WO2006021991A1 - データ通信装置、データ通信方法及びデータ通信システム - Google Patents

データ通信装置、データ通信方法及びデータ通信システム Download PDF

Info

Publication number
WO2006021991A1
WO2006021991A1 PCT/JP2004/012123 JP2004012123W WO2006021991A1 WO 2006021991 A1 WO2006021991 A1 WO 2006021991A1 JP 2004012123 W JP2004012123 W JP 2004012123W WO 2006021991 A1 WO2006021991 A1 WO 2006021991A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
data communication
modulation signal
communication device
Prior art date
Application number
PCT/JP2004/012123
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Iizuka
Toshihisa Kamemaru
Ryoji Hayashi
Yasushi Takahata
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/012123 priority Critical patent/WO2006021991A1/ja
Priority to EP04772084A priority patent/EP1783924A1/en
Priority to JP2006531156A priority patent/JP4672666B2/ja
Priority to CNA2004800437696A priority patent/CN1998155A/zh
Publication of WO2006021991A1 publication Critical patent/WO2006021991A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/68Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for wholly or partially suppressing the carrier or one side band

Definitions

  • Data communication apparatus data communication method, and data communication system
  • the present invention relates to a data communication device, a data communication method, and a data communication system for performing data communication with a non-contact type wireless communication device (for example, a non-contact IC card, an RF tag, an electronic tag, a keyless entry). is there.
  • a non-contact type wireless communication device for example, a non-contact IC card, an RF tag, an electronic tag, a keyless entry.
  • a conventional data communication apparatus performs ASK modulation on an RF signal, which is a radio frequency signal, and outputs the modulated signal, and an amplifier that amplifies the modulation signal output from the ASK modulator power And an antenna that transmits the modulated signal amplified by the amplifier to a non-contact wireless communication device.
  • a data communication device is installed in the vicinity of a non-contact wireless communication device (the distance to the data communication device is about several tens of centimeters)
  • the power transmitted from the data communication device By receiving a supply signal (for example, an RF signal), the power supply signal is rectified to obtain drive power, and the power is stored in a built-in capacitor.
  • a supply signal for example, an RF signal
  • the power stored in the capacitor is used to receive a modulation signal (for example, a data signal such as a command) transmitted from the data communication device and demodulate the data, or transmitted from the data communication device.
  • a modulation signal for example, a data signal such as a command
  • Processing such as modulating an unmodulated signal and transmitting the modulated signal (for example, a data signal such as a command) to the data communication apparatus becomes possible (for example, see Non-Patent Document 1).
  • the data communication device receives a modulated signal transmitted from a non-contact type wireless communication device
  • the CW non-modulated continuous wave: for example, RF signal
  • the modulated signal (e.g., command etc.) from the non-contact type wireless communication device.
  • Data signal may be received from another data communication device (for example, a data signal such as a command).
  • the modulation signal becomes an interference wave, and the non-contact type wireless communication device transmits power. It may not be possible to accurately demodulate the modulated signal.
  • the distance between each other that can avoid mutual interference is about several tens of kilometers.
  • Non-Patent Document 1 MWE2003 Microwave Workshop Digest "Ultra-small RFID chip: Mu-chip” by Mitsuo Usami Hitachi, Ltd. Central Research Laboratories, 2003, pp. 235, 238
  • the conventional data communication apparatus is configured as described above, when the other data communication apparatus power modulation signal is received at the timing of receiving the non-contact wireless communication apparatus power modulation signal, the modulation signal is received. Becomes an interference wave, and there is a problem that the modulated signal transmitted from the non-contact wireless communication device cannot be accurately demodulated.
  • the present invention has been made to solve the above-described problems, and is transmitted from a non-contact wireless communication device without being affected by a modulation signal transmitted from another data communication device.
  • An object of the present invention is to obtain a data communication apparatus, a data communication method, and a data communication system that can accurately demodulate the modulated signal.
  • a data communication apparatus performs a single sideband modulation on a radio frequency signal in accordance with data addressed to a non-contact type radio communication device, and converts the single sideband modulation signal or the radio frequency signal into the single sideband modulation signal.
  • non-contact wireless communication equipment when transmitting the radio frequency signal, non-contact wireless communication equipment power
  • the modulation signal force data of the both sidebands is demodulated Is.
  • FIG. 1 is a configuration diagram showing a data communication system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a data communication device and a non-contact IC card according to Embodiment 1 of the present invention.
  • FIG. 3 is a configuration diagram showing the inside of an SSB modulation circuit.
  • FIG. 4 is a block diagram showing the inside of an SSB demodulation circuit.
  • FIG. 5 is a flowchart showing a data communication method according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a spectrum distribution.
  • FIG. 7 is an explanatory diagram showing a spectrum distribution.
  • FIG. 8 is an explanatory diagram illustrating processing contents of the SSB modulation circuit.
  • FIG. 9 is an explanatory diagram for explaining the processing contents of the SSB modulation circuit.
  • FIG. 10 is an explanatory diagram for explaining processing contents of the SSB modulation circuit.
  • FIG. 11 is a configuration diagram showing the inside of an SSB modulation circuit.
  • FIG. 12 is an explanatory diagram illustrating processing contents of the SSB modulation circuit.
  • FIG. 13 is an explanatory diagram for explaining the processing contents of the SSB modulation circuit.
  • FIG. 14 is an explanatory diagram for explaining the processing contents of the SSB modulation circuit.
  • FIG. 15 is an explanatory diagram showing channel intervals of each data communication device.
  • FIG. 16 is an explanatory diagram showing channel intervals of each data communication device.
  • FIG. 17 is an explanatory diagram showing a spectrum distribution.
  • FIG. 1 is a block diagram showing a data communication system according to Embodiment 1 of the present invention.
  • the data communication device 1 corresponds to, for example, a reader / writer device (interrogator). Transmits a power supply signal (cw: unmodulated continuous wave), a data signal such as a command (modulated wave) or a response signal (CW: unmodulated continuous wave) to the contactless IC card 2.
  • a power supply signal cw: unmodulated continuous wave
  • a data signal such as a command (modulated wave) or a response signal
  • CW unmodulated continuous wave
  • the contactless IC card 2 which is a contactless wireless communication device
  • the built-in capacitor is charged by the power supply signal, and then stored in the capacitor.
  • the received charge is used as a power source to receive data signals (modulated waves) transmitted from the data communication device 1 and demodulate the data, or to modulate the data addressed to the data communication device 1 and A process of transmitting the modulation signal to the data communication apparatus 1 is performed.
  • the data communication device 3 is a data communication device installed in the vicinity of the data communication device 1. However, the configuration of the data communication device 3 is the same as that of the data communication device 1.
  • FIG. 2 is a block diagram showing a data communication device and a non-contact IC card according to Embodiment 1 of the present invention.
  • the data transmitter 11 of the data communication device 1 outputs transmission data such as a command to be transmitted to the non-contact IC card 2, standard data for power supply, or standard data for response.
  • the RF signal oscillator 12 When the data output from the data transmitter 11 is transmission data such as a command, or when the data output from the data transmitter 11 is standard data for response, the RF signal oscillator 12 is not modulated at the frequency f. Oscillate signal (radio frequency signal). When the data output from the data transmitter 11 is standard data for power supply, an unmodulated signal (radio frequency signal) having a frequency f is oscillated.
  • the RF signal oscillator 12 is
  • the radio frequency signal oscillating means is configured.
  • the switching switch 13 receives the RF signal oscillator.
  • Unmodulated signal of frequency f or unmodulated signal of frequency f is output to the SSB modulation circuit 14 and the fixed data for power supply or the fixed data for response is output from the data transmitter 11, it is oscillated from the RF signal oscillator 12.
  • Unmodulated signal of frequency f or unmodulated signal of frequency f is output to the SSB modulation circuit 14 and the fixed data for power supply or the fixed data for response is output from the data transmitter 11, it is oscillated from the RF signal oscillator 12.
  • the SSB modulation circuit 14 converts an unmodulated signal of frequency f oscillated from the RF signal oscillator 12 according to the transmission data output from the data transmitter 11 into an SSB (Single Side Band) converter. And outputs a modulation signal of the single sideband.
  • the SSB modulation circuit 14 constitutes a modulation means.
  • the level adjuster 15 is used to adjust the frequency f generated from the RF signal oscillator 12 or the frequency f.
  • the switching switch 16 receives the SSB modulation circuit.
  • the modulated signal output from 14 is output to the amplifier 17 and the fixed data for power supply or the fixed data for response is output from the data transmitter 11, the unmodulated signal output from the level adjuster 15 is amplified. Output to 17.
  • Amplifier 17 amplifies the modulated signal or unmodulated signal output from switching switch 16
  • the circulator 18 outputs the modulated signal or non-modulated signal output from the amplifier 17 to the antenna 19, while outputting the double-sideband modulated signal received by the antenna 19 to the SSB demodulation circuit 20.
  • the antenna 19 transmits the modulation signal or the non-modulation signal amplified by the amplifier 17 to the non-contact IC force 2, while receiving the double-sideband modulation signal transmitted from the non-contact IC card 2.
  • the circulator 18 and the antenna 19 constitute transmitting means and receiving means.
  • the SSB demodulating circuit 20 demodulates the modulation signal power data in the double sidebands received by the antenna 19.
  • the SSB demodulating circuit 20 constitutes a demodulating means.
  • the antenna 21 of the non-contact IC card 2 receives the modulated signal or the non-modulated signal transmitted from the data communication device 1.
  • Charging circuit 22 has a constant frequency f received signal from antenna 21.
  • the unmodulated signal is rectified to obtain driving power, and the driving power is stored in the capacitor 23.
  • the modulation / demodulation circuit 24 is driven by using the electric power stored in the capacitor 23 of the charging circuit 22. If the reception signal of the antenna 21 is a modulation signal of the frequency f, a command is generated from the modulation signal.
  • FIG. 3 is an example of a configuration diagram when the SSB modulation circuit 14 is configured by a digital circuit.
  • a local oscillator 31 oscillates a local oscillation signal of 10 MHz, for example.
  • the SSB modulator 32 is composed of 90 degree phase shifters 32a and 32b, multipliers 32c and 32d, and an adder 32e.
  • the data transmitter 11 oscillates from the local oscillator 31 using a digital signal that is also output data. SSB-modulate the local oscillation signal.
  • the DZA converter 33 converts the digital modulation signal output from the SSB modulator 32 into an analog signal.
  • the RF signal oscillator 34 oscillates a radio frequency signal of 940 MHz, for example.
  • the multiplier 35 multiplies the modulation signal after the DZA conversion by the DZA converter 33 and the radio frequency signal oscillated from the RF signal oscillator 34, and outputs a double-sideband modulation signal.
  • the bandpass filter 36 removes the single sideband of the modulation signal output from the multiplier 35 and outputs a single sideband modulation signal.
  • FIG. 4 is a block diagram showing the inside of the SSB demodulator circuit 20.
  • an RF signal oscillator 41 oscillates a radio frequency signal of 950 MHz, for example.
  • the single sideband remover 42 is composed of multipliers 42a and 42b, 90-degree phase shifters 42c and 42d, Karo arithmetic unit 42e and low-pass filter 42f and 42g, and the radio frequency oscillated from the RF signal oscillator 41.
  • the signal is used to remove the single sideband of the double sideband modulated signal received by antenna 19.
  • the single sideband regenerator 43 reproduces the single sideband removed by the single sideband remover 42 from the modulated signal output from the single sideband remover 42, Output modulation signal.
  • the DSB demodulator 44 performs double side band (DSB) demodulation on the double sideband modulation signal output as the single sideband regenerator power, and demodulates the data addressed to itself.
  • DSB double side band
  • the data communication device 1 or the data communication device 3 transmits a modulation signal
  • it transmits a single sideband modulation signal.
  • a modulated signal is transmitted, as shown in Fig. 6, two frequency bands sandwiching a radio frequency signal that is a carrier wave are occupied.
  • the non-contact IC card 2 transmits data to the data communication device 1 is almost the same. Because the non-contact IC card 2 transmits the modulation signal of the double-sideband to the data communication device 1, the other data communication device 3 has both sides. When a modulation signal in a waveband is transmitted, the modulation wave becomes an interference wave, and the reception accuracy of the modulation signal from the non-contact IC card 2 in the data communication device 1 deteriorates.
  • the modulation signal transmitted by the data communication device 1 or the data communication device 3 is a single sideband modulation signal as shown in FIG.
  • FIG. 5 is a flowchart showing a data communication method according to the first embodiment of the present invention.
  • the contactless IC card 2 is not equipped with a power source such as a battery, and cannot be activated unless it receives external power.
  • the data transmitter 11 of the data communication device 1 outputs the standard data for power supply to the RF signal oscillator 12, the switching switches 13 and 16, and the SSB modulation circuit 14 before outputting transmission data such as commands. (Step ST1).
  • the standard data for power supply is not intended to transmit information other than meaningful data such as control commands, for example, so the content of the data may be anything. It is desirable that the data be clearly distinguishable from transmission data such as commands and standard data for responses.
  • the RF signal oscillator 12 of the data communication device 1 receives data from the data transmitter 11, the power that the data is the standard data for power supply, the power that is the transmission data of the command, etc. ⁇ Response To confirm that it is standard data (steps ST2 and ST7).
  • the RF signal oscillator 12 When the RF signal oscillator 12 recognizes that the data output from the data transmitter 11 is the standard data for power supply, the RF signal oscillator 12 oscillates an unmodulated signal with a frequency f assigned in advance.
  • the switching switch 13 of the data communication device 1 When the switching switch 13 of the data communication device 1 receives data from the data transmitter 11, the switch 13 Confirm that the data is the standard data for power supply, the power of transmission data such as commands, and the standard data for response.
  • the switching switch 13 When the switch 13 recognizes that the data output from the data transmitter 11 is the standard data for power supply, the switching switch 13 outputs the unmodulated signal of the frequency f oscillated from the RF signal oscillator 12.
  • the level adjuster 15 of the data communication device 1 receives the unmodulated signal having the frequency f oscillated from the RF signal oscillator 12, the level adjuster 15 adjusts the peak power of the unmodulated signal and
  • the peak power of the signal is made larger than the peak power of the modulation signal output from the SSB modulation circuit 14 (step ST4).
  • the peak power of the unmodulated signal oscillated from the RF signal oscillator 12 is adjusted so that the peak power of the unmodulated signal for power supply is larger than the peak power of the modulated signal for data transmission.
  • the switching switch 16 of the data communication device 1 Upon receiving data from the data transmitter 11, the switching switch 16 of the data communication device 1 receives data from the data transmitter 11, the power that is the standard data for power supply, the power that is the transmission data such as commands, and the response Check if it is the standard data.
  • the switching switch 16 When the switching switch 16 recognizes that the data output from the data transmitter 11 is the standard data for power supply, it outputs the unmodulated signal output from the level adjuster 15 to the amplifier 17.
  • the amplifier 17 of the data communication device 1 receives an unmodulated signal having a frequency f from the switching switch 16.
  • the unmodulated signal is amplified (step ST5).
  • the circulator 18 of the data communication device 1 receives the amplified non-modulated signal from the amplifier 17, it outputs the unmodulated signal to the antenna 19.
  • the antenna 19 of the data communication device 1 radiates the unmodulated signal into the air as a power supply signal, and the unmodulated signal is sent to the contactless IC card 2. Send (step ST6).
  • the antenna 21 of the non-contact IC card 2 is connected to the frequency f transmitted from the data communication device 1.
  • the charging circuit 22 of the contactless IC card 2 has an unmodulated frequency f received signal from the antenna 21. If it is a signal, the unmodulated signal is rectified to obtain driving power, and the driving power is stored in the capacitor 23.
  • the data transmitter 11 of the data communication device 1 transmits the transmission data such as a command to the RF signal oscillator 12 and the switching switches 13 and 16. And output to the SSB modulation circuit 14 (step ST1).
  • the power of the data is a standard data for power supply, the power of the data transmitted as a command, etc.
  • Check if it is data steps ST2 and ST7).
  • the RF signal oscillator 12 When the RF signal oscillator 12 recognizes that the data output from the data transmitter 11 is transmission data such as a command, the RF signal oscillator 12 oscillates an unmodulated signal having a frequency f assigned in advance (step ST8).
  • the switching switch 13 of the data communication device 1 Upon receiving data from the data transmitter 11, the switching switch 13 of the data communication device 1 receives the power from the data that is the standard data for power supply, the power that is the transmission data such as a command, and the response Check if it is the standard data.
  • the switching switch 13 converts the unmodulated signal having the frequency f oscillated from the RF signal oscillator 12 to the SSB modulation circuit.
  • the SSB modulation circuit 14 of the data communication device 1 receives data from the data transmitter 11, the SSB modulation circuit 14 is a response data for transmitting data such as power, command data, etc. Check if it is fixed data.
  • the SSB modulation circuit 14 When the SSB modulation circuit 14 recognizes that the data output from the data transmitter 11 is transmission data such as a command, the frequency generated by the RF signal oscillator 12 according to the transmission data output from the data transmitter 11 is determined.
  • the unmodulated signal of f is SSB modulated and the single sideband modulation signal is output to the switch 16 (step ST9).
  • the specific processing content of the SSB modulation circuit 14 is as follows.
  • the transmission data output from the data transmitter 11 is “cos co t” and the local oscillation signal power 'Acos ⁇ t ”oscillated from the local oscillator 31.
  • the 90-degree phase shifter 32a of the SSB modulator 32 is the transmission data output from the data transmitter 11. Advance the phase of 90 degrees and output "sin cot".
  • the 90-degree phase shifter 32b of the SSB modulator 32 advances the phase of the local oscillation signal oscillated from the local oscillator 31 by 90 degrees and outputs “Asincot”.
  • the local oscillator 31 oscillates a local oscillation signal of, for example, 10 MHz here.
  • the multiplier 32c of the SSB modulator 32 multiplies the transmission data “cos cot” output from the data transmitter 11 by the local oscillation signal “Acosc t” oscillated from the local oscillator 31, and the multiplication result is Output some "Acoscot'cosco t".
  • Multiplier 32d of SSB modulator 32 multiplies "-sincot” output from 90 degree phase shifter 32a and "one Asinco t" output from 90 degree phase shifter 32b. Asin ⁇ t • sinc t ”is output.
  • the Salo Modulator 32 Karo Arithmetic 32e calculates the "Acos ⁇ t'cos ⁇ t" output from the multiplier 32c and the "Asincot'sinco e t" output from the multiplier 32d.
  • a cos (co — ⁇ t) which is a single sideband modulation signal (a modulation signal only in the lower sideband formed by the upper sideband), is generated.
  • the D / A converter 33 converts the modulation signal into an analog signal.
  • the multiplier 35 When the multiplier 35 receives the modulated signal D / A converted by the D / A converter 33, the multiplier 35 multiplies the modulated signal by a radio frequency signal of, for example, 940 MHz oscillated from the RF signal oscillator 34. As shown in Fig. 9, 930MHz modulation signal and 950MHz modulation signal are output.
  • the band-pass filter 36 removes the 930 MHz modulation signal from the modulation signal output from the multiplier 35 and outputs the 950 MHz modulation signal (single sideband modulation signal) to the switch 16 (FIG. 10). See).
  • the switching switch 16 of the data communication device 1 receives data from the data transmitter 11, the power of the data being fixed data for power supply, the power of being transmission data such as a command, Check if it is the standard data for response.
  • the switch 16 recognizes that the data output from the data transmitter 11 is transmission data such as a command, it outputs the single sideband modulation signal output from the SSB modulation circuit 14 to the amplifier 17. To do.
  • amplifier 17 of data communication device 1 receives the single sideband modulation signal from switching switch 16, it amplifies the modulation signal (step ST5).
  • the circulator 18 of the data communication device 1 receives the amplified modulated signal from the amplifier 17, it outputs the modulated signal to the antenna 19.
  • the antenna 19 of the data communication device 1 transmits the modulated signal to the contactless IC card 2 by radiating the modulated signal into the air as a data signal (step ST6).
  • the antenna 21 of the non-contact IC card 2 receives the single sideband modulated signal transmitted from the data communication device 1.
  • the modulation / demodulation circuit 24 of the non-contact IC card 2 is driven using the power stored in the capacitor 23 of the charging circuit 22 to modulate the single sideband.
  • the signal envelope is detected, data such as commands is demodulated from the modulated signal, and processing according to the data is performed.
  • the data transmitter 11 of the data communication device 1 sends the standard data for response to the RF signal oscillator 12 and the switching switch 13 , 16 and SSB modulation circuit 14 (step ST1).
  • the standard data for response is not intended to transmit information beyond meaningful data such as control commands, for example, so the content of the data can be anything, but it can be transmitted data such as commands, It is desirable that the data be clearly distinguishable from the standard data for power supply.
  • the RF signal oscillator 12 of the data communication apparatus 1 receives data from the data transmitter 11, the power that the data is the standard data for power supply, the power that is the transmission data of the command, etc. ⁇ Response To confirm that it is standard data (steps ST2 and ST7).
  • the RF signal oscillator 12 When the RF signal oscillator 12 recognizes that the data output from the data transmitter 11 is the standard data for response, the RF signal oscillator 12 oscillates an unmodulated signal with a frequency f assigned in advance. (Step ST10).
  • the switching switch 13 of the data communication device 1 When the switching switch 13 of the data communication device 1 receives data from the data transmitter 11, the power that the data is standard data for supplying power, the power that is transmission data such as a command, and the response Check if it is standard data for use.
  • the switching switch 13 When the switch 13 recognizes that the data output from the data transmitter 11 is the standard data for response, the switching switch 13 generates a non-modulated signal of frequency f oscillated from the RF signal oscillator 12.
  • the level adjuster 15 of the data communication device 1 receives the unmodulated signal having the frequency f oscillated from the RF signal oscillator 12, the level adjuster 15 adjusts the peak power of the unmodulated signal and adjusts the peak of the unmodulated signal.
  • the power is set larger than the peak power of the modulation signal output from the SSB modulation circuit 14 (step ST11).
  • the peak power of the unmodulated signal oscillated from the RF signal oscillator 12 is adjusted so that the peak power of the unmodulated signal for response is larger than the peak power of the modulated signal for data transmission.
  • the switching power 16 is the power that is the standard data for power supply, the power that is the transmission data such as a command, and the response Check if it is the standard data.
  • the switching switch 16 When the switching switch 16 recognizes that the data output from the data transmitter 11 is the standard data for response, it outputs the unmodulated signal output from the level adjuster 15 to the amplifier 17.
  • amplifier 17 of data communication device 1 Upon receiving an unmodulated signal of frequency f from switching switch 16, amplifier 17 of data communication device 1 amplifies the unmodulated signal (step ST5).
  • the circulator 18 of the data communication device 1 receives the amplified non-modulated signal from the amplifier 17, it outputs the unmodulated signal to the antenna 19.
  • the antenna 19 of the data communication device 1 radiates the unmodulated signal in the air as a response signal, and transmits the unmodulated signal to the contactless IC card 2. (Step ST6).
  • the antenna 21 of the non-contact IC card 2 is connected to the frequency f transmitted from the data communication device 1. Receive a modulated signal.
  • the modulation / demodulation circuit 24 of the non-contact IC card 2 is driven using the power stored in the capacitor 23 of the charging circuit 22 if the received signal of the antenna 21 is a non-modulated signal of the frequency, and is addressed to the data communication device 1. Is modulated, and a modulated signal of frequency f (a modulated signal in both sidebands) is output to the antenna 21.
  • a modulated signal in both sidebands is transmitted from the non-contact IC card 2 to the data communication device 1 as a data signal.
  • the antenna 19 of the data communication device 1 receives a double-sideband modulated signal that is a data signal transmitted from the non-contact IC card 2.
  • the other data communication apparatus 3 may transmit the modulated signal, as shown in FIG.
  • the other data communication device 3 since the other data communication device 3 transmits only the modulation signal in the lower sideband (the configuration of the data communication device 3 is the same as the configuration of the data communication device 1), the modulation transmitted from the non-contact IC card 2 is performed. Among the signals, the modulation signal in the upper sideband is not interfered with by the modulation signal transmitted from the other data communication device 3.
  • the SSB demodulation circuit 20 of the data communication device 1 demodulates data from the modulation signal of the double sidebands received by the antenna 19.
  • the SSB demodulation circuit 20 demodulates data from the modulation signal of the upper side band that is not interfered with the modulation signal transmitted from the other data communication device 3 among the modulation signals transmitted from the contactless IC card 2.
  • the specific processing content of the SSB demodulation circuit 20 is as follows.
  • the double sideband modulation signal received by antenna 19 is "A cos ( ⁇ + ⁇ ) t + A cos
  • the multiplier 42a of the single sideband remover 42 multiplies the double sideband modulated signal received by the antenna 19 by the radio frequency signal oscillated from the RF signal oscillator 41, and multiplies the result.
  • the 90-degree phase shifter 42c of the single sideband remover 42 advances the phase of the radio frequency signal oscillated from the RF signal oscillator 41 by 90 degrees and outputs “ ⁇ t”.
  • the multiplier 42b of the single sideband remover 42 includes a double sideband modulated signal "A cos (co + ⁇ ) t + A cos (co_co) t" received by the antenna 19, and 90 Phase shifter 42c
  • the 90-degree phase shifter 42d of the single sideband remover 42 advances the phase of "(A / 2) sinco t- (A Z2) sinco t", which is the multiplication result of the multiplier 42a, by 90 degrees, A
  • the adder 42e of the single sideband remover 42 adds the multiplication result of the multiplier 42a and the output of the 90-degree phase shifter 42d so that the lower sideband of the modulation signal received by the antenna 19 is The modulated signal “A cosco t”, which is removed and only the upper sideband is left, is output.
  • the single sideband regenerator 43 Upon receiving the upper sideband modulation signal "Acos cot" from the single sideband remover 42, the single sideband regenerator 43, for example, converts the upper sideband modulation signal waveform to the lower sideband side. Is reproduced symmetrically to reproduce the lower sideband modulation signal and output the double sideband modulation signal.
  • DSB demodulator 44 When DSB demodulator 44 receives a double sideband modulation signal from single sideband regenerator 43, DSB demodulator 44 performs DSB demodulation on the double sideband modulation signal and demodulates the data addressed to itself.
  • the radio frequency signal is SSB modulated in accordance with the data addressed to the contactless IC card 2, and the single sideband modulation signal or the radio frequency signal is While transmitting the radio frequency signal, when receiving a double-sideband modulation signal transmitted from the contactless IC card 2, the data is demodulated from the double-sideband modulation signal. Therefore, compared to the case where the data communication device transmits a modulation signal in both sidebands, the influence of the modulation signal transmitted from the other data communication device 3 is reduced or completely affected. In addition, the modulation signal transmitted from the non-contact IC card 2 can be demodulated.
  • the modulation signal power of the double sideband received by the antenna 19 is extracted, and the data is extracted from the single sideband modulation signal. demodulation
  • the data is demodulated only from the modulated signal that is not interfered with the modulated signal transmitted from the other data communication device 3, and an effect that the data can be demodulated more accurately is obtained.
  • the data communication devices 1 and 3 transmit the lower sideband modulation signal, and the upper side wave among the double sideband modulation signals transmitted from the non-contact IC card 2.
  • the band modulation signal power data demodulator was shown, but the data communication devices 1 and 3 transmit the upper sideband modulation signal, and the double sideband modulation signal transmitted from the contactless IC card 2
  • the modulation signal power data of the lower sideband may be demodulated.
  • the SSB demodulator circuit 20 of the data communication apparatus 1 performs SSB demodulation on the double sideband modulation signal received by the antenna 19, but the double sideband modulation signal is converted to DSB. You can demodulate and demodulate the data.
  • the modulated signal of the lower sideband that is subject to interference by the modulated wave of the other data communication apparatus 3 is also included in the demodulation target, so the modulated signal of the double sideband received by the antenna 19 is SSB demodulated.
  • the data demodulation accuracy is worse than the case, but the modulation signal in the upper sideband is not subject to interference, so the data communication device 3 transmits data more than in the case where the other data communication device 3 transmits the modulation signal in the double sideband. This improves the demodulation accuracy.
  • the circuit configuration of the demodulation circuit of the data communication device 1 can be simplified.
  • the RF signal oscillator 12 transmits an unmodulated signal having a frequency f. Of those that oscillate
  • An unmodulated signal may be oscillated.
  • the RF signal oscillator 12 oscillates an unmodulated signal of frequency f, and the data output from the data transmitter 11 is used for response.
  • the RF signal oscillator 12 may oscillate an unmodulated signal having a frequency f.
  • the RF signal oscillator 12 oscillates an unmodulated signal with the frequency f.
  • Data output from the data transmitter 11 is transmission data such as commands or
  • the RF signal oscillator 12 is connected to the unmodulated signal
  • the switching switches 13 and 16 and the level adjuster 15 are not necessary.
  • the data communication device 1 supplies power to the non-contact IC card 2, and the power shown for the non-contact IC card 2 driven by using the power is not necessarily the data communication device. 1 does not need to supply power to the contactless IC card 2.
  • the contactless IC card 2 may be driven using other power (for example, obtaining power from the built-in battery).
  • the SSB modulation circuit 14 outputs a single sideband modulation signal to the switching switch 16. However, when the SSB modulation circuit 14 outputs a single sideband modulation signal.
  • the carrier wave component may be included in the modulated signal and output.
  • the adder 32f of the SSB modulation circuit 14 adds the transmission data “cos co t” output from the data transmitter 11 and the DC component “B”, and is the result of the addition.
  • the adder 32e of the SSB modulator 32 outputs “A ⁇ c os (o — o) t + Bcos ot ⁇ ”.
  • the signal output from the adder 32e of the SSB modulator 32 includes a carrier component in a portion having a frequency of 10 MHz, as shown in FIG.
  • the signal output from the multiplier 35 of the SSB modulation circuit 14 includes a carrier component in the portion where the frequency is 930 MHz and 950 MHz.
  • the signal output from the bandpass filter 36 of the SSB modulation circuit 14 includes a carrier component in a portion where the frequency is 950 MHz.
  • the modulation signal is output including the carrier wave component. Therefore, even if the modulation / demodulation circuit 24 of the contactless IC card 2 is an ordinary DSB modulation compatible circuit (not an SSB modulation compatible circuit), the envelope of the modulation signal in the single sideband is detected and Modulation signal power The effect is that data such as commands can be demodulated.
  • Embodiment 3 In the first embodiment, the data communication device 1 and the data communication device 3 transmit the modulation signal having the same frequency. However, in order to prevent the data communication device 1 and the data communication device 3 from interfering with each other, The communication device 1 and the data communication device 3 may transmit modulated signals having different frequencies. That is, the frequency of the radio frequency signal oscillated from the RF signal oscillator 12 of the data communication devices 1 and 3 may be different.
  • FIG. 15 shows the spectrum when the data transmitters 1 and 3 perform DSB modulation and transmit modulated signals in both sidebands without performing SSB modulation.
  • the frequency band occupied by the data communication system becomes large, but the frequency band that can be actually occupied is limited. If the channel spacing is not reduced, the number of data communication devices that can be installed cannot be increased.
  • the number of data communication devices that can be installed can be increased by narrowing the channel interval of each data communication device as follows.
  • each data communication apparatus performs SSB modulation and transmits a single sideband modulation signal, as shown in FIG. (Chl data communication device ⁇ do not transmit lower sideband modulation signal (LSB), ch2 data communication device ⁇ do not transmit upper sideband modulation signal (USB), ch3 data Communication device ⁇ Lower sideband modulation signal (LSB) is not transmitted), and the response band from contactless IC card 2 in the adjacent channel can be approached or shared.
  • the ch2 data communication apparatus transmits the lower sideband modulation signal (LSB) and does not transmit the upper sideband modulation signal (USB), as shown in FIG.
  • the data communication device of ch3 (assuming that the frequency of ch2 is the frequency of ch3, and ch2 and ch3 are the frequencies of adjacent bands), the upper side without transmitting the lower sideband modulation signal (LSB) Transmit the waveband modulation signal (U SB).
  • the chl data communication device (chl frequency is ch2 frequency, chl and ch2 Is the frequency of the adjacent band), the upper sideband modulation signal (USB) is transmitted without transmitting the lower sideband modulation signal (LSB).
  • the harmonics do not appear in the response band from the contactless IC card 2 in ch2 and ch3, that is, in the USB of ch2 and the LSB of ch3, so the area occupied by the harmonics (for example, 1 OOkHz) is no longer necessary. Therefore, the distance between ch2 and ch3 should be close to about 200kHz.
  • ch2 LSB and chl USB are not response bands from contactless IC card 2 (ch2 is USB response band, chl is LSB force S response band). Since it does not affect the response from contact IC card 2, the distance between chl and ch2 should be close to about 200kHz.
  • the ch2 data communication apparatus transmits the lower sideband modulation signal (LSB), and the upper sideband modulation signal (USB ) Is not transmitted
  • the chl and ch3 data communication devices are configured to transmit the upper sideband modulation signal (USB) without transmitting the lower sideband modulation signal (LSB).
  • the effect is that the number of installable data communication devices can be increased by narrowing the channel interval of each data communication device.
  • the ch2 data communication apparatus transmits the lower sideband modulation signal (LSB) and does not transmit the upper sideband modulation signal (USB)
  • the chl and ch3 data Data communication system that transmits the upper sideband modulation signal (USB) without transmitting the lower sideband modulation signal (LSB).
  • a data communication device to which a radio frequency signal is assigned transmits an upper sideband modulation signal (USB) without transmitting a lower sideband modulation signal (LSB), and a radio frequency signal having the highest frequency is assigned.
  • the data communication device may send the lower sideband modulation signal (LSB) without sending the upper sideband modulation signal (USB).
  • each data communication device is provided with a regulation that prevents transmission of a signal in a frequency band corresponding to a single sideband that other data communication devices do not transmit. If so, do not transmit modulated signals or radio frequency signals in that frequency band.
  • each data communication device has an effect of preventing interference from the response from the non-contact IC card 2 addressed to other data communication devices.
  • the data communication apparatus is not equipped with a power source such as a battery and cannot be activated unless supplied with power from the outside. Suitable for use in communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 非接触ICカード2宛のデータに応じて無線周波数信号をSSB変調し、単側波帯の変調信号又は当該無線周波数信号を送信する一方、その無線周波数信号を送信しているとき、非接触ICカード2から送信された両側波帯の変調信号を受信すると、その両側波帯の変調信号からデータを復調する。これにより、他のデータ通信装置3から送信される変調信号の影響を受けずに、非接触ICカード2から送信された変調信号を正確に復調することができる。

Description

明 細 書
データ通信装置、データ通信方法及びデータ通信システム
技術分野
[0001] この発明は、非接触型無線通信機器 (例えば、非接触 ICカード、 RFタグ、電子タグ 、キーレスエントリ)とデータ通信を実施するデータ通信装置、データ通信方法及び データ通信システムに関するものである。
背景技術
[0002] 従来のデータ通信装置は、無線周波数信号である RF信号を ASK変調して、その 変調信号を出力する ASK変調器と、その ASK変調器力 出力された変調信号を増 幅する増幅器と、その増幅器により増幅された変調信号を非接触型無線通信機器に 送信するアンテナとから構成されてレ、る。
[0003] 非接触型無線通信機器は、近隣にデータ通信装置が設置されてレ、れば (データ通 信装置までの距離が数十センチメートノレ程度)、データ通信装置から送信された電 力供給用信号 (例えば、 RF信号)を受信することにより、その電力供給用信号を整流 して駆動用電力を取得し、その電力を内蔵のコンデンサに蓄積する。
以後、コンデンサに蓄積した電力を利用して、データ通信装置から送信された変調 信号 (例えば、コマンドなどのデータ信号)を受信してデータを復調する処理や、デ ータ通信装置から送信された無変調信号を変調して、その変調信号 (例えば、コマン ドなどのデータ信号)をデータ通信装置に送信するなどの処理が可能になる(例えば 、非特許文献 1を参照)。
[0004] これにより、データ通信装置は、非接触型無線通信機器から送信される変調信号を 受信する際に、レスポンス用信号である CW (無変調の連続波:例えば、 RF信号)を 非接触型無線通信機器に送信することになるが、 自己の位置から数キロメートル程 度の位置に他のデータ通信装置が設置されている場合、非接触型無線通信機器か ら変調信号 (例えば、コマンドなどのデータ信号)を受信するタイミングで、他のデー タ通信装置から変調信号 (例えば、コマンドなどのデータ信号)を受信することがある このように、非接触型無線通信機器から変調信号を受信するタイミングで、他のデ ータ通信装置から変調信号を受信すると、その変調信号が干渉波になり、非接触型 無線通信機器力 送信された変調信号を正確に復調することができなくなることがあ る。
[0005] なお、複数のデータ通信装置を設置する場合、相互間の距離が短ければ、相互干 渉を回避するため、異なる周波数を割り当てるが、割当可能な周波数の数が限られ ているため、相互間の距離が数キロメートノレ程度であっても、同一の周波数を割り当 てなければならなレ、ことがある。
なお、相互干渉を回避することが可能な相互間の距離は、数十キロメートノレ程度で ある。
[0006] 非特許文献 1 : MWE2003 Microwave Workshop Digest「超小型 RFIDチップ :ミューチップ」宇佐美 光雄著 株式会社日立製作所 中央研究所 2003年発行、 第 235頁一第 238頁
[0007] 従来のデータ通信装置は以上のように構成されているので、非接触型無線通信機 器力 変調信号を受信するタイミングで、他のデータ通信装置力 変調信号を受信 すると、その変調信号が干渉波になり、非接触型無線通信機器から送信された変調 信号を正確に復調することができなくなることがある課題があった。
[0008] この発明は上記のような課題を解決するためになされたもので、他のデータ通信装 置から送信される変調信号の影響を受けずに、非接触型無線通信機器から送信さ れた変調信号を正確に復調することができるデータ通信装置、データ通信方法及び データ通信システムを得ることを目的とする。
発明の開示
[0009] この発明に係るデータ通信装置は、非接触型無線通信機器宛のデータに応じて無 線周波数信号を単側波帯変調し、その単側波帯の変調信号又は当該無線周波数 信号を送信する一方、その無線周波数信号を送信しているとき、非接触型無線通信 機器力 送信された両側波帯の変調信号を受信すると、その両側波帯の変調信号 力 データを復調するようにしたものである。
[0010] このことによって、データ通信装置が両側波帯の変調信号を送信する場合と比べて 、他のデータ通信装置から送信される変調信号の影響を軽減し、あるいは、全く影響 を受けずに、非接触型無線通信機器から送信された変調信号を復調することができ る効果がある。
図面の簡単な説明
[0011] [図 1]この発明の実施の形態 1によるデータ通信システムを示す構成図である。
[図 2]この発明の実施の形態 1によるデータ通信装置と非接触 ICカードを示す構成図 である。
[図 3]SSB変調回路の内部を示す構成図である。
[図 4]SSB復調回路の内部を示す構成図である。
[図 5]この発明の実施の形態 1によるデータ通信方法を示すフローチャートである。
[図 6]スペクトラム分布を示す説明図である。
[図 7]スペクトラム分布を示す説明図である。
[図 8]SSB変調回路の処理内容を説明する説明図である。
[図 9]SSB変調回路の処理内容を説明する説明図である。
[図 10]SSB変調回路の処理内容を説明する説明図である。
[図 11]SSB変調回路の内部を示す構成図である。
[図 12]SSB変調回路の処理内容を説明する説明図である。
[図 13]SSB変調回路の処理内容を説明する説明図である。
[図 14]SSB変調回路の処理内容を説明する説明図である。
[図 15]各データ通信装置のチャネル間隔を示す説明図である。
[図 16]各データ通信装置のチャネル間隔を示す説明図である。
[図 17]スペクトラム分布を示す説明図である。
発明を実施するための最良の形態
[0012] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。
実施の形態 1.
図 1はこの発明の実施の形態 1によるデータ通信システムを示す構成図である。
[0013] 図において、データ通信装置 1は例えばリーダライタ装置 (質問器)などが該当し、 電力供給用信号 (cw:無変調の連続波)、コマンドなどのデータ信号 (変調波)又は レスポンス用信号 (CW:無変調の連続波)を非接触 ICカード 2に送信する。
非接触型無線通信機器である非接触 ICカード 2はデータ通信装置 1から送信され た電力供給用信号を受信すると、その電力供給用信号によって内蔵のコンデンサを 充電し、以後、そのコンデンサに蓄積された電荷を電力源として利用して、例えば、 データ通信装置 1から送信されたデータ信号 (変調波)を受信してデータを復調する 処理や、データ通信装置 1宛のデータを変調して、その変調信号をデータ通信装置 1に送信する処理などを実施する。
データ通信装置 3はデータ通信装置 1の近隣に設置されているデータ通信装置で ある。ただし、データ通信装置 3の構成は、データ通信装置 1の構成と同じである。
[0014] 図 2はこの発明の実施の形態 1によるデータ通信装置と非接触 ICカードを示す構 成図である。
図において、データ通信装置 1のデータ送信器 11は非接触 ICカード 2に送信する コマンドなどの送信データ、電力供給用の定型データ、あるいは、レスポンス用の定 型データを出力する。
RF信号発振器 12はデータ送信器 11から出力されたデータがコマンドなどの送信 データである場合、あるいは、データ送信器 11から出力されたデータがレスポンス用 の定型データである場合、周波数 f の無変調信号 (無線周波数信号)を発振する。ま た、データ送信器 11から出力されたデータが電力供給用の定型データである場合、 周波数 f の無変調信号 (無線周波数信号)を発振する。なお、 RF信号発振器 12は
2
無線周波数信号発振手段を構成してレ、る。
[0015] 切換スィッチ 13はデータ送信器 11から送信データが出力されると、 RF信号発振器
12から発振された周波数 f の無変調信号を SSB変調回路 14に出力し、データ送信 器 11から電力供給用の定型データ又はレスポンス用の定型データが出力されると、 RF信号発振器 12から発振された周波数 f の無変調信号又は周波数 f の無変調信
2 1
号をレベル調整器 15に出力する。
[0016] SSB変調回路 14はデータ送信器 11から出力された送信データに応じて、 RF信号 発振器 12から発振された周波数 f の無変調信号を SSB (Single Side Band)変 調し、その単側波帯の変調信号を出力する。なお、 SSB変調回路 14は変調手段を 構成している。
レベル調整器 15RF信号発振器 1 2から発振された周波数 f 又は周波数 f の無
1 2 変調信号のピーク電力を調整して、その無変調信号のピーク電力を SSB変調回路 1 4から出力される変調信号のピーク電力より大きくする。
[0017] 切換スィッチ 16はデータ送信器 11から送信データが出力されると、 SSB変調回路
14から出力された変調信号を増幅器 17に出力し、データ送信器 11から電力供給用 の定型データ又はレスポンス用の定型データが出力されると、レベル調整器 15から 出力された無変調信号を増幅器 17に出力する。
増幅器 17は切換スィッチ 16から出力された変調信号又は無変調信号を増幅する
[0018] サーキユレータ 18は増幅器 17から出力された変調信号又は無変調信号をアンテ ナ 19に出力する一方、アンテナ 19により受信された両側波帯の変調信号を SSB復 調回路 20に出力する。
アンテナ 19は増幅器 17により増幅された変調信号又は無変調信号を非接触 IC力 ード 2に送信する一方、非接触 ICカード 2から送信された両側波帯の変調信号を受 信する。なお、サーキユレータ 18及びアンテナ 19から送信手段と受信手段が構成さ れている。
SSB復調回路 20はアンテナ 19により受信された両側波帯の変調信号力 データ を復調する。なお、 SSB復調回路 20は復調手段を構成している。
[0019] 非接触 ICカード 2のアンテナ 21はデータ通信装置 1から送信された変調信号又は 無変調信号を受信する。充電回路 22はアンテナ 21の受信信号が周波数 f の無変
2 調信号であれば、その無変調信号を整流して駆動用電力を取得し、その駆動用電 力をコンデンサ 23に蓄積する。
変復調回路 24は充電回路 22のコンデンサ 23に蓄積された電力を利用して駆動し 、アンテナ 21の受信信号が周波数 f の変調信号であれば、その変調信号からコマン
1
ドなどのデータを復調し、そのデータに応じた処理を実施する。また、アンテナ 21の 受信信号が周波数 f の無変調信号であれば、データ通信装置 1宛のデータで無変 調信号を変調し、その変調信号をアンテナ 21に出力する。
[0020] 図 3は SSB変調回路 14をディジタル回路で構成した場合の構成図の一例であり、 図において、局部発振器 31は例えば 10MHzの局部発振信号を発振する。 SSB変 調器 32は 90度移相器 32a, 32b、乗算器 32c, 32d及び加算器 32eから構成され、 データ送信器 11力も出力されたデータであるディジタル信号を用いて、局部発振器 31から発振された局部発振信号を SSB変調する。
DZA変換器 33は SSB変調器 32から出力されたディジタルの変調信号をアナログ 信号に変換する。
[0021] RF信号発振器 34は例えば 940MHzの無線周波数信号を発振する。乗算器 35は DZA変換器 33による DZA変換後の変調信号と RF信号発振器 34から発振された 無線周波数信号を乗算し、両側波帯の変調信号を出力する。
バンドパスフィルタ 36は乗算器 35から出力された変調信号の単側波帯を除去して 、単側波帯の変調信号を出力する。
[0022] 図 4は SSB復調回路 20の内部を示す構成図であり、図において、 RF信号発振器 41は例えば 950MHzの無線周波数信号を発振する。単側波帯除去器 42は乗算器 42a, 42b、 90度移相器 42c, 42d、カロ算器 42e及び低域通過フイノレタ 42f, 42g力ら 構成され、 RF信号発振器 41から発振された無線周波数信号を用いて、アンテナ 19 により受信された両側波帯の変調信号の単側波帯を除去する。
[0023] 単側波帯再生器 43は単側波帯除去器 42から出力された変調信号から、単側波帯 除去器 42により除去された単側波帯を再生して、両側波帯の変調信号を出力する。
DSB復調器 44は単側波帯再生器力 出力された両側波帯の変調信号に対する D SB (Double Side Band)復調を実施して、 自己宛のデータを復調する。
[0024] 次に動作について説明する。
この実施の形態 1では、後述するように、データ通信装置 1やデータ通信装置 3が 変調信号を送信する場合、単側波帯の変調信号を送信するが、従来のように、両側 波帯の変調信号を送信する場合、図 6に示すように、搬送波である無線周波数信号 を挟む 2つの周波数帯が占有されることになる。
[0025] この際、非接触 ICカード 2がデータをデータ通信装置 1に送信する場合も、ほぼ同 じ周波数帯を使用して、両側波帯の変調信号を送信するため、非接触 ICカード 2が 両側波帯の変調信号をデータ通信装置 1に送信するタイミングで、他のデータ通信 装置 3が両側波帯の変調信号を送信すると、その変調波が干渉波になり、データ通 信装置 1における非接触 ICカード 2からの変調信号の受信精度が劣化する。
[0026] この実施の形態 1では、非接触 ICカード 2が両側波帯の変調信号をデータ通信装 置 1に送信するタイミングで、他のデータ通信装置 3が変調信号を送信しても、その 変調波が干渉波にならないようにするため、図 7に示すように、データ通信装置 1や データ通信装置 3が送信する変調信号を単側波帯の変調信号にしている。
以下、具体的に説明する。
[0027] 図 5はこの発明の実施の形態 1によるデータ通信方法を示すフローチャートである。
非接触 ICカード 2は、電池などの電力源を搭載しておらず、外部から電力の供給を 受けない限り、起動することができない。
そこで、データ通信装置 1がコマンドなどのデータを送信するに先立って、非接触 の状態で、非接触 ICカード 2に電力を供給する。
即ち、データ通信装置 1のデータ送信器 11は、コマンドなどの送信データを出力す る前に、電力供給用の定型データを RF信号発振器 12,切換スィッチ 13, 16及び S SB変調回路 14に出力する (ステップ ST1)。
[0028] ここで、電力供給用の定型データは、例えば、制御命令などの意味のあるデータで はなぐ情報の伝達を目的とするものではないので、データの内容はいかなるもので もよいが、コマンドなどの送信データや、レスポンス用の定型データと明確に区別でき るデータであることが望ましい。
[0029] データ通信装置 1の RF信号発振器 12は、データ送信器 11からデータを受けると、 そのデータが電力供給用の定型データであるの力、、コマンドなどの送信データである の力 \レスポンス用の定型データであるのかを確認する(ステップ ST2, ST7)。
RF信号発振器 12は、データ送信器 11から出力されたデータが電力供給用の定 型データであると認定すると、予め割り当てられている周波数 f の無変調信号を発振
2
する(ステップ ST3)。
[0030] データ通信装置 1の切換スィッチ 13は、データ送信器 11からデータを受けると、そ のデータが電力供給用の定型データであるの力、コマンドなどの送信データであるの 力、レスポンス用の定型データであるのかを確認する。
切換スィッチ 13は、データ送信器 11力 出力されたデータが電力供給用の定型デ ータであると認定すると、 RF信号発振器 12から発振された周波数 f の無変調信号を
2
レベル調整器 15に出力する。
[0031] データ通信装置 1のレベル調整器 15は、 RF信号発振器 12から発振された周波数 f の無変調信号を受けると、その無変調信号のピーク電力を調整して、その無変調
2
信号のピーク電力を SSB変調回路 14から出力される変調信号のピーク電力より大き くする(ステップ ST4)。
即ち、電力供給用の無変調信号のピーク電力が、データ送信用の変調信号のピー ク電力より大きくなるように、 RF信号発振器 12から発振された無変調信号のピーク電 力を調整する。
[0032] データ通信装置 1の切換スィッチ 16は、データ送信器 11からデータを受けると、そ のデータが電力供給用の定型データであるの力、コマンドなどの送信データであるの 力、レスポンス用の定型データであるのかを確認する。
切換スィッチ 16は、データ送信器 11力 出力されたデータが電力供給用の定型デ ータであると認定すると、レベル調整器 15から出力された無変調信号を増幅器 17に 出力する。
[0033] データ通信装置 1の増幅器 17は、切換スィッチ 16から周波数 f の無変調信号を受
2
けると、その無変調信号を増幅する (ステップ ST5)。
データ通信装置 1のサーキユレータ 18は、増幅器 17から増幅後の無変調信号を受 けると、その無変調信号をアンテナ 19に出力する。
データ通信装置 1のアンテナ 19は、サーキユレータ 18から増幅後の無変調信号を 受けると、その無変調信号を電力供給用信号として空中に放射することにより、その 無変調信号を非接触 ICカード 2に送信する (ステップ ST6)。
[0034] 非接触 ICカード 2のアンテナ 21は、データ通信装置 1から送信された周波数 f の無
2 変調信号を受信する。
非接触 ICカード 2の充電回路 22は、アンテナ 21の受信信号が周波数 f の無変調 信号であれば、その無変調信号を整流して駆動用電力を取得し、その駆動用電力を コンデンサ 23に蓄積する。
[0035] 次に、データ通信装置 1がデータを非接触 ICカード 2に送信する場合、データ通信 装置 1のデータ送信器 11が、コマンドなどの送信データを RF信号発振器 12,切換 スィッチ 13, 16及び SSB変調回路 14に出力する(ステップ ST1)。
データ通信装置 1の RF信号発振器 12は、データ送信器 11からデータを受けると、 そのデータが電力供給用の定型データであるの力、、コマンドなどの送信データである の力 \レスポンス用の定型データであるのかを確認する(ステップ ST2, ST7)。
RF信号発振器 12は、データ送信器 11から出力されたデータがコマンドなどの送 信データであると認定すると、予め割り当てられている周波数 f の無変調信号を発振 する(ステップ ST8)。
[0036] データ通信装置 1の切換スィッチ 13は、データ送信器 11からデータを受けると、そ のデータが電力供給用の定型データであるの力、コマンドなどの送信データであるの 力、レスポンス用の定型データであるのかを確認する。
切換スィッチ 13は、データ送信器 11から出力されたデータが送信データであると 認定すると、 RF信号発振器 12から発振された周波数 f の無変調信号を SSB変調回
1
路 14に出力する。
[0037] データ通信装置 1の SSB変調回路 14は、データ送信器 11からデータを受けると、 そのデータが電力供給用の定型データであるの力、コマンドなどの送信データである のカ レスポンス用の定型データであるのかを確認する。
SSB変調回路 14は、データ送信器 11から出力されたデータがコマンドなどの送信 データであると認定すると、データ送信器 11から出力された送信データに応じて、 R F信号発振器 12から発振された周波数 f の無変調信号を SSB変調し、その単側波 帯の変調信号を切換スィッチ 16に出力する (ステップ ST9)。
[0038] SSB変調回路 14の具体的な処理内容は下記の通りである。
データ送信器 11から出力された送信データが" cos co t"であり、局部発振器 31から 発振された局部発振信号力 'Acos ω t"であるとする。
SSB変調器 32の 90度移相器 32aは、データ送信器 11から出力された送信データ の位相を 90度進めて、 " sin cot"を出力する。
SSB変調器 32の 90度移相器 32bは、局部発振器 31から発振された局部発振信 号の位相を 90度進めて、 " Asinco t"を出力する。
SSB変調器 32がディジタル方式で直ちに 950MHz帯の SSB変調信号を生成す るのは比較的難しいので、ここでは、局部発振器 31が例えば 10MHzの局部発振信 号を発振するようにしている。
[0039] SSB変調器 32の乗算器 32cは、データ送信器 11から出力された送信データ" cos cot"と局部発振器 31から発振された局部発振信号 "Acosc t"を乗算し、その乗算 結果である" Acoscot'cosco t"を出力する。
SSB変調器 32の乗算器 32dは、 90度移相器 32aから出力された "—sincot"と 90 度移相器 32bから出力された "一 Asinco t"を乗算し、その乗算結果である" Asin ω t •sinc t"を出力する。
SSB変調器 32のカロ算器 32eは、乗算器 32cから出力された" Acos ω t'cos ω t"と 、乗算器 32dから出力された" Asincot'sincoet"とをカ卩算することにより、図 8に示す ように、単側波帯の変調信号 (上側波帯がなぐ下側波帯のみの変調信号)である" A cos(co — ω t'を生成する。
[0040] D/A変換器 33は、 SSB変調器 32がディジタルの変調信号を生成すると、その変 調信号をアナログ信号に変換する。
乗算器 35は、 D/A変換器 33により D/A変換された変調信号を受けると、その変 調信号に RF信号発振器 34から発振された例えば 940MHzの無線周波数信号を乗 算することにより、図 9に示すように、 930MHzの変調信号と 950MHzの変調信号を 出力する。
バンドパスフィルタ 36は、乗算器 35から出力された変調信号のうち、 930MHzの 変調信号を除去して、 950MHzの変調信号 (単側波帯の変調信号)を切換スィッチ 16に出力する(図 10を参照)。
[0041] データ通信装置 1の切換スィッチ 16は、データ送信器 11からデータを受けると、そ のデータが電力供給用の定型データであるの力、、コマンドなどの送信データであるの 力、、レスポンス用の定型データであるのかを確認する。 切換スィッチ 16は、データ送信器 11から出力されたデータがコマンドなどの送信デ ータであると認定すると、 SSB変調回路 14から出力された単側波帯の変調信号を増 幅器 17に出力する。
[0042] データ通信装置 1の増幅器 17は、切換スィッチ 16から単側波帯の変調信号を受け ると、その変調信号を増幅する(ステップ ST5)。
データ通信装置 1のサーキユレータ 18は、増幅器 17から増幅後の変調信号を受け ると、その変調信号をアンテナ 19に出力する。
データ通信装置 1のアンテナ 19は、サーキユレータ 18から増幅後の変調信号を受 けると、その変調信号をデータ信号として空中に放射することにより、その変調信号を 非接触 ICカード 2に送信する (ステップ ST6)。
[0043] 非接触 ICカード 2のアンテナ 21は、データ通信装置 1から送信された単側波帯の 変調信号を受信する。
非接触 ICカード 2の変復調回路 24は、アンテナ 21が単側波帯の変調信号を受信 すると、充電回路 22のコンデンサ 23に蓄積された電力を利用して駆動し、その単側 波帯の変調信号の包絡線を検波して、その変調信号からコマンドなどのデータを復 調し、そのデータに応じた処理を実施する。
[0044] 次に、データ通信装置 1が非接触 ICカード 2からデータを受信する場合、データ通 信装置 1のデータ送信器 11が、レスポンス用の定型データを RF信号発振器 12,切 換スィッチ 13, 16及び SSB変調回路 14に出力する(ステップ ST1)。
ここで、レスポンス用の定型データは、例えば、制御命令などの意味のあるデータ ではなぐ情報の伝達を目的とするものではないので、データの内容はいかなるもの でもよいが、コマンドなどの送信データや、電力供給用の定型データと明確に区別で きるデータであることが望ましレ、。
[0045] データ通信装置 1の RF信号発振器 12は、データ送信器 11からデータを受けると、 そのデータが電力供給用の定型データであるの力、、コマンドなどの送信データである の力 \レスポンス用の定型データであるのかを確認する(ステップ ST2, ST7)。
RF信号発振器 12は、データ送信器 11から出力されたデータがレスポンス用の定 型データであると認定すると、予め割り当てられている周波数 f の無変調信号を発振 する(ステップ ST10)。
[0046] データ通信装置 1の切換スィッチ 13は、データ送信器 11からデータを受けると、そ のデータが電力供給用の定型データであるの力、コマンドなどの送信データであるの 力、、レスポンス用の定型データであるのかを確認する。
切換スィッチ 13は、データ送信器 11から出力されたデータがレスポンス用の定型 データであると認定すると、 RF信号発振器 12から発振された周波数 f の無変調信
1
号をレベル調整器 15に出力する。
[0047] データ通信装置 1のレベル調整器 15は、 RF信号発振器 12から発振された周波数 f の無変調信号を受けると、その無変調信号のピーク電力を調整して、その無変調 信号のピーク電力を SSB変調回路 14から出力される変調信号のピーク電力より大き くする(ステップ ST11)。
即ち、レスポンス用の無変調信号のピーク電力が、データ送信用の変調信号のピ ーク電力より大きくなるように、 RF信号発振器 12から発振された無変調信号のピーク 電力を調整する。
[0048] データ通信装置 1の切換スィッチ 16は、データ送信器 11からデータを受けると、そ のデータが電力供給用の定型データであるの力、コマンドなどの送信データであるの 力、レスポンス用の定型データであるのかを確認する。
切換スィッチ 16は、データ送信器 11から出力されたデータがレスポンス用の定型 データであると認定すると、レベル調整器 15から出力された無変調信号を増幅器 17 に出力する。
[0049] データ通信装置 1の増幅器 17は、切換スィッチ 16から周波数 f の無変調信号を受 けると、その無変調信号を増幅する(ステップ ST5)。
データ通信装置 1のサーキユレータ 18は、増幅器 17から増幅後の無変調信号を受 けると、その無変調信号をアンテナ 19に出力する。
データ通信装置 1のアンテナ 19は、サーキユレータ 18から増幅後の無変調信号を 受けると、その無変調信号をレスポンス用信号として空中に放射することにより、その 無変調信号を非接触 ICカード 2に送信する (ステップ ST6)。
[0050] 非接触 ICカード 2のアンテナ 21は、データ通信装置 1から送信された周波数 f の無 変調信号を受信する。
非接触 ICカード 2の変復調回路 24は、アンテナ 21の受信信号が周波数 の無変 調信号であれば、充電回路 22のコンデンサ 23に蓄積された電力を利用して駆動し、 データ通信装置 1宛のデータを変調し、周波数 f の変調信号 (両側波帯の変調信号 )をアンテナ 21に出力する。
これにより、非接触 ICカード 2から両側波帯の変調信号がデータ信号としてデータ 通信装置 1に送信される。
[0051] データ通信装置 1のアンテナ 1 9は、非接触 ICカード 2から送信されたデータ信号で ある両側波帯の変調信号を受信する。
即ち、レスポンス用信号である周波数 f の無変調信号を送信しているタイミングで、 データ信号である両側波帯の変調信号を受信する。
[0052] データ通信装置 1のアンテナ 1 9は、データ信号である両側波帯の変調信号を受信 する際、他のデータ通信装置 3が変調信号を送信する場合があるが、図 7に示すよう に、他のデータ通信装置 3は下側波帯の変調信号のみを送信するので (データ通信 装置 3の構成は、データ通信装置 1の構成と同じ)、非接触 ICカード 2から送信された 変調信号のうち、上側波帯の変調信号は、他のデータ通信装置 3から送信される変 調信号に干渉されない。
[0053] データ通信装置 1の SSB復調回路 20は、アンテナ 1 9により受信された両側波帯の 変調信号からデータを復調する。
即ち、 SSB復調回路 20は、非接触 ICカード 2から送信された変調信号のうち、他の データ通信装置 3から送信される変調信号に干渉されない上側波帯の変調信号から データを復調する。
[0054] SSB復調回路 20の具体的な処理内容は下記の通りである。
アンテナ 19により受信された両側波帯の変調信号が" A cos ( ω + ω ) t +A cos
1 c 1 2
( ω —ω ) t "であり、 RF信号発振器 41から発振された無線周波数信号が "cos ω t" c 2 c であるとする。
単側波帯除去器 42の乗算器 42aは、アンテナ 1 9により受信された両側波帯の変 調信号と、 RF信号発振器 41から発振された無線周波数信号を乗算し、その乗算結 果である"(A /2)cosco t+ (A /2)cosco t"を出力する。
1 1 2 2
単側波帯除去器 42の 90度移相器 42cは、 RF信号発振器 41から発振された無線 周波数信号の位相を 90度進めて、 "-Βΐηω t"を出力する。
[0055] 単側波帯除去器 42の乗算器 42bは、アンテナ 19により受信された両側波帯の変 調信号" A cos(co + ω )t + A cos(co _co )t "と、 90度移相器 42cにより位相が 9
1 c 1 2 c 2
0度進められた無線周波数信号 "一 sin ω t"を乗算し、その乗算結果である" (A /2 )sinco t-(A Z2)sinco t"を出力する。
1 2 2
単側波帯除去器 42の 90度移相器 42dは、乗算器 42aの乗算結果である" (A /2 )sinco t-(A Z2)sinco t"の位相を 90度進めて、 "(A
1 2 2 1 Z2) cos ω t-(A
1 2 /2)co
S CO t"を出力する。
2
単側波帯除去器 42の加算器 42eは、乗算器 42aの乗算結果と、 90度移相器 42d の出力とを加算することにより、アンテナ 19により受信された変調信号の下側波帯が 除去され、上側波帯のみが残されている変調信号 "A cosco t"を出力する。
[0056] 単側波帯再生器 43は、単側波帯除去器 42から上側波帯の変調信号 "Acos cot" を受けると、例えば、上側波帯の変調信号の波形を下側波帯側に対称的にコピーす ることにより、下側波帯の変調信号を再生して、両側波帯の変調信号を出力する。
DSB復調器 44は、単側波帯再生器 43から両側波帯の変調信号を受けると、その 両側波帯の変調信号に対する DSB復調を実施して、 自己宛のデータを復調する。
[0057] 以上で明らかなように、この実施の形態 1によれば、非接触 ICカード 2宛のデータに 応じて無線周波数信号を SSB変調し、単側波帯の変調信号又は当該無線周波数 信号を送信する一方、その無線周波数信号を送信しているとき、非接触 ICカード 2か ら送信された両側波帯の変調信号を受信すると、その両側波帯の変調信号からデー タを復調するように構成したので、データ通信装置が両側波帯の変調信号を送信す る場合と比べて、他のデータ通信装置 3から送信される変調信号の影響を軽減し、あ るいは、全く影響を受けずに、非接触 ICカード 2から送信された変調信号を復調する ことができる効果を奏する。
[0058] また、この実施の形態 1によれば、アンテナ 19により受信された両側波帯の変調信 号力 単側波帯の変調信号を抽出し、その単側波帯の変調信号からデータを復調 するように構成したので、他のデータ通信装置 3から送信された変調信号に干渉され ていない変調信号のみからデータが復調され、更に正確に復調することができる効 果を奏する。
[0059] なお、この実施の形態 1では、データ通信装置 1 , 3が下側波帯の変調信号を送信 し、非接触 ICカード 2から送信された両側波帯の変調信号のうち、上側波帯の変調 信号力 データを復調するものについて示したが、データ通信装置 1, 3が上側波帯 の変調信号を送信し、非接触 ICカード 2から送信された両側波帯の変調信号のうち 、下側波帯の変調信号力 データを復調するようにしてもよい。
[0060] この実施の形態 1では、データ通信装置 1の SSB復調回路 20がアンテナ 19により 受信された両側波帯の変調信号を SSB復調するものについて示したが、両側波帯 の変調信号を DSB復調して、データを復調するようにしてもょレ、。
この場合、他のデータ通信装置 3による変調波によって、干渉を受けている下側波 帯の変調信号も復調対象に含まれるので、アンテナ 19により受信された両側波帯の 変調信号を SSB復調する場合よりも、データの復調精度が劣化するが、上側波帯の 変調信号は、干渉を受けていないので、他のデータ通信装置 3が両側波帯の変調信 号を送信する場合よりも、データの復調精度が向上する。
なお、アンテナ 19により受信された両側波帯の変調信号を DSB復調する場合、デ ータ通信装置 1の復調回路の回路構成を簡略化することができる。
[0061] また、上記実施の形態 1では、データ送信器 11から出力されたデータがコマンドな どの送信データ、または、レスポンス用の定型データである場合、 RF信号発振器 12 が周波数 f の無変調信号を発振するものについて示したが、相互に異なる周波数の
1
無変調信号を発振するようにしてもよい。例えば、データ送信器 11から出力されたデ ータがコマンドなどの送信データであれば、 RF信号発振器 12が周波数 f の無変調 信号を発振し、データ送信器 11から出力されたデータがレスポンス用の定型データ であれば、 RF信号発振器 12が周波数 f の無変調信号を発振するようにしてもよい。
3
また、データ送信器 11から出力されたデータが電力供給用の定型データである場 合、 RF信号発振器 12が周波数 f の無変調信号を発振するものについて示したが、
2
データ送信器 11から出力されたデータがコマンドなどの送信データ、または、レスポ ンス用の定型データである場合と同様に、 RF信号発振器 12が周波数 f の無変調信
1
号を発振するようにしてもょレヽ。
この場合には、切換スィッチ 13, 16やレベル調整器 15は不要である。
[0062] この実施の形態 1では、データ通信装置 1が非接触 ICカード 2に電力を供給し、非 接触 ICカード 2がその電力を利用して駆動するものについて示した力 必ずしもデー タ通信装置 1が非接触 ICカード 2に電力を供給する必要はなぐ非接触 ICカード 2が 他の電力(例えば、内蔵の電池から電力を取得)を利用して駆動するようにしてもよい
[0063] 実施の形態 2.
上記実施の形態 1では、 SSB変調回路 14が単側波帯の変調信号を切換スィッチ 1 6に出力するものについて示したが、 SSB変調回路 14が単側波帯の変調信号を出 力する際、その変調信号に搬送波成分を含めて出力するようにしてもよい。
即ち、図 11に示すように、 SSB変調回路 14の加算器 32fがデータ送信器 11から 出力された送信データ" cos co t"と直流成分" B"を加算して、その加算結果である" c os co t + B"を乗算器 32dに出力することにより、 SSB変調器 32の加算器 32eが" A{c os ( o _ o ) t + Bcos o t} "を出力するようにする。
[0064] これにより、 SSB変調器 32の加算器 32eから出力される信号は、図 12に示すように 、周波数が 10MHzの部分に搬送波成分が含まれるようになる。
また、 SSB変調回路 14の乗算器 35から出力される信号は、図 13に示すように、周 波数が 930MHz, 950MHzの部分に搬送波成分が含まれるようになる。
さらに、 SSB変調回路 14のバンドパスフィルタ 36から出力される信号は、図 14に 示すように、周波数が 950MHzの部分に搬送波成分が含まれるようになる。
[0065] 以上で明らかなように、この実施の形態 2によれば、 SSB変調回路 14が単側波帯 の変調信号を出力する際、その変調信号に搬送波成分を含めて出力するように構成 したので、非接触 ICカード 2の変復調回路 24が通常の DSB変調対応の回路であつ ても(SSB変調対応の回路ではない)、単側波帯の変調信号の包絡線を検波して、 その変調信号力 コマンドなどのデータを復調することができる効果を奏する。
[0066] 実施の形態 3. 上記実施の形態 1では、データ通信装置 1とデータ通信装置 3が同じ周波数の変 調信号を送信するものについて示したが、データ通信装置 1とデータ通信装置 3の干 渉を防止するため、データ通信装置 1とデータ通信装置 3が異なる周波数の変調信 号を送信するようにしてもよい。即ち、データ通信装置 1 , 3の RF信号発振器 12から 発振される無線周波数信号の周波数が異なるようにしてもよい。
[0067] このように、データ通信装置 1とデータ通信装置 3が異なる周波数の変調信号を送 信する場合でも、その変調波を送信する際に高調波も送信されるので、図 15に示す ように、チャネルの間隔を例えば 300kHz以上空ける必要がある。ただし、図 15はデ ータ送信装置 1 , 3が SSB変調を実施せずに、 DSB変調を実施して両側波帯の変調 信号を送信する場合のスペクトルを示してレ、る。
したがって、データ通信装置 1 , 3の数が多数に上る場合、データ通信システムが占 有する周波数帯域が大きくなるが、実際に占有することが可能な周波数帯域は限ら れているので、各データ通信装置のチャネル間隔を狭くしなければ、設置可能なデ ータ通信装置の数を増やすことができなレ、。
そこで、この実施の形態 3では、次のようにして、各データ通信装置のチャネル間隔 を狭くして、設置可能なデータ通信装置の数を増やすことができるようにしている。
[0068] 即ち、この実施の形態 3では、各データ通信装置が SSB変調して、単側波帯の変 調信号を送信する際、図 16に示すように、送信しない単側波帯を交互とすることによ り(chlのデータ通信装置→下側波帯の変調信号 (LSB)を送信しない、 ch2のデー タ通信装置→上側波帯の変調信号 (USB)を送信しない、 ch3のデータ通信装置→ 下側波帯の変調信号 (LSB)を送信しない)、隣接チャネルにおける非接触 ICカード 2からの応答帯域を接近、または、共有できるようにしている。
[0069] 具体的には、 ch2のデータ通信装置が下側波帯の変調信号 (LSB)を送信して、上 側波帯の変調信号 (USB)を送信しない場合、図 16に示すように、 ch3のデータ通 信装置は(ch2の周波数く ch3の周波数であって、 ch2と ch3は隣接帯域の周波数 であるとする)、下側波帯の変調信号 (LSB)を送信せずに上側波帯の変調信号 (U SB)を送信するようにする。
また、 chlのデータ通信装置も(chlの周波数く ch2の周波数であって、 chlと ch2 は隣接帯域の周波数であるとする)、下側波帯の変調信号 (LSB)を送信せずに上 側波帯の変調信号 (USB)を送信するようにする。
[0070] この場合、 ch2と ch3における非接触 ICカード 2からの応答帯域、即ち、 ch2の US Bと ch3の LSBには、高調波が現れなくなるので、高調波が占有する領域 (例えば、 1 OOkHz)を空ける必要がなくなる。そこで、 ch2と ch3の間隔を 200kHz程度まで接近 させるようにする。
また、 ch2の LSBと chlの USBは、非接触 ICカード 2からの応答帯域ではなく(ch2 は USBが応答帯域、 chlは LSB力 S応答帯域)、両者を接近させて共有させても、非 接触 ICカード 2からの応答に影響しないので、 chlと ch2の間隔を 200kHz程度まで 接近させるようにする。
[0071] 以上で明らかなように、この実施の形態 3によれば、例えば、 ch2のデータ通信装置 が下側波帯の変調信号 (LSB)を送信して、上側波帯の変調信号 (USB)を送信しな い場合、 chl , ch3のデータ通信装置が、下側波帯の変調信号 (LSB)を送信せず に上側波帯の変調信号 (USB)を送信するように構成したので、各データ通信装置 のチャネル間隔を狭くして、設置可能なデータ通信装置の数を増やすことができる効 果を奏する。
[0072] 実施の形態 4.
上記実施の形態 3では、例えば、 ch2のデータ通信装置が下側波帯の変調信号 (L SB)を送信して、上側波帯の変調信号 (USB)を送信しない場合、 chl , ch3のデー タ通信装置が、下側波帯の変調信号 (LSB)を送信せずに上側波帯の変調信号 (U SB)を送信するものについて示した力 データ通信システムの中で、周波数が最も低 い無線周波数信号が割り当てられるデータ通信装置は、下側波帯の変調信号 (LSB )を送信せずに上側波帯の変調信号 (USB)を送信し、周波数が最も高い無線周波 数信号が割り当てられるデータ通信装置は、上側波帯の変調信号 (USB)を送信せ ずに下側波帯の変調信号 (LSB)を送信するようにしてもょレ、。
[0073] これにより、データ通信システムに割り当てられる無線周波数帯域と、その無線周 波数帯域と隣接する他の用途 (例えば、携帯電話)の無線周波数帯域との境界に設 けるガードバンド幅を削減して通信帯域を増やすことができる効果を奏する。 [0074] 実施の形態 5.
上記実施の形態 1では、特に言及していないが、各データ通信装置は、他のデー タ通信装置が送信しない単側波帯相当の周波数帯域の信号を送信しないようにする 規定が設けられている場合、その周波数帯域の変調信号や無線周波数信号を送信 しないようにする。
これにより、図 17に示すように、各データ通信装置は、他のデータ通信装置宛の非 接触 ICカード 2からの応答に対して妨害を与えないようにすることができる効果を奏 する。
産業上の利用可能性
[0075] 以上のように、この発明に係るデータ通信装置は、電池などの電力源を搭載してお らず、外部から電力の供給を受けない限り、起動することができない非接触型無線通 信機器などに用いるのに適してレ、る。

Claims

請求の範囲
[1] 無線周波数信号を発振する無線周波数信号発振手段と、非接触型無線通信機器 宛のデータに応じて、上記無線周波数信号発振手段から発振された無線周波数信 号を単側波帯変調し、その単側波帯の変調信号を出力する変調手段と、上記変調 手段から出力された変調信号又は上記無線周波数信号発振手段から発振された無 線周波数信号を送信する送信手段と、上記送信手段から無線周波数信号が送信さ れているとき、上記非接触型無線通信機器力も送信された両側波帯の変調信号を受 信する受信手段と、上記受信手段により受信された変調信号力 データを復調する 復調手段とを備えたデータ通信装置。
[2] 非接触型無線通信機器宛のデータを示すディジタル信号をディジタル回路により 単側波帯変調する単側波帯変調器と、上記単側波帯変調器によるディジタルの変 調信号をアナログ信号に変換する D/A変換器と、上記 D/A変換器による変換後 の変調信号と無線周波数信号を乗算する乗算器と、上記乗算器から出力された乗 算信号の単側波帯を除去するフィルタとを用いて変調手段を構成していることを特徴 とする請求項 1記載のデータ通信装置。
[3] 復調手段は、受信手段により受信された両側波帯の変調信号から単側波帯の変調 信号を抽出し、その単側波帯の変調信号からデータを復調することを特徴とする請 求項 1記載のデータ通信装置。
[4] 復調手段は、変調手段から出力された変調信号が上側波帯の変調信号であれば 、受信手段により受信された両側波帯の変調信号力 下側波帯の変調信号を抽出し 、上記変調手段から出力された変調信号が下側波帯の変調信号であれば、上記受 信手段により受信された両側波帯の変調信号から上側波帯の変調信号を抽出する ことを特徴とする請求項 3記載のデータ通信装置。
[5] 受信手段により受信された両側波帯の変調信号の単側波帯を除去して、単側波帯 の変調信号を出力する単側波帯除去器と、上記単側波帯除去器から出力された変 調信号から、上記単側波帯除去器により除去された単側波帯を再生して、両側波帯 の変調信号を出力する単側波帯再生器と、上記単側波帯再生器から出力された両 側波帯の変調信号からデータを復調するデータ復調器とを用いて復調手段を構成し ていることを特徴とする請求項 3記載のデータ通信装置。
[6] 変調手段は、単側波帯の変調信号を出力する際、その変調信号に搬送波成分を 含めて出力することを特徴とする請求項 1記載のデータ通信装置。
[7] 非接触型無線通信機器宛のデータに応じて無線周波数信号を単側波帯変調し、 その単側波帯の変調信号又は当該無線周波数信号を送信する一方、その無線周 波数信号を送信してレ、るとき、上記非接触型無線通信機器から両側波帯の変調信 号を受信すると、その両側波帯の変調信号からデータを復調するデータ通信方法。
[8] 送信対象のデータに応じて無線周波数信号を単側波帯変調し、その単側波帯の 変調信号又は当該無線周波数信号を送信する一方、その無線周波数信号を送信し ているとき、両側波帯の変調信号を受信すると、その両側波帯の変調信号からデー タを復調するデータ通信装置と、上記データ通信装置から送信された単側波帯の変 調信号を受信すると、その変調信号からデータを復調する一方、上記データ通信装 置から送信された無線周波数信号を受信すると、上記データ通信装置宛のデータを 両側波帯変調して、その両側波帯の変調信号を上記データ通信装置に送信する非 接触型無線通信機器とを備えたデータ通信システム。
[9] 複数のデータ通信装置が設置される場合、相互に周波数が異なる無線周波数信 号が各データ通信装置に割り当てられることを特徴とする請求項 8記載のデータ通信 システム。
[10] 各データ通信装置は、隣接帯域の無線周波数信号が割り当てられている他のデー タ通信装置が上側波帯の変調信号を送信して下側波帯の変調信号を送信しない場 合、上側波帯の変調信号を送信せずに下側波帯の変調信号を送信し、上記他のデ ータ通信装置が下側波帯の変調信号を送信して上側波帯の変調信号を送信しない 場合、下側波帯の変調信号を送信せずに上側波帯の変調信号を送信することを特 徴とする請求項 9記載のデータ通信システム。
[11] 周波数が最も低い無線周波数信号が割り当てられるデータ通信装置は、下側波帯 の変調信号を送信せずに上側波帯の変調信号を送信し、周波数が最も高い無線周 波数信号が割り当てられるデータ通信装置は、上側波帯の変調信号を送信せずに 下側波帯の変調信号を送信することを特徴とする請求項 9記載のデータ通信システ ム。
各データ通信装置は、他のデータ通信装置が送信しなレ、単側波帯相当の周波数 帯域の信号を送信しないことを特徴とする請求項 8記載のデータ通信システム。
PCT/JP2004/012123 2004-08-24 2004-08-24 データ通信装置、データ通信方法及びデータ通信システム WO2006021991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/012123 WO2006021991A1 (ja) 2004-08-24 2004-08-24 データ通信装置、データ通信方法及びデータ通信システム
EP04772084A EP1783924A1 (en) 2004-08-24 2004-08-24 Data communication apparatus, data communication method and data communication system
JP2006531156A JP4672666B2 (ja) 2004-08-24 2004-08-24 データ通信装置及びデータ通信システム
CNA2004800437696A CN1998155A (zh) 2004-08-24 2004-08-24 数据通信装置、数据通信方法和数据通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/012123 WO2006021991A1 (ja) 2004-08-24 2004-08-24 データ通信装置、データ通信方法及びデータ通信システム

Publications (1)

Publication Number Publication Date
WO2006021991A1 true WO2006021991A1 (ja) 2006-03-02

Family

ID=35967214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012123 WO2006021991A1 (ja) 2004-08-24 2004-08-24 データ通信装置、データ通信方法及びデータ通信システム

Country Status (4)

Country Link
EP (1) EP1783924A1 (ja)
JP (1) JP4672666B2 (ja)
CN (1) CN1998155A (ja)
WO (1) WO2006021991A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167430A (ja) * 2006-12-20 2008-07-17 Ncr Corp Rfid読取装置及び方法
JP2010035038A (ja) * 2008-07-30 2010-02-12 Omron Corp 通信装置、通信システム及び通信方法
JP2013197687A (ja) * 2012-03-16 2013-09-30 Fujitsu Frontech Ltd 通信装置、および通信方法
JP2017092831A (ja) * 2015-11-13 2017-05-25 オムロン株式会社 通信装置、通信装置の信号処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191481A (ja) * 1995-01-06 1996-07-23 N T T Ido Tsushinmo Kk 呼受付制御方法および装置
JP2004201244A (ja) * 2002-12-20 2004-07-15 Brother Ind Ltd 通信システムの質問器、及び応答器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191481A (ja) * 1995-01-06 1996-07-23 N T T Ido Tsushinmo Kk 呼受付制御方法および装置
JP2004201244A (ja) * 2002-12-20 2004-07-15 Brother Ind Ltd 通信システムの質問器、及び応答器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167430A (ja) * 2006-12-20 2008-07-17 Ncr Corp Rfid読取装置及び方法
JP2010035038A (ja) * 2008-07-30 2010-02-12 Omron Corp 通信装置、通信システム及び通信方法
JP2013197687A (ja) * 2012-03-16 2013-09-30 Fujitsu Frontech Ltd 通信装置、および通信方法
JP2017092831A (ja) * 2015-11-13 2017-05-25 オムロン株式会社 通信装置、通信装置の信号処理方法

Also Published As

Publication number Publication date
EP1783924A1 (en) 2007-05-09
JP4672666B2 (ja) 2011-04-20
CN1998155A (zh) 2007-07-11
JPWO2006021991A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
US4963887A (en) Full duplex transponder system
EP2325037B1 (en) Wireless charging system for vehicles
US8914061B2 (en) Contactless integrated circuit having NFC and UHF operating modes
MX2007016362A (es) Sistema de transmision de energia, aparato y metodo con comunicacion.
US20100329385A1 (en) Power supply apparatus and power supply method
US9363118B2 (en) Non-contact power supply transmitter system, receiving device, and analog circuit
US7928832B2 (en) Method for the operation of RFID read/write devices
US20110238518A1 (en) method and solution of data transmission from the transponder to the reader, especially in payment solutions with a mobile communication device
JP2010068634A (ja) 車両用ワイヤレス充電システム
US20060286957A1 (en) Direct conversion radio apparatus
CN100440243C (zh) 用于无线数据传输的方法和电路装置
JPH10222632A (ja) 携帯データ・キャリアに用いるクロック信号の再現装置および方法
JP4672666B2 (ja) データ通信装置及びデータ通信システム
CN100508509C (zh) 用于无线数据传输的方法及装置
KR20070046134A (ko) 데이터 통신 장치, 데이터 통신 방법 및 데이터 통신시스템
JP2006072826A (ja) 無線タグシステム、リーダライタ、無線タグ装置およびデータの書き込み・読み出し方法
EP1777836A1 (en) Data communication apparatus and data communication method
JPH04192091A (ja) Icカード装置
KR20070030832A (ko) 데이터 통신 장치 및 데이터 통신 방법
KR100421110B1 (ko) 열차자동제어를 위한 지상정보전달장치
JPWO2004051880A1 (ja) 非接触無電源icカードシステム
CN116522977A (zh) 一种无线通信方法、电子标签、基站及无线通信系统
JP3933311B2 (ja) 非接触通信システム
GB2333665A (en) Transaction system
JP2000013273A (ja) パッシブ通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531156

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004772084

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200480043769.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077004202

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2004772084

Country of ref document: EP