゲッティングベクタ一は、 変異導入部位の 3 'および 5 '側の相同領域と ともに、 組み換え体を選択するための適当な選択マーカーを含む。 該マーカー としては、 例えば、 ネオマイシン耐性遺伝子 (pGI(neo、 pMC lneo等)、 ハイグロ マイシン Bホスホトランスフェラーゼ遺伝子等のポジテイブセレクションマー カー、 LacZや ;6ラク夕マ一ゼ遺伝子等の破壊対象遺伝子の発現レポーター、 単 純へルぺスウィルスチミジンキナーゼ遺伝子(HSV- TK)、ジフテリア毒素 Αフラ グメント (DT- A) 等のネガティブセレクションマーカー等が挙げられるが、 こ れらに限定されない。 また、 ベクターは相同領域の外側に、 ベクターを直鎖化 するための適当な制限酵素切断部位を含む。 In the present invention, the mutation (deletion, substitution, or insertion) introduced on the chromosome is not particularly limited as long as the normal function of the Psi l gene is impaired. For example, the sequence to be deleted or replaced may be an intron region or an exon region of the Psil gene, or an expression control region of the Psil gene. In particular, mutations that delete or replace a substantial part of the exon region of the Psf gene In addition, the function of the Psi l gene can be deleted. In addition, other sequences to be inserted are not particularly limited, but the following marker gene sequences are preferably used. The targeting vector contains an appropriate selectable marker for selection of the recombinant along with the 3 'and 5' homologous regions of the mutagenesis site. Examples of such markers include neomycin resistance genes (pGI (neo, pMC lneo, etc.), positive selection markers such as hygromycin B phosphotransferase gene, LacZ, and expression of genes to be disrupted such as; Negative selection markers such as reporter, simple herpesvirus thymidine kinase gene (HSV-TK), diphtheria toxin Α fragment (DT-A), etc. are not limited to these. Appropriate restriction sites for linearization of the vector are included outside the homologous region.
図 5にマウス Psi l遺伝子欠損用のターゲッティングベクターの一例を示す。 このコンストラクトは、 Psf l遺伝子のイントロン 4とイントロン 5の遺伝子配 列には変異を加えずに、 Psf l遺伝子のェクソン 5 (マウス Psi l遺伝子のコーデ ィング領域の約 20%に相当する)のほぼ全ての配列がレポーター遺伝子として の LacZ遺伝子とポジティブセレクションマーカーとしてのネオマイシン耐性 遺伝子に置換されるように構築されている。 また、 ネガティブセレクションマ 一力一としてジフテリア毒素 Aフラグメント (DT) が挿入されている。  Fig. 5 shows an example of a targeting vector for deletion of the mouse Psi l gene. This construct does not mutate the intron 4 and intron 5 gene sequences of the Psf l gene, and is almost identical to the exon 5 of the Psf l gene (which corresponds to about 20% of the coding region of the mouse Psi l gene). All sequences are constructed to replace the LacZ gene as a reporter gene and the neomycin resistance gene as a positive selection marker. The diphtheria toxin A fragment (DT) is inserted as a negative selection marker.
こうしたターゲッティングベクターの構築は、市販のプラスミドベクター(例 えば、 pBluescript l l (St ratagene製)等)を利用して好適に行うことができる。 2 ) ES細胞へのターゲッティングベクタ一の導入  Such a targeting vector can be suitably constructed using a commercially available plasmid vector (for example, pBluescript 11 (manufactured by St ratagene)). 2) Introduction of targeting vector into ES cells
次に、 構築されたターゲティングベクターを胚性幹細胞 (ES細胞) 等の全能 性を有する細胞に導入する。 ES細胞は、 マウス、 ハムスター、 ブタ等では細胞 株が樹立されており、 特にマウスでは、 129系マウス由来の K14株、 E14株、 D3 株、 AB- 1株、 Π株や、 R1株、 TT2株等、複数の細胞株が入手可能である。また、 マウスでは ES細胞に代えて胚性ガン腫細胞 (EC細胞) を利用することもでき る。  Next, the constructed targeting vector is introduced into a totipotent cell such as an embryonic stem cell (ES cell). ES cells have been established in mice, hamsters, pigs, etc. Especially in mice, K14 strain, E14 strain, D3 strain, AB-1 strain, rabbit strain, R1 strain, TT2 derived from 129 mice Multiple cell lines, such as strains, are available. In mice, embryonic carcinoma cells (EC cells) can be used instead of ES cells.
ES細胞は、 夕ーゲッティングベクターの導入に先立って、 適当な培地で培養 しておく。例えば、 マウス ES細胞であれば、 マウス繊維芽細胞等をフィーダ一 細胞として、 これに ES細胞用の液体培地 (例えば、 GIBC0製) を加えて共培養 する。 ES cells should be cultured in an appropriate medium prior to the introduction of the evening vector. For example, in the case of mouse ES cells, mouse fibroblasts and the like are used as feeder cells, and a liquid culture medium for ES cells (for example, manufactured by GIBC0) is added and co-cultured. To do.
ES 細胞へのターゲッティングベクタ一の導入は、 エレクト口ポレーシヨン、 マイクロインジェクション、 リン酸カルシウム法等、 公知の遺伝子導入法によ り実施することができる。 ターゲッティングベクタ一が導入された ES細胞は、 ベクタ一中に挿入されたマーカ一により容易に選択することができる。例えば、 ネオマイシン耐性遺伝子をマーカ一として導入した細胞であれば、 G418を加え た ES細胞用培地で培養することにより、一次セレクシヨンを行うことができる。 夕ーゲッティングべクターが導入された ES細胞では、 相同組換えによって、 染色体上の Psi l遺伝子の一部が該ベクターで置換され、 内因性の Psf 1遺伝子 が破壊される。 所望の相同組換えがなされたか否かは、 サザンプロティングや PCR法等を利用したジエノタイプ解析によって判定できる。 サザンプロッティ ングによるジエノタイプ解析は、 変異導入部位の外側に設定したプロ一プ (external probe) を用いて行うことができる。 PCR法によるジエノタイプ解 析は、それぞれ野性型と変異型 Ps f l遺伝子の特異的増幅産物を検出することに より実施できる。 こうして夕ーゲッティングベクターが適切に導入された ES 細胞は、 さらに次の段階に備えて培養しておく。  Introduction of the targeting vector into ES cells can be carried out by a known gene transfer method such as electoral positioning, microinjection, calcium phosphate method or the like. ES cells into which a targeting vector has been introduced can be easily selected with a marker inserted into the vector. For example, in the case of a cell in which a neomycin resistance gene is introduced as a marker, primary selection can be performed by culturing in a medium for ES cells supplemented with G418. In ES cells into which an evening-targeting vector has been introduced, a part of the PsiI gene on the chromosome is replaced with the vector by homologous recombination, and the endogenous Psf1 gene is destroyed. Whether or not the desired homologous recombination has been achieved can be determined by dienotype analysis using Southern plotting, PCR method or the like. Southern blotting can be performed using a probe (external probe) set outside the site of mutagenesis. Dienotype analysis by PCR can be performed by detecting specific amplification products of wild-type and mutant Psfl genes, respectively. ES cells into which the evening-getting vector has been appropriately introduced are cultured for the next stage.
