WO2017005238A1 - Vorrichtung zur zustandsüberwachung - Google Patents
Vorrichtung zur zustandsüberwachung Download PDFInfo
- Publication number
- WO2017005238A1 WO2017005238A1 PCT/DE2016/000273 DE2016000273W WO2017005238A1 WO 2017005238 A1 WO2017005238 A1 WO 2017005238A1 DE 2016000273 W DE2016000273 W DE 2016000273W WO 2017005238 A1 WO2017005238 A1 WO 2017005238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- component
- sensor unit
- common
- rolling bearings
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/021—Gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/028—Acoustic or vibration analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/403—Transmission of power through the shape of the drive components
- F05B2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05B2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/334—Vibration measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05B2270/807—Accelerometers
Definitions
- the invention relates to a device for condition monitoring, in particular a sensor device for monitoring rolling bearings in planetary stages of main gears in wind turbines, which allows an improved early detection of defects in the rolling bearings.
- the signals are primarily acquired in close proximity to the load and minimally attenuated by an envelope order analysis. At the same time, the load on the bearings is recorded from the same signal basis, so that Conclusions on the remaining shelf life are possible and so a load monitoring is performed.
- the sensor device according to the invention is applied directly in the interior of the transmission in the power flow in the immediate vicinity of the object under consideration.
- the application is suitable for both stationary and rotating objects, whereby the sensor device can move together with the object.
- the signal is directed outwards by the inner sensor device and transferred for further processing.
- the invention further relates to a sensor device for monitoring rolling bearings in planetary stages of main gears in wind turbines, which allows for improved early detection of defects in the rolling bearings.
- the path of the signal from the damaged area to the sensor is additionally attenuated due to many components that additionally move relative to one another.
- the diagnosis is made more difficult and many damages are detected very late or on the basis of further consequential damage.
- Wind turbines are subject to transient operating conditions. Gears and bearings in wind turbine gearboxes are also designed based on statistical assumptions about wind conditions and the resulting torque for the next 20 years. The real time course of the charges is unknown.
- Planet stages have a higher power density than spur gears. Due to the development of wind turbines to higher power classes is increasingly on spur gears, which can be better monitored, waived. There are more compact gear with multiple planetary stages are used.
- the invention has for its object to provide a sensor device for monitoring the bearings in the planetary stage, which allows an improved early detection of defects in the rolling bearings. At the same time, the load on the bearings is recorded in such a way that conclusions can be drawn about the remaining service life of the bearing.
- Suitable sensor units in the vicinity of the damaged location or in the load flow, vibrations and the forces as well as other measured variables can be detected directly on the affected component in order to minimize damping effects.
- the individual elements can perform different measuring tasks. These elements can be arranged both in a common structure as well as stand-alone.
- the sensor unit (1) is applied directly to the surface of the component.
- the amplifier (2), the transmitter (3) and, if necessary, the sensor unit (1) can be fed by a suitable power supply (4), which is also mounted on the component. Sensor and amplifier must be as close together as possible to reduce signal interference.
- the power supply (4) can be implemented as active self-supply from other forms of energy, through an additional storage unit or external supply.
- the transmitter (3) has the task to transmit the measured variables from the rotating component to the stationary receiver (5).
- the datalogger (6) collects and manages the data. If amplifier (2) is on a stationary component, (3), (4) and (5) can be omitted.
- the evaluation unit (7) evaluates the measured variables. It can be spatially separated from the measurement setup.
- the sensor unit (1) can be applied to the component (9).
- the arrangement should be protected by a suitable covering means (10).
- measuring points may be interconnected by means of a bridge circuit, eg via a Wheatstone measuring bridge, and possibly supplemented by a temperature compensation.
- the measured values recorded separately from each other by different arrangements of sensor elements and units according to the invention are archived separately in the data logger (6). This allows a later separate processing of the measured values.
- Suitable application points are not only the rolling bearing outer and inner rings but also the immediate connection geometries. Suitable application points can be the rolling bearing rings of the planet bearings (13), (19), the planets (17), (23), the planet carrier (14), (20) and the planet carrier bearing (15), (21). These are in the transmission of the wind turbine, to which further the ring gears (16), (22) in the stationary system and the suns (18), (24) belong in non-stationary system.
