WO2006018942A1 - 磁気ロータリエンコーダ用パルサーリング - Google Patents

磁気ロータリエンコーダ用パルサーリング Download PDF

Info

Publication number
WO2006018942A1
WO2006018942A1 PCT/JP2005/012988 JP2005012988W WO2006018942A1 WO 2006018942 A1 WO2006018942 A1 WO 2006018942A1 JP 2005012988 W JP2005012988 W JP 2005012988W WO 2006018942 A1 WO2006018942 A1 WO 2006018942A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
holder
pulsar ring
rotary encoder
magnetized
Prior art date
Application number
PCT/JP2005/012988
Other languages
English (en)
French (fr)
Inventor
Takehiro Nakagawa
Naoto Kobayashi
Original Assignee
Nok Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corporation filed Critical Nok Corporation
Priority to EP05759931A priority Critical patent/EP1780515A1/en
Priority to KR1020077004888A priority patent/KR20070035110A/ko
Priority to US11/660,544 priority patent/US20070257668A1/en
Publication of WO2006018942A1 publication Critical patent/WO2006018942A1/ja
Priority to US12/797,552 priority patent/US20100245007A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a pulsar ring attached to a rotating body in a magnetic rotary encoder that detects the rotation of the rotating body.
  • FIG. 9 shows an example of a pulsar ring 100 for a magnetic rotary encoder according to the prior art.
  • (A) is a half-sectional view cut along a plane passing through the axis, and (B) is B in (A). It is an arrow view of a direction.
  • the norcer ring 100 is attached to a rotating body (not shown) (for example, a rotating shaft), and is made of a magnetic metal and attached to the rotating body (not shown) in the cylindrical portion 101b on the inner periphery.
  • the magnetized layer 102 integrally joined to the disk portion 10 la of the holder 101.
  • the magnetized layer 102 is a rubber-like elastic material mixed with magnetic powder and formed into a disk shape with a uniform thickness on the circumference.
  • the N pole and the S pole are alternately magnetized in the circumferential direction. Has been.
  • the noise ring 100 constitutes a magnetic rotary encoder together with a magnetic sensor 110 disposed in a non-rotating state so as to be close to and opposite to the magnetized layer 102 in the axial direction. That is, in this magnetic rotary encoder, when the norcer ring 100 rotates integrally with the rotating body, the magnetic sensor 110 force alternately passes the N pole and the S pole of the magnetized layer 102 of the pulsar ring 100 through the front surface of the detection surface 111. As a result, a signal having a waveform corresponding to the magnetic field is output, so that the rotation of the rotating body can be measured by counting the pulses (see, for example, Patent Document 1).
  • Patent Document 1 JP 2002-131082
  • the magnetic layer 1 of the pulsar ring 100 is used for the purpose of ignition timing control or the like.
  • a rotation angle measurement origin for detecting a specific position, such as the top dead center of the piston, is provided at one place in the circumferential direction of 02.
  • Such a rotation angle measurement origin is conventionally provided at one place in the circumferential direction, as shown in FIG. 9 (B), in the radial direction or in the circumferential direction. It is formed by providing portions 102a having different magnetization pitches or non-magnetized portions.
  • the present invention has been made in view of the above points, and its technical problem is to provide a norcer ring for a magnetic rotary encoder provided with a rotation angle origin portion that does not depend on the magnetization pitch. There is.
  • a pulsar ring for a magnetic rotary encoder is provided with a rubber-like elastic material or a synthetic material on an annular holder attached to a rotating body.
  • a magnetic material mixed with a resin powder and a magnetic layer that is multipolarly magnetized at a predetermined pitch in the circumferential direction is physically joined, and at the joint of the holder with the magnetized layer.
  • a part having a different cross-sectional shape from the other part is formed in a part in the circumferential direction.
  • a portion having a different cross-sectional shape is a raised portion, a punched portion or a punched portion of the holder toward the magnetized layer side. It consists of a depression on the opposite side to the magnetized layer.
  • the strength of the magnetized magnetic field is increased in this portion by forming the joint with the magnetized layer of the holder in a cross-sectional shape that is partially different in the circumferential direction. Since it is different from other parts, a singular point is created in the output waveform for each rotation, and it becomes the rotation angle measurement origin for detecting a specific position.
  • a magnetic rotary encoder norcer ring according to the invention of claim 3 is mounted on a rotating body.
  • a magnetized layer that is magnetically mixed with a rubber-like elastic material or a synthetic resin material and is magnetically polarized at a predetermined pitch in the circumferential direction is integrally joined to the annular holder.
  • a part having a different cross-sectional shape from the other part is formed in a part of the magnetic layer in the circumferential direction.
  • the pulsar ring for a magnetic rotary encoder according to the invention of claim 4 is the pulsar ring according to claim 3, wherein the portions having different cross-sectional shapes are relatively thin-walled portions formed in the magnetized layer. A thick part, a recessed part, or a protruding part force is also obtained.
  • the rotation angle is not provided by means of providing a portion having a different magnetization pitch or a non-magnetized portion at one place in the circumferential direction. Since the measurement origin is formed, a pulsar ring having the rotation angle measurement origin can be provided at low cost. In addition, since the shape of the holder is different at the rotation angle measurement origin, the rotation angle measurement origin can be visually confirmed.
  • the rotation angle can be achieved without providing a portion having a different magnetization pitch or a non-magnetized portion in one circumferential direction. Since the measurement origin is formed, a pulsar ring having the rotation angle measurement origin can be provided at low cost. In addition, since the shape of the magnetic layer is different at the rotation angle measurement origin, the rotation angle measurement origin can be visually confirmed.
  • portions having different shapes of the magnetized layer according to claim 3 are formed integrally with the holder.
  • FIG. 1 shows a first embodiment of a pulsar ring for a magnetic rotary encoder according to the present invention.
  • FIG. 1 (A) is a half sectional view cut along a plane passing through the axis, and FIG. 1 (B) is (A).
  • FIG. 1 (A) is a half sectional view cut along a plane passing through the axis
  • FIG. 1 (B) is (A).
  • FIG. 2 is an explanatory diagram showing an output waveform obtained by norser ring of the first embodiment.
  • FIG. 3 shows a second embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention, in which (A) is a half sectional view cut along a plane passing through the axis, and (B) is a B direction in (A).
  • FIG. 3 shows a second embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention, in which (A) is a half sectional view cut along a plane passing through the axis, and (B) is a B direction in (A).
  • FIG. 4 shows a third embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention.
  • FIG. 4 (A) is a half sectional view cut along a plane passing through the axis, and FIG. 4 (B) is a direction B in FIG. FIG.
  • FIG. 5 shows a fourth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention, in which (A) is a half sectional view cut along a plane passing through the axis, and (B) is a B direction in (A).
  • FIG. 5 shows a fourth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention, in which (A) is a half sectional view cut along a plane passing through the axis, and (B) is a B direction in (A).
  • FIG. 6 is an explanatory diagram showing an output waveform by norther ringing according to a fourth embodiment.
  • FIG. 7 shows a fifth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention.
  • FIG. 7 (A) is a half sectional view cut along a plane passing through the axis, and FIG. 7 (B) is a direction B in FIG. FIG.
