WO2006012827A1 - Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen - Google Patents

Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen Download PDF

Info

Publication number
WO2006012827A1
WO2006012827A1 PCT/DE2005/001187 DE2005001187W WO2006012827A1 WO 2006012827 A1 WO2006012827 A1 WO 2006012827A1 DE 2005001187 W DE2005001187 W DE 2005001187W WO 2006012827 A1 WO2006012827 A1 WO 2006012827A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
rotor blades
blades according
state
rotor
Prior art date
Application number
PCT/DE2005/001187
Other languages
English (en)
French (fr)
Inventor
Peter Volkmer
Original Assignee
Igus - Innovative Technische Systeme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35045364&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006012827(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Igus - Innovative Technische Systeme Gmbh filed Critical Igus - Innovative Technische Systeme Gmbh
Priority to US11/572,835 priority Critical patent/US7883319B2/en
Priority to EP05763640.9A priority patent/EP1792077B1/de
Priority to AU2005269159A priority patent/AU2005269159B8/en
Priority to BRPI0513995-3A priority patent/BRPI0513995A/pt
Priority to CN2005800255989A priority patent/CN101023266B/zh
Publication of WO2006012827A1 publication Critical patent/WO2006012827A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • G01H1/006Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/333Noise or sound levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/81Microphones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method and a device for monitoring the condition of rotor blades on wind power plants, wherein body sound of at least one rotor blade is measured by means of one or more motion sensors arranged on at least one rotor blade, the output signals of which are wirelessly transmitted to an evaluation unit, which comprises a central computer unit and memory units and where a frequency spectrum is determined from the signals by means of suitable methods, the frequency spectrum is stored with m the evaluation unit, defined damage spectra and special conditions corresponding and paramet ⁇ s elected reference spectra and from the state of the rotor blade is determined
  • Rotor blades are among the most heavily loaded components of a wind power plant. They are designed to withstand the enormous centrifugal forces, wind turbulences, turbulences, solar radiation, various temperatures and ice accumulation over several years in continuous operation in order to enable economic operation of the wind power plant Reason is the early detection of damage in both the aerodynamic shell of the rotor blade and its supporting components inside the rotor blade required because a number of damage, especially cracks m the shell, layer detachments, Gurt- and web separations and flaking can on This can be remedied before major or even total damage occurs to the entire system.
  • Various monitoring systems use a device for detecting loads of the rotor blades by sensors or strain gauges m different heavily loaded points of the wind turbine are provided to harmful vibrations or strains due to excessive or non-uniform forces determine.
  • WO 99/57435 describes a wind turbine whose rotor blades each have a triaxial accelerometer which indicates such accelerations of the aerodynamic shells of the rotor blades, which result from blade and edge vibrations.
  • natural frequencies of the rotor blades can also be estimated from the sensor signals.
  • the object of the invention is to present a method and a device for continuous and individual monitoring of rotor blades on a wind power plant, with which local and external damage and special conditions of the rotor blades causing damage can be recognized early and evaluated preferably automated to be able to influence the operation of the plant.
  • the object is achieved by a method which has the features according to claim 1 and by a device suitable for the method which has the features according to claim 19.
  • the method according to the invention is fundamentally based on the determination of the natural oscillations and the associated harmonics of the spatially extended body of a rotor blade, which characterize this body in accordance with its specific shape and specific mechanical properties.
  • These natural vibrations give a very typical spectrum for each body. If the body changes as a result of internal and / or external damage or changes, such as delamination or cracking, the spectrum changes in such a way that certain forms of oscillation no longer occur or in a different form. Likewise, the spectrum changes if the material properties, for example the modulus of elasticity or the density, change as a result of extreme loads, aging or weathering. In this case, in particular, there is a shift in the typical frequencies.
  • the condition of a rotor blade is determined by measuring a Series of single measurements determines which are combined to a measurement period.
  • the individual measurements can be carried out either by successive measurements of only one sensor, by means of multiple, synchronous sensors or even a combination of both variants. From the signals obtained by the individual measurements, individual spectra are determined and these are accumulated using suitable normalization and weighting methods. Accumulation in turn requires that each individual measurement is triggered with respect to its measurement start to an arbitrary, but fixed for the measurement period rotation angle of the rotor.
  • the accumulation of synchronously determined individual spectra leads to a state spectrum with a greater signal-to-noise ratio and thus to the possibility of determining the state of the rotor blade from the state spectrum with the requisite reproducibility.
  • the number of individual measurements for a condition measurement depends on various factors which determine the signal-to-noise ratio. These can be metrological in nature, but can also depend on the reference spectrometers available or the state of the rotor blade known hitherto.
  • the necessary vibration excitation is carried out during measurements during operation (online measurements) usually by the operation itself and thereby attacking the rotor blade wind.
  • the structure-borne noise of those components is measured to which the sensor is attached.
  • the vibration measurements of the individual rotor blades also allow at the same time the known resonance and turbulence monitoring by monitoring the growth of the amplitudes of certain frequencies and, in the event of overloading.
  • a threshold value is exceeded, a special state is closed.
  • the measurements for monitoring the rotor blades are made continuously or as periodically recurring individual measurements on the wind turbine in operation. However, they can also be performed on stationary rotor blades (offline measurements).
  • the structure-borne sound measurement of a rotor blade is multidimensional with several sensors, which are preferably aligned and synchronized differently. This refinement makes it possible to observe the different vibration directions of a defined vibration state and thus to refine the state determination.
  • the measurement with several sensors on a rotor blade requires only the described synchronization with regard to the angle of rotation of the rotor blade, if the measurements should or can not take place simultaneously but with a time offset.
  • an advantageous embodiment of the method provides that the vibration characterization is carried out in a suitable Koordina ⁇ tensystem, preferably a spherical coordinate system.
  • the triggering of the individual measurements of a measurement period on a uniform rotation angle can be done according to the invention both hardware and software.
  • the hardware-dependent triggering is preferably carried out by means of a further sensor which transmits current rotational angle information to a sensor supply and measured-value preprocessing unit regulating the measurement, so that the start of all individual measurements is timely and unimportant. is linked to the rotational movement of the rotor.
  • the software-side triggering merely uses a section of a larger, freely selectable measuring range which comprises at least the number of rotations which corresponds to the number of selected individual measurements.
  • the actual triggering of each individual measurement of a measurement period to a uniform rotation angle thus takes place in the evaluation unit in that each individual measurement is selected by periodicity-related start criteria from the larger measurement ranges of one or more measurements.
  • the synchronization can be replaced by other suitable hardware or software measures.
  • the state of the rotor blade is determined by comparing the state spectrum determined from the accumulated individual spectra with the reference spectra stored in an evaluation unit, which are parameterized and defined damage states and special states of the special rotor blade or at least the rotor blade type mark. Since those material characteristics which determine the natural frequencies of the rotor blade are also very strongly dependent on meteorological and plant data, it proves to be particularly advantageous if the parameterization of the reference spectra is effected by meteorological and / or plant-specific data and for this purpose at the wind turbine further sensors for measurement meteorological and / or plant-specific measured values and / or plant-specific Schwingungszustän ⁇ de are arranged. If the monitoring of several neighboring wind turbines takes place, it is of course also possible to use the meteorological measured values of a correspondingly equipped wind turbine for the others.
  • the parameters of the reference spectra are currently determined in parallel to the structure-borne sound measurement by further measurements and transmitted to the evaluation unit become.
  • the comparison can be limited to the spectra with similar current reference parameters, which is particularly important in those cases when, because of missing reference spectra of special rotor blade types, the condition spectra must be subjected to statistical evaluation or equivalence considerations.
  • the comparison of the measured state spectra with the reference spectra can take place by means of suitable pattern recognition methods and thus their automated classification, as is known from computer science.
  • suitable statistical methods can also be advantageous for the assignment of the measured frequency spectra to the reference spectra, since an exact match of the spectra to be compared will practically not occur.
  • a further embodiment of the invention provides that the natural frequency values determined from the spectral analysis as well as their amplitudes are represented in vectors or matrices.
  • the Störsignale can also be determined by a comparative spectral analysis of the three rotor blades 1 preferably synchronously measured state spectra and used for correction in the determination of a Hurzu ⁇ condition on a rotor blade, since the disturbance entry in contrast to the change in state of a rotor blade uniformly in all three Rotor blades takes place and leads to the same change of all three Zu ⁇ stdspektren.
  • synchronized measurements of all rotor blades of a wind turbine are carried out and the change in state of a rotor blade is determined from the difference between the accumulated frequency spectra of all rotor blades and the comparison of the difference spectrum with reference spectra.
  • a so-called baseline is continuously determined which represents the system-specific influences on the state spectra and with which the measured state spectra can be continuously corrected on the fly.
  • the reference spectra are subdivided into at least two state groups and by means of the spectral comparison the state of a rotor blade is assigned to one of the state groups.
  • the two main state groups could be, for example, "substantial” and “irrelevant” deviations from the normal state, with only the considerable deviations requiring immediate repair or even interruption of the operation.
  • the insignificant deviations permit a continuation of the operation and, if necessary, shorter test cycles or the classification of the repair in the nearest possible, z. B. low-wind period.
  • further subdivisions of the deviations can be made for these decision variants, for example according to the location of the Changes, on the support or aerodynamic system, or accordingly different special states, ice accumulation or Reso ⁇ nance.
  • a very critical special condition is the ice accumulation on the rotor blades, on the one hand because of the greatly increasing load due to the uneven weight of the ice and on the other hand because of the stresses that are transmitted from the ice layer on the aerodynamic shell of the rotor blade.
  • the relaxation of the ice and sometimes local tearing off of the ice sheet from the rotor blade shell can be detected by stochastic, pulsed sound events, which are sometimes perceived as clicks in the audible frequency range.
  • the harmonics in the accumulated frequency spectrum and in particular the harmonics of the rotational frequency of the rotor blades in the accumulated spectrum are determined in accordance with a particular embodiment of the invention.
  • the correlation of the sound events with the rotational frequency is attributable to the fact that, in particular during the course of the rotational movement, load changes and associated tearing and impact processes in the ice and thus to the established characteristic harmonic image occur.
  • a further, favorable embodiment of the method provides that, in the case of defined states of a rotor blade in the evaluation unit, which has an output unit, preferably with, corresponding to a favorable design of the device for monitoring the rotor blades a binary output module, which generates a status message, transmits it to the plant control system of the wind power plant and influences the operation of the wind power plant.
  • the state reports are preferably in the form of intrinsically safe and non-intrinsically safe, binary and redundant, status signals ready, which are transferred to the plant control system can take to directly influence the operation of the wind power plant can, if corresponding damage conditions were determined.
  • the influence takes place, for example, in the form of a pitch angle adjustment or else putting the installation out of service, but it can also be a putting into operation of the installation after the completion of ice accumulation.
  • a rotor blade may also be advantageous for a rotor blade to be actively excited by means of a vibration exciter.
  • This is particularly suitable for offline measurements, but can also be used for online measurements, for example, to check a known from previous measurements natural frequency.
  • the active excitation of the respective component for offline measurements takes place with at least one single- or multi-dimensional vibration exciter (actuator), which is suitably arranged on the rotor blade or on an inner component of the rotor blade.
  • the actuator is preferably a so-called shaker with power amplifier, which excites the rotor blade over a relevant frequency range by passing through this frequency range (sweep mode).
  • the control of the vibration excitation is conveniently carried out by a central computer unit.
  • the spectral library does not include a reference spectrum for a specific type of rotor blade or, for other reasons, does not use any of the reference spectra stored for comparison purposes. It is also possible for the reference spectra to be determined from statistically evaluated frequency spectra of preceding body sound measurements of the relevant rotor blade which have been subjected to an equivalence analysis. The state spectrum obtained in this way is subjected to a spectral analysis and the numerical values for the natural frequencies contained in the spectrum, optionally fundamental and harmonic waves, and their amplitudes obtained, the z. B. then be represented in vectors or a matrix. These spectra obtained at the beginning of the use of the rotor blade are combined in the central computer unit.
  • the wireless transmission of the further and preprocessed measuring signals of the sensor takes place by means of radio transmission.
  • the operator of the wind power plant has various possibilities of arranging the evaluation unit, depending on space, accessibility, connection to a further processing system or other criteria.
  • the evaluation unit or at least parts thereof for example, in the nacelle, in the foot of the tower or spatially separated from the wind turbine, according to a particular embodiment of the device as instal ⁇ lated central, several wind turbines evaluation unit, the type of radio transmission used also depends on the distance between the communication partners evaluation unit and sensor supply and measured value preprocessing unit. It should also be taken into account that some of these are time-critical process data, such as resonance monitoring or the detection of ice formation.
  • the sensor or sensors in the interior and / or exterior of the rotor blade are fixedly attached to a surface of the aerodynamic shell and / or to inner components of the rotor blade. Since the monitoring is based on the natural frequencies obtained from accumulated individual spectra follows, it is possible to monitor both the aerodynamic shell and those shell-supporting inner, structural components or other structural elements. Depending on the loading profile of the rotor blade, sensors can be mounted for this purpose, in particular at the critical points of the support frame and the shell, by being firmly connected to their surface. For example, a further embodiment of the device provides that at least one sensor in the lower third of the rotor blade facing the rotor blade root is fastened to a surface of the aerodynamic shell of the rotor blade.
  • the attachment can be carried out by various methods which are suitable for transferring the vibrations to the sensor virtually without damping and at the same time resisting the permanent load.
  • One possible embodiment of the device according to the invention provides, for example, that holders for receiving sensors are arranged in the interior and / or exterior of the rotor blade at various points relevant to vibration. These brackets can be easily attached in the course of assembly of the rotor blade, while the sensors can be mounted later according to the requirements and the further measurement technology of each operator individually and possibly also by the operator himself. In addition, it is possible later to replace or retrofit individual sensors.
  • the sensors are acceleration sensors, since these sensors are predominantly used for vibration measurement, so that there are a wide variety of designs for a wide variety of requirement profiles.
  • vibration sensors can also be used.
  • a one-dimensional sensor is used and the latter has a movement orientation which is essentially perpendicular to the surface. is directed, to which the sensor is attached.
  • the transversal waves of the structure-borne sound of the shell are measured, which have the greatest information content for the subsequent structure-borne noise analysis, so that the one-dimensional measurement with regard to evaluation effort and costs represents a favorable method for the continuous monitoring during operation of the wind turbine ,
  • the measurement by the sensors in the manner already described is preferably to be synchronized for determining the state of a rotor blade, for example by a further trigger sensor suitable for the rotational angle measurements. This makes it possible to look at the different oscillation directions of a defined oscillation state.
  • the ambient temperature of the temperature of the rotor blade and possibly also the temperature of the front side of the temperature of the rear side of the rotor blade differ, so that advantageously the temperature measurement of the rotor blade independently of the measurements of the meteorology by one or more temperature sensors at the
  • Rotor blade can be done. Furthermore, in the case of pitch-controlled systems, the real measurement of the pitch angle is useful by means of a displacement sensor attached to the rotor blade.
  • a database is stored in the evaluation unit as a spectral library with reference spectra of rotor blades with damage-free and defined damage states and special states, which preferably allow fast, selective access. These reference spectra are based on the rotor blade type to be monitored, have a data structure such as the spectrum to be measured and are parameterized with regard to the abovementioned ascertainable meteorological and machine-related measured values and, in turn, arranged according to damage and special conditions. For example, ice accumulation on the rotor blade is a particularly significant special condition.
  • parameterization of the reference spectra is also possible according to data that can currently be provided or stored for ongoing monitoring, such as its angle of attack relative to the shaft (pitch). Angle), the age of the rotor blade, the batch, other manufacturing technical distinctions or similar relevant physikalisch technical parameters.
  • These reference spectra were determined, for example, from measurements on wind turbines on which damage has occurred, by means of offline measurements on undamaged and damaged rotor blades on the ground and or by equivalence considerations.
  • the evaluation unit is connected to a decentralized, remote backup server.
  • Backup servers include the communication data of operators and operators of wind turbines. In case of an incident, the backup server can also send information to this group of people.
  • FIG. 1 shows the schematic overall view of a Windkraft ⁇ plant
  • Fig. 4 is a schematic block diagram of the erfmdungs- gema on device.
  • FIG. 1 shows the overall view of a wind turbine with three rotor blades 1, which are fastened to a hub 2.
  • the hub 2 again passes m a horizontally mounted shaft via the shaft ends in a nacelle 3, which comprises the machine technology not shown in detail and is arranged at the upper end of a tower 4 rotatable about a vertical axis
  • a one-dimensional acceleration sensor 5 is fastened on an inner surface of the large-area, free aerodynamic shell 6 of a rotor blade 1 m at its lower third facing the rotor blade leg 16. He is firmly connected to the aerodynamic shell 6 of the rotor blade 1 by m a permanently glued to the shell 6 retaining plate 7 is screwed.
  • the sensor 5 is connected to a sensor supply and measurement preprocessing unit 11, which is located in the hub 2, via a cable 10 running inside the rotor blade 1.
  • the cable 10 as well as the sensor 5, with a Schutzumhullung against mechanical damage Be ⁇ and a shield against electric fields, which can emanate, for example, lightning discharge systems, protected.
  • the remaining two rotor blades of the wind power plant are each equipped with a further acceleration sensor, which are each connected to the sensor via a further cable.
  • Supply and measurement preprocessing unit 11 are connected.
  • the sensor supply and measurement preprocessing unit 11 is connected by wireless transmission, e.g. B. by means of radio transmission, with a not shown in Fig. 2 evaluation unit 12, which is located in the nacelle 3 or in the foot of the tower 4 and is usually networked via an interface 15 with other computers 26.
  • the device further comprises an operating data 18 and a meteorological module 17, which are also not shown in detail and is located in the nacelle 3, the tower 4 or any other suitable for the detection of this data point.
  • the aerodynamic shell 6 is supported by inner structural members 9.
  • the acceleration sensor 5 is fastened to the inner surface of the aerodynamic shell 6 by means of a retaining plate 7 in such a way that the acceleration direction of the sensor 5 is oriented perpendicular to the retaining plate 7 and thus normal to the aerodynamic shell 6.
  • the required vibration excitation takes place in the online measurements usually by the operation itself and thereby attacking the rotor blade 1 wind.
  • the sensor 5 mounted in the aerodynamic shell 6 of the rotor blade 1 supplies electrical, analogue signals as time-related amplitude signals, which are transmitted via the cables 10 to the sensor supply and measured value sensors.
  • Pre-processing unit 11 are guided in the hub 2.
  • the signals are digitized, the radio transmission to the evaluation unit 12, which has a central computer unit 13 (FIG. 4) and also the Measurement control to ensure a reliable control, regardless of the radio transmission between the sensor supply and measurement preprocessing unit 11 and the central computer unit 13.
  • the evaluation unit 12 which has a central computer unit 13 (FIG. 4) and also the Measurement control to ensure a reliable control, regardless of the radio transmission between the sensor supply and measurement preprocessing unit 11 and the central computer unit 13.
  • a state measurement a plurality of, for example 20, individual measurements are taken in succession and fed to the evaluation unit 12.
  • Each individual measurement is triggered by means of the Sensoréess ⁇ and measured value preprocessing unit 11 with respect to their measurement start to an arbitrary, but uniform for the measurement period of rotation angle 14.
  • the triggering is carried out in the exemplary embodiment by a further, unspecified darge presented sensor, which transmits a rotation angle information for temporal che control to the sensor supply and measured value preprocessing unit 11.
  • a one-dimensional spectrum is obtained by Fourier transformation from the recorded time signals of the individual measurements per rotor blade 1.
  • the individual spectra as Fourier-transformed mappings of the individual measurements are subsequently accumulated, with known normalization and weighting methods being applied to the individual spectra.
  • structure-borne sound signals which are transmitted from the drive train of the wind turbine to the rotor blades 1 are determined and evaluated in a comparable manner with one or preferably a plurality of multidimensional or multidimensional sensors.
  • the spectral changes from the measurements on the rotor blades 1 are corrected with these interference spectra.
  • the state spectrum obtained in this way is subjected to a spectral analysis and the numerical values for the natural frequencies contained in the spectrum, optionally fundamental and harmonic waves, and their amplitudes obtained, the z. B. then be represented in vectors or a matrix.
  • a meteorological module 17 and operating data module 18 current measured values are transmitted to the central computer unit 13, such as temperature of the rotor blade 1, the power of the wind turbine or alternatively the wind speed and Operating time of the respective rotor blade 1.
  • reference spectra related to the rotor blade type are provided, which have a data structure such as the measured spectrum, in the exemplary embodiment as a vector or matrix, and which are parameterized with regard to the aforementioned measurable values and are arranged below them according to damage and special states.
  • These reference spectra were obtained from measurements on wind turbines where damage conditions occurred, by offline measurements on undamaged and damaged rotor blades 1 on the ground and or equivalence considerations.
  • a suitable mathematical statistical method which operates, for example, with defined confidence intervals and further statistical parameters, such as the coefficient of determination, the state spectrum measured online quasi-continuously with respect to the meteorological module 17 and the operating data module 18 and further known, sorted technical-physical parameters, compared with the reference spectra stored in the database under the same parameterization and the current state of the respective rotor blade 1, either normal state 21 or damage or special state 20, determined If a damage or special state 20 is found, further subordinate states can be determined, such as significant 22 and non-significant deviations 23 of the rotor blade state from the normal state. This or another subdivision of the damage states and special states, which takes account of further deviations 24, takes place in accordance with the parameterization of the spectral library 19. Non-assignable state spectra are classified as disturbed, in particular for safety reasons, and can be interpreted by appraisers, if appropriate
  • Each detected state 21 to 24 is transmitted to a Radioactive System 22 and a corresponding status message is generated.
  • the status message is transmitted to an emitter and output unit 27, which is part of the evaluation unit 12 and z B comprises a binary output module via which the status messages can be transferred redundantly, externally and intrinsically safely to the system control system 28.
  • a visualization of the measured data, the stored and the event-related data is also realized via the emitter and output unit 27 or also via the backup server 26, to which an authorized user can have access via a web browser
  • the continuously obtained data of the measuring cycles of the central computer unit 13 are stored at certain fixed periods and during events directly and by means of remote data transmission via a suitable interface 15 m to a backup server 26 independent of the central computer unit 13, which in turn is integrated into a data backup.

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen, wobei mittels eines oder mehrerer am Rotorblatt angeordneter Bewegungssensoren Körperschall gemessen, deren Ausgangssignale in einer Auswerteeinheit mittels geeigneter Methoden ein Frequenzspektrum ermittelt, das Frequenzspektrum mit in der Auswerteeinheit hinterlegten, definierten Schadens- und Sonderzuständen entsprechenden Referenzspektren verglichen und daraus der Zustand des Rotorblattes ermittelt wird. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung darzustellen, mit denen entstehende örtliche innere und äußere Schädigungen und ebenso Schädigungen verursachende Sonderzustände der Rotorblätter frühzeitig zu erkennen und zu bewerten, um vorzugsweise automatisiert Einfluss auf den Betrieb der Anlage nehmen zu können. Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass eine Körperschallmessung aus einer Abfolge von unmittelbar nacheinander durchgeführten Einzelmessungen erfolgt, wobei der Start jeder dieser Einzelmessungen auf einen einheitlichen Drehwinkel des Rotorblattes, bezogen auf die Drehachse des Rotors, getriggert wird und vor dem Vergleich mit den Referenzspektren alle ermittelten Frequenzspektren jeder Einzelmessung akkumuliert werden.

Description

Verfahren und Vorrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung des Zustandes von Rotorblattern an Windkraftanla¬ gen, wobei mittels eines oder mehrerer an zumindest einem Ro¬ torblatt angeordneter Bewegungssensoren Korperschall zumindest eines Rotorblattes gemessen wird, deren AusgangsSignaIe draht- los an eine Auswerteeinheit übertragen werden, welche eine zentrale Rechnereinheit und Speichereinheiten umfasst und wo aus den Signalen mittels geeigneter Methoden ein Frequenzspekt¬ rum ermittelt, das Frequenzspektrum mit m der Auswerteeinheit hinterlegten, definierten Schadens- und Sonderzustanden ent- sprechenden und parametπsierten Referenzspektren verglichen und daraus der Zustand des Rotorblattes ermittelt wird
Rotorblatter gehören mit zu den am höchsten belasteten Kompo¬ nenten einer Windkraftanlage Sie sollen den enormen Fliehkräf¬ ten, Windstromungen, Turbulenzen, Sonnenstrahlung, unterschied- lichsten Temperaturen sowie Eisansatz über mehrere Jahre im Dauerbetrieb standhalten, um einen wirtschaftlichen Betrieb der Windkraftanlage zu ermöglichen Aus diesem Grund ist die früh¬ zeitige Erkennung von Schaden sowohl in der aerodynamischen Schale des Rotorblattes als auch an seinen tragenden Bauteilen im Inneren des Rotorblatts erforderlich Denn eine Reihe von Schaden, insbesondere Rissen m der Schale, Schichtablösungen, Gurt- und Stegablosungen sowie Abplatzungen, können auf diese Weise behoben werden, bevor größere oder gar Totalschaden an der gesamten Anlage entstehen.
Verschiedene Uberwachungssysteme nutzen eine Vorrichtung zum Erfassen von Belastungen der Rotorblatter indem Sensoren oder Dehnungsmesser m verschiedenen, stark belasteten Stellen der Windkraftanlage vorgesehen sind, um schädigende Vibrationen oder Dehnungen infolge zu großer oder ungleichmäßiger Kräfte festzustellen. So wird beispielsweise in der Schrift WO 99/57435 eine Windkraftanlage beschrieben, an deren Rotor¬ blättern je ein Triaxialbeschleunigungsmesser vorgesehen sind, welche solche Beschleunigungen der aerodynamischen Schalen der Rotorblätter anzeigen, welche von Blatt- und Kantenvibrationen herrühren. Mittels einer Rechnereinheit können aus den Sensor¬ signalen auch Eigenfrequenzen der Rotorblätter abgeschätzt werden.
Jedoch werden auch in dieser Vorrichtung lediglich überhöhte Beschleunigungsbelastungen im Verlauf der Drehbewegung oder bei Turbulenzen sowie die Auswirkungen größerer Schädigungen auf das Rotorblatt als Ganzes oder abrupte, größere Änderungen der Eigenfrequenzen festgestellt, ohne eine Bestimmung der Art des Schadens oder eine Lokalisierung vornehmen zu können. Dies ist jedoch erforderlich, um eine vorbeugende und vor allem auch vorausschauende Instandsetzung, beispielsweise in windschwachen Zeiten, zu ermöglichen, um eine höhere Verfügbarkeit und somit eine höhere Effektivität der Windkraftanlagen zu erzielen.
Die fehlende Bestimmung der Schadensart ist jedoch besonders für nicht sichtbare Schädigungen und Langzeitveränderungen wie z. B. Versprödungen des Rotorblattes nachteilig, da eine erfor¬ derliche Instandsetzung nicht möglich oder gar nicht erkannt wird.
Eine Bestimmung der Schadensart wird in der Überwachung von Rotorblättern gemäß der Offenlegungsschrift DE 100 65 314 Al beschrieben. Dort werden aus der Bestimmung von Resonanz- und Eigenfrequenzen, welche in Rotorblättern mittels Schwingungser¬ regung erzeugt werden, und deren Vergleich mit vorgehaltenen, definierte Schadenszustände charakterisierenden Referenzspekt- ren Schädigungen der einzelnen Rotorblätter ermittelt. Jedoch hat sich gezeigt, dass die Mikroschwingungen des Körperschalls derart von zufälligen Ereignissen und Störungen überlagert wurden, dass trotz der expliziten Schwingungserregung nur er¬ hebliche Schädigungen festzustellen waren. Auch eine Korrektur der Eigenfrequenzen von den Störungen durch die Messung des durch die Störungen hervorgerufenen Körperschalls, wie es in der Schrift WO 02/053910 Al beschrieben ist, führte nicht zu einer reproduzierbaren Ermittlung und Bewertung von im Entste- hen begriffenen und somit noch zu behebenden Schädigungen der Rotorblätter.
Somit liegt der Erfindung die Aufgabenstellung zugrunde, ein Verfahren und eine Vorrichtung zur laufenden und Einzelüberwa¬ chung von Rotorblättern an Windkraftanlage darzustellen, mit denen entstehende örtliche innere und äußere Schädigungen und ebenso Schädigungen verursachende Sonderzustände der Rotorblät¬ ter frühzeitig zu erkennen und zu bewerten, um vorzugsweise automatisiert Einfluss auf den Betrieb der Anlage nehmen zu können.
Die Aufgabe wird durch ein Verfahren gelöst, welches die Merk¬ male gemäß Anspruch 1 und durch eine für das Verfahren geeigne¬ te Vorrichtung, welche die Merkmale gemäß Anspruch 19 aufweist.
Das erfindungsgemäße Verfahren beruht grundlegend auf der Be¬ stimmung der Eigenschwingungen und der zugehörigen Oberwellen des räumlich ausgedehnten Körpers eines Rotorblattes, welche diesen Körper entsprechend seiner konkreten Ausformung und spezifischer mechanischer Eigenschaften charakterisieren. Diese Eigenschwingungen ergeben für jeden Körper ein ganz typisches Spektrum. Verändert sich der Körper durch innere und/oder äuße- re Schäden oder Veränderungen, wie Schichtablösungen oder Ris¬ se, so verändert sich das Spektrum in der Weise, dass bestimmte Schwingungsformen nicht mehr oder in veränderter Form auftre¬ ten. Ebenso ändert sich das Spektrum, wenn sich die Materialei¬ genschaften, beispielsweise der Elastizitätsmodul oder die Dichte, infolge von Extrembelastungen, Alterung oder Verwitte¬ rung ändern. Hierbei kommt es insbesondere zu einer Verschie¬ bung der typischen Frequenzen.
Der Zustand eines Rotorblattes wird durch die Messung einer Reihe von Einzelmessungen bestimmt, welche zu einer Messperiode zusammengefasst werden. Die Einzelmessungen können sowohl durch nacheinander folgende Messungen nur eines Sensors, mittels mehrerer, synchroner Sensoren oder auch einer Kombination bei- der Varianten erfolgen. Aus den durch die Einzelmessungen ge¬ wonnenen Signalen werden Einzelspektren ermittelt und diese unter Verwendung geeigneter Normierungs- und Wichtungsverfahren akkumuliert. Die Akkumulation erfordert wiederum, dass jede Einzelmessung hinsichtlich ihres Messstarts auf einen zwar beliebigen, aber für die Messperiode festen Drehwinkel des Rotors getriggert wird.
Die Akkumulation synchron ermittelter Einzelspektren führt zu einem Zustandsspektrum mit größerem Signal-Rausch-Abstand und somit zur Möglichkeit der Zustandsbestimmung des Rotorblattes aus dem Zustandsspektrum mit der erforderlichen Reproduzierbar¬ keit. Die Anzahl der Einzelmessung für eine Zustandsmessung hängt von verschiedensten Faktoren ab, welche den Signal- Rausch-Abstand bestimmen. Diese können messtechnischer Art sein, aber auch von den zur Verfügung stehenden Referenzspekt- ren oder dem bisher bekannten Zustand des Rotorblattes abhän¬ gen.
Die erforderliche Schwingungsanregung erfolgt bei Messungen im laufenden Betrieb (Online-Messungen) in der Regel durch den Betrieb an sich und den dabei auf das Rotorblatt angreifenden Wind.
Mit dem Sensor wird erfindungsgemäß der Körperschall jener Bauteile gemessen, an welchen der Sensor befestigt ist. Es können unabhängig davon jedoch auch Bewegungen und Beschleuni¬ gungen des Rotorblattes als Ganzes gemessen werden, wobei in letzterem Fall lediglich die Überschreitung vorher definierter Grenzwerte beobachtet werden kann. Die Schwingungsmesεungen der einzelnen Rotorblätter gestattet auch gleichzeitig die bekannte Resonanz- sowie Turbulenzüberwachung, indem das Wachstum der Amplituden bestimmter Frequenzen überwacht wird und bei Über- schreitung eines Schwellwertes auf einen Sonderzustand ge¬ schlossen wird. Vorzugsweise werden dafür die Amplituden der Schwung- und Schlagfrequenzen der Rotorblätter überwacht. Die Messungen zur Überwachung der Rotorblätter erfolgen kontinuier- lieh oder auch als periodisch wiederkehrende Einzelmessungen an der in Betrieb befindlichen Windkraftanlage. Sie können jedoch ebenso an ruhenden Rotorblättern (Offline-Messungen) durchge¬ führt werden.
Vorteilhaft erweist es sich auch, wenn die Körperschallmessung eines Rotorblattes mehrdimensional mit mehreren Sensoren er¬ folgt, welche vorzugsweise unterschiedlich ausgerichtet und synchronisiert sind. Diese Ausgestaltung gestattet es, die verschiedenen Schwingungsrichtungen eines definierten Schwin¬ gungszustandes zu betrachten und somit die Zustandsbestimmung zu verfeinern. Dabei erfordert die Messung mit mehreren Senso¬ ren an einem Rotorblatt jedoch nur die beschriebene Synchroni¬ sation hinsichtlich des Drehwinkels des Rotorblattes, wenn die Messungen nicht gleichzeitig, sondern zeitlich versetzt erfol¬ gen sollen oder können. Bei mehreren und/oder mehrdimensionalen Sensoren je Rotorblatt werden mehrere ein- bis mehrdimensionale Spektren ermittelt, wobei in diesem Fall die Ermittlung der Einzelspektren, beispielsweise durch Fouriertransformation, in speziellen Koordinaten- und Bezugssystemen ausgeführt wird, welche die optimale Beschreibung und die Verknüpfung der ver- schiedenen mehrdimensionalen Schwingungszustände gestatten. So sieht eine vorteilhafte Ausgestaltung des Verfahrens vor, dass die Schwingungscharakterisierung in einem geeigneten Koordina¬ tensystem, vorzugsweise einem Kugelkoordinatensystem erfolgt.
Die Triggerung der Einzelmessungen einer Messperiode auf einen einheitlichen Drehwinkel kann erfindungsgemäß sowohl hardware- als auch softwareseitig geschehen. Die hardwaremäßige Trigge¬ rung erfolgt vorzugsweise mittels eines weiteren Sensors, der aktuelle Drehwinkelinformationen an eine, die Messung regelnde Sensor-Versorgungs- und Messwert-Vorverarbeitungseinheit über- gibt, so dass der Start aller Einzelmessungen zeitlich unmit- telbar an die Drehbewegung des Rotors geknüpft ist.
Die softwareseitige Triggerung hingegen verwendet lediglich einen Ausschnitt aus einem größeren, frei wählbaren Messbe¬ reich, der zumindest jene Anzahl von Rotationen umfasst, die der Anzahl der gewählten Einzelmessungen entspricht. Die ei¬ gentliche Triggerung jeder Einzelmessung einer Messperiode auf einen einheitlichen Drehwinkel erfolgt somit in der Auswerte¬ einheit, indem jede Einzelmessung durch periodizitätsbezogene Startkriterien aus den größeren Messbereichen einer oder mehre- rer Messungen selektiert wird. Es ist jedoch auch möglich, dass die Synchronisierung durch andere geeignete hard- oder soft¬ waremäßige Maßnahmen ersetzt werden kann.
Entsprechend des Oberbegriffs des Anspruchs 1 erfolgt die Zu- standsbestimmung des Rotorblattes, indem das aus den akkumu- lierten Einzelspektren ermittelte Zustandsspektrum mit den in einer Auswerteeinheit hinterlegten Referenzspektren vergleichen wird, welche parametrisiert sind und definierte Schadens- und Sonderzustände des speziellen Rotorblattes oder zumindest des Rotorblatttyps kennzeichnen. Da jene die Eigenfrequenzen des Rotorblattes bestimmenden Materialkennwerte auch sehr stark von meteorologischen und Anlagendaten abhängen, erweist es sich von besonderem Vorteil, wenn die Parametrierung der Referenzspekt¬ ren durch meteorologische und/oder anlagenspezifische Daten erfolgt und zu diesem Zweck an der Windkraftanlage weitere Sensoren zur Messung meteorologischer und/oder anlagenspezifi¬ scher Messwerte und/oder anlagenspezifischer Schwingungszustän¬ de angeordnet sind. Sofern die Überwachung mehrerer benachbar¬ ter Windkraftanlagen erfolgt, können selbstverständlich auch die meteorologischen Messwerte einer entsprechend ausgestatte- ten Windkraftanlage für die anderen mit genutzt werden.
Für den Spektrenvergleich ist in einer weiteren Ausgestaltung des Verfahrens vorgesehen, dass die Parameter der Referenz¬ spektren parallel zur Körperschallmessung durch weitere Messun¬ gen aktuell ermittelt und an die Auswerteeinheit übertragen werden. Auf diese Weise kann der Vergleich auf die Spektren mit ähnlichen aktuellen Referenzparametern beschränkt werden, was insbesondere in jenen Fällen von Bedeutung ist, wenn wegen fehlender Referenzspektren spezieller Rotorblatttypen die Zu- Standsspektren einer statistischen Bewertung oder Äquivalenzbe¬ trachtungen unterzogen werden müssen.
Darüber hinaus kann der Vergleich der gemessenen Zustandsspekt- ren mit den Referenzspektren mittels geeigneter Mustererken¬ nungsverfahren und somit deren automatisierte Klassifizierung erfolgen, wie aus der Informatik bekannt ist. Auch die Anwen¬ dung geeigneter statistischer Methoden kann für die Zuordnung der gemessenen Frequenzspektren zu den Referenzspektren vor¬ teilhaft sein, da eine genaue Übereinstimmung der zu verglei¬ chenden Spektren praktisch nicht eintreten wird. Insbesondere für die Mustererkennung aber auch für den direkten Spektrenver¬ gleich sieht eine weitere Ausgestaltung der Erfindung vor, dass die aus der Spektrenanalyse ermittelten Eigenfrequenzwerte sowie deren Amplituden in Vektoren oder Matrizen dargestellt werden.
Von besonderem Vorteil für die reproduzierbare Zustandsbestim- mung eines Rotorblattes erweist es sich auch, wenn die Fre¬ quenzspektren der Einzelmessungen des Rotorblattes von den Störungen bereinigt werden, welche von der Anlage auf das Ro¬ torblatt übertragen werden, und zwar indem die Störungen, bei- spielsweise des Antriebs, als Frequenzspektrum Berücksichtigung finden. Zu diesem Zweck werden Körperschallmessung mittels eines oder mehrerer ein- oder mehrdimensionaler Sensoren vor¬ zugsweise in der Umgebung der Störungsquelle durchgeführt und daraus die Frequenzspektren der Störungen ermittelt, welche von der Störungsquelle auf die Rotorblätter übertragen werden. Mit diesen Störungsspektren werden die Spektrenänderungen aus den Messungen an den Rotorblättern mit geeigneten mathematischen Methoden korrigiert, so dass sie nicht Veränderungen an den Rotorblättern zugeordnet werden können. Die Störsignale können bei der Feststellung eines Schadenszu¬ standes an einem Rotorblatt auch durch eine vergleichende Spektralanalyse der an allen drei Rotorblättern 1 vorzugsweise synchron gemessenen Zustandsspektren ermittelt und zur Korrek- tur verwendet werden, da der Störungseintrag im Gegensatz zur Zustandsänderung eines Rotorblattes gleichmäßig in alle drei Rotorblätter erfolgt und zur gleichen Änderung aller drei Zu¬ standsspektren führt. Dafür werden entsprechend einer weiteren Ausgestaltung der Erfindung synchronisierte Messungen aller Rotorblätter einer Windkraftanlage durchgeführt und die Zu¬ standsänderung eines Rotorblattes aus der Differenz der akkumu¬ lierten Frequenzspektren aller Rotorblätter und dem Vergleich des Differenzspektrums mit Referenzspektren ermittelt.
Mit den verschiedenen Störungsmessungen wird kontinuierlich eine so genannte Basislinie ermittelt, welche die systemeigenen Einflüsse auf die Zustandsspektren darstellt und mit welcher die gemessenen Zustandspektren laufend aktuell korrigiert wer¬ den können.
Da mit dem erfindungsgemäßen Verfahren auch solche Schadenszu- stände feststellbar sind, welche die Fortsetzung des Betriebes der Windkraftanlage für eine gewisse Zeit ohne Gefährdung der Anlage gestatten, erweist es als günstig, dass die Referenz¬ spektren in zumindest zwei Zustandsgruppen untergliedert sind und mittels des Spektrenvergleichs der Zustand eines Rotorblat- tes einer der Zustandsgruppen zugeordnet wird. Die beiden hauptsächlichen Zustandsgruppen könnten beispielsweise „erheb¬ liche" und „nichterhebliche" Abweichungen vom Normalzustand sein, wobei nur die erheblichen Abweichungen eine sofortige Instandsetzung oder gar Unterbrechung des Betriebes erfordern. Hingegen gestatten die nichterheblichen Abweichungen eine Fort¬ setzung des Betriebes und gegebenenfalls kürzere Prüfzyklen oder die Einordnung der Instandsetzung in den nächstmöglichen, z. B. windarmen Zeitraum. Für diese Entscheidungsvarianten können darüber hinaus weitere Unterteilungen der Abweichungen vorgenommen werden, beispielsweise entsprechend dem Ort der Veränderungen, am Trag- oder aerodynamischen System, oder ent¬ sprechend verschiedener Sonderzustände, Eisansatz oder Reso¬ nanz .
Ein sehr kritischer Sonderzustand ist der Eisansatz an den Rotorblättern, einerseits wegen der stark zunehmenden Belastung durch das ungleichmäßige Gewicht des Eises und andererseits wegen der Spannungen, die von der Eisschicht auf die aerodyna¬ mische Schale des Rotorblattes übertragen werden. Die Entspan¬ nung des Eises und mitunter auch lokales Abreißen der Eis- schicht von der Rotorblattschale lassen sich durch stochasti- sche, impulsartige Schallereignisse feststellen, die teilweise als Knackgeräusche im hörbaren Frequenzbereich wahrgenommen werden. Da sich diese Schallereignisse in den Frequenzspektren der Rotorblätter durch eine Vielzahl von Oberwellen im nie- derfrequenten Bereich widerspiegeln, werden entsprechend einer besonderen Ausführung der Erfindung die Oberwellen im akkumu¬ lierten Frequenzspektrum und insbesondere die Oberwellen der Drehfrequenz der Rotorblätter im akkumulierten Spektrum be¬ stimmt. Die Korrelation der Schallereignisse mit der Drehfre- quenz ist darauf zurückzuführen, dass es insbesondere im Ver¬ lauf der Drehbewegung zu Lastwechseln und damit zusammenhängen¬ den Reiß- und Stoßprozessen im Eis und somit zu dem festge¬ stellten charakteristischen Oberwellenbild kommt.
Für die unmittelbare Reaktion auf die ermittelten Rotorblattzu- stände sieht eine weitere, günstige Ausgestaltung des Verfah¬ rens vor, dass bei definierten Zuständen eines Rotorblattes in der Auswerteeinheit, welche entsprechend einer günstigen Aus¬ gestaltung der Vorrichtung zur Überwachung der Rotorblätter eine Ausgabeeinheit, vorzugsweise mit einem binären Ausgangsmo- dul, umfasst, eine Zustandsmeldung erzeugt, diese an das Anla¬ gensteuerungssystem der Windkraftanlage übertragen und auf den Betrieb der Windkraftanlage Einfluss genommen wird. Die Zu- standsmeldungen liegen vorzugsweise in Form von eigen- und fremdstörungssicheren, binären und redundanten, Statussignalen bereit, welche an das Anlagensteuerungssystem übergeben werden können, um unmittelbar Einfluss auf die Betriebsweise der Wind¬ kraftanlage nehmen zu können, wenn entsprechende Schadzustände ermittelt wurden. Die Einflussnahme erfolgt je nach ermitteltem Schadens- oder Sonderzustand beispielsweise in Form einer Pitch-Winkel-Verstellung oder auch Außer-Betrieb-Setzen der Anlage, kann jedoch ebenso ein In-Betrieb-Setzen der Anlage nach der Beendigung von Eisansatz sein.
Neben der beschriebenen Zustandsbestimmung mittels Schwingungs¬ anregung durch den laufenden Betrieb kann es auch von Vorteil sein, dass ein Rotorblatt mittels eines Schwingungserregers aktiv angeregt wird. Dies kommt insbesondere für die Offline- Messungen in Betracht, kann aber auch für Online-Messungen verwendet werden, um beispielsweise eine aus vorangegangenen Messungen bekannte Eigenfrequenz zu überprüfen. Die aktive Anregung des jeweiligen Bauteils für Offline-Messungen erfolgt mit zumindest einem ein- oder mehrdimensionalen Schwingungser¬ reger (Aktor) , welcher geeignet auf dem Rotorblatt oder an einem inneren Bauteil des Rotorblattes angeordnet ist. Der Aktor ist vorzugsweise ein so genannter Shaker mit Leistungs- Verstärker, der das Rotorblatt über einen relevanten Frequenz¬ bereich anregt, indem er diesen Frequenzbereich durchläuft (Sweep-Modus) . Die Steuerung der Schwingungserregung erfolgt günstigerweise durch eine zentrale Rechnereinheit. Um .die Mik- roschwingungen des Rotorblattes nicht zu dämpfen, durch Stör- einflüsse nicht zu überlagern oder um den montierten Zustand zu simulieren ist bei Einzelmessungen eines einzelnen Rotorblattes dieses geeignet einzuspannen oder aufzuhängen. Derartige Ein¬ zelmessungen werden im Anschluss an das Herstellungsverfahren zur Qualitätsprüfung und zur Gewinnung von für das Rotorblatt charakteristischen Referenzspektren durchgeführt, dienen aber ebenso der Kontrolle nach dem Transport oder in verschiedenen Montagestadien der Windkraftanlage.
Sofern die Spektrenbibliothek für einen bestimmten Rotorblatt¬ typ kein Referenzspektrum umfasst oder aus anderen Gründen keines der vorgehaltenen Referenzspektren zum Vergleich heran- gezogen werden können, ist es auch möglich, dass die Referenz¬ spektren aus statistisch bewerteten und einer Äquivalenzbe¬ trachtung unterzogenen Frequenzspektren vorangegangener Körper¬ schallmessungen des relevanten Rotorblattes ermittelt werden. Das so gewonnene Zustandsspektrum wird einer Spektrenanalyse unterzogen und die numerischen Werte für im Spektrum enthaltene Eigenfrequenzen, gegebenenfalls Grund- und Oberwellen, und Ihre Amplituden gewonnen, die z. B. dann in Vektoren oder einer Matrix dargestellt werden. Diese am Anfang des Einsatzes des Rotorblattes gewonnenen Spektren werden in der zentralen Rech¬ nereinheit mit zusammengestellt.
Entsprechend einer weiteren Ausgestaltung der Erfindung erfolgt die drahtlose Übertragung der weiter- und vorverarbeiteten Messsignale des Sensors mittels Funkübertragung. Damit bestehen für den Betreiber der Windkraftanlage verschiedenste Möglich¬ keiten der Anordnung der Auswerteeinheit, je nach Platz, Zu¬ gänglichkeit, Anbindung an ein weiterverarbeitendes System oder anderen Kriterien. So kann die Auswerteeinheit oder zumindest Teile davon beispielsweise in der Gondel, im Fuß des Turmes oder räumlich von der Windkraftanlage getrennt, entsprechend einer besonderen Ausgestaltung der Vorrichtung, als zentrale, mehrere Windkraftanlagen überwachende Auswerteeinheit instal¬ liert werden, wobei die Art der eingesetzten Funkübertragung auch von der Entfernung zwischen den Kommunikationspartnern Auswerteeinheit und Sensor-Versorgungs- und Messwert- Vorverarbeitungseinheit abhängig ist. Zu berücksichtigen ist ebenfalls, dass es sich teilweise um zeitkritische Prozessdaten handelt, wie beispielsweise bei der Resonanzüberwachung oder dem Nachweis von Eisansatz.
Entsprechend einer besonders vorteilhaften Vorrichtung zur Ausführung des Überwachungsverfahrens sind der oder die Senso¬ ren im Inneren und/oder Äußeren des Rotorblattes fest an einer Fläche der aerodynamischen Schale und/oder an inneren Bauteilen des Rotorblattes befestigt. Da die Überwachung anhand der aus akkumulierten Einzelspektren gewonnenen Eigenfrequenzen er- folgt, ist es möglich, sowohl die aerodynamische Schale als auch jene die Schale stützenden inneren, tragenden Bauteile oder andere Konstruktionselemente zu überwachen. Je nach Belas¬ tungsprofil des Rotorblattes können dafür insbesondere an den kritischen Stellen des Traggerüstes und der Schale Sensoren montiert werden, indem sie fest mit deren Fläche verbunden werden. So sieht eine weitere Ausgestaltung der Vorrichtung beispielsweise vor, dass zumindest ein Sensor im unteren, dem Rotorblattfuß zugewandten Drittel des Rotorblattes an einer Fläche der aerodynamischen Schale des Rotorblattes befestigt ist.
Die Befestigung kann mit den verschiedensten Verfahren erfol¬ gen, die geeignet sind, die Schwingungen nahezu dämpfungsfrei auf den Sensor zu übertragen und gleichzeitig der dauerhaften Belastung zu widerstehen. Eine mögliche Ausgestaltung der er- findungsgemäßen Vorrichtung sieht beispielsweise vor, dass im Inneren und/oder Äußeren des Rotorblattes an verschiedenen, schwingungsrelevanten Stellen Halterungen zur Aufnahme von Sensoren angeordnet sind. Diese Halterungen können problemlos im Zuge der Montage des Rotorblattes befestigt werden, während die Sensoren später entsprechend den Anforderungen und der weiteren Messtechnik des jeweiligen Betreibers individuell und gegebenenfalls auch durch den Betreiber selbst montiert werden können. Darüber hinaus ist es möglich, später einzelne Sensoren auszutauschen oder nachzurüsten.
Besonders vorteilhaft erweist es sich des Weiteren, wenn die Sensoren Beschleunigungεεensoren sind, denn diese Sensoren werden vorwiegend zur Schwingungsmessung eingesetzt, so dass es die verschiedensten Ausführungen für die verschiedensten Anfor- derungsprofile gibt. Selbstverständlich können aber auch andere geeignete Schwingungssensoren zur Anwendung kommen.
So erweist es sich als günstig, wenn ein eindimensionaler Sen¬ sor zur Anwendung kommt und dieser eine Bewegungsorientierung aufweist, die im Wesentlichen senkrecht zu der Fläche ausge- richtet ist, an welcher der Sensor befestigt ist. In dieser Anordnung und Ausrichtung des Sensors werden die Transversal- wellen des Körperschalls der Schale gemessen, welche für die nachfolgende Körperschallanalyse den größten Informationsgehalt aufweisen, so dass die eindimensionale Messung hinsichtlich Auswertungsaufwand und Kosten ein günstiges Verfahren für die laufende Überwachung während des Betriebes der Windkraftanlage darstellt.
Selbstverständlich können, beispielsweise um eine Lokalisierung bereits kleiner Schädigungen am Rotorblatt vornehmen zu können, gleichzeitig oder anstelle dieses einzelnen, flächennormal ausgerichteten eindimensionalen Sensors auch zwei- oder mehrdi¬ mensionale Sensoren verwendet werden, die auch eine andere Ausrichtung ihrer Bewegungsorientierung aufweisen können.
Bei der Verwendung von mehreren Sensoren, unabhängig ob ein- oder mehrdimensional, ist die Messung durch die Sensoren in der bereits beschriebenen Weise für die Zustandsbestimmung eines Rotorblattes vorzugsweise zu synchronisieren, beispielsweise durch einen weiteren, für die Drehwinkelmessungen geeignet Triggersensor. Damit ist es möglich, die verschiedenen Schwin¬ gungsrichtungen eines definierten Schwingungszustandes zu be¬ trachten.
Günstig erweist es sich darüber hinaus, wenn mittels weiterer Sensoren Daten und Parameter des Rotorblattes direkt bestimmt werden. So kann sich die Umgebungstemperatur von der Temperatur des Rotorblattes und gegebenenfalls auch die Temperatur der Vorderseite von der Temperatur der Rückseite des Rotorblatts unterscheiden, so dass in vorteilhafter Weise die Temperatur- messung des Rotorblatts unabhängig von den Messungen des Meteo- rologiemoduls durch einen oder mehrere Temperatursensoren am
Rotorblatt erfolgen kann. Bei pitch-geregelten Anlagen ist des Weiteren die reale Messung des Pitch-Winkels mittels eines am Rotorblatt befestigten Wegsensors dienlich. In einer weiteren Ausführungsform der Überwachungsvorrichtung ist in der Auswerteeinheit eine Datenbank als Spektrenbiblio¬ thek mit Referenzspektren von Rotorblättern mit schadensfreien und definierten Schadens- und Sonderzuständen hinterlegt, wel- che vorzugsweise einen schnellen, selektiven Zugriff ermög¬ licht. Diese Referenzspektren sind auf den zu überwachenden Rotorblatttyp bezogen, weisen eine Datenstruktur wie das zu messende Spektrum auf und sind hinsichtlich der oben genannten erhebbaren meteorologischen und maschinenbezogenenen Messwerte parametriert sowie darunter wiederum nach Schadens- und Sonder¬ zuständen angeordnet. Einen besonders bedeutsamen Sonderzustand stellt beispielsweise Eisansatz am Rotorblatt dar. Eine Para- metrierung der Referenzspektren ist darüber hinaus auch nach solchen Daten möglich, die der laufenden Überwachung aktuell bereitgestellt oder hinterlegt werden können, wie beispielswei¬ se seinem Anstellwinkel bezogen auf die Welle (Pitch-Winkel) , dem Alter des Rotorblattes, der Charge, weiteren fertigungs¬ technischen Unterscheidungen oder ähnlichen relevanten physika¬ lisch-technischen Parametern. Diese Referenzspektren wurden beispielsweise von Messungen an Windkraftanlagen, an denen Schadzustände aufgetreten sind, durch Offline-Messungen an ungeschädigten und geschädigten Rotorblättern am Boden und oder durch Äquivalenzbetrachtungen ermittelt.
Insbesondere für die laufende Aktualisierung der Spektrenbib- liothek, beispielsweise aus den kontinuierlich gewonnenen Mess¬ werten, für die allgemeine Datensicherung oder für den Informa¬ tionsaustausch zwischen den gemeinsam überwachten Windkraftan¬ lagen sowie zwischen den Anlagen und den Betreibern erweist es sich als günstig, dass die Auswerteeinheit mit einem dezentra- len, fernaufgestellten Backupserver verbunden ist. Auf dem
Backupserver sind unter anderem die Kommunikationsdaten von Betreibern und Betriebsführern von Windkraftanlagen abgelegt. Im Ereignisfall kann der Backupserver auch Informationen an diese Personengruppe übermitteln.
Das Verfahren und die dafür erforderliche Vorrichtung sollen in einem Ausfuhrungsbeispiel einer Windkraftanlage mit drei Rotor¬ blattern erläutert werden. Die zugehörige Zeichnung zeigt in
Fig 1 die schematische Gesamtansicht einer Windkraft¬ anlage,
Fig 2 die schematische Darstellung eines Rotorblattes,
Fig. 3 die schematische Schnittdarstellung eines Rotorblat¬ tes und
Fig. 4 einen schematischen Blockschaltplan der erfmdungs- gemaßen Vorrichtung.
In Fig 1 ist die Gesamtansicht einer Windkraftanlage mit drei Rotorblattern 1 dargestellt, welche an einer Nabe 2 befestigt sind. Die Nabe 2 wiederum geht m eine horizontal gelagerte Welle über Die Welle endet m einer Gondel 3, welche die nicht naher dargestellte Maschinentechnik umfasst und am oberen Ende eines Turmes 4 drehbar um eine vertikale Achse angeordnet ist
In dem dargestellten Ausfuhrungsbeispiel ist gemäß Fig 2 auf einer inneren Flache der großflächigen, freien aerodynamischen Schale 6 eines Rotorblattes 1 m seinem unteren, dem Rotor¬ blattfuß 16 zugewandten Drittel ein eindimensionaler Beschleu- nigungssensor 5 befestigt. Er ist fest mit der aerodynamischen Schale 6 des Rotorblattes 1 verbunden, indem er m eine auf die Schale 6 dauerhaft aufgeklebte Halteplatte 7 eingeschraubt ist. Der Sensor 5 ist über ein im Inneren des Rotorblattes 1 verlau¬ fendes Kabel 10 mit einer Sensor-Versorgungs- und Messwert- Vorverarbeitungseinheit 11 verbunden, welche sich m der Nabe 2 befindet. Im Ausfuhrungsbeispiel ist das Kabel 10, ebenso wie der Sensor 5, mit einer Schutzumhullung gegen mechanische Be¬ schädigungen und einer Abschirmung gegen elektrische Felder, die beispielsweise von Blitzableitungssystemen ausgehen können, geschützt. Die übrigen beiden Rotorblatter der Windkraftanlage sind mit jeweils einem weiteren Beschleunigungssensor bestuckt, welche beide über je ein weiteres Kabel mit der Sensor- Versorgungs- und Messwert-Vorverarbeitungseinheit 11 verbunden sind.
Die Sensor-Versorgungs- und Messwert-Vorverarbeitungseinheit 11 ist mittels drahtloser Übertragung, z. B. mittels Funkübertra- gung, mit einer in Fig. 2 nicht näher dargestellten Auswerte¬ einheit 12 verbunden, die sich in der Gondel 3 oder im Fuß des Turmes 4 befindet und in der Regel über eine Schnittstelle 15 mit weiteren Rechnern 26 vernetzt ist. Die Vorrichtung umfasst des Weiteren ein Betriebsdaten- 18 und ein Meteorologiemodul 17, welche ebenfalls nicht näher dargestellt sind und sich in der Gondel 3, im Turm 4 oder einer anderen, für die Erfassung dieser Daten geeigneten Stelle befindet.
Wie in Fig. 3 dargestellt wird die aerodynamische Schale 6 von inneren, tragenden Bauteilen 9 gestützt. Der Beschleunigungs- senεor 5 ist auf der Innenfläche der aerodynamischen Schale 6 derart mittels Halteplatte 7 befestigt, dass die Beschleuni¬ gungsrichtung des Sensors 5 senkrecht zur Halteplatte 7 und somit flächennormal zur aerodynamischen Schale 6 ausgerichtet ist.
Im Folgenden soll eine Zustandsmessung eines Rotorblattes 1 an der in Betrieb befindlichen Windkraftanlage (Online-Messung) beschrieben werden, wobei die Auswertung der Messsignale, der Vergleich mit den Referenzspektren und die Zustandsbewertung des Rotorblattes 1 für diese und für Messungen an außer Betrieb befindlichen Anlagen oder einzelnen, nicht montierten Rotor¬ blättern (Offline-Messung) vergleichbar sind.
Die erforderliche Schwingungsanregung erfolgt bei den Online- Messungen in der Regel durch den Betrieb an sich und den dabei auf das Rotorblatt 1 angreifenden Wind. Der in der aerodynami- sehen Schale 6 des Rotorblattes 1 befestigte Sensor 5 liefert infolge dieser laufenden Schwingungsanregung elektrische, ana¬ loge Signale als zeitbezogene Amplitudensignale, die über die Kabel 10 zur Sensor-Versorgungs- und Messwert- Vorverarbeitungseinheit 11 in der Nabe 2 geführt werden.
In der Sensor-Versorgungs- und Messwert-Vorverarbeitungseinheit 11, welche gleichzeitig der Sensor-Versorgung dient, erfolgt die Digitalisierung der Signale, die Funkübertragung zur Aus- werteeinheit 12, welche eine zentrale Rechnereinheit 13 auf¬ weist (Fig. 4) und auch die Messsteuerung, um eine zuverlässige Steuerung, unabhängig von der Funkübertragung zwischen der Sensor-Versorgungs- und Messwert-Vorverarbeitungseinheit 11 und der zentralen Rechnereinheit 13 zu gewährleisten. Für eine Zustandsmessung werden nacheinander mehrere, beispielsweise 20, Einzelmessungen aufgenommen und der Auswerteeinheit 12 zuge¬ führt. Jede Einzelmessung wird mittels der Sensor-Versorgungs¬ und Messwert-Vorverarbeitungseinheit 11 hinsichtlich ihres Messstarts auf einen zwar beliebigen, aber für die Messperiode einheitlichen Drehwinkel 14 getriggert . Die Triggerung erfolgt im Ausführungsbeispiel durch einen weiteren, nicht näher darge¬ stellten Sensor, der eine DrehwinkelInformation für die zeitli¬ che Steuerung an die Sensor-Versorgungs- und Messwert- Vorverarbeitungseinheit 11 übergibt.
In der zentralen Rechnereinheit 13 wird mittels Fouriertrans- formation aus den aufgenommenen Zeitsignalen der Einzelmessun¬ gen je Rotorblatt 1 ein eindimensionales Spektrum gewonnen. Die Einzelspektren als fouriertransformierte Abbildungen der Ein¬ zelmessungen werden nachfolgend akkumuliert, wobei bekannte Normierungs- und Wichtungsverfahren auf die Einzelspektren angewendet werden.
Parallel zur Körperschallmessungen der Rotorblätter 1 werden in vergleichbarer Weise mit einem oder vorzugsweise mehreren ein- oder mehrdimensionalen Sensoren 5 Körperschallsignale, die von dem Antriebsstrang der Windkraftanlage auf die Rotorblätter 1 übertragen werden, bestimmt und ausgewertet. Mit diesen Stö¬ rungsspektren werden die Spektrenänderungen aus den Messungen an den Rotorblättern 1 korrigiert. Das so gewonnene Zustandsspektrum wird einer Spektrenanalyse unterzogen und die numerischen Werte für im Spektrum enthaltene Eigenfrequenzen, gegebenenfalls Grund- und Oberwellen, und Ihre Amplituden gewonnen, die z. B. dann in Vektoren oder einer Matrix dargestellt werden.
Darüber hinaus werden während der Zustandsmessung des Rotor¬ blattes 1 durch das System selbst, einem Meteorologiemodul 17 sowie Betriebsdatenmodul 18, aktuelle Messwerte an die zentrale Rechnereinheit 13 übermittelt, wie beispielsweise Temperatur des Rotorblattes 1, die Leistung der Windkraftanlage oder er¬ satzweise die Windgeschwindigkeit und Betriebsdauer des jewei¬ ligen Rotorblattes 1.
In einer Spektrenbibliothek 19, die Teil der Auswerteeinheit 12 ist, sind in einer solchen Datenbank, die vorzugsweise einen schnellen selektiven Zugriff gewährleistet, auf den Rotorblatt¬ typ bezogene Referenzεpektren bereitgestellt, die eine Daten¬ struktur wie das gemessene Spektrum aufweisen, im Ausführungs¬ beispiel als Vektor oder Matrix, und die hinsichtlich der oben genannten erhebbaren Messwerte parametriert und darunter wie- derum nach Schadens- und Sonderzuständen angeordnet sind. Diese Referenzspektren wurden von Messungen an Windkraftanlagen, an denen Schadenszustände aufgetreten sind, durch Offline- Messungen an ungeschädigten und geschädigten Rotorblättern 1 am Boden und oder durch Äquivalenzbetrachtungen ermittelt.
Mit einem geeigneten mathematisch statistischen Verfahren, welches beispielsweise mit definierten Vertrauensintervallen und weiteren statistischen Parametern, wie dem Bestimmtheits¬ maß, arbeitet, wird das jeweils online quasikontinuierlich gemessene Zustandsspektrum hinsichtlich der von dem Meteorolo- giemodul 17 und dem Betriebsdatenmodul 18 bereitgestellten und der Weiteren bekannten, technisch-physikalischen Parameter sortiert, mit den in der Datenbank unter gleicher Parametrie- rung vorgehaltenen Referenzspektren verglichen und der aktuelle Zustand des jeweiligen Rotorblattes 1, entweder Normalzustand 21 oder Schadens- oder Sonderzustand 20, festgestellt Ist ein Schadens- oder Sonderzustand 20 festgestellt, können weitere, untergeordnete Zustande ermittelt werden, wie erhebliche 22 und nichterhebliche Abweichungen 23 des Rotorblattzustands vom Normalzustand. Diese oder eine andere Untergliederung der Scha¬ dens- und Sonderzustande, die weitere Abweichungen 24 berück¬ sichtigt, erfolgt entsprechend der Parametrierung der Spektren- bibliothek 19. Nicht zuordenbare Zustandsspektren werden insbe¬ sondere aus Sicherheitsgründen als gestört eingeordnet und können gegebenenfalls durch Gutachter interpretiert werden
Jeder ermittelte Zustand 21 bis 24 wird einem Betriebsentschei¬ dungsmodul 25 übertragen und eine entsprechende Zustandsmeldung wird erzeugt. Die Zustandsmeldung wiederum wird an eine Em- und Ausgabeeinheit 27 übermittelt, welche Teil der Auswerteem- heit 12 ist und z B ein binares Ausgangsmodul umfasst, über das die Zustandsmeldungen redundant, fremd- und eigensicher an das Anlagensteuerungssystem 28 übergeben werden können. Eine Visualisierung der gemessenen Daten, der abgelegten und der ereignisbezogenen Daten, wird ebenfalls über die Em- und Aus- gabeemheit 27 oder auch über den Backupserver 26 realisiert, auf den ein dazu berechtigter Nutzer über einen Web-Browser Zugang haben kann
Die kontinuierlich gewonnenen Daten der Messzyklen der zentra¬ len Rechnereinheit 13 werden m gewissen festen Perioden und bei Ereignissen unmittelbar und mittels Datenfernübertragung über eine geeignete Schnittstelle 15 m einem der zentralen Rechnereinheit 13 unabhängigen Backupserver 26 abgelegt, der wiederum m eine Datensicherung integriert ist. Verfahren und Vorrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
Bezugszeichenliste
1 Rotorblatt
2 Nabe
3 Gondel 4 Turm
5 Sensor, Beschleunigungssensor
6 aerodynamische Schale
7 Halteplatte, Halterung
8 Bewegungsorientierung 9 tragende Bauteile
10 Kabel
11 Sensor-Versorgungs- und Messwert- Vorverarbeitungseinheit
12 Auswerteeinheit 13 zentrale Rechnereinheit
14 Drehwinkel
15 Schnittstelle
16 Rotorblattfuß
17 Meteorologiemodul 18 Betriebsdatenmodul
19 Spektrenbibliothek
20 Feststellung Schadens- oder Sonderzustand
21 Feststellung Normalzustand 22 erhebliche Abweichung 23 nichterhebliche Abweichung
24 weitere Abweichungen
25 Betriebsentscheidungsmodul
26 weitere Rechner, Backupserver
27 Ein- und Ausgabeeinheit 28 Anlagensteuerungssystem

Claims

Verfahren und Vorrichtung zur Überwachung des Zustandes von Rotorblättern an WindkraftanlagenPatentansprüche
1. Verfahren zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen mittels Messung von Körperschall zumin¬ dest eines Rotorblattes mit zumindest einem am Rotorblatt befestigten Sensor, welcher verbunden ist mit einer Einheit zur drahtlosen Übertragung der Ausgangssignale der Sensoren an eine Auswerteeinheit, welche eine zentrale Rechnerein¬ heit und Speichereinheiten umfasst, wobei die Ausgangssig¬ nale des Sensors drahtlos an die Auswerteeinheit übertragen werden, wo aus den Signalen mittels geeigneter Methoden ein FrequenzSpektrum ermittelt, das Frequenzspektrum mit in der Auswerteeinheit hinterlegten, definierten Schadens- und Sonderzuständen entsprechenden und parametrisierten Refe¬ renzspektren verglichen und daraus der Zustand des Rotor- blattes ermittelt wird, dadurch gekennzeichnet, dass eine Körperschallmessung aus einer Abfolge einer Mehrzahl von unmittelbar nacheinander durchgeführten Einzelmessungen (Messperiode) erfolgt, wobei der Start jeder dieser Einzel¬ messungen auf einen einheitlichen Drehwinkel (14) des Ro- torblattes (1) , bezogen auf die Drehachse des Rotors, ge- triggert wird und vor dem Vergleich mit den Referenzspekt¬ ren alle ermittelten Frequenzspektren jeder Einzelmessung akkumuliert werden.
2. Verfahren zur Überwachung des Zustandes von Rotorblättern nach Anspruch 1, dadurch gekennzeichnet, dass die Körper¬ schallmessung eines Rotorblattes (1) mehrdimensional mit mehreren Sensoren (5) erfolgt, welche vorzugsweise unter¬ schiedlich ausgerichtet und synchronisiert sind.
3. Verfahren zur Überwachung des Zustandes von Rotorblättern nach Anspruch 2, dadurch gekennzeichnet, dass die Schwin¬ gungscharakterisierung in einem geeigneten Koordinatensys¬ tem, vorzugsweise einem Kugelkoordinatensystem erfolgt.
4. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass die Triggerung jeder Einzelmessung einer Messperiode auf einen einheitlichen Drehwinkel (14) mittels eines wei¬ teren Sensors (5) ausgelöst wird, der aktuelle Drehwinkel¬ informationen an eine, die Messung regelnde Sensor- Versorgungs- und Messwert-Vorverarbeitungseinheit (11) ü- bergibt .
5. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass die Triggerung jeder Einzelmessung einer Messperiode auf einen einheitlichen Drehwinkel (14) softwareseitig in der Auswerteeinheit (12) erfolgt, indem jede Einzelmesεung durch periodizitätsbezogene Startkriterien aus größeren Messbereichen einer oder mehrerer Messungen selektiert wird.
6. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Parametrierung der Referenzspektren durch meteoro¬ logische und/oder anlagenspezifische Daten erfolgt.
7. Verfahren zur Überwachung des Zustandes von Rotorblättern nach Anspruch 6, dadurch gekennzeichnet, dass die Parameter der Referenzspektren parallel zur Körperschallmessung durch weitere Messungen aktuell ermittelt und an die Auswerteein¬ heit (12) übertragen werden.
8. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis I1 dadurch gekennzeichnet, dass die Frequenzspektren der Einzelmessungen des Rotor¬ blattes (1) von den Störungen bereinigt werden, welche von der Anlage auf das Rotorblatt (1) übertragen werden, indem Körperschallmessung mittels eines oder mehrerer ein- oder mehrdimensionaler Sensoren (5) vorzugsweise in der Umgebung der Störungsquelle durchgeführt und daraus die Frequenz¬ spektren der Störungen ermittelt.
9. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 7 , dadurch gekennzeichnet, dass vorzugsweise synchronisierte Messungen aller Rotor¬ blätter (1) einer Windkraftanlage durchgeführt werden und die Zustandsanderung eines Rotorblattes (1) aus der Diffe- renz der akkumulierten Frequenzspektren aller Rotorblätter (1) und dem Vergleich des Differenzspektrums mit Referenz¬ spektren ermittelt wird.
10. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Referenzspektren in zumindest zwei Zustandsgruppen untergliedert sind und mittels des Spektrenvergleichs der Zustand eines Rotorblattes (1) einer der Zustandsgruppen zugeordnet wird.
11. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass Oberwellen im akkumulierten Frequenzspektrum bestimmt werden.
12. Verfahren zur Überwachung des Zustandes von Rotorblättern nach Anspruch 11, dadurch gekennzeichnet, dass die Oberwel- len der Drehfrequenz der Rotorblätter im akkumulierten Spektrum bestimmt werden.
13. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass bei definierten Zuständen eines Rotorblattes (1) in der Auswerteeinheit (12) eine Zustandsmeldung erzeugt, die¬ se an das Anlagensteuerungssystem (28) der Windkraftanlage übertragen und auf den Betrieb der Windkraftanlage Einfluss genommen wird.
14. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass ein Rotorblatt (1) mittels eines Schwingungserregers aktiv angeregt wird.
15. Verfahren zur Überwachung des Zustandes von Rotorblättern nach Anspruch 14, dadurch gekennzeichnet, dass die Anregung erfolgt, indem der Schwingungserreger einen relevanten Fre¬ quenzbereich kontinuierlich durchfährt (Sweep-Modus) .
16. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Vergleich der gemessenen Frequenzspektren mit den Referenzspektren mittels geeigneter Mustererkennungs- verfahren erfolgt.
17. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Zuordnung der gemessenen Frequenzspektren zu den Referenzspektren mittels geeigneter statistischer Methoden erfolgt .
18. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die gemessenen Frequenzspektren einer Spektrenanalyse unterzogen werden und die ermittelten Eigenfrequenzwerte sowie deren Amplituden in Vektoren oder Matrizen darge¬ stellt werden.
19. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Referenzspektren aus statistisch bewerteten und einer Äquivalenzbetrachtung unterzogenen Frequenzspektren vorangegangener Körperschallmessungen des relevanten Rotor- blattes (1) ermittelt werden.
20. Verfahren zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die drahtlose Übertragung der vor- und weiterverarbei¬ teten Messsignale des Sensors (5) mittels Funkubertragung erfolgt.
21 Vorrichtung zur Überwachung des Zustandes von Rotorblattern an Windkraftanlagen nach einem der Ansprüche 1 bis 20, da¬ durch gekennzeichnet, dass der oder die Sensoren (5) im In¬ neren und/oder Äußeren des Rotorblattes (1) fest an einer Flache der aerodynamischen Schale (6) und/oder an inneren Bauteilen des Rotorblattes (1) befestigt sind.
22 Vorrichtung zur Überwachung des Zustandes von Rotorblattern nach Anspruch 21, dadurch gekennzeichnet, dass die Sensoren (5) Beschleunigungssensoren sind
23. Vorrichtung zur Überwachung des Zustandes von Rotorblattern nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass zu- mindest ein eindimensionaler Sensor (5) angeordnet ist.
24 Vorrichtung zur Überwachung des Zustandes von Rotorblattern nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass zu¬ mindest ein mehrdimensionaler Sensor (5) angeordnet ist
25 Vorrichtung zur Überwachung des Zustandes von Rotorblattern nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass eine Bewegungsorientierung eines Sensors (5) im We¬ sentlichen senkrecht zu der Flache ausgerichtet ist, an welcher der Sensor (5) befestigt ist
26. Vorrichtung zur Überwachung des Zustandes von Rotorblattern nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass ein Sensor (5) im unteren, dem Rotorblattfuß (16) zu¬ gewandten Drittel des Rotorblattes (1) an einer Flache der aerodynamischen Schale (6) des Rotorblattes (1) befestigt ist.
27. Vorrichtung zur Überwachung des Zustandes von Rotorblattern nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, dass ein Sensor (5) an den tragenden Bauteilen (9) im Inne- ren des Rotorblattes (1) befestigt ist.
28. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 27, dadurch gekennzeichnet, dass ein weiterer Sensor (5) am Rotor als Triggersensor an- geordnet ist, welche für Drehwinkelmessungen geeignet ist.
29. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 28, dadurch gekennzeichnet, dass am Rotorblatt (1) ein Temperatursensor zur Messung der Rotorblatttemperatur befestigt ist.
30. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 29, dadurch gekennzeichnet, dass am Rotorblatt (1) ein Wegsensor zur Messung des Pitch- Winkels befestigt ist.
31. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 28, dadurch gekennzeichnet, dass in der Auswerteeinheit (12) eine Datenbank als Spekt¬ renbibliothek (19) mit Referenzspektren von Rotorblättern (1) mit schadensfreien und definierten Schadens- und Son¬ derzuständen hinterlegt ist, welche vorzugsweise einen schnellen, selektiven Zugriff ermöglicht.
32. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 29, dadurch gekennzeichnet, dass die Auswerteeinheit (12) mit einem dezentralen, fern¬ aufgestellten Backupserver (26) verbunden ist.
33. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 30, dadurch gekennzeichnet, dass die Auswerteeinheit (12) eine Ausgabeeinheit (27) , vorzugsweise mit einem binären Ausgangsmodul, umfasst, wel¬ ches vorzugsweise eigen- und fremdsicher ist sowie vorzugs- weise redundante Signale ausgibt.
34. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 31, dadurch gekennzeichnet, dass die AusgangsSignale mehrerer Windkraftanlagen an eine gemeinsame Auswerteeinheit (12) übertragen und in dieser ausgewertet werden.
35. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 32, dadurch gekennzeichnet, dass an der Windkraftanlage weitere Sensoren zur Messung meteorologischer und/oder anlagenspezifischer Messwerte und/oder anlagenspezifischer Schwingungszustände angeordnet sind.
36. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 33, dadurch gekennzeichnet, dass im Inneren und/oder Äußeren des Rotorblattes (1) an verschiedenen, schwingungsrelevanten Stellen Halterungen (7) zur Aufnahme von Sensoren (5) angeordnet sind.
37. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach einem der Ansprüche 21 bis 34, dadurch gekennzeichnet, dass auf der aerodynamischen Schale (6) oder an einem inne¬ ren Bauteil des Rotorblattes (1) zumindest ein ein- oder mehrdimensionaler Schwingungserreger (Aktor) angeordnet ist.
38. Vorrichtung zur Überwachung des Zustandes von Rotorblättern nach Anspruch 35, dadurch gekennzeichnet, dass der Aktor ein Shaker mit Leistungsverstärker ist.
PCT/DE2005/001187 2004-07-28 2005-07-06 Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen WO2006012827A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/572,835 US7883319B2 (en) 2004-07-28 2005-07-06 Method and device for monitoring the state of rotor blades on wind power installations
EP05763640.9A EP1792077B1 (de) 2004-07-28 2005-07-06 Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen
AU2005269159A AU2005269159B8 (en) 2004-07-28 2005-07-06 Method and device for monitoring the state of rotor blades on wind power installations
BRPI0513995-3A BRPI0513995A (pt) 2004-07-28 2005-07-06 método e dispositivo para monitorar o estado de láminas de rotor em instalações de energia eólica
CN2005800255989A CN101023266B (zh) 2004-07-28 2005-07-06 用于监控风力发电装置上转子叶片的状态的方法和设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004036677.2 2004-07-28
DE102004036677 2004-07-28
DE102005017054.4 2005-04-12
DE102005017054A DE102005017054B4 (de) 2004-07-28 2005-04-12 Verfahren und Vorrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen

Publications (1)

Publication Number Publication Date
WO2006012827A1 true WO2006012827A1 (de) 2006-02-09

Family

ID=35045364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001187 WO2006012827A1 (de) 2004-07-28 2005-07-06 Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen

Country Status (8)

Country Link
US (1) US7883319B2 (de)
EP (1) EP1792077B1 (de)
CN (1) CN101023266B (de)
AU (1) AU2005269159B8 (de)
BR (1) BRPI0513995A (de)
DE (1) DE102005017054B4 (de)
RU (1) RU2361113C2 (de)
WO (1) WO2006012827A1 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857672A2 (de) * 2006-05-18 2007-11-21 Daubner & Stommel GbR Bau-Werk-Planung Windenenergieanlage, Bauteil für eine Windenergieanlage sowie Verfahren zum Betreiben einer Windenergieanlage mit einem solchen Bauteil
WO2008020242A2 (en) * 2006-08-18 2008-02-21 Insensys Limited Structural monitoring in wind turbine blades
WO2008101496A2 (en) * 2007-02-19 2008-08-28 Vestas Wind Systems A/S Wind turbine blade with strain sensing means, wind turbine, block sensor unit and uses hereof
WO2008119350A2 (en) * 2007-03-29 2008-10-09 Vestas Wind Systems A/S Method for inspecting at least one rotor blade of a wind turbine and inspection system for at least one rotor blade of a wind turbine
WO2009075649A1 (en) * 2007-12-11 2009-06-18 Vestas Wind Systems A/S System and method for detecting performance
GB2458998A (en) * 2008-04-11 2009-10-14 Philip Charles Bond Wind turbine blade with symmetrical tip, reflected radar phase change layer, tower edge and radar clutter processing methods.
EP2202408A2 (de) * 2008-12-23 2010-06-30 General Electric Company Aerodynamische Vorrichtung zur Detektion des Betriebszustandes einer Windturbinenschaufel
DE102009009039A1 (de) 2009-02-16 2010-08-19 Prüftechnik Dieter Busch AG Windenergieanlage mit Überwachungssensoren
US7887292B2 (en) 2007-03-16 2011-02-15 Vestas Wind Systems A/S Method for condition monitoring a rotor of a wind energy plant
WO2011029439A1 (de) 2009-09-08 2011-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Modellbasiertes verfahren zur zustandsüberwachung von rotorblättern
WO2012000509A2 (en) 2010-06-30 2012-01-05 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
US8149394B2 (en) 2008-04-21 2012-04-03 Siemens Aktiengesellschaft Crack detection system
US8197207B2 (en) * 2007-12-31 2012-06-12 General Electric Company Individual blade noise measurement system and method for wind turbines
CN102498372A (zh) * 2009-09-14 2012-06-13 西门子公司 用于测定在涡轮叶片中的裂纹的方法
EP2565447A1 (de) * 2012-02-14 2013-03-06 Siemens Aktiengesellschaft Verfahren zur Auslegung, Optimierung oder Zustandsüberwachung einer Windkraftanlage bzw. einer Baugruppe oder eines Konstruktionselements einer Windkraftanlage
EP2565444A1 (de) 2011-08-31 2013-03-06 Wölfel Beratende Ingenieure GmbH & Co. KG Verfarhen und Vorrichtung zur Zustandsüberwachung von Rotorblättern
WO2013060420A2 (de) 2011-10-26 2013-05-02 Robert Bosch Gmbh Verfahren zur bestimmung einer mechanischen beschädigung eines rotorblatts einer windenergieanlage
DE102011117468A1 (de) 2011-11-02 2013-05-02 Robert Bosch Gmbh Verfahren, Recheneinheit und Einrichtung zur Überwachung eines Antriebstrangs
US8511988B2 (en) 2007-06-25 2013-08-20 Siemens Aktiengesellschaft Monitoring of blade frequencies of a wind turbine
DE202013007142U1 (de) 2013-08-09 2013-08-28 Wölfel Beratende Ingenieure GmbH & Co. KG Vorrichtung zur Zustandsüberwachung von Windenergieanlagen
KR101401593B1 (ko) * 2006-09-06 2014-06-02 콘티넨탈 오토모티브 게엠베하 센서로부터의 잡음을 모니터링 하기 위한 방법 및 장치
ITMI20122071A1 (it) * 2012-12-04 2014-06-05 Wilic Sarl Metodo di controllo di un impianto eolico per la generazione di energia elettrica e detto impianto eolico
WO2014124643A1 (en) * 2013-02-14 2014-08-21 Vestas Wind Systems A/S Detecting blade structure abnormalities
DE102013202261A1 (de) * 2013-02-12 2014-08-28 Senvion Se Verfahren zum Überprüfen des Betriebs einer Windenergieanlage und Windenergieanlage
CN104484827A (zh) * 2014-09-29 2015-04-01 许继集团有限公司 一种风力发电机组的故障频率成分提取方法
EP2985454A1 (de) * 2014-07-23 2016-02-17 Nordex Energy GmbH Verfahren zum Prüfen eines Rotorblatteisdetektionssystems sowie Rotorblatteisdetektionssystem und Windenergieanlage zur Ausführung des Verfahrens
EP2075462B1 (de) 2007-12-28 2016-05-18 General Electric Company Windkraftanlage, Steuerungssystem und Steuerverfahren für Windturbinen
WO2017005238A1 (de) * 2015-07-07 2017-01-12 Brit Hacke Vorrichtung zur zustandsüberwachung
DK178827B1 (en) * 2008-05-09 2017-02-27 Gen Electric Methods and apparatus for registering parameters of the rotating blades
CN106706241A (zh) * 2016-12-30 2017-05-24 中国华能集团清洁能源技术研究院有限公司 一种风力机叶片损伤主动自检装置及方法
US11549491B2 (en) * 2017-06-14 2023-01-10 Kk Wind Solutions A/S Independent monitoring system for a wind turbine

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400861C (zh) * 2004-02-27 2008-07-09 三菱重工业株式会社 风力发电装置及其主动式减振方法以及风车塔架
US7476985B2 (en) * 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
RU2008149135A (ru) * 2006-05-15 2010-06-20 Игус-Иноувейтив Текнише Зюстеме Гмбх (De) Способ контроля нагруженности лопастей ветроколес ветросиловых установок
MD4028C2 (ro) * 2007-02-02 2010-10-31 Институт Энергетики Академии Наук Молдовы Dispozitiv pentru producerea energiei electrice al instalaţiei eoliene
DE102007007047A1 (de) 2007-02-08 2008-08-14 Hottinger Baldwin Messtechnik Gmbh Vorrichtung zur Erfassung von Schwingungen oder Durchbiegungen von Rotorblättern einer Windkraftanlage
DE102007059502B3 (de) * 2007-12-07 2009-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Prüfen eines Rotorblatts einer Windkraftanlage und Prüfvorrichtung
US8202050B2 (en) * 2008-05-09 2012-06-19 General Electric Company Wind turbine with wireless pitch control
US8786117B2 (en) * 2008-06-13 2014-07-22 General Electric Company Wind turbine sensor assembly and method of assembling the same
US8408871B2 (en) * 2008-06-13 2013-04-02 General Electric Company Method and apparatus for measuring air flow condition at a wind turbine blade
EP2141359A1 (de) * 2008-07-02 2010-01-06 Siemens Aktiengesellschaft Konfigurationsverwaltungssystem für Windturbinen und zentrales Computersystem dafür
CN102124237A (zh) * 2008-08-13 2011-07-13 维斯塔斯风力系统集团公司 风力涡轮机转子和校准转子叶片桨距的方法
US8152440B2 (en) * 2008-08-26 2012-04-10 General Electric Company Resistive contact sensors for large blade and airfoil pressure and flow separation measurements
US8215181B1 (en) * 2008-09-04 2012-07-10 Rolls-Royce North American Technologies, Inc. Evaluation technique for bonded, dual wall static and rotating airfoil materials
DE102008049530A1 (de) 2008-09-29 2010-04-01 Prüftechnik Dieter Busch AG Verfahren zum Überwachen einer Triebstrangkomponente einer Windenergieanlage
MD4035C2 (ro) * 2008-10-24 2010-11-30 Институт Энергетики Академии Наук Молдовы Sistem de sumare a energiei electrice a instalaţiilor eoliene
GB2464929B (en) * 2008-10-29 2010-09-22 Insensys Ltd Measuring strain on a helicopter rotor blade using multiple sensors
US7941281B2 (en) * 2008-12-22 2011-05-10 General Electric Company System and method for rotor blade health monitoring
DE102009007665A1 (de) * 2009-02-05 2010-08-19 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zur Durchführung eines Schleudertests
ES2409942B1 (es) * 2009-02-27 2014-05-05 Gamesa Innovation & Technology, S.L. Métodos de localización de daños en palas de aerogeneradores
US7896613B2 (en) * 2009-06-03 2011-03-01 General Electric Company System and method for wind turbine noise control and damage detection
US8577509B2 (en) * 2009-06-24 2013-11-05 Vestas Wind Systems A/S Method and a system for controlling operation of a wind turbine
US8427333B2 (en) * 2009-06-29 2013-04-23 General Electric Company System and method for detecting lightning
DK2365215T3 (da) * 2010-03-10 2013-01-28 Siemens Ag Styring af rotationshastigheden af en vindmølle baseret på rotoracceleration
US8043048B2 (en) * 2010-04-08 2011-10-25 General Electric Company Systems and methods for monitoring a structural health of a wind turbine
CA2795987C (en) 2010-04-12 2018-12-04 Siemens Aktiengesellschaft Method and system for determining a mass change at a rotating blade of a wind turbine
CN101846547A (zh) * 2010-05-11 2010-09-29 无锡风电设计研究院有限公司 风力发电机振动检测装置
US8123478B2 (en) * 2010-05-26 2012-02-28 General Electric Company Systems and methods for monitoring a condition of a rotor blade for a wind turbine
US8327710B2 (en) * 2010-07-29 2012-12-11 General Electric Company System for estimating a condition of non-conductive hollow structure exposed to a lightning strike
US8043054B2 (en) * 2010-08-25 2011-10-25 General Electric Company Method and system for monitoring wind turbine
EP2434146A1 (de) 2010-09-24 2012-03-28 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung des Massenzustands eines Windturbinenrotors und Betriebsverfahren für eine Windturbine
US8057175B2 (en) * 2010-11-11 2011-11-15 General Electric Company Active control of a wind turbine blade
US8743196B2 (en) * 2010-12-16 2014-06-03 General Electric Company System and method for performing an external inspection on a wind turbine rotor blade
US20130300855A1 (en) * 2011-01-21 2013-11-14 Peter James Fritz System and method for performing an internal inspection on a wind turbine rotor blade
DE102011012601A1 (de) 2011-02-28 2012-08-30 Airbus Operations Gmbh Kraftmesssystem, Verfahren zum Erfassen von Kräften und Momenten an einem rotierenden Körper und Windkanal mit einem darin angeordneten und zumindest einen Propeller aufweisenden Modell mit einem Kraftmesssystem
DE102011076937B3 (de) 2011-06-03 2012-12-06 Aloys Wobben Windenergieanlagen-Rotorblatt und Verfahren zur Montage eines Windenergieanlagen-Rotorblattes
US8454311B2 (en) * 2011-09-29 2013-06-04 General Electric Company Wind turbine blade edge monitoring system
CN102410140B (zh) * 2011-10-13 2013-12-18 国电联合动力技术有限公司 风力发电机组冰载运行优化控制系统及方法
DE102011116551A1 (de) * 2011-10-21 2013-04-25 Baumer Electric Ag Verfahren zur Messung der Verformung eines Rotorblattes
KR101342856B1 (ko) 2011-12-02 2013-12-18 주식회사 우진 풍력발전기 로터블레이드의 얼음 감시 방법
DE102011057175A1 (de) 2011-12-30 2013-07-04 Prüftechnik Dieter Busch AG Verfahren zur Schwingungsmessung an Rotorblättern von Windenergieanlagen
CN103291548B (zh) * 2012-02-29 2015-02-25 南通大学 垂直轴风力机旋转主轴振颤的机电协调抑制装置
AT512155B1 (de) 2012-06-05 2013-06-15 Hainzl Industriesysteme Gmbh Vorrichtung zum Erfassen eines Eisbelags auf den Rotorblättern einer Windturbine
AU2012388403B2 (en) * 2012-09-20 2015-09-10 Korea Electric Power Corporation Apparatus for monitoring wind turbine blade and method thereof
KR101968347B1 (ko) * 2012-11-05 2019-04-11 엘에스전선 주식회사 풍력 터빈 감시 시스템
DE102013201163A1 (de) * 2013-01-24 2014-08-07 Wobben Properties Gmbh Verfahren zum Ausmessen eines Rotorblattwinkels
DE102013206039A1 (de) * 2013-04-05 2014-10-09 Wobben Properties Gmbh Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
DE102013211751A1 (de) 2013-06-21 2014-12-24 Wobben Properties Gmbh Verfahren zum Montieren eines Windenergieanlagen-Rotorblattes sowie Windenergieanlagen-Rotorblatt
DE102013221401A1 (de) * 2013-10-22 2015-04-23 Robert Bosch Gmbh Verfahren zur Erkennung einer Zustandsänderung einer Anlage
CN103590972B (zh) * 2013-11-23 2017-02-08 大连尚能科技发展有限公司 一种风力发电机组变桨自保护方法
KR20150080845A (ko) * 2014-01-02 2015-07-10 두산중공업 주식회사 풍력 발전기용 블레이드의 제어장치, 제어방법, 및 이를 이용하는 풍력 발전기
DE102014207612A1 (de) * 2014-04-23 2015-10-29 Senvion Gmbh Windenergieanlagen-Diagnosevorrichtung für Generatorkomponenten
US10655606B2 (en) 2015-06-24 2020-05-19 Vestas Wind Systems A/S Blade load sensing system for a wind turbine
CN105136435B (zh) * 2015-07-15 2017-10-31 北京汉能华科技股份有限公司 一种风力发电机组叶片故障诊断的方法和装置
US20170051725A1 (en) * 2015-08-21 2017-02-23 National Taiwan University Method and apparatus for diagnosing blades of wind turbine
TWI573936B (zh) * 2015-08-21 2017-03-11 國立台灣大學 風力發電機的葉片檢測方法與裝置
DE102015122933A1 (de) * 2015-12-29 2017-07-13 fos4X GmbH Verfahren zum Ermitteln eines Werts für eine Eisansatzmenge an mindestens einem Rotorblatt einer Windkraftanlage und dessen Verwendung
DE102016117190A1 (de) 2016-09-13 2018-03-15 fos4X GmbH Verfahren und Vorrichtung zum Überwachen eines Zustands wenigstens einer Windkraftanlage und Computerprogrammprodukt
US10648456B2 (en) * 2016-10-21 2020-05-12 General Electric Company Organic conductive elements for deicing and lightning protection of a wind turbine rotor blade
CN110114572B (zh) * 2016-12-22 2020-12-15 维斯塔斯风力系统集团公司 基于天气预测的温度控制
DE102017100956B4 (de) 2017-01-18 2022-08-25 Samson Aktiengesellschaft Diagnosesystem und Verfahren zum Kontrollieren der Funktionsfähigkeit eines Stellgeräts zum Beeinflussen einer Prozessmediumströmung einer prozesstechnischen Anlage sowie Stellgerät
DE102018211850A1 (de) 2018-07-17 2020-01-23 Ziehl-Abegg Se Verfahren zum Bewerten einer Betriebsbereitschaft eines Elektromotors sowie Elektromotor und Ventilator
DE102018211838A1 (de) * 2018-07-17 2020-01-23 Ziehl-Abegg Se Elektromotor sowie Verfahren zum Bewerten eines Schwingungszustands eines Elektromotors
EP3623616A1 (de) * 2019-08-23 2020-03-18 Ventus Engineering GmbH Erfassung abnormaler bedingungen in einem windturbinengenerator
CN112983750B (zh) * 2019-12-13 2022-07-19 中车株洲电力机车研究所有限公司 一种风电机组叶片安装错位诊断方法及装置
CN111306008B (zh) 2019-12-31 2022-03-11 远景智能国际私人投资有限公司 风机叶片的检测方法、装置、设备及存储介质
US11387615B2 (en) 2020-04-06 2022-07-12 Aerostar International, Inc. Helical cable assembly tooling and method
US11721965B2 (en) 2020-04-06 2023-08-08 Aerostar International, Llc Helical cable management system
EP3954897A1 (de) * 2020-08-14 2022-02-16 Siemens Gamesa Renewable Energy A/S Überwachung von rotorblättern in windturbinen
CN112213090B (zh) * 2020-09-25 2022-11-18 中国直升机设计研究所 一种直升机动部件损伤容限简化谱编制方法
CN112727703B (zh) * 2020-12-15 2022-02-11 北京天泽智云科技有限公司 基于音频信号的风机叶片保护膜的损伤监测方法及系统
CN112727714B (zh) * 2021-01-11 2022-07-12 宁夏汇力能源科技有限公司 一种风电发电用叶片除冰装置及除冰方法
IT202100012896A1 (it) * 2021-05-19 2022-11-19 Intermatica Holding S R L Sistema per il monitoraggio, comando e controllo di infrastrutture industriali.
CN115655631B (zh) * 2022-12-12 2023-04-07 杭州兆华电子股份有限公司 一种基于水轮发电机在风洞环境中的声纹检测方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140856A (en) * 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
US5471880A (en) 1994-04-28 1995-12-05 Electric Power Research Institute Method and apparatus for isolating and identifying periodic Doppler signals in a turbine
WO1999057435A1 (en) 1998-04-30 1999-11-11 Lm Glasfiber A/S Wind turbine with stress indicator
WO2002053910A1 (de) * 2000-12-30 2002-07-11 IGUS Ingenieurgemeinschaft Umweltschutz Meß- und Verfahrenstechnik GmbH Verfahren und einrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen
DE10065314A1 (de) 2000-12-30 2002-07-18 Igus Ingenieurgemeinschaft Umw Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
DE10160360A1 (de) * 2001-12-08 2003-06-18 Aloys Wobben Rotorblatt sowie eine Windenergieanlage mit einem Rotorblatt
EP1359321A1 (de) * 2002-05-02 2003-11-05 General Electric Company Lastaufnehmeranordnung für Windturbinenflügel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996880A (en) * 1989-03-23 1991-03-05 Electric Power Research Institute, Inc. Operating turbine resonant blade monitor
US5739698A (en) * 1996-06-20 1998-04-14 Csi Technology, Inc. Machine fault detection using slot pass frequency flux measurements
AU2046499A (en) * 1998-01-14 1999-08-02 Dancontrol Engineering A/S Method for measuring and controlling oscillations in a wind turbine
DE19948194C2 (de) * 1999-10-06 2001-11-08 Aloys Wobben Verfahren zur Überwachung von Windenergieanlagen
DE10115267C2 (de) * 2001-03-28 2003-06-18 Aloys Wobben Verfahren zur Überwachung einer Windenergieanlage
US7246991B2 (en) * 2002-09-23 2007-07-24 John Vanden Bosche Wind turbine blade deflection control system
US6940185B2 (en) * 2003-04-10 2005-09-06 Advantek Llc Advanced aerodynamic control system for a high output wind turbine
DE10325406B4 (de) * 2003-06-05 2005-04-28 Eads Deutschland Gmbh Schadensermittlung an zu prüfenden Strukturen mittels Ultraschall
US6890152B1 (en) * 2003-10-03 2005-05-10 General Electric Company Deicing device for wind turbine blades
US7013203B2 (en) * 2003-10-22 2006-03-14 General Electric Company Wind turbine system control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140856A (en) * 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
US5471880A (en) 1994-04-28 1995-12-05 Electric Power Research Institute Method and apparatus for isolating and identifying periodic Doppler signals in a turbine
WO1999057435A1 (en) 1998-04-30 1999-11-11 Lm Glasfiber A/S Wind turbine with stress indicator
WO2002053910A1 (de) * 2000-12-30 2002-07-11 IGUS Ingenieurgemeinschaft Umweltschutz Meß- und Verfahrenstechnik GmbH Verfahren und einrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen
DE10065314A1 (de) 2000-12-30 2002-07-18 Igus Ingenieurgemeinschaft Umw Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
DE10160360A1 (de) * 2001-12-08 2003-06-18 Aloys Wobben Rotorblatt sowie eine Windenergieanlage mit einem Rotorblatt
EP1359321A1 (de) * 2002-05-02 2003-11-05 General Electric Company Lastaufnehmeranordnung für Windturbinenflügel

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857672A3 (de) * 2006-05-18 2012-12-12 Daubner & Stommel GbR Bau-Werk-Planung Windenenergieanlage, Bauteil für eine Windenergieanlage sowie Verfahren zum Betreiben einer Windenergieanlage mit einem solchen Bauteil
EP1857672A2 (de) * 2006-05-18 2007-11-21 Daubner & Stommel GbR Bau-Werk-Planung Windenenergieanlage, Bauteil für eine Windenergieanlage sowie Verfahren zum Betreiben einer Windenergieanlage mit einem solchen Bauteil
WO2008020242A2 (en) * 2006-08-18 2008-02-21 Insensys Limited Structural monitoring in wind turbine blades
WO2008020242A3 (en) * 2006-08-18 2008-04-10 Insensys Ltd Structural monitoring in wind turbine blades
KR101401593B1 (ko) * 2006-09-06 2014-06-02 콘티넨탈 오토모티브 게엠베하 센서로부터의 잡음을 모니터링 하기 위한 방법 및 장치
EP2122161B1 (de) 2007-02-19 2017-12-13 Vestas Wind Systems A/S Windturbinenschaufel mit belastungsmessvorrichtung, windturbine, blocksensoreinheit und verwendung
WO2008101496A2 (en) * 2007-02-19 2008-08-28 Vestas Wind Systems A/S Wind turbine blade with strain sensing means, wind turbine, block sensor unit and uses hereof
WO2008101496A3 (en) * 2007-02-19 2008-10-30 Vestas Wind Sys As Wind turbine blade with strain sensing means, wind turbine, block sensor unit and uses hereof
US7896615B2 (en) 2007-02-19 2011-03-01 Vestas Wind Systems A/S Wind turbine blade with strain sensing means, wind turbine, block sensor unit and uses hereof
US7887292B2 (en) 2007-03-16 2011-02-15 Vestas Wind Systems A/S Method for condition monitoring a rotor of a wind energy plant
WO2008119350A2 (en) * 2007-03-29 2008-10-09 Vestas Wind Systems A/S Method for inspecting at least one rotor blade of a wind turbine and inspection system for at least one rotor blade of a wind turbine
WO2008119350A3 (en) * 2007-03-29 2009-01-29 Vestas Wind Sys As Method for inspecting at least one rotor blade of a wind turbine and inspection system for at least one rotor blade of a wind turbine
US8316716B2 (en) 2007-03-29 2012-11-27 Vestas Wind Systems A/S Method for inspecting at least one rotor blade of a wind turbine and inspection system for at least one rotor blade of a wind turbine
US8511988B2 (en) 2007-06-25 2013-08-20 Siemens Aktiengesellschaft Monitoring of blade frequencies of a wind turbine
EP2223048A1 (de) * 2007-12-11 2010-09-01 Vestas Wind Systems A/s System und verfahren zur detektion der leistungsfähigkeit
WO2009075649A1 (en) * 2007-12-11 2009-06-18 Vestas Wind Systems A/S System and method for detecting performance
EP2223048A4 (de) * 2007-12-11 2014-12-03 Vestas Wind Sys As System und verfahren zur detektion der leistungsfähigkeit
EP2075462B1 (de) 2007-12-28 2016-05-18 General Electric Company Windkraftanlage, Steuerungssystem und Steuerverfahren für Windturbinen
US8197207B2 (en) * 2007-12-31 2012-06-12 General Electric Company Individual blade noise measurement system and method for wind turbines
GB2458998B (en) * 2008-04-11 2012-09-26 Philip Charles Bond A wind turbine and a blade therefor
GB2458998A (en) * 2008-04-11 2009-10-14 Philip Charles Bond Wind turbine blade with symmetrical tip, reflected radar phase change layer, tower edge and radar clutter processing methods.
EP2112374B2 (de) 2008-04-21 2018-10-17 Siemens Aktiengesellschaft Brucherkennungssystem
EP2112374B1 (de) 2008-04-21 2015-11-18 Siemens Aktiengesellschaft Brucherkennungssystem
US8149394B2 (en) 2008-04-21 2012-04-03 Siemens Aktiengesellschaft Crack detection system
DK178827B1 (en) * 2008-05-09 2017-02-27 Gen Electric Methods and apparatus for registering parameters of the rotating blades
EP2202408A3 (de) * 2008-12-23 2013-01-30 General Electric Company Aerodynamische Vorrichtung zur Detektion des Betriebszustandes einer Windturbinenschaufel
EP2202408A2 (de) * 2008-12-23 2010-06-30 General Electric Company Aerodynamische Vorrichtung zur Detektion des Betriebszustandes einer Windturbinenschaufel
DE102009009039A1 (de) 2009-02-16 2010-08-19 Prüftechnik Dieter Busch AG Windenergieanlage mit Überwachungssensoren
WO2011029439A1 (de) 2009-09-08 2011-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Modellbasiertes verfahren zur zustandsüberwachung von rotorblättern
US9645574B2 (en) 2009-09-08 2017-05-09 Wölfel Engineering Gmbh + Co. Kg Model-based method for monitoring the condition of rotor blades
CN102498372A (zh) * 2009-09-14 2012-06-13 西门子公司 用于测定在涡轮叶片中的裂纹的方法
WO2012000509A2 (en) 2010-06-30 2012-01-05 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
US9567869B2 (en) 2010-06-30 2017-02-14 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
WO2012000509A3 (en) * 2010-06-30 2012-04-26 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
EP2565444A1 (de) 2011-08-31 2013-03-06 Wölfel Beratende Ingenieure GmbH & Co. KG Verfarhen und Vorrichtung zur Zustandsüberwachung von Rotorblättern
DE102011116961A1 (de) 2011-10-26 2013-05-02 Robert Bosch Gmbh Verfahren zur Bestimmung einer mechanischenBeschädigung eines Rotorblatts einerWindenergieanlage
WO2013060420A2 (de) 2011-10-26 2013-05-02 Robert Bosch Gmbh Verfahren zur bestimmung einer mechanischen beschädigung eines rotorblatts einer windenergieanlage
US10466205B2 (en) 2011-10-26 2019-11-05 Weidmüller Monitoring Systems Gmbh Method for determining mechanical damage to a rotor blade of a wind turbine
DE102011117468A1 (de) 2011-11-02 2013-05-02 Robert Bosch Gmbh Verfahren, Recheneinheit und Einrichtung zur Überwachung eines Antriebstrangs
WO2013064209A2 (de) 2011-11-02 2013-05-10 Robert Bosch Gmbh Verfahren, recheneinheit und einrichtung zur überwachung eines antriebsstrangs
DE102011117468B4 (de) 2011-11-02 2022-10-20 Weidmüller Monitoring Systems Gmbh Verfahren, Recheneinheit und Einrichtung zur Überwachung eines Antriebstrangs
US9459179B2 (en) 2011-11-02 2016-10-04 Robert Bosch Gmbh Method and device for monitoring a drive train of a wind power plant
EP2565447A1 (de) * 2012-02-14 2013-03-06 Siemens Aktiengesellschaft Verfahren zur Auslegung, Optimierung oder Zustandsüberwachung einer Windkraftanlage bzw. einer Baugruppe oder eines Konstruktionselements einer Windkraftanlage
WO2013120662A1 (de) * 2012-02-14 2013-08-22 Siemens Aktiengesellschaft Verfahren zur auslegung, optimierung oder zustandsüberwachung einer windkraftanlage bzw. einer baugruppe oder eines konstruktionselements einer windkraftanlage
ITMI20122071A1 (it) * 2012-12-04 2014-06-05 Wilic Sarl Metodo di controllo di un impianto eolico per la generazione di energia elettrica e detto impianto eolico
WO2014087353A1 (en) * 2012-12-04 2014-06-12 Wilic S.Ar.L. Method of controlling a wind turbine by means of acoustic signals
US10145360B2 (en) 2013-02-12 2018-12-04 Senvion Gmbh Method for monitoring the operation of a wind energy plant and wind energy plant
DE102013202261A1 (de) * 2013-02-12 2014-08-28 Senvion Se Verfahren zum Überprüfen des Betriebs einer Windenergieanlage und Windenergieanlage
US10161261B2 (en) 2013-02-14 2018-12-25 Vestas Wind Systems A/S Detecting blade structure abnormalities
WO2014124643A1 (en) * 2013-02-14 2014-08-21 Vestas Wind Systems A/S Detecting blade structure abnormalities
DE202013007142U1 (de) 2013-08-09 2013-08-28 Wölfel Beratende Ingenieure GmbH & Co. KG Vorrichtung zur Zustandsüberwachung von Windenergieanlagen
EP2985454A1 (de) * 2014-07-23 2016-02-17 Nordex Energy GmbH Verfahren zum Prüfen eines Rotorblatteisdetektionssystems sowie Rotorblatteisdetektionssystem und Windenergieanlage zur Ausführung des Verfahrens
CN104484827A (zh) * 2014-09-29 2015-04-01 许继集团有限公司 一种风力发电机组的故障频率成分提取方法
CN104484827B (zh) * 2014-09-29 2017-09-19 许继集团有限公司 一种风力发电机组的故障频率成分提取方法
WO2017005238A1 (de) * 2015-07-07 2017-01-12 Brit Hacke Vorrichtung zur zustandsüberwachung
CN106706241A (zh) * 2016-12-30 2017-05-24 中国华能集团清洁能源技术研究院有限公司 一种风力机叶片损伤主动自检装置及方法
CN106706241B (zh) * 2016-12-30 2023-06-02 中国华能集团清洁能源技术研究院有限公司 一种风力机叶片损伤主动自检装置及方法
US11549491B2 (en) * 2017-06-14 2023-01-10 Kk Wind Solutions A/S Independent monitoring system for a wind turbine

Also Published As

Publication number Publication date
DE102005017054B4 (de) 2012-01-05
RU2361113C2 (ru) 2009-07-10
CN101023266B (zh) 2012-05-16
RU2007107361A (ru) 2008-09-10
AU2005269159A1 (en) 2006-02-09
DE102005017054A1 (de) 2006-03-23
AU2005269159B8 (en) 2010-03-04
AU2005269159B2 (en) 2009-11-12
EP1792077B1 (de) 2014-06-25
US20080206052A1 (en) 2008-08-28
US7883319B2 (en) 2011-02-08
BRPI0513995A (pt) 2008-05-20
CN101023266A (zh) 2007-08-22
EP1792077A1 (de) 2007-06-06

Similar Documents

Publication Publication Date Title
EP1792077B1 (de) Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen
EP2956661B1 (de) Verfahren zum überprüfen des betriebs einer windenergieanlage und windenergieanlage
WO2007131489A1 (de) Verfahren zur überwachung der beanspruchung von rotorblättern von windkraftanlagen
DE102005016524B4 (de) Verfahren und Vorrichtung zur Erkennung von Rotorblatteis
DE10065314B4 (de) Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
EP3359810B1 (de) Verfahren zum überwachen einer windenergieanlage
DE102009025778A1 (de) Verfahren und Vorrichtung zum Messen von Parametern von Rotorflügeln
WO2002053910A1 (de) Verfahren und einrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen
WO2013060420A2 (de) Verfahren zur bestimmung einer mechanischen beschädigung eines rotorblatts einer windenergieanlage
DE102010053523A1 (de) Verfahren zur Überwachung einer statischen und/oder dynamischen Stabilität einer Windenergieanlage
DE102010032120A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Biegewinkels eines Rotorblattes einer Windkraftanlage
WO2019086287A1 (de) Verfahren zur ertragsprognostizierung für windparks unter vereisungsbedingungen
EP3397860B1 (de) Verfahren zum ermitteln eines werts für eine eisansatzmenge an mindestens einem rotorblatt einer windkraftanlage und dessen verwendung
EP1745214B1 (de) Verfahren zur steuerung der rotorblätter einer windenergieanlage sowie windenergieanlage mit messsystemen zur durchführung des verfahrens
DE112010002632T5 (de) Verfahren zum Auswuchten einer Windenergieanlage
DE202008006322U1 (de) Windkraftanlage
EP4182557A1 (de) Vorrichtung zum erkennen eines eisansatzes an rotorblättern einer windenergieanlage und verfahren zum anlernen einer derartigen vorrichtung
WO2020038692A1 (de) Windenergieanlage und verfahren zum erkennen niederfrequenter schwingungen in einem elektrischen versorgungsnetz
DE102013007744A1 (de) Windkraftanlage und Verfahren
WO2023187122A1 (de) Zustandsüberwachungsvorrichtung, rotorblatt und windkraftanlage damit
AT523919A4 (de) Messvorrichtung für Windkraftanlagen
WO2022122257A1 (de) Verfahren und vorrichtung zum betreiben einer windturbine
EP4086454A1 (de) Verfahren zum betreiben einer windenergieanlage, windenergieanlage und windpark
WO2020083656A1 (de) Steuerung einer windenergieanlage
DE102010026371A1 (de) Verfahren und Vorrichtung zum Bereitstellen eines Anstellwinkelkorrektursignals für zumindest ein Rotorblatt einer Windkraftanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 127/MUMNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580025598.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005269159

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005763640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007107361

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2005269159

Country of ref document: AU

Date of ref document: 20050706

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005269159

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11572835

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005763640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0513995

Country of ref document: BR