- the transmission configuration occurs in drive trains of wind power plants according to the resolved construction (FIG. 5) of the partially resolved construction (FIG. 6) and of the integrated construction (FIG. 7). In all designs, the speed is recorded at the gearbox output or generator input and transferred to the evaluation algorithm or archived in the datalogger.
- the measuring application can also be used for individual planetary stages in transmissions of wind turbines.
- the radial bearing reaction force Fr and the axial bearing reaction force F a are detected in the force flow of the rolling bearings.
- the load assumptions for the design of the gearbox are known, these are compared with the measured values and the Lioh adjusted by means of real load monitoring values.
- further life forms such as the L 0
- the same signal base is used both for condition monitoring and for load monitoring.
- damage signal components occurring by means of envelope curve analysis are separated and statistically processed in such a way that an early detection of developing bearing damage is made possible.
- the use of the envelope order analysis for processing the signal base makes the low-frequency signal components in the slowly rotating planetary carrier bearings, which are difficult to detect and evaluate with conventional sensors, visible and flow into the condition monitoring.
- the analysis of the data can be both self-sufficient and integrated into an existing operational management.
- the database is subjected to the usual evaluation algorithms used in condition monitoring for vibration monitoring of rolling bearings and gears.
- Statistical characteristic values are formed, which provide information about the state of the gearbox so that the system covers both the condition monitoring and load monitoring areas.
- the variables mentioned in the above-mentioned variables supplement the data base customary for condition monitoring and are included in the condition evaluation.
- a single sensor is used for the metrological detection of the entire data to be evaluated.
- the piezo recessive strain is used to derive on the one hand the vibration to be detected therefrom and on the other hand additionally to determine the force to be detected.
- the detected vibration is used for Condition Monitoring, the detected force for load monitoring.
- the sensors are interconnected several times in order to cover different load directions or to arrange the sensors several times on large components.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Die Sensoreinrichtung dient zur Überwachung von Wälzlagern in Planetenstufen von Hauptgetrieben in Windkraftanlagen. Die Sensoreinrichtung führt ein kontinuierliches Lastmonitoring durch und dient insbesondere zu einer Fehler-Früherkennung in den Wälzlagern. Es sind mindestens zwei Sensorelemente verschiedener physikalischer Messprinzipien zu einer Sensoreinheit verschaltet und auf ein gemeinsames Bauteil appliziert. Darüber hinaus werden mindestens zwei Sensorelemente gleicher physikalischer Messprinzipien und unterschiedlicher räumlicher Orientierung zu einer Sensoreinheit verschaltet und auf ein gemeinsames Bauteil appliziert. Zusätzlich werden mindestens zwei Sensorelemente verschiedener physikalischer Messprinzipien oder unterschiedlicher räumlicher Orientierung in einer gemeinsamen Trägerstruktur eingebettet oder auf einer gemeinsamen Trägerstruktur angeordnet. Diese Struktur wird auf das zu überwachende Bauelement bzw. in dessen Nähe appliziert.
Description
Vorrichtung zur Zustandsüberwachung
Die Erfindung betrifft eine Vorrichtung zur Zustandsüberwachung, insbesondere eine Sensoreinrichtung zur Überwachung von Wälzlagern in Planetenstufen von Hauptgetrieben in Windkraftanlagen, die eine verbesserte Früherkennung von Defekten an den Wälzlagern ermöglicht.
Die Signale werden vorrangig in unmittelbarer Nähe der Belastung erfasst und minimal gedämpft einer Hüllkurvenordnungsanalyse zur Verfügung gestellt. Zugleich wird aus der gleichen Signalbasis die Belastung der Lager erfasst, so dass
Rückschlüsse auf die Restlagerlebensdauer möglich werden und so auch ein Lastmonitoring durchgeführt wird.
Die Sensoreinrichtung wird erfindungsgemäß direkt im Inneren des Getriebes im Kraftfluss in direkter Nähe zum betrachteten Objekt appliziert. Die Applikation ist sowohl für stehende als auch drehende Objekte geeignet, wobei sich die Sensoreinrichtung zusammen mit dem Objekt bewegen kann. Das Signal wird von der inneren Sensoreinrichtung nach außen geleitet und zur weiteren Verarbeitung übergeben.
