WO2006019182A1 - 血液分析装置 - Google Patents

血液分析装置 Download PDF

Info

Publication number
WO2006019182A1
WO2006019182A1 PCT/JP2005/015376 JP2005015376W WO2006019182A1 WO 2006019182 A1 WO2006019182 A1 WO 2006019182A1 JP 2005015376 W JP2005015376 W JP 2005015376W WO 2006019182 A1 WO2006019182 A1 WO 2006019182A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
plasma
channel
substrate
dry chemistry
Prior art date
Application number
PCT/JP2005/015376
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Horiike
Akio Oki
Hiroko Kouda
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to US11/660,162 priority Critical patent/US20080138890A1/en
Priority to DE112005001985T priority patent/DE112005001985T5/de
Publication of WO2006019182A1 publication Critical patent/WO2006019182A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components

Definitions

  • the present invention relates to a blood analysis apparatus constituted by an ultra-small groove channel manufactured on an insulating material substrate such as a quartz plate or a polymer resin plate into which a sample containing a test substance is introduced.
  • an insulating material substrate such as a quartz plate or a polymer resin plate into which a sample containing a test substance is introduced.
  • a fine groove channel is provided on a polymer substrate, and a needle is attached to one end of the blood analysis device. After blood is introduced into the groove and introduced into the U-shaped channel, the blood cell and plasma are separated by centrifugation,
  • Plasma is guided to the electrochemical sensor by the pump, and the concentration of the test substance in the plasma is measured.
  • concentration of the test substance in the plasma is measured.
  • blood pH values, oxygen, carbon dioxide, sodium, potassium, calcium, glucose, lactic acid, and other concentrations are measured.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 00 8-2 8 8 8 6
  • Patent Document 2 Japanese Patent Application No. 2 0 0 3— 34643 6
  • Patent Document 3 Japanese Patent Application 2 0 0 3— 1 2 6 7 5 8 Disclosure of Invention
  • An automated blood test system collects a large amount of blood, mixes a large amount of plasma and a large amount of a substrate buffer in a test tube, and measures the reaction by absorbance. This method introduces a small amount of blood. To achieve this using a substrate made of a high molecular weight of several centimeters 2 consisting of fine channels, as described in Patent Document 2 and Patent Document 3, first, plasma and a large amount of substrate buffer solution are made uniform. A special flow path is required for proper mixing.
  • Patent Document 2 stirring by centrifugal force using two centers of the tip is used.
  • Patent Document 3 mixing chambers are provided in multiple stages, but in the former, the center is changed to two centrifugal force centers. In the latter case, the number of mixing chamber stages must be reduced to achieve uniform mixing.
  • the area for arranging the mixer increases.
  • the mixing ratio of plasma or serum to the substrate buffer varies greatly depending on the analyte, but generally it is 1: 10 to 40, and in order to maintain this ratio, the plasma and substrate buffer
  • precise processing of the microchannel for storing plasma and substrate buffer solution is required.
  • the substrate buffer is stored in the flow path substrate made of a polymer material for a long period of time, it will be altered by oxygen that permeates the polymer material, and its storage is extremely difficult.
  • the substrate buffer solution should not be stored, but the liquid weighed from the outside may be discharged to the storage microchannel.
  • the measurement device is equipped with a substrate buffer container and the discharge tube is connected to the storage microfluidic channel. It must be accurately aligned with the road, making measurement devices more complicated and larger, and not practical for home use.
  • the reagent layer (102) containing the reagent necessary for the analytical reaction is coated on the transparent support (plastic film) (101) of the reagent slide with the structure shown in Fig. 1. Has been. Reagents necessary for the reaction are prepared in this reagent layer, and are held in a dry state in the gel.
  • a reflection layer (103) enabling reflection photometry and a development layer (104) for uniformly spreading the specimen are laminated.
  • a 10 / L plasma or serum sample (105) is dropped onto the spreading layer on the top surface of this film, the sample spreads radially and uniformly in the lateral direction due to the capillary action of the spreading layer, and then on the reflective layer.
  • the reagent layer mixed with the reflective layer and gel absorbs blood components and absorbs and retains a certain amount of specimen per unit area.
  • the specimen absorbed in the reagent layer reacts with the contained reagent, and develops color corresponding to the specimen components. This color intensity is illuminated from the support side with specific incident light (104) corresponding to color development.
  • the concentration of the component in the sample is calculated by measuring the intensity of the reflected light (105).
  • (106) is a slit
  • (107) is a plastic mount.
  • the dry chemistry method is a test method in which a chemical reaction proceeds in a matrix contained in a reagent only when a reagent stored in a dry state or in a dry state encounters a liquid sample at the time of measurement.
  • the colorimetric method described above has the great advantage of eliminating the need for precise weighing and mixing of plasma or serum with a substrate buffer.
  • an object of the present invention is to provide a substrate structure in which light having the same wavelength as a specific color generated is introduced and received.
  • the first invention of the present application forms a micro flow channel having various functions on a substrate, and uses a centrifugal force to flow a whole blood sample from a blood inlet to a blood cell / plasma separation flow.
  • the sample is introduced into the channel, the plasma fraction is obtained in the substrate, the plasma is transported by the in-house channel, and introduced into the channel containing the dry chemistry reagent, and the test component in the plasma and the dry chemistry reagent are mixed together.
  • a blood analyzer that reacts, introduces a specific measurement light, and measures a change in transmittance with a light receiver to detect a test component in plasma.
  • a second invention of the present application is the first invention of the present application, wherein a blood collection assembly in which a blood collection needle and a whole blood reservoir tube are connected is inserted into a whole blood inlet provided on a substrate of the present blood analyzer, and a shaft of the blood collection assembly The whole blood is transported from the blood inlet to the blood cell / plasma separation channel through the blood flow channel and further to the centrifugal force by rotating around the first rotation axis provided outside the substrate in the direction. An apparatus for separating into a blood cell fraction and a plasma fraction is provided. Because of this, the pump
  • the third invention of the present application provides the structure of the separation channel for blood cells / plasma by the flow channel comprising a plurality of grooves in the first invention of the present application and the second application of the present application.
  • the whole blood introduction port is connected to the whole blood conveyance guide channel, and the whole blood conveyance guide channel is formed in a plurality of groove channels provided in a substantially arc shape around the blood introduction port and in the direction of the blood introduction port.
  • the blood inlet of the groove group formed is connected to a single groove that is connected to the lower side, the whole blood is passed through the flow path in the whole blood transport plan by rotating about the first rotation axis.
  • a device when introduced into the groove channel and rotated as it is, a device is provided in which the blood cell fraction is accommodated in the lower side of the groove channel and the plasma fraction is accommodated in the upper side.
  • the groove flow path is described in Japanese Patent Application Laid-Open No. 2 00 1-2 5 8 8 6 8, and here, by directly providing an electrochemical biosensor in the plasma supernatant on the upper side, It has the feature that can measure the test component.
  • roughly diluted plasma can be distributed to the subsequent measurement channel.
  • the fourth invention of the present application is the first invention of the present application and the second application of the present application, wherein the blood cell / plasma separation flow path is formed by a substantially U-shaped flow path, that is, a flow path formed by slightly opening the U-shape outward.
  • An apparatus for obtaining plasma is provided.
  • the first end of the U-shaped channel is connected to the blood conveyance guide channel connected to the whole blood inlet, and the first rotation provided above the substrate when the blood inlet is viewed from the lower end of the U-shaped channel.
  • the fifth invention of the present application provides an apparatus for measuring a test component by the dry chemistry method based on the first and third inventions of the present application. That is, this application number
  • Each of the other ends of the plurality of groove channels described in the invention is connected in series with a plasma guide channel, a plasma reservoir for plasma weighing, a capillary valve, and a reagent introduction channel for each dry chemistry.
  • Rotating around the second rotation shaft described in the third invention of the present application and plasma is introduced from the plasma fraction storage part by centrifugal force into each plasma weighing plasma reservoir through each plasma guide channel .
  • the centrifugal force is further increased, the weighed plasma is introduced into each dry chemistry reagent introduction channel via each cavity valve, and the plasma is further introduced from one side of the channel into which the weighed dry chemistry reagent is introduced. Introduced by centrifugal force.
  • the dry chemistry reagent reacts with the test component at a constant concentration in the plasma and in the longitudinal direction of the reagent introduction channel.
  • a series of plasma transfer is performed without using a pump or air pressure, and the operation of the device is simplified and the size is reduced.
  • the sixth invention of the present application is based on the first invention of the present application and the fourth invention of the present application, and a plurality of branched blood conveyance guide channels are provided in the channel at the other end of the U-shaped channel.
  • a reservoir, a plasma reservoir for soot volume, a capillary valve, and a plasma introduction flow path are connected in series in that order on the same substrate, and further, a plasma spreading layer is provided immediately below the plasma introduction flow path, and a vertical direction is provided directly below the plasma deployment layer.
  • a substrate having a region provided with a plurality of holes joined in conformity with the substrate and a channel for measuring the colorimetric reagent injection colorimetric measurement provided immediately below the hole substrate are joined in this order. Is provided.
  • Each area of the plasma spreading layer, the region having a plurality of holes, and the dry chemistry reagent injection colorimetric measurement channel are equal. Then, when rotating around the second rotation axis located outside the substrate when viewed from the flow path in a direction substantially perpendicular to the U-shaped flow path, the plasma in the U-shaped flow path is caused by centrifugal force. Introduced into the dry chemistry reagent injection colorimetric channel.
  • Plasma from the plasma development channel is introduced into the dry chemistry reagent channel through a hole in the lower part, and the centrifugal force used for the introduction is in a direction perpendicular to the hole.
  • the end of the plasma reservoir channel in the direction in which the centrifugal force is applied becomes a wall, and the plasma reservoir channel is filled with plasma.
  • the seventh invention of the present application provides an apparatus provided with an excess plasma storage reservoir on the upstream wall of the weighing plasma reservoir of the fifth and sixth inventions.
  • an apparatus provided with an excess plasma storage reservoir on the upstream wall of the weighing plasma reservoir of the fifth and sixth inventions.
  • the eighth invention of the present application is for injecting a reagent into the flow path in order to store the predetermined amount of the dry chemistry reagent according to the fifth and sixth inventions of the present application and discharging the excess reagent.
  • An apparatus is provided, wherein an inlet and an outlet are provided in a reagent channel for dry chemistry.
  • the dry chemistry reagent is prepared in the form of a gel, and this application facilitates the introduction of a certain amount of gel into the microchannel.
  • the ninth invention of the present application is the flow channel for dry chemistry reagent colorimetric measurement according to the sixth invention of the present application, in which both ends of the longitudinal channel are provided with 45 degree walls, and a metal or the like is provided therein. And an optical fiber is introduced vertically from the bottom or top of the substrate so that the light is reflected by a 45 degree wall.
  • the reagent for dry chemistry reacts with the analyte in the introduced plasma and ammonia to develop color or coloration, and a specific wavelength is introduced from the lower part or the upper part of the substrate in the colorimetric measurement channel to check the degree. Propagation without attenuation due to light absorption by the inner wall, etc., the attenuation of the introduced light due to only chemical reaction such as coloring or coloring is measured by the detector, and stray light from the outside enters In order to prevent this, a material that prevents light leakage or intrusion, such as metal, is applied to the inside of the flow path, and both ends of the flow path in the longitudinal direction are provided with 45 degree walls for light introduction in the vicinity. Since the fiber for injection is introduced, the light is reflected by the 45-degree wall so that light can be introduced and received with high efficiency.
  • the tenth invention of the present application is the dry chemistry reagent injection colorimetric measurement channel described in the sixth invention of the present application.
  • the ninth invention and the interior of the measurement channel are covered with a light shielding material such as metal.
  • a light shielding material such as metal.
  • the weighed constant plasma and the gel containing the dry chemistry reagent react and swell.
  • the amount of swelling is measured in advance, and a device designed and manufactured with the swollen volume of the flow path is provided.
  • the 12th invention of the present application is the dry chemistry reagent injection colorimetric measurement channel described in the 6th invention of the present application, wherein the weighed constant plasma reacts with the gel containing the dry chemistry reagent. Even if it swells, it provides a device designed and manufactured with a constant flow path volume.
  • the specific light can be introduced into the entire swollen amount to measure the attenuation, and a measured value with a large S / N ratio can be obtained.
  • the attenuation is too large, making measurement difficult, and the area occupied by the flow path in the substrate increases, increasing the substrate area.
  • the measurement light has a low attenuation and a low S / N ratio.
  • a thirteenth invention of the present application is a dry chemistry reagent injection colorimetric measurement channel according to the sixth invention of the present application, comprising: a substrate for ammonia gas generation dry chemistry, a reagent channel, and a substrate provided with a number of holes. Coloring material introduction colorimetric measurement flow path for ammonia gas detection is laminated in this order in the vertical direction.
  • an apparatus in which a detection channel and an ammonia generation channel for other items are provided in the same substrate.
  • uric acid, creatinine and urea nitrogen it is difficult to measure directly, and ammonia gas is generated after reacting with each enzyme.
  • ammonia gas generated from the ammonia gas generating channel uniformly reacts with ammonia gas.
  • the present invention makes it possible to introduce the reagent that develops the color into the flow channel.
  • the 14th invention of the present application is the same multilayer substrate as the method of measuring a test component from plasma using the dry chemistry reagent described in the 1st invention of the present application, in addition to the method of measuring the test component using a conventional electrochemical sensor.
  • a blood analyzer configured as above is provided.
  • Fig. 1 is a diagram showing the structure of a diagnostic chip using conventional dry chemistry.
  • FIG. 2 is a diagram schematically illustrating the uppermost substrate among the laminated substrates constituting the blood test apparatus.
  • FIG. 3 shows the whole blood substrate, blood cell / plasma separation, plasma transfer, plasma weighing, dry valve, dry chemistry, reagent supply flow path, and ammonia gas generating reagent supply flow among the laminated substrates that constitute the blood test equipment.
  • FIG. 3 is a diagram schematically illustrating a second layer substrate made of roads and the like.
  • FIG. 4 is a diagram schematically illustrating a third layer substrate composed of a large number of holes for developing ammonia gas, etc., among the laminated substrates constituting the blood test apparatus.
  • Figure 5 shows ammonia gas among the laminated substrates that make up the blood test equipment.
  • FIG. 5 is a diagram schematically illustrating a fourth layer substrate including a reaction color former reagent introduction channel and the like.
  • FIG. 6 is a diagram schematically illustrating the lowermost substrate among the laminated substrates constituting the blood test apparatus.
  • FIG. 7 is a diagram showing the structure of a multilayer substrate provided with a flow path for inspection items other than ammonia gas detection.
  • FIG. 8 is a diagram showing a multilayer flow path structure including a flow path (223) for ammonia gas detection.
  • FIG. 9 is a diagram schematically illustrating the uppermost substrate among the laminated substrates constituting the blood test apparatus in which a plurality of colorimetric sensors and a plurality of electrochemical sensors are integrated on one substrate.
  • FIG. 10 is a diagram schematically illustrating a second layer substrate among the laminated substrates constituting the blood test apparatus in which a plurality of colorimetric sensors and a plurality of electrochemical sensors are integrated on one substrate. is there.
  • FIG. 11 is a diagram schematically illustrating a third layer substrate among the laminated substrates constituting the blood test apparatus in which a plurality of colorimetric sensors and a plurality of electrochemical sensors are integrated on one substrate. .
  • FIG. 12 is a diagram schematically illustrating the lowermost substrate among the laminated substrates constituting the blood test apparatus in which a plurality of colorimetric sensors and a plurality of electrochemical sensors are integrated on one substrate.
  • Fig. 13 is a diagram showing a cross section of the structure indicated by the one-dot oblique line in Fig. 12 in the electrochemical sensor region.
  • FIG. 14 is a graph showing the relationship of absorbance to glucose concentration in the glucose standard solution.
  • Fig. 15 is a graph showing the relationship of absorbance to the change in urea concentration in the urea standard solution.
  • FIG. 2 to 6 show the laminated substrates constituting the blood test apparatus
  • FIG. 2 is the uppermost substrate (201)
  • FIG. 3 is the second layer substrate (202)
  • FIG. 4 is the third layer substrate (203)
  • 5 shows the fourth layer substrate (204)
  • FIG. 6 shows the lowermost layer substrate (205).
  • Each substrate is made of polycarbonate with a thickness of 0.5 mm, and the channel holes are formed by injection molding. Of course, it is also produced by molding a pattern such as SU-8 produced by lithography on a polymer substrate such as a PET (polyethylene terephthalate) plate, and the production method is not characteristic.
  • the top layer substrate (201) is connected to the top, and each substrate is bonded with an adhesive or the like. As a result, the position of the flow path provided on each substrate is determined.
  • the second layer substrate (202) will be described.
  • (208) is a stainless steel tube with an outer diameter of 100 mm and an inner diameter of 50 ⁇ , and the tip is a painless needle that has been polished on three sides at 10 degrees. Since the inner wall is polished to ultra-smoothness, blood can be collected automatically by blood pressure when inserted into a vein.
  • (209) is a stainless steel tube with an outer diameter of 250 / im and is bonded to (208).
  • (210) is a glass tube having an outer diameter of 1.8 mm and an inner diameter of 1 mm. The blood collected from the painless needle (208) is accumulated in the glass tube (210) by being bonded to (209).
  • (211) is a blood transfer guide channel processed into the substrate (202).
  • the minimum number of revolutions fm that the solution discharges from the capillary tube is between the rotation axis and the radius of the capillary tube on the rotary shaft side and the radius R 2 on the discharge side, and the solution capillary tube when the solution is discharged from the capillary tube
  • the contact angle is 0, the surface tension is a, the capillary radius is R, and the density of the solution is p.
  • the water dredge at 25 is 72 x lO- 3 [N / m].
  • the contact angle with water ⁇ is 80 degrees
  • the p of water is lx i0 3 [kg / m 3 ]
  • R 2 is 5cm
  • the length of the solenoid valve, that is, 2- ) is 0.5cm
  • its diameter (2R) is about 100 / zm
  • fm is about 1000 rpm or more
  • the gravitational acceleration at this time is over 60G.
  • reaction systems there are at least two types of reaction systems in dry chemistry.
  • One is the measurement of creatinine and urea nitrogen
  • the other is the measurement of glucose, key GTP, GOT, GPT and total cholesterol.
  • Measurement of the former the first case of Kure Achinin, creatinine di amylase, ammonia (NH 3) by reaction with each enzyme ⁇ nuclease
  • the NH 3 gas are each bromocresol green It uses a two-step reaction that reacts with bromophenol blue and develops color.
  • the other test substances described above are detected by a one-step reaction with a gel containing an enzyme and a coloring reagent according to each reaction.
  • (223) shows a flow path for detection of NH 3
  • (224) shows a flow path for inspection items other than NH 3, each of which is filled with the above-described gel
  • Figure 7 shows the structure of a multilayer substrate provided with a test item for channel other than NH 3.
  • the holes (225) and (226) of the uppermost substrate (201) are the inlet and outlet of the gel, respectively.
  • the diameter of the inlet is larger than the diameter of the outlet, and the introduction of the gel containing the reagent is Made with a micro dispenser.
  • the inlet and outlet are injected into the flow paths of two different reaction systems (223) and (224) to discharge the excess gel after filling the interior, and the plasma is subjected to centrifugal force in the gel.
  • inclined walls (227) of 45 degrees are formed at both ends in the longitudinal direction of the channel (224).
  • the inner wall is sputter-deposited with an aluminum film.
  • the third layer substrate (203), the fourth layer substrate (204), and the bottom layer substrate (205) are provided with through holes (228), and fibers (229 ) Is inserted, and its end face stays below the 45 ° inclined wall of the channel.
  • the method of sputtering vapor deposition of the aluminum film (230) on the inner wall of the flow path (224) is to first contact the top layer substrate (201) and the second layer substrate (202) and then from the back surface of the second layer substrate (202).
  • Aluminum is sputter-deposited, and the aluminum film outside the channel is removed by CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • the uppermost substrate (201) is removed from the second layer substrate (202), the second layer substrate (202) and the third layer substrate (203) are brought into contact, and the uppermost substrate (201) is viewed from above.
  • Aluminum is sputter-deposited, and the aluminum film outside the channel is removed by CMP.
  • any material other than metal may be used as long as light does not escape from the flow path to the outside and efficiently reflects in the flow path.
  • the light of the selected wavelength is introduced into the fiber (229) via the (231) bandpass filter from the (231) halogen lamp or tungsten lamp, and its attenuation is adjusted by the (233) receiver. taking measurement.
  • FIG. 8 shows a multilayer channel structure including a channel (223) for ammonia gas detection.
  • the third layer substrate (203) has a diameter of 5 mm, which serves to pass ammonia gas!
  • a large number of holes (234) of about -5 mm are provided.
  • the area of the region provided with the numerous holes has the same area as the flow path (223) containing the ammonia gas generating reagent provided on the second layer substrate (202).
  • This pore area (234) also serves as a spreading layer for the dry chemistry.
  • Figure 4 shows a bird's eye view.
  • the hole can be formed by a stainless steel or polymer mesh or injection molding, but in the case of a small diameter, it is formed by deep etching on a silicon substrate.
  • the soot 3 gas that has passed through the numerous holes (234) is introduced into the flow path described in FIG. 8 formed in the fourth layer substrate (204) and the lowermost layer substrate (205).
  • the coating method of aluminum film on the inner wall of the flow channel is the same as described above. Channel (2
  • a gel containing a reagent that develops color by reacting with ammonia gas is introduced.
  • (236) is a 45 degree inclined wall
  • (237) aluminum film, (238) fiber through-hole, (239) fiber, (240) and (241) each contain ammonia gas reaction coloring reagent Gel injection hole and discharge hole.
  • the illustration of optical components such as lamps, Pand pass filters, and receivers is omitted.
  • FIGS. 9 to 12 show each laminated substrate constituting a blood test apparatus in which a plurality of colorimetric sensors and a plurality of electrochemical sensors are integrated on one substrate.
  • concentration of ions such as pH, Na ++ , K +, CI—, Ca ++, etc.
  • the pH is an amperometry, Na ++ , K +, C1- and Ca
  • concentration of ++ is measured by potentiometric electrochemical methods. Therefore, it is desirable to integrate both a colorimetric sensor and an electrochemical sensor on a single substrate, and measure with a single blood collection.
  • This group of colorimetric sensors was not equipped with a colorimetric sensor for detecting NH 3 because of its complicated configuration. However, when NH 3 was detected, NH 3 gas was generated as in Figs. 2 to 6. A layer is added.
  • FIG. 9 shows the uppermost layer (501)
  • FIG. 10 shows the second layer (502)
  • FIG. 11 shows the third layer (503)
  • FIG. 12 shows the lowermost layer (504).
  • the third column is placed on the bottom layer (504) by inserting the column (506) into the hole (505).
  • the second layer (502) is connected to the layer (503), the third layer (503), and the uppermost layer (501) is connected to the second layer (502), and each substrate is bonded with an adhesive or the like.
  • the First in the second layer substrate (502), as shown in FIG.
  • the painless needle (507) is connected to the glass tube (509) through the stainless steel tube (508), and blood flows into the glass tube (509). Collected.
  • the blood sample is introduced into the open U-shaped tube (510) by centrifugal force around the first rotation axis (511), and continues to centrifuge, and the outer side sees the first rotation axis (51 1).
  • the blood cell fraction is separated into the plasma fraction on the inside, and the blood cell fraction is stored in the blood cell reservoir (512).
  • (513) is a pillar that prevents blood cells from returning to the U-tube.
  • the supernatant plasma is once introduced into the plasma reservoir (515). Furthermore, if the rotation continues, it passes through the plasma transfer guide channel (516), and further passes through the mechanical valve (517) by the centrifugal force of gravitational acceleration of 60G or more, and then the plasma reservoir for plasma weighing (518) and plasma introduction Introduced into the channel (519). At that time, the excess plasma after weighing on the side wall of the plasma weighing plasma reservoir (518) is discarded and discarded to the discarded plasma reservoir (521) via the plasma conveyance guide channel (520). A plasma spreading layer (522) was provided immediately below the plasma introduction channel (519), and the plasma was once expanded on a flat plate.
  • (523) shows the sensor region of the dry chemistry one colorimetric method
  • (524) shows the sensor region of the electrochemical sensor method.
  • the electrochemical sensor must be calibrated before measurement.
  • (525) is the calibration liquid inlet
  • (526) is the calibration liquid introduction guide flow path
  • (527) is the post-calibration waste liquid guide flow path
  • (528) is Indicates the waste liquid outlet after calibration.
  • the third layer (503) has a diameter of 5 n directly below the plasma spreading layer (522)! A region (529) having a large number of holes of about 50 zm is formed, and the area and position of this region are matched with the plasma spreading layer (522).
  • (530) shows the sensor region of the dry chemistry colorimetric method
  • (531) shows the sensor region of the electrochemical sensor method.
  • the bottom layer (504) has a dry chemistry reagent injection colorimetric measurement channel (532), (533) of the same area at the same position directly under the plasma spreading layer (522). , (534), (535) are joined.
  • the inner walls of these channels are coated with a metal that reflects light, such as aluminum, according to the method described in FIG. (536) and (537) are the inlet and outlet for the dry chemistry reagent, respectively.
  • One end of the longitudinal side wall of the dry chemistry reagent injection colorimetric measurement flow channel (531) is provided with a measurement light incident port (538) and the other end is provided with an injection port (539) after propagating through the flow channel.
  • Each port is connected to a fiber (540) and (541), which plays the role of incident measurement light and emission to received light.
  • Both fibers 1 are provided on the substrate (504) so as to coincide with the central axis in the longitudinal direction of the dry chemistry / reagent injection colorimetric measurement channel (532) to (535). Attenuation of introduced light due to color development of reagents
  • the degree is detected by a photodetector such as a photodiode.
  • Plasma from the plasma development channel (522) passes through the region (529) with a number of pores directly below it, and the flow channel for dry chemistry reagents (532) to (535) and the electrochemical sensor region (542)
  • the centrifugal force used for the introduction is in a direction perpendicular to the hole, and the centrifugal force does not work in the vertical direction.
  • the end of the plasma reservoir channel in the direction in which the centrifugal force is applied becomes a wall, and the plasma reservoir channel is filled with plasma, so that the plasma that receives pressure from the centrifugal force is introduced into the lower hole. Will be.
  • plasma can be introduced into the dry chemical reagent flow paths (532) to (535) and the electrochemical sensor region (542) only by using centrifugal force.
  • the lengths in the longitudinal direction of the channels (532) to (535) are shown differently will be described below.
  • a gel suitable for each reagent is required to mix the reagent with the gel.
  • the degree of swelling of the gel differs, and usually the gel Usually swells from 2 to 5 times. Therefore, the dry chemistry reagent flow channels (532) to (535) must be designed with an optimal length to allow the sampled and supplied plasma to react with the gel to the maximum extent possible.
  • the inlets and outlets (536) and (537) of the gel containing the reagent also serve to discharge the gel swollen beyond the volume of the channel.
  • the attenuation can be measured by introducing specific light into the entire swollen volume, and a measured value with a large S / N ratio can be obtained, but conversely, the attenuation may be too large to make measurement difficult.
  • the area that the road occupies on the board increases and the board area increases.
  • a detection flow channel (223) and NH 3 than the inspection items for passage of NH 3 in FIG. 3 (224) showed the same area and volume.
  • the introduced reagent is discharged from the discharge hole, so the measurement light attenuation is small and the S / N ratio is low, but the user knows the concentration of the analyte in advance.
  • (542) is a region of an electrochemical sensor.
  • (543) is an Ag / AgCl electrode on which a sensor membrane containing a cationophore for Na + and K + ions is applied.
  • (544) is a KC 1 saturated Ag / AgCl reference electrode, these electrodes are provided on the silver-carbon wiring (545), and (546) is an external electrode for signal extraction.
  • Fig. 13 shows a cross section of the structure indicated by the one-dot oblique line in Fig. 12 of the electrochemical sensor region (542).
  • the electrochemical sensor is first calibrated before plasma introduction. After that, it passes through the plasma conveyance guide channel (516) provided in the second layer (502), and further passes through the mechanical valve (517) by a centrifugal force with a gravitational acceleration of 60 G or more, and the plasma reservoir for plasma weighing (518) And introduced into the plasma introduction channel (519) and the plasma spreading layer (522) and introduced into the electrochemical sensor region (542) through the region (529) in which a large number of holes are formed.
  • (547) is an ionophore film
  • (548) is a film that prevents KC1 of the KC 1 saturated AgZAgCl reference electrode from being dissolved into the electrolyte.
  • glucose measurement using a blood analyzer based on Figs. The measurement principle is that when a chromogenic reagent is allowed to act on the sample, the glucose in the sample is quickly converted from ⁇ -type to 13-type by the action of Mugen-Royusei contained in the chromogenic reagent.
  • 3-D-glucose is oxidized by the action of glucose oxidase (GOD) to produce hydrogen peroxide at the same time.
  • the generated hydrogen peroxide causes the redox (505nm) dye to be quantitatively oxidatively condensed by phenol and 4-aminoantipyrine in the coloring reagent by the action of coexisting peroxidase (POD). By measuring the red absorbance, the glucose concentration in the material is obtained.
  • the colorimetric measurement channel had a cross-sectional area of 0.4 thigh x 0.4 dragon and a length of 1 cm.
  • the gel described above was poured into it, and the glucose concentration of 0.2 iL glucose standard solution was changed from Omg / dl to 600 ig / dl.
  • Fig. 14 shows the absorbance obtained when 505nm light was incident on this channel. It turns out that it detected more favorably than this result.
  • Urea nitrogen (H 2 NC0NH 2 ) is decomposed into NH 3 and C0 2 by the action of urease in the presence of water, and this NH 3 reacts with bromcresol green to produce a blue (620 ⁇ ) dye.
  • the urea measurement was measured as follows. A gel-like material containing 2 mL urease solution in lOmg of water-absorbing polymer consisting of starch-acrylonitrile was injected into the NH 3 generating channel with a cross-sectional area of 0.44 x 0.4 mm and a length of 1 mm. .
  • the color former was dissolved in 2 mL of ethanol in which 3 ml (weight ratio) of bromocresol green (BCG) was dissolved in 20 mL of isopropyl chloride alcohol and 1.28 mg of PVB (polyvinyl petital) in a 53 ⁇ 4 weight ratio. This was prepared and injected into the color development channel. The thickness of the board on which many holes were formed was 1.2 mm.
  • Fig. 15 shows the absorbance when a standard solution of 10 mg to 50 mg of urea is prepared and 620 nm light is incident. It can be seen that the detection was better than this result.
  • the blood analyzer of the present invention is a centrifugal force that uses a series of operations including introduction of whole blood into a substrate, blood cell / plasma separation, weighing of plasma, and deployment to a dry chemistry reagent without using any pump.
  • the measurement of the light attenuation in the longitudinal direction of the flow channel into which the dry chemistry reagent is introduced is performed at a low cost, which makes it possible to measure a large number of test components from extremely small amounts of blood plasma.
  • a convenient multi-item blood analyzer can be realized.
  • the color generation layer has a layered separation structure by reacting with the ammonia gas generation layer, the spreading layer, and the ammonia gas, so blood analysis that enables highly sensitive measurement of ammonia gas can be realized.
  • an electrochemical sensor in addition to a dry chemistry and colorimetric sensor that includes measurement of ammonia gas, it is possible to measure most of the usual blood test items. Diagnosis at home is realized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

血液分析装置 技術分野
本発明は、 被検物質を含む試料が導入された石英板や高分子樹脂板な どの絶縁材基板に作製した超小型の溝流路によって構成された血液分 析装置に関する。 背景技術
従来の健康診断や疾病状態の診断は、 患者から数 c Cの多量の血液を 採取し、 その分析に大規模な自動血液分析装置で得た測定値より行われ てきた。 通常、 このような自動分析装置は、 病院などの医療機関に設置 されており、 規模が大きく、 また、 その操作は専門の資格を有するもの に限られるものであった。
しかし、 近年、 極度に進歩した半導体装置作製に用いられる微細加工 技術を応用し、 たかだか数匪から数 cm四方の基板上に種々のセンサな どの分析装置を配置して、 そこに被験者の血液などの体液を導き、 被験 者の健康状態を瞬時に把握することができる新しいデバイスの開発と その実用化の気運が高まってきている。 このような安価なデバイスの出 現により、 来たるべき高齢化社会において高齢者の日々の健康管理を在 宅で可能にすることなどで増加の一途を迪る健康保険給付金の圧縮を 図れる。 また救急医療の現場においては被験者の感染症(肝炎、 後天性 免疫不全症候群など)の有無などを、 本デバイスを用いて迅速に判断で きれば適切な対応ができるなど、 種々の社会的な効果が期待されるため に非常に注目されつつある技術分野である。 このように従来の自動分析 装置に代わって、 血液分析を各家庭で自らの手で実施することを目指し た小型簡便な血液分析方法ならびに血液分析装置が開発されている (例えば、 特許文献 1参照) 。
特許文献 1に記載されたマイクロモジュール化された血液分析装置 では、 高分子基板上に微細な溝流路が設けられ、 その一端には針が取り 付けられており、 他端からポンプにより針から血液を溝に導入し、 U字 状流路に導入後、 遠心分離で血球と血漿の分離後、 当該
血漿を電気化学センサに当該ポンプによって導き、 血漿中に被検物質の 濃度を測定する。 その結果、 血液中の pH値、 酸素、 二酸化炭素、 ナト リウム、 カリウム、 カルシウム、 グルコース、 乳酸などの各濃度が測定 される。
しかし、 電気化学センサ一では肝機能測定用の被検物質であるァ -GTP、 GOT, GPTの各酵素の活性度や総コレステロールや中性脂肪などの濃度の 測定は容易ではなく、 ァ -GTP、 GOT, GPTの各酵素の活性度は、 特許文献 2では比色法を用いて測定を可能にしている。 従って、 大規模な自動血 液検査装置では、 ナトリゥムゃ力リゥムなどのイオンは電気化学的に測 定するが、 他の項目は比色法が主流である。
特許文献 1 :特開 2 0 0 1— 2 5 8 8 6 8号公報
特許文献 2 :特願 2 0 0 3— 34643 6
特許文献 3 :特願 2 0 0 3— 1 2 6 7 5 8 発明の開示
自動血液検査装置では、 大量の血液を採取し、 大量の血漿と多量の基 質緩衝液との混合を試験管内で行い、 その反応を吸光度によって測定さ れるが、 本方法を微量の血液を導入した微細な流路からなる数 cm2の高 分子などからなる基板を用いて実現するには、 特許文献 2と特許文献 3 で述べられているように、 まず血漿と多量の基質緩衝液の均一な混合に 特殊な流路が必要になる。
特許文献 2ではチップの二つの中心を用いた遠心力による攪拌、 特許 文献 3では混合室を多段もうけるが、 前者では二つの遠心力中心に変え る機構の複雑さ、 後者では、 均一な混合を達成するには混合室の段数を
2/1 増加する必要があり、 血液検査チップを実現するには、 混合器を配置す るための面積が増大する。 また、 血漿または血清と基質緩衝液の混合比 は、 被検体物質によって大きくことなるが、 一般に 1 : 1 0〜4 0と広 範囲にわたり、 その比率を保持するためには、 血漿と基質緩衝液の厳密 な抨量が極めて重要であり、 これをマイクロ流路で実行するためには、 血漿と基質緩衝液の蓄蔵用マイクロ流路の精密加工が求められる。 また、 高分子材料からなる流路基板内に基質緩衝液を長期間保管すると、 高分 子材料を透過する酸素によって変質し、その保管は極めて難しい。一方、 基質緩衝液を保管せず、 外部から枰量した液を蓄蔵用マイクロ流路に吐 出すれば良いが、 測定装置に基質緩衝液容器を備え、 吐出用管を蓄蔵用 マイクロ流路に正確な位置合わせしなければならず、 測定装置の複雑化、 大型化が避けられず、 在宅用としては実用的でない。
一方、 小型化された血液分析装置として、 ドライケミストリ一法を用 いたレフトロン(独国、 ベーリンガー ·マンハイム)、 ビトロス(米国、 ジョンソン &ジョンソン)、 富士ドライケム(富士写真フィルム)、 スポッ トケム(京都第一科学)からシステムが市販されている。 構造は富士ドラ ィケムの例を取ると、 図 1に示すような構造の試薬スライド透明支持体 (プラスチックフィルム) (101)上に分析反応に必要な試薬を含有した試 薬層(102)がコーティングされている。 この試薬層には反応に必要な試 薬が調製済みにし、 ゲル中に乾燥した状態で保持されている。 更にこの 上に反射測光を可能にする反射層(103)と検体を均一に展開させる展開 層(104)が積層された 4 層構造になっている。 このフィルムの上面に 10 / L前後の血漿や血清の検体(105)が展開層に滴下されると、検体は展 開層の毛管現象により横方向へ放射状に均一展開し、 その後に反射層に 浸透する。 反射層及びゲルと混合された試薬層は血液成分を吸収し、 単 位面積あたりに一定量の検体を吸収して保持される。 試薬層に吸収され た検体と含有された試薬が反応し、 検体成分に対応した発色を呈する。 この呈色強度を支持体側から、 発色に対応した特定の入射光(104)を照
3 射し、 反射光(105)の強度を測定することで、 検体中の成分濃度を算出 している。 ここで、 (106)はスリット、 (107)はプラスチック製マウント である。
ドライケミストリ一法では、 乾燥状態または外観上乾燥した状態で保 存された試薬が測定時に液状の試料に出会うとはじめて試薬に含まれ るマトリックスにおいて化学反応が進行する検査法であり、 予め試薬を 調製しておくと、 前述した比色法法の血漿または血清と基質緩衝液との 厳密な秤量と混合が必要で無くなる大きな利点がある。
そこで、 本発明は、 このような事情に鑑みなされたものであり、 石英 板や高分子樹脂板などの絶縁材基板に作製した超小型の溝流路に微量 (数 L以下) の血液を導入して遠心分離を行い、 当該血漿から被険を 電気化学センサ用の流路とドライケミス卜リー用試薬を収納した流路 に導入され、 ドライケミストリー反応用流路にあっては血漿との反応に よって生じる特定の発色の波長と同じ光を導入し、 受光することからな る基板構造を提供することを目的とする。
本願第 1発明は、 上記の課題を解決するために、 基板に種々の機能を 有するマイクロ流路を形成し、 遠心力を用いて、 血液導入口から全血試 料を血球 ·血漿分離用流路に導入し基板内で血漿分画を得て、 血漿を案 内流路により搬送し、 ドライケミストリー用試薬を収納した流路に導入 して血漿中の被検成分とドライケミストリー用試薬とを反応させ、 特定 の測定光を導入し、 透過度の変化を受光器により測定することにより血 漿中の被検成分する血液分析装置を提供する。
本願第 2発明は、 本願第 1発明において、 採血針と全血溜め用の管が 連結された採血アセンブリを本血液分析装置の基板に設けられた全血 導入口に挿入し、 採血アセンブリの軸方向の基板の外側に設けた第 1の 回転軸を中心として回転することにより、 全血を血液導入口から血液案 内流路を経て血球 ·血漿分離用流路に搬送し、 更に遠心力を用いて血球 分画と血漿分画に分離する装置を提供する。 これによつて、 ポンプによ
4 る吸引や外部からの圧力、 及びその案内口と管などを必要としないため 装置の設計が容易になり、 装置の小型化が図れる。
本願第 3発明は、 本願第 1発明と本願第 2発明において、 複数の溝か らなる流路による血球 ·血漿用分離流路の構造を提供する。 まず、 全血 導入口は全血搬送案内流路と連結し、 全血搬送案内流路は、 血液導入口 を中心に略円弧に、 且つ血液導入口の方向に設けられた複数の溝流路が 形成された溝群の血液導入口を見て下方側が連結された一本の溝と連 結し、 第 1の回転軸を中心として回転することにより全血を全血搬送案 内流路を経て溝流路に導入し、 そのまま回転すると溝流路の下方側に血 球分画が収容され、 上方側に血漿分画が収容される装置を提供する。 当該溝流路は、 特開 2 0 0 1 - 2 5 8 8 6 8号公報に述べられ、 ここで は上方側に上清された血漿中に電気化学バイオセンサーを設けておく ことにより直接に被検成分を測定できる特徴がある。 本発明を本願に適 用すると、 概ね抨量された血漿を後続の測定用流路に分配することがで きる。
本願第 4発明は、 本願第 1発明と本願第 2発明において、 血球 ·血漿 分離流路は、 概ね U字状流路、 即ち U字が外側にわずかに開いて形成さ れている流路によって血漿を得る装置を提供している。 U字状流路のー 端は全血導入口と連結した血液搬送案内流路と連結し、 ϋ字状流路下端 から前記血液導入口を見て基板の上方に設けられた第 1の回転軸を中心 として回転することにより全血を U字状流路に導入され、 そのまま遠心 を続けると、 U字状流路下端の湾曲部に血球分画が収容され、 その上部 には血漿分画が収容される装置を提供している。 本願も 特許文献 2の 特願 2 0 0 3— 3 4 6 4 3 6に基本が提示されているが、 上清の血漿を ドライケミストリ一法のセンサーに導くことにより本方法の新たな応 用を本願では述べている。
本願第 5発明は、 本願第 1発明と本願第 3発明を基に、 ドライケミス 卜リー法による被検成分の測定する装置を提供している。 即ち、 本願第
5 3発明に記載の複数の溝流路の他端の各々は血漿案内流路と血漿秤量 用血漿溜めとキヤビラリバルブと各ドライケミス卜リー用試薬導入流 路がその順番で直列に接続されている。 本願第 3発明に記載の第 2の回 転軸を中心に回転し、 遠心力により血漿分画収容部から血漿が、 各血漿 案内流路を経て、 一旦各血漿秤量用血漿溜めに導入される。 更に遠心力 を増すと秤量された血漿が各キャビラリバルブを経て各ドライケミス 卜リー用試薬導入流路に導入させ、 更に秤量されたドライケミストリ一 用試薬が導入された流路の片側から血漿が遠心力で導入される。 ドライ ケミストリー用試薬は、 血漿内に一定の濃度の被検成分と、 試薬導入流 路の長手方向に反応が進む。 一連の血漿の搬送はポンプや空気圧を用い ずに行われ、 装置の動作の簡便さと小型化が達成される。
本願第 6発明は、 本願第 1発明と本願第 4発明を基に、 U字状流路の 他端の流路に複数の分岐した血液搬送案内流路が設けられ、 当該各流路 は血液溜めと枰量用血漿溜めとキヤビラリバルブと血漿導入用流路が その順番で直列に同一基板上で接続され、 更に、 血漿導入用流路の直下 に血漿展開層が設けられ、 その直下に垂直方向に一致して接合された複 数の孔を設けた領域を有する基板と当該孔基板の直下に設けられたド ライケミストリー試薬注入比色測定用流路がこの順番で接合されたこ とによって積層基板が形成された装置を提供している。血漿展開層と複 数の孔を設けた領域とドライケミストリー試薬注入比色測定用流路の 各面積は等しい。 そして、 U字状流路と略直交方向で、 当該流路から見 て基板の外側に位置する第 2の回転軸を中心に回転させると、 遠心力に より U字状流路内の血漿をドライケミストリー試薬注入比色測定用流路 に導入される。
血漿展開流路からの血漿はその下部にある孔を通してドライケミス トリー用試薬用流路に導入されるが、 その導入に用いる遠心力は孔と直 角方向にある。 しかし、 血漿溜め用流路の遠心力が印加される方向の端 が壁となり、 また血漿溜め用流路に血漿が満たされているため、 遠心力
6 によって圧力を受けた血漿が下部の孔へ導入されることになる。 このよ うに遠心力を用いるだけで血漿をドライケミストリー用試薬用流路に 導入できる。
本願第 7発明は、 本願第 5発明と本願第 6発明の秤量用血漿溜めの上 流側の壁に過剰血漿収容溜めを設けた装置を提供する。 決まった量の血 漿を血漿溜めに遠心力で導入する際、 過剰な血漿が導入されると、 側壁 に設けた廃棄血漿搬送案内流路を経て外部の廃棄血漿溜めに廃棄され、 秤量用血漿溜めへの正確な血漿量を提供する。
本願第 8発明は、 本願第 5発明と本願第 6発明に記載のドライケミス 卜リ一用試薬の決まった量を流路に収めるために流路へ試薬を注入し、 過剰な試薬は排出するため、 ドライケミストリ一用試薬流路に注入口と 排出口を設けたことを特徴とする装置を提供する。
ドライケミストリ一試薬はゲル状で調製され、 本願によって一定量のゲ ルをマイクロ流路に導入することが容易になる。
本願第 9発明は、 本願第 6発明に記載のドライケミストリ一試薬比色 測定用流路にあっては、長手方向の流路の両端は 45度の壁が設けられ、 その内部には金属などが塗布され、 45度の壁で光が反射するよう基板の 下部または上部から垂直に光導入用と射出用ファイバーが導入された ことを特徴とする装置を提供する。
ドライケミストリ一用試薬は、 導入血漿中の被検成分やアンモニアと 反応して発色や着色するが、 その度合いを調べる比色測定用流路におい て、 特定の波長を基板の下部または上部から導入し、 流路内を内壁によ る光吸収などによる減衰が無く伝播させ、 発色や着色などの化学反応の みによる導入光の減衰度を検出器により測定し、 且つ外部からの迷光の 侵入することを防止するため、 流路内部には金属などの光漏洩や侵入を 防止する材料が塗布され、 更に長手方向の流路の両端は 45度の壁が設 けられ、 その付近に光導入用と射出用ファイバーが導入されるため、 45 度の壁で光が反射して光導入と受光が高効率で行える。
7 本願第 1 0発明は、 本願第 6発明に記載のドライケミストリー試薬注 入比色測定用流路にあっては、 本願第 9発明と当該測定用流路の内部を 金属など光遮蔽材で覆う点は同じであるが、 長手方向の流路の両端は流 路軸と一致した両方向に光導入用と射出用ファイバーが導入された装 置を提供する。
本願第 1 1発明は、 本願第 6発明に記載のドライケミストリー試薬注 入比色測定用流路にあっては、 秤量された一定の血漿とドライケミス卜 リー試薬を含有したゲルが反応して膨潤する際、 その膨潤量を予め測定 しておき、 当該流路をその膨潤した容積で設計 ·製作された装置を提供 する。
本願第 1 2発明は、 本願第 6発明に記載のドライケミストリー試薬注 入比色測定用流路にあっては、 秤量された一定の血漿がドライケミスト リ一試薬を含有したゲルが反応して膨潤しても、 一定の流路容積で設 計 ·製作された装置を提供する。
ゲルは通常 2倍から 5倍程度に膨潤するが、 本願第 1 1発明では、 膨 潤した全量に特定光を導入してその減衰度を測定でき、 S/N比の大きい 測定値が得られるが、 逆に減衰度が大き過ぎて測定が困難になる場合も あり、流路が基板に占める面積が大きくなり基板面積が拡大する。一方、 本願第 1 2発明では、 大きく膨潤した試薬に対しては、 導入試薬が本願 第 8発明により排出されるため、 測定光の減衰度が小さく、 S/N比の低 い測定になるが、 使用者の被検成分の濃度を予め知っておくことや測定 可能なドライケミストリー試薬を調製しておくことにより、 一定容積の 流路でも多項目の被検成分濃度の測定が可能になる。 現実の基板では両 発明を併用する。
本願第 1 3発明は、 本願第 6発明に記載のドライケミストリ一試薬注 入比色測定用流路にあって、 アンモニアガス発生用ドライケミストリー 試薬流路の基板と多数の孔を設けた基板とアンモニアガス検出用発生 用発色材導入比色測定用流路は、 この順番で垂直方向に一致して積層さ
8 れ、 更に他の項目の検出用流路とアンモニア発生用流路が同一基板内に 設けた装置を提供する。 尿酸やクレアチニンや尿素窒素の測定では、 直 接測定することは難しく、 各酵素と反応した後にアンモニアガスが発生 するが、 アンモニアガス発生用流路から発生したアンモニアガスは均一 にアンモニアガスと反応して発色する試薬が導入された流路に導入さ れねばならないが、 本発明はそれを可能にする。
本願第 1 4発明は、 本願第 1発明に記載のドライケミストリ一試薬を 用いた血漿からの被検成分の測定法に加え、 従来の電気化学センサーに よる被検成分の測定法が同一積層基板に構成された血液分析装置を提 供する。
一般の診断では、 Na+、 K+、 Ca++、 pHなどの測定は必須であるが、 これ らをドライケミストリー試薬で測定することは困難であり、 多項目を同 時に採取した血液から同時に被検成分を測定することにより診断の正 確さが増す。 図面の簡単な説明
図 1は、 従来のドライケミストリーを用いた診断チップの構造を示す 図である。
図 2は、 血液検査装置を構成する各積層基板のうち、 最上層基板を模 式的に例示した図である。
図 3は、血液検査装置を構成する各積層基板のうち、全血導入、血球 · 血漿分離、 血漿の搬送、 血漿の秤量、 キヤビラリバルブ、 ドライケミス 卜リー試薬導入流路、 及びアンモニアガス発生試薬導入流路などからな る第 2層基板を模式的に例示した図である。
図 4は、 血液検査装置を構成する各積層基板のうち、 アンモニアガス 展開用の多数の孔などからなる第 3層基板を模式的に例示した図であ る。
図 5は、 血液検査装置を構成する各積層基板のうち、 アンモニアガス
9 反応発色剤試薬導入流路などからなる第 4層基板を模式的に例示した 図である。
図 6は、 血液検査装置を構成する各積層基板のうち、 最下層基板を模 式的に例示した図である。
図 7は、 アンモニアガス検出以外の検査項目用流路を設けた積層基板 の構造を示す図である。
図 8は、 アンモニアガス検出用の流路(223)を含む多層の流路構造を 示す図である。
図 9は、 複数の比色センサーと複数の電気化学センサ一を一つの基板 に集積化した血液検査装置を構成する各積層基板のうち、 最上層基板を 模式的に例示した図である。
図 1 0は、 複数の比色センサーと複数の電気化学センサ一を一つの基 板に集積化した血液検査装置を構成する各積層基板のうち、 第 2層基板 を模式的に例示した図である。
図 1 1は、 複数の比色センサーと複数の電気化学センサーを一つの基 板に集積化した血液検査装置を構成する各積層基板のうち、 第 3層基板 を模式的に例示した図である。
図 1 2は、 複数の比色センサーと複数の電気化学センサーを一つの基 板に集積化した血液検査装置を構成する各積層基板のうち、 最下層基板 を模式的に例示した図である。
図 1 3は、 電気化学センサー領域の図 12 に一点斜線で示した構造の 断面を示す図である。
図 1 4は、 ブドウ糖標準液中のグルコース濃度に対する吸光度の関係 を示す図である。
図 1 5は、 尿素標準液の尿素濃度変化に対する吸光度の関係を示す図 である。
なお、 図中の符号は次のものを示す。
101 試薬スライド透明支持体(プラスチックフィルム)
10 102 分析反応に必要な試薬を含有した試薬層
103 反射層
104 展開層
105 血漿や血清の検体
106 スリット
107 プラスチック製マウント
201 最上層基板
202 第 2層基板
203 第 3層基板
204 第 4層基板
205 最下層基板
206 基板接続用孔
207 基板接続用孔を貫通する円柱
208 スティンレス管製針
209 スティンレス管
210 ガラス管
211 血液搬送案内流路
212 第 1の回転軸
213 複数の血液溜め溝
214 第 2の回転軸
215 血液搬送案内溝
216 抨量用血漿溜め
217 空気導入孔
218 案内溝
219 空気導入孔
220 過剰血漿案内流路
221 過剰血漿廃棄溜め
222 キヤビラリバルブ
11 223 アンモニアガスの検出用流路
224 アンモニアガス以外の検査項目用流路
225 ゲルの導入口
226 ゲルの排出口
227 4 5度の傾斜壁
228 貫通孔
229 ファイバー
230 アルミ膜
231 ハロゲンランプやタングステンランプ 232 バンドパスフィルター
233 受光器
234 多数の孔
235 アンモニアガス反応発色剤含有流路
236 4 5度の傾斜壁
237 アルミ膜
238 ファイバー用貫通孔
239 ファイバー
240 注入孔
241 排出孔
242 ガラス管挿入孔
501 最上層
502 第 2層
503 第 3層
504 最下層
505 基板接続用貫通孔
506 貫通孔に揷入される円柱
507 無痛針
508 スティンレス管
12 509 ガラス管
510 概ね U字管
511 第 1の回転軸
512 血球溜め
513 血球逆流防止用柱
514 第 2の回転軸
515 血漿溜め
516 血漿搬送案内流路
517 キヤビラリバルブ
518 血漿秤量用血漿溜め
519 血漿導入用流路
520 廃棄血漿搬送案内流路
521 廃棄血漿溜め
522 血漿展開層
523 ドライケミストリ一比色法のセンサー領域 524 電気化学センサー法のセンサー領域
525 較正液の導入口
526 較正液導入案内流路
527 較正後廃液案内流路
528 廃液口
529 多数の孔を設けた領域
530 ドライケミストリー比色法のセンサー領域
531 電気化学センサー法のセンサー領域
532 ドライケミストリー試薬注入比色測定用流路
533 ドライケミストリー試薬注入比色測定用流路
534 ドライケミス卜リー試薬注入比色測定用流路
535 ドライケミストリー試薬注入比色測定用流路
536 注入口
13 537 排出口
538 測定光の入射口
539 射出口
540 ファイバー
541 ファイバ一
542 電気化学センサー領域
543 AgZAgC l電極'
544 KC1飽和 Ag/AgCl参照電極
545 銀カーボン配線
546 信号取り出し用の外部電極
547 ィオノフォア膜
548 KC1溶失防止膜
549 ガラス管揷入孔 発明を実施するための最良の形態
第 1実施形態
図 2〜図 6は血液検査装置を構成する各積層基板を示し、 図 2は最上 層基板(201)、 図 3は第 2層基板(202)、 図 4は第 3層基板(203)、 図 5 は第 4層基板(204)、 図 6は最下層基板(205)である。各基板は厚さが 0. 5匪のポリカーボネート製であり、 流路ゃ孔は射出成型で形成する。 勿 論、 リソグラフィによって作製した SU-8などのパターンを PET (ポリエ チレンテレフ夕レート) 板などの高分子基板にモールドすることによつ ても作製され、 製法に特徴があるものではない。 図 2〜図 6の各積層基 板に設けられた孔(206)は、 (207)の円柱が孔(206)へ挿入されることに よって、 最下層基板(205)の上に第 4層基板(204)、 第 4 層基板(204)の 上に第 3層基板(203)、 第 3層基板(203)の上に第 2層基板(202)、 そし て第 2層基板(202)の上に最上層基板(201)が接続され、 各基板は接着剤 などにより接着される。 その結果、 各基板に設けられた流路の位置が決
14 められ、 各基板間の溶液の流れが可能になる。 次に第 2層基板(202)に ついて説明する。 (208)は外径 100 ΠΙ、 内径 50 πιのスティンレス管で あり、 先端は 10度で三面研磨が行われた無痛針を示す。 内壁を超平滑 化に研磨してあるため、 静脈に刺すと、 血圧により自動的に採血できる 。 また(209)は外径 250 /i mのスティンレス管であり、 (208)と接着され ている。 (210)は外径 1. 8匪、 内径 1顴のガラス管であり、 (209)と接着 され、 無痛針(208)から採取された血液は、 ガラス管(210)に溜められる 。 (211)は基板(202)に加工された血液搬送案内流路であり、 第 2層基板 (202)の第 1の回転軸(212)を中心として遠心力を印加すると、 複数の血 液溜め溝(213)に導入される。 更に遠心を続けると、 第 1の回転軸(212) を見て外側に血球が、 内側に血漿が分離される。 次に、 第 2の回転軸(2 14)を中心に遠心力を印加すると、 上清の血漿が血液搬送案内溝(215)を 経て抨量用血漿溜め(216)に導入される。 その際、 導入を可能とするた め空気導入孔(217)とその案内溝(218)を設けてある。 空気導入孔(217) は、 最上層基板(201)の空気導入孔(219)と直結している。 秤量用血漿溜 め(216)を満たした後の過剰な血漿は過剰血漿案内流路(220)を経て過 剰血漿廃棄溜め(221)に捨てられる。 更に、 第 2の回転軸(214)を中心と して 1000G以上の遠心力を印加すると(216)に抨量用溜めてあった血漿 はキヤビラリバルブ(222)を介して、 基板(202)に設けられた複数の流路 に導入される。
前述のキヤビラリバルブに関しては、 Nam- Trung Nguyen と Steven T. Were l eyの著作による 「Fundamental s and Appl icat ions of
Microf lud icsj (発行所: Artech House (Bos ton - London) 2002)の 315 ページに述べられている。 簡単に説明すると、 細管(キヤビラリ)に溶液 が存在する時、 細管の軸方向の一端の延長上に回転軸があり、 細管の他 端に溶液が表面張力で溜まっているとすると、 その回転軸を中心に回転 すると、 小さい遠心力ではこの溶液は細管の他端からは吐出しないが、 遠心力を増していくと遂に表面張力を勝り、 溶液が吐出する。 従って、
15 遠心力の大小がバルブの働きをするのでキヤビラリバルブと呼ぶ。 溶液 が細管から吐出する最小の回転数 fmは、 溶液が回転軸から、 回転軸側 の細管半径 と吐出側の半径 R2の間に存在し、 溶液が細管から吐出す る時の溶液の細管に対する接触角を 0、表面張力をァ、細管の半径を R、 溶液の密度を p とすると、 以下の関係にある。
fm2 > r cos 0 /R - p · π 2 · (R2-R,) (R2+R,)
25での水の Ύは 72 x lO-3 [N/m]であり、 PETを基板として用いた場合、 水との接触角 Θ は 80度となり、 水の p は l x i03 [kg/m3]なので、 これ らの値を用いると、 この式から、 R2を 5cm、 キヤビラリバルブの長さ、 つまり 2- )を 0. 5cm、 その直径(2R)を 100 /z m程度に形成すれば、 fm が約 1000回転/秒以上の時に血漿が抨量用血漿溜めからドライケミス卜 リー試薬流路に流れ込む。 この時の重力加速度は 60G以上となる。
ドライケミストリ一では少なくとも 2種類の反応系がある。 その一つ はクレアチニンや尿素窒素の測定と、 他一つはグルコース、 ァ- GTP、 GO T、 GPTや総コレステロールなどの測定である。 前者の測定は、 まずクレ ァチニンの場合は、 クレアチニンディアミラーゼ、 尿素窒素の場合はゥ レアーゼの各酵素との反応でアンモニア(NH3)ガスが発生し、 その NH3ガ スは各々ブロムクレゾールグリーンやブロムフエノールブルーと反応 して発色させる 2段階の反応を用いる。 一方、 上記の他の被検物質は、 それぞれの反応に応じての酵素と発色試薬を含有したゲルと一段階の 反応で検出する。 そこで、 (223)は NH3の検出用流路を示し、 (224)は NH 3以外の検査項目用流路を示し、 それぞれ上述のゲルが満たされている。 図 7 は、 NH3以外の検査項目用流路を設けた積層基板の構造を示す。 最上層基板(201)の孔(225)と孔(226)は各々、 当該ゲルの導入口と排出 口であり、 導入口の径は排出口の径より大きく、 試薬を含有したゲルの 導入はマイクロディスペンサーで行われる。 導入口と排出口は、 (223) と(224)の 2 つの異なる反応系の流路に注入し、 内部を満たした後の余 分なゲルを排出するためと、 血漿がゲル中に遠心力で導入されると、 ゲ
16 ルの種類にもよるが、 2〜5倍に膨潤するため、膨潤したゲルを外部に排 出するための孔である。 また、 流路(224)の長手方向の両端には 45度の 傾斜壁(227)が形成されている。 その内壁はアルミ膜がスパッ夕蒸着さ れ、 第 3層基板(203)、 第 4層基板(204)、 最下層基板(205)に貫通孔(22 8)を設け、 その中にファイバー(229)が挿入され、 その端面が流路の 45 度の傾斜壁の下方に留める。 アルミ膜(230)を流路(224)の内壁にスパッ 夕蒸着する方法は、 まず最上層基板(201)と第 2層基板(202)を接触させ 、 第 2層基板(202)の裏面からアルミをスパッタ蒸着し、 流路以外の部 分のアルミ膜は CMP (化学的機械研磨)によって除去する。 次に、 第 2層 基板(202)から最上層基板(201)を除去して、 第 2層基板(202)と第 3層 基板(203)を接触させ、 最上層基板(201)の上方からアルミをスパッ夕蒸 着し、 流路以外の部分のアルミ膜は CMPによって除去する。 なお、 アル ミの他、 光が流路から外部に逃げず、 流路内で効率よく反射する材料で あるならば金属の他いかなる材料でも良い。 ファイバー(229)には、 (23 1)のハロゲンランプやタングステンランプから(232)のバンドパスフィ ルターを介して選択した波長の光を導入し、 (233)の受光器によってそ の減衰度を測定する。
図 8は、 アンモニアガス検出用の流路(223)を含む多層の流路構造を 示す。第 3層基板(203)には、 アンモニアガスを通す役割の直径 5 Π!〜 5 Ο ΠΙ程度の多数の孔(234)が設けられている。 この多数の孔を設けた領 域の面積は第 2層基板(202)に設けたアンモニアガス発生用試薬を収容 した流路(223)と同じ面積を有する。 この孔領域(234)はドライケミスト リーの展開層の役目も果たす。 図 4にはその鳥瞰図を示す。 当該孔の作 成法は、 大きい径の場合は、 スティンレスや高分子製のメッシュや射出 成型で形成可能だが、 小さい径の場合はシリコン基板にディープエッチ ングで形成される。 多数の孔(234)を通過した ΝΗ3ガスは、 第 4層基板( 204)と最下層基板(205)に形成した図 8で述べた流路に導入される。 流 路内壁へのアルミ膜のコーティング形成法は前述と同様である。 流路(2
17 35)にはアンモニアガスと反応して発色する試薬を含有したゲルが導入 される。 ここで、 (236)は 45度の傾斜壁、 (237)アルミ膜、 (238)フアイ バ一用貫通孔、 (239)はファイバー、 (240)と(241)はそれぞれアンモニ ァガス反応発色試薬含有ゲルの注入孔と排出孔である。 ランプ、 パンド パスフィルター、 受光器などの光学部品の図示は省いた。
第 2実施形態
図 9〜図 1 2は、 複数の比色センサーと複数の電気化学センサーを一 つの基板に集積化した血液検査装置を構成する各積層基板示す。 一般に 、 診断にとっては基本的に必要な pHや Na++、 K+、 CI—、 Ca++などイオンの 濃度測定も必要であり、 pHはアンべロメトリ、 Na++と K+と C1-と Ca++の 各濃度はポテンシオメトリによる電気化学的方法によって測定される。 従って、 比色センサーと電気化学センサーの両方を一つの基板に集積化 し、 一度の採血で測定することが望ましい。 この比色センサ一群には NH3検出用の比色センサ一を構成が煩雑になるので搭載しなかったが、 N H3を検出する場合は、 図 2〜図 6と同様に NH3ガスの発生層が追加され る。
図 9は最上層(501)、 図 1 0は第 2層(502)、 図 1 1は第 3層(503)、 図 1 2は最下層(504)であり 4枚の基板からなる。図 2〜図 6と同様に図 9〜図 1 2の各積層基板にあっては、 (506)の円柱が孔(505)へ挿入され ることによって、 最下層(504)の上に第 3層(503)、 第 3層(503)の上に 第 2層(502)、 そして第 2層(502)の上に最上層(501)が接続され、 各基 板は接着剤などにより接着される。 まず、 第 2層基板(502)では、 図 3 と同様に、 無痛針(507)からスティンレス管(508)を経て (509)のガラ ス管に接続され、 ガラス管(509)に血液が採取される。 採血は、 開いた 概ね U字管(510)に第 1の回転軸(511)を中心に遠心力によって導入され 、 更に遠心を続けると、 第 1の回転軸(51 1)を見て外側に血球分画が、 内側に血漿分画が分離され、 血球分画は血球溜め(512)に溜められる。 ( 513)は血球が U字管に戻ることを防ぐ柱である。 次に、 第 2の回転軸(5
18 14)を中心に遠心力を印加すると、 上清の血漿が一旦血漿溜め(515)に導 入される。 更に、 回転を続けると、 血漿搬送案内流路(516)を経て、 更 に 60G以上の重力加速度の遠心力によってキヤビラリバルブ(517)を通 過して血漿秤量用血漿溜め(518)と血漿導入用流路(519)に導入される。 その際、 血漿秤量用血漿溜め(518)の側壁に秤量後の余分な血漿を廃棄 血漿搬送案内流路(520)を経て廃棄血漿溜め(521)に廃棄される。血漿導 入用流路(519)の直下には血漿展開層(522)が設けられ、 一旦血漿を平板 上に拡大した。 ここで、 (523)はドライケミストリ一比色法のセンサー 領域を示し、 (524)は電気化学センサー法のセンサ一領域を示す。 電気 化学センサーは測定前に較正しなければならず、 (525)は較正液の導入 口、 (526)は較正液導入案内流路、 (527)は較正後廃液案内流路、 (528) は較正後廃液の廃液口を示す。
図 1 1に示すように、 血漿展開層(522)の直下に、 第 3層(503)に図 4 と同様に直径 5 n!〜 50 z m程度の多数の孔を設けた領域(529)を形成し、 この領域の面積と位置は血漿展開層(522)と一致させる。 ここで、 (530) はドライケミストリー比色法のセンサ一領域を示し、 (531)は電気化学 センサー法のセンサ一領域を示す。
図 1 2に示すように、 最下層(504)には、 血漿展開層(522)の直下の同 位置に、 同面積のドライケミストリ一試薬注入比色測定用流路(532)、 (533)、 (534)、 (535)が接合される。 これらの流路の内壁は、 図 7で述 ベた方法に準じてアルミなどの光を反射させる金属がコートされてい る。 (536)と(537)はそれぞれドライケミストリー試薬の注入口と排出口 である。 ドライケミストリ一試薬注入比色測定用流路(531)の長手方向 の側壁の一端には測定光の入射口(538)と他端には流路を伝播した後の 射出口(539)が設けられ、 各口にはファイバ一(540)と(541)が接続され、 測定光の入射と受光光への射出の役割を果たす。 両ファイバ一はドライ ケミストリ一試薬注入比色測定用流路(532)〜(535)の長手方向の中心 軸と一致して基板(504)に設けられる。 試薬の発色による導入光の減衰
19 度を光ダイオードなどによるフォトディテクタ一により検出する。
血漿展開流路(522)からの血漿はその直下にある多数の孔が形成され た領域(529)を通してドライケミストリ一用試薬用流路(532) ~ (535)と 電気化学センサー領域(542)に導入されるが、 その導入に用いる遠心力 は孔と直角方向にあり、 垂直方向には遠心力が働かない。 しかし、 血漿 溜め用流路の遠心力が印加される方向の端が壁となり、 また血漿溜め用 流路に血漿が満たされているため、 遠心力によって圧力を受けた血漿が 下部の孔へ導入されることになる。 このように遠心力を用いるだけで血 漿をドライケミストリ一用試薬用流路(532)〜(535)と電気化学センサ —領域(542)に導入できる。
(532)〜(535)の流路の長手方向の長さが異なって示されている理由 を以下に述べる。 試薬をゲルに分散させる際、 試薬とゲルとを馴染ませ るためには各試薬に適したゲルが必要であるが、 各種のゲルが血漿と反 応するとゲルの膨潤度が異なり、 通常、 ゲルは通常 2倍から約 5倍程度 に膨潤する。そこで、 ドライケミストリ一用試薬用流路(532) ~ (535)は、 抨量され供給された血漿と最大限にゲルと反応させるため最適な長さ で設計されなければならない。試薬を含有したゲルの注入口と排出口の (536)と(537)は、 流路の容積を越えて膨潤したゲルを外部に排出する役 目も果たしている。 しかし、 膨潤した全量に特定光を導入してその減衰 度を測定でき、 S/N比の大きい測定値が得られるが、 逆に減衰度が大き 過ぎて測定が困難になる場合もあり、 流路が基板に占める面積が大きく なり基板面積が拡大する。
一方、 図 3における NH3の検出用流路(223)と NH3以外の検査項目用流 路(224)は同じ面積と体積で示した。 大きく膨潤した試薬に対しては、 導入試薬が排出孔から排出されるため、 測定光の減衰度が小さく、 S/N 比の低い測定になるが、 使用者の被検成分の濃度を予め知っておくこと や測定可能なドライケミストリー試薬を調製しておくことにより、 一定 容積の流路でも多項目の被検成分濃度の測定が可能になる。 現実の基板
20 では両発明を併用する。
(542)は電気化学センサ一領域である。(543)は Ag/AgCl電極であり、 その上に Na+や K+イオン用のィオノフォアを含むセンサー膜が塗布され ている。 (544)は KC 1飽和 Ag/AgCl参照電極であり、 これらの電極は銀 カーボン配線(545)に設けられ、 (546)は信号取り出し用の外部電極であ る。
図 1 3は電気化学センサー領域(542)の図 1 2に一点斜線で示した構 造の断面を示す。
電気化学センサーは血漿導入前にまず較正される。その後、第 2層(502) に設けられた血漿搬送案内流路(516)を経て、 更に 60G以上の重力加速 度の遠心力によってキヤビラリバルブ(517)を通過して血漿秤量用血漿 溜め(518)と血漿導入用流路(519)と血漿展開層(522)に導入され、 多数 の孔が形成された領域(529)を通して電気化学センサー領域(542)に導 入される。 ここで、 (547)はィオノフォア膜、 (548)は KC 1飽和 AgZAgCl 参照電極の KC1が電解液に溶失するのを防止する膜である。 実施例
第 1実施例
ぐグルコース測定 >
図 2〜図 6を基にした血液分析装置を用いて、 グルコース測定を行つ た例を示す。 測定原理は、 試料に発色試薬を作用させると、 試料中のグ ルコースは発色試薬中に含まれるム夕ロ夕一ゼの作用により α型から 13型へすみやかに変換する。 |3 -D-グルコースは、 グルコースォキシダ ーゼ(GOD)の作用を受けて酸化され、 同時に過酸化水素を生じる。 生成 した過酸化水素は、 共存するペルォキシダ一ゼ(POD)の作用により、 発 色試薬中のフエノールと 4-ァミノアンチピリンとを定量的に酸化縮合 させ、 赤色(505nm)の色素を生成させる。 この赤色の吸光度を測定する ことにより弒料中のグルコース濃度を求める。
21 ドライケミストリー試薬として、 (1)黒かぴ Aspergi l ius niger 由来 のグルコースォキシダ一ゼを 1. 8ϋ、 (2) 1, 7-ジヒドロォキシナフタレン を 0. 03mg (0. 188 mol)、 (3) 4-ァミノアンチピリンを 0. lig (0. 492 IO1)、 (4)ペルォキシダ一ゼを 0. 13U、 (5)ム夕ロターゼ (ブタ腎臓由来) を 0. 065Uの粉末を混合し、 燐酸緩衝液に溶解させる。 次に、 その溶解液を ゼラチンに全てを含有させ、 ゼラチンゲルを形成する。 これをドライケ ミストリー試薬注入比色測定用流路に注入する。 当該比色測定用流路は 0. 4腿 X 0. 4龍の断面積で長さは 1匪であった。その中に前述のゲルを注 入し、 更に 0. 2 i L のブドウ糖標準液をグルコース濃度を Omg/dl から 600ig/dlに変化させた。この流路に 505nmの光を入射させて得られた吸 光度を図 14に示す。 この結果より良好に検出されたことが分かる。 第 2実施例
ぐ尿素窒素測定 >
図 7〜図 12 を基にした血液分析装置を用いて、 尿素窒素測定を行 つた例を示す。
尿素窒素(H2NC0NH2)は水の存在下でゥレアーゼの作用で NH3と C02に分 解され、 この NH3はブロムクレゾールグリーンと反応して青色(620ηπι) 色素を生じる。 尿素測定は以下のように測定された。 デンプンーァクリ ルニトリルからなる吸水性ポリマー lOmg に 2mL のゥレアーゼ溶液を含 ませたゲル状のものを 0. 4腿 X 0. 4匪の断面積で長さは 1匪の NH3発生用 流路に注入した。 発色剤は、 エタノール 2mLにブロムクレゾールグリー ン(BCG) 3¾ (重量比)を溶いたものに、 イソプロビルアルコール 20mLとそ の 5¾重量比の PVB (ポリビニールプチラール) 1. 28mg を合わせて溶かし 込んだものを調製し、 発色用流路に注入した。 多数の孔が形成された基 板の厚さは 1. 2匪であった。図 15は、 lOmgから 50mgの尿素標準液を作 製し、 620nmの光を入射したときの吸光度を示す。 この結果より良好に 検出されたことが分かる。
22 発明の効果
以上のように、本発明の血液分析装置は、全血の基板への導入、血球 · 血漿分離、 血漿の秤量、 及びドライケミストリー試薬への展開の一連の 動作をポンプを一切使わずに遠心力で行い、 ドライケミストリー試薬が 導入された流路の長手方向の光の減衰を測定することから、 極微量血液 の血漿中から多項目の被検成分を測定可能とすることが可能な安価 ·簡 便な多項目の血液分析装置を実現できる。
アンモニアガスの測定には、 アンモニアガス発生層と展開層とアンモ ニァガスと反応して発色層が積層分離構造になっているため、 アンモニ ァガスの高感度測定を可能にした血液分析を実現できる。 その結果、 ァ ンモニァガス測定を含むドライケミストリ一比色法センサ一に加え電 気化学センサーを併用できるので通常の血液検査項目のほとんどを測 定可能になり、 べッドサイドのみならず無痛針の使用により在宅での診 断が実現される。
23

Claims

請求の範囲
1 . 血液導入口とこれに連結された全血搬送案内流路並びに血球 ·血 漿分離用流路、 血漿案内流路とを有し、 遠心により血液導入口から全血 試料を導入し、 血球 ·血漿分離行い、 血漿を案内流路により搬送し、 ド ライケミストリー用試薬を収納した流路に導入し、 血漿中の被検成分と ドライケミストリー用試薬とを反応させ、 特定の測定光を導入し、 透過 度の変化を受光器により測定する各手段を備えた積層基板により血漿 中の被検成分する血液分析装置。
2 . 血液導入口には略直線状に連結した採血針と採血した血液溜めが 連結され、 更に血液導入口は全血搬送案内流路を経て血球 ·血漿分離用 流路と連結し、 血球 ·血漿分離用流路から血液導入口を見て上方に第 1 の回転軸を中心として回転することにより全血を血液導入口から血液 案内流路を経て血球 ·血漿分離用流路に搬送し、 血球分画と血漿分画に 分離することを特徴とする請求項 1の血液分析装置。
3 . 全血搬送案内流路と血球 ·血漿用分離流路は、 血液導入口を見て 下方に設けられ、血球 ·血漿用分離流路は血液導入口を中心に略円弧に、 且つ血液導入口に向かって複数の溝流路が設けられ、 当該溝流路の血液 導入口を見て下方側は一つの流路で連結され、 第 1の回転軸を中心とし て回転することにより全血を、 当該溝流路の下方側に血球分画を収容し、 上方側に血漿分画を収容することを特徴とする請求項 1または 2の血 液分析装置。
4 . 血球 ·血漿分離流路は、 概ね U字状流路で形成され、 一端は全血 導入口と連結した血液搬送案内流路と連結し、 U字状流路下端から前記 血液導入口を見て基板の上方に設けられた第 1の回転軸を中心として回 転することにより全血を、 ϋ字状流路に導入し、 U字状流路下端の湾曲 部には前記血球分画収容部が設けられ、 その上部が血漿分画収容部とさ れていることを特徴とする請求項 1または 2の血液分析装置。
24
5 . 請求項 3に記載の血液分析装置にあって、 複数の溝流路の他端の 各々は血漿案内流路と血漿抨量用血漿溜めとキヤピラリバルブと各ド ライケミストリー用試薬導入流路がその順番で直列に接続され、 複数の 溝流路の下方側の外側に設けた第 2の回転軸を中心に回転し、 遠心力に より血漿分画収容部から血漿が、 各血漿案内流路と各血漿案内流路と各 血漿抨量用血漿溜めと各キヤビラリバルブを経て各ドライケミストリ 一用試薬導入流路に導入することを特徴とする血液分析装置。
6 . 請求項 4の血液分析装置にあって、 ϋ字状流路の他端の流路に複 数の分岐した血液搬送案内流路が設けられ、 当該各流路は血液溜めと秤 量用血漿溜めとキヤビラリバルブと当該血漿抨量用血漿溜めと血漿導 入用流路がその順番で直列に接続され、 血漿導入用流路の直下に血漿展 開層が設けられ、 当該血漿展開層の直下に垂直方向に一致して接合され た血嫫展開層と同面積の複数の孔を設けた領域を有する基板と当該孔 基板の直下に設けられた血漿展開層と同面積のドライケミストリー試 薬注入比色測定用流路がこの順番で接合されたことにより形成された 積層基板を、 U字状流路と略直交方向で、 当該流路から見て基板の 外側に位置する第 2の回転軸を中心に回転させ、 遠心力により U字状流 路内の血漿をドライケミストリー試薬注入比色測定用流路に導入する ことを特徴とする血液分析装置。
7 . 請求項 5または 6の血流分析装置の抨量用血漿溜めにあって、 当 該血漿溜めの側壁に廃棄血漿搬送案内流路とそれに連結した廃棄血漿 溜めを設けたことを特徴とする 5または 6の血液分析装置。
8 . 前記ドライケミストリー用試薬を収める流路へ当該試薬の注入口 と排出口を設けたことを特徴とする請求項 5または 6の血液分析装置。
9 . 前記ドライケミストリー試薬比色測定用流路にあっては、 長手方 向の流路の両端は 45度の壁が設けられ、 その全内部には金属が塗布さ れ、 45度の壁基板の下部または上部から垂直に 45度の壁の近傍に光導 入用と射出用フアイパーが導入されたことを特徴とする請求項 6の血
25 液分析装置。
1 0 . 前記ドライケミストリー試薬比色測定用流路にあっては、 その 内部に金属を塗布され、長手方向の流路の両端の壁には流路軸と一致し た両方向から光導入用と射出用ファイバーが導入されたことを特徴と する請求項 6の血液分析装置。
1 1 . 前記ドライケミストリー試薬比色測定用流路にあっては、 血漿 と反応してドライケミストリー試薬を含有したゲルが膨潤する容積を 有することを特徴とする請求項 6の血液分析装置。
1 2 . 前記ドライケミストリ一試薬比色測定用流路にあっては、 同一 の容積を有することを特徴とする請求項 6の血液分析装置。
1 3 . 前記ドライケミストリー試薬比色測定用流路にあっては、 アン モニァガス発生用ドライケミストリ一試薬流路の基板と多数の孔を設 けた基板とアンモニアガス検出用発生用発色材導入比色測定用流路は、 この順番で垂直方向に一致して積層され、 アンモニアガス発生用ドライ ケミストリ一試薬流路と多数の孔を設け領域とアンモニアガス検出用 発生用発色材導入比色測定用流路は、 同面積を有し、 更に他の項目の検 出用流路がアンモニア発生用流路と同一基板内に設けたことを特徴と する請求項 6の血液分析装置。
1 4 . ドライケミストリー試薬を用いた比色法センサーと電気化学セ ンサ一が積層基板から構成された血液分析装置に設けられたことを特 徵とする請求項 1の血液分析装置。
26
PCT/JP2005/015376 2004-08-18 2005-08-18 血液分析装置 WO2006019182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/660,162 US20080138890A1 (en) 2004-08-18 2005-08-18 Blood Analysis Apparatus
DE112005001985T DE112005001985T5 (de) 2004-08-18 2005-08-18 Vorrichtung zur Blutanalyse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004238910A JP2006058093A (ja) 2004-08-18 2004-08-18 血液分析装置
JP2004-238910 2004-08-18

Publications (1)

Publication Number Publication Date
WO2006019182A1 true WO2006019182A1 (ja) 2006-02-23

Family

ID=35907564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015376 WO2006019182A1 (ja) 2004-08-18 2005-08-18 血液分析装置

Country Status (4)

Country Link
US (1) US20080138890A1 (ja)
JP (1) JP2006058093A (ja)
DE (1) DE112005001985T5 (ja)
WO (1) WO2006019182A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454664B (zh) * 2006-05-24 2013-08-21 国立大学法人京都大学 血浆分离用微流路

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1733040B1 (en) * 2004-04-02 2010-09-08 DSM IP Assets B.V. Filamentous fungal mutants with improved homologous recombination efficiency
US20070027383A1 (en) * 2004-07-01 2007-02-01 Peyser Thomas A Patches, systems, and methods for non-invasive glucose measurement
JP4660768B2 (ja) * 2006-03-28 2011-03-30 国立大学法人 筑波大学 微小分析装置及び微少試料の分析方法
WO2007116909A1 (ja) * 2006-04-04 2007-10-18 Panasonic Corporation 試料液分析用パネル
DE102007038773A1 (de) 2007-08-16 2009-03-12 Zf Friedrichshafen Ag Verfahren zur Durchführung einer zugkraftunterbrochenen Schaltung bei einem parallelen Hybridfahrzeug
JP2009063462A (ja) * 2007-09-07 2009-03-26 Sony Corp 光学測定装置及び微粒子解析装置
KR101339118B1 (ko) 2008-02-19 2014-01-02 한국과학기술원 유체 테스트 장치
JP5219869B2 (ja) * 2009-02-05 2013-06-26 興和株式会社 マイクロ化学チップ装置
JP5549361B2 (ja) * 2010-05-07 2014-07-16 住友ベークライト株式会社 マイクロ流路デバイス
JP2012013552A (ja) * 2010-06-30 2012-01-19 Brother Ind Ltd 検査対象受体
JP5728217B2 (ja) * 2010-12-14 2015-06-03 ローム株式会社 マイクロチップおよびそれを用いた検査または分析方法
US10175254B2 (en) 2013-07-16 2019-01-08 Palo Alto Health Sciences, Inc. Methods and systems for quantitative colorimetric capnometry
AU2015295983B2 (en) * 2014-08-01 2020-04-30 Tasso, Inc. Devices, systems and methods for gravity-enhanced microfluidic collection, handling and transferring of fluids
US10779757B2 (en) * 2014-08-01 2020-09-22 Tasso, Inc. Devices, systems and methods for gravity-enhanced microfluidic collection, handling and transferring of fluids
CN106501499B (zh) 2015-09-07 2019-12-17 埃克西亚斯医药有限公司 可移动测量单元
WO2017127248A1 (en) * 2016-01-18 2017-07-27 The Board Of Trustees Of The Leland Stanford Junior University Paperfuge: an integrated paper-based centrifugation and microfluidics platform for low-cost diagnostics
DE102016121764A1 (de) * 2016-11-14 2018-05-17 Testo SE & Co. KGaA Mikrofluidische Verarbeitungskammer und zugehöriges Verfahren
JP6950956B2 (ja) * 2017-12-28 2021-10-13 国立研究開発法人産業技術総合研究所 アッセイ装置
JP6950955B2 (ja) * 2017-12-28 2021-10-13 国立研究開発法人産業技術総合研究所 アッセイ装置
WO2020090581A1 (ja) * 2018-10-30 2020-05-07 アルプスアルパイン株式会社 流路プレート、分析装置及び分析方法
CN110124758B (zh) * 2019-05-12 2024-03-19 南京岚煜生物科技有限公司 微流控芯片的进样腔及单指标微流控芯片
USD975312S1 (en) 2020-02-14 2023-01-10 Beckman Coulter, Inc. Reagent cartridge
WO2021206752A1 (en) * 2020-04-08 2021-10-14 Indiana Biosciences Research Institute, Inc. System and method for sensing, capture and release of biomolecules or cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337546A (ja) * 1997-10-23 1999-12-10 Kdk Corp 余剰液溜めを有する毛細管により液体試料を分析する試験具
JP2001258868A (ja) * 2000-03-15 2001-09-25 Jun Kikuchi 血液分析方法ならびに装置
JP2001264315A (ja) * 2000-03-15 2001-09-26 Arkray Inc 固体成分分離能を有する試験片
WO2003001964A2 (en) * 2001-06-29 2003-01-09 International Business Machines Corporation Measurement testing of blood specimens
JP2004325184A (ja) * 2003-04-23 2004-11-18 Arkray Inc 円形検体分析用具
JP2005114438A (ja) * 2003-10-03 2005-04-28 National Institute For Materials Science チップの使用方法及び検査チップ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572210A (ja) * 1991-02-05 1993-03-23 Hitachi Ltd 自動分析装置および自動分析方法
US5589399A (en) * 1994-10-21 1996-12-31 First Medical, Inc. System and method for plasma separation and measurement
US6540962B1 (en) * 1997-03-03 2003-04-01 Kyoto Daiichi Kagaku Co., Ltd. Testing instrument for analyzing liquid sample
US5919711A (en) * 1997-08-07 1999-07-06 Careside, Inc. Analytical cartridge
WO1999044508A1 (en) * 1998-03-06 1999-09-10 Spectrx, Inc. Integrated poration, harvesting and analysis device, and method therefor
JP2003083958A (ja) * 2001-09-11 2003-03-19 Jun Kikuchi 血液分析装置ならびに血液分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337546A (ja) * 1997-10-23 1999-12-10 Kdk Corp 余剰液溜めを有する毛細管により液体試料を分析する試験具
JP2001258868A (ja) * 2000-03-15 2001-09-25 Jun Kikuchi 血液分析方法ならびに装置
JP2001264315A (ja) * 2000-03-15 2001-09-26 Arkray Inc 固体成分分離能を有する試験片
WO2003001964A2 (en) * 2001-06-29 2003-01-09 International Business Machines Corporation Measurement testing of blood specimens
JP2004325184A (ja) * 2003-04-23 2004-11-18 Arkray Inc 円形検体分析用具
JP2005114438A (ja) * 2003-10-03 2005-04-28 National Institute For Materials Science チップの使用方法及び検査チップ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454664B (zh) * 2006-05-24 2013-08-21 国立大学法人京都大学 血浆分离用微流路

Also Published As

Publication number Publication date
DE112005001985T5 (de) 2007-07-12
US20080138890A1 (en) 2008-06-12
JP2006058093A (ja) 2006-03-02

Similar Documents

Publication Publication Date Title
WO2006019182A1 (ja) 血液分析装置
CN1751239B (zh) 血液分析装置及血液分析方法
FI81677B (fi) Membrankyvett.
CA2297965C (en) Analytical cartridge
JP4178169B2 (ja) 測定精度を改善するための改良サイホン
FI102216B (fi) Kyvetti
CN108463711A (zh) 用于检测全血样品中的游离血红蛋白的光学传感器
JP7183294B2 (ja) 多孔質膜センサ素子
CN105890927A (zh) 一种尿液分析系统及其尿液分析方法
CA2507323A1 (en) Diagnostic whole blood and plasma apparatus
CN102072951B (zh) 反应卡匣、检测装置及检测方法
US10514354B2 (en) Biosensor structures for improved point of care testing and methods of manufacture thereof
CN210787394U (zh) 微流控芯片及包含该微流控芯片的体外检测装置
CN111774104A (zh) 微流控芯片及体外检测装置
KR20130119742A (ko) 생화학 분석 카트리지
CN110586209A (zh) 微流控芯片及包含该微流控芯片的体外检测装置
JP2014232023A (ja) 分析チップ
US9999884B2 (en) Disposable cartridge
CN114829909A (zh) 传感器组件和多孔膜传感器元件
EP3493908B1 (en) Device and method for liquid analysis to detect biomarkers
JP2007333716A (ja) 分離・秤量チップならびにその使用方法
CN210787395U (zh) 一种微流控芯片及含有该微流控芯片的体外检测装置
WO2018209418A1 (en) Disposable cartridge
EP3574318B1 (en) Vertical flow assay device for detecting glucose concentration in a fluid sample
JP3895307B2 (ja) 対象物質の定量方法及び定量チップ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050019853

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005001985

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 11660162

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC, FORM 1205A OF 19-06-2007

122 Ep: pct application non-entry in european phase

Ref document number: 05775124

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5775124

Country of ref document: EP