  • FIG. 8 shows a sixth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention, in which (A) is a half sectional view cut along a plane passing through the axis, and (B) is a B direction in (A).
  • FIG. 8 shows a sixth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention, in which (A) is a half sectional view cut along a plane passing through the axis, and (B) is a B direction in (A).
  • FIG. 9 An example of a pulsar ring for a magnetic rotary encoder according to the prior art.
  • (A) is a half sectional view cut along a plane passing through the axis, and
  • (B) is a view in the direction of arrow B in (A). It is.
  • FIG. 1 shows a first embodiment of a pulsar ring for a magnetic rotary encoder according to the present invention.
  • (A) is a half sectional view cut along a plane passing through an axis, and (B) is in (A).
  • FIG. 2 is a view taken in the direction of the arrow B, and FIG. 2 is an explanatory diagram showing an output waveform by the pulsar ring of the first embodiment.
  • a pulsar ring 1 shown in FIG. 1 is a material in which a magnetic powder is mixed with a rubber-like elastic material or a synthetic resin material in an annular holder 11 attached to the outer periphery of a rotating body such as a crankshaft (not shown).
  • the magnetized layer 12 in which N poles and S poles are alternately magnetized (multipole magnetized) at a predetermined pitch in the circumferential direction is joined physically.
  • the holder 11 is manufactured by punching and pressing a magnetic metal plate such as a steel plate, and expands substantially perpendicularly to the cylindrical portion ib and its axial one end force axis.
  • the magnetized layer 12 is formed into a disc shape and is integrally joined to one side in the axial direction of the disc portion 11 a of the holder 11. Ie this pulsar ring 1
  • the holder 11 pre-applied with a vulcanizing adhesive is set in a predetermined mold (not shown), and the mold is clamped between the inner surface of the mold and the disk portion 1 la of the holder 11.
  • the magnetized layer 12 is integrated with the disk part 11a at the same time as molding. Vulcanized and bonded, and this magnetized layer 12 is magnetized with multiple poles at equal pitches in the circumferential direction using a magnetizing head (not shown).
  • the disk portion 11a of the holder 11 corresponds to the joint portion described in claim 1, and in a part in the circumferential direction thereof, as a portion having a different shape from the other portion in claim 1, A raised portion 11c struck to the magnetized layer 12 side is formed, and the other portion of the disk portion 11a is formed in a flat plate shape.
  • the raised portion 11c is formed at the same time when the holder 11 is manufactured by punching and pressing a magnetic metal plate such as a steel plate. Since the end face of the magnetized layer 12 is formed in a planar shape substantially perpendicular to the axis, the portion corresponding to the raised portion 1 lc in the disc portion 1 la of the holder 11 is thinner than the other portions. It becomes a thin-walled part 12a.
  • the raised portion 11c in the disk portion 11a of the holder 11 is not limited to the force formed on the pair of magnetic poles and in the force output region.
  • the pulsar ring 1 configured as described above constitutes a magnetic rotary encoder together with the magnetic sensor 2 disposed in a non-rotating state so as to be close to the magnetized layer 12 in the axial direction. That is, in this magnetic rotary encoder, when the pulsar ring 1 rotates together with the rotating body, the magnetic sensor 2 alternates between the north and south poles of the magnetized layer 12 of the pulsar ring 1 in front of its detection surface 2a. , The signal of the waveform corresponding to the magnetic field is output.
  • the magnetic layer 12 of the magnetic layer 12 of the pulsar ring 1 has a small magnetic field strength at the thin portion 12 a corresponding to the raised portion 1 lc of the disc portion 11 a of the holder 11. Therefore, the waveform of the output signal from the magnetic sensor 2 has a singular point p with a small signal level as shown in FIG. 2 every time the thin portion 12a passes through the front surface of the detection surface 2a of the magnetic sensor 2. Since this is formed, this can be used as the rotation angle measurement origin. Therefore, it is not necessary to manufacture a dedicated magnetizing head for each item, as in the case where the rotation angle measurement origin is set at different locations in the circumferential direction with different radial lengths and pitches. Pulsar ring 1 can be manufactured at low cost.
  • the rotation angle measurement origin is a portion corresponding to the raised portion 11c of the disk portion 11a of the holder 11, its position can be confirmed by visual observation. Therefore, when the pulsar ring 1 is installed, it is easy to align in the circumferential direction, and it is possible to prevent misassembly.
  • FIG. 3 shows a second embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention.
  • A is a half sectional view cut along a plane passing through the axis
  • B Is the arrow view of direction B in (A).
  • the difference from the first embodiment shown in FIG. 3 is formed as a part having a different shape from the other part.
  • the punched portion l id of the disk portion 11a of the holder 11 is formed by punching a magnetic metal plate such as a steel plate at the same time when the holder 11 is manufactured by press forming. In addition, it is formed into a disk shape whose axial thickness is uniform on the circumference.
  • the punched portion l id in the disc portion 11a of the holder 11 is not limited to the force formed in the region spanning the pair of magnetic poles in the example shown in FIG. 3 (B).
  • the norcer ring 1 having the configuration shown in FIG. 3 also constitutes a magnetic rotary encoder.
  • the magnetic sensor 2 1S is detected.
  • a signal having a waveform corresponding to the magnetic field is output.
  • the disc portion 11a of the holder 11 is placed between the N pole and the S pole. Force that forms a magnetic circuit that passes through The portion 12b of the magnetized layer 12 corresponding to the punched portion l id of the disc portion 11a of the holder 11 does not form a magnetic circuit that passes through the disc portion 11a. The strength is small. Therefore, the waveform of the output signal from the magnetic sensor 2 is similar to that shown in FIG. 2 every time the portion 12b corresponding to the punched portion l id passes through the front surface of the detection surface 2a of the magnetic sensor 2.
  • the rotation angle measurement origin is different for each item as in the case where the rotation angle measurement origin is set at different locations in the circumferential direction with different radial lengths and pitches. Therefore, the pulsar ring 1 can be manufactured at a low cost.
  • the rotation angle measurement origin is a part corresponding to the punched part l id of the disk part 11a of the holder 11, the position can be confirmed visually. Therefore, when the pulsar ring 1 is assembled, the circumferential alignment is easy, and the occurrence of misassembly can be prevented.
  • FIG. 4 shows a third embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention.
  • (A) is a half sectional view cut along a plane passing through the axis; Is the arrow view of direction B in (A).
  • the difference from the first and second embodiments described above is that a part of the disk portion 11a of the holder 11 in the circumferential direction is charged.
  • a depressed part l ie is formed on the opposite side to the magnetized layer 12, and a concave part 12c corresponding to the depressed part l ie is formed in the magnetized layer 12. Is the point that was formed.
  • the recessed portion 1 le of the disk portion 1 la of the holder 11 is formed at the same time when the holder 11 is manufactured by punching press molding of a magnetic metal plate such as a steel plate.
  • the magnetized layer 12 has a uniform thickness on the entire circumference including the recess 12c.
  • the depressed portion l ie in the disk portion 11a of the holder 11 is not limited to the force formed in the force region in the pair of magnetic poles in the example shown in FIG. 4B.
  • the norcer ring 1 having the configuration shown in FIG. 4 also rotates the pulsar ring 1 integrally with the rotating body to cause the magnetic sensor 2 to move to the front surface of the detection surface 2a.
  • the N pole and S pole of the magnetized layer 12 of pulsar ring 1 pass alternately, a signal with a waveform corresponding to the magnetic field is output.
  • the gap in the axial direction between the magnetized layer 12 of the pulsar ring 1 and the detection surface 2a of the magnetic sensor 2 is large in the recessed portion 12c corresponding to the depressed portion l ie in the disk portion 11a of the holder 11. Therefore, in this recess 12c, the magnetic field strength acting on the detection surface 2a of the magnetic sensor 2 is reduced. For this reason, the waveform of the output signal from the magnetic sensor 2 has a low signal level every time the recess 12c passes through the front surface of the detection surface 2a of the magnetic sensor 2, as in FIG. Since a different point P is formed, this can be used as the rotation angle measurement origin.
  • the rotation angle measurement origin is a portion corresponding to the depressed portion l ie of the disk portion 11a of the holder 11 and the concave portion 12c of the magnetic layer 12 corresponding thereto, and the position thereof is visually confirmed. Can be. Therefore, when the norcer ring 1 is assembled, it is easy to align in the circumferential direction, and it is possible to prevent erroneous assembly.
  • FIG. 5 shows a fourth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention, wherein (A) is a half sectional view cut along a plane passing through the axis, and (B).
  • Fig. 6A is an arrow view in the B direction in (A), and
  • Fig. 6 is an explanatory diagram showing an output waveform by pulsar ring of the fourth form.
  • the difference from the above-described forms is that a part of the holder 11 in the circumferential direction of the disk part 11a is different from the part in the claim 1.
  • a depressed portion l ie punched out on the opposite side of the magnetized layer 12 is formed, and the magnetized layer 12 is formed in a planar shape whose end face is substantially perpendicular to the axis. Therefore, the portion corresponding to the depressed portion l ie is a thick portion 12d formed thicker than the other portions.
  • the depressed portion 1 le of the disk portion 1 la of the holder 11 is formed at the same time when the holder 11 is manufactured by punching press molding of a magnetic metal plate such as a steel plate.
  • the depressed portion l ie is formed in a region extending over a pair of magnetic poles, but is not limited to this.
  • the magnetic sensor 2 causes the front surface of the detection surface 2a of the noiser ring 1 having the configuration shown in FIG.
  • the N pole and S pole of the magnetized layer 12 of G 1 pass alternately, a waveform signal corresponding to the magnetic field is output.
  • the magnetized layer 12 of the pulsar ring 1 has a large magnetic field strength in the thick portion 12d corresponding to the depressed portion 1le in the disc portion 11a of the holder 11.
  • the magnetic sensor 2 In the waveform of the force signal, a singular point p having a large signal level as shown in FIG. 6 is formed every time the thick portion 12d passes through the front surface of the detection surface 2a of the magnetic sensor 2. This can be used as the rotation angle measurement origin. Therefore, there is no need to manufacture a dedicated magnetizing head for each item, as in the case where the rotation angle measurement origin is determined by the part where the radial magnetization length is different at one circumferential direction and the magnetization pitch is different. Pulsar ring 1 can be manufactured at low cost.
  • the rotation angle measurement origin is a portion corresponding to the depressed portion l ie of the disk portion 11a of the holder 11, the position can be visually confirmed. Therefore, when the pulsar ring 1 is installed, it is easy to align in the circumferential direction, and it is possible to prevent misassembly.
  • FIG. 7 shows a fifth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention.
  • (A) is a half sectional view cut along a plane passing through the axis, and (B). Is the arrow view of direction B in (A).
  • the disk portion 11a of the holder 11 has a disk shape whose entire circumference is substantially perpendicular to the axis.
  • an axial protrusion is formed on a part of the circumferential direction of the magnetized layer 12 integrally joined to the disk part 11a as a part having a different shape from the other part in claim 3. (It may be paraphrased as meat part) 12e is formed.
  • the protrusion 12e of the magnetized layer 12 is not limited to the force formed in the region extending over the pair of magnetic poles in the example shown in FIG. 7B.
  • the magnetic sensor 2 when the pulser ring 1 is rotated integrally with the rotating body, the magnetic sensor 2 also moves the front surface of the detection surface 2a to the pulser ring 1 in the configuration of FIG. When the N and S poles of the magnetized layer 12 pass alternately, a waveform signal corresponding to the magnetic field is output.
  • the magnetic layer 12 of the pulsar ring 1 is thick in the magnetization direction at the protrusion 12e, so that the magnetic sensor 2 is detected by a force with a relatively large magnetic field strength. Since the axial gap with the surface 2a is also reduced at the protrusion 12e, the magnetic field intensity acting on the detection surface 2a of the magnetic sensor 2 is increased. For this reason, the wave of the output signal from the magnetic sensor 2 Each time the protrusion 12e passes through the front surface of the detection surface 2a of the magnetic sensor 2, a large signal level and a singular point p are formed as in FIG. It can be the origin.
  • pulsar ring 1 can be manufactured at low cost.
  • the rotation angle measurement origin is a portion corresponding to the protrusion 12e of the magnetized layer 12, the position can be visually confirmed. Therefore, when the pulsar ring 1 is assembled, it is easy to align in the circumferential direction, and it is possible to prevent erroneous assembly.
  • FIG. 8 shows a sixth embodiment of the pulsar ring for a magnetic rotary encoder according to the present invention.
  • (A) is a half sectional view cut along a plane passing through the axis. Is the arrow view of direction B in (A).
  • the disk portion 11a of the holder 11 has a disk shape whose entire circumference is substantially perpendicular to the axis.
  • an axial concave part is formed as a part having a different shape from the other part in Claim 3. In other words, 12f is formed.
  • the recess 12f of the magnetized layer 12 is not limited to the force formed in the region extending over the pair of magnetic poles in the example shown in Fig. 8B.
  • the magnetic sensor 2 causes the front surface of the detection surface 2a to be pulsed 1
  • a waveform signal corresponding to the magnetic field is output.
  • Pulsar ring 1 can be manufactured at low cost.
  • the rotation angle measurement origin is a portion corresponding to the concave portion 12f of the magnetic layer 12, the position can be visually confirmed. Therefore, when the pulsar ring 1 is assembled, it is easy to align in the circumferential direction, and it is possible to prevent erroneous assembly.
  • the present invention is applied to the case where the magnetized layer 12 is integrally formed in a disk shape on the disk portion 11a of the holder 11 has been described.
  • the cylindrical part or flange is also attached to the outer peripheral surface of the cylindrical part that is attached to the rotating body at the peripheral disk part (flange part) and is integrally joined to the outer peripheral surface of the cylindrical part.
  • the present invention can be applied by forming a part having a different cross-sectional shape from the other part in a part of the shape of the magnetized layer in the circumferential direction.
  • the pulsar ring of the magnetic rotary encoder that detects the rotation of the rotating body can have a structure in which a rotation angle origin portion that does not depend on the magnetization pitch is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 回転体に装着される環状のホルダ11に、ゴム状弾性材料又は合成樹脂材料に磁性粉末を混合した材料からなり円周方向所定のピッチで多極着磁された着磁層12が一体的に接合され、ホルダ11の着磁層12との接合部11aにおける円周方向一部に、隆起部11c等による、他部と断面形状の異なる部分を形成する。この部分では磁界の大きさが異なることによる信号レベルの特異点が形成されることになるので、これを回転角計測原点とする。

Description

明 細 書
磁気ロータリエンコーダ用パルサーリング
技術分野
[0001] 本発明は、回転体の回転を検出する磁気ロータリエンコーダにおいて回転体に取 り付けられるパルサーリングに関する。
背景技術
[0002] 図 9は、従来技術による磁気ロータリエンコーダ用パルサーリング 100の一例を示 すもので、(A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の 矢視図である。この図 9に示されるように、ノルサーリング 100は、不図示の回転体( 例えば回転軸)に取り付けられるもので、磁性体金属で製作され内周の円筒部 101b において不図示の回転体に装着される環状のホルダ 101と、このホルダ 101の円盤 部 10 laに一体的に接合された着磁層 102からなる。着磁層 102は、磁性粉体を混 入したゴム状弾性材料で肉厚が円周上均一な円盤状に成形されたものであって、 N 極と S極が円周方向交互に着磁されている。
[0003] ノ レサ一リング 100は、着磁層 102に軸方向に近接対向して非回転状態に配置さ れた磁気センサ 110と共に磁気ロータリエンコーダを構成するものである。すなわち この磁気ロータリエンコーダは、ノルサーリング 100が回転体と一体に回転すると、磁 気センサ 110力 その検出面 111の正面をパルサーリング 100の着磁層 102の N極 と S極が交互に通過することによって、その磁界に対応した波形の信号を出力するの で、このパルスのカウントによって、回転体の回転を計測することができる(例えば特 許文献 1参照)。
特許文献 1 :特開 2002— 131082
[0004] ここで、例えばエンジンのクランク角検出のためにクランクシャフトに装着される磁気 ロータリエンコーダでは、点火時期制御等の目的で、パルサーリング 100の着磁層 1
02の円周方向一箇所に、例えばピストンの上死点等、特定のポジションを検出する ための回転角計測原点を設ける。そして、このような回転角計測原点は、従来、図 9 ( B)に示されるように、円周方向 1箇所に、径方向への着磁長さあるいは円周方向の 着磁ピッチの異なる部分 102a又は非着磁部などを設けることによって形成されてい る。
[0005] しかしながら、円周方向 1箇所で着磁長さゃ着磁ピッチの異なる部分 102aを有す るパルサーリング 100を製作するには、そのサイズ等、品目毎に専用の着磁ヘッドを 製作する必要があり、し力もこのような着磁ヘッドは製作コストが高くなるといった問題 がある。また、着磁長さゃ着磁ピッチの異なる部分 102aによるポジション検出部は、 目視によって確認することができないため、パルサーリング 100の組み込みに際して 誤組を発生するおそれがあった。
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、着 磁ピッチによらない回転角原点部を設けた磁気ロータリエンコーダ用ノルサーリング を提供することにある。
課題を解決するための手段
[0007] 上述した技術的課題を有効に解決するための手段として、請求項 1の発明に係る 磁気ロータリエンコーダ用パルサーリングは、回転体に装着される環状のホルダに、 ゴム状弾性材料又は合成樹脂材料に磁性粉末を混合した材料カゝらなり円周方向所 定のピッチで多極着磁された着磁層がー体的に接合され、前記ホルダの前記着磁 層との接合部における円周方向一部に、他部と断面形状の異なる部分を形成したも のである。
[0008] また、請求項 2の発明に係る磁気ロータリエンコーダ用パルサーリングは、請求項 1 に記載の構成において、断面形状の異なる部分が、着磁層側へのホルダの隆起部、 打ち抜き部又は着磁層と反対側への陥没部からなるものである。
[0009] 請求項 1又は 2の構成によれば、ホルダの着磁層との接合部を、円周方向一部が 異なる断面形状とすることによって、この部分では着磁された磁界の強度が他の部分 と異なるものとなるので、出力波形に、 1回転毎に特異点が作り出され、特定のポジシ ョンを検出するための回転角計測原点となる。
[0010] 請求項 3の発明に係る磁気ロータリエンコーダ用ノルサーリングは、回転体に装着 される環状のホルダに、ゴム状弾性材料又は合成樹脂材料に磁性粉末を混合した 材料カゝらなり円周方向所定のピッチで多極着磁された着磁層が一体的に接合され、 前記着磁層における円周方向一部に、他部と断面形状の異なる部分を形成したもの である。
[0011] また、請求項 4の発明に係る磁気ロータリエンコーダ用パルサーリングは、請求項 3 に記載において、断面形状の異なる部分が、着磁層に形成された相対的な薄肉部、 相対的な厚肉部、凹部又は突部力もなるものである。
[0012] 請求項 3又は 4の構成によれば、着磁層の形状が円周方向一部で異なる部分では 、着磁層の肉厚や磁気センサとの対向距離が他の部分と異なり、このため出力波形 に、 1回転毎に特異点が作り出され、特定のポジションを検出するための回転角計測 原点となる。
発明の効果
[0013] 請求項 1の発明に係る磁気ロータリエンコーダ用パルサーリングによれば、円周方 向 1箇所に着磁ピッチの異なる部分や非着磁部を設けるといった手段によらずに、回 転角計測原点が形成されるので、回転角計測原点を有するパルサーリングを、安価 に提供することができる。また、回転角計測原点ではホルダの形状が異なるので、回 転角計測原点を目視によって確認することができる。
[0014] 請求項 2の発明に係る磁気ロータリエンコーダ用パルサーリングによれば、請求項 1 に記載されたホルダの形状の異なる部分を、このホルダを金属板の打ち抜きプレス によって製作する際に、同時に形成することができる。
[0015] 請求項 3の発明に係る磁気ロータリエンコーダ用パルサーリングによれば、円周方 向 1箇所に着磁ピッチの異なる部分や非着磁部を設けるといった手段によらずに、回 転角計測原点が形成されるので、回転角計測原点を有するパルサーリングを、安価 に提供することができる。また、回転角計測原点では着磁層の形状が異なるので、回 転角計測原点を目視によって確認することができる。
[0016] 請求項 4の発明に係る磁気ロータリエンコーダ用パルサーリングによれば、請求項 3 に記載された着磁層の形状の異なる部分を、この着磁層をホルダに一体的に成形す る際に、金型形状あるいは請求項 1又は 2のようなホルダ形状によって同時に形成す ることがでさる。
図面の簡単な説明
[0017] [図 1]本発明に係る磁気ロータリエンコーダ用パルサーリングの第一の形態を示すも ので、(A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の矢 視図である。
[図 2]第一の形態のノルサーリングによる出力波形を示す説明図である。
[図 3]本発明に係る磁気ロータリエンコーダ用パルサーリングの第二の形態を示すも ので、(A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の矢 視図である。
[図 4]本発明に係る磁気ロータリエンコーダ用パルサーリングの第三の形態を示すも ので、(A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の矢 視図である。
[図 5]本発明に係る磁気ロータリエンコーダ用パルサーリングの第四の形態を示すも ので、(A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の矢 視図である。
[図 6]第四の形態のノルサーリングによる出力波形を示す説明図である。
[図 7]本発明に係る磁気ロータリエンコーダ用パルサーリングの第五の形態を示すも ので、(A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の矢 視図である。
[図 8]本発明に係る磁気ロータリエンコーダ用パルサーリングの第六の形態を示すも ので、(A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の矢 視図である。
[図 9]従来技術による磁気ロータリエンコーダ用パルサーリングの一例を示すもので、 (A)は軸心を通る平面で切断した半断面図、(B)は (A)における B方向の矢視図で ある。
符号の説明
[0018] 1 パルサーリング
11 ホノレダ 11a 円盤部
l ib 円筒部
11c 隆起部
l id 打ち抜き部
l ie 陥没部
12 着磁層
12a 薄肉部
12b 打ち抜き部と対応する部分
12c 凹部
12d 厚肉部
12e 突部
12f 凹部
2 磁気センサ
2a 検出面
発明を実施するための最良の形態
[0019] 以下、本発明に係る磁気ロータリエンコーダ用パルサーリングの好ましい実施の形 態を、図面を参照しながら説明する。まず図 1は、本発明に係る磁気ロータリエンコー ダ用パルサーリングの第一の形態を示すもので、 (A)は軸心を通る平面で切断した 半断面図、(B)は (A)における B方向の矢視図であり、図 2は、第一の形態のパルサ 一リングによる出力波形を示す説明図である。
[0020] 図 1に示されるパルサーリング 1は、不図示のクランクシャフト等、回転体の外周に 装着される環状のホルダ 11に、ゴム状弾性材料又は合成樹脂材料に磁性粉末を混 合した材料力 なり N極と S極が円周方向所定のピッチで交互に着磁 (多極着磁)さ れた着磁層 12がー体的に接合されたものである。
[0021] 詳しくは、ホルダ 11は、鋼板などの磁性体金属板の打ち抜きプレス成形により製作 されたものであって、円筒部 l ibと、その軸方向一端力 軸心に対して略垂直に展開 した円盤部 11aとからなる。着磁層 12は円盤状に成形されると共に、ホルダ 11の円 盤部 11aの軸方向一側に一体的に接合されている。すなわち、このパルサーリング 1 は、予め加硫接着剤を塗布したホルダ 11を所定の金型 (不図示)内にセットし、型締 め状態にぉ 、て金型内面とホルダ 11の円盤部 1 laとの間に画成された環状のキヤビ ティ内に、磁性粉末を混合した未加硫ゴム材料等を充填して加熱'加圧することによ つて、着磁層 12を、成形と同時に円盤部 11aに一体的に加硫接着し、この着磁層 12 に、不図示の着磁ヘッドを用いて、円周方向等ピッチで多極着磁したものである。
[0022] ホルダ 11の円盤部 11aは、請求項 1に記載された接合部に相当するものであって、 その円周方向一部には、請求項 1における他部と形状の異なる部分として、着磁層 1 2側へ打ち出された隆起部 11cが形成されており、円盤部 11aにおけるその他の部 分は、平板状に形成されている。前記隆起部 11cは、鋼板などの磁性体金属板の打 ち抜きプレス成形によってホルダ 11を製作する際に、同時に形成されたものである。 そして、着磁層 12は、端面が軸心に対して略垂直な平面状に形成されているので、 ホルダ 11の円盤部 1 laにおける隆起部 1 lcと対応する部分は、他の部分より薄肉に 形成された薄肉部 12aとなって ヽる。
[0023] なお、ホルダ 11の円盤部 11aにおける隆起部 11cは、図 1 (B)に示される例では、 一対の磁極にまた力 ¾領域に形成されている力 これには限定されない。
[0024] 上記構成のパルサーリング 1は、着磁層 12に軸方向に近接対向して非回転状態に 配置された磁気センサ 2と共に磁気ロータリエンコーダを構成するものである。すなわ ちこの磁気ロータリエンコーダは、パルサーリング 1が回転体と一体に回転すると、磁 気センサ 2が、その検出面 2aの正面をパルサーリング 1の着磁層 12の N極と S極が 交互に通過することによって、その磁界に対応した波形の信号を出力する。
[0025] ここで、パルサーリング 1の着磁層 12は、ホルダ 11の円盤部 11aにおける隆起部 1 lcと対応する薄肉部 12aでは磁界強度が小さい。このため、磁気センサ 2からの出力 信号の波形には、磁気センサ 2の検出面 2aの正面を薄肉部 12aが通過する毎に、図 2に示されるような、信号レベルの小さい特異点 pが形成されることになるので、これを 回転角計測原点とすることができる。したがって、円周方向 1箇所で径方向の着磁長 さや着磁ピッチの異なる部分によって回転角計測原点とする場合のように、品目毎に 専用の着磁ヘッドを製作する必要がな 、ので、パルサーリング 1を低コストで製作す ることがでさる。 [0026] また、回転角計測原点は、ホルダ 11の円盤部 11aの隆起部 11cに相当する部分で あるから、その位置を目視によって確認することができる。したがってパルサーリング 1 の組み込みの際に、円周方向の位置合わせが容易であり、誤組の発生も防止するこ とがでさる。
[0027] 次に、図 3は、本発明に係る磁気ロータリエンコーダ用パルサーリングの第二の形 態を示すもので、 (A)は軸心を通る平面で切断した半断面図、(B)は (A)における B 方向の矢視図である。
[0028] 図 3に示される第二の形態によるノルサーリング 1において、図 1に示される第一の 形態と異なるところは、ホルダ 11の円盤部 11aの円周方向一部に、請求項 1における 他部と形状の異なる部分として、打ち抜き部 l idが形成された点にある。
[0029] ホルダ 11の円盤部 11aの打ち抜き部 l idは、鋼板などの磁性体金属板の打ち抜き プレス成形によってホルダ 11を製作する際に、同時に打ち抜き形成されたものであり 、着磁層 12は、軸方向肉厚が円周上均一な円盤状に成形されている。
[0030] なお、ホルダ 11の円盤部 11aにおける打ち抜き部 l idは、図 3 (B)に示される例で は、一対の磁極にまたがる領域に形成されている力 これには限定されない。
[0031] 図 3の構成のノルサーリング 1も、第一の形態と同様に、磁気ロータリエンコーダを 構成するものであって、回転体と一体にパルサーリング 1が回転すると、磁気センサ 2 1S その検出面 2aの正面をパルサーリング 1の着磁層 12の N極と S極が交互に通過 することによって、その磁界に対応した波形の信号を出力する。
[0032] ここで、パルサーリング 1の着磁層 12のうち、ホルダ 11の円盤部 11aにおける打ち 抜き部 l id以外の部分では、 N極と S極の間で、ホルダ 11の円盤部 11aを通る磁気 回路が形成される力 着磁層 12のうち、ホルダ 11の円盤部 11aの打ち抜き部 l idと 対応する部分 12bでは、円盤部 11aを通る磁気回路が形成されないので、この部分 12bでは磁界強度が小さい。このため、磁気センサ 2からの出力信号の波形には、打 ち抜き部 l idと対応する部分 12bが磁気センサ 2の検出面 2aの正面を通過する毎に 、図 2と同様、信号レベルの小さい特異点 pが形成されることになるので、これを回転 角計測原点とすることができる。したがって、円周方向 1箇所で径方向の着磁長さや 着磁ピッチの異なる部分によって回転角計測原点とする場合のように、品目毎に専 用の着磁ヘッドを製作する必要がな 、ので、パルサーリング 1を低コストで製作するこ とがでさる。
[0033] また、回転角計測原点は、ホルダ 11の円盤部 11aの打ち抜き部 l idに相当する部 分であるから、その位置を目視によって確認することができる。したがってパルサーリ ング 1の組み込みの際に、円周方向の位置合わせが容易であり、誤組の発生も防止 することができる。
[0034] 次に、図 4は、本発明に係る磁気ロータリエンコーダ用パルサーリングの第三の形 態を示すもので、 (A)は軸心を通る平面で切断した半断面図、(B)は (A)における B 方向の矢視図である。
[0035] 図 4に示される第三の形態によるノルサーリング 1において、先に説明した第一及 び第二の形態と異なるところは、ホルダ 11の円盤部 11aの円周方向一部に、請求項 1における他部と形状の異なる部分として、着磁層 12と反対側へ打ち出された陥没 部 l ieが形成されると共に、着磁層 12に、前記陥没部 l ieと対応して凹部 12cが形 成された点にある。
[0036] ホルダ 11の円盤部 1 laの陥没部 1 leは、鋼板などの磁性体金属板の打ち抜きプレ ス成形によってホルダ 11を製作する際に、同時に形成されたものである。着磁層 12 は、凹部 12cを含む全周において肉厚が円周上均一に形成されている。
[0037] なお、ホルダ 11の円盤部 11aにおける陥没部 l ieは、図 4 (B)に示される例では、 一対の磁極にまた力 ¾領域に形成されている力 これには限定されない。
[0038] 図 4の構成のノルサーリング 1も、先に説明した第一及び第二の形態と同様、回転 体と一体にパルサーリング 1が回転すると、磁気センサ 2が、その検出面 2aの正面を パルサーリング 1の着磁層 12の N極と S極が交互に通過することによって、その磁界 に対応した波形の信号を出力する。
[0039] ここで、パルサーリング 1の着磁層 12と、磁気センサ 2の検出面 2aとの軸方向のギ ヤップは、ホルダ 11の円盤部 11aにおける陥没部 l ieと対応する凹部 12cにおいて 大きくなつているため、この凹部 12cでは、磁気センサ 2の検出面 2aに作用する磁界 強度が小さくなる。このため、磁気センサ 2からの出力信号の波形には、磁気センサ 2 の検出面 2aの正面を凹部 12cが通過する毎に、図 2と同様、信号レベルの小さい特 異点 Pが形成されることになるので、これを回転角計測原点とすることができる。した がって、円周方向 1箇所で径方向の着磁長さゃ着磁ピッチの異なる部分によって回 転角計測原点とする場合のように、品目毎に専用の着磁ヘッドを製作する必要がな いので、パルサーリング 1を低コストで製作することができる。
[0040] また、回転角計測原点は、ホルダ 11の円盤部 11aの陥没部 l ie及びこれに対応す る着磁層 12の凹部 12cに相当する部分であるから、その位置を目視によって確認す ることができる。したがってノルサーリング 1の組み込みの際に、円周方向の位置合 わせが容易であり、誤組の発生も防止することができる。
[0041] 次に、図 5は、本発明に係る磁気ロータリエンコーダ用パルサーリングの第四の形 態を示すもので、 (A)は軸心を通る平面で切断した半断面図、(B)は (A)における B 方向の矢視図であり、図 6は、第四の形態のパルサーリングによる出力波形を示す説 明図である。
[0042] 図 5に示される第四の形態によるノ レサ一リング 1において、先に説明した各形態と 異なるところは、ホルダ 11の円盤部 11aの円周方向一部に、請求項 1における他部と 形状の異なる部分として、着磁層 12と反対側へ打ち出された陥没部 l ieが形成され 、着磁層 12は、端面が軸心に対して略垂直な平面状に形成されることによって、前 記陥没部 l ieと対応する部分が、他の部分より厚肉に形成された厚肉部 12dとなつ ている点にある。
[0043] ホルダ 11の円盤部 1 laの陥没部 1 leは、鋼板などの磁性体金属板の打ち抜きプレ ス成形によってホルダ 11を製作する際に、同時に形成されたものである。なお、この 陥没部 l ieは、図 5 (B)に示される例では、一対の磁極にまたがる領域に形成されて いるが、これには限定されない。
[0044] 図 5の構成のノ レサ一リング 1も、先に説明した各形態と同様、回転体と一体にパ ルサーリング 1が回転すると、磁気センサ 2が、その検出面 2aの正面をパルサーリン グ 1の着磁層 12の N極と S極が交互に通過することによって、その磁界に対応した波 形の信号を出力する。
[0045] ここで、パルサーリング 1の着磁層 12は、ホルダ 11の円盤部 11aにおける陥没部 1 leと対応する厚肉部 12dでは磁界強度が大きい。このため、磁気センサ 2からの出 力信号の波形には、磁気センサ 2の検出面 2aの正面を厚肉部 12dが通過する毎に 、図 6に示されるような信号レベルの大きい特異点 pが形成されることになるので、こ れを回転角計測原点とすることができる。したがって、円周方向 1箇所で径方向の着 磁長さゃ着磁ピッチの異なる部分によって回転角計測原点とする場合のように、品目 毎に専用の着磁ヘッドを製作する必要がないので、パルサーリング 1を低コストで製 作することができる。
[0046] また、回転角計測原点は、ホルダ 11の円盤部 11aの陥没部 l ieに相当する部分で あるから、その位置を目視によって確認することができる。したがってパルサーリング 1 の組み込みの際に、円周方向の位置合わせが容易であり、誤組の発生も防止するこ とがでさる。
[0047] 次に、図 7は、本発明に係る磁気ロータリエンコーダ用パルサーリングの第五の形 態を示すもので、 (A)は軸心を通る平面で切断した半断面図、(B)は (A)における B 方向の矢視図である。
[0048] 図 7に示される第五の形態によるノ レサ一リング 1において、先に説明した各形態と 異なるところは、ホルダ 11の円盤部 11aが、全周を軸心と略垂直な円盤状に形成さ れる一方、この円盤部 11aに一体的に接合された着磁層 12の円周方向一部に、請 求項 3における他部と形状の異なる部分として、軸方向の突部 (厚肉部と言い換えて も良い) 12eが形成された点にある。
[0049] なお、着磁層 12の突部 12eは、図 7 (B)に示される例では、一対の磁極にまたがる 領域に形成されている力 これには限定されない。
[0050] 図 7の構成のノ ルサーリング 1も、先に説明した各形態と同様、回転体と一体にパ ルサーリング 1が回転すると、磁気センサ 2が、その検出面 2aの正面をパルサーリン グ 1の着磁層 12の N極と S極が交互に通過することによって、その磁界に対応した波 形の信号を出力する。
[0051] ここで、パルサーリング 1の着磁層 12は、その突部 12eでは着磁方向に対して厚肉 であるために磁界強度が相対的に大きいば力りでなぐ磁気センサ 2の検出面 2aとの 軸方向のギャップも、突部 12eにおいて小さくなつているため、磁気センサ 2の検出 面 2aに作用する磁界強度が大きくなる。このため、磁気センサ 2からの出力信号の波 形には、磁気センサ 2の検出面 2aの正面を突部 12eが通過する毎に、図 6と同様、 信号レベルの大き 、特異点 pが形成されることになるので、これを回転角計測原点と することができる。したがって、円周方向 1箇所で径方向の着磁長さゃ着磁ピッチの 異なる部分によって回転角計測原点とする場合のように、品目毎に専用の着磁へッ ドを製作する必要がな 、ので、パルサーリング 1を低コストで製作することができる。
[0052] また、回転角計測原点は、着磁層 12の突部 12eに相当する部分であるから、その 位置を目視によって確認することができる。したがってパルサーリング 1の組み込みの 際に、円周方向の位置合わせが容易であり、誤組の発生も防止することができる。
[0053] 次に、図 8は、本発明に係る磁気ロータリエンコーダ用パルサーリングの第六の形 態を示すもので、 (A)は軸心を通る平面で切断した半断面図、(B)は (A)における B 方向の矢視図である。
[0054] 図 8に示される第六の形態によるノ レサ一リング 1において、先に説明した各形態と 異なるところは、ホルダ 11の円盤部 11aが、全周を軸心と略垂直な円盤状に形成さ れる一方、この円盤部 11aに一体的に接合された着磁層 12の円周方向一部に、請 求項 3における他部と形状の異なる部分として、軸方向の凹部(薄肉部と言い換えて も良い) 12fが形成された点にある。
[0055] なお、着磁層 12の凹部 12fは、図 8 (B)に示される例では、一対の磁極にまたがる 領域に形成されている力 これには限定されない。
[0056] 図 8の構成のノ ルサーリング 1も、先に説明した各形態と同様、回転体と一体にパ ルサーリング 1が回転すると、磁気センサ 2が、その検出面 2aの正面をパルサーリン グ 1の着磁層 12の N極と S極が交互に通過することによって、その磁界に対応した波 形の信号を出力する。
[0057] ここで、パルサーリング 1の着磁層 12は、その凹部 12fでは着磁方向に対して薄肉 であるために磁界強度が相対的に小さいば力りでなぐ磁気センサ 2の検出面 2aとの 軸方向のギャップが、凹部 12fにおいて大きくなつているため、磁気センサ 2の検出 面 2aに作用する磁界強度が小さくなる。このため、磁気センサ 2からの出力信号の波 形には、磁気センサ 2の検出面 2aの正面を凹部 12fが通過する毎に、図 2と同様、信 号レベルの小さい特異点 pが形成されることになるので、これを回転角計測原点とす ることができる。したがって、円周方向 1箇所で径方向の着磁長さゃ着磁ピッチの異 なる部分によって回転角計測原点とする場合のように、品目毎に専用の着磁ヘッドを 製作する必要がないので、パルサーリング 1を低コストで製作することができる。
[0058] また、回転角計測原点は、着磁層 12の凹部 12fに相当する部分であるから、その 位置を目視によって確認することができる。したがってパルサーリング 1の組み込みの 際に、円周方向の位置合わせが容易であり、誤組の発生も防止することができる。
[0059] なお、上述した実施の形態は、いずれも、着磁層 12がホルダ 11の円盤部 11aに円 盤状に一体成形されたものについて本発明を適用した例を説明したが、例えば内周 の円盤部 (フランジ部)において回転体に取り付けられ、その外周に形成された円筒 部の外周面に、円筒状の着磁層を一体的に接合したものについても、前記円筒部、 あるいは円筒状の着磁層の円周方向一部に、他部と断面形状の異なる部分を形成 して、本発明を適用することができる。
産業上の利用可能性
[0060] 本発明は、回転体の回転を検出する磁気ロータリエンコーダのパルサーリングを、 着磁ピッチによらない回転角原点部を設けた構造とすることができる。

Claims

請求の範囲
[1] 回転体に装着される環状のホルダ(11)に、ゴム状弾性材料又は合成樹脂材料に 磁性粉末を混合した材料からなり円周方向所定のピッチで多極着磁された着磁層 (
12)がー体的に接合され、前記ホルダ (11)の前記着磁層 ( 12)との接合部( 1 la)に おける円周方向一部に、他部と断面形状の異なる部分を形成したことを特徴とする 磁気ロータリエンコーダ用パルサーリング。
[2] 断面形状の異なる部分が、着磁層(12)側へのホルダ(11)の隆起部(11c)、打ち 抜き部(1 Id)、又は着磁層 (12)と反対側への陥没部(1 le)力 なることを特徴とす る請求項 1に記載の磁気ロータリエンコーダ用パルサーリング。
[3] 回転体に装着される環状のホルダ(11)に、ゴム状弾性材料又は合成樹脂材料に 磁性粉末を混合した材料からなり円周方向所定のピッチで多極着磁された着磁層 ( 12)がー体的に接合され、前記着磁層(12)における円周方向一部に、他部と断面 形状の異なる部分を形成したことを特徴とする磁気ロータリエンコーダ用パルサーリ ング。
[4] 断面形状の異なる部分が、着磁層 (12)に形成された相対的な薄肉部(12a)、相 対的な厚肉部(12d)、凹部(12c, 12f)又は突部(12e)からなることを特徴とする請 求項 3に記載の磁気ロータリエンコーダ用パルサーリング。
PCT/JP2005/012988 2004-08-17 2005-07-14 磁気ロータリエンコーダ用パルサーリング WO2006018942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05759931A EP1780515A1 (en) 2004-08-17 2005-07-14 Pulser ring for magnetic rotary encoder
KR1020077004888A KR20070035110A (ko) 2004-08-17 2005-07-14 자기 로터리 엔코더용 펄서 링
US11/660,544 US20070257668A1 (en) 2004-08-17 2005-07-14 Pulsar Ring for Magnetic Rotary Encoder
US12/797,552 US20100245007A1 (en) 2004-08-17 2010-06-09 Pulsar ring for magnetic rotary encoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004237017A JP4605352B2 (ja) 2004-08-17 2004-08-17 磁気ロータリエンコーダ用パルサーリング
JP2004-237017 2004-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/797,552 Division US20100245007A1 (en) 2004-08-17 2010-06-09 Pulsar ring for magnetic rotary encoder

Publications (1)

Publication Number Publication Date
WO2006018942A1 true WO2006018942A1 (ja) 2006-02-23

Family

ID=35907334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012988 WO2006018942A1 (ja) 2004-08-17 2005-07-14 磁気ロータリエンコーダ用パルサーリング

Country Status (6)

Country Link
US (2) US20070257668A1 (ja)
EP (1) EP1780515A1 (ja)
JP (1) JP4605352B2 (ja)
KR (1) KR20070035110A (ja)
CN (1) CN100582675C (ja)
WO (1) WO2006018942A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336984B2 (ja) * 2005-04-01 2009-09-30 Nok株式会社 磁気式ロータリエンコーダのパルサーリング
DE102007025322B4 (de) * 2007-05-31 2015-08-06 Infineon Technologies Ag Sensorvorrichtung
JP2009097924A (ja) * 2007-10-15 2009-05-07 Denso Corp 回転角検出装置
FR2930988B1 (fr) * 2008-05-06 2010-06-18 Snr Roulements Sa Codeur comprenant un moyen d'indexation d'une singularite par rapport a l'armature
DE102008059774A1 (de) * 2008-12-01 2010-06-02 Continental Teves Ag & Co. Ohg Magnetischer Encoder
JP2012159495A (ja) * 2011-01-10 2012-08-23 Aisan Ind Co Ltd 位置センサ
JP5840374B2 (ja) * 2011-03-31 2016-01-06 オリエンタルモーター株式会社 アブソリュートエンコーダ装置及びモータ
DE102011078717A1 (de) * 2011-07-06 2013-01-10 Continental Teves Ag & Co. Ohg Einrichtung zur Messung von Winkel und Winkelgeschwindigkeit oder Weg und Geschwindigkeit
US8838367B1 (en) * 2013-03-12 2014-09-16 Mcalister Technologies, Llc Rotational sensor and controller
JP6656286B2 (ja) * 2018-03-29 2020-03-04 本田技研工業株式会社 クランク角検出装置
KR101939393B1 (ko) * 2018-05-17 2019-01-16 엘지이노텍 주식회사 토크 마그네트 이탈 방지구조
JP6800192B2 (ja) * 2018-09-28 2020-12-16 本田技研工業株式会社 内燃機関の回転数検出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633515U (ja) * 1979-08-23 1981-04-02
JPS576316A (en) * 1980-06-14 1982-01-13 Toyota Motor Corp Crank angle detector for internal combustion engine
JPS58117411A (ja) * 1982-01-06 1983-07-13 Hitachi Ltd 磁気デイスクの構造
JP2003130685A (ja) * 2001-10-22 2003-05-08 Nsk Ltd エンコーダの検査方法及び検査用着磁装置
JP2003270257A (ja) * 2002-03-13 2003-09-25 Koyo Seiko Co Ltd パルサーリングおよびセンサー付き軸受ユニット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836451C2 (de) * 1998-08-12 2000-05-31 Baermann Max Gmbh Hochgefülltes Kunststoffteil
EP1612563A3 (en) * 2001-09-11 2009-12-09 JTEKT Corporation Magnetic pulser ring
JP2004077318A (ja) * 2002-08-20 2004-03-11 Uchiyama Mfg Corp 磁気エンコーダ
JP2004101312A (ja) * 2002-09-09 2004-04-02 Ntn Corp 原点付き磁気エンコーダおよび軸受

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633515U (ja) * 1979-08-23 1981-04-02
JPS576316A (en) * 1980-06-14 1982-01-13 Toyota Motor Corp Crank angle detector for internal combustion engine
JPS58117411A (ja) * 1982-01-06 1983-07-13 Hitachi Ltd 磁気デイスクの構造
JP2003130685A (ja) * 2001-10-22 2003-05-08 Nsk Ltd エンコーダの検査方法及び検査用着磁装置
JP2003270257A (ja) * 2002-03-13 2003-09-25 Koyo Seiko Co Ltd パルサーリングおよびセンサー付き軸受ユニット

Also Published As

Publication number Publication date
CN101006325A (zh) 2007-07-25
JP4605352B2 (ja) 2011-01-05
US20070257668A1 (en) 2007-11-08
EP1780515A1 (en) 2007-05-02
US20100245007A1 (en) 2010-09-30
KR20070035110A (ko) 2007-03-29
JP2006058011A (ja) 2006-03-02
CN100582675C (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
WO2006018942A1 (ja) 磁気ロータリエンコーダ用パルサーリング
EP1729046B1 (en) Sealing device with rotation detecting element
US8353519B2 (en) Sealing device
US7508193B2 (en) Encoder
KR101211051B1 (ko) 트리거 플레이트가 부착된 댐퍼
US7633289B2 (en) Displacement encoder, device comprising such an encoder and method of manufacturing such an encoder
WO2007114019A1 (ja) ロータリエンコーダ用パルサーリング
US8405388B2 (en) Rotation angle sensor having a permanent magnet deviated from a center of a rotation shaft
JP2004101312A (ja) 原点付き磁気エンコーダおよび軸受
JP2005308559A (ja) 磁気式ロータリエンコーダ用パルサーリング
US8552714B2 (en) Rotation angle sensor with inclined magnets of uniform plate thickness
JP4924821B2 (ja) 磁気式ロータリエンコーダのパルサーリング
WO2006001176A1 (ja) センサ付き密封装置
JP6581386B2 (ja) 回転検出要素付きプーリ
JPH06180206A (ja) 回転検出装置
JP2006064490A (ja) ロータリエンコーダ付き密封装置
JP2009041986A (ja) 磁気エンコーダ付き密封装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005759931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580027940.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11660544

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077004888

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077004888

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005759931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11660544

Country of ref document: US