Die Erfindung betrifft darüber hinaus eine Sensoreinrichtung zur Überwachung von Wälzlagern in Planetenstufen von Hauptgetrieben in Windkraftanlagen, die eine verbesserte Früherkennung von Defekten an den Wälzlagern ermöglicht.
In Getrieben von Windkraftanlagen ist eine Überwachung im laufenden Betrieb gewünscht, um mögliche Defekte, z.B. Ermüdungsausbrüche (Pittings) frühzeitig zu erkennen und geeignete Gegenmaßnahmen einzuleiten. Insbesondere im Bereich der Planetenstufen kommt es immer wieder zu Problemen in der Überwachung der Getriebe. Das ist darauf zurückzuführen, dass zur Wälzlagerüberwachung vorrangig Beschleunigungssensoren angewandt werden, die auf der Außenhaut des Getriebegehäuses befestigt werden. Die erfassten Körperschallsignale können nicht direkt analysiert werden, sie bedürfen einer weiteren Auswertung. Während dieser Auswertung wird der Anteil des Schadsignals, welches die Information zum Schadensfortschritt am überwachten Lager enthält, vom Gesamtsignal separiert. Insbesondere bei Schadensbeginn ist der Anteil des verwertbaren Schadensignals sehr schwach ausgebildet. Es wird auf dem Weg von der Schadstelle zum Sensor stark gedämpft. In Planetenstufen ist der Weg des Signals von der Schadstelle bis zum Sensor aufgrund vieler Bauteile, die sich zusätzlich noch zueinander bewegen, zusätzlich gedämpft. Die Diagnose wird erschwert und viele Schäden werden erst sehr spät bzw. anhand weiterer Folgeschäden erkannt.
Windkraftanlagen unterliegen instationären Betriebsbedingungen. Auch Verzahnungen und Lager in Getrieben für Windkraftanlagen werden aufgrund statistischer Annahmen zu den Windbedingungen und dem daraus resultierenden Drehmomenten für die nächsten 20 Jahre ausgelegt. Der reale zeitliche Verlauf der Belastungen ist unbekannt.
Planetenstufen weisen eine höhere Leistungsdichte auf als Stirnradstufen. Aufgrund der Entwicklung der Windkraftanlagen hin zu höheren Leistungsklassen wird immer häufiger auf Stirnradstufen, die sich besser überwachen lassen, verzichtet. Es kommen kompaktere Getriebe mit mehreren Planetenstufen zum Einsatz.
Der Erfindung liegt die Aufgabe zugrunde, eine Sensoreinrichtung zur Überwachung der Wälzlager in der Planetenstufe anzugeben, die eine verbesserte Früherkennung von Defekten an den Wälzlagern ermöglicht. Zugleich wird die Belastung der Lager so erfasst, dass Rückschlüsse auf die Restlagerlebensdauer möglich werden.
Diese Aufgabe wird erfindungsgemäß durch die Sensoreinrichtung mit den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der vorliegenden Erfindung sin in den abhängigen Ansprüchen angegeben.
Durch die Verwendung von geeigneten Sensoreinheiten in der Nähe des Schadortes bzw. im Lastfluss können Schwingungen und die Kräfte sowie weitere Messgrößen unmittelbar am betroffenen Bauteil erfasst werden, um Dämpfungseffekte zu minimieren.
In einer Sensoreinheit können die einzelnen Elemente verschiedene Messaufgaben wahrnehmen. Diese Elemente können sowohl in einer gemeinsamen Struktur als auch einzeln stehend angeordnet werden.
Durch die Verwendung von Flächensensoren, die auf gekrümmte Oberflächen platzsparend appliziert werden können, werden mit einem physikalischen Prinzip mehrere Messgrößen erfasst.
Weitere Einzelheiten der Erfindung sind beispielhaft in den Figuren 1 bis 7 dargestellt.
Die Sensoreinheit (1) wird direkt auf der Oberfläche des Bauteils appliziert. Der Verstärker (2), der Sender (3) und bei Bedarf auch die Sensoreinheit (1) können durch eine geeignete Stromversorgung (4) gespeist werden, die ebenfalls auf dem Bauteil angebracht ist. Sensor und Verstärker müssen hierbei möglichst eng beieinander sitzen, um Signalstörungen zu verringern. Die Stromversorgung (4) kann ausgeführt werden als aktive Selbstversorgung aus anderen Energieformen, durch eine zusätzliche Speichereinheit oder externe Zuführung. Der Sender (3) hat die Aufgabe, die Messgrößen vom drehenden Bauteil an den stillstehenden Empfänger (5) zu übertragen. Der Datalogger (6) erfasst und verwaltet die Daten. Sollte sich Verstärker (2) auf einem stillstehenden Bauteil befinden, können (3), (4) und (5) entfallen. Die Auswerteeinheit (7) wertet die Messgrößen aus. Sie kann räumlich vom Messaufbau getrennt sein.
Durch die Verwendung eines adhäsiven Zwischenstoffes (8) kann die Sensoreinheit (1) auf das Bauteil (9) appliziert werden. Die Anordnung sollte durch ein geeignetes Abdeckmittel (10) geschützt werden.
Gemäß der Erfindung besteht u.U. die Notwendigkeit mehrere Messstellen bzw. Sensororientierungen am gleichen Applikationsort auf einem Bauteil vorzusehen.
Diese Messstellen sind mittels Brückenschaltung, z.B. über eine wheatstonesche Messbrücke, miteinander zu verschalten und ggf. durch eine Temperaturkompensation zu ergänzen.
Hierbei können auch mehrere Applikationsorte auf einem Bauteil zur Anwendung kommen und weitere Kompensationsschaltungen verkettet werden.
Gemäß einer vorteilhaften Weiterbildung der Erfindung weisen gleichartige Sensorelemente (11), (12) gemäß ihrer physikalischen Wirkungsweise u.U. verschiedene Orientierungen auf.
Verschiedene Orientierungen hinsichtlich ihrer Lasteinleitung in die Wälzlager sind insbesondere bei den richtungsorientierten Vektoren der Lagerreaktionskräfte in radialer (Fr) und axialer Richtung (Fa) der äquivalenten Lagerbelastung P zu erwarten. Daher ist es u.U. sinnvoll diese räumlich getrennt zu erfassen.
Die durch unterschiedliche Anordnungen von Sensorelementen und -einheiten gemäß der Erfindung getrennt voneinander aufgenommenen Messwerte werden im Datalogger (6) getrennt archiviert. Hiermit ist eine spätere separate Bearbeitung der Messwerte möglich.
Zur Sicherstellung der Funktionsfähigkeit der Messkette ist eine Kalibrierung anhand einer Kalibriergeraden, die mindestens zwei bekannte Punkte aufweist, vorzunehmen. Diese Punkte sollten innerhalb der Betriebsführung ansteuerbar sein. Die Kalibrierung muss im montierten Zustand in der Anlage erfolgen.
Geeignete Applikationspunkte sind neben den Wälzlageraußen- und -innenringen auch die unmittelbaren Anschlussgeometrien. Geeignete Applikationspunkte können die Wälzlagerringe der Planetenlager (13), (19), die Planeten (17), (23),
die Planetenträger (14), (20) und die Planetenträgerlager (15), (21 ) sein. Dies befinden sich im Getriebe der Windkraftanlage, zu dem weiterhin die Hohlräder (16), (22) im ortsfesten System und die Sonnen (18), (24) im nicht ortsfesten System gehören.
Die Getriebekonfiguration aus (Fig. 4) kommt in Triebsträngen von Windkraftanlagen nach der aufgelösten Bauweise (Fig. 5) der teilaufgelösten Bauweise (Fig. 6) und der integrierten Bauweise (Fig. 7) vor. In allen Bauweisen wird die Drehzahl am Getriebeausgang bzw. Generatoreingang erfasst und in den Auswertealgorithmus übergeben bzw. im Datalogger archiviert.
Die Messapplikation kann auch für einzelne Planetenstufen in Getrieben von Windkraftanlagen angewandt werden.
Gemäß der Erfindung werden die radiale Lagerreaktionskraft Fr und die axiale Lagerreaktionskraft Fa im Kraftfluss der Wälzlager erfasst. Daraus wird über P = Fr*X+Fa*Y die äquivalente Lagerbelastung P mit Berücksichtigung ihrer Auftretenshäufigkeit unter Einbeziehung des Verweildauerverfahrens nach DIN 45667 bestimmt und die verbleibende 90%ige Lebensdauerwahrscheinlichkeit Lioh ermittelt. Vorausgesetzt der Kenntnis der Lastannahmen zur Auslegung des Getriebes werden diese mit den Messwerten verglichen und die Lioh mittels realer Lastmonitoringwerte angepasst. Weiterhin besteht die Möglichkeit weitere Lebensdauerformen, wie die L 0
Hierbei wird die gleiche Signalbasis sowohl zur Zustandsüberwachung als auch zum Lastmonitoring genutzt. Aus der Signalbasis werden mittels Hüllkurvenord- nungsanalyse auftretende Schadsignalanteile separiert und statistisch so aufbereitet, dass eine frühzeitig Erkennung von sich entwickelnden Lagerschäden ermöglicht ist.
Gemäß der Erfindung werden durch den Einsatz der Hüllkurvenordnungsanalyse zum Aufbereiten der Signalbasis die tieffrequenten Signalanteile in den langsamdrehenden Planetenträgerlagern, die mit konventioneller Sensorik nur schwer zu erfassen und zu beurteilen sind, sichtbar und fließen mit in die Zustandsüberwa- chung ein.
Gemäß einer vorteilhaften Weiterbildung der Erfindung kann die Analyse der Daten sowohl autark erfolgen als auch in eine bestehende Betriebsführung integriert werden.
Die Datenbasis wird neben der Hüllkurvenordnungsanalyse den im Conditon Monitoring üblichen Auswertealgorithmen zur Schwingungsüberwachung von Wälzlagern und Verzahnungen unterzogen. Es werden statistische Kennwerte gebildet, die Aufschluss über den Zustand des Getriebes geben, so dass das System sowohl die Bereiche Condition Monitoring also auch Lastmonitoring abdeckt.
Gemäß der Erfindung ergänzen die in genannten Messgrößen die für das Condition Monitoring übliche Datenbasis und werden in die Zustandsbewertung mit eingebunden.
Bei der in der vorstehenden Beschreibung verwendeten Bezeichnung "LRD" handelt es sich um eine Abkürzung für den Fachbegriff "Load Revolution Distribution". Es handelt sich hierbei um die Verteilung der Last-Überrollung.
Erfindungsgemäß wird ein einziger Sensor für die messtechnische Erfassung der gesamten auszuwertenden Daten verwendet. Insbesondere wird hierbei die piezo rezessive Dehnung genutzt, um zum einen die zu erfassende Schwingung hieraus abzuleiten und zum anderen zusätzlich die zu erfassende Kraft zu ermitteln. Die erfasste Schwingung wird für das Condition Monitoring verwendet,
die erfasste Kraft für das Lastmonitoring. Gemäß einer weiteren Ausführungsvariante werden die Sensoren mehrfach miteinander verschaltet, um verschiedene Lastrichtungen abzudecken oder um die Sensoren auf großen Bauteilen mehrfach anzuordnen.
Claims
1. Sensoreinrichtung zum kontinuierlichen Lastmonitoring und zur Fehlerfrüherkennung in Wälzlagern von Planetenstufen in Hauptgetrieben von Windkraftanlagen und ortsfesten Industriegetrieben mittels eines gemeinsamen Messaufbaus, dadurch gekennzeichnet, dass
mindestens zwei Sensorelemente verschiedener physikalischer Messprinzipien zu einer Sensoreinheit verschaltet sind und auf ein gemeinsames Bauteil appliziert werden,
mindestens zwei Sensorelemente gleicher physikalischer Messprinzipien und unterschiedlicher räumlicher Orientierung zu einer Sensoreinheit verschaltet sind und auf ein gemeinsames Bauteil appliziert werden,
mindestens zwei Sensorelemente verschiedener physikalischer Messprinzipien oder unterschiedlicher räumlicher Orientierung in einer gemeinsamen Trägerstruktur eingebettet oder auf einer gemeinsamen Trägerstruktur angeordnet sind, wobei diese Struktur auf das zu überwachende Bauelement bzw. in dessen Nähe appliziert wird,
verschiedene physikalische Kenngrößen mit einem Sensorelement erfasst werden, dergestalt, dass die Separierung der Kenngrößen durch eine geeignete Signalauswertung erfolgt,
temperaturempfindliche Sensorelemente durch geeignete Elemente ergänzt und dadurch eine Kompensationsschaltung angewandt wird.
2. Sensoreinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass
sich mindestens eine Sensoreinheit im Innenraum des Getriebegehäuses befindet,
wenigstens eine Sensoreinheit auf einem Bauteil appliziert wird, dass sich gegenüber einem Bezugssystem bewegt bzw. um dieses rotiert oder umläuft,
Signale bei Bedarf berührungslos von der bewegten Sensoreinheit zum stehenden Bezugssystem übertragen werden.
3. Sensoreinrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, dass
die Sensoreinheiten bzw. die die Sensoreinheiten tragenden oder umgebenden Trägerstrukturen mit Hilfe eines adhäsiven Mediums auf die Bauteile appliziert werden, dergestalt, dass die Sensoreinheiten über die Lebens- oder Gebrauchsdauer der zu überwachenden Bauteile im Inneren des Getriebes verbleiben,
die Sensoreinheiten in unmittelbarer Nähe zum Ort des zu detektie- renden Schadens angeordnet sind,
die Sensoreinheiten derart angeordnet und appliziert sind, dass die Kräfte, die von den Wälzlagern aufgenommen werden bzw. die aus diesen Kräften resultierenden Spannungen und Dehnungen, er- fasst werden können,
die Messgröße mindestens einer Sensoreinheit im applizierten Zustand durch definierte Beanspruchung des zu überwachenden Bauteils kalibriert wird, so dass die Beträge der physikalischen Messgrößen abgeleitet werden können.
4. Sensoreinrichtung nach Anspruch 1 , 2 und 3, dadurch gekennzeichnet, dass
die äquivalente Lagerbelastung P aus den separat aufgenommenen und archivierten Anteilen der Lagerreaktionskräfte in radialer und axialer Richtung ermittelt wird,
mit Hilfe der zeitsynchron aufgezeichneten Drehzahl und dem Verweildauerverfahren eine LRD gebildet mit der ursprünglichen Auslegungslast vergleichen wird,
eine Hüllkurvenordnungsanalyse zur Bewertung der gemessenen Größen angewandt wird, dergestalt, dass eine Detektierung von Schäden an den Bauteilen von Wälzlagern ermöglicht wird,
eine Hüllkurvenordnungsanalyse angewandt wird um tieffrequente Signalanteile (<1Hz) zu bewerten,
mit Hilfe der aufgenommenen Messgrößen Informationen zur Ausbildung und zum Fortschritt der Schäden an den Wälzlagern ermittelt werden, dergestalt, dass eine Planbarkeit von notwendigen Instandhaltungsmaßnahmen ermöglicht wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16757138.9A EP3320319A1 (de) | 2015-07-07 | 2016-07-05 | Vorrichtung zur zustandsüberwachung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015008978.1A DE102015008978A1 (de) | 2014-07-14 | 2015-07-07 | Vorrichtung zur Zustandsüberwachung |
DE102015008978.1 | 2015-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017005238A1 true WO2017005238A1 (de) | 2017-01-12 |
Family
ID=56801324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2016/000273 WO2017005238A1 (de) | 2015-07-07 | 2016-07-05 | Vorrichtung zur zustandsüberwachung |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3320319A1 (de) |
WO (1) | WO2017005238A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107560845A (zh) * | 2017-09-18 | 2018-01-09 | 华北电力大学 | 一种齿轮箱故障诊断建立方法及装置 |
CN108361157A (zh) * | 2018-02-12 | 2018-08-03 | 上海电机学院 | 一种基于嵌入式系统的风力发电机运行状态监测系统 |
EP3421066A1 (de) | 2013-10-24 | 2019-01-02 | Amgen, Inc | Injektor und verfahren zur montage |
CN110779716A (zh) * | 2019-11-01 | 2020-02-11 | 苏州德姆斯信息技术有限公司 | 嵌入式机械故障智能诊断设备及诊断方法 |
CN113669214A (zh) * | 2021-08-17 | 2021-11-19 | 德力佳传动科技(江苏)有限公司 | 风电齿轮箱行星级运行状态检测的方法、系统和存储介质 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5140849A (en) * | 1990-07-30 | 1992-08-25 | Agency Of Industrial Science And Technology | Rolling bearing with a sensor unit |
WO2006012827A1 (de) * | 2004-07-28 | 2006-02-09 | Igus - Innovative Technische Systeme Gmbh | Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen |
WO2007085259A1 (en) * | 2006-01-25 | 2007-08-02 | Vestas Wind Systems A/S | A wind turbine comprising at least one gearbox and an epicyclic gearbox |
DE60131571T2 (de) * | 2000-04-10 | 2008-10-23 | The Timken Company, Canton | Lageranordnung mit sensoren zur überwachung von lasten |
WO2011104433A1 (en) * | 2010-02-24 | 2011-09-01 | Espotel Oy | Monitoring system for monitoring the condition of planetary gears |
DE102010034749A1 (de) * | 2010-08-19 | 2012-02-23 | Schaeffler Technologies Gmbh & Co. Kg | Vorrichtung zur Überwachung eines rotierenden Maschinenteils |
EP2498076A1 (de) * | 2011-03-11 | 2012-09-12 | Hexagon Technology Center GmbH | Verschleissüberwachung einer Schaltung in einer Stromstation |
EP2522977A1 (de) * | 2010-01-04 | 2012-11-14 | NTN Corporation | Anomalienerkennungsvorrichtung für ein kugellager, windkraftgenerator und anomalienerkennungssystem |
DE102011117468A1 (de) * | 2011-11-02 | 2013-05-02 | Robert Bosch Gmbh | Verfahren, Recheneinheit und Einrichtung zur Überwachung eines Antriebstrangs |
DE102012200778A1 (de) * | 2012-01-20 | 2013-07-25 | Aktiebolaget Skf | Vorrichtung mit wenigstens einem Wälzkörperelement und Verfahren zur Ausgabe eines Signals |
WO2014007714A1 (en) * | 2012-07-04 | 2014-01-09 | Aktiebolaget Skf (Publ) | Load sensing arrangement on a bearing component, method and computer program product |
GB2521359A (en) * | 2013-12-17 | 2015-06-24 | Skf Ab | Viscosity estimation from demodulated acoustic emission |
-
2016
- 2016-07-05 EP EP16757138.9A patent/EP3320319A1/de not_active Withdrawn
- 2016-07-05 WO PCT/DE2016/000273 patent/WO2017005238A1/de active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5140849A (en) * | 1990-07-30 | 1992-08-25 | Agency Of Industrial Science And Technology | Rolling bearing with a sensor unit |
DE60131571T2 (de) * | 2000-04-10 | 2008-10-23 | The Timken Company, Canton | Lageranordnung mit sensoren zur überwachung von lasten |
WO2006012827A1 (de) * | 2004-07-28 | 2006-02-09 | Igus - Innovative Technische Systeme Gmbh | Verfahren und vorrichtung zur überwachung des zustandes von rotorblättern an windkraftanlagen |
WO2007085259A1 (en) * | 2006-01-25 | 2007-08-02 | Vestas Wind Systems A/S | A wind turbine comprising at least one gearbox and an epicyclic gearbox |
EP2522977A1 (de) * | 2010-01-04 | 2012-11-14 | NTN Corporation | Anomalienerkennungsvorrichtung für ein kugellager, windkraftgenerator und anomalienerkennungssystem |
WO2011104433A1 (en) * | 2010-02-24 | 2011-09-01 | Espotel Oy | Monitoring system for monitoring the condition of planetary gears |
DE102010034749A1 (de) * | 2010-08-19 | 2012-02-23 | Schaeffler Technologies Gmbh & Co. Kg | Vorrichtung zur Überwachung eines rotierenden Maschinenteils |
EP2498076A1 (de) * | 2011-03-11 | 2012-09-12 | Hexagon Technology Center GmbH | Verschleissüberwachung einer Schaltung in einer Stromstation |
DE102011117468A1 (de) * | 2011-11-02 | 2013-05-02 | Robert Bosch Gmbh | Verfahren, Recheneinheit und Einrichtung zur Überwachung eines Antriebstrangs |
DE102012200778A1 (de) * | 2012-01-20 | 2013-07-25 | Aktiebolaget Skf | Vorrichtung mit wenigstens einem Wälzkörperelement und Verfahren zur Ausgabe eines Signals |
WO2014007714A1 (en) * | 2012-07-04 | 2014-01-09 | Aktiebolaget Skf (Publ) | Load sensing arrangement on a bearing component, method and computer program product |
GB2521359A (en) * | 2013-12-17 | 2015-06-24 | Skf Ab | Viscosity estimation from demodulated acoustic emission |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3421066A1 (de) | 2013-10-24 | 2019-01-02 | Amgen, Inc | Injektor und verfahren zur montage |
CN107560845A (zh) * | 2017-09-18 | 2018-01-09 | 华北电力大学 | 一种齿轮箱故障诊断建立方法及装置 |
CN108361157A (zh) * | 2018-02-12 | 2018-08-03 | 上海电机学院 | 一种基于嵌入式系统的风力发电机运行状态监测系统 |
CN110779716A (zh) * | 2019-11-01 | 2020-02-11 | 苏州德姆斯信息技术有限公司 | 嵌入式机械故障智能诊断设备及诊断方法 |
CN113669214A (zh) * | 2021-08-17 | 2021-11-19 | 德力佳传动科技(江苏)有限公司 | 风电齿轮箱行星级运行状态检测的方法、系统和存储介质 |
CN113669214B (zh) * | 2021-08-17 | 2024-05-03 | 德力佳传动科技(江苏)有限公司 | 风电齿轮箱行星级运行状态检测的方法、系统和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3320319A1 (de) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017005238A1 (de) | Vorrichtung zur zustandsüberwachung | |
DE10065314B4 (de) | Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen | |
DE60206120T2 (de) | Methode und System zur Lagerüberwachung | |
DE102011117468B4 (de) | Verfahren, Recheneinheit und Einrichtung zur Überwachung eines Antriebstrangs | |
EP2937560B1 (de) | Windenergieanlagen-diagnosevorrichtung für generatorkomponenten | |
DE20021970U1 (de) | Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen | |
DE19522543A1 (de) | Piezoelektrisches Film-Meßfühlersystem für Lager | |
DE102012015654A1 (de) | Verfahren und Vorrichtung zur Erkennung und Überwachung des Zustands von Baugruppen und Komponenten. | |
DE102012206377B4 (de) | Vorrichtung zur Messung der Lagerluft eines Wälzlagers | |
DE102019210795A1 (de) | Spannungswellengetriebe und Verfahren für Spannungswellengetriebe | |
DE102011051761A1 (de) | Vorrichtung und Verfahren zur Überwachung einer drehenden Welle mittels longitudinaler Ultraschallwellen | |
DE102005031436B4 (de) | Verfahren zur Überwachung einer elastomechanischen Tragstruktur | |
WO2018219379A1 (de) | Wälzlageranordnung für ein getriebe | |
EP3268635B1 (de) | Planetengetriebe | |
EP3517927B1 (de) | Verfahren und vorrichtung zur früherkennung eines risses in einem radsatz für ein schienenfahrzeug | |
DE112018001755T5 (de) | Schaufelanomalie-erfassungsvorrichtung, schaufelanomalie-erfassungssystem, rotationsmaschinensystem und schaufelanomalie-erfassungsverfahren | |
DE102016202340A1 (de) | Messvorrichtung und Messverfahren | |
DE102010013934A1 (de) | Messsystem für Wälzlager | |
DE102013222151A1 (de) | Vorrichtung zur Kraftmessung im Wälzlager mittels Sensorschicht | |
DE102005003983A1 (de) | Planetengetriebe mit Mitteln zur Früherkennung von Schäden an einem der Wälzlager | |
DE102009016105B4 (de) | Verfahren und Vorrichtung zum Messen der Beanspruchung rotierender Wellen | |
Friedmann et al. | Vibration-based condition monitoring, structural health monitoring, population monitoring–Approach to a definition of the different concepts by means of practical examples from the field of wind energy | |
DE102015008978A1 (de) | Vorrichtung zur Zustandsüberwachung | |
DE102009059655A1 (de) | Schmierstoffüberwachungsvorrichtung einer Windkraftanlage und Windkraftanlage | |
Pennacchi et al. | Diagnostics of Bearings in Rolling Stocks: Results of Long Lasting Tests for a Regional Train Locomotive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16757138 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016757138 Country of ref document: EP |