3 ) キメラ動物の作製  3) Production of chimeric animals
夕ーゲッティングベクタ一が導入された ES細胞 (組換え ES細胞) は、 ES細 胞が由来する系統とはコートカラーが明らかな相違を有する別な系統由来の初 期胚に導入し、 キメラ動物として発生させる。 例えば、 マウスであれば、 ァグ —チ色の毛色を有する 129系由来の ES細胞に対しては、黒色の毛色を有し、マ 一力一として利用できる各種遺伝子座が 129 系マウスとは異なっている C57BL/6 マウス等の初期胚を用いることが望ましい。 これにより、 キメラマウ スはその毛色によって、 キメラ率を判断することができる。  An ES cell into which an evening-getting vector has been introduced (recombinant ES cell) is introduced into an early embryo derived from a different strain that has a distinct coat color from the strain from which the ES cell is derived. Generate as an animal. For example, in the case of a mouse, 129 strain-derived ES cells that have a gray hair color have various loci that have a black hair color and can be used as the best. It is desirable to use early embryos such as different C57BL / 6 mice. Thus, the chimera mouse can determine the chimera rate based on its hair color.
ES 細胞の初期胚への導入は、 マイクロインジェクション法 (Hogan, B. et al. Manipulat ing the Mouse Embryo Cold Spring Habor Laboratory Press, 1988) や、 ァグリゲーシヨン法 (Andra, N. et al. Proc. Nat l. Acad. Sci. USA, 90, 8424-8428, 1993, Stephen, A. W. et al. Proc. Nat l. Acad. Sc i. USA, 90, 4582-4585, 1993) 等により行うことができる。  ES cells can be introduced into early embryos using the microinjection method (Hogan, B. et al. Manipulating the Mouse Embryo Cold Spring Habor Laboratory Press, 1988) or the aggregation method (Andra, N. et al. Proc. Natl. Acad. Sci. USA, 90, 8424-8428, 1993, Stephen, AW et al. Proc. Natl. Acad. Sci. USA, 90, 4582-4585, 1993) and the like.
マイクロインジェクション法は、 ES細胞を 8細胞期胚〜胚盤胞 (ブラストシ スト) に直接注入する方法である。 すなわち、 動物より採取した胚に、 マイク 口マニピュレータ一等を用いて組換え ES 細胞を顕微鏡下で直接注入してキメ ラ胚を作製する。 このキメラ胚を、 仮親 (偽妊娠動物) の子宮に移植し、 発生 させれば、 所望のキメラ動物を得る^とができる。 The microinjection method uses ES cells from the 8-cell embryo to the blastocyst (blastocyst) This is a method of direct injection into the strike. In other words, a recombinant embryonic stem cell is directly injected under a microscope into an embryo collected from an animal using a microphone-type manipulator or the like to produce a chimeric embryo. If this chimeric embryo is transplanted into the uterus of a foster parent (pseudopregnant animal) and developed, a desired chimeric animal can be obtained.
一方、 ァグリゲ一シヨン法では、 透明帯を除去した 1〜2個の 8細胞期胚と ES細胞を共培養し、 凝集させてキメラ胚を得る。 このキメラ胚を、 仮親 (偽妊 娠動物) の子宮に移植し、 発生させれば、 キメラ動物を得ることができる。 4 ) Psf l遺伝子欠損動物の作製  On the other hand, in the Agrigesion method, one or two 8-cell embryos from which the zona pellucida has been removed and ES cells are co-cultured and aggregated to obtain chimeric embryos. If this chimeric embryo is transplanted into the uterus of a foster parent (pseudopregnant animal) and generated, a chimeric animal can be obtained. 4) Production of Psf l gene deficient animals
仮親から得られたキメラ動物は、 さらに同系の野性型動物と交配する。 得ら れる動物の約半分は、 Psil遺伝子欠失染色体をへテロで有するはずである。 各 個体のジエノタイプは、 毛色等の外見上の特徴で一時判定できるほか、 前述し たサザンブロッテイングや PCR法を利用したジエノタイプ解析によつて決定す ることができる。 こうして、 ヘテロ型の Psil遺伝子欠損動物が同定されたら、 このへテロ型の Psf l遺伝子欠損動物同士を交配して、 Psil遺伝子の欠損をホ モで有する動物を得ることができる。  Chimera animals obtained from foster parents are further mated with wild-type animals of the same strain. About half of the resulting animals should have heterozygous Psil gene deleted chromosomes. The dienotype of each individual can be determined temporarily by appearance characteristics such as hair color, and can also be determined by the above-described Southern blotting or dienotype analysis using the PCR method. Thus, once a heterozygous Psil gene-deficient animal is identified, the heterozygous Psfl gene-deficient animals can be crossed to obtain an animal having a Psil gene deficiency in the home.
上記のようにして作製された Psf l遺伝子欠損動物の子孫も、染色体上の Psil 遺伝子の機能が欠損している限り、 本発明の Psf l遺伝子欠損動物に含まれる。 2 . 2 Cre-loxPシステムの利用  Progeny of the Psfl gene-deficient animal produced as described above are also included in the Psfl gene-deficient animal of the present invention as long as the function of the Psil gene on the chromosome is deficient. 2.2 Use of Cre-loxP system
ジーンターゲッティングにバクテリオファージ P1由来の Cre- ΙοχΡシステム を利用して、 部位特異的、 時期特異的に標的遺伝子を欠損させる方法 (Kulm R. et al. , Science, 269, 1427-1429, 1995) もある。 loxP (locus of X-ing-over) 配列は 34塩基対からなる DNA配列で Cre (Causes recombinat ion) 組換え酵素 の認識配列である。遺伝子上の 2つの loxP配列は Cre蛋白の存在下で特異的組 換えを起こす。すなわち、欠損させたい標的遺伝子を loxPで挟んだものに置換 し、 さらに Cre発現ベクターを組み込めば、 部位特異的 ·時期特異的な Cre蛋 白の産生により、 loxPで挟まれた標的遺伝子を欠失させることができる。  There is also a method for site-specific and time-specific deletion of target genes (Kulm R. et al., Science, 269, 1427-1429, 1995) using the Cre- オ フ ァ ー οχΡ system derived from bacteriophage P1 for gene targeting. is there. The loxP (locus of X-ing-over) sequence is a DNA sequence consisting of 34 base pairs and is a recognition sequence for Cre (Causes recombinat ion) recombination enzyme. The two loxP sequences on the gene undergo specific recombination in the presence of the Cre protein. In other words, if the target gene to be deleted is replaced with a loxP sandwiched gene, and a Cre expression vector is incorporated, the target gene sandwiched between loxP is deleted due to the production of site-specific and time-specific Cre proteins. Can be made.
例えば、前項 2 . 1の 1 )に準じて欠損させる Psf l遺伝子領域の 5 '側に loxP 遺伝子を 3' 側に loxP遺伝子で挟んだマーカー遺伝子(ネオマイシン耐性遺伝 子等) を組み込んだターゲッティングベクターを.作製し、 ES 細胞に導入する。 ES細胞はマーカ一による選択の後、サザンブロッテイングあるいは PCR法によ るジエノタイプ解析を行って相同組換えを確認する。この相同組換え ES細胞に、 さらに Cre蛋白を特異的プロモーターに連結した Cre発現べクタ一を導入する。 得られた ES細胞から、 ΙοχΡ組換えによってマーカー遺伝子のみが欠失し、 Psf l 遺伝子領域は欠失していない ES細胞クローンを同定する。 この ES細胞を前項 2 . 2の 3 ) および 4 ) に準じて動物に導入し、 Cre- ΙοχΡ組換え動物を得る。 あるいは、 Psf l '遺伝子両端に ΙοχΡ遺伝子を組み込んだ夕ーゲッティングべ クタ一を導入した ΙοχΡ導入組換え動物と、 Cre発現ベクターを導入した Cre発 現組換え動物を別個に作製し、 両者を交配することによって、 Cre- ΙοχΡ組換え 動物を作製してもよい。 For example, a targeting vector incorporating a marker gene (such as a neomycin resistance gene) sandwiched between the loxP gene on the 5 'side and the loxP gene on the 3' side of the Psfl gene region to be deleted according to 1) of the previous section 2.1). Create and introduce into ES cells. ES cells can be selected by Southern blotting or PCR after selection by marker. To confirm homologous recombination. A Cre expression vector in which Cre protein is linked to a specific promoter is introduced into the homologous recombinant ES cells. From the obtained ES cells, an ES cell clone in which only the marker gene is deleted and the Psfl gene region is not deleted is identified by ΙοχΡ recombination. This ES cell is introduced into an animal according to 3) and 4) in the previous section 2.2 to obtain a Cre-ΙοχΡ recombinant animal. Alternatively, ΙοχΡ-recombinant recombinant animals that have introduced a vector that has ΙοχΡ genes at both ends of the Psf l 'gene and Cre-expressed recombinant animals that have introduced the Cre expression vector are prepared separately and mated. Depending on the situation, Cre--οχΡ recombinant animals may be produced.
こうして得られた Cre - ΙοχΡ組換え動物は、 Cre蛋白の発現に応じて、 部位特 異的、 時期特異的に Psf l遺伝子を欠損しうる。 したがって、 特定時期、 特定部 位における Psil遺伝子の機能解析に極めて有用である。  The Cre- CreοχΡ recombinant animal thus obtained can be deficient in the Psfl gene in a site-specific and time-specific manner depending on the expression of the Cre protein. Therefore, it is extremely useful for functional analysis of the Psil gene at a specific time and at a specific site.
2 . 3 体細胞クローン  2.3 Somatic cell clones
ES細胞が利用できない動物の場合、体細胞クローン(I. Wi lmut et al, Nature, Vol. 385, 810-813, 1997、 A. E. Schnieke et al, Science, Vol. 278, 2130-2133, 1997)を利用して Psil遺伝子欠損動物を作製することも可能である。体細胞ク ローンとは、 体細胞から取り出した核を、 脱核した未受精卵に移植してクロー ン胚を作製し、 このクローン胚を仮親の子宮に移植して発生させたクローンで ある。 この体細胞クローンに遺伝子導入技術を組み合わせれば、 所望の組換え 動物クローンを得ることができる。すなわち、予め Psf l遺伝子を欠損させる組 換え操作を行った体細胞から核を取り出し、 これを脱核した未受精卵に移植し て、 クローン胚を作製する。 このクローン胚を仮親 (偽妊娠動物) の子宮に移 植して、体細胞クローン動物を得れば、 この動物は Psil遺伝子の欠損を有する ことになる。  For animals where ES cells are not available, somatic cell clones (I. Wilmut et al, Nature, Vol. 385, 810-813, 1997, AE Schnieke et al, Science, Vol. 278, 2130-2133, 1997) It is also possible to produce Psil gene deficient animals. A somatic cell clone is a clone generated by transplanting a nucleus extracted from a somatic cell into an enucleated unfertilized egg to produce a clone embryo, and then transplanting this cloned embryo into a foster mother's uterus. When this somatic cell clone is combined with a gene transfer technique, a desired recombinant animal clone can be obtained. That is, nuclei are removed from somatic cells that have been subjected to a recombination procedure that previously deletes the Psfl gene, and transplanted into enucleated unfertilized eggs to produce cloned embryos. If this cloned embryo is transferred to the uterus of a foster parent (pseudopregnant animal) to obtain a somatic cell cloned animal, this animal will have a Psil gene deficiency.
3 . Psil遺伝子欠損動物の表現型 3. Phenotype of Psil gene deficient animals
本発明の Psi l遺伝子欠損動物において、同腹の野生型動物とは異なる表現型 が現れた場合、それは Psf l遺伝子の欠損に起因することが予測される。例えば、 Psi l遺伝子欠損マウスでは、 以下に代表される変化が認められた。  In the Psi l gene-deficient animal of the present invention, when a phenotype different from that of the wild-type animal of the same litter appears, it is predicted that it is caused by the deficiency of the Psfl gene. For example, changes represented by the following were observed in mice lacking the Psi l gene.
1 ) ホモ欠損による着床後の早期致死 2 )ヘテロ欠損マウスにみられる骨髄抑制(少量の 5- FU投与で骨髄機能抑制で 致死となる) 1) Early lethality after implantation due to homodeficiency 2) Bone marrow suppression seen in heterozygous mice (Small 5-FU administration kills bone marrow function and is fatal)
4 . Psil遺伝子欠損動物の利用方法 4. Use of Psil gene deficient animals
1 ) 骨髄抑制モデル動物  1) Myelosuppression model animal
従来より造血幹細胞移植には致死量放射線照射し骨髄機能を抑制する手段が 一般的に使われてきたが、 本発明の Psil遺伝子欠損マウスでは少量の 5- FU投 与で骨髄機能抑制により致死となるため、 放射線照射をしなくても造血機能を 観察する実験系に使用することができる。  Conventionally, a means of suppressing bone marrow function by irradiation with a lethal dose of radiation has generally been used for hematopoietic stem cell transplantation, but in a Psil gene-deficient mouse of the present invention, a small amount of 5-FU was administered to suppress the bone marrow function. Therefore, it can be used in an experimental system for observing the hematopoietic function without irradiation.
白血病ゃ抗ガン剤投与後、 骨髄抑制が回復せず死亡する症例がある。 Psi l遺 伝子欠損マウスに 5-FU投与した後の状況はこうした症例に類似していること から、本発明の Ps Π遺伝子欠損動物をこのような重度骨髄抑制モデルとして使 用することができる。 当該モデル動物は、 骨髄抑制を回復させる薬剤 (骨髄機 能改善剤) の開発やこうした薬剤のスクリ一二ングに使用できる。  In some cases, leukemia and anti-cancer drugs are administered, but bone marrow suppression does not recover and death occurs. Since the situation after 5-FU administration to Psi l gene-deficient mice is similar to these cases, the Ps Π gene-deficient animal of the present invention can be used as such a severe myelosuppression model. . The model animal can be used for the development of drugs that restore myelosuppression (improving bone marrow function) and for screening such drugs.
例えば、被験物質の投与条件下と非投与条件下で Psi l遺伝子欠損動物を飼育 し、 該被験物質の投与条件下と非投与条件下での骨髄機能の変化を骨髄 MN C (単核球)等を指標として比較評価する。あるいは、被験物質を 5- FU等の杭がん 剤と同時投与して、 動物の生存率や骨髄機能の変化を、 同様に被験物質の投与 条件下と非投与条件下で比較評価することにより、 被験物質の骨髄機能改善剤 としての効果を評価することができる。  For example, Psi l gene-deficient animals are raised under test substance administration conditions and non-administration conditions, and changes in bone marrow function between the test substance administration conditions and non-administration conditions are determined by bone marrow MN C (mononuclear cells). Etc. are used as indicators. Alternatively, by co-administering the test substance with a pile cancer drug such as 5-FU, and similarly evaluating the change in animal survival rate and bone marrow function under the test substance administration condition and non-administration condition The effect of the test substance as a bone marrow function improving agent can be evaluated.
2 ) 造血幹細胞の調整  2) Preparation of hematopoietic stem cells
本発明の Psf 1欠損マウスに 5-FIJを投与すると、 相対的に造血幹細胞が骨髄 中に増加するため、 細胞をソートすることなく簡単に造血幹細胞が高頻度に含 まれる細胞集団を得ることができる。 得られる造血幹細胞は、 種々の実験や薬 剤スクリーニングに有用である。  When 5-FIJ is administered to the Psf 1-deficient mouse of the present invention, hematopoietic stem cells are relatively increased in the bone marrow, so that it is possible to easily obtain a cell population containing hematopoietic stem cells at a high frequency without sorting the cells. Can do. The resulting hematopoietic stem cells are useful for various experiments and drug screening.
3 ) 幹細胞の試験管内増殖  3) In vitro proliferation of stem cells
Psil遺伝子はいわゆる幹細胞レベルの細胞に広く発現しており、様々な幹細 胞の DNA複製を制御していると予測される。 したがって、 Psil 遺伝—子の制御 (Psil遺伝子の強制的高発現など) により、 幹細胞の自己複製ノ増殖を誘導で きる可能性がある。 すなわち、 Psf 1遺伝子は、 造血幹細胞をはじめ種々の幹細 胞の試験管内増幅技術にも応用できる。 特に、 近年、 がんはがん幹細胞による 幹細胞システムの異常によると考えられているが、 Psil遺伝子の機能抑制によ つて、 がん幹細胞の細胞死誘導法も開発することができる。 The Psil gene is widely expressed in cells at the so-called stem cell level, and is predicted to control DNA replication in various stem cells. Therefore, the regulation of Psil genes—such as forced high expression of Psil genes—may induce stem cell self-renewal. In other words, the Psf 1 gene is expressed in various stem cells including hematopoietic stem cells. It can also be applied to in vitro amplification technology for vesicles. In particular, in recent years, cancer is thought to be due to abnormalities in the stem cell system caused by cancer stem cells. By suppressing the function of the Psil gene, a method of inducing cancer stem cell death can also be developed.
4) その他  4) Other
本発明の Psil遺伝子欠損動物は、 個体レベルでの Psilの機能や作用メカ二 ズムの解明に有用である。 こうした個体レベルでの機能解明には、 恒常的な Psilの発現抑制に加えて、 前述した Cre-】oxPシステム等を利用した、 部位特 異的、 時期特異的 Psilの発現抑制が有用である。  The Psil gene-deficient animal of the present invention is useful for elucidating the function and action mechanism of Psil at the individual level. In order to elucidate the function at the individual level, in addition to the constant suppression of Psil expression, it is useful to suppress the expression of site-specific and time-specific Psil using the Cre-] oxP system described above.
Psfl遺伝子欠損胚は Cdc45欠損胚と良く似た表現上の変化を示した。. Cdc45 は DNA複製の開始に不可欠なタンパクであり、 Psflも同様の機能を有すること が示唆される。 したがって、 Psi】タンパクや Psil遺伝子は、 骨髄機能抑制や それに伴う疾患の治療はもちろん、 DNA複製の異常やそれに伴う疾患の病態解 明や治療にも利用可能と考えられる。 実 施例 '  Psfl gene-deficient embryos showed similar phenotypic changes to Cdc45-deficient embryos. Cdc45 is an essential protein for initiation of DNA replication, suggesting that Psfl has a similar function. Therefore, Psi protein and Psil gene can be used not only for the suppression of bone marrow function and treatment of diseases associated therewith, but also for the elucidation and treatment of DNA replication abnormalities and associated diseases. Example '
以下、 実施例により本発明についてさらに詳細に説明するが、 本発明はこれ らの実施例に制限されるものではない。  EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
〔実施例 1〕 Psilの発現解析  [Example 1] Expression analysis of Psil
1. 試験方法  1. Test method
(1) RT- PCR法によるマウス Psflの発現解析  (1) Expression analysis of mouse Psfl by RT-PCR
マウスの種々の組織 (脳、 心臓、 肺、 胸腺、 肝臓、 脾臓、 骨髄、 精巣、 卵巣) から全 RNAを抽出し、 Superscriptll逆転写酵素と oligod(T) (共に Invitrogen 製) を用いて cDNAを合成した。 この cDNAを錶型にして ExTaQ DNAポリメラー ゼ (TaKaRa製) を用いて PCRを行った。 GAPDHの増幅には 5' -acc acagtccat gcc ate ac-3' (配列番号 3) と 5, -tec acc acc ctg ttg ctg ta-3' (配列番 号 4) を、 Psflの増幅には 5' -tta aga aat aga cgc tgc acg a-3' (配列番 号 5) と 5' -tgc cat cat caa ctt caa att c-3' (配列番号 6) をプライマ 一に用いた。  Total RNA was extracted from various mouse tissues (brain, heart, lung, thymus, liver, spleen, bone marrow, testis, ovary) and cDNA was extracted using Superscriptll reverse transcriptase and oligod (T) (both from Invitrogen). Synthesized. PCR was performed using ExTaQ DNA polymerase (manufactured by TaKaRa) with this cDNA as a saddle. 5 '-acc acagtccat gcc ate ac-3' (SEQ ID NO: 3) and 5, -tec acc acc ctg ttg ctg ta-3 '(SEQ ID NO: 4) for GAPDH amplification, 5' for Psfl amplification -tta aga aat aga cgc tgc acg a-3 '(SEQ ID NO: 5) and 5'-tgc cat cat caa ctt caa att c-3' (SEQ ID NO: 6) were used as primers.
同様に、 骨髄細胞を表面マーカにより FACS (べクトン製) を用いて純化し同 様に RT- PCRを行った。分化抗原 (Lin) には Mac- 1、 Gr- 1、 Terll9、 B220、 CD4、 CD8 を選んだ。 分化抗原および Sea- 1 と c-kit に対する特異抗体はすべて Pharmingen製のものを用いた。 また、 白血病細胞株 (BaF3) およびメラノ一マ 細胞株 (B16) についても同様に RT-PCR法で Psilの発現を解析した。 Similarly, bone marrow cells were purified with surface markers using FACS (Becton) and RT-PCR was performed in the same manner. Differentiating antigens (Lin) include Mac-1, Gr-1, Terll9, B220, CD4, I chose CD8. All differentiation antigens and specific antibodies against Sea-1 and c-kit were from Pharmingen. The expression of Psil was also analyzed by RT-PCR in the leukemia cell line (BaF3) and melanoma cell line (B16).
(2) 免疫染色法による Psflの胎児組織内局在の解析  (2) Analysis of Psfl localization in fetal tissues by immunostaining
胎生 11日のマウスのパラフィン包埋切片を作成し、 抗 Psfl抗体を用いて免疫 染色法を行った。 図 3 (A) の実験には 2次抗体にピオチンで標識された抗ゥサ ギ IgG抗体を、 3次試薬に ABC- HRP複合体 (Dako製)を用いた。 発色には DAB (Sigma製)を用いた。 図 3 (B) では Cy3で標識された抗ゥサギ IgG抗体を 2次 抗体に用いた。 Paraffin-embedded sections of embryonic day 11 mice were prepared and immunostained using anti-Psfl antibodies. In the experiment of Fig. 3 (A), anti-rabbit IgG antibody labeled with piotin was used as the secondary antibody, and ABC-HRP complex (manufactured by Dako) was used as the tertiary reagent. DAB (manufactured by Sigma) was used for color development. In Fig. 3 (B), an anti-rabbit IgG antibody labeled with Cy3 was used as the secondary antibody.
(3) Psilの細胞内局在 (細胞周期との関係)  (3) Subcellular localization of Psil (Relationship with cell cycle)
NIH3T3細胞について図 3 (B) と同様に蛍光免疫染色を行った。 染色体 DNAは DAPI (ナカライ製) を用いて染色した。  NIH3T3 cells were subjected to fluorescent immunostaining in the same manner as in FIG. 3 (B). Chromosomal DNA was stained with DAPI (Nacalai).
2. 試験結果 2. Test results
(1) マウス Psflの発現解析結果  (1) Results of mouse Psfl expression analysis
図 2にマウス Psflの発現解析結果を示す。 マウスの成体組織では Psfl転写 産物は骨髄、 胸腺、 精巣、 卵巣で確認された。 骨髄細胞では分化 ·成熟した細 胞群(Lii^では Psilの発現は検出されなかったが、未分化な細胞群(Lin+KIT÷、 Lin— KIT÷Sca- Γ、 LinllT^SCA-l1)のうち特に Lin ITおよび Lin— KIT+Sca- 1—の細胞 群で Psilの高い発現を検出した。 一方、 腫瘍細胞株では恒常的に Psflの発現 が検出された。 Figure 2 shows the results of mouse Psfl expression analysis. In adult mouse tissues, Psfl transcripts were found in bone marrow, thymus, testis, and ovary. Differentiated and mature cells in bone marrow cells (Pii expression was not detected in Lii ^, but undifferentiated cells (Lin + KIT ÷ , Lin—KIT ÷ Sca- Γ, LinllT ^ SCA-l 1 ) In particular, high expression of Psil was detected in the Lin IT and Lin-KIT + Sca-1— cell groups, while Psfl expression was continually detected in tumor cell lines.
(2) マウス Psflの組織内局在  (2) Localization of mouse Psfl in tissue
図 3に Psflの胎児組織内局在を示す。 .胎児組織では間葉系細胞、 AER領域、 心臓、 背側大動脈に特異的に Psilが発現していた。  Figure 3 shows the localization of Psfl in fetal tissues. In fetal tissues, Psil was expressed specifically in mesenchymal cells, AER region, heart and dorsal aorta.
(3) マウス Psilの細胞内局在 (細胞周期との関係)  (3) Intracellular localization of mouse Psil (Relationship with cell cycle)
図 4に NIH3T3細胞における Psflの細胞内局在を示す。 Psflの細胞内局在は 細胞周期に依存して変化していた。すなわち Psilは、間期では細胞核に局在し、 M'期では細胞質に局在していた。  Figure 4 shows the subcellular localization of Psfl in NIH3T3 cells. The subcellular localization of Psfl varied depending on the cell cycle. In other words, Psil was localized in the nucleus during the interphase and in the cytoplasm during the M ′ phase.
〔実施例 2〕 Psfl遺伝子欠損マウスの作製 1 . 試験方法 [Example 2] Preparation of Psfl gene-deficient mice 1. Test method
(1) Psf l遺伝子欠損マウスの作製  (1) Generation of Psf l gene-deficient mice
ジーン夕ーゲッティングにより、以下のようにして Psf l遺伝子欠損マウスを 作製した。 まず、 129SV/Jマウスのゲノムライブラリー (Stratagene製) を、 前述の mouse Psf l cDNA配列 (配列番号 1 ) をプローブとしてスクリーニング を行い、マウス Psi lゲノムクローンを複数個同定した。得られたクローンより DNAを抽出し、 pBluescript l l (Stratagene製) にサブクローニングした。 配列 決定、制限酵素消化、サザンブロット法等を行い Psf l遺伝子の制限酵素マップ を作製した。得られた Psf lのゲノム断片を用いて以下のようにターゲッティン グベクタ一を作製した。 LacZ遺伝子 (レポーター; pCMVb (Stratagene製) に 由来) と pGKneo (ポジティブセレクションマーカー;金沢大、 浅野雅秀より分 与)をつないだ LacZ - Neoカセットに、得られたゲノム断片を錶型にて PCR法で 増幅した Short Arm (イントロン 5の 5 ' 末端領域) および LA2 (イントロン 4 の 3' 末端領域)をそれぞれ 3 '、 5 ' 側につないだ。 さらに LA2の 5 ' 側にィン トロン 4の一部配列とネガティブセレクションマーカーとしてジフテリァ毒素 フラグメント A遺伝子 (DT) を組換えた。 このタ一ゲティングベクタ一により ェクソン 5のほぼ全てが LacZ_Neoカセッ卜に置き換わり全長の約 20%のアミ ノ酸が欠失することになる (図 5 )。  Psfl gene-deficient mice were prepared by gene evening-targeting as follows. First, a genomic library of 129SV / J mice (Stratagene) was screened using the above mouse Psfl cDNA sequence (SEQ ID NO: 1) as a probe, and a plurality of mouse Psl genomic clones were identified. DNA was extracted from the resulting clone and subcloned into pBluescript l (Stratagene). Sequencing, restriction enzyme digestion, Southern blotting, etc. were performed to prepare a restriction enzyme map of the Psfl gene. Using the obtained Psfl genomic fragment, a targeting vector was prepared as follows. The LacZ gene (reporter; derived from pCMVb (Stratagene)) and pGKneo (positive selection marker; distributed by Kanazawa Univ., Masahide Asano) were linked to the LacZ-Neo cassette and the resulting genomic fragment was PCR-processed in a saddle type. The short arm (5 'end region of intron 5) and LA2 (3' end region of intron 4) amplified in step 3 were connected to the 3 'and 5' sides, respectively. Furthermore, a partial sequence of intron 4 and a diphtheria toxin fragment A gene (DT) as a negative selection marker were recombined on the 5 ′ side of LA2. With this targeting vector, almost all of exon 5 is replaced with LacZ_Neo cassette and approximately 20% of the amino acid is deleted (Fig. 5).
この夕ーゲティングベクターにより、 GenBank Access ion No. AL808125に示 されるマウス Psf lゲノム DNAの塩基配列中、 92781- 92897番目の塩基配列 (ェ キソン 5) が欠失し、 該遺伝子がコードする全長 196 アミノ酸のうち、 39個の ァミノ酸が欠失することになる。  This evening-getting vector deletes the base sequence of 92781-92897 (exon 5) in the base sequence of mouse Psfl genomic DNA shown in GenBank Accession No. AL808125. Of the 196 amino acids, 39 amino acids will be deleted.
調製した夕一ゲッティングコンストラクトはエレクトロポレーシヨンにより 129系マウス由来の ES細胞 (E14. 1 ;金沢大、 浅野より分与) に導入し、 マウス 繊維芽細胞をフィーダ一細胞とする G418を含む ES細胞用培地 (GIBC0製) で 選抜した。選抜された ES細胞は、 さらに培養した後、相同組換え体を同定する ために、 常法に従って DNA抽出を行った。 抽出された DNAは、 前述のサザンプ 口ット解析により Genotypeスクリ一二ングを行った。 サザンプロット解析は、 DNAを EcoRIで消化後、 標識した external probe (3 ' probe)を用いて行った。 この external probeには、夕一ゲッティングベクターに用いる相同領域の外側 に位置するェキソン 7 を用いた。 サザン解析により、 野性型アレルからは約 7.5kb 変異アレルからは約 12.3kbのバンドが検出された (図 6 A)。 The prepared evening construction construct was introduced into ES cells derived from 129 mice by electroporation (E14.1; distributed by Kanazawa Univ., Asano), and contains G418 with mouse fibroblasts as feeder cells. Selection was performed with ES cell culture medium (GIBC0). The selected ES cells were further cultured and then subjected to DNA extraction according to a conventional method in order to identify homologous recombinants. The extracted DNA was subjected to Genotype screening by the above-mentioned Southern analysis. Southern plot analysis was performed using a labeled external probe (3 'probe) after digesting DNA with EcoRI. This external probe contains an outside of the homologous region used for the evening get vector. Exon 7 located at is used. Southern analysis revealed an approximately 7.5 kb band from the wild-type allele and an approximately 12.3 kb band from the mutant allele (Figure 6A).
相同組換えが確認された ES細胞は、常法に従い C57B6/Jマウスから摘出した 8 細胞期胚と凝集させてキメラ胚を作製した。 キメラ胚は、 仮親である偽妊娠 ICRマウスの子宮角に移植してキメラマウスを樹立した。 次いで、 得られたキ メラマウスの雄をさらに別の野性型 C57B6/Jマウスの雌と交配して F1マウスを 得た。  ES cells in which homologous recombination was confirmed were aggregated with 8-cell embryos excised from C57B6 / J mice according to a conventional method to prepare chimeric embryos. The chimeric embryo was established by transplanting the chimeric embryo into the uterine horn of a pseudopregnant ICR mouse, which was a foster parent. Next, the male mouse of the obtained mouse was mated with another female of wild type C57B6 / J mouse to obtain F1 mouse.
さらに、 F1マウスから Psfl遺伝子欠損を有するマウス (Psil遺伝子欠損を ヘテロで有する:ヘテロマウス) を選別し、 このへテロマウス同士をさらに交 配した。  Furthermore, a mouse having a Psfl gene deficiency (having a Psil gene deficiency in a heterozygote) was selected from F1 mice, and these hetero mice were further mated.
マウスの Genotypingは、マウス尾部より常法に従って抽出した DNAを用いて、 PCR法により行った。 PCR条件、および用いたプライマ一は以下のとおりである。 野生型ァリル:  Genotyping of mice was performed by PCR using DNA extracted from the mouse tail according to a conventional method. PCR conditions and the primers used are as follows. Wild Aril:
Forward primer: 5' -ggaattcggccccccaaaagcctatatat-3' (配列番号 7) ReversPsf limer: 5' -catcccagatcgttcttgttaacc-3' (配歹 [J番号 8) 変異ァリル:  Forward primer: 5 '-ggaattcggccccccaaaagcctatatat-3' (SEQ ID NO: 7) ReversPsf limer: 5 '-catcccagatcgttcttgttaacc-3' (layout [J number 8) Mutant aryl:
Forward primer: 5, -ccgaacgcgtataacttcgtaiagc-3' (配歹 !1番号 9)  Forward primer: 5, -ccgaacgcgtataacttcgtaiagc-3 '(Care! 1 number 9)
ReversPsf limer: 5, -catcccagatcgttcttgttaacc-3' (配歹 II番号 1 0) ReversPsf limer: 5, -catcccagatcgttcttgttaacc-3 '(Guide II number 1 0)
2. 試験結果 2. Test results
表 1にジヱノタイピングの結果を示す。  Table 1 shows the results of genotyping.
〔表 1〕  〔table 1〕
Age No. ofoffspring with genotype: resprbed †pta| neonate. 9 14 0 0 23 Age No. ofoffspring with genotype: resprbed † pta | neonate. 9 14 0 0 23
E11.5 9 14 0 3 .26 ' E11.5 9 14 0 3.26 '
E9.5 7 16 0 6 •29 E9.5 7 16 0 6 • 29
E7.5 12 16 0 4 32  E7.5 12 16 0 4 32
E6.5 ND ND ND 4 20  E6.5 ND ND ND 4 20
E3.5 4 13 5 NA 22 表 1より明らかなように、 Psf 1遺伝子をホモで欠損した胚は着床後の早期致 死である (ND; not determine (形態学的所見により判定)、 NA; not available)^ 図 6B (表中 E6.5) に Psil遺伝子ホモ欠損 (_/- ) 胚と野生型の胚の組織切 片を示す。 ホモ欠損 (- /- ) 胚は明らかに異常な形態を示した。 E3.5 4 13 5 NA 22 As is clear from Table 1, embryos that are homozygous for the Psf 1 gene are prematurely lethal after implantation (ND; not determine (determined by morphological findings), NA; not available) ^ Figure 6B ( E6.5) in the table shows tissue slices of Psil gene homo-deficient (_ /-) embryos and wild-type embryos. Homo-deficient (-/-) embryos clearly showed abnormal morphology.
〔実施例 3〕 Psil遺伝子ホモ欠損 (- /- ) 胚とヘテロ欠損 (+/-) 胚の比較 1. 試験方法 [Example 3] Comparison of Psil gene homo-deficient (-/-) embryo and hetero-deficient (+/-) embryo 1. Test method
(1) ブラストシストの試験管内培養 (図 7)  (1) In vitro culture of blast cysts (Fig. 7)
妊娠 3.5日目に子宮を還流しブラストシストを採取する。 これを 0.1%ゼラチ ンでコートしたプラスチック皿上に ES 培地中で 6 日間培養した。 BrdU (5 - bromo- 2' deoxy- Uridine) (Sigma製)の取込み実験では培地中に最終濃度が lOmMになるように BrdUを添加し 12時間培養した。 取り込まれた BrdUの検出 は抗 BrdU抗体(Zymed製)を用いた。 2. 試験結果 On day 3.5 of gestation, return the uterus and collect blast cysts. This was cultured in ES medium for 6 days on a plastic dish coated with 0.1% gelatin. In the uptake experiment of BrdU (5-bromo-2 'deoxy-uridine) (manufactured by Sigma), BrdU was added to the medium to a final concentration of lOmM and cultured for 12 hours. Anti-BrdU antibody (manufactured by Zymed) was used to detect the incorporated BrdU. 2. Test results
野生型のあるいは Psil遺伝子のヘテロ欠損体のブラストシストを培養すると ICM (inner cell mass)が盛んに分裂し、 トロフォブラスが培養皿の表面に接着 して増殖するが、 Psil遺伝子のホモ欠損体のブラストシストでは ICMの盛んな 細胞分裂が見られなかった (図 7)。 さらに ICMの BrdUの取込みもほとんど検 出されなかった (図 8)。 このことから Psilは初期胚の細胞分裂に必須である 事が解った。 When blast cysts of wild type or heterozygous Psil gene are cultured, ICM (inner cell mass) divides vigorously and trophoblasts adhere to the surface of the culture dish and proliferate. Cysts did not show vigorous cell division of ICM (Fig. 7). Furthermore, ICM BrdU incorporation was hardly detected (Fig. 8). This revealed that Psil is essential for cell division in early embryos.
〔実施例 4〕 Psil遺伝子欠損 (+/- ) マウスと野生型マウスの比較 [Example 4] Comparison of Psil gene deficient (+/-) mice and wild type mice
1. 試験方法 1. Test method
実施例 2で作製した Psil遺伝子欠損 (+/- ) マウスと野性型マウス (6週齢、 各 N = 5) に、 150ing/kgの 5- FU (Sigma製) を静脈投与し、 その影響を比較し た。 結果を図 9 (A:生存、 B:血中 MNC、 C:骨髄 MNC) および図 10 に示す。 2. 試験結果 ( 1 ) 生存率 150 ng / kg of 5-FU (manufactured by Sigma) was intravenously administered to the Psil gene-deficient (+/-) and wild-type mice (6 weeks old, N = 5 each) prepared in Example 2 Compared. The results are shown in FIG. 9 (A: survival, B: blood MNC, C: bone marrow MNC) and FIG. 2. Test results (1) Survival rate
野生型マウスはすべて生存していたが、 Psi l遺伝子欠損マウスは 1週間以内 に全て死んだ。 野生型マウスは、 350mg/kg (LD50に対応する) の 5- FUを投与 した場合でも、 半数が生存していた。  All wild-type mice were alive, but all PsiI-deficient mice died within one week. Half of the wild-type mice survived even when 350 mg / kg (corresponding to LD50) of 5-FU was administered.
( 2 ) 血中 MN Cおよび骨髄 MN C  (2) Blood MN C and bone marrow MN C
両マウスで血中 MN C変化に大きな違いは認められなかったが、 骨髄 MN C については、 野生型マウスでは回復がみられたのに対し、 Psi l遺伝子欠損マウ スでは全く回復がみられなかった。  There was no significant difference in blood MN C changes between the two mice, but bone marrow MN C showed recovery in wild-type mice, but no recovery in Psi l gene-deficient mice. It was.
( 3 ) 骨髄細胞の解析  (3) Analysis of bone marrow cells
Psi l遺伝子欠損 (+/- ) マウスと野性型マウスの全骨髄細胞の形態を FACSで 解析した。 Psil遺伝子へテロ欠損マウスでは 5- FU投与後に FSCが高い細胞集 団 (リンパ球、 単球、 顆粒球などの白血球) の増加が殆ど見られなかった。 野 生型の場合は Lin (Mac-lを除く)— Sea- 1¾IT{の造血幹細胞は 5- FU処理後は Mac- 1 を中程度発現するようになるが、 Psi l遺伝子へテロ欠損マウスでは Mac- 1を発 現する分裂中の幹細胞の出現がほとんど見られなかった。 5- FU投与後 5日に幹 細胞集団(Lin (Mac- 1を除く)— Sea- 1 IT÷)の DNA含有率を解析すると Psf l遺伝 子へテロ欠損マウスでは大部分の細胞で DNA合成が行われておらず G1期に留ま つていることが解った。 The morphology of whole bone marrow cells of Psi l gene deficient (+/-) mice and wild type mice was analyzed by FACS. In Psil gene hetero-deficient mice, there was almost no increase in cell populations with high FSC (white blood cells such as lymphocytes, monocytes, granulocytes) after 5-FU administration. In wild type, Lin (except Mac-l) —Sea-1¾IT { hematopoietic stem cells become moderately expressed Mac-1 after 5-FU treatment, but Psi l gene heterodeficient mice There was almost no appearance of dividing stem cells expressing Mac-1. 5- Day 5 after FU administration Analyzing the DNA content of the stem cell population (Lin (excluding Mac-1) —Sea-1 IT ÷ ), DNA synthesis in most cells in Psf l gene heterodeficient mice It was found that the project was not carried out and remained in the G1 period.
以上のとおり、 Psi l遺伝子へテロ欠損マウスでは、 骨髄機能不全に起因する と思われる種々の表現型の変化が認められた。 本明細書中で引用した全ての刊行物、 特許及び特許出願をそのまま参考とし て本明細書中にとり入れるものとする。 産業上の利用の可能性  As described above, Psi l gene hetero-deficient mice showed various phenotypic changes that may be caused by bone marrow dysfunction. All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety. Industrial applicability
本発明の Psil遺伝子欠損動物は、骨髄機能抑制に起因する種々の症状を呈し、 特に 5- FU等の投与によって白血病ゃ抗ガン剤投与後の重篤な骨髄抑制症状に 良く似た症状を呈する。 したがってかかる疾患の病態解明や薬剤開発、 薬剤ス クリーニングに有用である。また、本発明の Psi l遺伝子欠損動物は造血幹細胞 のソースとして有用である。 配列表フリーテキスト The Psil gene-deficient animal of the present invention exhibits various symptoms caused by suppression of bone marrow function, and in particular, by administration of 5-FU or the like, symptoms similar to severe myelosuppression after administration of leukemia or anticancer drug are exhibited. . Therefore, it is useful for elucidating the pathology of such diseases, developing drugs, and screening drugs. The PsiI gene-deficient animal of the present invention is useful as a source of hematopoietic stem cells. Sequence listing free text
配列番号 3—人工配列の説明:プライマー 配列番号 4一人工配列の説明:プライマー 配列番号 5—人工配列の説明:プライマ一 配列番号 6—人工配列の説明:プライマー 配列番号 7—人工配列の説明:プライマー 配列番号 8—人工配列の説明:プライマー 配列番号 9一人工配列の説明:プライマー 配列番号 1 0—人工配列の説明:プライマー SEQ ID NO: 3—Description of artificial sequence: Primer SEQ ID NO: 4 Description of one artificial sequence: Primer SEQ ID NO: 5—Description of artificial sequence: Primer SEQ ID NO: 6—Description of artificial sequence: Primer SEQ ID NO: 7—Description of artificial sequence: Primer SEQ ID NO: 8—Description of artificial sequence: Primer SEQ ID NO: 9 Description of one artificial sequence: Primer SEQ ID NO: 1 0—Description of artificial sequence: Primer

Claims

1 . 染色体上の Psf l遺伝子の機能が欠損している非ヒト哺乳動物。 1. A non-human mammal deficient in the function of the Psfl gene on the chromosome.
2 . Psf l遺伝子の機能が、 Psf l遺伝子またはその発現制御領域上における少な くとも一部の配列の欠失、 置換、 および Zまたは他の配列の挿入によって染色 体上の一方のアレルで欠損している、 請求項 1記載の非ヒト哺乳動物。 口青 2. The function of the Psf l gene is deficient in one allele on the chromosome by deletion, substitution of at least a portion of the Psf l gene or its expression control region, and insertion of Z or other sequences. The non-human mammal according to claim 1. Mouth blue
3 . 以下の工程で作製される、 請求項 1または 2に記載の非ヒト哺乳動物: 1 ) Psf l遺伝子またはその発現制御領域上における少なくとも一部の配列の欠 の  3. The non-human mammal according to claim 1 or 2, produced by the following steps: 1) lack of at least a part of the sequence on the Psfl gene or its expression control region
失、 置換、 および Zまたは他の配列の揷入を目的としたターゲッティングべク 夕一を作製する; Create targeting vectors for deletion, substitution, and insertion of Z or other sequences;
2 ) 上記ベクターを ES細胞に導入し、 該ベクタ囲一で相同組換えされた ES細胞 を得る;  2) Introducing the above vector into ES cells to obtain ES cells homologously recombined within the vector range;
3 ) 上記組換え ES細胞を初期胚に導入し、 発生させてキメラ動物を得る; 3) The recombinant ES cell is introduced into an early embryo and developed to obtain a chimeric animal;
4 )上記キメラ動物を野生型動物と交配して得られる F1ヘテロ接合体動物同士 を交配し、 得られる F2動物またはその子孫から染色体上の Psf l遺伝子の機能 が欠損している動物を得る。 4. 非ヒト哺乳動物がマウスである、 請求項 1〜3のいずれか一項に記載の非 ヒ卜哺乳動物。 4) Mating the F1 heterozygous animals obtained by mating the above chimeric animals with wild-type animals, and obtaining the animal lacking the function of the Psfl gene on the chromosome from the F2 animals obtained or their progeny. 4. The non-human mammal according to any one of claims 1 to 3, wherein the non-human mammal is a mouse.
5 . 骨髄抑制モデル動物である、 請求項 1〜4のいずれか一項に記載の非ヒト 哺乳動物。 5. The non-human mammal according to any one of claims 1 to 4, which is a myelosuppression model animal.
6 . 請求項 1〜 5のいずれか一項に記載の非ヒト哺乳動物に、 骨髄抑制剤を投 与し、 該動物の骨髄から造血幹細胞を取得する方法。 6. A method of obtaining a hematopoietic stem cell from the bone marrow of a non-human mammal according to any one of claims 1 to 5 by administering a myelosuppressive agent to the non-human mammal.
7 . 請求項 6記載の方法で得られる、 Psf l遺伝子欠損非ヒト哺乳動物の造血幹 細胞。 7. A hematopoietic stem cell of a Psfl gene-deficient non-human mammal obtained by the method according to claim 6.
8. 請求項 1〜5のいずれか一項に記載の非ヒト哺乳動物を用いた、 骨髄機能 改善剤のスクリーニング方法。 8. A screening method for a bone marrow function improving agent using the non-human mammal according to any one of claims 1 to 5.
9. Psfl遺伝子を幹細胞内で強制的に高発現させることにより、 当該幹細胞を 試験管内で増幅させる方法。 9. A method of amplifying the stem cell in vitro by forcibly expressing the Psfl gene in the stem cell.
PCT/JP2005/015496 2004-08-23 2005-08-19 Psf1 GENE-DEFICIENT ANIMAL AND METHOD OF USING THE SAME WO2006022361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004242022A JP4590629B2 (en) 2004-08-23 2004-08-23 Psf1 gene-deficient animal and method of using the same
JP2004-242022 2004-08-23

Publications (1)

Publication Number Publication Date
WO2006022361A1 true WO2006022361A1 (en) 2006-03-02

Family

ID=35967566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015496 WO2006022361A1 (en) 2004-08-23 2005-08-19 Psf1 GENE-DEFICIENT ANIMAL AND METHOD OF USING THE SAME

Country Status (2)

Country Link
JP (1) JP4590629B2 (en)
WO (1) WO2006022361A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011004331A (en) * 2008-10-24 2011-09-21 Magnachem Int Lab Inc Method for screening for compounds selectively interacting with rad9.

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARAKI H.: "Shutsuga Kobo Dpbll no DNA Fukusei to S-ki Checkpoint ni Okeru Kino", SAIBO FUKUSEI SOCHI: SENSHOKUTAI NO FUKUSEI: BUNPAI KIKO HEISEI 9 NENDO, 1998, pages 79 - 80, XP002999388 *
MYUNG K. ET AL: "Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae", CELL, vol. 104, no. 3, 2001, pages 397 - 408, XP002999390 *
TAKAYAMA Y. ET AL: "GINS, a novel multi protein complex required for chromosomal DNA replication in budding yeast", GENES DEV., vol. 17, no. 9, 2003, pages 1153 - 1165, XP002999387 *
YOSHIDA K. ET AL: "Requirement of CDC45 for postimplantation mouse development", MOL.CELL BIOL., vol. 21, no. 14, 2001, pages 4598 - 4603, XP002999389 *

Also Published As

Publication number Publication date
JP4590629B2 (en) 2010-12-01
JP2006055110A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US11317611B2 (en) Genetically modified non-human animal with human or chimeric PD-L1
US10945418B2 (en) Genetically modified non-human animal with human or chimeric PD-L1
US11279948B2 (en) Genetically modified non-human animal with human or chimeric OX40
US11505806B2 (en) Genetically modified non-human animal with human or chimeric OX40
EP0626012B1 (en) Homogenotization of gene-targeting events
US11096383B2 (en) Method of using a genetically modified mouse that expresses a humanized CTLA-4 gene
US10820580B2 (en) Immunodeficient non-human animal
WO2021083366A1 (en) Genetically modified non-human animals with human or chimeric thpo
JP2020145983A (en) Alopecia areata model animal
US6172278B1 (en) Ikaros transgenic cells and mice
JP4590629B2 (en) Psf1 gene-deficient animal and method of using the same
JP4470077B2 (en) Mice deficient in the function of the neutrophil chemotactic factor LECT2 gene
JP4714368B2 (en) Conditional knockout mammal for sphingolipid synthesis
CN112553194B (en) Preparation method and application of KIT gene modified non-human animal
JP5308651B2 (en) Drp1-deficient non-human mammal
US20220217956A1 (en) Rodent Model Of Increased Bone Mineral Density
井尻貴之 et al. The Mroh4 (maestro heat-like repeat family member 4) gene affects spermatogenesis and sperm morphogenesis in mice
JP3886927B2 (en) Model animal for accelerated aging and immunodeficiency
CN115010800A (en) Construction method and application of PVRIG gene humanized non-human animal
JP5403536B2 (en) Transgenic non-human animal introduced with human MLL / AF4 fusion gene
JP2004073198A (en) Embryonic stem cell strain defective in poly(adp-ribose)glycohydrolase activity
US20020104112A1 (en) Ikaros regulatory elements and uses thereof
JP2003092956A (en) Animal with insufficient expression of thymidine phosphorylase
JPWO2004032615A1 (en) Bradion gene expression-suppressed chimeric mice
JPH08140527A (en) Animal deficient in treb5 gene and creation of the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase