JP2003074517A - Controlling method of hydraulic cylinder circuit - Google Patents

Controlling method of hydraulic cylinder circuit

Info

Publication number
JP2003074517A
JP2003074517A JP2001268429A JP2001268429A JP2003074517A JP 2003074517 A JP2003074517 A JP 2003074517A JP 2001268429 A JP2001268429 A JP 2001268429A JP 2001268429 A JP2001268429 A JP 2001268429A JP 2003074517 A JP2003074517 A JP 2003074517A
Authority
JP
Japan
Prior art keywords
cylinder
pump
external force
hydraulic cylinder
oil chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001268429A
Other languages
Japanese (ja)
Other versions
JP5028729B2 (en
Inventor
Yoshimi Saotome
吉美 早乙女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2001268429A priority Critical patent/JP5028729B2/en
Publication of JP2003074517A publication Critical patent/JP2003074517A/en
Application granted granted Critical
Publication of JP5028729B2 publication Critical patent/JP5028729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a power regenerating operation and normal operation possible while an oversupply and short supply for the flowing amount of a pump are well solved, in a method driving the pump by an electric motor and in a cylinder circuit in which external force acts on a cylinder. SOLUTION: A boom cylinder 14 is driven to an extending and contracting direction by means of one hydraulic pump 12 driven by the electric motor 11 in an one pump formation. When the boom cylinder 14 is operated to the same direction with a direction of external force W, power regeneration is performed by flowing oil of a cylinder oil chamber located at an acting side of pressure by the external force W into the pump 12. When the boom cylinder 14 is operated to the opposite direction to the direction of the external force, normal cylinder motion is performed by supplying pump-discharged oil to the oil chamber located at an acting side of pressure by the external force W.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は油圧シリンダからの
流出油で油圧ポンプを駆動して動力を回生する油圧シリ
ンダ回路の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a hydraulic cylinder circuit in which oil is discharged from a hydraulic cylinder to drive a hydraulic pump to regenerate power.

【0002】[0002]

【従来の技術】油圧シリンダの油圧源としての油圧ポン
プを電動機で駆動する電動機駆動方式の油圧シリンダ回
路においては、エネルギーの効率利用の観点から、外力
によって油圧シリンダに作用する伸縮作動力を動力とし
て油圧シリンダ、油圧ポンプ、電動機を介してバッテリ
に回収(動力回生)したいという要望がある。
2. Description of the Related Art In a hydraulic cylinder circuit of an electric motor drive system in which a hydraulic pump as a hydraulic pressure source of a hydraulic cylinder is driven by an electric motor, from the viewpoint of efficient use of energy, the expansion / contraction force acting on the hydraulic cylinder by an external force is used as power. There is a demand for recovery (power regeneration) to a battery via a hydraulic cylinder, a hydraulic pump, and an electric motor.

【0003】たとえば油圧ショベルのブームには、ブー
ムを含む作業アタッチメントの重量によって常に下向き
に力が作用し、ブームを駆動するブームシリンダに縮小
方向の外力が作用している。
For example, a boom of a hydraulic excavator always receives a downward force due to the weight of a work attachment including the boom, and an external force in a reducing direction acts on a boom cylinder that drives the boom.

【0004】このとき、ブームシリンダには、上記縮小
方向の外力によってヘッド側油室に圧力が立っているた
め、同シリンダを縮小作動させるときには、ヘッド側油
室の油を抜くだけでよく、このシリンダから流出する油
で油圧ポンプを回転させて電動機を駆動し、動力回生す
ることができる。
At this time, in the boom cylinder, pressure is raised in the head-side oil chamber due to the external force in the contracting direction. Therefore, when the cylinder is contracted, only the head-side oil chamber needs to be drained. Oil flowing from the cylinder can rotate the hydraulic pump to drive the electric motor to regenerate power.

【0005】この動力回生を行うための従来の油圧シリ
ンダ回路の原理構成を図3に示している。前記した油圧
ショベルのブームシリンダ回路の場合で説明する。
FIG. 3 shows the principle configuration of a conventional hydraulic cylinder circuit for performing this power regeneration. The case of the boom cylinder circuit of the hydraulic excavator will be described.

【0006】この回路においては、電動機1でヘッド側
及びロッド側両油圧ポンプ(以下、ヘッド側ポンプ、ロ
ッド側ポンプという)2,3を駆動してその吐出油を片
ロッド式のブームシリンダ4のヘッド側油室4aまたは
ロッド側油室4bに供給する構成をとっている。Tはタ
ンクである。
In this circuit, both the head-side and rod-side hydraulic pumps (hereinafter referred to as head-side pump and rod-side pump) 2 and 3 are driven by the electric motor 1 to discharge the discharged oil from the one-rod type boom cylinder 4. The oil is supplied to the head side oil chamber 4a or the rod side oil chamber 4b. T is a tank.

【0007】ブームシリンダ4には、前記したように図
中矢印で示す通り下向きの力が作用し、シリンダヘッド
側油室4a(斜線を付して示している)に圧力が発生し
ている。
As described above, a downward force acts on the boom cylinder 4 as indicated by an arrow in the figure, and a pressure is generated in the cylinder head side oil chamber 4a (shown by hatching).

【0008】この状況下でブームシリンダ4を伸長作動
させるときは、電動機1を正転回転させることによって
ヘッド側ポンプ2を駆動し、その吐出油をヘッド側油室
4aに供給する。こうすれば、シリンダ4が伸長作動
し、ロッド側油室4bから放出される油がロッド側ポン
プ3に流入してこれを回転させ、この回転力が電動機1
に加えられることによって動力回生作用が行われる。
When the boom cylinder 4 is extended in this situation, the head side pump 2 is driven by rotating the electric motor 1 in the normal direction, and the discharged oil is supplied to the head side oil chamber 4a. By doing so, the cylinder 4 is extended and the oil discharged from the rod-side oil chamber 4b flows into the rod-side pump 3 to rotate it, and this rotational force is applied to the electric motor 1
Power regeneration is performed by being added to.

【0009】一方、ブームシリンダ4を縮小作動させる
ときは、電動機1を逆転回転させることによってロッド
側ポンプ3を駆動し、その吐出油をロッド側油室4bに
供給する。
On the other hand, when the boom cylinder 4 is contracted, the electric motor 1 is rotated in the reverse direction to drive the rod side pump 3 to supply the discharge oil to the rod side oil chamber 4b.

【0010】このとき、ヘッド側油室4aから、外力に
よって発生している高圧の油がヘッド側ポンプ2に吸い
込まれる。これにより、同ポンプ2が、シリンダ伸長作
動時のロッド側ポンプ3の場合よりも強力なモータ作用
を行うため、より高い動力回生作用が行われる。
At this time, the high pressure oil generated by the external force is sucked into the head side pump 2 from the head side oil chamber 4a. As a result, the pump 2 performs a stronger motor action than in the case of the rod side pump 3 during the cylinder extension operation, so that a higher power regeneration action is performed.

【0011】[0011]

【発明が解決しようとする課題】ところが、ブームシリ
ンダ4が片ロッド式、つまり、ヘッド側及びロッド側両
油室4a,4bに容積の差があることから次のような問
題が生じていた。
However, since the boom cylinder 4 is of the single rod type, that is, there is a difference in volume between the head-side and the rod-side oil chambers 4a and 4b, the following problems occur.

【0012】たとえばシリンダ伸長時には、前記したよ
うにヘッド側ポンプ2からヘッド側油室4aに油が供給
されると同時に、ロッド側油室4bの油がロッド側ポン
プ3に流入する。
For example, when the cylinder is extended, oil is supplied from the head side pump 2 to the head side oil chamber 4a as described above, and at the same time, the oil in the rod side oil chamber 4b flows into the rod side pump 3.

【0013】このとき、両側油室4a,4bの容積差に
より、ロッド側ポンプ3への流入流量がヘッド側ポンプ
2からの流出流量よりも少ないため、両ポンプ2,3の
容量を同じとするとロッド側ポンプ3の流入流量が不足
してキャビテーションが発生する。
At this time, since the inflow flow rate into the rod side pump 3 is smaller than the outflow flow rate from the head side pump 2 due to the volume difference between the oil chambers 4a and 4b on both sides, it is assumed that the two pumps 2 and 3 have the same capacity. Cavitation occurs due to insufficient inflow of the rod-side pump 3.

【0014】逆に、シリンダ縮小時には、ヘッド側油室
4aからの流出流量がロッド側油室4bへの流入流量よ
りも多くなってヘッド側の圧力が高くなる。
On the contrary, when the cylinder is contracted, the outflow rate from the head side oil chamber 4a becomes larger than the inflow rate into the rod side oil chamber 4b, and the pressure on the head side becomes high.

【0015】このようなヘッド側とロッド側の流量の過
不足を解消するために、従来は、ヘッド側及びロッド側
両ポンプ2,3の容量比を両側油室4a,4bの容積比
と同じに設定している。
In order to eliminate such excess and deficiency of the flow rate on the head side and the rod side, conventionally, the volume ratio of both head side and rod side pumps 2, 3 is the same as the volume ratio of both side oil chambers 4a, 4b. Is set to.

【0016】ところが、ポンプ流量=回転数×ポンプ容
量×容積効率の関係において、容積効率は圧力によって
大きく変化するし、回転数でも変化し、さらに個体差も
影響する。このため、ポンプの容量比を両側油室4a,
4bの容積比に合わせるだけでは流量の過不足は十分に
は解消できない。
However, in the relationship of pump flow rate = rotational speed × pump capacity × volumetric efficiency, the volumetric efficiency greatly changes depending on the pressure, and also changes with the rotational speed, and furthermore, individual differences also affect. For this reason, the capacity ratio of the pump is set to
The excess and deficiency of the flow rate cannot be sufficiently eliminated only by adjusting the volume ratio of 4b.

【0017】また、ヘッド側及びロッド側両ポンプ2,
3を別々の電動機によって異なる回転数で回転させるこ
とも考えられるが、こうしてもポンプ容積効率の差の問
題は残るため、根本的な解決とはならない。しかも、電
動機を増設することで設備コスト及びスペースの点で不
利となる。
Further, both head side and rod side pumps 2,
It is conceivable to rotate 3 at different rotation speeds by different electric motors, but this does not provide a fundamental solution because the problem of difference in pump volume efficiency remains. Moreover, adding an electric motor is disadvantageous in terms of equipment cost and space.

【0018】そこで本発明は、電動機でポンプを駆動す
る方式をとり、かつ、シリンダに外力が作用するシリン
ダ回路において、ポンプ流量の過不足の問題を解決しな
がら動力回生運転及び通常運転を行うことができる制御
方法を提供するものである。
Therefore, the present invention adopts a method of driving a pump by an electric motor, and performs power regeneration operation and normal operation while solving the problem of excess and deficiency of pump flow rate in a cylinder circuit in which an external force acts on the cylinder. It provides a control method capable of

【0019】[0019]

【課題を解決するための手段】請求項1の発明は、電動
機によって一つの油圧ポンプを駆動し、この油圧ポンプ
の吐出油を方向切換弁を介して片ロッド式の油圧シリン
ダのヘッド側油室またはロッド側油室に供給するように
構成し、上記油圧シリンダに作用する外力の方向を検出
し、(a)油圧シリンダをこの外力の方向と同方向に作
動させるときに、動力回生モードとして、外力による圧
力が作用する側のシリンダ油室の油を上記油圧ポンプに
流入させて動力回生を行い、(b)油圧シリンダを外力
の方向と反対方向に作動させるときに、通常運転モード
として、上記油圧ポンプを上記電動機で駆動して、外力
による圧力が作用する側のシリンダ油室に油を供給する
ものである。
According to a first aspect of the present invention, a single hydraulic pump is driven by an electric motor, and the discharge oil of the hydraulic pump is passed through a direction switching valve to a head-side oil chamber of a one-rod hydraulic cylinder. Alternatively, it is configured to supply to the rod-side oil chamber, the direction of the external force acting on the hydraulic cylinder is detected, and (a) when the hydraulic cylinder is operated in the same direction as the external force, the power regeneration mode is set as follows. The oil in the cylinder oil chamber on the side on which the pressure due to the external force acts is introduced into the hydraulic pump to perform power regeneration, and (b) when the hydraulic cylinder is operated in the direction opposite to the direction of the external force, the normal operation mode is set as above. The hydraulic pump is driven by the electric motor to supply oil to the cylinder oil chamber on the side where the pressure due to the external force acts.

【0020】請求項2の発明は、請求項1の方法におい
て、油圧シリンダに縮小方向の外力が作用する条件下で
油圧シリンダを縮小させるときに、この油圧シリンダの
両側油室を方向切換弁を介して連通させるものである。
According to a second aspect of the present invention, in the method of the first aspect, when the hydraulic cylinder is contracted under the condition that an external force in the contracting direction acts on the hydraulic cylinder, the oil chambers on both sides of the hydraulic cylinder are provided with a directional control valve. It is intended to communicate via.

【0021】上記方法によると、一つの油圧ポンプで油
圧シリンダを伸長及び縮小方向に駆動するため、二つの
ポンプを用いる場合のような両ポンプの流量の過不足の
問題が生じない。
According to the above method, since one hydraulic pump drives the hydraulic cylinders in the expansion and contraction directions, the problem of excess and deficiency of the flow rate of both pumps unlike the case of using two pumps does not occur.

【0022】しかも、油圧シリンダを外力の方向と同方
向に作動させるときに、外力による圧力が作用する側の
シリンダ油室の油をポンプに流入させて動力回生を行
い、反対方向への作動時には、ポンプ吐出油を外力によ
る圧力が作用する側の油室に供給することによって通常
の運転を行うことができる。
Moreover, when the hydraulic cylinder is operated in the same direction as the external force, the oil in the cylinder oil chamber on the side where the pressure is applied by the external force is introduced into the pump for power regeneration, and when operating in the opposite direction. The normal operation can be performed by supplying the pump discharge oil to the oil chamber on the side where the pressure due to the external force acts.

【0023】すなわち、流量の過不足の問題が生じない
1ポンプ方式をとりながら動力回生運転及び通常運転を
支障なく行うことができる。
That is, the power regeneration operation and the normal operation can be performed without any trouble while adopting the one-pump system in which the problem of excess or deficiency of the flow rate does not occur.

【0024】ところで、この回路構成において、油圧シ
リンダに縮小方向の外力が作用する条件下で油圧シリン
ダを縮小させる場合、外力(負荷)が小さいとヘッド側
油室に発生する圧力(ヘッド側油室からポンプに流入す
る油の圧力=ポンプを回転させる力)も弱くなるため、
動力回生作用の効率が悪くなる。
By the way, in this circuit configuration, when the hydraulic cylinder is contracted under the condition that an external force in the contracting direction is applied to the hydraulic cylinder, when the external force (load) is small, the pressure generated in the head side oil chamber (the head side oil chamber). The pressure of the oil that flows into the pump from = the force that rotates the pump also weakens,
The efficiency of power regeneration is reduced.

【0025】この点、請求項2の方法によると、上記状
況下で、油圧シリンダの両側油室を方向切換弁を介して
連通させるため、シリンダの両側油室が同圧となって、
ヘッド側油室の圧力が高められる。このため、外力が小
さい場合でもポンプを高い圧力で回転させて動力回生作
用を効率良く行うことができる。
In this respect, according to the method of claim 2, in the above situation, since the oil chambers on both sides of the hydraulic cylinder are communicated with each other through the direction switching valve, the oil chambers on both sides of the cylinder have the same pressure.
The pressure in the head side oil chamber is increased. Therefore, even if the external force is small, the pump can be rotated at a high pressure to efficiently perform the power regeneration operation.

【0026】[0026]

【発明の実施の形態】本発明の実施形態を図1,2によ
って説明する。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to FIGS.

【0027】第1実施形態(図1参照) このシリンダ回路においては、一つの電動機11で一つ
の油圧ポンプ12を駆動し、その吐出油を電磁−油圧パ
イロット式の方向切換弁13を介して油圧シリンダ(以
下、従来技術の説明に合わせて油圧ショベルのブームシ
リンダの場合で説明する)14のヘッド側油室14aま
たはロッド側油室14bに供給する構成をとっている。
First Embodiment (see FIG. 1) In this cylinder circuit, one electric motor 11 drives one hydraulic pump 12, and the discharged oil is hydraulically supplied via an electromagnetic-hydraulic pilot type directional switching valve 13. A cylinder (which will be described below in the case of a boom cylinder of a hydraulic excavator in accordance with the description of the prior art) 14 is supplied to the head side oil chamber 14a or the rod side oil chamber 14b.

【0028】電動機11は、インバータ15を介してコ
ントローラ16に接続され、レバー操作される操作体1
7の操作に基づくコントローラ16からの指令信号によ
ってその運転(回転・停止・回転数)が制御される。
The electric motor 11 is connected to a controller 16 via an inverter 15 and is operated by a lever 1
The operation (rotation / stop / rotation speed) is controlled by a command signal from the controller 16 based on the operation of 7.

【0029】なお、インバータ15にはバッテリ18が
接続され、動力回生による電気エネルギーがこのバッテ
リ18に蓄積される。
A battery 18 is connected to the inverter 15, and electric energy generated by power regeneration is stored in the battery 18.

【0030】方向切換弁13は、中立位置イと、図下側
の第1の位置ロと、同上側の第2の位置ハとを有し、コ
ントローラ16からの電気信号によりこれら各位置間で
切換わり作動してブームシリンダ14の作動を制御す
る。
The directional control valve 13 has a neutral position a, a first position b on the lower side of the drawing, and a second position c on the upper side of the drawing, and an electric signal from the controller 16 is provided between these positions. The operation is switched to control the operation of the boom cylinder 14.

【0031】すなわち、方向切換弁13の両側ソレノイ
ド13a,13bのいずれにも通電されない状態では同
切換弁13が中立位置イにある。このとき、ブームシリ
ンダ14には油は供給されず、同シリンダ14からの油
の流出も阻止されるため、ブームシリンダ14は作動し
ない。
That is, when neither of the solenoids 13a, 13b on both sides of the direction switching valve 13 is energized, the switching valve 13 is in the neutral position B. At this time, the boom cylinder 14 is not supplied with oil and is prevented from flowing out of the boom cylinder 14, so that the boom cylinder 14 does not operate.

【0032】方向切換弁13の図下側の第1ソレノイド
13aが通電されると、同切換弁13が第1の位置ロに
切換わる。このとき、ブームシリンダ14のヘッド側油
室14aがポンプ12に、ロッド側油室14bがタンク
ライン19を介してタンクTにそれぞれ連通する。
When the first solenoid 13a on the lower side of the direction switching valve 13 is energized, the switching valve 13 is switched to the first position b. At this time, the head-side oil chamber 14a of the boom cylinder 14 communicates with the pump 12, and the rod-side oil chamber 14b of the boom cylinder 14 communicates with the tank T via the tank line 19.

【0033】方向切換弁13の図上側の第2ソレノイド
13bが通電されると、同切換弁13が第2の位置ハに
切換わる。このとき、ブームシリンダ14のヘッド側油
室14aがタンクライン19を介してタンクTに、ロッ
ド側油室14bがポンプ12にそれぞれ連通する。
When the second solenoid 13b on the upper side of the directional control valve 13 is energized, the directional control valve 13 switches to the second position C. At this time, the head side oil chamber 14a of the boom cylinder 14 communicates with the tank T via the tank line 19, and the rod side oil chamber 14b communicates with the pump 12.

【0034】20はこの方向切換弁13とブームシリン
ダ14のヘッド側油室14aとをつなぐヘッド側管路、
21は同切換弁13とロッド側油室14bとをつなぐロ
ッド側管路で、ヘッド側管路20に、保持弁として機能
するパイロットチェック弁22が設けられるとともに、
両側管路20,21に両側油室14a,14bの圧力
(シリンダ14に作用している外力の方向)を検出する
圧力センサ23,23が設けられている。
Reference numeral 20 denotes a head side pipe line connecting the direction switching valve 13 and the head side oil chamber 14a of the boom cylinder 14,
Reference numeral 21 denotes a rod-side conduit that connects the switching valve 13 and the rod-side oil chamber 14b, and the head-side conduit 20 is provided with a pilot check valve 22 that functions as a holding valve.
Pressure sensors 23, 23 for detecting the pressure in the oil chambers 14a, 14b (the direction of the external force acting on the cylinder 14) are provided in the pipes 20, 21 on both sides.

【0035】24は方向切換弁13及びパイロットチェ
ック弁22のパイロット圧源としてのパイロットポン
プ、25はこのパイロットポンプ24を駆動するパイロ
ットポンプ用電動機、26はパイロットチェック弁22
を開閉制御する電磁弁で、コントローラ16からの信号
によってこの電磁弁26が図右側のオフ位置イから左側
のオン位置ロに切換わったときにパイロットチェック弁
22がパイロット圧によって開く。
Reference numeral 24 is a pilot pump as a pilot pressure source for the direction switching valve 13 and pilot check valve 22, 25 is a pilot pump electric motor for driving the pilot pump 24, and 26 is a pilot check valve 22.
The pilot check valve 22 is opened by the pilot pressure when the solenoid valve 26 is switched from the off position a on the right side of the figure to the on position b on the left side of the figure by a signal from the controller 16.

【0036】なお、図1中、27はメインリリーフ弁、
28はパイロット圧源用リリーフ弁、29はポンプ12
とタンクTとの間に設けられた逆流阻止用のチェック弁
である。
In FIG. 1, 27 is a main relief valve,
28 is a relief valve for pilot pressure source, 29 is a pump 12
And a check valve for preventing backflow provided between the tank and the tank T.

【0037】次に、このシリンダ回路の作用を説明す
る。
Next, the operation of this cylinder circuit will be described.

【0038】A.通常作業時 前記したように通常作業時には、ブームシリンダ14に
はブームを含むアタッチメント重量と負荷の合計重量に
よる外力Wがシリンダ縮小方向の力として作用し、この
外力Wによってヘッド側油室(斜線を付して示してい
る)14aに圧力が立っている。
A. During normal work As described above, during normal work, the external force W due to the total weight of the attachment weight including the boom and the load acts on the boom cylinder 14 as a force in the cylinder contracting direction. 14a).

【0039】この状況は、圧力センサ23,23からの
圧力信号に基づいてコントローラ16で検出される。
This situation is detected by the controller 16 based on the pressure signals from the pressure sensors 23, 23.

【0040】この状況下でシリンダ14を伸長・縮小さ
せるときは、操作体17の操作に基づくコントローラ1
6からの電気信号によって方向切換弁13の第1ソレノ
イド13aが通電されで同切換弁13が第1の位置ロに
切換わる。また、電磁弁26も通電されてオン位置ロに
切換わる。
When the cylinder 14 is extended / reduced in this situation, the controller 1 based on the operation of the operation body 17 is used.
An electric signal from 6 energizes the first solenoid 13a of the directional control valve 13 to switch the directional control valve 13 to the first position b. Further, the solenoid valve 26 is also energized and switched to the ON position B.

【0041】これによって、前記のようにシリンダ14
のヘッド側油室14aがポンプ12に、ロッド側油室1
4bがタンクTにそれぞれ接続される。
As a result, as described above, the cylinder 14
Head side oil chamber 14a of the pump 12, the rod side oil chamber 1
4b are connected to the tank T, respectively.

【0042】このとき、操作体17がシリンダ伸長方向
に操作された場合には、コントローラ16からの信号に
基づいて電動機11が正転回転、すなわち、ポンプ12
が本来のポンプ作用を行う(油を吐出する)方向に回転
し、ポンプ吐出油がシリンダ14のヘッド側油室14a
に供給されるとともに、ロッド側油室14bの油がロッ
ド側管路21、方向切換弁13、タンクライン19を介
してタンクTに放出される。
At this time, when the operating body 17 is operated in the cylinder extending direction, the electric motor 11 rotates in the normal direction on the basis of a signal from the controller 16, that is, the pump 12
Rotates in the direction in which the original pump action is performed (discharging oil), and the pump discharge oil is transferred to the head side oil chamber 14a of the cylinder 14.
Oil in the rod-side oil chamber 14b is discharged to the tank T via the rod-side conduit 21, the direction switching valve 13, and the tank line 19.

【0043】これにより、シリンダ14が伸長作動す
る。ただし、このときには動力回生作用は行われない。
As a result, the cylinder 14 is extended. However, at this time, the power regeneration action is not performed.

【0044】一方、操作体17がシリンダ縮小方向に操
作された場合には、コントローラ16からの信号によっ
て電動機11が逆転回転、すなわち、ポンプ12が油を
吸い込んでモータ作用を行う方向に回転し、ヘッド側油
室14aの油がこのポンプ12に吸い込まれる。このと
き、ロッド側油室14bにはタンクライン19、ロッド
側管路21を通じてタンクTの油が吸い上げられる。
On the other hand, when the operating body 17 is operated in the cylinder contracting direction, the signal from the controller 16 causes the electric motor 11 to rotate in the reverse direction, that is, the pump 12 rotates in a direction in which oil is sucked to perform a motor action. The oil in the head side oil chamber 14a is sucked into the pump 12. At this time, the oil in the tank T is sucked up into the rod-side oil chamber 14b through the tank line 19 and the rod-side conduit 21.

【0045】こうして、シリンダ14に縮小方向の外力
Wが作用している状態でのシリンダ縮小時に動力回生作
用が行われる。
In this way, the power regeneration operation is performed when the cylinder 14 is contracted while the external force W in the contraction direction is being applied to the cylinder 14.

【0046】なお、このシリンダ伸縮時に、電動機11
の回転速度を一定にして方向切換弁13を少しずつスト
ローク作動させることにより、シリンダ14のインチン
グ制御を行うことができる。
When the cylinder is expanded or contracted, the electric motor 11
The inching control of the cylinder 14 can be performed by gradually operating the directional control valve 13 with a constant rotation speed.

【0047】B.特殊作業時 油圧ショベルでは、ブームを下げてアタッチメントを地
面に押し付けることによって車体を前上がりに浮かせた
状態で足まわりの検査や掃除を行う場合がある。
B. In a hydraulic excavator during special work, the suspension may be inspected or cleaned while the boom is lowered and the attachment is pressed against the ground so that the vehicle body is raised forward.

【0048】この特殊作業時には、ブームシリンダ14
に、上記通常作業時とは逆に上向き(シリンダ伸長方
向)の外力Wが作用し、ロッド側油室14bに圧力が立
った状態となる。
During this special work, the boom cylinder 14
In contrast, the external force W in the upward direction (cylinder extension direction) acts contrary to the time of the normal work, and the rod side oil chamber 14b is in a state of having a pressure.

【0049】この状態でシリンダ14を伸長させる場合
は、上記通常作業時と同様に、方向切換弁13が第1の
位置ロにセットされるとともに、電動機11が正転回転
する。
When the cylinder 14 is extended in this state, the direction switching valve 13 is set to the first position B and the electric motor 11 rotates in the normal direction, as in the above-mentioned normal operation.

【0050】これにより、ポンプ12の吐出油がヘッド
側油室14aに供給されると同時に、ロッド側油室14
bの油がタンクTに放出されてシリンダ14が伸長す
る。
As a result, the oil discharged from the pump 12 is supplied to the head-side oil chamber 14a, and at the same time, the rod-side oil chamber 14a.
The oil of b is discharged to the tank T and the cylinder 14 extends.

【0051】また、シリンダ14を縮小させる場合は、
電動機11が正転回転するとともに、方向切換弁13が
第2の位置ハに切換えられ、かつ、電磁弁26がオン位
置ロにセットされる。この状態では、ポンプ吐出油がロ
ッド側油室14bに供給されると同時に、ヘッド側油室
14aの油がタンクTに戻ってシリンダ14が縮小す
る。
When the cylinder 14 is reduced,
The electric motor 11 rotates in the normal direction, the direction switching valve 13 is switched to the second position C, and the solenoid valve 26 is set to the ON position B. In this state, the pump discharge oil is supplied to the rod-side oil chamber 14b, and at the same time, the oil in the head-side oil chamber 14a returns to the tank T and the cylinder 14 shrinks.

【0052】なお、この特殊作業時におけるシリンダ伸
長時に、方向切換弁13を第2の位置ハに切換えてロッ
ド側油室14bの油をポンプ12に流入させるようにす
れば動力回生作用を得ることが可能である。ただし、こ
の車体持ち上げ等の特殊作業時には、シリンダ14の作
動ストロークが小さいため、動力回生の実効は薄い。
When the cylinder is extended during this special work, the power regeneration action can be obtained by switching the direction switching valve 13 to the second position C so that the oil in the rod side oil chamber 14b flows into the pump 12. Is possible. However, during special work such as lifting the vehicle body, the operating stroke of the cylinder 14 is small, so that the power regeneration is not effective.

【0053】このように、1ポンプで、かつ、動力回生
作用を得ながら、ブームシリンダ14を、通常作業時及
び特殊作業時ともに2ポンプの場合と同様に作動させる
ことができる。
As described above, the boom cylinder 14 can be operated in the same manner as in the case of the two pumps both during the normal work and during the special work with one pump and while obtaining the power regeneration action.

【0054】第2実施形態(図2参照) 第1実施形態との相違点のみを説明する。Second embodiment (see FIG. 2) Only differences from the first embodiment will be described.

【0055】第1実施形態の回路構成によると、ブーム
シリンダ14に縮小方向の外力Wが作用している状況下
でこの外力Wを利用して動力回生作用を得ながら同シリ
ンダ14を縮小させようとする場合、外力Wが小さいと
ヘッド側油室14aに立つ圧力も低いため、ポンプ12
を回転させる力も弱くなり、十分な動力回生効果が得ら
れない懸念がある。
According to the circuit configuration of the first embodiment, under the condition that the external force W in the contracting direction is applied to the boom cylinder 14, the external force W is utilized to reduce the cylinder 14 while obtaining the power regeneration action. If the external force W is small, the pressure standing in the head-side oil chamber 14a is also low, so that the pump 12
There is a concern that the power to rotate will also be weakened, and a sufficient power regeneration effect will not be obtained.

【0056】そこで第2実施形態においては、この点の
対策として次の構成をとっている。
Therefore, in the second embodiment, the following configuration is adopted as a measure against this point.

【0057】方向切換弁13に、中立位置イでシリンダ
両側管路20,21を連通させる連通路30を設けると
ともに、シリンダロッド側管路21にも、ヘッド側管路
20のパイロットチェック弁22と同様に、電磁弁31
によって制御されるパイロットチェック弁32を設け
る。
The directional control valve 13 is provided with a communication passage 30 for communicating the cylinder side pipe lines 20 and 21 at the neutral position a, and the cylinder rod side pipe line 21 is also connected to the pilot check valve 22 of the head side pipe line 20. Similarly, the solenoid valve 31
A pilot check valve 32 controlled by is provided.

【0058】この構成において、シリンダ14に作用す
る縮小方向の外力Wが小さい状況でシリンダ14を縮小
させるときは、上記状況を圧力センサ23,23からの
圧力信号によってコントローラ16で検出し、このコン
トローラ16からの信号によって方向切換弁13を中立
位置イのままで両パイロットチェック弁22,32を開
く。
In this configuration, when the cylinder 14 is contracted in a situation where the external force W acting on the cylinder 14 in the contracting direction is small, the controller 16 detects the above condition by the pressure signal from the pressure sensors 23, 23. A signal from 16 opens both pilot check valves 22 and 32 while keeping the directional control valve 13 in the neutral position B.

【0059】こうすれば、シリンダ両側油室14a,1
4bが連通路30によって連通し、同圧となるため、ロ
ッド側油室14bにヘッド側圧力が加わることによって
ヘッド側圧力が高くなる。このため、この圧力の高いヘ
ッド側油室14aの油をポンプ12に送ることで十分な
動力回生作用を得ることができる。
In this way, the oil chambers 14a, 1 on both sides of the cylinder are
Since 4b communicates with each other through the communication passage 30 and has the same pressure, the head side pressure is increased by applying the head side pressure to the rod side oil chamber 14b. Therefore, by sending the oil in the head-side oil chamber 14a having a high pressure to the pump 12, a sufficient power regeneration action can be obtained.

【0060】すなわち、外力Wの大小広い範囲で動力回
生作用を確保することができる。
That is, the power regeneration action can be secured in a wide range of the magnitude of the external force W.

【0061】ところで、上記実施形態では、油圧ショベ
ルのブームシリンダ回路を適用対象として例にとった
が、本発明は油圧ショベルの他のシリンダ回路(たとえ
ばアームシリンダ回路)にも、また油圧ショベル以外の
油圧作業機械の各種油圧シリンダ回路にも適用すること
ができる。
In the above embodiment, the boom cylinder circuit of the hydraulic excavator is applied as an example, but the present invention is applicable to other cylinder circuits (for example, arm cylinder circuit) of the hydraulic excavator, and also to the hydraulic excavator. It can also be applied to various hydraulic cylinder circuits of hydraulic working machines.

【0062】[0062]

【発明の効果】上記のように本発明によると、一つの油
圧ポンプで油圧シリンダを伸長及び縮小方向に駆動する
1ポンプ構成をとるため、二つのポンプを用いる場合の
ような両ポンプの流量の過不足の問題が生じない。
As described above, according to the present invention, since one hydraulic pump drives the hydraulic cylinders in the expanding and contracting directions, the flow rate of the two pumps is the same as when two pumps are used. The problem of excess and deficiency does not occur.

【0063】しかも、油圧シリンダを外力の方向と同方
向に作動させるときに、外力による圧力が作用する側の
シリンダ油室の油をポンプに流入させて動力回生を行
い、反対方向への作動時には、ポンプ吐出油を外力によ
る圧力が作用する側の油室に供給することによって通常
のシリンダ動作を行わせることができる。
Moreover, when the hydraulic cylinder is operated in the same direction as the external force, the oil in the cylinder oil chamber on the side on which the pressure from the external force acts is introduced into the pump for power regeneration, and when operating in the opposite direction. The normal cylinder operation can be performed by supplying the pump discharge oil to the oil chamber on the side where the pressure by the external force acts.

【0064】すなわち、流量の過不足の問題が生じない
1ポンプ方式をとりながら、2ポンプ方式の場合と変わ
らない動力回生運転及び通常運転を確保することができ
る。
That is, it is possible to secure the power regeneration operation and the normal operation which are the same as in the case of the two-pump system while adopting the one-pump system in which the problem of excess and deficiency of the flow rate does not occur.

【0065】また、請求項2の発明によると、油圧シリ
ンダに縮小方向の外力が作用する条件下で、油圧シリン
ダの両側油室を方向切換弁を介して連通させるため、シ
リンダの両側油室が同圧となって、ヘッド側油室の圧力
が高められる。このため、外力が小さい場合でも動力回
生作用を確保することができる。
Further, according to the second aspect of the present invention, since the oil chambers on both sides of the hydraulic cylinder communicate with each other through the direction switching valve under the condition that the external force in the reducing direction acts on the hydraulic cylinder, the oil chambers on both sides of the cylinder are With the same pressure, the pressure in the head-side oil chamber is increased. Therefore, the power regeneration action can be secured even when the external force is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態を示すブームシリンダ回
路図である。
FIG. 1 is a boom cylinder circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施形態を示すブームシリンダ回
路図である。
FIG. 2 is a boom cylinder circuit diagram showing a second embodiment of the present invention.

【図3】動力回生作用を行う従来のシリンダ回路の原理
構成図である。
FIG. 3 is a principle configuration diagram of a conventional cylinder circuit that performs a power regeneration operation.

【符号の説明】[Explanation of symbols]

11 電動機 12 油圧ポンプ 13 方向切換弁 14 ブームシリンダ(油圧シリンダ) 14a ヘッド側油室 14b ロッド側油室 16 コントローラ 20 ヘッド側管路 21 ロッド側管路 23 シリンダ圧力を検出する圧力センサ 30 シリンダ両側油室を連通させるための方向切換弁
の連通路
11 Electric Motor 12 Hydraulic Pump 13 Directional Switching Valve 14 Boom Cylinder (Hydraulic Cylinder) 14a Head Side Oil Chamber 14b Rod Side Oil Chamber 16 Controller 20 Head Side Pipe Line 21 Rod Side Pipe Line 23 Pressure Sensor 30 to Detect Cylinder Pressure Oil on Both Sides of Cylinder A communication passage for the directional control valve to connect the chambers

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D003 AA01 AB03 AB07 BA05 BB13 CA02 DA02 DA04 DB02 3H089 BB04 BB11 CC01 DA02 DA08 DA14 DB03 DB34 DB45 DB47 DB48 DB49 DB75 EE22 EE36 FF07 FF12 GG02 JJ02    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2D003 AA01 AB03 AB07 BA05 BB13                       CA02 DA02 DA04 DB02                 3H089 BB04 BB11 CC01 DA02 DA08                       DA14 DB03 DB34 DB45 DB47                       DB48 DB49 DB75 EE22 EE36                       FF07 FF12 GG02 JJ02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電動機によって一つの油圧ポンプを駆動
し、この油圧ポンプの吐出油を方向切換弁を介して片ロ
ッド式の油圧シリンダのヘッド側油室またはロッド側油
室に供給するように構成し、上記油圧シリンダに作用す
る外力の方向を検出し、 (a)油圧シリンダをこの外力の方向と同方向に作動さ
せるときに、動力回生モードとして、外力による圧力が
作用する側のシリンダ油室の油を上記油圧ポンプに流入
させて動力回生を行い、 (b)油圧シリンダを外力の方向と反対方向に作動させ
るときに、通常運転モードとして、上記油圧ポンプを上
記電動機で駆動して、外力による圧力が作用する側のシ
リンダ油室に油を供給することを特徴とする油圧シリン
ダ回路の制御方法。
1. A structure in which one hydraulic pump is driven by an electric motor and the discharge oil of this hydraulic pump is supplied to a head-side oil chamber or a rod-side oil chamber of a one-rod hydraulic cylinder via a direction switching valve. Then, the direction of the external force acting on the hydraulic cylinder is detected, and (a) when operating the hydraulic cylinder in the same direction as the direction of this external force, the cylinder oil chamber on the side where the pressure by the external force acts as the power regeneration mode. (B) When the hydraulic cylinder is operated in the direction opposite to the direction of the external force, the hydraulic pump is driven by the electric motor to generate the external force. A method for controlling a hydraulic cylinder circuit, characterized in that oil is supplied to a cylinder oil chamber on the side where pressure is applied.
【請求項2】 請求項1記載の油圧シリンダ回路の制御
方法において、油圧シリンダに縮小方向の外力が作用す
る条件下で油圧シリンダを縮小させるときに、この油圧
シリンダの両側油室を方向切換弁を介して連通させるこ
とを特徴とする油圧シリンダ回路の制御方法。
2. The control method for a hydraulic cylinder circuit according to claim 1, wherein when the hydraulic cylinder is contracted under a condition in which an external force in a contracting direction acts on the hydraulic cylinder, the direction changeover valve is provided in both oil chambers of the hydraulic cylinder. A method for controlling a hydraulic cylinder circuit, which is characterized in that the hydraulic cylinder circuit is communicated via a.
JP2001268429A 2001-09-05 2001-09-05 Control method of boom cylinder circuit of hydraulic excavator Expired - Fee Related JP5028729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268429A JP5028729B2 (en) 2001-09-05 2001-09-05 Control method of boom cylinder circuit of hydraulic excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268429A JP5028729B2 (en) 2001-09-05 2001-09-05 Control method of boom cylinder circuit of hydraulic excavator

Publications (2)

Publication Number Publication Date
JP2003074517A true JP2003074517A (en) 2003-03-12
JP5028729B2 JP5028729B2 (en) 2012-09-19

Family

ID=19094411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268429A Expired - Fee Related JP5028729B2 (en) 2001-09-05 2001-09-05 Control method of boom cylinder circuit of hydraulic excavator

Country Status (1)

Country Link
JP (1) JP5028729B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022043A1 (en) * 2004-08-26 2006-03-02 Shin Caterpillar Mitsubishi Ltd. Hydraulic pressure drive circuit
WO2011105027A1 (en) * 2010-02-23 2011-09-01 株式会社竹内製作所 Hydraulic pressure control device
KR101121705B1 (en) * 2009-09-16 2012-03-09 볼보 컨스트럭션 이큅먼트 에이비 Apparatus And Method For Recovering Potential Energy Of Boom In A Construction Machinery
JP2012082953A (en) * 2010-09-17 2012-04-26 Daikin Industries Ltd Hybrid type hydraulic device
JP2013137062A (en) * 2011-12-28 2013-07-11 Kobelco Contstruction Machinery Ltd Hydraulic cylinder circuit for construction machine
WO2014027583A1 (en) * 2012-08-15 2014-02-20 カヤバ工業株式会社 Control system for hybrid construction machine
JP2014149044A (en) * 2013-02-01 2014-08-21 Toshiba Mach Co Ltd Hydraulic control system, and construction machine having the same mounted thereon
CN104619555A (en) * 2012-09-11 2015-05-13 萱场工业株式会社 Mixing drum drive apparatus
CN104929997A (en) * 2014-03-19 2015-09-23 纳博特斯克有限公司 Hydraulic circuit for construction machine
CN113152575A (en) * 2021-05-19 2021-07-23 徐州徐工挖掘机械有限公司 Hydraulic bridge circuit based set pilot positive flow control system
WO2023248578A1 (en) * 2022-06-23 2023-12-28 川崎重工業株式会社 Hydraulic drive device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115428A (en) * 1980-02-15 1981-09-10 Hitachi Constr Mach Co Ltd Hydraulic controller
JPS5723595A (en) * 1980-07-17 1982-02-06 Shinko Electric Co Ltd Oil pressure circuit for battery type fork lift
JPH02136432A (en) * 1988-11-17 1990-05-25 Kubota Ltd Oil-pressure circuit for backhoe working vehicle
JPH02175600A (en) * 1988-12-26 1990-07-06 Toyota Autom Loom Works Ltd Hydraulic device in battery type industrial vehicle
JPH02188398A (en) * 1989-01-12 1990-07-24 Toyota Autom Loom Works Ltd Hydraulic device of battery used industrial vehicle
JPH07133805A (en) * 1993-11-10 1995-05-23 Sumitomo Constr Mach Co Ltd Cylinder control device for construction machine
JPH07197490A (en) * 1993-12-28 1995-08-01 Hitachi Constr Mach Co Ltd Oil pressure control device for construction machine
JP2000136806A (en) * 1998-11-04 2000-05-16 Komatsu Ltd Pressure oil energy recovery equipment and pressure oil energy recovery/regeneration equipment
JP2001012418A (en) * 1999-06-30 2001-01-16 Kobe Steel Ltd Hybrid working machine
JP2002195209A (en) * 2000-12-27 2002-07-10 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Hydraulic cylinder holding device for hydraulic closed circuit
JP2003020692A (en) * 2001-07-06 2003-01-24 Kobelco Contstruction Machinery Ltd Hydraulic circuit for hydraulic shovel
JP2003021104A (en) * 2001-07-10 2003-01-24 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Hydraulic cylinder driving device for electric closing circuit
JP2003314510A (en) * 2002-04-22 2003-11-06 Komatsu Ltd Hydraulic energy regenerating system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115428A (en) * 1980-02-15 1981-09-10 Hitachi Constr Mach Co Ltd Hydraulic controller
JPS5723595A (en) * 1980-07-17 1982-02-06 Shinko Electric Co Ltd Oil pressure circuit for battery type fork lift
JPH02136432A (en) * 1988-11-17 1990-05-25 Kubota Ltd Oil-pressure circuit for backhoe working vehicle
JPH02175600A (en) * 1988-12-26 1990-07-06 Toyota Autom Loom Works Ltd Hydraulic device in battery type industrial vehicle
JPH02188398A (en) * 1989-01-12 1990-07-24 Toyota Autom Loom Works Ltd Hydraulic device of battery used industrial vehicle
JPH07133805A (en) * 1993-11-10 1995-05-23 Sumitomo Constr Mach Co Ltd Cylinder control device for construction machine
JPH07197490A (en) * 1993-12-28 1995-08-01 Hitachi Constr Mach Co Ltd Oil pressure control device for construction machine
JP2000136806A (en) * 1998-11-04 2000-05-16 Komatsu Ltd Pressure oil energy recovery equipment and pressure oil energy recovery/regeneration equipment
JP2001012418A (en) * 1999-06-30 2001-01-16 Kobe Steel Ltd Hybrid working machine
JP2002195209A (en) * 2000-12-27 2002-07-10 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Hydraulic cylinder holding device for hydraulic closed circuit
JP2003020692A (en) * 2001-07-06 2003-01-24 Kobelco Contstruction Machinery Ltd Hydraulic circuit for hydraulic shovel
JP2003021104A (en) * 2001-07-10 2003-01-24 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Hydraulic cylinder driving device for electric closing circuit
JP2003314510A (en) * 2002-04-22 2003-11-06 Komatsu Ltd Hydraulic energy regenerating system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022043A1 (en) * 2004-08-26 2006-03-02 Shin Caterpillar Mitsubishi Ltd. Hydraulic pressure drive circuit
KR101121705B1 (en) * 2009-09-16 2012-03-09 볼보 컨스트럭션 이큅먼트 에이비 Apparatus And Method For Recovering Potential Energy Of Boom In A Construction Machinery
WO2011105027A1 (en) * 2010-02-23 2011-09-01 株式会社竹内製作所 Hydraulic pressure control device
JP2012082953A (en) * 2010-09-17 2012-04-26 Daikin Industries Ltd Hybrid type hydraulic device
JP2013137062A (en) * 2011-12-28 2013-07-11 Kobelco Contstruction Machinery Ltd Hydraulic cylinder circuit for construction machine
US9175698B2 (en) 2011-12-28 2015-11-03 Kobelco Construction Machinery Co., Ltd. Hydraulic circuit for construction machine
KR20150016283A (en) * 2012-08-15 2015-02-11 카야바 고교 가부시기가이샤 Control system for hybrid construction machine
JP2014037861A (en) * 2012-08-15 2014-02-27 Kayaba Ind Co Ltd Control device for hybrid construction machine
WO2014027583A1 (en) * 2012-08-15 2014-02-20 カヤバ工業株式会社 Control system for hybrid construction machine
KR101645115B1 (en) 2012-08-15 2016-08-02 케이와이비 가부시키가이샤 Control system for hybrid construction machine
US9664209B2 (en) 2012-08-15 2017-05-30 Kyb Corporation Control system for hybrid construction machine
CN104619555A (en) * 2012-09-11 2015-05-13 萱场工业株式会社 Mixing drum drive apparatus
JP2014149044A (en) * 2013-02-01 2014-08-21 Toshiba Mach Co Ltd Hydraulic control system, and construction machine having the same mounted thereon
CN104929997A (en) * 2014-03-19 2015-09-23 纳博特斯克有限公司 Hydraulic circuit for construction machine
CN104929997B (en) * 2014-03-19 2017-03-29 纳博特斯克有限公司 Engineering machinery hydraulic circuit
CN113152575A (en) * 2021-05-19 2021-07-23 徐州徐工挖掘机械有限公司 Hydraulic bridge circuit based set pilot positive flow control system
CN113152575B (en) * 2021-05-19 2022-11-25 徐州徐工挖掘机械有限公司 Hydraulic bridge circuit based set pilot positive flow control system
WO2023248578A1 (en) * 2022-06-23 2023-12-28 川崎重工業株式会社 Hydraulic drive device

Also Published As

Publication number Publication date
JP5028729B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5676641B2 (en) Hybrid excavator boom drive system and control method thereof
KR101879881B1 (en) Control circuit for energy regeneration and working machine
JP2004156777A (en) System for recovering energy in hydraulic circuit
US10604915B2 (en) Hydraulic system and hydraulic control method for construction machine
WO2013058951A1 (en) Hydraulic system having flow combining capabilities
JP4871843B2 (en) Boom drive circuit for construction machinery
JP2008157407A (en) Hydraulic drive mechanism
WO2021235207A1 (en) Hydraulic excavator drive system
WO2010146866A1 (en) Hydraulic control device for construction machine
JP4715400B2 (en) Hydraulic control equipment for construction machinery
JP5028729B2 (en) Control method of boom cylinder circuit of hydraulic excavator
JP3929380B2 (en) Position energy recovery / regeneration device for work equipment
JP3362258B2 (en) Pressure oil recovery and reuse system
JP2009150462A (en) Hydraulic control system for working machine
WO2021251140A1 (en) Hydraulic shovel driving system
JP2007321972A (en) Power unit for construction machine
JP5246759B2 (en) Hydraulic control system for work machines
JP2019052703A (en) Hydraulic drive system for construction machine
JPH10311305A (en) Control method for regenerative circuit and control device therefor
JP2006009888A (en) Hydraulic control circuit for construction machine
JP2008275100A (en) Construction vehicle
JP2008275101A (en) Hybrid type construction vehicle
JP2003074518A (en) Hydraulic cylinder circuit
JP2006124145A (en) Hydraulic device for battery type industrial vehicle
JP2013234739A (en) Pressure oil energy recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees