WO2006022043A1 - Hydraulic pressure drive circuit - Google Patents

Hydraulic pressure drive circuit Download PDF

Info

Publication number
WO2006022043A1
WO2006022043A1 PCT/JP2005/004930 JP2005004930W WO2006022043A1 WO 2006022043 A1 WO2006022043 A1 WO 2006022043A1 JP 2005004930 W JP2005004930 W JP 2005004930W WO 2006022043 A1 WO2006022043 A1 WO 2006022043A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
actuator
pump
fluid
motor
Prior art date
Application number
PCT/JP2005/004930
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Miki
Hiroshi Sato
Manabu Tamura
Nobuaki Matoba
Original Assignee
Shin Caterpillar Mitsubishi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Caterpillar Mitsubishi Ltd. filed Critical Shin Caterpillar Mitsubishi Ltd.
Publication of WO2006022043A1 publication Critical patent/WO2006022043A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a fluid pressure drive circuit having an energy regeneration function.
  • a hydraulic excavator as a work machine is provided with an upper swinging body 12 that can swing with respect to a lower traveling body 11, and the upper swinging body 12 is operated together with a cap 13 and a power unit 14.
  • a device 15 is mounted, and the working device 15 is supported by a pivot 16 that is pivoted up and down by a boom cylinder 16c on an upper swing body 12, and is rotated by a stick cylinder 17c at the tip of the boom 16.
  • the stick 17 is pivotally supported, and the packet 18 rotated by the bucket cylinder 18c via the linkage 19 is pivotally supported at the tip of the stick 17.
  • Hybrid machines using the power unit 14 are also being advanced in work machines such as hydraulic excavators. Energy saving can be achieved as an expected effect of this hybrid.
  • Patent Document 1 uses an accumulator as a means for storing pressure energy. Therefore, there is a drawback that the energy is reduced in a short time if the stored energy is not used. In addition, there is a problem that the storage amount of the accumulator is smaller than the required amount, and there is also a problem that a large accumulator is required to store a large amount of energy.
  • Patent Document 1 Japanese Patent Publication No. 3-33922 (page 2-4, Fig. 1 2)
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-136806 (Pages 8-9, Fig. 1)
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-242234 (Page 45, Fig. 1)
  • Patent Document 4 JP 2002-322682 A (page 3-4, Fig. 1-2)
  • Patent Document 5 WO0lZ88381 (Pages 27-31, Fig. 4)
  • the present invention has been made in view of these points, and an object of the present invention is to provide a fluid pressure drive circuit capable of efficiently recovering energy.
  • the invention according to claim 1 includes a drive device for driving the pump, and the fluid pumped up from the tank by the pump and supplied to the actuator, and the fluid returned from the actuator is supplied into the tank.
  • Control valve device that discharges, regenerative motor that recovers excess pressure energy of the fluid that is returned to the actuator tank and regenerates it to the drive device, and pressure detection that detects the fluid return side pressure and the fluid entry side pressure of the actuator
  • Switch valve device that connects the fluid return side of the actuator and the actuator to either the regenerative motor or the tank, and the fluid return side pressure of the actuator detected by the pressure detection device is higher than the fluid inlet side pressure and the set value
  • the fluid return side of the actuator is connected to the regenerative motor, and the fluid return side pressure is lower than the fluid entry side pressure.
  • a lower pressure than the Jo Tokoro set value is a fluid pressure drive circuit switching valve device equipped with a controller for switching control so as to communicate with the tank fluid return side of Akuchiyueta.
  • the controller switches By controlling the device to connect the fluid return side of the actuator to the regenerative motor, the fluid return side force pressure energy of the actuator is recovered, while the fluid return side pressure is lower than the fluid entry side pressure, or If the pressure energy cannot be taken out when the pressure is lower than the preset value, the regenerative motor force is also disconnected from the fluid return side of the actuator by the switching valve device so that the regenerative motor is communicated. It is possible to reduce the energy loss that occurs when the motor becomes a load on the drive device, and it is possible to efficiently recover the energy and further save energy.
  • the driving device in the fluid pressure driving circuit described in claim 1 includes a generator connected to the engine, an electrical connection to the generator, and a mechanism connected to the pump.
  • a motor and a motor generator that function as a motor and a generator, and a capacitor that is connected to the generator and the motor generator through a converter.
  • the pump and the regenerative motor are each for variable capacity.
  • the controller has a swash plate and controls the rotation speed of the regenerative motor and pump by controlling the opening degree of the switching valve device and the rotation speed of the motor generator so that the commanded actuator speed can be obtained. At the same time, it controls the tilt angle of these swash plates.
  • regeneration is controlled by controlling the opening degree of the switching valve device and the rotation speed of the motor generator. It is possible to obtain the commanded actuator speed by controlling the rotational speed of the motor and pump and by controlling the tilt angle of these swash plates.
  • the pump and the regenerative motor in the fluid pressure drive circuit of claim 1 each have a variable capacity swash plate, and the drive device is provided between the engine and the pump.
  • the controller controls the capacity of the regenerative motor and the pump so as to obtain the commanded actuator speed by controlling the regenerative motor and the swash plate of the pump.
  • the invention of claim 4 comprises a control valve device force in the fluid pressure drive circuit according to any one of claims 1 to 3, a plurality of control valves of a spool structure for controlling a plurality of actuators,
  • the plurality of control valves each have a center passage connected in tandem between the pump and the tank, and the switching valve device is connected to the drain port of the downstream control valve.
  • a drive device and a regenerative motor can be shared with a plurality of actuators controlled by a plurality of control valves, and the center binos passages of the plurality of control valves are connected in tandem. If the excess pressure energy discharged from the downstream side actuator after the upstream side actuator is activated with priority, the switching valve device connected to the drain port of the downstream side control valve Thus, the excess pressure energy is regenerated to the pump and the drive device through the regenerative motor.
  • the switching valve device in the fluid pressure drive circuit according to any one of claims 1 to 4 includes an electromagnetic proportional valve, and the fluid return side of the actuator Since this switching valve device is an electromagnetic proportional valve, a meter-out control function suitable for controlling the operating speed of the actuator on which the load acts can be obtained.
  • the fluid return side pressure of the actuator detected by the pressure detection device is When the pressure is higher than the fluid entry side pressure and higher than the set value, the controller controls the switching valve device to connect the fluid return side of the actuator to the regenerative motor, thereby recovering the pressure energy from the fluid return side of the actuator.
  • the switching valve device can be used to return the fluid to the fluid return side of the actuator. Since the regenerative motor force was also disconnected, it was made to communicate with the tank.
  • the opening degree of the switching valve device and the electric generator By controlling the rotational speed, the rotational speeds of the regenerative motor and pump can be controlled, and the tilt angle of these swash plates can be controlled to obtain the commanded actuator speed.
  • the drive device and the regenerative motor can be shared for the plurality of actuators controlled by the plurality of control valves, and the center binos of the plurality of control valves
  • the upstream side actuator is operated with priority, and if the excess pressure energy discharged from the downstream side is sufficiently high, the drain port of the downstream control valve
  • the surplus pressure energy can be regenerated to the pump and the drive device through the regenerative motor by the switching valve device connected to.
  • the switching valve device on the fluid return side of the actuator is an electromagnetic proportional valve, a meter-out control function suitable for controlling the operating speed of the actuator on which the load acts is provided. Obtainable.
  • FIG. 1 is a circuit diagram showing a first embodiment of a fluid pressure drive circuit according to the present invention.
  • FIG. 2 is a circuit diagram showing a second embodiment of a fluid pressure drive circuit according to the present invention.
  • FIG. 3 is a circuit diagram showing a third embodiment of a fluid pressure drive circuit according to the present invention.
  • FIG. 4 is a circuit diagram showing a fourth embodiment of a fluid pressure drive circuit according to the present invention.
  • FIG. 5 is a circuit diagram showing a fifth embodiment of a fluid pressure drive circuit according to the present invention.
  • FIG. 6 is a circuit diagram showing a sixth embodiment of a fluid pressure drive circuit according to the present invention.
  • FIG. 7 is a configuration diagram showing another example of the driving device of the fluid pressure driving circuit.
  • FIG. 8 is a side view of the excavator. Explanation of symbols
  • FIG. 1 the present invention is shown in the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, the third embodiment shown in FIG. 3, and FIG.
  • the fourth embodiment described above, the fifth embodiment shown in FIG. 5, the sixth embodiment shown in FIG. 6, and a modification of the drive device shown in FIG. 7 will be described.
  • a pump 23 is connected to the engine 21 via a drive device 22.
  • the drive device 22 drives the pump 23 in response to the rotation of the engine 21, and controls the hydraulic oil as fluid in the tank 24 with a control valve device. Supply pressure to 25.
  • the pump 23 is a hydraulic pump having a swash plate 26 for variable capacity.
  • a generator 31 is connected to the engine 21, and an electric motor mechanically directly connected to the pump 23 and a motor generator 32 functioning as a generator are electrically connected to the generator 31.
  • a battery 34 is connected to a generator 31 and a motor generator 32 via a converter 33.
  • a control valve device 25 is connected to the discharge passage 35 of the pump 23.
  • This control valve device 25 is a bridge circuit by means of four solenoid proportional valves 36, 37, 38, 39 that can adjust only the opening between the discharge passage 35 of the pump 23 and the tank 24 according to the electrical signal. Is formed.
  • the four proportional solenoid valves 36, 37, 38, 39 constituting this control valve device 25 supply the hydraulic oil pumped from the tank 24 by the pump 23 to the actuator 41 by controlling the direction and flow rate. At the same time, the hydraulic oil returned from the actuator 41 is discharged into the tank 24.
  • the actuator 41 is, for example, a boom cylinder 16c shown in FIG.
  • a relief valve 42 and an unload valve 43 are connected to the discharge passage 35 of the pump 23.
  • the relief valve 42 acts as a safety valve for setting pressure
  • the unload valve 43 has a pressure releasing action that prevents high pressure from being generated by the minimum discharge flow rate of the pump 23 when the actuator 41 is not driven.
  • the pump 23 is directly connected to a regenerative motor 44 that recovers excess pressure energy of high-pressure oil returned to the actuator 41 force tank 24 and regenerates it to the drive device 22.
  • the regenerative motor 44 is a hydraulic motor having a variable capacity swash plate 45 capable of setting the minimum flow rate to almost zero.
  • the bottom side passage 46 and the rod side passage 47 of the actuator 41 include a pressure on the bottom side 41b as the fluid return side of the actuator 41, that is, a bottom side pressure as the fluid return side pressure, and a fluid entry side of the actuator 41.
  • Pressure sensors 48 and 49 as pressure detecting devices for detecting the pressure on the rod side 41r of the rod, that is, the pressure on the rod side as the fluid containing pressure Relief valves 51 and 52 for setting the actuator pressure and check valves 53 and 54 for make-up are connected to each other.
  • a switching valve device 55 is provided to communicate the bottom side 41b as the fluid return side of the actuator 41 with one of the regenerative motor 44 and the tank 24.
  • This switching valve device 55 has a bridge circuit formed by four electromagnetic proportional valves 38, 39, 56, and 57 that can adjust only the opening degree that opens according to an electric signal between the regenerative motor 44 and the tank 24. It is.
  • the two electromagnetic proportional valves 38, 39 serve as the control valve device 25 and the switching valve device 55, and the output sides of these electromagnetic proportional valves 38, 39 are connected to the tank 24.
  • the output side of the other two electromagnetic proportional valves 56 and 57 are joined together by a regenerative passage 58, a regenerative motor 44, a relief valve 59 for setting the regenerative pressure, and a check valve 60 for regenerative passage make-up. It is connected to the.
  • the pressure sensors 48 and 49 for detecting the fluid return side pressure and the fluid entering side pressure of the actuator 41 are connected to the input side of the controller 61, and the output side of the controller 61 is connected to the electromagnetic proportional valve 36. , 37, 38, 39, 56, 57 etc.
  • the fluid return side pressure of the actuator 41 may be higher than the fluid entry side pressure.
  • the detected fluid return side pressure on the bottom side 41b of the actuator 41 is higher than the fluid entry side pressure on the rod side 41r of the actuator 41 detected by the other pressure sensor 49 and higher than a predetermined set value.
  • the bottom side 41b of the actuator 41 is connected to the regenerative motor 44, and the bottom side pressure force of the actuator 41 detected by one pressure sensor 48 The rod side of the actuator 41 detected by the other pressure sensor 49 If the pressure is lower than the pressure, or if the pressure is lower than the preset value, the bottom 41b of the actuator 41 is The solenoid proportional valves 38, 39, 56, and 57 of the switching valve device 55 are controlled so as to communicate with 24.
  • the controller 61 includes an actuator detected by the one pressure sensor 48. Pressure pressure on the fluid return side from the bottom side 41b of 41 When the pressure on the rod side 41r of the actuator 41 detected by the other pressure sensor 49 is higher than the pressure on the fluid entering side and higher than the set pressure
  • the high pressure oil from the bottom side 41b of the actuator 41 is pressurized and supplied to the regenerative motor 44 through the electromagnetic proportional valve 56 and the regenerative passage 58, so that the energy of the high pressure oil is regenerated instead of the rotational torque energy of the regenerative motor 44. Let A part of the regenerated energy is consumed by the pump 23 directly connected to the regenerative motor 44, and the surplus is converted into electric energy by the power generation action of the motor generator 32, and the capacitor 34 is charged.
  • the controller 61 opens the solenoid proportional valve 38 so that the return oil from the bottom side 41b of the actuator 41 flows into the tank 24.
  • the controller 61 determines whether or not energy regeneration is performed by the regenerative motor 44 based on the values of the left and right pressure sensors 48 and 49. When energy regeneration is not performed, the actuator 41 returns the return oil. Is not supplied to the regenerative motor 44.
  • the controller 61 controls the rotational speed of the electric generator 32 and the opening degree of the electromagnetic proportional valve 56 of the switching valve device 55 so that the commanded actuator speed can be obtained.
  • the rotational speed of the regenerative motor 44 is controlled, and the tilt angle of the swash plates 26 and 45 of the pump 23 and the regenerative motor 44 is controlled via a regulator not shown by an electromagnetic proportional valve not shown.
  • an actuator 41 is connected by a pump 23 connected to a boom motor generator 32 of a hydraulic excavator, a control valve device 25 connected to the pump 23, and a regenerative motor 44.
  • Driving force Similarly, traveling system, turning system, stick system or packet system not shown ⁇
  • the other regenerative motor also drives other actuators, and the electric power of the common generator 31 and the accumulator 34 and the regenerated electric power are supplied to these motor drives.
  • the actuator 41 is the boom cylinder 16c shown in FIG. 8
  • the weight of the work device 15 acts, a high pressure stands on the bottom side 41b, and the rod side 41r has a low pressure.
  • the high pressure oil on the bottom side 41b of the actuator 41 flows to the regenerative motor 44 by electromagnetically driving and opening the electromagnetic proportional valve 56.
  • the energy of the high pressure oil causes the regenerative motor 44 to Drive torque is generated and the rotational speed increases. In other words, the energy of high-pressure oil is regenerated.
  • the regenerative motor 44 When the regenerative motor 44 enters the regenerative state in this way, the regenerative power input to the regenerative motor 44 is converted into electric energy by the power generation action of the directly connected motor generator 32 and stored in the capacitor 34. .
  • a method of starting the motor generator 32 until sufficient regenerative power can be obtained that is, a method of supplying electric power may be employed. In a state where sufficient regenerative power is obtained, the motor generator 32 is caused to generate power.
  • the actuator 41 is driven by a speed command from the operator's operation lever. By this speed command, the rotation speed of the regenerative motor 44 is controlled to be proportional to the speed command during the above regeneration.
  • the swash plates 26 and 45 of the pump 23 and the regenerative motor 44 are used for adjustment.
  • the rotational speed to be controlled may cause an error with respect to the speed command, and fine adjustment of the flow rate is required.
  • the regenerative motor 44 and the pump 23 are provided with the swash plates 45 and 26 for fine adjustment of the flow rate, but only one of them can be controlled.
  • the power of the pump 23 is smaller than the power regenerated by the regenerative motor 44. Therefore, the surplus power is regenerated to the electric energy by the power generation action of the motor generator 32 and is supplied to the battery 34 via the converter 33. Charged.
  • two pressure sensors 48 and 49 are used. If the rod side 41r is in a state where the high pressure is generated on the bottom side 41b of the actuator 41 and the rod side 41r is at a low pressure, and the pressure pressure on the bottom side is greater than the preset pressure value, it is determined that the actuator is in a regenerative state. Then, the high pressure oil is guided to the regenerative motor 44.
  • the fluid return side pressure of the actuator 41 is higher than the fluid entry side pressure and higher than the set value when weight and load are applied. Therefore, the regenerative action of guiding the high pressure oil on the bottom side 41b of the actuator 41 to the regenerative motor 44 can be applied.
  • the bottom side 41b has a lower pressure than the rod side 41r, or a pressure lower than a predetermined set value, sufficient regenerative power cannot be obtained, so the low pressure on the bottom side 41b of the actuator 41 is low.
  • the oil is not regenerated and is discharged to the tank 24 through the electromagnetic proportional valve 38 that is electromagnetically driven in the open state. Further, the rotational speed of the pump 23 is controlled in proportion to the speed command at the time of the regeneration by the speed command to the motor generator 32.
  • the controller 61 controls the switching valve device 55 so that the bottom side 41b of the actuator 41 communicates with the regenerative motor 44, so that the bottom side 41b of the actuator 41
  • the switching valve device Since the bottom side 41b of the actuator 41 is disconnected by the regenerative motor 44 force by 55 and communicated with the tank 24, the regenerative motor 44 And the dynamic device 22 go-between load and In this case, energy loss that occurs can be reduced, energy recovery can be performed efficiently, and energy saving can be further achieved.
  • the generator 31 and the motor generator 32 are sequentially connected to the pump 23, the opening of the electromagnetic proportional valve 56 and the motor generator 32 By controlling the rotational speed, the rotational speeds of the regenerative motor 44 and the pump 23 can be controlled to obtain the commanded actuator speed.
  • a regenerative circuit is provided, and hydraulic energy is regenerated as electric energy, and is directly or temporarily charged in the capacitor 34 and then supplied to the drive system of another actuator as necessary, thereby saving power. It has the effect of reducing harmful emissions by using energy and downsizing the engine 21.
  • the control valve device 25 forms a bridge circuit between the pump 23 and the tank 24 by four electromagnetic proportional valves 36, 37, 38, 39 that can adjust only the opening degree that opens in accordance with an electric signal.
  • the force switching valve device 55 is similar to that shown in FIG. 1 in that the return passage 65 connected to the fluid discharge section 64 of the bridge circuit is connected to the electrical signal from the tank passage 66 to the tank 24. Accordingly, an electromagnetic proportional valve 67 that switches to the regenerative passage 58 leading to the regenerative motor 44 is provided.Instead of the electromagnetic proportional valves 38, 39, 56, and 57 shown in FIG. Connecting.
  • the high pressure oil on the bottom side 41b of the actuator 41 flows to the regenerative motor 44 by opening the electromagnetic proportional valves 38 and 67 by electromagnetic driving, and a driving torque is generated in the regenerative motor 44 by the energy of this high pressure oil. Then the rotation speed increases. In other words, the energy of high-pressure oil is regenerated.
  • FIG. 3 the third embodiment shown in FIG. 3 will be described.
  • the same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only differences from the first embodiment will be described.
  • the control valve device 25 integrates the functions of the electromagnetic proportional valves 36, 37, 38, and 39 shown in FIG. 1 into a control valve 71 having a spool structure having at least four ports.
  • This control valve 71 provides the unloading function shown in FIG. 1 by providing an internal passage 72 through which hydraulic fluid supplied from the pump 23 flows to the tank 24 when the spool is in the neutral position.
  • the unloading valve 43 possessed can be omitted.
  • the switching valve device 55 connects the return passage 65 connected to the drain port 73 of the control valve 71 from the tank passage 66 to the tank 24 to the regenerative passage to the regenerative motor 44 in response to an electric signal.
  • An electromagnetic proportional valve 67 for switching to 58 is provided, and this proportional solenoid valve 67 is connected instead of the solenoid proportional valves 38, 39, 56, 57 shown in FIG.
  • This electromagnetic proportional valve 67 is used when the pressure on the bottom side 41b of the actuator 41 is low, that is,
  • the high pressure oil on the bottom side 41b of the actuator 41 electromagnetically drives the control valve 71 to switch it to the left position, and at the same time electromagnetically drives the electromagnetic proportional valve 67 of the switching valve device 55, and sets the return path 65 to the tank.
  • high-pressure oil flows into the regenerative motor 44, and drive torque is generated in the regenerative motor 44 by the energy of this high-pressure oil, and the rotational speed of the pump 23 increases. That is, the energy of the high pressure oil is regenerated.
  • the discharge passage 35 on the pump side and the return passage 65 on the tank side of the control valve device 25 have a structure of an internal passage 72 that communicates when neutral, and the pressure oil of the pump 23 flows to the tank 24 when neutral. In addition, the minimum pump flow rate at neutrality will prevent high pressure from standing. [0074] On the other hand, if the bottom side 41b of the actuator 41 is lower in pressure than the rod side 41r, or if the pressure is lower than a predetermined set value, sufficient regenerative power cannot be obtained. The oil is not regenerated and is discharged to the tank 24 through the non-excited electromagnetic proportional valve 67.
  • FIG. 4 the fourth embodiment shown in FIG. 4 will be described.
  • the same parts as those in the embodiment shown in FIGS. 1 and 3 are denoted by the same reference numerals, description thereof is omitted, and only the differences from those embodiments will be described.
  • control valve device 25 instead of the electromagnetic proportional valves 36, 37, 38, 39 shown in FIG. 1, a control valve 71 having a spool structure is provided. Since the discharge passage 35 and the return passage 65 are not in communication, an unload valve 43 having an unload function is provided for the discharge passage 35 from the pump 23 to the control valve 71.
  • the switching valve device 55 uses a return passage 65 connected to the drain port 73 of the control valve 71 instead of the electromagnetic proportional valves 38, 39, 56, 57 shown in FIG.
  • An electromagnetic proportional valve 67 that switches from the passage 66 to the regenerative passage 58 to the regenerative motor 44 according to the electric signal is provided.
  • the electromagnetic proportional valve 67 uses the return oil from the bottom side 41b to regenerate the motor. Since the loss increases when passing through 44, the structure directly returns to the tank 24. In this case, a take-out control function suitable for controlling the operating speed of the actuator 41 to which the load acts is necessary. Use proportional valve 67.
  • the control valve 71 When high pressure oil is generated on the bottom side 41b of the actuator 41, the control valve 71 is electromagnetically driven to switch to the left position, and at the same time, the switching valve device 55 is electromagnetically driven to switch to the regenerative passage 58.
  • the high pressure oil generated at the bottom 41b of the actuator 41 High-pressure oil flows into the motor 44, and the drive torque is generated in the regenerative motor 44 due to the energy of this high-pressure oil, and the rotation speed increases. That is, the energy of the high-pressure oil is regenerated in the pump 23 and the drive device 22.
  • FIG. 5 The same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only differences from the first embodiment will be described.
  • the control valve device 25 includes a spool-structured control valve 71 instead of the electromagnetic proportional valves 36, 37, 38, 39 shown in FIG.
  • the switching valve device 55 has an electric signal for the bottom passage 46 to the control valve 71 force actuator 41 instead of the electromagnetic proportional valves 38, 39, 56, 57 shown in FIG.
  • a plurality of proportional solenoid valves 76, 77 that can be adjusted only in accordance with the opening degree are provided.
  • the switching valve device 55 branches off from the bottom side passage 46 and the one electromagnetic proportional valve 76 interposed in the bottom side passage 46 communicating the control valve 71 and the bottom side 41b of the actuator 41.
  • the other electromagnetic proportional valve 77 interposed in the regenerative passage 58 communicating with the regenerative motor 44 is provided.
  • the control valve device 25 When high pressure oil is generated on the bottom side 41b of the actuator 41, the control valve device 25 is electromagnetically driven to switch to the left position, and the electromagnetic proportional valve 77 is electromagnetically driven to open.
  • the high pressure oil on the bottom side 41b flows into the regenerative motor 44, and the driving torque is generated in the regenerative motor 44 by the energy of this high pressure oil, and the rotational speed increases. That is, the energy of the high pressure oil is regenerated in the pump 23 and the drive device 22.
  • the electromagnetic proportional valve 76 is closed in a non-excited state, and high pressure oil does not flow into the control valve device 25.
  • FIG. 6 The same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only differences from the first embodiment will be described.
  • the control valve device 25 includes a plurality of control valves 71, 82 having a spool structure for controlling the plurality of actuators 41, 81 in place of the electromagnetic proportional valves 36, 37, 38, 39 shown in FIG.
  • These control valves 71 and 82 have center bypass passages 83 and 84 connected in tandem between the pump 23 and the tank 24, respectively.
  • the switching valve device 55 is connected to a drain port 73 of a control valve 71 arranged on the downstream side, and a return passage 65 connected to the drain port 73 is connected to the tank 24 from a tank passage 66. It is equipped with an electromagnetic proportional valve 67 that switches to the regenerative passage 58 to the regenerative motor 44 according to the electrical signal, and instead of the electromagnetic proportional valve 38, 39, 56, 57 shown in Fig. 1, this electromagnetic proportional valve 67 Is installed.
  • the electromagnetic proportional valve 67 uses the return oil from the bottom side 41b as a regenerative motor. Since the loss increases when passing through 44, the structure directly returns to the tank 24. In this case, a take-out control function suitable for controlling the operating speed of the actuator 41 to which the load acts is necessary. Use proportional valve 67.
  • control valves 82 and 71 have the center bypass passages 83 and 84 through which the pressure oil from the pump 23 flows to the tank 24, the unload valve of the unload function can be omitted.
  • control valve 71 On the upstream side of the control valve 71, another control valve 82 having a center bypass passage 83 and driving another actuator 81 is provided, and high-pressure oil from the pump 23 is supplied to the control valve 82. To the pump port 85 of the control valve 71 via the center bypass passage 83 of A tandem circuit connected to supply.
  • the first control valve 71 When high pressure oil is generated on the bottom side 41b of the actuator 41, the first control valve 71 is electromagnetically driven to switch to the left position, and at the same time, the electromagnetic proportional valve 67 of the switching valve device 55 is electromagnetically driven.
  • the high pressure oil flows into the regeneration motor 44 by switching the return passage 65 connected to the drain port 73 of the control valve 71 from the tank passage 66 to the tank 24 to the regeneration passage 58 in response to an electrical signal. Due to the energy of the high-pressure oil, a driving torque is generated in the regenerative motor 44, and the rotational speed of the pump 23 increases. In other words, the energy of high-pressure oil is regenerated.
  • the drive device 22 and the regenerative motor 44 can be shared for the plurality of actuators 41, 81 controlled by the plurality of control valves 71, 82.
  • the upstream actuator 81 is preferentially operated, and the pressure sensors 48 and 49 If the controller determines that the excess pressure energy discharged from the downstream actuator 41 is sufficiently high based on the pressure detection signal, the switching valve device 55 connected to the drain port 73 of the downstream control valve 71 The surplus pressure energy can be regenerated to the pump 23 and the driving device 22 through the regenerative motor 44.
  • FIG. 7 shows a parallel type driving device 22a installed in place of the series type driving device 22 shown in FIG. 1 and FIG.
  • the pump 23 and the regenerative motor 44 have swash plates 26 and 45 for variable capacity, respectively, and are directly connected in the same way as in the series system.
  • a gear box 91 is interposed between the engine 21 and the pump 23, and the motor generator 92 functioning as an electric motor and a generator is connected to the pump 23 in parallel with the motor 21 through the gear box 91.
  • a capacitor 94 is connected to the output side of the motor generator 92 via a converter 93.
  • the controller (not shown) controls the regulators 95 and 96 for tilting the swash plates 26 and 45 of the pump 23 and the regenerative motor 44 by means of the solenoid proportional valves 97 and 98, and the command actuator is instructed.
  • the capacities of the pump 23 and the regenerative motor 44 are controlled so that the speed can be obtained.
  • the rotational shaft of the regenerative motor 44 is mechanically connected to the engine 21 via the pump shaft and the gear box shaft, and the rotational speed of these shafts is determined by the engine 21. Therefore, in order to control the speed of the actuator 41, the tilt angle of the swash plate 45 of the regenerative motor 44 is controlled. In other words, the swash plate 45 is controlled to a low position at low speeds to flow a low flow rate, and the swash plate 45 is controlled to a high position at high speeds to flow a high flow rate. Similarly for the pump 23, the tilt angle of the swash plate 26 is controlled to adjust the flow rate.
  • the present invention can also be used for work machines other than hydraulic excavators.

Abstract

A hydraulic pressure drive circuit capable of efficiently recovering energy. A hydraulic oil as a fluid is fed to an actuator (41) by a pump (23) driven by an engine (21) through a drive device (22) after being controlled by a control valve device (25), and the fluid oil returned from the actuator (41) is discharged into a tank (24). A regenerative motor (44) recovering the excess pressure energy of the hydraulic oil returned from the actuator (41) to the tank (24) and regenerating it on the drive device (22) is direct-coupled to the pump (23). The fluid return side pressure and the fluid entering side pressure of the actuator (41) are detected by pressure sensors (48) and (49), a selector valve device (55) selectively controls so that when the fluid return side pressure is higher than the fluid entering side pressure and higher than a set value, the bottom side (41b) of the actuator (41) is allowed to communicate with the regenerative motor (44) by a controller (61), and when it is lower, the bottom side (41b) of the actuator (41) is allowed to communicate with the tank (24).

Description

明 細 書  Specification
流体圧駆動回路  Fluid pressure drive circuit
技術分野  Technical field
[0001] 本発明は、エネルギ回生機能を有する流体圧駆動回路に関するものである。  [0001] The present invention relates to a fluid pressure drive circuit having an energy regeneration function.
背景技術  Background art
[0002] 図 8に示されるように、作業機械としての油圧ショベルは、下部走行体 11に対し上部 旋回体 12が旋回可能に設けられ、この上部旋回体 12にキヤブ 13および動力装置 14 とともに作業装置 15が搭載され、この作業装置 15は、上部旋回体 12にブームシリンダ 16cにより上下方向に回動されるブーム 16が軸支され、このブーム 16の先端部にステ イツクシリンダ 17cにより回動されるスティック 17が軸支され、このスティック 17の先端部 にバケツトシリンダ 18cによりリンケージ 19を介して回動されるパケット 18が軸支されて いる。  As shown in FIG. 8, a hydraulic excavator as a work machine is provided with an upper swinging body 12 that can swing with respect to a lower traveling body 11, and the upper swinging body 12 is operated together with a cap 13 and a power unit 14. A device 15 is mounted, and the working device 15 is supported by a pivot 16 that is pivoted up and down by a boom cylinder 16c on an upper swing body 12, and is rotated by a stick cylinder 17c at the tip of the boom 16. The stick 17 is pivotally supported, and the packet 18 rotated by the bucket cylinder 18c via the linkage 19 is pivotally supported at the tip of the stick 17.
[0003] このような油圧ショベルなどの作業機械においても動力装置 14でのハイブリッドィ匕 が進められている。このハイブリッドィ匕により期待される効果として省エネルギ化が上 げられる。  [0003] Hybrid machines using the power unit 14 are also being advanced in work machines such as hydraulic excavators. Energy saving can be achieved as an expected effect of this hybrid.
[0004] これに関する先行技術として、例えば油圧ショベルのブーム下げ操作時において、 ブームシリンダ 16cのボトム側に発生する高圧力のシリンダ戻り油をアキュムレータに 回収蓄圧し再利用することにより、更に省エネルギ化を図る圧油回収再利用システム が記載されている (例えば、特許文献 1参照)。  [0004] As a prior art related to this, for example, during the boom lowering operation of a hydraulic excavator, high pressure cylinder return oil generated at the bottom side of the boom cylinder 16c is collected and accumulated in an accumulator for further energy saving. A pressure oil recovery and reuse system is described (for example, see Patent Document 1).
[0005] この特許文献 1に示されたものは、圧力エネルギの貯蔵手段としてアキュムレータを 用いて 、るため、この貯蔵したエネルギを使わな 、ときには短時間でエネルギが減 少してしまう欠点がある。またアキュムレータの貯蔵量は、必要量に対しその容積が 小さいという問題もあり、大きなエネルギを貯蔵するには大きなアキュムレータを要す る問題もある。  [0005] The one disclosed in Patent Document 1 uses an accumulator as a means for storing pressure energy. Therefore, there is a drawback that the energy is reduced in a short time if the stored energy is not used. In addition, there is a problem that the storage amount of the accumulator is smaller than the required amount, and there is also a problem that a large accumulator is required to store a large amount of energy.
[0006] これに対し、油圧エネルギを電気工ネルギに変換してバッテリに貯蔵することにより 、大きなエネルギを比較的小さな容積で貯蔵できるようにしたものがある(例えば、特 許文献 2、 3、 4、 5参照)。 特許文献 1 :特公平 3— 33922号公報 (第 2— 4頁、第 1 2図) [0006] On the other hand, there is one that can store large energy in a relatively small volume by converting hydraulic energy into electric energy and storing it in a battery (for example, Patent Documents 2, 3, 4 and 5). Patent Document 1: Japanese Patent Publication No. 3-33922 (page 2-4, Fig. 1 2)
特許文献 2:特開 2000— 136806号公報 (第 8— 9頁、図 1)  Patent Document 2: Japanese Unexamined Patent Publication No. 2000-136806 (Pages 8-9, Fig. 1)
特許文献 3:特開 2002— 242234号公報 (第 4 5頁、図 1)  Patent Document 3: Japanese Patent Laid-Open No. 2002-242234 (Page 45, Fig. 1)
特許文献 4:特開 2002-322682号公報 (第 3-4頁、図 1—2)  Patent Document 4: JP 2002-322682 A (page 3-4, Fig. 1-2)
特許文献 5 :WO0lZ88381号公報(第 27-31頁、図 4)  Patent Document 5: WO0lZ88381 (Pages 27-31, Fig. 4)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] これらの従来技術は、油圧エネルギの回収と再生とを交互に繰返して、無駄なくェ ネルギの回生を行なおうとするものである力 油圧エネルギが回収不可能な場合もあ り、このような場合は、逆に、油圧エネルギ回収手段が負荷となってエネルギ損失が 発生し、エネルギ回収を効率良くできない。 [0007] These conventional techniques may alternately recover and regenerate hydraulic energy and attempt to regenerate energy without waste. In some cases, the hydraulic energy cannot be recovered. In such a case, conversely, the hydraulic energy recovery means becomes a load and energy loss occurs, and energy recovery cannot be performed efficiently.
[0008] 本発明は、このような点に鑑みなされたもので、エネルギ回収を効率良くできるよう にした流体圧駆動回路を提供することを目的とするものである。 [0008] The present invention has been made in view of these points, and an object of the present invention is to provide a fluid pressure drive circuit capable of efficiently recovering energy.
課題を解決するための手段  Means for solving the problem
[0009] 請求項 1記載の発明は、ポンプを駆動する駆動装置と、ポンプによりタンク内から汲 み上げた流体を制御してァクチユエータに供給するとともに、このァクチユエータから 戻された流体をタンク内に排出する制御弁装置と、ァクチユエ一タカ タンクに戻され る流体の余剰圧力エネルギを回収して駆動装置に回生する回生モータと、ァクチュ エータの流体戻り側圧力および流体入り側圧力を検出する圧力検出装置と、ァクチ ユエータの流体戻り側を回生モータおよびタンクのいずれか一方に連通させる切替 弁装置と、圧力検出装置により検出されたァクチユエータの流体戻り側圧力が流体 入り側圧力より高圧でかつ設定値より高圧の場合はァクチユエータの流体戻り側を回 生モータに連通し、流体戻り側圧力が流体入り側圧力より低圧の場合、あるいは所 定の設定値より低圧となった場合はァクチユエータの流体戻り側をタンクに連通する ように切替弁装置を切替制御するコントローラとを具備した流体圧駆動回路である。 [0009] The invention according to claim 1 includes a drive device for driving the pump, and the fluid pumped up from the tank by the pump and supplied to the actuator, and the fluid returned from the actuator is supplied into the tank. Control valve device that discharges, regenerative motor that recovers excess pressure energy of the fluid that is returned to the actuator tank and regenerates it to the drive device, and pressure detection that detects the fluid return side pressure and the fluid entry side pressure of the actuator Switch valve device that connects the fluid return side of the actuator and the actuator to either the regenerative motor or the tank, and the fluid return side pressure of the actuator detected by the pressure detection device is higher than the fluid inlet side pressure and the set value For higher pressures, the fluid return side of the actuator is connected to the regenerative motor, and the fluid return side pressure is lower than the fluid entry side pressure. For, or when a lower pressure than the Jo Tokoro set value is a fluid pressure drive circuit switching valve device equipped with a controller for switching control so as to communicate with the tank fluid return side of Akuchiyueta.
[0010] そして、ァクチユエータの余剰圧力エネルギを回生モータによって回収して駆動装 置に回生する際に、圧力検出装置により検出されたァクチユエータの流体戻り側圧 力が流体入り側圧力より高圧でかつ設定値より高圧の場合は、コントローラが切替弁 装置を制御してァクチユエータの流体戻り側を回生モータに連通させることで、ァク チユエータの流体戻り側力 圧力エネルギを回収し、一方、流体戻り側圧力が流体 入り側圧力より低圧の場合、あるいは所定の設定値より低圧となった場合で圧力エネ ルギを取り出すことができな 、場合は、切替弁装置によってァクチユエータの流体戻 り側を回生モータ力も切り離してタンクに連通させるようにしたので、回生モータが駆 動装置にとって負荷となる場合に生じるエネルギ損失を低減することが可能であり、 エネルギ回収を効率良くでき、より省エネルギ化を図ることが可能である。 [0010] Then, when the surplus pressure energy of the actuator is recovered by the regenerative motor and regenerated to the drive device, the fluid return side pressure of the actuator detected by the pressure detection device is higher than the fluid entering side pressure and is a set value. For higher pressures, the controller switches By controlling the device to connect the fluid return side of the actuator to the regenerative motor, the fluid return side force pressure energy of the actuator is recovered, while the fluid return side pressure is lower than the fluid entry side pressure, or If the pressure energy cannot be taken out when the pressure is lower than the preset value, the regenerative motor force is also disconnected from the fluid return side of the actuator by the switching valve device so that the regenerative motor is communicated. It is possible to reduce the energy loss that occurs when the motor becomes a load on the drive device, and it is possible to efficiently recover the energy and further save energy.
[0011] 請求項 2記載の発明は、請求項 1記載の流体圧駆動回路における駆動装置が、ェ ンジンに接続された発電機と、この発電機に電気的に接続されるとともにポンプに機 械的に接続され電動機および発電機として機能する電動発電機と、発電機および電 動発電機にコンバータを介して接続された蓄電器とを具備し、ポンプおよび回生モ ータは、それぞれ容量可変用の斜板を有し、コントローラは、指令されたァクチユエ一 タ速度が得られるように、切替弁装置の開度および電動発電機の回転速度を制御し て、回生モータおよびポンプの回転速度を制御するとともに、これらの斜板の傾転角 を制御するものである。  [0011] According to the invention described in claim 2, the driving device in the fluid pressure driving circuit described in claim 1 includes a generator connected to the engine, an electrical connection to the generator, and a mechanism connected to the pump. A motor and a motor generator that function as a motor and a generator, and a capacitor that is connected to the generator and the motor generator through a converter. The pump and the regenerative motor are each for variable capacity. The controller has a swash plate and controls the rotation speed of the regenerative motor and pump by controlling the opening degree of the switching valve device and the rotation speed of the motor generator so that the commanded actuator speed can be obtained. At the same time, it controls the tilt angle of these swash plates.
[0012] そして、エンジン、発電機および電動発電機がポンプに対し順次接続されたシリー ズ方式の駆動装置においては、切替弁装置の開度および電動発電機の回転速度を 制御することで、回生モータおよびポンプの回転速度を制御するとともに、これらの斜 板の傾転角を制御して、指令されたァクチユエータ速度を得ることが可能である。  [0012] In a series-type drive device in which an engine, a generator, and a motor generator are sequentially connected to a pump, regeneration is controlled by controlling the opening degree of the switching valve device and the rotation speed of the motor generator. It is possible to obtain the commanded actuator speed by controlling the rotational speed of the motor and pump and by controlling the tilt angle of these swash plates.
[0013] 請求項 3記載の発明は、請求項 1記載の流体圧駆動回路におけるポンプおよび回 生モータが、それぞれ容量可変用の斜板を有し、駆動装置は、エンジンとポンプとの 間に介在されたギアボックスと、ポンプに対しギアボックスを介してエンジンと並列に 接続され電動機および発電機として機能する電動発電機と、電動発電機にコンパ一 タを介して接続された蓄電器とを具備し、コントローラは、回生モータおよびポンプの 斜板を制御して、指令されたァクチユエータ速度が得られるように回生モータおよび ポンプの容量を制御するものである。  [0013] In the invention of claim 3, the pump and the regenerative motor in the fluid pressure drive circuit of claim 1 each have a variable capacity swash plate, and the drive device is provided between the engine and the pump. An intervening gearbox, a motor generator connected to the pump in parallel with the engine via the gearbox and functioning as a motor and a generator, and a capacitor connected to the motor generator via a comparator. The controller controls the capacity of the regenerative motor and the pump so as to obtain the commanded actuator speed by controlling the regenerative motor and the swash plate of the pump.
[0014] そして、ポンプに対しギアボックスを介してエンジンと電動発電機とが並列に接続さ れたパラレル方式の駆動装置にお 、ては、回生モータおよびポンプの斜板を制御す ることで、これらの容量を制御して、指令されたァクチユエータ速度を得ることが可能 である。 [0014] Then, in a parallel type driving device in which the engine and the motor generator are connected in parallel to the pump via a gear box, the regenerative motor and the swash plate of the pump are controlled. By controlling these capacities, it is possible to obtain the commanded actuator speed.
[0015] 請求項 4記載の発明は、請求項 1乃至 3のいずれか記載の流体圧駆動回路におけ る制御弁装置力、複数のァクチユエータを制御するスプール構造の複数のコントロー ル弁を備え、複数のコントロール弁は、ポンプとタンクとの間でタンデム接続されたセ ンタバイノ ス通路をそれぞれ有し、切替弁装置は、下流側のコントロール弁のドレン ポートに接続されたものである。  [0015] The invention of claim 4 comprises a control valve device force in the fluid pressure drive circuit according to any one of claims 1 to 3, a plurality of control valves of a spool structure for controlling a plurality of actuators, The plurality of control valves each have a center passage connected in tandem between the pump and the tank, and the switching valve device is connected to the drain port of the downstream control valve.
[0016] そして、複数のコントロール弁により制御される複数のァクチユエータに対して、駆 動装置および回生モータを共用することが可能であり、また、複数のコントロール弁 のセンタバイノス通路をタンデム接続することで、上流側のァクチユエータを優先的 に作動させた上で、下流側のァクチユエ一タカ 排出される余剰圧力エネルギが十 分高い場合は、下流側のコントロール弁のドレンポートに接続された切替弁装置によ り、その余剰圧力エネルギを回生モータを通じてポンプおよび駆動装置に回生する。  [0016] A drive device and a regenerative motor can be shared with a plurality of actuators controlled by a plurality of control valves, and the center binos passages of the plurality of control valves are connected in tandem. If the excess pressure energy discharged from the downstream side actuator after the upstream side actuator is activated with priority, the switching valve device connected to the drain port of the downstream side control valve Thus, the excess pressure energy is regenerated to the pump and the drive device through the regenerative motor.
[0017] 請求項 5記載の発明は、請求項 1乃至 4のいずれか記載の流体圧駆動回路におけ る切替弁装置は、電磁比例弁を備えたものであり、そして、ァクチユエータの流体戻り 側の切替弁装置が電磁比例弁であるから、負荷が作用するァクチユエータの作動速 度を制御するのに適したメータアウト制御機能が得られる。  [0017] In the invention according to claim 5, the switching valve device in the fluid pressure drive circuit according to any one of claims 1 to 4 includes an electromagnetic proportional valve, and the fluid return side of the actuator Since this switching valve device is an electromagnetic proportional valve, a meter-out control function suitable for controlling the operating speed of the actuator on which the load acts can be obtained.
発明の効果  The invention's effect
[0018] 請求項 1記載の発明によれば、ァクチユエータの余剰圧力エネルギを回生モータに よって回収して駆動装置に回生する際に、圧力検出装置により検出されたァクチユエ ータの流体戻り側圧力が流体入り側圧力より高圧でかつ設定値より高圧の場合は、 コントローラが切替弁装置を制御してァクチユエータの流体戻り側を回生モータに連 通させることで、ァクチユエータの流体戻り側から圧力エネルギを回収し、一方、流体 戻り側圧力が流体入り側圧力より低圧の場合、あるいは所定の設定値より低圧となつ た場合で圧力エネルギを取り出すことができない場合は、切替弁装置によってァクチ ユエータの流体戻り側を回生モータ力も切り離してタンクに連通させるようにしたので [0018] According to the invention of claim 1, when the surplus pressure energy of the actuator is recovered by the regenerative motor and regenerated to the drive device, the fluid return side pressure of the actuator detected by the pressure detection device is When the pressure is higher than the fluid entry side pressure and higher than the set value, the controller controls the switching valve device to connect the fluid return side of the actuator to the regenerative motor, thereby recovering the pressure energy from the fluid return side of the actuator. On the other hand, if the pressure energy cannot be taken out when the pressure on the fluid return side is lower than the pressure on the fluid input side or the pressure is lower than the predetermined set value, the switching valve device can be used to return the fluid to the fluid return side of the actuator. Since the regenerative motor force was also disconnected, it was made to communicate with the tank.
、回生モータが駆動装置にとって負荷となる場合に生じるエネルギ損失を低減するこ とができ、エネルギ回収を効率良くでき、より省エネルギ化を図ることができる。 [0019] 請求項 2記載の発明によれば、エンジン、発電機および電動発電機がポンプに対 し順次接続されたシリーズ方式の駆動装置においては、切替弁装置の開度および電 動発電機の回転速度を制御することで、回生モータおよびポンプの回転速度を制御 するとともに、これらの斜板の傾転角を制御して、指令されたァクチユエータ速度を得 ることがでさる。 In addition, energy loss that occurs when the regenerative motor becomes a load on the drive device can be reduced, energy recovery can be performed efficiently, and energy saving can be further achieved. [0019] According to the invention of claim 2, in the series type driving device in which the engine, the generator, and the motor generator are sequentially connected to the pump, the opening degree of the switching valve device and the electric generator By controlling the rotational speed, the rotational speeds of the regenerative motor and pump can be controlled, and the tilt angle of these swash plates can be controlled to obtain the commanded actuator speed.
[0020] 請求項 3記載の発明によれば、ポンプに対しギアボックスを介してエンジンと電動発 電機とが並列に接続されたパラレル方式の駆動装置においては、回生モータおよび ポンプの斜板を制御することで、これらの容量を制御して、指令されたァクチユエータ 速度を得ることができる。  [0020] According to the invention of claim 3, in the parallel type driving device in which the engine and the electric generator are connected in parallel to the pump via the gear box, the regenerative motor and the swash plate of the pump are controlled. By doing so, these capacities can be controlled to obtain the commanded actuator speed.
[0021] 請求項 4記載の発明によれば、複数のコントロール弁により制御される複数のァク チユエータに対して、駆動装置および回生モータを共用することができ、また、複数 のコントロール弁のセンタバイノス通路をタンデム接続することで、上流側のァクチュ エータを優先的に作動させた上で、下流側のァクチユエ一タカ 排出される余剰圧 力エネルギが十分高い場合は、下流側のコントロール弁のドレンポートに接続された 切替弁装置により、その余剰圧力エネルギを回生モータを通じてポンプおよび駆動 装置に回生できる。  [0021] According to the invention of claim 4, the drive device and the regenerative motor can be shared for the plurality of actuators controlled by the plurality of control valves, and the center binos of the plurality of control valves By connecting the passages in tandem, the upstream side actuator is operated with priority, and if the excess pressure energy discharged from the downstream side is sufficiently high, the drain port of the downstream control valve The surplus pressure energy can be regenerated to the pump and the drive device through the regenerative motor by the switching valve device connected to.
[0022] 請求項 5記載の発明によれば、ァクチユエータの流体戻り側の切替弁装置が電磁 比例弁であるから、負荷が作用するァクチユエータの作動速度を制御するのに適し たメータアウト制御機能が得ることができる。  [0022] According to the invention described in claim 5, since the switching valve device on the fluid return side of the actuator is an electromagnetic proportional valve, a meter-out control function suitable for controlling the operating speed of the actuator on which the load acts is provided. Obtainable.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明に係る流体圧駆動回路の第 1の実施の形態を示す回路図である。 FIG. 1 is a circuit diagram showing a first embodiment of a fluid pressure drive circuit according to the present invention.
[図 2]本発明に係る流体圧駆動回路の第 2の実施の形態を示す回路図である。  FIG. 2 is a circuit diagram showing a second embodiment of a fluid pressure drive circuit according to the present invention.
[図 3]本発明に係る流体圧駆動回路の第 3の実施の形態を示す回路図である。  FIG. 3 is a circuit diagram showing a third embodiment of a fluid pressure drive circuit according to the present invention.
[図 4]本発明に係る流体圧駆動回路の第 4の実施の形態を示す回路図である。  FIG. 4 is a circuit diagram showing a fourth embodiment of a fluid pressure drive circuit according to the present invention.
[図 5]本発明に係る流体圧駆動回路の第 5の実施の形態を示す回路図である。  FIG. 5 is a circuit diagram showing a fifth embodiment of a fluid pressure drive circuit according to the present invention.
[図 6]本発明に係る流体圧駆動回路の第 6の実施の形態を示す回路図である。  FIG. 6 is a circuit diagram showing a sixth embodiment of a fluid pressure drive circuit according to the present invention.
[図 7]同上流体圧駆動回路の駆動装置の他の例を示す構成図である。  FIG. 7 is a configuration diagram showing another example of the driving device of the fluid pressure driving circuit.
[図 8]油圧ショベルの側面図である。 符号の説明 FIG. 8 is a side view of the excavator. Explanation of symbols
[0024] 21 エンジン  [0024] 21 engine
22, 22a 駆動装置  22, 22a Drive unit
23 ポンプ  23 Pump
24 タンク  24 tanks
25 制御弁装置  25 Control valve device
26, 45 斜板  26, 45 Swash plate
31 発電機  31 Generator
32, 92 電動発電機  32, 92 Motor generator
33, 93 コンバータ  33, 93 Converter
34, 94 蓄電器  34, 94 battery
38, 39, 56, 57 電磁比例弁  38, 39, 56, 57 Solenoid proportional valve
41, 81 ァクチユエータ  41, 81 Actuator
44 回生モータ  44 Regenerative motor
48, 49 圧力検出装置としての圧力センサ  48, 49 Pressure sensor as pressure detector
55 切替弁装置  55 Switching valve device
61 コントローラ  61 controller
67, 76, 77 電磁比例弁  67, 76, 77 Proportional solenoid valve
71, 82 コントロール弁  71, 82 Control valve
73 ドレンポート  73 Drain port
83, 84 センタバイパス通路  83, 84 Center bypass passage
91 ギアボックス  91 gearbox
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明を、図 1に示される第 1の実施の形態、図 2に示される第 2の実施の形 態、図 3に示される第 3の実施の形態、図 4に示される第 4の実施の形態、図 5に示さ れる第 5の実施の形態、図 6に示される第 6の実施の形態、図 7に示される駆動装置 の変形例を参照して説明する。 [0025] Hereinafter, the present invention is shown in the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, the third embodiment shown in FIG. 3, and FIG. The fourth embodiment described above, the fifth embodiment shown in FIG. 5, the sixth embodiment shown in FIG. 6, and a modification of the drive device shown in FIG. 7 will be described.
[0026] 先ず、図 1に示された第 1の実施の形態を説明する。 [0027] エンジン 21に駆動装置 22を介してポンプ 23が接続され、駆動装置 22は、エンジン 21の回転を受けてポンプ 23を駆動し、タンク 24内の流体としての作動油を制御弁装 置 25に加圧供給する。ポンプ 23は、容量可変用の斜板 26を有する油圧ポンプである First, the first embodiment shown in FIG. 1 will be described. [0027] A pump 23 is connected to the engine 21 via a drive device 22. The drive device 22 drives the pump 23 in response to the rotation of the engine 21, and controls the hydraulic oil as fluid in the tank 24 with a control valve device. Supply pressure to 25. The pump 23 is a hydraulic pump having a swash plate 26 for variable capacity.
[0028] 駆動装置 22は、エンジン 21に発電機 31が接続され、この発電機 31に、ポンプ 23に 機械的に直結された電動機および発電機として機能する電動発電機 32が、電気的 に接続され、発電機 31および電動発電機 32にコンバータ 33を介して蓄電器 34が接 続されたシリーズ型のシステムである。 [0028] In the drive unit 22, a generator 31 is connected to the engine 21, and an electric motor mechanically directly connected to the pump 23 and a motor generator 32 functioning as a generator are electrically connected to the generator 31. In this series system, a battery 34 is connected to a generator 31 and a motor generator 32 via a converter 33.
[0029] ポンプ 23の吐出通路 35には、制御弁装置 25が接続されている。この制御弁装置 25 は、ポンプ 23の吐出通路 35とタンク 24との間で、電気信号に応じて開く開度のみを調 整可能な 4つの電磁比例弁 36, 37, 38, 39によりブリッジ回路を形成したものである。  A control valve device 25 is connected to the discharge passage 35 of the pump 23. This control valve device 25 is a bridge circuit by means of four solenoid proportional valves 36, 37, 38, 39 that can adjust only the opening between the discharge passage 35 of the pump 23 and the tank 24 according to the electrical signal. Is formed.
[0030] この制御弁装置 25を構成する 4つの電磁比例弁 36, 37, 38, 39は、ポンプ 23により タンク 24内から汲み上げた作動油を方向制御および流量制御して、ァクチユエータ 41に供給するとともにこのァクチユエータ 41から戻された作動油をタンク 24内に排出 する機能を有する。ァクチユエータ 41は、例えば図 8に示されたブームシリンダ 16cで ある。  The four proportional solenoid valves 36, 37, 38, 39 constituting this control valve device 25 supply the hydraulic oil pumped from the tank 24 by the pump 23 to the actuator 41 by controlling the direction and flow rate. At the same time, the hydraulic oil returned from the actuator 41 is discharged into the tank 24. The actuator 41 is, for example, a boom cylinder 16c shown in FIG.
[0031] ポンプ 23の吐出通路 35には、リリーフ弁 42とアンロード弁 43が接続されている。リリ ーフ弁 42は、圧力設定用の安全弁として作用し、アンロード弁 43は、ァクチユエータ 41が駆動されない場合、ポンプ 23の最低吐出流量により高圧が生じることを防止する 圧力解除作用を持つ。  A relief valve 42 and an unload valve 43 are connected to the discharge passage 35 of the pump 23. The relief valve 42 acts as a safety valve for setting pressure, and the unload valve 43 has a pressure releasing action that prevents high pressure from being generated by the minimum discharge flow rate of the pump 23 when the actuator 41 is not driven.
[0032] ポンプ 23には、ァクチユエータ 41力 タンク 24に戻される高圧油の余剰圧力エネル ギを回収して駆動装置 22に回生する回生モータ 44が直結されている。この回生モー タ 44は、最小流量をほとんど 0に設定可能な容量可変用の斜板 45を有する油圧モー タである。  The pump 23 is directly connected to a regenerative motor 44 that recovers excess pressure energy of high-pressure oil returned to the actuator 41 force tank 24 and regenerates it to the drive device 22. The regenerative motor 44 is a hydraulic motor having a variable capacity swash plate 45 capable of setting the minimum flow rate to almost zero.
[0033] ァクチユエータ 41のボトム側通路 46およびロッド側通路 47には、ァクチユエータ 41の 流体戻り側としてのボトム側 41bの圧力すなわち流体戻り側圧力としてのボトム側圧力 、およびァクチユエータ 41の流体入り側としてのロッド側 41rの圧力すなわち流体入り 側圧力としてのロッド側圧力を検出する圧力検出装置としての圧力センサ 48, 49と、 ァクチユエータ圧力設定用のリリーフ弁 51, 52と、メイクアップ用のチェック弁 53, 54と がそれぞれ接続されている。 [0033] The bottom side passage 46 and the rod side passage 47 of the actuator 41 include a pressure on the bottom side 41b as the fluid return side of the actuator 41, that is, a bottom side pressure as the fluid return side pressure, and a fluid entry side of the actuator 41. Pressure sensors 48 and 49 as pressure detecting devices for detecting the pressure on the rod side 41r of the rod, that is, the pressure on the rod side as the fluid containing pressure Relief valves 51 and 52 for setting the actuator pressure and check valves 53 and 54 for make-up are connected to each other.
[0034] ァクチユエータ 41の流体戻り側としてのボトム側 41bを回生モータ 44およびタンク 24 の!、ずれか一方に連通させる切替弁装置 55が設けられて 、る。この切替弁装置 55は 、回生モータ 44とタンク 24との間で、電気信号に応じて開く開度のみを調整可能な 4 つの電磁比例弁 38, 39, 56, 57によりブリッジ回路を形成したものである。  [0034] A switching valve device 55 is provided to communicate the bottom side 41b as the fluid return side of the actuator 41 with one of the regenerative motor 44 and the tank 24. This switching valve device 55 has a bridge circuit formed by four electromagnetic proportional valves 38, 39, 56, and 57 that can adjust only the opening degree that opens according to an electric signal between the regenerative motor 44 and the tank 24. It is.
[0035] そのうちの 2つの電磁比例弁 38, 39は、制御弁装置 25と切替弁装置 55とを兼ね、こ れらの電磁比例弁 38, 39の出力側はタンク 24に接続されている。他の 2つの電磁比 例弁 56, 57の出力側は、合流して回生通路 58により、回生モータ 44と、回生圧力設 定用のリリーフ弁 59と、回生通路メイクアップ用のチェック弁 60とに接続されている。  Of these, the two electromagnetic proportional valves 38, 39 serve as the control valve device 25 and the switching valve device 55, and the output sides of these electromagnetic proportional valves 38, 39 are connected to the tank 24. The output side of the other two electromagnetic proportional valves 56 and 57 are joined together by a regenerative passage 58, a regenerative motor 44, a relief valve 59 for setting the regenerative pressure, and a check valve 60 for regenerative passage make-up. It is connected to the.
[0036] チェック弁 60があるため、回生通路 58内などに負圧が発生しそうになつた場合、例 えば回生モータ 44が回生状態になぐポンプ 23の負荷として回転される場合は、タン ク 24内の作動油をチェック弁 60を経て回生通路 58に吸込ませることで、回生通路 58 内などに負圧が発生したり、ポンプ負荷が増大することを防止できる。  [0036] When the negative pressure is likely to be generated in the regenerative passage 58 or the like because of the check valve 60, for example, when the regenerative motor 44 is rotated as a load of the pump 23 in the regenerative state, the tank 24 By sucking the hydraulic oil in the regenerative passage 58 through the check valve 60, it is possible to prevent negative pressure from being generated in the regenerative passage 58 or the like and an increase in pump load.
[0037] ァクチユエータ 41の流体戻り側圧力および流体入り側圧力を検出する各圧力セン サ 48, 49は、コントローラ 61の入力側に接続され、また、このコントローラ 61の出力側 は、電磁比例弁 36, 37, 38, 39, 56, 57などのソレノイドに接続されている。  [0037] The pressure sensors 48 and 49 for detecting the fluid return side pressure and the fluid entering side pressure of the actuator 41 are connected to the input side of the controller 61, and the output side of the controller 61 is connected to the electromagnetic proportional valve 36. , 37, 38, 39, 56, 57 etc.
[0038] そして、ァクチユエータ 41に重量や負荷が作用している状態では、ァクチユエータ 41の流体戻り側圧力が流体入り側圧力より高圧となる場合があるので、コントローラ 61は、一方の圧力センサ 48により検出されたァクチユエータ 41のボトム側 41bの流体 戻り側圧力が、他方の圧力センサ 49により検出されたァクチユエータ 41のロッド側 41r の流体入り側圧力より高圧であって、かつ所定の設定値より高圧の場合は、ァクチュ エータ 41のボトム側 41bを回生モータ 44に連通し、また、一方の圧力センサ 48により 検出されたァクチユエータ 41のボトム側圧力力 他方の圧力センサ 49により検出され たァクチユエータ 41のロッド側圧力より低圧となる力、あるいは所定の設定値より低圧 となった場合は、ァクチユエータ 41のボトム側 41bをタンク 24に連通するように、切替弁 装置 55の電磁比例弁 38, 39, 56, 57を切替制御する。  [0038] When the weight or load is acting on the actuator 41, the fluid return side pressure of the actuator 41 may be higher than the fluid entry side pressure. The detected fluid return side pressure on the bottom side 41b of the actuator 41 is higher than the fluid entry side pressure on the rod side 41r of the actuator 41 detected by the other pressure sensor 49 and higher than a predetermined set value. In this case, the bottom side 41b of the actuator 41 is connected to the regenerative motor 44, and the bottom side pressure force of the actuator 41 detected by one pressure sensor 48 The rod side of the actuator 41 detected by the other pressure sensor 49 If the pressure is lower than the pressure, or if the pressure is lower than the preset value, the bottom 41b of the actuator 41 is The solenoid proportional valves 38, 39, 56, and 57 of the switching valve device 55 are controlled so as to communicate with 24.
[0039] すなわち、コントローラ 61は、一方の圧力センサ 48により検出されたァクチユエータ 41のボトム側 41bからの流体戻り側圧力力 他方の圧力センサ 49により検出されたァ クチユエータ 41のロッド側 41rへの流体入り側圧力より高圧であって、かつ所定の設定 値圧力より高圧の場合は、ァクチユエータ 41のボトム側 41bからの高圧油を電磁比例 弁 56および回生通路 58を通して回生モータ 44に加圧供給することで、高圧油のエネ ルギを回生モータ 44の回転トルクエネルギに代えて回生させる。回生されたエネルギ の一部は回生モータ 44に直結されたポンプ 23で消費され、余剰分は電動発電機 32 の発電作用により電気工ネルギに変換され、蓄電器 34に充電される。 That is, the controller 61 includes an actuator detected by the one pressure sensor 48. Pressure pressure on the fluid return side from the bottom side 41b of 41 When the pressure on the rod side 41r of the actuator 41 detected by the other pressure sensor 49 is higher than the pressure on the fluid entering side and higher than the set pressure The high pressure oil from the bottom side 41b of the actuator 41 is pressurized and supplied to the regenerative motor 44 through the electromagnetic proportional valve 56 and the regenerative passage 58, so that the energy of the high pressure oil is regenerated instead of the rotational torque energy of the regenerative motor 44. Let A part of the regenerated energy is consumed by the pump 23 directly connected to the regenerative motor 44, and the surplus is converted into electric energy by the power generation action of the motor generator 32, and the capacitor 34 is charged.
[0040] 一方、ァクチユエータ 41のボトム側 41bからの流体戻り側圧力が、流体入り側圧力よ り低圧であるカゝ、または、所定の設定値圧力より低圧の場合は、回生モータ 44におい てエネルギ回生はできないので、この場合はコントローラ 61が電磁比例弁 38を開け、 ァクチユエータ 41のボトム側 41bからの戻り油をタンク 24に流すようにする。  [0040] On the other hand, if the pressure on the fluid return side from the bottom side 41b of the actuator 41 is lower than the pressure on the fluid entering side, or lower than the predetermined set pressure, the energy is supplied to the regenerative motor 44. In this case, the controller 61 opens the solenoid proportional valve 38 so that the return oil from the bottom side 41b of the actuator 41 flows into the tank 24.
[0041] このように、回生モータ 44でエネルギ回生をするか否かは、左右の圧力センサ 48, 49の値を基にコントローラ 61が判断し、エネルギ回生をしないときはァクチユエータ 41 力 の戻り油を回生モータ 44に供給しな 、ようにする。  [0041] In this way, the controller 61 determines whether or not energy regeneration is performed by the regenerative motor 44 based on the values of the left and right pressure sensors 48 and 49. When energy regeneration is not performed, the actuator 41 returns the return oil. Is not supplied to the regenerative motor 44.
[0042] さらに、このコントローラ 61は、指令されたァクチユエータ速度が得られるように、電 動発電機 32の回転速度および切替弁装置 55の電磁比例弁 56の開度などを制御して 、ポンプ 23および回生モータ 44の回転速度を制御するとともに、図示されない電磁比 例弁により図示されないレギユレータを介してポンプ 23および回生モータ 44の斜板 26 , 45の傾転角を制御するものである。  [0042] Further, the controller 61 controls the rotational speed of the electric generator 32 and the opening degree of the electromagnetic proportional valve 56 of the switching valve device 55 so that the commanded actuator speed can be obtained. In addition, the rotational speed of the regenerative motor 44 is controlled, and the tilt angle of the swash plates 26 and 45 of the pump 23 and the regenerative motor 44 is controlled via a regulator not shown by an electromagnetic proportional valve not shown.
[0043] なお、図面上は、例えば油圧ショベルのブーム系の電動発電機 32に接続されたポ ンプ 23と、このポンプ 23に接続された制御弁装置 25、回生モータ 44によりァクチユエ ータ 41が駆動される力 同様に、走行系、旋回系、スティック系またはパケット系の図 示しな ヽ他の電動発電機に接続された他のポンプと、このポンプに接続された他の 制御弁装置、他の回生モータにより他のァクチユエータも駆動され、これらの電動機 駆動には、共通の発電機 31および蓄電器 34の電力および回生された電力が供給さ れるようにする。  In the drawing, for example, an actuator 41 is connected by a pump 23 connected to a boom motor generator 32 of a hydraulic excavator, a control valve device 25 connected to the pump 23, and a regenerative motor 44. Driving force Similarly, traveling system, turning system, stick system or packet system not shown ヽ Other pumps connected to other motor generators, other control valve devices connected to this pump, etc. The other regenerative motor also drives other actuators, and the electric power of the common generator 31 and the accumulator 34 and the regenerated electric power are supplied to these motor drives.
[0044] 次に、この第 1の実施の形態の作用効果を説明する。  Next, the function and effect of the first embodiment will be described.
[0045] ァクチユエータ 41が図 8に示されたブームシリンダ 16cである場合について説明する 。このようなァクチユエータ 41では、作業装置 15の重量が作用し、ボトム側 41bに高圧 が立っており、ロッド側 41rは低圧になる。 [0045] The case where the actuator 41 is the boom cylinder 16c shown in FIG. 8 will be described. . In such an actuator 41, the weight of the work device 15 acts, a high pressure stands on the bottom side 41b, and the rod side 41r has a low pressure.
[0046] ブーム下げ動作をさせるとき、ァクチユエータ 41のボトム側 41bの高圧油は、電磁比 例弁 56を電磁駆動し開けることにより回生モータ 44に流れ、この高圧油のエネルギに より回生モータ 44に駆動トルクが発生し回転速度が上昇する。つまり高圧油のエネル ギが回生されることになる。 [0046] When the boom lowering operation is performed, the high pressure oil on the bottom side 41b of the actuator 41 flows to the regenerative motor 44 by electromagnetically driving and opening the electromagnetic proportional valve 56. The energy of the high pressure oil causes the regenerative motor 44 to Drive torque is generated and the rotational speed increases. In other words, the energy of high-pressure oil is regenerated.
[0047] このように回生モータ 44が回生状態に入ると、回生モータ 44に入力された回生動力 は、直結された電動発電機 32の発電作用により電気工ネルギに変換され、蓄電器 34 に蓄えられる。 When the regenerative motor 44 enters the regenerative state in this way, the regenerative power input to the regenerative motor 44 is converted into electric energy by the power generation action of the directly connected motor generator 32 and stored in the capacitor 34. .
[0048] また、回生モータ 44に直結されているポンプ 23からの吐出流量が増加し、同時に電 磁比例弁 37を電磁駆動し開けると、ポンプ吐出圧油はァクチユエータ 41のロッド側 41rに流れる。このとき、電磁比例弁 37, 56を電磁比例駆動することによりモジユレ一 シヨン機能を持たせ、起動時のショックを緩和できる。  [0048] When the discharge flow rate from the pump 23 directly connected to the regenerative motor 44 increases and at the same time the electromagnetic proportional valve 37 is electromagnetically driven and opened, the pump discharge pressure oil flows to the rod side 41r of the actuator 41. At this time, the proportional function of the electromagnetic proportional valves 37 and 56 is provided by a proportional function, so that the shock at the start can be alleviated.
[0049] さらに、ァクチユエータ 41のボトム側 41bに電磁比例弁 56を接続したので、負荷が作 用するァクチユエータ 41の作動速度を制御するのに適したメータアウト制御機能を得 ることがでさる。  [0049] Further, since the proportional solenoid valve 56 is connected to the bottom side 41b of the actuator 41, a meter-out control function suitable for controlling the operating speed of the actuator 41 operated by the load can be obtained.
[0050] 一方、回生動力が十分得られる状態まで電動発電機 32に起動をかける、すなわち 電力を供給する方法も採用し得る。回生動力が十分得られる状態では電動発電機 32に発電作用させることになる。  [0050] On the other hand, a method of starting the motor generator 32 until sufficient regenerative power can be obtained, that is, a method of supplying electric power may be employed. In a state where sufficient regenerative power is obtained, the motor generator 32 is caused to generate power.
[0051] ァクチユエータ 41はオペレータの操作レバーによる速度指令により駆動される。この 速度指令により、上記の回生時に回生モータ 44の回転速度が速度指令に比例する よう制御される。ここで、ポンプ 23および回生モータ 44の斜板 26, 45は調整に使用さ れる。制御される回転速度は、速度指令に対し誤差を生じる場合もあり、流量の微調 整が必要になる。なお、本実施形態では回生モータ 44とポンプ 23に流量の微調整用 の斜板 45, 26を設けたが、どちらか一方のみを制御することも可能である。  The actuator 41 is driven by a speed command from the operator's operation lever. By this speed command, the rotation speed of the regenerative motor 44 is controlled to be proportional to the speed command during the above regeneration. Here, the swash plates 26 and 45 of the pump 23 and the regenerative motor 44 are used for adjustment. The rotational speed to be controlled may cause an error with respect to the speed command, and fine adjustment of the flow rate is required. In this embodiment, the regenerative motor 44 and the pump 23 are provided with the swash plates 45 and 26 for fine adjustment of the flow rate, but only one of them can be controlled.
[0052] 一般的にポンプ 23の動力は、回生モータ 44により回生される動力に比べ小さいた め余剰動力は電動発電機 32の発電作用により電気工ネルギに回生されコンバータ 33を介して蓄電器 34に充電される。 [0053] ァクチユエータ 41のボトム側 41bにロッド側 41rよりも高圧が立っていることを検出する には、 2つの圧力センサ 48, 49を用いる。ァクチユエータ 41のボトム側 41bに高圧が立 つてロッド側 41rが低圧になる状態であって、かつボトム側圧力力 予め設定された圧 力値よりも大きい場合は、回生可能な状態にあると判断し、回生モータ 44に高圧油を 導く。 [0052] In general, the power of the pump 23 is smaller than the power regenerated by the regenerative motor 44. Therefore, the surplus power is regenerated to the electric energy by the power generation action of the motor generator 32 and is supplied to the battery 34 via the converter 33. Charged. [0053] In order to detect that a pressure higher than the rod side 41r is standing on the bottom side 41b of the actuator 41, two pressure sensors 48 and 49 are used. If the rod side 41r is in a state where the high pressure is generated on the bottom side 41b of the actuator 41 and the rod side 41r is at a low pressure, and the pressure pressure on the bottom side is greater than the preset pressure value, it is determined that the actuator is in a regenerative state. Then, the high pressure oil is guided to the regenerative motor 44.
[0054] よって、その他のスティックシリンダ 17cや、バケツトシリンダ 18cでも、重量や負荷が 作用している状態では、ァクチユエータ 41の流体戻り側圧力が流体入り側圧力より高 圧でかつ設定値より高圧となる場合があり、ァクチユエータ 41のボトム側 41bの高圧油 を回生モータ 44に導く回生作用が適用可能となる。  [0054] Therefore, in the other stick cylinder 17c and bucket cylinder 18c, the fluid return side pressure of the actuator 41 is higher than the fluid entry side pressure and higher than the set value when weight and load are applied. Therefore, the regenerative action of guiding the high pressure oil on the bottom side 41b of the actuator 41 to the regenerative motor 44 can be applied.
[0055] 一方、ボトム側 41bがロッド側 41rより低圧となった場合、あるいは所定の設定値より 低圧となった場合は、十分な回生動力が得られないため、ァクチユエータ 41のボトム 側 41bの低圧油は回生されず、開状態に電磁駆動された電磁比例弁 38を経て、タン ク 24に排出される。また、電動発電機 32への速度指令により上記の回生時にポンプ 23の回転速度が速度指令に比例するよう制御される。  [0055] On the other hand, when the bottom side 41b has a lower pressure than the rod side 41r, or a pressure lower than a predetermined set value, sufficient regenerative power cannot be obtained, so the low pressure on the bottom side 41b of the actuator 41 is low. The oil is not regenerated and is discharged to the tank 24 through the electromagnetic proportional valve 38 that is electromagnetically driven in the open state. Further, the rotational speed of the pump 23 is controlled in proportion to the speed command at the time of the regeneration by the speed command to the motor generator 32.
[0056] これに相当する作業には、ブームシリンダ 16cではパケット 18を地面に着けた後も、 ブームシリンダ 16cを縮め作動して機体を持ち上げることがある。この際、ァクチユエ ータ 41のボトム側 41bは低圧となり、ロッド側 41rには高圧が必要となる。この状態の検 出は圧力センサ 48, 49を使用し、ロッド側 41rの圧力センサ 49が高圧で、ボトム側 41b の圧力センサ 48が低圧であるときと限定できる。  [0056] For the work corresponding to this, in the boom cylinder 16c, even after the packet 18 is put on the ground, the boom cylinder 16c is contracted and operated to lift the airframe. At this time, the bottom side 41b of the actuator 41 has a low pressure, and the rod side 41r requires a high pressure. The detection of this state can be limited to the case where the pressure sensors 48 and 49 are used and the pressure sensor 49 on the rod side 41r is high pressure and the pressure sensor 48 on the bottom side 41b is low pressure.
[0057] このように、ァクチユエータ 41の余剰圧力エネルギを回生モータ 44によって回収して ポンプ 23や駆動装置 22に回生する際に、圧力センサ 48, 49により検出されたァクチュ エータ 41の流体戻り側圧力が流体入り側圧力より高圧でかつ設定値より高圧の場合 は、コントローラ 61が切替弁装置 55を制御してァクチユエータ 41のボトム側 41bを回生 モータ 44に連通させることで、ァクチユエータ 41のボトム側 41bから圧力エネルギを回 収し、一方、流体戻り側圧力が流体入り側圧力より低圧の場合、あるいは所定の設定 値より低圧となった場合、すなわち圧力エネルギを取り出すことができない場合は、 切替弁装置 55によってァクチユエータ 41のボトム側 41bを回生モータ 44力 切り離し てタンク 24に連通させるようにしたので、回生モータ 44が駆動装置 22にとつて負荷と なる場合に生じるエネルギ損失を低減することができ、エネルギ回収を効率良くでき 、より省エネルギ化を図ることができる。 [0057] In this way, when the surplus pressure energy of the actuator 41 is recovered by the regenerative motor 44 and regenerated to the pump 23 or the driving device 22, the pressure on the fluid return side of the actuator 41 detected by the pressure sensors 48, 49 is detected. When the pressure is higher than the fluid entry side pressure and higher than the set value, the controller 61 controls the switching valve device 55 so that the bottom side 41b of the actuator 41 communicates with the regenerative motor 44, so that the bottom side 41b of the actuator 41 On the other hand, when the fluid return side pressure is lower than the fluid entry side pressure, or lower than the predetermined set value, that is, when the pressure energy cannot be extracted, the switching valve device Since the bottom side 41b of the actuator 41 is disconnected by the regenerative motor 44 force by 55 and communicated with the tank 24, the regenerative motor 44 And the dynamic device 22 go-between load and In this case, energy loss that occurs can be reduced, energy recovery can be performed efficiently, and energy saving can be further achieved.
[0058] また、エンジン 21、発電機 31および電動発電機 32がポンプ 23に対し順次接続され たシリーズ方式の駆動装置 22にお 、ては、電磁比例弁 56の開度および電動発電機 32の回転速度を制御することで、回生モータ 44およびポンプ 23の回転速度を制御し て、指令されたァクチユエータ速度を得ることができる。  [0058] Further, in the series-type drive device 22 in which the engine 21, the generator 31 and the motor generator 32 are sequentially connected to the pump 23, the opening of the electromagnetic proportional valve 56 and the motor generator 32 By controlling the rotational speed, the rotational speeds of the regenerative motor 44 and the pump 23 can be controlled to obtain the commanded actuator speed.
[0059] 以上のように回生回路を設け、油圧エネルギを電気工ネルギとして回生し、直接あ るいは蓄電器 34に一時充電した後必要に応じて他のァクチユエータの駆動系に供給 することにより、省エネルギ化とエンジン 21の小型化による有害排出ガスの削減を図 る効果を有する。  [0059] As described above, a regenerative circuit is provided, and hydraulic energy is regenerated as electric energy, and is directly or temporarily charged in the capacitor 34 and then supplied to the drive system of another actuator as necessary, thereby saving power. It has the effect of reducing harmful emissions by using energy and downsizing the engine 21.
[0060] 次に、図 2に示された第 2の実施の形態を説明する。なお、図 1に示された第 1の実 施の形態と同様の部分には同一符号を付してその説明を省略し、第 1の実施の形態 との相違点のみを説明する。  Next, the second embodiment shown in FIG. 2 will be described. The same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only differences from the first embodiment will be described.
[0061] 制御弁装置 25は、ポンプ 23とタンク 24との間で、電気信号に応じて開く開度のみを 調整可能な 4つの電磁比例弁 36, 37, 38, 39によりブリッジ回路を形成した点は、図 1 に示されたものと同様である力 切替弁装置 55は、ブリッジ回路の流体排出部 64に接 続された戻り通路 65を、タンク 24へのタンク通路 66から、電気信号に応じて、回生モ ータ 44に至る回生通路 58へと切替える電磁比例弁 67を備え、図 1に示された電磁比 例弁 38, 39, 56, 57に代えて、この電磁比例弁 67を接続する。  [0061] The control valve device 25 forms a bridge circuit between the pump 23 and the tank 24 by four electromagnetic proportional valves 36, 37, 38, 39 that can adjust only the opening degree that opens in accordance with an electric signal. The force switching valve device 55 is similar to that shown in FIG. 1 in that the return passage 65 connected to the fluid discharge section 64 of the bridge circuit is connected to the electrical signal from the tank passage 66 to the tank 24. Accordingly, an electromagnetic proportional valve 67 that switches to the regenerative passage 58 leading to the regenerative motor 44 is provided.Instead of the electromagnetic proportional valves 38, 39, 56, and 57 shown in FIG. Connecting.
[0062] そして、ァクチユエータ 41のボトム側 41bに高圧が発生して、その高圧油を回生する 場合、電磁比例弁 38, 67を開いて、高圧油を回生モータ 44に供給する。  [0062] When high pressure is generated on the bottom side 41b of the actuator 41 and the high pressure oil is regenerated, the electromagnetic proportional valves 38 and 67 are opened to supply the high pressure oil to the regenerative motor 44.
[0063] 次に、この第 2の実施の形態の作用効果を説明する。第 1の実施の形態との相違点 は以下のとおりである。  Next, the function and effect of the second embodiment will be described. Differences from the first embodiment are as follows.
[0064] ァクチユエータ 41のボトム側 41bの高圧油は電磁比例弁 38, 67を電磁駆動して開け ることにより、回生モータ 44に流れ、この高圧油のエネルギにより回生モータ 44に駆 動トルクが発生し回転速度が上昇する。つまり高圧油のエネルギが回生されることに なる。  [0064] The high pressure oil on the bottom side 41b of the actuator 41 flows to the regenerative motor 44 by opening the electromagnetic proportional valves 38 and 67 by electromagnetic driving, and a driving torque is generated in the regenerative motor 44 by the energy of this high pressure oil. Then the rotation speed increases. In other words, the energy of high-pressure oil is regenerated.
[0065] 一方、ボトム側 41bがロッド側 41rより低圧となった場合、あるいは所定の設定値より 低圧となった場合は、十分な回生動力が得られないため、ァクチユエータ 41のボトム 側 41bの低圧油は、回生されず、開状態に電磁駆動された電磁比例弁 38を経た後、 非励磁の電磁比例弁 67よりタンク 24に排出される。 [0065] On the other hand, when the bottom side 41b has a lower pressure than the rod side 41r, or from a predetermined set value. When the pressure becomes low, sufficient regenerative power cannot be obtained, so the low-pressure oil on the bottom side 41b of the actuator 41 is not regenerated and passes through the electromagnetic proportional valve 38 that is electromagnetically driven to the open state. It is discharged to tank 24 from solenoid proportional valve 67.
[0066] 次に、図 3に示された第 3の実施の形態を説明する。なお、図 1に示された第 1の実 施の形態と同様の部分には同一符号を付してその説明を省略し、第 1の実施の形態 との相違点のみを説明する。 Next, the third embodiment shown in FIG. 3 will be described. The same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only differences from the first embodiment will be described.
[0067] 制御弁装置 25は、図 1に示された電磁比例弁 36, 37, 38, 39の機能を、少なくとも 4 ポートを有するスプール構造のコントロール弁 71に集約したものである。 [0067] The control valve device 25 integrates the functions of the electromagnetic proportional valves 36, 37, 38, and 39 shown in FIG. 1 into a control valve 71 having a spool structure having at least four ports.
[0068] このコントロール弁 71は、スプールが中立位置にあるとき、ポンプ 23から供給された 作動油がタンク 24に流れるような内部通路 72を設けることで、図 1に示されたアンロー ド機能を持つアンロード弁 43を省略できる。 [0068] This control valve 71 provides the unloading function shown in FIG. 1 by providing an internal passage 72 through which hydraulic fluid supplied from the pump 23 flows to the tank 24 when the spool is in the neutral position. The unloading valve 43 possessed can be omitted.
[0069] また、切替弁装置 55は、コントロール弁 71のドレンポート 73に接続された戻り通路 65 を、タンク 24へのタンク通路 66から、電気信号に応じて、回生モータ 44への回生通路[0069] Further, the switching valve device 55 connects the return passage 65 connected to the drain port 73 of the control valve 71 from the tank passage 66 to the tank 24 to the regenerative passage to the regenerative motor 44 in response to an electric signal.
58へと切替える電磁比例弁 67を備え、図 1に示された電磁比例弁 38, 39, 56, 57に 代えて、この電磁比例弁 67を接続する。 An electromagnetic proportional valve 67 for switching to 58 is provided, and this proportional solenoid valve 67 is connected instead of the solenoid proportional valves 38, 39, 56, 57 shown in FIG.
[0070] この電磁比例弁 67は、ァクチユエータ 41のボトム側 41bの圧力が低いとき、すなわちThis electromagnetic proportional valve 67 is used when the pressure on the bottom side 41b of the actuator 41 is low, that is,
、ブーム上げ時および機体持上げ時、戻り油を回生モータ 44に通すと損失が大きく なるため、直接タンク 24へ戻す構造である。 When the boom is raised and the aircraft is lifted, the loss increases when the return oil is passed through the regenerative motor 44. Therefore, the structure directly returns to the tank 24.
[0071] 次に、この第 3の実施の形態の作用効果を説明する。第 1の実施の形態との相違点 は以下のとおりである。 Next, the function and effect of the third embodiment will be described. Differences from the first embodiment are as follows.
[0072] ァクチユエータ 41のボトム側 41bの高圧油は、コントロール弁 71を電磁駆動して左の ポジションに切替え、同時に切替弁装置 55の電磁比例弁 67を電磁駆動して、戻り通 路 65をタンク通路 66から回生通路 58に切替えることにより、回生モータ 44に高圧油が 流れ込み、この高圧油のエネルギにより回生モータ 44に駆動トルクが発生し、ポンプ 23の回転速度が上昇する。つまり高圧油のエネルギが回生されることになる。  [0072] The high pressure oil on the bottom side 41b of the actuator 41 electromagnetically drives the control valve 71 to switch it to the left position, and at the same time electromagnetically drives the electromagnetic proportional valve 67 of the switching valve device 55, and sets the return path 65 to the tank. By switching from the passage 66 to the regenerative passage 58, high-pressure oil flows into the regenerative motor 44, and drive torque is generated in the regenerative motor 44 by the energy of this high-pressure oil, and the rotational speed of the pump 23 increases. That is, the energy of the high pressure oil is regenerated.
[0073] 制御弁装置 25のポンプ側の吐出通路 35とタンク側の戻り通路 65は、中立時連通す る内部通路 72の構造を持ち、中立時、ポンプ 23の圧油はタンク 24に流れるので、中 立時のポンプ最低流量により高圧が立たないようになる。 [0074] 一方、ァクチユエータ 41のボトム側 41bがロッド側 41rより低圧となった場合、あるいは 所定の設定値より低圧となった場合は、十分な回生動力が得られないため、ボトム側 41bの低圧油は、回生されず、非励磁状態の電磁比例弁 67を通してタンク 24に排出 される。 [0073] The discharge passage 35 on the pump side and the return passage 65 on the tank side of the control valve device 25 have a structure of an internal passage 72 that communicates when neutral, and the pressure oil of the pump 23 flows to the tank 24 when neutral. In addition, the minimum pump flow rate at neutrality will prevent high pressure from standing. [0074] On the other hand, if the bottom side 41b of the actuator 41 is lower in pressure than the rod side 41r, or if the pressure is lower than a predetermined set value, sufficient regenerative power cannot be obtained. The oil is not regenerated and is discharged to the tank 24 through the non-excited electromagnetic proportional valve 67.
[0075] そして、ァクチユエータ 41のボトム側 41bと連通するコントロール弁 71のドレンポート 73に電磁比例弁 67を接続したので、負荷が作用するァクチユエータ 41の作動速度を 制御するのに適したメータアウト制御機能が得られる。  [0075] Since the solenoid proportional valve 67 is connected to the drain port 73 of the control valve 71 communicating with the bottom side 41b of the actuator 41, meter-out control suitable for controlling the operating speed of the actuator 41 on which the load acts Function is obtained.
[0076] 次に、図 4に示された第 4の実施の形態を説明する。なお、図 1および図 3に示され た実施の形態と同様の部分には同一符号を付してその説明を省略し、それらの実施 の形態との相違点のみを説明する。  Next, the fourth embodiment shown in FIG. 4 will be described. The same parts as those in the embodiment shown in FIGS. 1 and 3 are denoted by the same reference numerals, description thereof is omitted, and only the differences from those embodiments will be described.
[0077] 制御弁装置 25としては、図 1に示された電磁比例弁 36, 37, 38, 39に代えて、スプ ール構造のコントロール弁 71を設け、このコントロール弁 71は、中立時、吐出通路 35 と戻り通路 65とが非連通状態となるので、ポンプ 23からこのコントロール弁 71への吐 出通路 35に対して、アンロード機能を有するアンロード弁 43を設けたものである。  [0077] As the control valve device 25, instead of the electromagnetic proportional valves 36, 37, 38, 39 shown in FIG. 1, a control valve 71 having a spool structure is provided. Since the discharge passage 35 and the return passage 65 are not in communication, an unload valve 43 having an unload function is provided for the discharge passage 35 from the pump 23 to the control valve 71.
[0078] 切替弁装置 55は、図 1に示された電磁比例弁 38, 39, 56, 57に代えて、コントロール 弁 71のドレンポート 73に接続された戻り通路 65を、タンク 24へのタンク通路 66から、電 気信号に応じて、回生モータ 44への回生通路 58へと切替える電磁比例弁 67を備え ている。  [0078] The switching valve device 55 uses a return passage 65 connected to the drain port 73 of the control valve 71 instead of the electromagnetic proportional valves 38, 39, 56, 57 shown in FIG. An electromagnetic proportional valve 67 that switches from the passage 66 to the regenerative passage 58 to the regenerative motor 44 according to the electric signal is provided.
[0079] この電磁比例弁 67は、ブーム上げ時および機体持上げ時などのブームシリンダ 16c のように、ァクチユエータ 41のボトム側 41bの圧力が低いときは、このボトム側 41bから の戻り油を回生モータ 44に通すと損失が大きくなるため、直接タンク 24へ戻す構造で あり、その際、負荷が作用するァクチユエータ 41の作動速度を制御するのに適したメ ータアウト制御機能が必要であるため、この電磁比例弁 67を用いる。  [0079] When the pressure on the bottom side 41b of the actuator 41 is low, as in the boom cylinder 16c when the boom is raised and the body is lifted, the electromagnetic proportional valve 67 uses the return oil from the bottom side 41b to regenerate the motor. Since the loss increases when passing through 44, the structure directly returns to the tank 24. In this case, a take-out control function suitable for controlling the operating speed of the actuator 41 to which the load acts is necessary. Use proportional valve 67.
[0080] 次に、この第 4の実施の形態の作用効果を説明する。第 1の実施の形態との相違点 は以下のとおりである。  Next, the function and effect of the fourth embodiment will be described. Differences from the first embodiment are as follows.
[0081] ァクチユエータ 41のボトム側 41bに高圧油が発生した場合は、コントロール弁 71を電 磁駆動して左のポジションに切替え、同時に切替弁装置 55を電磁駆動して回生通路 58に切替えることにより、ァクチユエータ 41のボトム側 41bに発生した高圧油は、回生 モータ 44に高圧油が流れ込み、この高圧油のエネルギにより回生モータ 44に駆動ト ルクが発生し回転速度が上昇する。つまり高圧油のエネルギがポンプ 23および駆動 装置 22に回生されることになる。 [0081] When high pressure oil is generated on the bottom side 41b of the actuator 41, the control valve 71 is electromagnetically driven to switch to the left position, and at the same time, the switching valve device 55 is electromagnetically driven to switch to the regenerative passage 58. The high pressure oil generated at the bottom 41b of the actuator 41 High-pressure oil flows into the motor 44, and the drive torque is generated in the regenerative motor 44 due to the energy of this high-pressure oil, and the rotation speed increases. That is, the energy of the high-pressure oil is regenerated in the pump 23 and the drive device 22.
[0082] 一方、ボトム側 41bがロッド側 41rより低圧となった場合、あるいは所定の設定値より 低圧となった場合は、十分な回生動力が得られないため、ァクチユエータ 41のボトム 側 41bの低圧油は、回生されず、非励磁状態の電磁比例弁 67よりタンク 24に排出され る。 [0082] On the other hand, when the bottom side 41b has a lower pressure than the rod side 41r, or a pressure lower than a predetermined set value, sufficient regenerative power cannot be obtained, so the low pressure on the bottom side 41b of the actuator 41 The oil is not regenerated and is discharged to the tank 24 from the non-excited solenoid proportional valve 67.
[0083] 次に、図 5に示された第 5の実施の形態を説明する。なお、図 1に示された第 1の実 施の形態と同様の部分には同一符号を付してその説明を省略し、第 1の実施の形態 との相違点のみを説明する。  Next, the fifth embodiment shown in FIG. 5 will be described. The same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only differences from the first embodiment will be described.
[0084] 制御弁装置 25は、図 1に示された電磁比例弁 36, 37, 38, 39に代えて、スプール構 造のコントロール弁 71を備えて 、る。  The control valve device 25 includes a spool-structured control valve 71 instead of the electromagnetic proportional valves 36, 37, 38, 39 shown in FIG.
[0085] また、切替弁装置 55は、図 1に示された電磁比例弁 38, 39, 56, 57に代えて、コント ロール弁 71力 ァクチユエータ 41へのボトム側通路 46に対して、電気信号に応じて開 く開度のみを調整可能な複数の電磁比例弁 76, 77を備えて 、る。  [0085] Further, the switching valve device 55 has an electric signal for the bottom passage 46 to the control valve 71 force actuator 41 instead of the electromagnetic proportional valves 38, 39, 56, 57 shown in FIG. A plurality of proportional solenoid valves 76, 77 that can be adjusted only in accordance with the opening degree are provided.
[0086] すなわち、切替弁装置 55は、コントロール弁 71とァクチユエータ 41のボトム側 41bとを 連通するボトム側通路 46中に介在された一方の電磁比例弁 76と、ボトム側通路 46か ら分岐して回生モータ 44に連通する回生通路 58中に介在された他方の電磁比例弁 77とを備えたものである。  That is, the switching valve device 55 branches off from the bottom side passage 46 and the one electromagnetic proportional valve 76 interposed in the bottom side passage 46 communicating the control valve 71 and the bottom side 41b of the actuator 41. The other electromagnetic proportional valve 77 interposed in the regenerative passage 58 communicating with the regenerative motor 44 is provided.
[0087] 次に、この第 5の実施の形態の作用効果を説明する。第 1の実施の形態との相違点 は以下のとおりである。  Next, the function and effect of the fifth embodiment will be described. Differences from the first embodiment are as follows.
[0088] ァクチユエータ 41のボトム側 41bに高圧油が発生した場合は、制御弁装置 25を電磁 駆動して左のポジションに切替えるとともに、電磁比例弁 77を電磁駆動して開くことで 、ァクチユエータ 41のボトム側 41bを回生通路 58に切替えることにより、ボトム側 41bの 高圧油が回生モータ 44に流れ込み、この高圧油のエネルギにより回生モータ 44に駆 動トルクが発生し回転速度が上昇する。つまり高圧油のエネルギがポンプ 23および 駆動装置 22に回生されることになる。このとき、電磁比例弁 76は非励磁の状態で閉じ ており、制御弁装置 25には高圧油が流れない。 [0089] 一方、ァクチユエータ 41のボトム側 41bがロッド側 41rより低圧となった場合、あるいは 所定の設定値より低圧となった場合は、十分な回生動力が得られないため回生せず 、制御弁装置 25を左ポジションに電磁駆動すると同時に、電磁比例弁 76を電磁駆動 し、この電磁比例弁 76を通して、ァクチユエータ 41のボトム側 41bの低圧油をタンク 24 に排出する。このとき、電磁比例弁 77は非励磁の状態であり、回生モータ 44には高圧 油が流れない。 [0088] When high pressure oil is generated on the bottom side 41b of the actuator 41, the control valve device 25 is electromagnetically driven to switch to the left position, and the electromagnetic proportional valve 77 is electromagnetically driven to open. By switching the bottom side 41b to the regenerative passage 58, the high pressure oil on the bottom side 41b flows into the regenerative motor 44, and the driving torque is generated in the regenerative motor 44 by the energy of this high pressure oil, and the rotational speed increases. That is, the energy of the high pressure oil is regenerated in the pump 23 and the drive device 22. At this time, the electromagnetic proportional valve 76 is closed in a non-excited state, and high pressure oil does not flow into the control valve device 25. [0089] On the other hand, when the bottom side 41b of the actuator 41 is at a lower pressure than the rod side 41r, or when the pressure is lower than a predetermined set value, sufficient regenerative power cannot be obtained and the control valve does not regenerate. At the same time as the device 25 is electromagnetically driven to the left position, the electromagnetic proportional valve 76 is electromagnetically driven, and the low pressure oil on the bottom side 41b of the actuator 41 is discharged to the tank 24 through the electromagnetic proportional valve 76. At this time, the solenoid proportional valve 77 is in a non-excited state, and high pressure oil does not flow into the regenerative motor 44.
[0090] 次に、図 6に示された第 6の実施の形態を説明する。なお、図 1に示された第 1の実 施の形態と同様の部分には同一符号を付してその説明を省略し、第 1の実施の形態 との相違点のみを説明する。  Next, the sixth embodiment shown in FIG. 6 will be described. The same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only differences from the first embodiment will be described.
[0091] 制御弁装置 25は、図 1に示された電磁比例弁 36, 37, 38, 39に代えて、複数のァク チユエータ 41, 81を制御するスプール構造の複数のコントロール弁 71, 82を備え、こ れらのコントロール弁 71, 82は、ポンプ 23とタンク 24との間でタンデム接続されたセン タバイパス通路 83, 84をそれぞれ有する。  [0091] The control valve device 25 includes a plurality of control valves 71, 82 having a spool structure for controlling the plurality of actuators 41, 81 in place of the electromagnetic proportional valves 36, 37, 38, 39 shown in FIG. These control valves 71 and 82 have center bypass passages 83 and 84 connected in tandem between the pump 23 and the tank 24, respectively.
[0092] また、切替弁装置 55は、下流側に配置されたコントロール弁 71のドレンポート 73に 接続され、このドレンポート 73に接続された戻り通路 65を、タンク 24へのタンク通路 66 から、電気信号に応じて回生モータ 44への回生通路 58へと切替える電磁比例弁 67を 備えており、図 1に示された電磁比例弁 38, 39, 56, 57に代えて、この電磁比例弁 67 を設置する。  In addition, the switching valve device 55 is connected to a drain port 73 of a control valve 71 arranged on the downstream side, and a return passage 65 connected to the drain port 73 is connected to the tank 24 from a tank passage 66. It is equipped with an electromagnetic proportional valve 67 that switches to the regenerative passage 58 to the regenerative motor 44 according to the electrical signal, and instead of the electromagnetic proportional valve 38, 39, 56, 57 shown in Fig. 1, this electromagnetic proportional valve 67 Is installed.
[0093] この電磁比例弁 67は、ブーム上げ時および機体持上げ時などのブームシリンダ 16c のように、ァクチユエータ 41のボトム側 41bの圧力が低いときは、このボトム側 41bから の戻り油を回生モータ 44に通すと損失が大きくなるため、直接タンク 24へ戻す構造で あり、その際、負荷が作用するァクチユエータ 41の作動速度を制御するのに適したメ ータアウト制御機能が必要であるため、この電磁比例弁 67を用いる。  [0093] When the pressure on the bottom side 41b of the actuator 41 is low, as in the boom cylinder 16c when the boom is raised and the aircraft is lifted, the electromagnetic proportional valve 67 uses the return oil from the bottom side 41b as a regenerative motor. Since the loss increases when passing through 44, the structure directly returns to the tank 24. In this case, a take-out control function suitable for controlling the operating speed of the actuator 41 to which the load acts is necessary. Use proportional valve 67.
[0094] コントロール弁 82, 71は、ポンプ 23からの圧油がタンク 24に流れるセンタバイパス通 路 83, 84を持っているので、これによりアンロード機能のアンロード弁を省略できる。  [0094] Since the control valves 82 and 71 have the center bypass passages 83 and 84 through which the pressure oil from the pump 23 flows to the tank 24, the unload valve of the unload function can be omitted.
[0095] また、このコントロール弁 71の上流側に、センタバイパス通路 83を有し他のァクチュ エータ 81を駆動する他のコントロール弁 82を設け、ポンプ 23からの高圧油を、このコ ントロール弁 82のセンタバイパス通路 83を経てコントロール弁 71のポンプポート 85に 供給するように接続したタンデム回路である。 Further, on the upstream side of the control valve 71, another control valve 82 having a center bypass passage 83 and driving another actuator 81 is provided, and high-pressure oil from the pump 23 is supplied to the control valve 82. To the pump port 85 of the control valve 71 via the center bypass passage 83 of A tandem circuit connected to supply.
[0096] このように、駆動装置 22およびエネルギ回収用の回生モータ 44を、一のァクチユエ ータ回路と他のァクチユエータ回路 (特に走行系)とで共用する場合は、一のァクチュ エータの上流側に他のァクチユエータ回路を配設して、それらのセンタバイパス通路 83, 84を接続連通させる。  [0096] Thus, when the drive device 22 and the energy recovery regenerative motor 44 are shared by one actuator circuit and another actuator circuit (especially the traveling system), the upstream side of the one actuator is used. Further, another actuator circuit is provided to connect the center bypass passages 83 and 84 to each other.
[0097] 次に、この第 6の実施の形態の作用効果を説明する。第 1の実施の形態との相違点 は以下のとおりである。  Next, the function and effect of the sixth embodiment will be described. Differences from the first embodiment are as follows.
[0098] ァクチユエータ 41のボトム側 41bに高圧油が発生した場合は、第 1のコントロール弁 71を電磁駆動して左のポジションに切替え、同時に切替弁装置 55の電磁比例弁 67を 電磁駆動して、コントロール弁 71のドレンポート 73に接続された戻り通路 65を、タンク 24へのタンク通路 66から、電気信号に応じて回生通路 58へと切替えることにより、回 生モータ 44に高圧油が流れ込み、この高圧油のエネルギにより回生モータ 44に駆動 トルクが発生し、ポンプ 23の回転速度が上昇する。つまり高圧油のエネルギが回生さ れること〖こなる。  [0098] When high pressure oil is generated on the bottom side 41b of the actuator 41, the first control valve 71 is electromagnetically driven to switch to the left position, and at the same time, the electromagnetic proportional valve 67 of the switching valve device 55 is electromagnetically driven. The high pressure oil flows into the regeneration motor 44 by switching the return passage 65 connected to the drain port 73 of the control valve 71 from the tank passage 66 to the tank 24 to the regeneration passage 58 in response to an electrical signal. Due to the energy of the high-pressure oil, a driving torque is generated in the regenerative motor 44, and the rotational speed of the pump 23 increases. In other words, the energy of high-pressure oil is regenerated.
[0099] 一方、ァクチユエータ 41のボトム側 41bがロッド側 41rより低圧となった場合、あるいは 所定の設定値より低圧となった場合は、十分な回生動力が得られないため、ボトム側 41bの低圧油は回生されず、非励磁状態の電磁比例弁 67よりタンク 24に排出される。  [0099] On the other hand, if the bottom side 41b of the actuator 41 is at a lower pressure than the rod side 41r, or if the pressure is lower than a predetermined set value, sufficient regenerative power cannot be obtained. The oil is not regenerated and is discharged to the tank 24 from the non-excited solenoid proportional valve 67.
[0100] そして、一のァクチユエータ 41を駆動する一のコントロール弁 71と、他のァクチユエ ータ 81を駆動する他のコントロール弁 82とを同時操作する場合は、圧油の一部が先 ず他のコントロール弁 82より他のァクチユエータ 81に流れ、その他の圧油がコントロー ル弁 71よりァクチユエータ 41に流れる。  [0100] When one control valve 71 that drives one actuator 41 and another control valve 82 that drives another actuator 81 are operated simultaneously, a part of the pressure oil is the other first. The other control oil flows from the control valve 82 to the other actuator 81, and the other pressure oil flows from the control valve 71 to the actuator 41.
[0101] このとき、他のァクチユエータ 81の速度を増加させる場合は、コントロール弁 82の開 度を大きくし、ァクチユエータ 41の速度を増加させる場合は、一のコントロール弁 71の 開度を大きくするとともに他のコントロール弁 82の開度を絞る。  [0101] At this time, when the speed of the other actuator 81 is increased, the opening of the control valve 82 is increased, and when the speed of the actuator 41 is increased, the opening of one control valve 71 is increased. Reduce the opening of the other control valve 82.
[0102] この実施の形態によれば、複数のコントロール弁 71, 82により制御される複数のァク チユエータ 41, 81に対して、駆動装置 22および回生モータ 44を共用することができ、 また、複数のコントロール弁 82, 71のセンタバイパス通路 83, 84をタンデム接続するこ とで、上流側のァクチユエータ 81を優先的に作動させた上で、圧力センサ 48, 49から の圧力検出信号より、コントローラが、下流側のァクチユエータ 41から排出される余剰 圧力エネルギが十分高 、と判断した場合は、下流側のコントロール弁 71のドレンポー ト 73に接続された切替弁装置 55により、その余剰圧力エネルギを回生モータ 44を通 じてポンプ 23および駆動装置 22に回生できる。 [0102] According to this embodiment, the drive device 22 and the regenerative motor 44 can be shared for the plurality of actuators 41, 81 controlled by the plurality of control valves 71, 82. By connecting the center bypass passages 83 and 84 of the control valves 82 and 71 in tandem, the upstream actuator 81 is preferentially operated, and the pressure sensors 48 and 49 If the controller determines that the excess pressure energy discharged from the downstream actuator 41 is sufficiently high based on the pressure detection signal, the switching valve device 55 connected to the drain port 73 of the downstream control valve 71 The surplus pressure energy can be regenerated to the pump 23 and the driving device 22 through the regenerative motor 44.
[0103] 次に、図 7は、図 1および図 2に示されたシリーズ方式の駆動装置 22に替えて設置 するパラレル方式の駆動装置 22aを示す。  Next, FIG. 7 shows a parallel type driving device 22a installed in place of the series type driving device 22 shown in FIG. 1 and FIG.
[0104] 図 7において、ポンプ 23および回生モータ 44は、それぞれ容量可変用の斜板 26, 45を有し、直結された点は、シリーズ方式と同様である力 このパラレル方式の駆動 装置 22aは、エンジン 21とポンプ 23との間にギアボックス 91が介在され、ポンプ 23に対 し、このギアボックス 91を介して、電動機および発電機として機能する電動発電機 92 力 エンジン 21と並列に接続され、電動発電機 92の出力側にはコンバータ 93を介し て蓄電器 94が接続されて 、る。  [0104] In Fig. 7, the pump 23 and the regenerative motor 44 have swash plates 26 and 45 for variable capacity, respectively, and are directly connected in the same way as in the series system. A gear box 91 is interposed between the engine 21 and the pump 23, and the motor generator 92 functioning as an electric motor and a generator is connected to the pump 23 in parallel with the motor 21 through the gear box 91. A capacitor 94 is connected to the output side of the motor generator 92 via a converter 93.
[0105] コントローラ(図示せず)は、ポンプ 23および回生モータ 44の斜板 26, 45を傾転作動 するレギユレータ 95, 96を電磁比例弁 97, 98により制御して、指令されたァクチユエ一 タ速度が得られるようにポンプ 23および回生モータ 44の容量を制御する。  [0105] The controller (not shown) controls the regulators 95 and 96 for tilting the swash plates 26 and 45 of the pump 23 and the regenerative motor 44 by means of the solenoid proportional valves 97 and 98, and the command actuator is instructed. The capacities of the pump 23 and the regenerative motor 44 are controlled so that the speed can be obtained.
[0106] すなわち、このパラレル方式の駆動装置 22aは、回生モータ 44の回転軸がポンプ軸 およびギアボックス軸を介しエンジン 21と機械的に接続されており、これらの軸の回 転速度はエンジン 21の出力と負荷とのバランスで決まるため、ァクチユエータ 41の速 度を制御するためには回生モータ 44の斜板 45の傾転角を制御する。つまり、低速で は低流量を流すため斜板 45を低位置にし、高速では高流量を流すため斜板 45を高 位置に制御する。ポンプ 23についても同様に斜板 26の傾転角を制御し流量を調節 する。  That is, in this parallel type drive device 22a, the rotational shaft of the regenerative motor 44 is mechanically connected to the engine 21 via the pump shaft and the gear box shaft, and the rotational speed of these shafts is determined by the engine 21. Therefore, in order to control the speed of the actuator 41, the tilt angle of the swash plate 45 of the regenerative motor 44 is controlled. In other words, the swash plate 45 is controlled to a low position at low speeds to flow a low flow rate, and the swash plate 45 is controlled to a high position at high speeds to flow a high flow rate. Similarly for the pump 23, the tilt angle of the swash plate 26 is controlled to adjust the flow rate.
[0107] このパラレル式の場合、回生モータ 44が回生状態に入ると、回生モータ 44とェンジ ン 21はギアボックス 91などを介し機械的に接続されているので、ブームシリンダ 16cと は別の系統、例えばスティックシリンダ 17c (図 8)が同時に動力され、かつ要求動力が 回生動力以上であるとこのスティック系に消費され、さらに不足あれば蓄電器 94より 電動発電機 92を電動作用して動力を供給し、一方、同時に動力されている系統がな Vヽ場合や要求動力が回生動力より小さ!/、場合には、ギアボックス 91に接続されて!ヽる 電動発電機 92を発電作用することにより、余剰の回生動力が電気工ネルギに変換さ れ、蓄電器 94に充電される。 [0107] In the case of this parallel type, when the regenerative motor 44 enters the regenerative state, the regenerative motor 44 and the engine 21 are mechanically connected via the gear box 91 or the like. For example, if the stick cylinder 17c (Fig. 8) is powered at the same time and the required power is more than the regenerative power, it will be consumed by this stick system. On the other hand, if the system is powered at the same time or if the required power is smaller than the regenerative power! /, It is connected to the gearbox 91! By causing the motor generator 92 to generate electricity, surplus regenerative power is converted into electric energy and the battery 94 is charged.
[0108] このように、ポンプ 23に対しギアボックス 91を介してエンジン 21と電動発電機 92とが 並列に接続されたパラレル方式の駆動装置 22aにおいては、回生モータ 44およびポ ンプ 23の斜板 45, 26の傾転角を制御することで、これらの容量を制御して、指令され たァクチユエータ速度を得ることができる。 In this way, in the parallel drive unit 22a in which the engine 21 and the motor generator 92 are connected in parallel to the pump 23 via the gear box 91, the regenerative motor 44 and the swash plate of the pump 23 are used. By controlling the tilt angles of 45 and 26, these capacities can be controlled to obtain the commanded actuator speed.
産業上の利用可能性  Industrial applicability
[0109] 本発明は、油圧ショベル以外の作業機械にも利用できる。 [0109] The present invention can also be used for work machines other than hydraulic excavators.

Claims

請求の範囲 The scope of the claims
[1] ポンプを駆動する駆動装置と、  [1] a driving device for driving the pump;
ポンプによりタンク内から汲み上げた流体を制御してァクチユエータに供給するとと もに、このァクチユエ一タカ 戻された流体をタンク内に排出する制御弁装置と、 ァクチユエ一タカ タンクに戻される流体の余剰圧力エネルギを回収して駆動装置 に回生する回生モータと、  The control valve device that controls the fluid pumped from the tank by the pump and supplies it to the actuator, and discharges the fluid returned to the tank into the tank, and the excess pressure of the fluid to be returned to the tank A regenerative motor that recovers energy and regenerates the drive unit;
ァクチユエータの流体戻り側圧力および流体入り側圧力を検出する圧力検出装置 と、  A pressure detection device for detecting the fluid return side pressure and the fluid containing side pressure of the actuator;
ァクチユエータの流体戻り側を回生モータおよびタンクのいずれか一方に連通させ る切替弁装置と、  A switching valve device for communicating the fluid return side of the actuator with either the regenerative motor or the tank;
圧力検出装置により検出されたァクチユエータの流体戻り側圧力が流体入り側圧 力より高圧でかつ設定値より高圧の場合はァクチユエータの流体戻り側を回生モータ に連通し、流体戻り側圧力が流体入り側圧力より低圧の場合、あるいは所定の設定 値より低圧となった場合はァクチユエータの流体戻り側をタンクに連通するように切替 弁装置を切替制御するコントローラと  When the fluid return side pressure of the actuator detected by the pressure detector is higher than the fluid entry side pressure and higher than the set value, the fluid return side of the actuator is connected to the regenerative motor, and the fluid return side pressure is the fluid entry side pressure. When the pressure is lower, or when the pressure is lower than the preset value, the controller switches the switching valve device so that the fluid return side of the actuator communicates with the tank.
を具備したことを特徴とする流体圧駆動回路。  A fluid pressure drive circuit comprising:
[2] 駆動装置は、  [2] The drive is
エンジンに接続された発電機と、  A generator connected to the engine;
この発電機に電気的に接続されるとともにポンプに機械的に接続され電動機およ び発電機として機能する電動発電機と、  A motor generator that is electrically connected to the generator and mechanically connected to the pump and functions as a motor and a generator;
発電機および電動発電機にコンバータを介して接続された蓄電器とを具備し、 ポンプおよび回生モータは、それぞれ容量可変用の斜板を有し、  A power generator connected to a generator and a motor generator through a converter, and the pump and the regenerative motor each have a variable capacity swash plate,
コントローラは、指令されたァクチユエータ速度が得られるように、切替弁装置の開 度および電動発電機の回転速度を制御して、回生モータおよびポンプの回転速度 を制御するとともに、これらの斜板の傾転角を制御するものである  The controller controls the rotational speed of the regenerative motor and pump by controlling the opening of the switching valve device and the rotational speed of the motor generator so that the commanded actuator speed can be obtained, and the inclination of these swash plates. It controls the turning angle
ことを特徴とする請求項 1記載の流体圧駆動回路。  The fluid pressure drive circuit according to claim 1, wherein:
[3] ポンプおよび回生モータは、それぞれ容量可変用の斜板を有し、 [3] The pump and regenerative motor each have a swash plate for variable capacity,
駆動装置は、 エンジンとポンプとの間に介在されたギアボックスと、 The drive device A gearbox interposed between the engine and the pump;
ポンプに対しギアボックスを介してエンジンと並列に接続され電動機および発電機 として機能する電動発電機と、  A motor generator connected to the pump in parallel with the engine via a gearbox and functioning as a motor and generator;
電動発電機にコンバータを介して接続された蓄電器とを具備し、  A capacitor connected to the motor generator via a converter,
コントローラは、回生モータおよびポンプの斜板を制御して、指令されたァクチユエ ータ速度が得られるように回生モータおよびポンプの容量を制御する  The controller controls the capacity of the regenerative motor and pump so that the commanded actuator speed is obtained by controlling the regenerative motor and swash plate of the pump.
ことを特徴とする請求項 1記載の流体圧駆動回路。  The fluid pressure drive circuit according to claim 1, wherein:
[4] 制御弁装置は、複数のァクチユエータを制御するスプール構造の複数のコントロー ル弁を備え、 [4] The control valve device includes a plurality of control valves having a spool structure for controlling the plurality of actuators.
複数のコントロール弁は、ポンプとタンクとの間でタンデム接続されたセンタバイパス 通路をそれぞれ有し、  The plurality of control valves each have a center bypass passage tandemly connected between the pump and the tank,
切替弁装置は、下流側のコントロール弁のドレンポートに接続された  The switching valve device was connected to the drain port of the downstream control valve
ことを特徴とする請求項 1乃至 3のいずれか記載の流体圧駆動回路。  The fluid pressure drive circuit according to any one of claims 1 to 3, wherein
[5] 切替弁装置は、電磁比例弁を備えた [5] The switching valve device has an electromagnetic proportional valve
ことを特徴とする請求項 1乃至 4のいずれか記載の流体圧駆動回路。  5. The fluid pressure drive circuit according to claim 1, wherein
PCT/JP2005/004930 2004-08-26 2005-03-18 Hydraulic pressure drive circuit WO2006022043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004247251A JP4291759B2 (en) 2004-08-26 2004-08-26 Fluid pressure drive circuit
JP2004-247251 2004-08-26

Publications (1)

Publication Number Publication Date
WO2006022043A1 true WO2006022043A1 (en) 2006-03-02

Family

ID=35967265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004930 WO2006022043A1 (en) 2004-08-26 2005-03-18 Hydraulic pressure drive circuit

Country Status (2)

Country Link
JP (1) JP4291759B2 (en)
WO (1) WO2006022043A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426363A1 (en) * 2006-11-28 2012-03-07 Kobelco Construction Machinery Co., Ltd. Hydraulic drive device and corresponding working machine
US8209975B2 (en) 2008-04-29 2012-07-03 Parker-Hannifin Corporation Arrangement for operating a hydraulic device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239894A (en) * 2006-03-09 2007-09-20 Kayaba Ind Co Ltd Energy conversion system
JP4704259B2 (en) * 2006-03-27 2011-06-15 カヤバ工業株式会社 Energy converter
JP4907231B2 (en) * 2006-06-06 2012-03-28 カヤバ工業株式会社 Energy regenerative power unit
JP4702894B2 (en) * 2006-10-20 2011-06-15 キャタピラー エス エー アール エル Hydraulic control system for hydraulic excavator
JP5094097B2 (en) * 2006-11-24 2012-12-12 東芝機械株式会社 Method and apparatus for regenerating kinetic energy and / or potential energy of inertial body in construction machine
JP5037979B2 (en) * 2007-03-20 2012-10-03 東芝機械株式会社 Method and apparatus for regenerating kinetic energy and / or potential energy of inertial body in construction machine
JP4871843B2 (en) * 2007-11-19 2012-02-08 住友建機株式会社 Boom drive circuit for construction machinery
JP4806390B2 (en) * 2007-12-04 2011-11-02 日立建機株式会社 Work machine
JP4800349B2 (en) * 2008-07-04 2011-10-26 住友建機株式会社 Construction machinery
JP2010053969A (en) * 2008-08-28 2010-03-11 Sumitomo (Shi) Construction Machinery Co Ltd Construction machine
JP5419572B2 (en) * 2009-07-10 2014-02-19 カヤバ工業株式会社 Control device for hybrid construction machine
JP2011052718A (en) * 2009-08-31 2011-03-17 Caterpillar Sarl Hydraulic circuit for working machine
JP5710331B2 (en) * 2011-03-25 2015-04-30 住友重機械工業株式会社 Hybrid construction machine
JP5785846B2 (en) 2011-10-17 2015-09-30 株式会社神戸製鋼所 Hydraulic control device and work machine equipped with the same
US20130160440A1 (en) * 2011-12-23 2013-06-27 Caterpillar Inc. Hydraulic System with Pilot Circuit Power Reclamation
DE102012000017A1 (en) 2012-01-02 2013-07-04 Schuler Smg Gmbh & Co. Kg Method for controlling a hydraulic press
US9347200B2 (en) * 2012-06-04 2016-05-24 Cnh Industrial America Llc Fluid control system for work vehicle
JP5982317B2 (en) * 2013-03-29 2016-08-31 Kyb株式会社 Charge control device and hybrid construction machine
JP6383676B2 (en) * 2015-02-06 2018-08-29 日立建機株式会社 Work machine
JP2016217378A (en) * 2015-05-15 2016-12-22 川崎重工業株式会社 Hydraulic drive system of construction equipment
JP6797015B2 (en) * 2016-12-22 2020-12-09 川崎重工業株式会社 Hydraulic excavator drive system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131901A (en) * 1996-10-21 1998-05-22 Caterpillar Inc Energy converter device
JP2000136806A (en) * 1998-11-04 2000-05-16 Komatsu Ltd Pressure oil energy recovery equipment and pressure oil energy recovery/regeneration equipment
JP2002089517A (en) * 2000-09-08 2002-03-27 Husco Internatl Inc Hydraulic device with mutual recycling function
JP2002105985A (en) * 2000-09-29 2002-04-10 Kobelco Contstruction Machinery Ltd Shovel
JP2002242234A (en) * 2001-02-19 2002-08-28 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Hybrid shovel
JP2003074517A (en) * 2001-09-05 2003-03-12 Kobelco Contstruction Machinery Ltd Controlling method of hydraulic cylinder circuit
JP2003120616A (en) * 2001-10-17 2003-04-23 Toshiba Mach Co Ltd Hydraulic controller for construction machine
JP2004011168A (en) * 2002-06-04 2004-01-15 Komatsu Ltd Construction machinery
JP2004084907A (en) * 2002-08-29 2004-03-18 Komatsu Ltd Hydraulic pump control method
JP2004084470A (en) * 2002-07-31 2004-03-18 Komatsu Ltd Construction machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131901A (en) * 1996-10-21 1998-05-22 Caterpillar Inc Energy converter device
JP2000136806A (en) * 1998-11-04 2000-05-16 Komatsu Ltd Pressure oil energy recovery equipment and pressure oil energy recovery/regeneration equipment
JP2002089517A (en) * 2000-09-08 2002-03-27 Husco Internatl Inc Hydraulic device with mutual recycling function
JP2002105985A (en) * 2000-09-29 2002-04-10 Kobelco Contstruction Machinery Ltd Shovel
JP2002242234A (en) * 2001-02-19 2002-08-28 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Hybrid shovel
JP2003074517A (en) * 2001-09-05 2003-03-12 Kobelco Contstruction Machinery Ltd Controlling method of hydraulic cylinder circuit
JP2003120616A (en) * 2001-10-17 2003-04-23 Toshiba Mach Co Ltd Hydraulic controller for construction machine
JP2004011168A (en) * 2002-06-04 2004-01-15 Komatsu Ltd Construction machinery
JP2004084470A (en) * 2002-07-31 2004-03-18 Komatsu Ltd Construction machine
JP2004084907A (en) * 2002-08-29 2004-03-18 Komatsu Ltd Hydraulic pump control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426363A1 (en) * 2006-11-28 2012-03-07 Kobelco Construction Machinery Co., Ltd. Hydraulic drive device and corresponding working machine
US8336305B2 (en) 2006-11-28 2012-12-25 Kobelco Construction Machinery Co., Ltd. Hydraulic drive device and working machine with the same
US8209975B2 (en) 2008-04-29 2012-07-03 Parker-Hannifin Corporation Arrangement for operating a hydraulic device

Also Published As

Publication number Publication date
JP2006064071A (en) 2006-03-09
JP4291759B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2006022043A1 (en) Hydraulic pressure drive circuit
KR101652112B1 (en) Hybrid Excavator Boom Actuator System and its Control Method
US8225706B2 (en) Method for controlling a hydraulic cylinder and control system for a work machine
KR20160079814A (en) Hydraulic pressure circuit and working machine
US7401464B2 (en) Energy regeneration system for machines
US8807155B2 (en) Control device for hybrid construction machine
JP5511425B2 (en) Control device for hybrid construction machine
JP5858818B2 (en) Construction machinery
JP4762022B2 (en) Energy converter
KR20110031905A (en) Controller of hybrid construction machine
KR101595584B1 (en) Controller of hybrid construction machine
WO1998024987A1 (en) Control device for construction machine
KR20130092380A (en) Control circuit for energy regeneration and working machine
EP3093398B1 (en) Control circuit and control method for boom energy regeneration
WO2006090709A1 (en) Load handling regeneration system for battery type industrial vehicle
US20160245311A1 (en) Hydraulic Pressure Circuit and Working Machine
JP3362258B2 (en) Pressure oil recovery and reuse system
JP5090720B2 (en) Energy regeneration system for work machines
CN107532627B (en) Control system for construction machine
JP6270704B2 (en) Hydraulic drive system for construction machinery
JP2016080098A (en) Driving system of hydraulic working machine
JP2006125566A (en) Hydraulic cylinder dynamo-electric means of construction machine
WO2021256059A1 (en) Construction machine
JP2006124145A (en) Hydraulic device for battery type industrial vehicle
US20180105061A1 (en) Control system and control method for hybrid construction machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase