WO2006011184A1 - Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device - Google Patents

Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device Download PDF

Info

Publication number
WO2006011184A1
WO2006011184A1 PCT/JP2004/010479 JP2004010479W WO2006011184A1 WO 2006011184 A1 WO2006011184 A1 WO 2006011184A1 JP 2004010479 W JP2004010479 W JP 2004010479W WO 2006011184 A1 WO2006011184 A1 WO 2006011184A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
azimuth
measurement data
offset
offset data
Prior art date
Application number
PCT/JP2004/010479
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Sato
Kiyoshi Yamaki
Masayoshi Omura
Chihiro Osuga
Satoshi Nihashi
Tetsuya Mabuchi
Original Assignee
Yamaha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corporation filed Critical Yamaha Corporation
Priority to PCT/JP2004/010479 priority Critical patent/WO2006011184A1/en
Priority to PCT/JP2005/007702 priority patent/WO2006011276A1/en
Priority to TW094119301A priority patent/TWI277721B/en
Priority to US11/149,707 priority patent/US8065083B2/en
Priority to EP05766407A priority patent/EP1793200A4/en
Priority to CN2005800249193A priority patent/CN101023323B/en
Priority to PCT/JP2005/013469 priority patent/WO2006009247A1/en
Priority to KR1020077001528A priority patent/KR100876030B1/en
Priority to CN2009102055366A priority patent/CN101738181B/en
Priority to JP2006529294A priority patent/JP4311447B2/en
Publication of WO2006011184A1 publication Critical patent/WO2006011184A1/en
Priority to US12/870,726 priority patent/US8090535B2/en
Priority to US13/306,740 priority patent/US20120072114A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses

Definitions

  • Direction processing apparatus direction processing method, direction processing program, direction measurement apparatus, and geographic information display apparatus
  • the present invention relates to an azimuth processing device, an azimuth processing method, an azimuth processing program, an azimuth measurement device, and a geographic information display device, and more particularly to an offset update processing for an azimuth sensor.
  • portable information terminals such as portable telephones and PDAs are equipped with a geographic information display function using GPS and a direction sensor.
  • the current location is identified by GPS
  • map information around the current location is downloaded from the server via a communication line
  • the orientation is identified by the built-in orientation sensor
  • the orientation on the map matches the actual orientation.
  • portable information terminals that display map information on the screen are known.
  • the direction sensor detects the earth's magnetic field and measures the direction. Actually, however, the magnetic field leaks from a speaker mounted on a portable information terminal, a microphone, or a metal package of a magnetized electronic component. A magnetic field synthesized with the magnetic field of the sphere is detected. For this reason, in order to accurately determine the azimuth, it is necessary to obtain a magnetic field (offset) other than the earth's magnetic field, and correct the measurement data of the azimuth sensor using this offset.
  • Patent Document 1 discloses an offset updating method for an orientation sensor.
  • the offset update method disclosed in this document is based on the measurement data output from the azimuth sensor at 90 or 180 degree intervals when the user rotates the azimuth sensor 90 degrees or 180 degrees or more around a specific axis.
  • the offset of the azimuth sensor is calculated based on the measurement data acquired in this way.
  • the user can rotate the device incorporating the direction sensor, for example, on a horizontal plane so that the direction sensor's measurement data is output from the direction sensor. It is necessary to flip it by holding it in your hand or shake it up and down and left and right.
  • the necessary operation to output the measurement data necessary for updating the direction sensor offset is called the calibration operation.
  • the calibration operation requires a large orientation sensor orientation at a constant angular velocity. Ideally, it should be done in a changing manner.
  • the user may drop the apparatus during the calibration operation. Even if a calibration operation is performed, an accurate offset may not be calculated from the direction sensor measurement data accumulated during the operation. In addition, the calibration operation is troublesome for the user because the exact procedure is not known unless the manual is read, and the operation is only necessary for updating the offset of the direction sensor. Accurate geological information based on accurate azimuth data cannot be displayed unless the offset of the azimuth sensor is accurately updated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-012416
  • the first object of the present invention is to provide an azimuth processing device, an azimuth processing method, an azimuth processing program, an azimuth measuring device, and a geographic information display device with accurate offset data.
  • the second object is to provide an easy geographical information display device.
  • An azimuth processing apparatus for achieving the first object is an azimuth processing apparatus for outputting azimuth data on the basis of measurement data sequentially output from an azimuth sensor.
  • the offset data is data representing the above-described offset, and is a deviation of the measurement data of the direction sensor.
  • the azimuth processing device outputs azimuth data according to the difference between the measurement data and the offset data.
  • the azimuth processing device further includes azimuth data output means for outputting the azimuth data based on the latest measurement data and the offset data.
  • the accuracy of the orientation data is improved by updating the offset data of the orientation sensor based on substantially the latest measurement data and outputting the orientation data based on the measurement data and the updated offset data.
  • the accumulation means may compare the substantially latest measurement data with the measurement data accumulated immediately before, and selectively accumulate the substantially latest measurement data according to the comparison result. .
  • the accuracy of the offset data updated based on the accumulated measurement data is improved by selectively accumulating the measurement data according to the comparison result between the latest measurement data and the measurement data accumulated immediately before. To do.
  • the storage means is selectively substantially according to a distance between a position in the azimuth space represented by the most recent measurement data and a position in the azimuth space represented by the measurement data accumulated immediately before.
  • the latest measurement data may be stored.
  • the azimuth space is a vector space expressed by the output value of the azimuth sensor.
  • the vector space is called the bearing space.
  • the storage means includes a position in the azimuth space represented by the plurality of stored measurement data and a position in the azimuth space represented by the offset data candidate calculated based on the measurement data stored by the storage means.
  • the variation in the distance does not satisfy a predetermined criterion, at least a part of the accumulated measurement data may be deleted, and the offset data may not be updated with the offset data candidates.
  • the offset data candidate If there is a large variation in the distance between the position in the azimuth space represented by the accumulated measurement data and the position in the azimuth space represented by the offset data candidate calculated based on the accumulated measurement data, the offset data candidate The force with which the true offset corresponding to each of multiple measurement data is different from each other, or the measurement data is highly likely to be affected by noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
  • the accumulation unit may delete at least a part of the accumulated measurement data when the variation in the position in the azimuth space represented by the plurality of accumulated measurement data does not satisfy a predetermined reference.
  • the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density.
  • the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
  • the accumulating unit may accumulate the latest measurement data for each section while updating the latest measurement data for each section of the azimuth space.
  • the measurement data that represents the offset data represents As the position in the position space varies, the accuracy of the offset data improves. Therefore, by accumulating a predetermined number of measurement data while updating each section of the azimuth space, the accuracy of offset data updated based on the accumulated measurement data is improved.
  • the accumulating unit calculates the position in the azimuth space represented by the plurality of accumulated measurement data and the azimuth space represented by the offset data candidate calculated based on the measurement data accumulated by the accumulation unit. If the variation in the distance from the position does not satisfy a predetermined standard, at least a part of the accumulated measurement data may be deleted, and the offset data may not be updated with the offset data candidate.
  • the offset data candidate It is highly possible that the true offset corresponding to each of the multiple measurement data is different from each other, or that the measurement data is affected by noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
  • the accumulation unit may delete at least a part of the accumulated measurement data when the variation in the position in the azimuth space represented by the plurality of accumulated measurement data does not satisfy a predetermined standard.
  • the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density.
  • the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
  • An azimuth processing apparatus for achieving the first object is an azimuth processing apparatus for outputting azimuth data on the basis of measurement data sequentially output from an azimuth sensor.
  • First accumulation means for accumulating up to a predetermined number, and after the predetermined number of the first measurement data are accumulated by the first accumulation means, the offset data of the azimuth sensor is generated based on the accumulated measurement data.
  • the accuracy of the offset data improves as the position in the position space represented by the measurement data that is the basis of the offset data varies. Therefore, by accumulating a predetermined number of measurement data while updating each section of the azimuth space, the accuracy of offset data updated based on the accumulated measurement data is improved.
  • offset data is generated based on a small number of measurement data if the measurement data storage time is short. Therefore, the accuracy of offset data cannot be improved. Therefore, first, by generating offset data based on measurement data accumulated independently of the orientation space section, and then generating offset data based on measurement data updated for each orientation space section, Certainly the accuracy of the offset data is improved.
  • the azimuth processing device may further include azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data.
  • the accuracy of the orientation data is improved by updating the offset data of the orientation sensor based on substantially the latest measurement data and outputting the orientation data based on the measurement data and the updated offset data.
  • the first storage means is calculated based on the position in the azimuth space represented by the plurality of measurement data stored in the first storage means and the measurement data stored by the storage means.
  • the variation in distance from the position in the azimuth space represented by the offset data candidate does not satisfy a predetermined standard, at least a part of the measurement data stored in the first storage unit is deleted, and the offset data candidate The offset data need not be updated.
  • the offset data candidate If there is a large variation in the distance between the position in the azimuth space represented by the accumulated measurement data and the position in the azimuth space represented by the offset data candidate calculated based on the accumulated measurement data, the offset data candidate There is a high possibility that the true offset corresponding to each of multiple measurement data based on each other is different from each other, or that the measurement data is affected by strong noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
  • the first accumulating unit accumulates the first accumulating unit accumulated in the first accumulating unit when variation in position in the azimuth space represented by the plurality of measurement data accumulated in the first accumulating unit does not satisfy a predetermined standard. At least a part of the measurement data may be deleted.
  • the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density.
  • the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
  • the second accumulating unit has a predetermined variation in distance between the position in the azimuth space represented by the plurality of measurement data accumulated in the second accumulating unit and the position in the azimuth space represented by the offset data. If the standard is not met, it is stored in the second storage means. Further, at least a part of the measurement data may be deleted.
  • the distance between the position in the azimuth space represented by the accumulated measurement data and the position in the azimuth space represented by the offset data updated based on the accumulated measurement data is large, it becomes the basis for the offset data. It is highly possible that the true offsets corresponding to each of the multiple measurement data are different from each other, or that the measurement data is affected by strong noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
  • the second accumulating unit is configured to store the second accumulating unit accumulated in the second accumulating unit when a variation in position in the azimuth space represented by the plurality of measurement data accumulated in the second accumulating unit does not satisfy a predetermined standard. At least a part of the measurement data may be deleted.
  • the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density.
  • the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
  • the azimuth processing device is It may further comprise reset means for re-accumulating the measurement data by the first accumulation means until the offset data is re-generated.
  • Measurement data output in time-sharing for each measurement axis There is a high possibility that the data is output when the direction sensor detects different directions because the moving speed is too fast, or it is affected by local magnetic field fluctuations. In such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting the measurement data accumulated under these circumstances and then reaccumulating the measurement data. .
  • the geographical information display device for achieving the second object transmits a microphone, an operation unit that receives a communication operation including a call operation, and an acoustic signal output from the microphone when the call operation is received.
  • Communication means a display unit connected to the operation unit so as to be able to reciprocate between a first posture overlapping the operation unit and a second posture separated from the operation unit, an orientation sensor for sequentially outputting measurement data, Offset data updating means for starting accumulation of the measurement data in accordance with the operation of the display unit changing from the first attitude to the second attitude, and updating the offset data based on the accumulated measurement data;
  • Azimuth data output means for outputting azimuth data based on the latest measurement data and the offset data, Based on the serial azimuth data and a display control means for displaying geographic information on said display unit.
  • the user When the user performs a transmission operation from the state where the display unit overlaps the operation unit, the user separates the display unit from the operation unit and performs a transmission operation on the operation unit.
  • the attitude of the geographic information display device changes greatly. Therefore, when the accumulation of measurement data of the direction sensor is started in accordance with the operation in which the attitude of the display unit changes to the second attitude away from the operation unit, the first attitude force that overlaps the operation unit is stored.
  • the position in the azimuth space represented by the measurement data varies greatly. Therefore, according to the geographic information display device that updates the offset data of the direction sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for calibration.
  • the display unit incorporates the orientation sensor.
  • the attitude of the display unit changes more greatly than the operation unit.
  • the accuracy of the offset data improves. Therefore, the accuracy of the offset data is improved by incorporating the orientation sensor in the display unit.
  • the offset data update means may end the accumulation of the measurement data upon completion of the operation.
  • the hardware resource allocation for the accumulation process is released.
  • the offset data update means is configured to change the offset according to a change in a magnetic field applied to the direction sensor due to a magnetic force (line) leaking from at least one of the operation unit and the display unit accompanying the operation. Data may be corrected.
  • the direction sensor measurement data is affected by the magnetic force (line) leaking from the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the accuracy of the offset data is improved by correcting the offset data in consideration of the change.
  • a geographic information display device for achieving the second object includes an orientation sensor that sequentially outputs measurement data, an operation unit that accepts a display operation, a first posture that overlaps the operation unit, and a first posture separated from the operation unit.
  • a display unit connected to the operation unit so as to be able to reciprocate between two positions, and the display unit starts accumulating the measurement data in accordance with an operation of changing from the second position to the first position.
  • Offset data updating means for updating offset data of the orientation sensor based on the measurement data
  • orientation data output means for outputting orientation data based on the most recent measurement data and the offset data
  • the display Display control means for displaying geographical information on the display unit based on the azimuth data according to operation. That.
  • the user At the end of the operation of the geographic information display device, the user is away from the operation unit. There is a high possibility that the mobile phone is placed on the operation unit and the geographical information display device is put in a pocket or a bag of clothes. Therefore, when the accumulation of measurement data of the direction sensor is started in accordance with the operation in which the attitude of the display unit changes to the first attitude that overlaps the operation unit, the second attitude force that is separated from the operation unit, a plurality of accumulated measurement data are stored. The position in the azimuth space to represent varies greatly. Therefore, according to the geographical information display device that updates the offset data of the bearing sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for the calibration.
  • the display unit incorporates the orientation sensor.
  • the user stacks the display unit on the operation unit, so that the attitude of the display unit changes more greatly than the operation unit.
  • the accuracy of the offset data improves. Therefore, the accuracy of the offset data is improved by incorporating the orientation sensor in the display unit.
  • the offset data update means may end the accumulation of the measurement data when the display unit completes the operation.
  • the hardware resource allocation for the accumulation process is released.
  • the offset data update means is configured to change the offset according to a change of the magnetic field applied to the direction sensor due to a magnetic force leaked from at least one of the operation unit and the display unit. Data may be corrected.
  • the measurement data of the azimuth sensor is affected by the leakage power of the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the offset data accuracy is improved by correcting the offset data in consideration of the change.
  • the geographic information display device for achieving the second object sequentially outputs measurement data.
  • Azimuth sensor, screen, communication means, reception notification means for informing reception by the communication means, and accumulation of the measurement data is started upon reception by the communication means, and the accumulated measurement data Offset data updating means for updating the offset data of the orientation sensor based on the above, orientation data output means for outputting the orientation data based on the most recent measurement data and the offset data, and the orientation data Display control means for displaying geographic information on the screen based on the display screen.
  • the geographic information display device When the geographic information display device notifies the reception, the user is likely to take out the geographic information display device from the pocket of clothes. During this operation, the attitude of the geographic information display device changes greatly. Therefore, when the accumulation of measurement data of the azimuth sensor is started as the acoustic signal is received, the positions in the azimuth space represented by a plurality of accumulated measurement data vary greatly. Therefore, according to the geographic information display device that updates the offset data of the direction sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for calibration.
  • the geographic information display device is connected to the operation unit so as to be able to reciprocate between an operation unit that accepts a display operation, a first posture that overlaps the operation unit, and a second posture that is separated from the operation unit.
  • a built-in display unit may be further provided.
  • the offset data update unit may end the accumulation of the measurement data when the operation of the display unit changing from the first posture to the second posture is completed. After the measurement data has been accumulated, the allocation of hardware resources to other processes increases. [0038] (36)
  • the offset data update means is configured to detect the offset data according to a change in the magnetic field applied to the direction sensor due to a magnetic force leaking from at least one of the communication unit and the display unit. May be corrected.
  • the measurement data of the azimuth sensor is affected by the leakage power of the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the offset data accuracy is improved by correcting the offset data in consideration of the change.
  • the geographic information display device for achieving the second object includes an orientation sensor that sequentially outputs measurement data, an operation unit that receives a communication operation including a transmission operation, a communication unit that transmits in response to the transmission operation, An offset data updating unit that starts accumulating the measurement data in response to an operation in which the operation unit receives the transmission operation, and updates the offset data of the direction sensor based on the accumulated measurement data; Azimuth data output means for outputting azimuth data based on the qualitatively latest measurement data and the offset data, and display control means for displaying geographic information on the display unit based on the azimuth data. .
  • the user may move the geographic information display device closer to his / her head for a call or may cause the geographic information display device to be put in a pocket of clothes. Is expensive.
  • the attitude of the geographic information display device changes greatly. Therefore, when the accumulation of measurement data of the azimuth sensor is started in response to the operation for accepting the transmission operation, the position in the azimuth space represented by the plurality of accumulated measurement data varies greatly. Therefore, according to the geographical information display device that updates the offset data of the direction sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for calibration.
  • a geographic information display device for achieving the second object includes an operation unit that accepts a display operation and a screen, and a first posture force that a back surface of the screen overlaps the operation unit. Up to two postures, centering on an axis that is almost perpendicular to the screen A display unit that is swingably connected to the operation unit, a direction sensor that is built in the display unit and sequentially outputs measurement data, and an operation period during which the display unit changes from the first posture to the second posture.
  • Offset data updating means for accumulating the measurement data and updating offset data of the orientation sensor based on the accumulated measurement data, and direction data based on the most recent measurement data and the offset data
  • Azimuth data output means for outputting
  • display control means for displaying geographic information on the display unit based on the azimuth data in response to the display operation.
  • An operation unit that accepts a display operation and a screen, and swings around an axis that is substantially perpendicular to the screen from a first posture in which the back surface of the screen overlaps the operation unit to a second posture away from the operation unit.
  • a display unit that is movably connected to the operation unit, a direction sensor that is built in the display unit and sequentially outputs measurement data, and the display unit changes from the second posture to the first posture.
  • the offset data updating means for accumulating the measurement data during an operation period and updating the offset data of the azimuth sensor based on the accumulated measurement data, and based on the most recent measurement data and the offset data.
  • Direction data output means for outputting direction data, and according to the display operation, geographical information is displayed on the display unit based on the direction data. Comprising a display control means for, the.
  • the offset data update means responds to a change in the magnetic field applied to the direction sensor due to the magnetic force leaked from at least one of the communication unit and the display unit, and the displacement of the display unit.
  • the offset data may be corrected.
  • the measurement data of the azimuth sensor is affected by the leakage power of the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the offset data accuracy is improved by correcting the offset data in consideration of the change.
  • the geographic information display device that achieves the second object described above sequentially includes a direction sensor that sequentially outputs measurement data, an exterior having a screen, light sources scattered on two or more surfaces of the exterior, and a plurality of the light sources.
  • a light emission control means for emitting light
  • an offset data updating means for accumulating the measurement data during a period in which the light source emits light in sequence, and updating the offset data of the direction sensor based on the accumulated measurement data
  • Azimuth data output means for outputting azimuth data based on the latest measurement data and the offset data, and display control means for displaying geographic information on the screen based on the azimuth data.
  • the user's attention is drawn in the order of light emission. If the light sources scattered on multiple surfaces of the exterior emit light sequentially, the user can see the light source that emits light, that is, the geological information display so that the surface with the light source that is emitting is facing you.
  • the possibility of manipulating the attitude of the device is high. Therefore, during a period in which light sources scattered on two or more surfaces of the exterior emit light sequentially, the position in the orientation space represented by the measurement data of the orientation sensor that changes its attitude with the exterior is likely to vary greatly. Therefore, the offset data of the direction sensor is updated based on the measurement data accumulated during this period. According to the geographic information display device, the offset data is updated without making the user strongly aware of the calibration operation. The necessary measurement data can be accumulated.
  • the geographic information display device for achieving the second object sequentially outputs measurement data.
  • An orientation sensor an exterior having a screen on two or more surfaces, a target display control means for displaying a target on the screen, and moving the target in a range of two or more surfaces of the exterior; and during the movement period of the target Offset data updating means for accumulating the measurement data and updating offset data of the orientation sensor based on the accumulated measurement data, and a direction based on the most recent measurement data and the offset data.
  • Azimuth data output means for outputting data
  • geographical display control means for displaying geographical information on the screen based on the azimuth data.
  • the geographic information display device for achieving the second object includes an orientation sensor that sequentially outputs measurement data, an exterior having a screen, the measurement data is accumulated, and the orientation is based on the accumulated measurement data.
  • Offset data updating means for updating the offset data of the sensor, and operation guidance control means for notifying guidance for operating the orientation sensor on the screen according to the measurement data during the accumulation period of the measurement data
  • Azimuth data output means for outputting azimuth data based on the most recent measurement data and offset data
  • geographic display control means for displaying geographic information on the screen based on the azimuth data.
  • the offset data updating means determines whether the accumulated measurement data is either pass or fail, and updates the offset data based on the accumulated measurement data only when it is determined to be acceptable.
  • the geographic information display device may further include failure notification means for notifying the failure when the accumulated measurement data is determined to be failed.
  • the offset data is updated more accurately as there are a plurality of measurement data on which the offset data is based, and the position in the azimuth space represented by the measurement data varies. Therefore, if the offset data is updated only when a plurality of measurement data on which the offset data is based meets a specific standard, the offset data is updated accurately. In addition, according to the geographic information display device in which a plurality of measurement data on which offset data is based does not satisfy a specific standard, a failure is notified in some cases, the user can be prompted to re-execute the calibration operation. .
  • the geographic information display device may further include a pass notification unit that notifies pass when the accumulated measurement data is determined to be pass.
  • the user can confirm the reliability of the geographic information.
  • each function of the plurality of means provided in the present invention is realized by a hardware resource whose function is specified by the configuration itself, a hardware resource whose function is specified by a program, or a combination thereof. Further, the functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.
  • the present invention can be specified not only as an invention of a program but also as an invention of a program, an invention of a recording medium on which the program is recorded, and an invention of a method.
  • the telephone 1 is a small portable telephone having a wireless call function and a map display function around the current location.
  • the telephone 1 includes an operation unit 2 having a plurality of keys 21 and a display unit 3 having a screen 31.
  • the display unit 3 is swingably connected to the operation unit 2. As shown in FIG. 3, when the display unit 3 is overlapped with the operation unit 2, the key 21 of the operation unit 2 is covered with the display unit 3, and the screen 31 of the display unit 3 is covered with the operation unit 2.
  • the button 33 is pressed while the display unit 3 overlaps the operation unit 2, the display unit 3 swings due to the elasticity of the panel (not shown), and the display unit 3 moves away from the operation unit 2 as shown in FIG. .
  • FIG. 4 is a block diagram showing a hardware configuration of the telephone 1.
  • the RF unit 202 serving as a communication unit includes a duplexer, an amplifier, a filter, and the like that allow a reception signal to pass through a reception-side circuit and a transmission signal to pass through an antenna 200.
  • the modulation / demodulation unit 204 demodulates the received signal with a demodulator, converts it to a digital signal with an A / D converter, and outputs the digital signal to the C DMA unit 206 as a baseband signal.
  • the modulation / demodulation unit 204 converts the baseband signal output from the CDMA unit 206 into an analog signal by a D / A converter and then modulates it by the modulator during transmission, and sends the modulated analog signal to the RF unit 202 as a transmission signal. Output.
  • the CDMA unit 206 as a communication means separates a control signal and a voice signal for communication between the base station and the telephone set 1, a circuit for performing a spreading process or a despreading process by adding a spreading code to the signal Alternatively, a circuit for synthesis is provided.
  • CDMA section 206 performs despreading processing on the baseband signal output from modulation / demodulation section 204, and separates the signal after despreading processing into a control signal and a voice signal.
  • the CDMA unit 206 at the time of transmission performs spreading processing after synthesizing a control signal with the audio signal output from the audio processing unit 208. Then, CDMA section 206 outputs the signal after spreading processing to modulation / demodulation section 204 as a baseband signal.
  • the voice processing unit 208 as a communication means displays a D / A converter, an A / D converter, and a speech voice. And a voice compression circuit for compressing the digital signal.
  • the voice processing unit 208 at the time of reception converts the voice signal output from the CDMA unit 206 into an analog signal by the D / A converter, and outputs the analog signal to the voice speaker 300 as a received voice signal. Further, the voice processing unit 208 at the time of transmission converts an electric signal representing the speech voice output from the microphone 210 into a digital signal by an A / D converter, and compresses the digital signal by a voice compression circuit to generate a voice signal. .
  • the microphone 210 is provided in the operation unit 2.
  • the microphone 210 converts the user's speech voice into an electrical signal.
  • the GPS receiving unit 214 includes an amplifier, a frequency converter, an AZD converter, a circuit that generates position data based on the GPS signal received by the antenna 212, and the like.
  • the position data is data that can uniquely identify the current position of the telephone 1 on the earth.
  • the GPS receiver 214 amplifies the GPS signal with an amplifier, and then converts it to a predetermined frequency with a frequency converter.
  • the GPS receiving unit 214 converts the analog signal output from the frequency converter into a digital signal by an A / D converter, and generates the digital signal force position data.
  • the CPU 216 is connected to peripheral devices such as a main operation unit 224, a sub operation unit 302, an imaging unit 304, a display unit 306, and a light emitting unit 308 via an I / O interface (not shown).
  • the CPU 216 controls the entire telephone 1 by loading various computer programs stored in the ROM 218 into the RAM 220 and executing them.
  • the main operation unit 224 is provided in the operation unit 2 and includes various keys 21. When the key 21 is pressed, the main operation unit 224 receives a user operation by outputting a predetermined signal to the CPU 216.
  • the audio speaker 300 is provided in the display unit 3.
  • the audio speaker 300 generates a received voice by radiating a sound wave into the space according to the received voice signal output from the voice processing unit 208.
  • the sub operation unit 302 is provided in the display unit 3 and includes a dial switch 32. When the diamond switch 32 rotates, the sub-operation unit 302 receives a user operation by outputting a predetermined signal to the CPU 216.
  • the imaging unit 304 is provided in the display unit 3, and includes a lens 34, an area image sensor (not shown). And an AD converter and an image processor.
  • the lens 34 is provided on the back side of the screen 31, has an optical axis perpendicular to the screen 31, and images an object on the optical axis to the area image sensor.
  • the display unit 306 includes a screen 31 configured by a liquid crystal display panel, a display circuit, a frame memory, and the like.
  • the light emitting unit 308 as a notification unit includes a plurality of light sources 35 (see FIG. 3) provided in the display unit 3 and configured by LEDs or the like.
  • the light source 35 is provided on the back side of the screen 31, emits light according to a reception notification signal output from the CPU 216, and notifies the user of reception.
  • the open / close sensor 309 detects the fully closed state, the fully opened state, and the intermediate state of the display unit 3. Therefore, the open / close sensor 309 can detect the timing when the display unit 3 starts to open from the fully closed state and the timing when the display unit 3 starts to close from the fully open state.
  • the notification speaker 310 as notification means is provided in the display unit 3. Notification speaker
  • the 310 emits a sound wave to the space according to the notification sound signal output from the sound source unit 312 to generate a reception sound and notifies the user of the reception.
  • the vibration unit 314 as notification means includes an actuator that generates vibration.
  • the vibration unit 314 vibrates according to the reception notification signal output from the CPU 216 and notifies the user of reception.
  • the timekeeping unit 316 has a real time clock, an oscillator, and the like, and outputs timekeeping data to the CPU 216.
  • the time data is data representing, for example, year, day, hour, minute, second, day of the week.
  • the direction sensor module 318 is provided in the display unit 3.
  • the orientation sensor module 318 is a three-axis magnetic sensor 334, 336, 338, a thermistor, or a band gap reference type that detects the direction and magnitude of the geomagnetism (the magnetic field of the earth) by breaking it into three axes orthogonal to each other.
  • the temperature sensor 330 and the like, and the interface unit 320 with the control unit 40 are provided.
  • the magnetic sensors 334, 336, and 338 are magnetoresistive sensors having a magnetoresistive element and a coil for applying a bias magnetic field to the magnetoresistive element.
  • the switching unit 332 outputs any one of the output signals output from the magnetic sensors 334, 336, and 338 as a magnetic sensor signal.
  • the switching unit 326 includes a magnetic sensor signal amplified by the amplifier 328, an output signal of the temperature sensor 330, and an output signal output from the inclination sensors 342, 344, and 346. Output one of the numbers.
  • the output signal output from the switching unit 326 is sampled by the A / D converter 324 based on the clock signal output from the oscillator 322.
  • the interface unit 320 outputs the digital signal output from the A / D converter 324 to the control unit 40 as measurement data.
  • the orientation sensor module 318 is output from the output signals output from the magnetic sensors 3 34, 336, and 338, the output signal of the temperature sensor 330, and the tilt sensors 342, 344, and 346 mounted on the attitude sensor module 340.
  • Measurement data corresponding to one of the output signals is output.
  • the switching unit 326 and the switching unit 332 may select and output an arbitrary output signal based on the control of the control unit 40, or select a predetermined output signal in a predetermined order and timing. May be output.
  • the attitude sensor module 340 is connected to the switching unit 326 of the orientation sensor module 318, and is decomposed into three axes orthogonal to each other to detect the direction and magnitude of gravity, and three axis tilt sensors 342, 344, It is equipped with 346. Cirro-sensors 342, 344, 346 ⁇ , sensors with piezoelectric vibration jacks, etc.
  • the analog output signal of the attitude sensor module 340 is input to the orientation sensor module 318.
  • FIG. 5, FIG. 6, and FIG. 7 are schematic diagrams for explaining the relationship between the azimuth sphere indicated by the offset data calculated based on the azimuth measurement data and the correct azimuth sphere.
  • An azimuth sphere is a sphere centered at a point on the azimuth space corresponding to the offset of the azimuth sensor and whose radius corresponds to the strength of the geomagnetism.
  • an azimuth circle that is a projection of the azimuth sphere onto the xy plane is shown instead of the azimuth sphere.
  • the orientation measurement data must be distributed in a range of 90 degrees or more around the center of the three orientation circles that are projections of the correct orientation sphere onto each coordinate plane. I want it. As shown in Fig.
  • the position in the azimuth space represented by the azimuth measurement data stored immediately before (hereinafter simply referred to as the position of the azimuth measurement data) and the direction measurement unit 66
  • the latest direction measurement data is stored only when the distance d to the position of the latest direction measurement data to be output is a predetermined value or more (see step S208 described later).
  • the direction offset data is not calculated until the number of azimuth measurement data reaches a predetermined number (for example, 25) or more (see step S212 described later).
  • Acceptance criteria 1 The difference between the maximum value and the minimum value of each axis of coordinates represented by the accumulated azimuth measurement data (Wx, Wy, Wz: see Fig. 9) is larger than the calculated radius of the azimuth sphere. Even if the z-coordinate does not meet the standard, it may be accepted if the xy-coordinate meets the standard. For example, when the z coordinate does not satisfy the standard, only the offsets of the X-axis magnetic sensor 334 and the y-axis magnetic sensor 336 may be updated.
  • Acceptance criteria 2 The variance of the distance (r: see Fig. 10) from the calculated center of the azimuth sphere to the position of the accumulated azimuth measurement data is less than the predetermined value. For example, if the variance is less than one-fifth of the calculated azimuth sphere radius, it will be acceptable, and less than one-tenth will be acceptable. Even if the z-coordinate does not meet the standard, it may be accepted if the xy-coordinate meets the standard.
  • the azimuth offset data is updated in mode A, the azimuth offset update process transitions to mode B.
  • the azimuth sphere is partitioned as shown in FIG. 11, and a predetermined number (for example, one) of azimuth measurement data is updated and stored for each section.
  • the section is an angle formed by a line segment connecting the intersection of the perpendicular line drawn from the position of the azimuth measurement data to the xz plane with the xz plane and the center of the calculated azimuth sphere with the X axis ( It can be set according to the angle ( ⁇ y) between the line segment connecting the position of the orientation measurement data and the center of the orientation sphere with the xz plane.
  • the direction measurement data is already stored in the section to which the latest direction measurement data belongs, the old direction measurement data is overwritten with the latest direction measurement data (see step S232 described later).
  • the distance (D) from the center of the bearing sphere corresponding to the previously calculated bearing offset data to the position of the latest bearing measurement data is the previously calculated bearing offset. It is considerably larger than the radius (Rs) of the azimuth sphere corresponding to the data (see Fig. 12).
  • the direction sensor module 318 outputs the direction measurement data of each axis in a time division manner, the same phenomenon occurs even if the telephone 1 is moved too quickly. The same phenomenon occurs even if the magnetic field applied to the telephone 1 fluctuates greatly in a short time.
  • the azimuth offset data is calculated based on the azimuth measurement data accumulated in the past, the error of the offset data increases. Therefore, when such a situation occurs in mode B, the azimuth processing mode shifts to mode A (see steps S230, S244, and S246 described later).
  • FIG. 13 is a block diagram showing functional elements of the orientation processing device, orientation measuring device, and geographic information display device.
  • the azimuth measuring unit 66 is composed of the azimuth sensor module 318 and corresponds to the output values of the X-axis magnetic sensor 334, the y-axis magnetic sensor 336, and the z-axis magnetic sensor 338 according to the attitude and geomagnetism of the telephone 1. Output dimensional orientation measurement data.
  • the wholesaler 40 includes a CPU 216, a ROM 218, a RAM 220, and a geographical information display program executed by the CPU 216.
  • the azimuth calculation unit 48 as the azimuth data output means is configured by a geographic information display program, and azimuth data indicating the azimuth based on the azimuth measurement data, the azimuth offset data, the tilt measurement data, and the tilt offset data. Output.
  • the azimuth calculation unit 48 may correct the azimuth data with reference to the temperature measurement data output from the temperature sensor 330.
  • the azimuth data is the data indicating the north direction of the straight line L included in both the plane plane perpendicular to the ground surface and the screen 31 in parallel with the magnetic field vector indicating the direction and strength of the magnetic field (geomagnetism). It is.
  • the azimuth calculation unit 48 determines the azimuth data based on the azimuth offset data set at the previous end of the geographic information display program during the period until a predetermined number of azimuth measurement data is accumulated. Is calculated.
  • mode A a predetermined number of azimuth measurement data is accumulated, and azimuth offset data is calculated based on the accumulated azimuth measurement data.
  • the azimuth calculation unit 48 calculates the azimuth data from the force S without updating the azimuth offset data in mode B of the azimuth offset update process.
  • the direction data storage unit 50 is configured by a geographic information display program, and stores the direction data in a predetermined area of the RAM 220.
  • the azimuth display unit 52 as the geographic display control means is configured by a geographic information display program, and displays geographic information on the screen 31 based on the azimuth data and the position data.
  • the azimuth display unit 52 displays, for example, a north direction on the screen 31 as geographic information, or displays a map around the current location on the screen 31 according to the attitude of the telephone 1.
  • the storage determination unit 58 as the first storage means is configured by a geographic information display program, and determines whether or not the latest azimuth measurement data is stored in mode A.
  • the first azimuth measurement data storage unit 60 as the first accumulation means is composed of a geographic information display program. In the mode A, up to a predetermined number of azimuth measurement data determined as the accumulation target by the storage determination unit 58 are stored in the RAM 220. Stored in a predetermined area.
  • the second azimuth measurement data storage unit 62 as the second storage means is configured by a geographic information display program, and in mode B, azimuth measurement is performed for each area set in the RAM 220 for each section in the azimuth space. Store the data and update the direction measurement data for each area so that only one latest direction measurement data is stored for each area. Note that the number of orientation measurement data stored for each region may be two or more as described above.
  • the azimuth offset calculation unit 56 is configured by a geographic information display program, and calculates azimuth offset data based on the accumulated azimuth measurement data.
  • the calculation formula of the bearing offset data is as follows, for example.
  • the bearing offset data can be calculated using other calculation formulas. For example, if the azimuth offset data is calculated based on the azimuth measurement data of the biaxial azimuth sensor, the calculation formula can be modified according to the two-dimensional azimuth measurement data.
  • y.3 ⁇ 4 ( ; -XOs) 2 + A y 2 (y i -YOsf + ( ⁇ , ⁇ — ZOs) 2 -Rs 2
  • Sensitivity ratio of z-axis magnetic sensor 338 to X-axis magnetic sensor 334 Ax
  • Sensitivity ratio of z-axis magnetic sensor 338 to y-axis magnetic sensor 336 Ay
  • the azimuth offset storage unit 54 as the azimuth offset update means is configured by a geographic information display program, verifies the azimuth offset data, and the azimuth offset data calculated by the azimuth offset calculation unit 56 satisfies the acceptance criteria.
  • the azimuth offset data stored in a predetermined area of the RAM 220 is overwritten.
  • the tilt measuring unit 64 includes an attitude sensor module 340 and an orientation sensor module 318, and is a three-dimensional corresponding to the output values of the X-axis tilt sensor 342, the y-axis tilt sensor 344, and the z-axis tilt sensor 346. Output tilt measurement data. Tilt measurement data represents the magnitude and direction of gravity.
  • the tilt measurement data storage unit 42 is configured by a geographic information display program, stores tilt measurement data for each area set in the RAM 220 for each partition in the gravity sphere, and stores the latest tilt measurement data for each area. Tilt measurement data is updated for each region so that only one is stored. Note that the number of tilt measurement data stored for each region may be two or more.
  • a gravity sphere is a sphere defined in a vector space represented by three-dimensional tilt measurement data corresponding to the output values of the X-axis tilt sensor 342, the y-axis tilt sensor 344, and the z-axis tilt sensor 346.
  • the center of the gravity sphere corresponds to the offset and sensitivity of the attitude sensor module 340.
  • the gravity sphere used to set the compartment is defined based on the latest tilt offset and sensitivity.
  • Tilt offset 'Sensitivity calculation unit 44 is configured by a geographic information display program, and based on tilt measurement data, X-axis tilt sensor 342, y-axis tilt sensor 344, and z-axis tilt sensor 346 The slope offset and sensitivity of the are calculated.
  • the tilt offset 'sensitivity storage unit 46 is composed of a geographic information display program, verifies the tilt offset and sensitivity, and if the acceptance criteria are met, the X-axis tilt sensor 342 calculated by the tilt offset' sensitivity calculation unit 44, The tilt offset and sensitivity of the y-axis tilt sensor 344 and z-axis tilt sensor 346 are stored in a predetermined area of the RAM 220.
  • the display unit 52, the tilt measurement data storage unit 42, the tilt offset 'sensitivity calculation unit 44, and the tilt offset' sensitivity storage unit 46 are logic circuits whose functions are specified only by hardware without executing the computer program. It can also be realized.
  • FIG. 15 and FIG. 1 are flowcharts showing a specific azimuth processing method by the control unit 40 using the algorithm described above.
  • the control unit 40 When the main operation unit 224 receives the user's geographic information display request, the control unit 40 starts the geographic information display program, and the control unit 40 starts the following azimuth offset update process (S100).
  • the azimuth offset updating process is repeatedly executed after the geographic information display program is started until the geographic information display program ends.
  • control unit 40 reads from the nonvolatile memory the last azimuth offset data stored in the predetermined area of the RAM 220 by the azimuth offset storage unit 54 immediately before the end of the previous geographic information display program. (S102). Thereafter, during the period until the azimuth offset data is updated in mode A, the azimuth calculation unit 48 calculates the azimuth data using the azimuth offset data stored at this stage.
  • control unit 40 sets the azimuth processing mode to mode A. That is, the control unit 40 calculates the azimuth offset data in mode A immediately after receiving the user's geographical information display request.
  • step S106 the control unit 40 sets the reading interval of the direction measurement data. Specifically, a timer is set.
  • step S202 the azimuth calculation unit 48 and the storage determination unit 58 or the second azimuth measurement data storage unit 62 acquire the azimuth measurement data output from the azimuth measurement unit 66.
  • the azimuth calculation unit 48, the storage determination unit 58, or the second azimuth measurement data storage unit 62 acquires substantially the latest azimuth measurement data at the time interval set in the timer. Acquired by the storage determination unit 58 in mode A, and acquired by the second azimuth measurement data storage unit 62 in mode B. Calculate bearing data based on data and tilt sensitivity data.
  • step S206 the control unit 40 determines the current mode.
  • the storage determination unit 58 determines whether or not to store the azimuth measurement data acquired in step S202 (S208). As described above, the storage determination unit 58 is updated only when the distance between the position of the direction measurement data accumulated immediately before and the position of the latest direction measurement data output from the direction measurement unit 66 is equal to or greater than a predetermined value. Is determined as an accumulation target.
  • step S 210 the first azimuth measurement data storage unit 58 accumulates the latest azimuth measurement data to be accumulated in the array A secured in the RAM 220.
  • step S212 the azimuth offset calculator 56 determines whether to calculate azimuth offset data based on the accumulated azimuth measurement data. As described above, the azimuth offset calculation unit 56 counts the number of azimuth measurement data stored in the array A, and calculates the azimuth offset data when the number is equal to or greater than a predetermined number (for example, 25). Judge that it should be.
  • a predetermined number for example, 25
  • step S214 the azimuth offset calculation unit 56 calculates azimuth offset data based on the azimuth measurement data stored in the array A.
  • the calculation formula used for the calculation is as described above.
  • step S216 the azimuth offset storage unit 54 verifies the azimuth offset data calculated in step S214 against the above-mentioned acceptance criteria 1 and 2, and determines the azimuth offset data. If the data satisfies the acceptance criteria 1 and 2, the direction offset data is stored in a predetermined area of the RAM 220, and the direction offset data is updated (steps S218 and S220).
  • control unit 40 sets the direction offset update processing mode to mode B.
  • step S224 the second azimuth measurement data storage unit 62 moves the azimuth measurement data stored in the array A in mode A to the layout IJB for storing the azimuth measurement data in mode B.
  • One array element of array B is set for each section of the orientation sphere described above. Therefore, in step S224, based on the position of the orientation measurement data accumulated in the array A, the array element of the array B corresponding to each orientation measurement data is specified, and each orientation measurement data is assigned to the array element of the corresponding array B. To store. When multiple orientation measurement data corresponding to a specific array element of array B are stored in array A, one of them is stored in array B.
  • the first azimuth measurement data storage unit 60 stores the azimuth measurement data from which the azimuth offset data is calculated. It is determined whether or not a predetermined number (for example, 30) of azimuth measurement data is stored in the array A (step S226). When a predetermined number of direction measurement data is stored in array A, the predetermined number (for example, the oldest one) of direction measurement data is deleted in order from the oldest. If it is determined that the azimuth offset data is not acceptable, the first azimuth measurement data storage unit 60 may delete all the azimuth measurement data in array A.
  • a predetermined number for example, 30
  • step S230 the control unit 40 determines whether or not the azimuth offset has moved significantly. Specifically, as shown in FIG. 12, the control unit 40 determines that the distance (D) from the center of the bearing ball corresponding to the bearing offset data to the position of the latest bearing measurement data corresponds to the bearing offset data. If it is considerably larger than the radius (Rs), it is determined that the bearing offset has moved greatly.
  • control unit 40 sets the azimuth offset update processing mode to mode A (S244), and all the azimuth measurement data stored in the array A and the layout 1JB are stored. It is deleted (S246).
  • the second azimuth measurement data storage unit 62 When the azimuth offset does not move significantly, the second azimuth measurement data storage unit 62 accumulates the latest azimuth measurement data in the 1JB array element in which the array elements are set for each azimuth sphere section described above (step S232). . At this time, when the old layout measurement data is stored in the array element, the second orientation measurement data storage unit 62 newly updates the old layout and direction measurement data with the layout measurement data.
  • the azimuth offset calculation unit 56 determines whether or not azimuth offset data needs to be calculated. Specifically, the azimuth offset calculation unit 56 determines that the azimuth offset should be calculated when the array element for storing new azimuth measurement data is empty in step S232. If the orientation measurement data is stored in the array element that is going to store the orientation measurement data, and if the orientation offset data is recalculated taking into account the latest orientation measurement data, it will be more than the previous calculation. This is because azimuth offset data is calculated based on azimuth measurement data with a large number of data and a wide distribution. Further, the direction offset calculation unit 56 does not store the direction measurement data in the array element in step S232, but if the array B is continuously updated a predetermined number of times (for example, 100 times), Determine that the bearing offset data should be recalculated.
  • the azimuth offset calculation unit 56 determines whether or not azimuth offset data needs to be calculated. Specifically, the azimuth offset calculation unit 56 determines that the azimuth offset should
  • step S236 the azimuth offset calculation unit 56 calculates azimuth offset data based on the azimuth measurement data stored in the array B.
  • the calculation formula is the same as in mode A and is as described above.
  • step S2308 the azimuth offset storage unit 54 verifies the azimuth offset data calculated in step S236.
  • the verification method is the same as that in step S216 of mode A and is as described above.
  • the azimuth offset storage unit 54 stores the azimuth offset data in a predetermined area of the RAM 220 and updates the azimuth offset data (steps S240 and S242).
  • the control unit 40 sets the azimuth processing mode to mode A (step S244), and array A and array B All the direction measurement data of is deleted (step S246).
  • FIG. 16 is a flowchart showing a tilt processing method by the control unit 40. The sequence shown in FIG. 16 is repeatedly executed at the time interval set in step S106.
  • step S302 the inclination measurement data storage unit 42 reads the latest inclination measurement data output from the inclination measurement unit 64.
  • step S304 the tilt measurement data storage unit 42 stores the tilt measurement data in the array in which the array elements are set for each section in accordance with the process of storing the direction measurement data for each section of the azimuth sphere in mode B. accumulate.
  • step S306 the inclination offset'sensitivity calculation unit 44 determines whether to calculate inclination offset data and inclination sensitivity data based on the accumulated inclination measurement data.
  • the judgment criteria are the same as the recalculation judgment criteria in mode B.
  • tilt measurement data corresponding to an empty section is read, and when the array is updated continuously for a predetermined number of times (for example, 100 times).
  • the slope offset 'sensitivity calculation unit 44 determines that recalculation is necessary.
  • step S308 the inclination offset 'sensitivity calculation unit 44 calculates inclination offset data and inclination sensitivity data representing the sensitivity of the attitude sensor module 340 in accordance with the direction offset data calculation method described in the direction processing. .
  • step S310 the inclination offset'sensitivity storage unit 46 verifies the inclination offset data and inclination sensitivity data calculated in step S308 by a method according to the method of step S216 of mode A.
  • the slope offset 'sensitivity storage unit 46 determines that the slope offset data and the slope sensitivity data are acceptable, the data is stored in a predetermined area of the RAM 220 and the data is updated (step S312). , S314). Thereafter, when the azimuth data is calculated by the azimuth calculation unit 48 (see step S204), it is performed based on the updated tilt offset data and tilt sensitivity data.
  • the azimuth offset data is continuously updated based on the latest azimuth measurement data during the execution period of the geographic information display program. Accurate geographical information can be displayed based on the azimuth data.
  • the direction measurement data that is the basis for calculating the direction offset data is selectively accumulated so that accurate direction offset data is guaranteed. Regardless of the operation, the azimuth measurement data required to calculate accurate azimuth offset data can be accumulated efficiently.
  • the control unit 40 continues to selectively store the direction measurement data during the execution period of the geographic information display program, the user can unconsciously perform the operation necessary for storing the direction measurement data. Therefore, according to the first embodiment of the present invention, the orientation sensor module 318 can be easily handled.
  • the azimuth data is calculated using the force biaxial azimuth sensor module, which explains the azimuth processing method using the triaxial azimuth sensor module 318 and the triaxial attitude sensor module 340. It is also possible to calculate azimuth data using only the azimuth sensor module without using the attitude sensor module. Further, the azimuth data may be calculated with the offset of the attitude sensor module as a fixed value.
  • the telephone 1 may have a structure in which the display unit 3 and the operation unit 2 are formed in a single body.
  • the direction sensor module 318 may be built in the operation unit 2.
  • the control unit 40 starts accumulating azimuth measurement data necessary for calculating azimuth data in conjunction with an operation in which the display unit 3 moves away from the operation unit 2, that is, an operation in which the display unit 3 opens.
  • the geographic information display program when the geographic information display program is started, accumulation of direction measurement data is started, and direction offset data update and direction data update are performed in parallel.
  • the sensor 309 detects the start of the opening operation of the display unit 3, accumulation of direction measurement data is started.
  • FIGS. 17 and 18 are flowcharts showing the azimuth processing method according to the second embodiment of the present invention. Processes that are substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • step S400 When the opening / closing sensor 309 detects the start timing of the opening operation of the display unit 3, an interrupt is generated, and the control unit 40 starts the azimuth offset update process (step S400).
  • the control unit 40 calculates the azimuth offset data based on the accumulated azimuth measurement data and updates the azimuth offset data (Ste S220), the direction processing is terminated.
  • the control unit 40 does not perform the azimuth data calculation process (see S204 in the first embodiment) because it is immediately after the opening operation of the display unit 3 is started and before the geographic information display program is executed.
  • control unit 40 may perform the azimuth offset data update process in mode B following mode A, or the azimuth offset data update process only in mode B. ,.
  • azimuth offset data is updated in mode B
  • azimuth measurement data is stored in all array elements of array B
  • azimuth offset data is updated when azimuth offset data is updated based on those azimuth measurement data.
  • the update process may be terminated.
  • control unit 40 may accumulate all the azimuth measurement data output from the azimuth measurement unit 66 during a predetermined period, and calculate the azimuth offset data based on the accumulated azimuth measurement data. ,. That is, the control unit 40 may calculate the azimuth offset data using an algorithm that is completely different from the algorithm of the first embodiment.
  • control unit 40 may perform the azimuth offset data update process only in the mode A and mode B or mode B described in the first embodiment during execution of the geographic information display program, During the execution of the geographic information display program, it is not necessary to update the direction offset data.
  • the user After opening the display unit 3, the user is likely to operate the telephone 1 to put the audio speaker 300 on his ear, close the display unit 3 again, or move the telephone 1 greatly. During such an operation, the telephone 1 changes its posture in a complicated manner. Further, since the orientation sensor module 318 built in the display unit 3 changes its posture with the closing operation of the display unit 3, its posture changes more complicatedly.
  • the direction sensor module 318 may be built in the operation unit 2.
  • the control unit 40 starts accumulating azimuth measurement data in response to the start of the opening operation of the display unit 3, and therefore azimuth measurement widely distributed in the azimuth space. Data can be accumulated in a short time. Therefore, the control unit 40 can accumulate the azimuth measurement data necessary for accurately updating the azimuth offset data in a short time. In addition, since the control unit 40 starts accumulating the azimuth measurement data in response to the start of the opening operation of the display unit 3, the user can perform the operation necessary for accumulating the azimuth measurement data unconsciously. Therefore, according to the second embodiment of the present invention, the orientation sensor module 318 can be easily handled.
  • the control unit 40 starts accumulating azimuth measurement data necessary for calculating the azimuth data in conjunction with the operation in which the display unit 3 approaches the operation unit 2, that is, the operation in which the display unit 3 is closed. May be. That is, instead of the process of S400 of the second embodiment, a process of detecting the start of the closing operation of the display unit 3 may be performed.
  • 19, 20, and 21 are plan views showing the appearance of the telephone 1 according to the fourth embodiment of the present invention. Since the hardware configuration excluding the exterior is substantially the same as that of the first embodiment, the description is omitted.
  • the display unit 3 is connected to the operation unit 2 so as to be swingable about an axis substantially perpendicular to the screen 31.
  • the swing range of display unit 3 is 180 degrees.
  • the direction sensor module 318 built in the display unit 3 swings with respect to the operation unit 2 within a range of 180 degrees together with the display unit 3.
  • FIGS. 22 and 23 are flowcharts showing an azimuth processing method according to the fourth embodiment of the present invention. Processes substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the control unit 40 starts the azimuth offset update process (step S500).
  • the opening operation of display unit 3 is a transition from the state where display unit 3 and operation unit 2 overlap to the state where they are separated from each other. The operation to do.
  • step S201 When the opening / closing sensor 309 detects that the display unit 3 has swung to the fully open state, the control unit 40 ends the azimuth offset updating process (step S201).
  • control unit 40 may accumulate the azimuth measurement data during the closing operation of the display unit 3, and calculate the azimuth offset data based on the accumulated azimuth measurement data.
  • the control unit 40 may accumulate all the azimuth measurement data output from the azimuth measurement unit 66 during the opening / closing operation of the display unit 3, and may calculate the azimuth offset data based on the accumulated azimuth measurement data. That is, the azimuth offset data may be calculated by an algorithm that is completely different from the algorithm of the first embodiment.
  • the azimuth offset updating process is performed during the opening / closing operation of the display unit 3, and the azimuth offset updating process is completed when the opening / closing operation of the display unit 3 is completed. Therefore, power consumption can be reduced.
  • the direction sensor module 318 rotates 180 degrees together with the display unit 3 during the opening / closing operation, according to the fourth embodiment of the present invention, the direction measurement data necessary for accurately updating the direction offset data is transmitted in a short time. Can be reliably accumulated.
  • the control unit 40 accumulates the direction measurement data during the period in which the display unit 3 changes its posture with respect to the operation unit 2. explained.
  • the direction measurement data of the direction sensor module 318 changes even if the geomagnetism is constant. Therefore, when the control unit 40 accumulates azimuth measurement data for updating the azimuth offset during the period in which the display unit 3 changes its attitude with respect to the operation unit 2, the permanent magnet and the azimuth sensor module provided in the telephone 1 are stored. It is desirable to correct the azimuth offset by taking into account the relative positional change with 318.
  • the locus of the position of the orientation measurement data during the operation of opening the display unit 3 shows the strength of magnetization due to the source of the leakage magnetic field and the attitude of the direction sensor module 318 when the display unit 3 is in the fully open state or the fully closed state. If the strength of geomagnetism is determined, it is uniquely identified.
  • the orientation and geomagnetic strength of the orientation sensor module 318 in the fully open state or the fully closed state can be specified if the orientation offset in the fully open state or the fully closed state can be specified.
  • the strength of magnetization due to the source of the leakage magnetic field during the operation of opening the display unit 3 can be specified by data sampling. Therefore, it is possible to correct the azimuth offset by taking into account the change in the relative positional relationship between the permanent magnet provided in the telephone 1 and the azimuth sensor module 318.
  • the control unit 40 may start accumulating azimuth measurement data necessary for updating the azimuth offset data triggered by reception. That is, instead of the process of S400 of the second embodiment, a process in which the control unit 40 detects a call or e-mail reception by the CDMA unit 206 may be performed.
  • the azimuth sensor module module 318 may be incorporated in the operation unit 2 when the azimuth offset data is updated in response to reception.
  • the operation unit 2 and the display unit 3 may be formed integrally.
  • the azimuth offset data updating process in the mode B described above may be performed, or the azimuth offset data updating process in the mode B alone may be performed.
  • bearing measurement data is stored in all array elements of array B, and the bearing offset data is updated when the bearing offset data is updated based on these bearing measurement data. The data update process may be terminated.
  • the control unit 40 may start accumulating azimuth measurement data necessary for updating the azimuth offset data in response to a user's transmission operation. That is, instead of the process of S400 of the second embodiment, a process in which the control unit 40 detects a call operation accepted by the main operation unit 224 or the sub operation unit 302 may be performed.
  • the azimuth sensor module 318 may be built in the operation unit 2 when the azimuth offset data is updated in response to a transmission operation.
  • the operation unit 2 and the display unit 3 may be formed integrally.
  • the azimuth offset data update process in mode B described above may be performed, or the azimuth offset data update process only in mode B may be performed.
  • azimuth offset data is updated in mode B, azimuth measurement data is stored in all array elements of array B, and azimuth offset data is updated when azimuth offset data is updated based on those azimuth measurement data.
  • the update process may be terminated.
  • FIG. 24 is a perspective view showing an appearance of the telephone 1 according to the eighth embodiment of the present invention. Since the hardware configuration except for the exterior is substantially the same as that of the first embodiment, the description thereof is omitted.
  • the light sources 400-426 scattered on the exterior of phone 1 are lit, the user's attention is directed to the lit light source. The user is highly likely to operate the object so that the object to be viewed is located in front of him. Therefore, if the light sources 400-426 are scattered on two or more surfaces of the exterior, the light source 400 426 to be lit is selected by the control unit 40 as time passes, and the position that the user wants to visually observe is moved on the exterior. The user is likely to change the appearance of the phone 1.
  • Accumulating azimuth offset data can be calculated by accumulating azimuth measurement data necessary for updating the azimuth offset data during operations that greatly change the attitude of the telephone 1.
  • the control unit 40 executes the azimuth offset update process while appropriately selecting the light source to be turned on in order to guide the user's operation, the control unit 40 calculates accurate azimuth offset data. It is possible to accumulate azimuth measurement data that is the basis for the operation.
  • an embodiment of a direction offset updating method using this principle will be described.
  • FIG. 25 is a flowchart for explaining the azimuth offset update processing according to the eighth embodiment of the present invention.
  • the control unit 40 as the light emission control means performs the guidance process shown in FIG. 25 and the update process of the azimuth offset data in the mode A and mode B described above in parallel, thereby accurately and reliably updating the azimuth offset data. can do.
  • the control unit 40 may start the guidance process shown in FIG. 25 at any time during the period in which the telephone 1 is in the standby state. For example, the control unit 40 may start the induction process immediately after the end of the charging period.
  • step S800 from step S800 the control unit 40 guides the user to rotate the telephone 1 360 degrees in the direction A shown in FIG. That is, first, the control unit 40 turns on the light source 406, the light source 408, the light source 410, and the light source 412 provided in a line on the first exterior surface in order for a predetermined period. Next, the light source 426, the light source 424, the light source 422, and the light source 420 provided in a row on the second exterior surface corresponding to the back surface of the first exterior surface are turned on in order for a predetermined period.
  • the lighting order of the light source shelf, the light source willow, the light source 410, the light source 412, the light source 426, the light source 424, the light source 422, and the light source 420, and the arrangement order on the exterior surface match.
  • control unit 40 determines whether or not to end the process of guiding the user to rotate telephone 1 in the direction A shown in FIG.
  • the end criterion may be that the number of repetitions from step S800 to step S814 is equal to or greater than a predetermined number, or the width of the distribution range of accumulated orientation measurement data positions may be the end criterion.
  • the width of the distribution range of the position of the oblique measurement data may be used as the end reference.
  • control unit 40 guides the user to rotate telephone 1 360 degrees in the direction B shown in FIG. That is, the control unit 40 first turns on the light sources 406, 408, 410, and 412 provided on the first exterior surface at the same time for a predetermined period, and then the direction perpendicular to the arrangement direction of the light sources 406, 408, 410, and 412.
  • the light sources 414, 416, 418 provided on the third exterior surface adjacent to the first exterior surface are simultaneously turned on for a predetermined period, and then provided on the second exterior surface corresponding to the back surface of the first exterior surface.
  • the light sources 420, 422, 424, and 426 are turned on at the same time for a predetermined period, and then installed on the fourth exterior surface corresponding to the back surface of the third exterior surface.
  • the light sources 400, 402, and 404 are turned on simultaneously for a predetermined period.
  • control unit 40 determines whether or not to end the process of guiding the user to rotate telephone 1 in the direction B shown in FIG.
  • the determination criterion may be that the number of repetitions from step S818 to step S824 is a predetermined number or more, or the width of the distribution range of the accumulated azimuth measurement data position may be the determination criterion.
  • the width of the distribution range of the position of the oblique measurement data may be used as the determination criterion.
  • the operation to be guided is appropriately selected.
  • Design item For example, as shown in FIG. 27, the telephone 1 may be guided to rotate 90 degrees around three axes orthogonal to each other, or the three axes orthogonal to each other as shown in FIG. You can also guide each phone 1 to rotate 180 degrees.
  • the control unit 40 controls the light emitting unit 308 in parallel with the azimuth offset data update process in mode A and mode B described above, the calibration operation procedure does not substantially affect the accuracy of the azimuth offset data.
  • the azimuth offset update process executed in parallel with the guidance process is not limited to the azimuth offset data update process in the above-described mode A and mode B.
  • the azimuth offset data is selected without selecting the azimuth measurement data to be stored. You can run the update process.
  • control unit 40 that does not make the user strongly aware of the calibration operation can accumulate the direction measurement data necessary for updating the direction offset data.
  • FIG. 29 is a perspective view showing the exterior of the telephone 1 according to the ninth embodiment of the present invention.
  • the exterior facing the operation unit 2 of the display unit 3 of the telephone 1 according to the ninth embodiment is the same as that shown in FIG.
  • Screen 36 is provided on display unit 3 and is located behind screen 31.
  • the screen 36 is composed of a liquid crystal display panel driven by a display unit 306 (see FIG. 4).
  • the control unit 40 as the target display control means controls the display unit 306 in parallel with the execution of the azimuth offset update process described above, and executes a guidance process for displaying the target T on the screen 31 and the screen 36.
  • the bearing offset update is executed in parallel with the guidance process.
  • the processing is not limited to the azimuth offset data update processing in the above-described mode A and mode B.
  • the control unit 40 may execute the azimuth offset data update processing without selecting the azimuth measurement data to be stored. .
  • FIG. 30 is a flowchart showing a guidance process executed in parallel with the execution of the azimuth offset update process.
  • 31 and 32 are schematic diagrams for explaining the movement trajectory of the target displayed on the screen 31 and the screen 36.
  • the control unit 40 may start the guidance process at any time during the period in which the telephone 1 is in a standby state. For example, the control unit 40 may start the induction process immediately after the end of the charging period.
  • the target T may be any geometrical shape such as a circle, a face illustration, or a character such as the current time, as long as it attracts the user's attention. .
  • the control unit 40 moves the display position of the target T with the passage of time during the execution of the guidance process. It is desirable to set the movement trajectory of the target T so that the position of the direction measurement data accumulated in the direction offset update process executed in parallel with the guidance process is distributed widely and uniformly.
  • an example of the movement trajectory of the target T will be specifically described.
  • the control unit 40 guides the user so that the telephone 1 rotates in the direction C in FIG. 31 (S900). Specifically, for example, the control unit 40 displays the target T on the left end of the screen 31 (based on the user viewing the screen 31), and moves the target T from the left end of the screen 31 toward the right end. When the target T reaches the right end of the screen 31, the control unit 40 gradually causes the target T to disappear from the screen 31 so that the target T appears to move out of the screen 31. Next, the control unit 40 displays the target T on the left end of the screen 36 located on the back side of the screen 31 (based on the user viewing the screen 36), and targets T from the left end of the screen 36 toward the right end. Move.
  • control unit 40 determines whether to end the process of guiding the user so that the telephone 1 rotates in the direction C in FIG. 31 (S902).
  • the control unit 40 may use the number of repetitions of step S900 as a determination criterion, or may use the width of the distribution range of the position measurement data accumulated in the azimuth offset update process as a determination criterion.
  • the control unit guides the user so that the telephone 1 rotates in the D direction in Fig. 32 (S904). Specifically, for example, the control unit 40 displays the target T on the screen 31. Is displayed on the lower end of the screen (the end closer to the control unit 2), and the target T is moved from the lower end of the screen 31 toward the upper end. When the target T reaches the upper end of the screen 31, the control unit 40 gradually dissipates the target T so that the target T appears to move out of the screen 31. Next, the control unit 40 displays the target T on the upper end of the screen 36 located on the back side of the screen 31 (the end far from the operation unit 2), and moves the target T from the upper end of the screen 36 toward the lower end. .
  • control unit 40 determines whether to end the process of guiding the user so that the telephone 1 rotates in the direction D in FIG. 32 (S906).
  • the control unit 40 may use the number of repetitions of step S904 as a criterion, and may use the width of the distribution range of the orientation measurement data accumulated in the orientation offset update process as a criterion.
  • control unit 40 that does not make the user strongly aware of the calibration operation can accumulate the azimuth measurement data necessary for updating the azimuth offset data.
  • the control unit 40 as the operation guidance control unit accumulates the azimuth measurement data necessary for updating the azimuth offset data, and displays the display unit 306 according to the latest azimuth measurement data. To display an image for guiding the user on the screen 31.
  • FIG. 33 and FIG. 34 are flowcharts showing the azimuth processing method according to the tenth embodiment of the present invention. Processes that are substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the control unit 40 When the main operation unit 224 (see FIG. 4) accepts the user's direction offset update instruction, the control unit 40 starts the direction offset update program, and the control unit 40 starts initialization shown in FIG. 33 (S1000).
  • step S1002 the control unit 40 displays on the screen 31 a guidance screen that prompts the user to start the calibration operation.
  • the guidance screen may be any content that prompts the user to perform a calibration operation.
  • the guidance screen may be a combination of a message and an illustration as shown in FIG. 35, or a message alone. Good, only illustration But you can.
  • the control unit 40 updates the guidance screen according to the latest orientation measurement data (step S1004).
  • the updated guidance screen may have any content as long as it guides the direction in which the telephone 1 should be moved.
  • the control unit 40 displays on the screen 31 a character face whose inclination changes according to the posture of the telephone 1 and a character string that guides the operation content.
  • FIG. 36 shows a state in which telephone 1 is rotated 45 degrees from the state shown in FIG. 35 with the vertical line as the rotation axis.
  • the control unit 40 edits a digital photographic image of the subject M generated by the imaging unit 304 (see FIG.
  • the sound source unit 312 (see FIG. 4), which does not display the guidance screen on the screen 31, may be guided by an artificially synthesized voice generated from the notification speaker 310.
  • the guidance screen and artificially synthesized speech may be used in combination for guidance.
  • the sound source unit 312 can generate a predetermined music or sound effect from the notification speaker 310 during guidance of the calibration operation, so that the user can recognize that the user is currently guiding.
  • the control unit 40 When the azimuth offset data is updated in step S220 described above, the control unit 40 notifies the user of the success of the calibration operation.
  • the control unit 40 may display a message and an illustration on the screen 31 as shown in FIG. 38, or may generate artificially synthesized speech or music or sound effect reminiscent of success from the notification speaker 310.
  • FIG. 38 shows a state in which the telephone 1 is rotated 90 degrees from the state shown in FIG.
  • the offset data is unacceptable, and the control unit 40 uses the array A in step S226 described above.
  • the control unit 40 uses the array A in step S226 described above.
  • the control unit 40 notifies the user of the failure of the calibration operation.
  • the control unit 40 may display a message notifying the failure on the screen 31 or may display a message and an illustration. Or sound effects may be generated from the notification speaker 310.
  • the control unit 40 may display a menu on the screen 31 that allows the user to select whether to perform the calibration operation again (OK) or not (Cancel) as shown in FIG.
  • step S1012 Restart accumulation.
  • the guidance for guiding the calibration operation according to the latest azimuth measurement data is provided to the user. Therefore, the user can easily perform the calibration operation.
  • FIG. 1 is a flowchart showing an azimuth processing method according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing the appearance of the telephone according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view showing the appearance of the telephone according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a hardware configuration of the telephone according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram according to the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram according to the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram useful for the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram useful for the first embodiment of the present invention.
  • FIG. 12 is a schematic diagram useful for the first embodiment of the present invention.
  • FIG. 13 is a block diagram showing functional elements that are relevant to the first embodiment of the present invention.
  • FIG. 14 is a schematic diagram according to the first embodiment of the present invention.
  • FIG. 15 is a flowchart showing an azimuth processing method according to the first embodiment of the present invention.
  • FIG. 17 is a flowchart showing an azimuth processing method according to the second embodiment of the present invention.
  • FIG. 18 is a flowchart showing an azimuth processing method according to the second embodiment of the present invention.
  • FIG. 20 is a plan view showing the appearance of a telephone 1 according to a fourth embodiment of the present invention.
  • FIG. 22 is a flowchart showing an azimuth processing method according to the fourth embodiment of the present invention.
  • FIG. 23 is a flowchart showing an azimuth processing method according to the fourth embodiment of the present invention.
  • FIG. 26 is a schematic diagram according to the eighth embodiment of the present invention.
  • FIG. 27 is a schematic diagram according to the eighth embodiment of the present invention.
  • FIG. 28 is a schematic diagram according to the eighth embodiment of the present invention.
  • FIG. 29 is a perspective view showing an appearance of a telephone according to a ninth embodiment of the present invention.
  • FIG. 31 is a schematic diagram according to the ninth embodiment of the present invention.
  • FIG. 32 is a schematic diagram useful for the ninth embodiment of the present invention.
  • FIG. 33 is a flowchart showing an azimuth processing method according to the tenth embodiment of the present invention.
  • FIG. 34 is a flowchart showing an azimuth processing method according to the tenth embodiment of the present invention.
  • This is a schematic diagram of the tenth embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

There are provided an azimuth processing device, an azimuth processing method, an azimuth processing program, an azimuth measurement device, and a geographical information display device having an accurate offset. The azimuth processing device achieving the aforementioned object outputs azimuth data according to measurement data which is successively outputted from an azimuth sensor. The azimuth processing device includes: accumulation means for selectively accumulating the substantially latest measurement data; and offset data update means for updating the offset data of the azimuth sensor according to a plurality of measurement data accumulated in the accumulation means.

Description

明 細 書  Specification
方位処理装置、方位処理方法、方位処理プログラム、方位測定装置及び 地理情報表示装置  Direction processing apparatus, direction processing method, direction processing program, direction measurement apparatus, and geographic information display apparatus
技術分野  Technical field
[0001] 本発明は、方位処理装置、方位処理方法、方位処理プログラム、方位測定装置及 び地理情報表示装置に関し、特に方位センサのオフセット更新処理に関する。 背景技術  The present invention relates to an azimuth processing device, an azimuth processing method, an azimuth processing program, an azimuth measurement device, and a geographic information display device, and more particularly to an offset update processing for an azimuth sensor. Background art
[0002] 近年、携帯型電話機、 PDA等の携帯型情報端末に GPSと方位センサを利用した 地理情報表示機能が備わっている。例えば、 GPSにより現在位置を特定し、現在位 置周辺の地図情報を通信回線を通じてサーバからダウンロードし、内蔵された方位 センサにより方位を特定し、地図上の方位と現実の方位とがー致するように画面上に 地図情報を表示する携帯型情報端末が知られている。方位センサは、地球の磁界を 検出して方位を計測するが、実際には、携帯型情報端末に搭載されるスピーカや、 マイクロホン、あるいは着磁した電子部品の金属パッケージ等から漏れる磁界と、地 球の磁界とが合成された磁界を検出する。このため、正確に方位を求めるためには、 地球の磁界以外の磁界(オフセット)を求め、方位センサの計測データをこのオフセッ トにより補正する処理が必要となる。  [0002] In recent years, portable information terminals such as portable telephones and PDAs are equipped with a geographic information display function using GPS and a direction sensor. For example, the current location is identified by GPS, map information around the current location is downloaded from the server via a communication line, the orientation is identified by the built-in orientation sensor, and the orientation on the map matches the actual orientation. Thus, portable information terminals that display map information on the screen are known. The direction sensor detects the earth's magnetic field and measures the direction. Actually, however, the magnetic field leaks from a speaker mounted on a portable information terminal, a microphone, or a metal package of a magnetized electronic component. A magnetic field synthesized with the magnetic field of the sphere is detected. For this reason, in order to accurately determine the azimuth, it is necessary to obtain a magnetic field (offset) other than the earth's magnetic field, and correct the measurement data of the azimuth sensor using this offset.
[0003] 特許文献 1には、方位センサのオフセット更新方法が開示されている。この文献に 開示されたオフセット更新方法は、ユーザが方位センサを特定の軸を中心に 90度又 は 180度以上回転させたときに、 90度又は 180度間隔で方位センサから出力される 計測データを取得し、このように取得した計測データに基づいて方位センサのオフセ ットを計算している。方位センサのオフセットを正確に計算するためには、その計算の 基になる方位センサの計測データが方位センサから出力されるように、方位センサを 内蔵する装置をユーザは例えば水平面上で回転させたり、手に持って反転させたり 、上下左右に大きく振ったりする必要がある。方位センサのオフセット更新のために 必要な計測データが方位センサから出力されるように必要な操作をキヤリブレーショ ン操作という。キャリブレーション操作は、一定の角速度で方位センサの姿勢が大きく 変化するように行われることが理想である。 [0003] Patent Document 1 discloses an offset updating method for an orientation sensor. The offset update method disclosed in this document is based on the measurement data output from the azimuth sensor at 90 or 180 degree intervals when the user rotates the azimuth sensor 90 degrees or 180 degrees or more around a specific axis. The offset of the azimuth sensor is calculated based on the measurement data acquired in this way. In order to accurately calculate the direction sensor offset, the user can rotate the device incorporating the direction sensor, for example, on a horizontal plane so that the direction sensor's measurement data is output from the direction sensor. It is necessary to flip it by holding it in your hand or shake it up and down and left and right. The necessary operation to output the measurement data necessary for updating the direction sensor offset is called the calibration operation. The calibration operation requires a large orientation sensor orientation at a constant angular velocity. Ideally, it should be done in a changing manner.
[0004] し力し、キャリブレーション操作中にユーザが装置を落とすおそれがある。またキヤリ ブレーシヨン操作を行ったとしても、操作中に蓄積された方位センサの計測データか ら正確なオフセットを算出できない場合がある。また、キャリブレーション操作は、マ二 ユアル等を読まなければ正確な手順がわからず、また方位センサのオフセット更新の ためにのみ必要な操作であるため、ユーザにとって煩わしいものである。方位センサ のオフセットが正確に更新されていなければ正確な方位データに基づいた正確な地 理情報を表示することができない。  [0004] The user may drop the apparatus during the calibration operation. Even if a calibration operation is performed, an accurate offset may not be calculated from the direction sensor measurement data accumulated during the operation. In addition, the calibration operation is troublesome for the user because the exact procedure is not known unless the manual is read, and the operation is only necessary for updating the offset of the direction sensor. Accurate geological information based on accurate azimuth data cannot be displayed unless the offset of the azimuth sensor is accurately updated.
[0005] 特許文献 1 :特開 2004— 012416号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-012416
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、オフセットデータが正確な方位処理装置、方位処理方法、方位処理プ ログラム、方位測定装置及び地理情報表示装置を提供することを第一の目的とする 本発明は、取り扱いが容易な地理情報表示装置を提供することを第二の目的とす る。 [0006] The first object of the present invention is to provide an azimuth processing device, an azimuth processing method, an azimuth processing program, an azimuth measuring device, and a geographic information display device with accurate offset data. The second object is to provide an easy geographical information display device.
課題を解決するための手段  Means for solving the problem
[0007] (1) [0007] (1)
上記第一の目的を達成するための方位処理装置は、方位センサから順次出力され る計測データに基づいて方位データを出力するための方位処理装置であって、実質 的に最新の前記計測データを選択的に蓄積する蓄積手段と、前記蓄積手段によつ て蓄積されている複数の前記計測データに基づいて前記方位センサのオフセットデ ータを更新するオフセットデータ更新手段と、を備える。  An azimuth processing apparatus for achieving the first object is an azimuth processing apparatus for outputting azimuth data on the basis of measurement data sequentially output from an azimuth sensor. Storage means for selectively storing; and offset data updating means for updating offset data of the azimuth sensor based on a plurality of the measurement data stored by the storage means.
選択的に計測データを蓄積することにより、蓄積された計測データに基づいて更新 されるオフセットデータの精度が向上する。尚、オフセットデータとは、前述したオフセ ットを表すデータであり、方位センサの計測データの偏差である。方位処理装置は、 計測データとオフセットデータの差に応じて方位データを出力する。具体的には例え ば、互いに直交する 3軸に分解して磁界の方向と強さを検出する 3次元の方位セン サであれば、その計測データ (x、 y、 z)と、オフセットデータ(X、 y、 z )と、方位デー タ(X、 Y、 Ζ)との関係は、 (Χ、 Υ、 Ζ) = (χ-χ、 y-y、 ζ_ζ )である。 By selectively accumulating measurement data, the accuracy of offset data updated based on the accumulated measurement data is improved. The offset data is data representing the above-described offset, and is a deviation of the measurement data of the direction sensor. The azimuth processing device outputs azimuth data according to the difference between the measurement data and the offset data. Specifically, for example, a three-dimensional orientation sensor that detects the direction and strength of a magnetic field by decomposing into three orthogonal axes. If the measurement data (x, y, z), offset data (X, y, z) and bearing data (X, Y, Ζ) are (Χ, Υ, Ζ) = (χ-χ, yy, ζ_ζ).
[0008] (2)  [0008] (2)
前記方位処理装置は、実質的に最新の前記計測データと前記オフセットデータと に基づいて前記方位データを出力する方位データ出力手段をさらに備える。  The azimuth processing device further includes azimuth data output means for outputting the azimuth data based on the latest measurement data and the offset data.
実質的に最新の計測データに基づいて方位センサのオフセットデータを更新する とともに、当該計測データと更新されたオフセットデータとに基づいて方位データを出 力することにより、方位データの精度が向上する。  The accuracy of the orientation data is improved by updating the offset data of the orientation sensor based on substantially the latest measurement data and outputting the orientation data based on the measurement data and the updated offset data.
[0009] (3) [0009] (3)
前記蓄積手段は、実質的に最新の前記計測データと直前に蓄積された前記計測 データとを比較し、実質的に最新の前記計測データを比較結果に応じて選択的に蓄 積してもよい。  The accumulation means may compare the substantially latest measurement data with the measurement data accumulated immediately before, and selectively accumulate the substantially latest measurement data according to the comparison result. .
実質的に最新の計測データと直前に蓄積された計測データとの比較結果に応じて 選択的に計測データを蓄積することにより、蓄積された計測データに基づいて更新さ れるオフセットデータの精度が向上する。  The accuracy of the offset data updated based on the accumulated measurement data is improved by selectively accumulating the measurement data according to the comparison result between the latest measurement data and the measurement data accumulated immediately before. To do.
[0010] (4) [0010] (4)
前記蓄積手段は、実質的に最新の前記計測データが表す方位空間内の位置と直 前に蓄積された前記計測データが表す前記方位空間内の位置との距離に応じて選 択的に実質的に最新の前記計測データを蓄積してもよい。  The storage means is selectively substantially according to a distance between a position in the azimuth space represented by the most recent measurement data and a position in the azimuth space represented by the measurement data accumulated immediately before. The latest measurement data may be stored.
方位センサから連続的に出力される各計測データが表す方位空間内の位置同士 の距離に応じて選択的に計測データを蓄積することにより、計測データが表す方位 空間内の位置が適度に散らばるように計測データを蓄積できる。蓄積された計測デ ータが表す方位空間内の位置が散らばつている程、蓄積された計測データに基づい て更新されるオフセットデータの精度が向上する。尚、方位空間とは、方位センサの 出力値で表現されるベクトル空間をレ、うものとする。例えば前述の三次元の方位セン サであれば、各軸の方向成分の地磁気の強さに対応する各軸の出力値を各軸の座 標成分とする位置 (三次元座標)が定義されるべクトノレ空間を方位空間というものとす る。 [0011] (5) By accumulating measurement data selectively according to the distance between the positions in the azimuth space represented by each measurement data continuously output from the azimuth sensor, the positions in the azimuth space represented by the measurement data are appropriately scattered. Measurement data can be stored in The more scattered the position in the azimuth space represented by the accumulated measurement data, the more accurate the offset data updated based on the accumulated measurement data. The azimuth space is a vector space expressed by the output value of the azimuth sensor. For example, in the case of the above-described three-dimensional orientation sensor, a position (three-dimensional coordinate) in which the output value of each axis corresponding to the geomagnetic strength of the direction component of each axis is defined as the coordinate component of each axis is defined. The vector space is called the bearing space. [0011] (5)
前記蓄積手段は、蓄積された複数の前記計測データが表す方位空間内の位置と、 前記蓄積手段によって蓄積されている前記計測データに基づいて算出されるオフセ ットデータ候補が表す前記方位空間内の位置との距離のばらつきが所定基準を満た さない場合、蓄積された前記計測データの少なくとも一部を削除し、前記オフセット データ候補で前記オフセットデータを更新しなくてもよい。  The storage means includes a position in the azimuth space represented by the plurality of stored measurement data and a position in the azimuth space represented by the offset data candidate calculated based on the measurement data stored by the storage means. When the variation in the distance does not satisfy a predetermined criterion, at least a part of the accumulated measurement data may be deleted, and the offset data may not be updated with the offset data candidates.
蓄積された計測データが表す方位空間内の位置と蓄積された計測データに基づ レ、て算出されるオフセットデータ候補が表す方位空間内の位置との距離のばらつき が大きい場合、オフセットデータ候補の基になっている複数の計測データのそれぞ れに対応する真のオフセットが互いに異なっている力、、或いは計測データがノイズの 影響を強く受けている可能性が高レ、。したがってこのような場合には、計測データを 削除した後に再蓄積することにより、蓄積された計測データに基づいて更新されるォ フセットデータの精度が向上する。  If there is a large variation in the distance between the position in the azimuth space represented by the accumulated measurement data and the position in the azimuth space represented by the offset data candidate calculated based on the accumulated measurement data, the offset data candidate The force with which the true offset corresponding to each of multiple measurement data is different from each other, or the measurement data is highly likely to be affected by noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
[0012] (6) [0012] (6)
前記蓄積手段は、蓄積された複数の前記計測データが表す方位空間内の位置の ばらつきが所定基準を満たさない場合、蓄積された前記計測データの少なくとも一部 を削除してもよい。  The accumulation unit may delete at least a part of the accumulated measurement data when the variation in the position in the azimuth space represented by the plurality of accumulated measurement data does not satisfy a predetermined reference.
方位空間内の位置のばらつきを表す指標としては、具体的には例えば分布範囲、 分布密度、分布密度の一様性等がある。真のオフセットが一定である限り、オフセット データの基になる計測データが表す方位空間内の位置がばらついているほど、オフ セットデータの精度が向上する。したがって、蓄積された複数の計測データが表す方 位空間内の位置のばらつきが所定基準を満たさない場合には、計測データを削除し た後に再蓄積することにより、蓄積された計測データに基づいて更新されるオフセット データの精度が向上する。  Specific examples of the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density. As long as the true offset is constant, the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
[0013] (7)  [0013] (7)
前記蓄積手段は、実質的に最新の前記計測データを、方位空間の区画毎に更新 しながら、前記区画毎に蓄積してもよい。  The accumulating unit may accumulate the latest measurement data for each section while updating the latest measurement data for each section of the azimuth space.
真のオフセットが一定である限り、オフセットデータの基になる計測データが表す方 位空間内の位置がばらついているほど、オフセットデータの精度が向上する。したが つて、方位空間の区画毎に所定数の計測データを更新しながら蓄積することにより、 蓄積された計測データに基づいて更新されるオフセットデータの精度が向上する。 As long as the true offset is constant, the measurement data that represents the offset data represents As the position in the position space varies, the accuracy of the offset data improves. Therefore, by accumulating a predetermined number of measurement data while updating each section of the azimuth space, the accuracy of offset data updated based on the accumulated measurement data is improved.
[0014] (8) [0014] (8)
前記蓄積手段は、蓄積された複数の前記計測データが表す前記方位空間内の位 置と、前記蓄積手段によって蓄積されている前記計測データに基づいて算出される オフセットデータ候補が表す前記方位空間内の位置との距離のばらつきが所定基準 を満たさない場合、蓄積された前記計測データの少なくとも一部を削除し、前記オフ セットデータ候補で前記オフセットデータを更新しなくてもよい。  The accumulating unit calculates the position in the azimuth space represented by the plurality of accumulated measurement data and the azimuth space represented by the offset data candidate calculated based on the measurement data accumulated by the accumulation unit. If the variation in the distance from the position does not satisfy a predetermined standard, at least a part of the accumulated measurement data may be deleted, and the offset data may not be updated with the offset data candidate.
蓄積された計測データが表す方位空間内の位置と蓄積された計測データに基づ レ、て算出されるオフセットデータ候補が表す方位空間内の位置との距離のばらつき が大きい場合、オフセットデータ候補の基になっている複数の計測データのそれぞ れに対応する真のオフセットが互いに異なっている力、或いは計測データがノイズの 影響を受けている可能性が高い。したがってこのような場合には、計測データを削除 した後に再蓄積することにより、蓄積された計測データに基づいて更新されるオフセ ットデータの精度が向上する。  If there is a large variation in the distance between the position in the azimuth space represented by the accumulated measurement data and the position in the azimuth space represented by the offset data candidate calculated based on the accumulated measurement data, the offset data candidate It is highly possible that the true offset corresponding to each of the multiple measurement data is different from each other, or that the measurement data is affected by noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
[0015] (9) [0015] (9)
前記蓄積手段は、蓄積された複数の前記計測データが表す前記方位空間内の位 置のばらつきが所定基準を満たさない場合、蓄積された前記計測データの少なくとも 一部を削除してもよい。  The accumulation unit may delete at least a part of the accumulated measurement data when the variation in the position in the azimuth space represented by the plurality of accumulated measurement data does not satisfy a predetermined standard.
方位空間内の位置のばらつきを表す指標としては、具体的には例えば分布範囲、 分布密度、分布密度の一様性等がある。真のオフセットが一定である限り、オフセット データの基になる計測データが表す方位空間内の位置がばらついているほど、オフ セットデータの精度が向上する。したがって、蓄積された複数の計測データが表す方 位空間内の位置のばらつきが所定基準を満たさない場合には、計測データを削除し た後に再蓄積することにより、蓄積された計測データに基づいて更新されるオフセット データの精度が向上する。  Specific examples of the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density. As long as the true offset is constant, the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
[0016] (10) 上記第一の目的を達成するための方位処理装置は、方位センサから順次出力され る計測データに基づいて方位データを出力するための方位処理装置であって、実質 的に最新の前記計測データを所定数まで蓄積する第一蓄積手段と、前記第一蓄積 手段によって前記所定数の前記第一計測データが蓄積された後に、蓄積された前 記計測データに基づいて方位センサのオフセットデータを生成するオフセットデータ 生成手段と、前記オフセットデータが生成された後に、実質的に最新の前記計測デ ータを、方位空間の区画毎に更新しながら、前記区画毎に蓄積する第二蓄積手段と 、前記オフセットデータが生成された後に、前記第二蓄積手段によって蓄積された前 記計測データに基づいて前記オフセットデータを更新するオフセットデータ更新手段 と、を備える。 [0016] (10) An azimuth processing apparatus for achieving the first object is an azimuth processing apparatus for outputting azimuth data on the basis of measurement data sequentially output from an azimuth sensor. First accumulation means for accumulating up to a predetermined number, and after the predetermined number of the first measurement data are accumulated by the first accumulation means, the offset data of the azimuth sensor is generated based on the accumulated measurement data. An offset data generating means; and a second accumulating means for accumulating for each section while updating the latest measurement data substantially for each section of the azimuth space after the offset data is generated; After the offset data is generated, the offset data update is performed to update the offset data based on the measurement data accumulated by the second accumulation means. And means, the.
[0017] 真のオフセットが一定である限り、オフセットデータの基になる計測データが表す方 位空間内の位置がばらついているほど、オフセットデータの精度が向上する。したが つて、方位空間の区画毎に更新しながら所定数の計測データを蓄積することにより、 蓄積された計測データに基づいて更新されるオフセットデータの精度が向上する。一 方、方位空間の区画毎に更新される計測データに基づいてオフセットデータを生成 しょうとすると、計測データの蓄積時間が短い場合には、少ない数の計測データに基 づいてオフセットデータが生成されることになるため、オフセットデータの精度を向上 させることができなレ、。そこではじめに、方位空間の区画とは無関係に蓄積された計 測データに基づいてオフセットデータを生成し、その後、方位空間の区画毎に更新さ れる計測データに基づいてオフセットデータを生成することにより、確実にオフセット データの精度が向上する。  [0017] As long as the true offset is constant, the accuracy of the offset data improves as the position in the position space represented by the measurement data that is the basis of the offset data varies. Therefore, by accumulating a predetermined number of measurement data while updating each section of the azimuth space, the accuracy of offset data updated based on the accumulated measurement data is improved. On the other hand, if an attempt is made to generate offset data based on measurement data that is updated for each section of the azimuth space, offset data is generated based on a small number of measurement data if the measurement data storage time is short. Therefore, the accuracy of offset data cannot be improved. Therefore, first, by generating offset data based on measurement data accumulated independently of the orientation space section, and then generating offset data based on measurement data updated for each orientation space section, Certainly the accuracy of the offset data is improved.
[0018] (11)  [0018] (11)
前記方位処理装置は、実質的に最新の前記計測データと前記オフセットデータと に基づいて前記方位データを出力する方位データ出力手段をさらに備えてもよい。 実質的に最新の計測データに基づいて方位センサのオフセットデータを更新する とともに、当該計測データと更新されたオフセットデータとに基づいて方位データを出 力することにより、方位データの精度が向上する。  The azimuth processing device may further include azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data. The accuracy of the orientation data is improved by updating the offset data of the orientation sensor based on substantially the latest measurement data and outputting the orientation data based on the measurement data and the updated offset data.
[0019] (12) 前記第一蓄積手段は、前記第一蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置と、前記蓄積手段によって蓄積されている前記計測デ ータに基づいて算出されるオフセットデータ候補が表す前記方位空間内の位置との 距離のばらつきが所定基準を満たさない場合、前記第一蓄積手段に蓄積された前 記計測データの少なくとも一部を削除し、前記オフセットデータ候補で前記オフセット データを更新しなくてもよい。 [0019] (12) The first storage means is calculated based on the position in the azimuth space represented by the plurality of measurement data stored in the first storage means and the measurement data stored by the storage means. When the variation in distance from the position in the azimuth space represented by the offset data candidate does not satisfy a predetermined standard, at least a part of the measurement data stored in the first storage unit is deleted, and the offset data candidate The offset data need not be updated.
蓄積された計測データが表す方位空間内の位置と蓄積された計測データに基づ レ、て算出されるオフセットデータ候補が表す方位空間内の位置との距離のばらつき が大きい場合、オフセットデータ候補の基になっている複数の計測データのそれぞ れに対応する真のオフセットが互いに異なっている力、、或いは計測データが強いノィ ズの影響を受けている可能性が高い。したがってこのような場合には、計測データを 削除した後に再蓄積することにより、蓄積された計測データに基づいて更新されるォ フセットデータの精度が向上する。  If there is a large variation in the distance between the position in the azimuth space represented by the accumulated measurement data and the position in the azimuth space represented by the offset data candidate calculated based on the accumulated measurement data, the offset data candidate There is a high possibility that the true offset corresponding to each of multiple measurement data based on each other is different from each other, or that the measurement data is affected by strong noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
[0020] (13)  [0020] (13)
前記第一蓄積手段は、前記第一蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置のばらつきが所定基準を満たさない場合、前記第一蓄 積手段に蓄積された前記計測データの少なくとも一部を削除してもよい。  The first accumulating unit accumulates the first accumulating unit accumulated in the first accumulating unit when variation in position in the azimuth space represented by the plurality of measurement data accumulated in the first accumulating unit does not satisfy a predetermined standard. At least a part of the measurement data may be deleted.
方位空間内の位置のばらつきを表す指標としては、具体的には例えば分布範囲、 分布密度、分布密度の一様性等がある。真のオフセットが一定である限り、オフセット データの基になる計測データが表す方位空間内の位置がばらついているほど、オフ セットデータの精度が向上する。したがって、蓄積された複数の計測データが表す方 位空間内の位置のばらつきが所定基準を満たさない場合には、計測データを削除し た後に再蓄積することにより、蓄積された計測データに基づいて更新されるオフセット データの精度が向上する。  Specific examples of the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density. As long as the true offset is constant, the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
[0021] (14)  [0021] (14)
前記第二蓄積手段は、前記第二蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置と、前記オフセットデータが表す前記方位空間内の位 置との距離のばらつきが所定基準を満たさない場合、前記第二蓄積手段に蓄積され た前記計測データの少なくとも一部を削除してもよい。 The second accumulating unit has a predetermined variation in distance between the position in the azimuth space represented by the plurality of measurement data accumulated in the second accumulating unit and the position in the azimuth space represented by the offset data. If the standard is not met, it is stored in the second storage means. Further, at least a part of the measurement data may be deleted.
蓄積された計測データが表す方位空間内の位置と蓄積された計測データに基づ いて更新されるオフセットデータが表す方位空間内の位置との距離のばらつきが大 きい場合、オフセットデータの基になっている複数の計測データのそれぞれに対応 する真のオフセットが互いに異なっている力 \或いは計測データが強いノイズの影響 を受けている可能性が高い。したがってこのような場合には、計測データを削除した 後に再蓄積することにより、蓄積された計測データに基づいて更新されるオフセット データの精度が向上する。  If the distance between the position in the azimuth space represented by the accumulated measurement data and the position in the azimuth space represented by the offset data updated based on the accumulated measurement data is large, it becomes the basis for the offset data. It is highly possible that the true offsets corresponding to each of the multiple measurement data are different from each other, or that the measurement data is affected by strong noise. Therefore, in such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting and re-accumulating the measurement data.
[0022] (15) [0022] (15)
前記第二蓄積手段は、前記第二蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置のばらつきが所定基準を満たさない場合、前記第二蓄 積手段に蓄積された前記計測データの少なくとも一部を削除してもよい。  The second accumulating unit is configured to store the second accumulating unit accumulated in the second accumulating unit when a variation in position in the azimuth space represented by the plurality of measurement data accumulated in the second accumulating unit does not satisfy a predetermined standard. At least a part of the measurement data may be deleted.
方位空間内の位置のばらつきを表す指標としては、具体的には例えば分布範囲、 分布密度、分布密度の一様性等がある。真のオフセットが一定である限り、オフセット データの基になる計測データが表す方位空間内の位置がばらついているほど、オフ セットデータの精度が向上する。したがって、蓄積された複数の計測データが表す方 位空間内の位置のばらつきが所定基準を満たさない場合には、計測データを削除し た後に再蓄積することにより、蓄積された計測データに基づいて更新されるオフセット データの精度が向上する。  Specific examples of the index representing the variation in the position in the azimuth space include a distribution range, a distribution density, and uniformity of the distribution density. As long as the true offset is constant, the accuracy of the offset data improves as the position in the azimuth space represented by the measurement data on which the offset data is based varies. Therefore, if the variation in position in the location space represented by the accumulated measurement data does not meet the predetermined standard, the measurement data is deleted and then re-accumulated, based on the accumulated measurement data. Improves accuracy of updated offset data.
[0023] (16) [0023] (16)
前記方位処理装置は、実質的に最新の前記計測データが表す方位空間内の位置 と前記オフセットデータが表す前記方位空間内の位置との距離が基準値以上である 場合、前記オフセット生成手段によって前記オフセットデータが再生成されるまで、前 記第一蓄積手段によって前記計測データを再蓄積させるリセット手段をさらに備えて あよい。  When the distance between the position in the azimuth space represented by the latest measurement data and the position in the azimuth space represented by the offset data is greater than or equal to a reference value, the azimuth processing device is It may further comprise reset means for re-accumulating the measurement data by the first accumulation means until the offset data is re-generated.
実質的に最新の計測データが表す方位空間内の位置とオフセットデータが表す方 位空間内の位置との距離が方位円又は方位球の半径と大きく異なる場合、真のオフ セットが大きく動いたか、計測軸毎に時分割出力される計測データが、方位センサの 移動速度が速すぎるためにそれぞれ異なる方位を方位センサが検出している状態で 出力されたデータであるか、局所的な磁場変動の影響を受けている可能性が高い。 このような場合、このような状況下で蓄積された計測データを削除した後に計測デー タを再蓄積することにより、蓄積された計測データに基づいて更新されるオフセットデ ータの精度が向上する。 If the distance between the position in the azimuth space represented by the latest measurement data and the position in the direction space represented by the offset data is significantly different from the radius of the azimuth circle or azimuth sphere, has the true offset moved significantly? Measurement data output in time-sharing for each measurement axis There is a high possibility that the data is output when the direction sensor detects different directions because the moving speed is too fast, or it is affected by local magnetic field fluctuations. In such a case, the accuracy of the offset data updated based on the accumulated measurement data is improved by deleting the measurement data accumulated under these circumstances and then reaccumulating the measurement data. .
[0024] (25) [0024] (25)
上記第二の目的を達成するための地理情報表示装置は、マイクロホンと、発信操 作を含む通信操作を受け付ける操作ユニットと、前記発信操作が受け付けられると、 前記マイクロホン力 出力される音響信号を伝送する通信手段と、前記操作ユニット に重なる第一姿勢と前記操作ユニットから離れた第二姿勢とを往復可能に前記操作 ユニットに連結される表示ユニットと、計測データを順次出力する方位センサと、前記 表示ユニットが前記第一姿勢から前記第二姿勢に変化する作動に伴って前記計測 データの蓄積を開始し、蓄積された前記計測データに基づいてオフセットデータを更 新するオフセットデータ更新手段と、実質的に最新の前記計測データと前記オフセッ トデータとに基づいて方位データを出力する方位データ出力手段と、前記方位デー タに基づいて前記表示ユニットに地理情報を表示させる表示制御手段と、を備える。  The geographical information display device for achieving the second object transmits a microphone, an operation unit that receives a communication operation including a call operation, and an acoustic signal output from the microphone when the call operation is received. Communication means, a display unit connected to the operation unit so as to be able to reciprocate between a first posture overlapping the operation unit and a second posture separated from the operation unit, an orientation sensor for sequentially outputting measurement data, Offset data updating means for starting accumulation of the measurement data in accordance with the operation of the display unit changing from the first attitude to the second attitude, and updating the offset data based on the accumulated measurement data; Azimuth data output means for outputting azimuth data based on the latest measurement data and the offset data, Based on the serial azimuth data and a display control means for displaying geographic information on said display unit.
[0025] 操作ユニットに表示ユニットが重なっている状態からユーザが発信動作をするとき、 ユーザは表示ユニットを操作ユニットから離し、操作ユニットに対して発信操作を行う 。この一連の発信動作中には、地理情報表示装置の姿勢は大きく変化する。したが つて、操作ユニットに重なった第一姿勢力 操作ユニットから離れた第二姿勢に表示 ユニットの姿勢が変化する作動に伴って方位センサの計測データの蓄積を開始する と、蓄積される複数の計測データが表す方位空間内の位置が大きくばらつく。したが つて、このように蓄積される計測データに基づいて方位センサのオフセットデータを 更新する地理情報表示装置によると、ユーザはキャリブレーションのために特別な操 作をする必要がない。  [0025] When the user performs a transmission operation from the state where the display unit overlaps the operation unit, the user separates the display unit from the operation unit and performs a transmission operation on the operation unit. During this series of transmission operations, the attitude of the geographic information display device changes greatly. Therefore, when the accumulation of measurement data of the direction sensor is started in accordance with the operation in which the attitude of the display unit changes to the second attitude away from the operation unit, the first attitude force that overlaps the operation unit is stored. The position in the azimuth space represented by the measurement data varies greatly. Therefore, according to the geographic information display device that updates the offset data of the direction sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for calibration.
[0026] (26)  [0026] (26)
前記表示ユニットは前記方位センサを内蔵してレ、てもよレ、。  The display unit incorporates the orientation sensor.
操作ユニットに表示ユニットが重なっている状態からユーザが発信動作をするとき、 ユーザは表示ユニットを操作ユニットから離すため、表示ユニットの姿勢は操作ュニ ットに比べてさらに大きく変化する。オフセットデータの基になる計測データが表す方 位空間内の位置がばらついているほど、オフセットデータの精度が向上する。したが つて、表示ユニットに方位センサを内蔵することにより、オフセットデータの精度が向 上する。 When the user makes a call from a state where the display unit overlaps the operation unit, Since the user moves the display unit away from the operation unit, the attitude of the display unit changes more greatly than the operation unit. As the position in the location space represented by the measurement data that is the basis of the offset data varies, the accuracy of the offset data improves. Therefore, the accuracy of the offset data is improved by incorporating the orientation sensor in the display unit.
[0027] (27) [0027] (27)
前記オフセットデータ更新手段は、前記作動の完了に伴って前記計測データの蓄 積を終了してもよい。  The offset data update means may end the accumulation of the measurement data upon completion of the operation.
計測データの蓄積が終了した後には、蓄積処理に対するハードウェアリソースの割 当が開放される。  After the measurement data has been accumulated, the hardware resource allocation for the accumulation process is released.
[0028] (28) [0028] (28)
前記オフセットデータ更新手段は、前記作動に伴う少なくとも前記操作ユニット、前 記表示ユニットのいずれか一方から漏洩する磁力(線)による、前記方位センサに印 カロされている磁界の変化に応じて前記オフセットデータを補正してもよい。  The offset data update means is configured to change the offset according to a change in a magnetic field applied to the direction sensor due to a magnetic force (line) leaking from at least one of the operation unit and the display unit accompanying the operation. Data may be corrected.
方位センサの計測データは地理情報表示装置から漏洩する磁力(線)の影響を受 ける。表示ユニットの姿勢変化中には、その影響が変化するため、その変化を加味し てオフセットデータを補正することにより、オフセットデータの精度が向上する。  The direction sensor measurement data is affected by the magnetic force (line) leaking from the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the accuracy of the offset data is improved by correcting the offset data in consideration of the change.
[0029] (29) [0029] (29)
上記第二の目的を達成するための地理情報表示装置は、計測データを順次出力 する方位センサと、表示操作を受け付ける操作ユニットと、前記操作ユニットに重なる 第一姿勢と前記操作ユニットから離れた第二姿勢とを往復可能に前記操作ユニット に連結される表示ユニットと、前記表示ユニットが前記第二姿勢から前記第一姿勢に 変化する作動に伴って前記計測データの蓄積を開始し、蓄積された前記計測データ に基づいて前記方位センサのオフセットデータを更新するオフセットデータ更新手段 と、実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、前記表示操作に応じて、前記方位データに基づ いて前記表示ユニットに地理情報を表示させる表示制御手段と、を備える。  A geographic information display device for achieving the second object includes an orientation sensor that sequentially outputs measurement data, an operation unit that accepts a display operation, a first posture that overlaps the operation unit, and a first posture separated from the operation unit. A display unit connected to the operation unit so as to be able to reciprocate between two positions, and the display unit starts accumulating the measurement data in accordance with an operation of changing from the second position to the first position. Offset data updating means for updating offset data of the orientation sensor based on the measurement data, orientation data output means for outputting orientation data based on the most recent measurement data and the offset data, and the display Display control means for displaying geographical information on the display unit based on the azimuth data according to operation. That.
[0030] 地理情報表示装置の操作終了時、ユーザは操作ユニットから離れている表示ュニ ットを操作ユニットに重ね、地理情報表示装置を衣服のポケットや鞠にしまう動作をす る可能性が高い。したがって、操作ユニットから離れた第二姿勢力 操作ユニットに 重なった第一姿勢に表示ユニットの姿勢が変化する作動に伴って方位センサの計測 データの蓄積を開始すると、蓄積される複数の計測データが表す方位空間内の位置 が大きくばらつく。したがって、このように蓄積される計測データに基づいて方位セン サのオフセットデータを更新する地理情報表示装置によると、ユーザはキヤリブレー シヨンのために特別な操作をする必要がなレ、。 [0030] At the end of the operation of the geographic information display device, the user is away from the operation unit. There is a high possibility that the mobile phone is placed on the operation unit and the geographical information display device is put in a pocket or a bag of clothes. Therefore, when the accumulation of measurement data of the direction sensor is started in accordance with the operation in which the attitude of the display unit changes to the first attitude that overlaps the operation unit, the second attitude force that is separated from the operation unit, a plurality of accumulated measurement data are stored. The position in the azimuth space to represent varies greatly. Therefore, according to the geographical information display device that updates the offset data of the bearing sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for the calibration.
[0031] (30)  [0031] (30)
前記表示ユニットは前記方位センサを内蔵してレ、てもよレ、。  The display unit incorporates the orientation sensor.
地理情報表示装置の操作終了時、ユーザは表示ユニットを操作ユニットに重ねる ため、表示ユニットの姿勢は操作ユニットに比べてさらに大きく変化する。オフセット データの基になる計測データが表す方位空間内の位置がばらついているほど、オフ セットデータの精度が向上する。したがって、表示ユニットに方位センサを内蔵するこ とにより、オフセットデータの精度が向上する。  At the end of the operation of the geographic information display device, the user stacks the display unit on the operation unit, so that the attitude of the display unit changes more greatly than the operation unit. As the position in the azimuth space represented by the measurement data on which the offset data is based varies, the accuracy of the offset data improves. Therefore, the accuracy of the offset data is improved by incorporating the orientation sensor in the display unit.
[0032] (31) [0032] (31)
前記オフセットデータ更新手段は、前記表示ユニットが前記作動の完了に伴って前 記計測データの蓄積を終了してもよい。  The offset data update means may end the accumulation of the measurement data when the display unit completes the operation.
計測データの蓄積が終了した後には、蓄積処理に対するハードウェアリソースの割 当が開放される。  After the measurement data has been accumulated, the hardware resource allocation for the accumulation process is released.
[0033] (32) [0033] (32)
前記オフセットデータ更新手段は、少なくとも前記操作ユニット、前記表示ユニット のレ、ずれか一方から漏洩する磁力による、前記方位センサに印加されてレ、る磁界の 、前記作動に伴う変化に応じて前記オフセットデータを補正してもよい。  The offset data update means is configured to change the offset according to a change of the magnetic field applied to the direction sensor due to a magnetic force leaked from at least one of the operation unit and the display unit. Data may be corrected.
方位センサの計測データは地理情報表示装置力 漏洩する磁力の影響を受ける。 表示ユニットの姿勢変化中には、その影響が変化するため、その変化を加味してォ フセットデータを補正することにより、オフセットデータの精度が向上する。  The measurement data of the azimuth sensor is affected by the leakage power of the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the offset data accuracy is improved by correcting the offset data in consideration of the change.
[0034] (33) [0034] (33)
上記第二の目的を達成するための地理情報表示装置は、計測データを順次出力 する方位センサと、画面と、通信手段と、前記通信手段による受信を報知する受信報 知手段と、前記通信手段による受信に伴って前記計測データの蓄積を開始し、蓄積 された前記計測データに基づいて前記方位センサのオフセットデータを更新するォ フセットデータ更新手段と、実質的に最新の前記計測データと前記オフセットデータ とに基づいて方位データを出力する方位データ出力手段と、前記方位データに基づ いて前記画面に地理情報を表示させる表示制御手段と、を備える。 The geographic information display device for achieving the second object sequentially outputs measurement data. Azimuth sensor, screen, communication means, reception notification means for informing reception by the communication means, and accumulation of the measurement data is started upon reception by the communication means, and the accumulated measurement data Offset data updating means for updating the offset data of the orientation sensor based on the above, orientation data output means for outputting the orientation data based on the most recent measurement data and the offset data, and the orientation data Display control means for displaying geographic information on the screen based on the display screen.
[0035] 地理情報表示装置が受信を報知したとき、ユーザは衣服のポケットゃ鞫から地理 情報表示装置を取り出す可能性が高い。この動作中には、地理情報表示装置の姿 勢が大きく変化する。したがって、音響信号の受信に伴って方位センサの計測デー タの蓄積を開始すると、蓄積される複数の計測データが表す方位空間内の位置が大 きくばらつく。したがって、このように蓄積される計測データに基づいて方位センサの オフセットデータを更新する地理情報表示装置によると、ユーザはキャリブレーション のために特別な操作をする必要がなレ、。  [0035] When the geographic information display device notifies the reception, the user is likely to take out the geographic information display device from the pocket of clothes. During this operation, the attitude of the geographic information display device changes greatly. Therefore, when the accumulation of measurement data of the azimuth sensor is started as the acoustic signal is received, the positions in the azimuth space represented by a plurality of accumulated measurement data vary greatly. Therefore, according to the geographic information display device that updates the offset data of the direction sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for calibration.
[0036] (34)  [0036] (34)
前記地理情報表示装置は、表示操作を受け付ける操作ユニットと、前記操作ュニッ トに重なる第一姿勢と前記操作ユニットから離れた第二姿勢とを往復可能に前記操 作ユニットに連結され前記方位センサを内蔵する表示ユニットをさらに備えてもよい。 操作ユニットに表示ユニットが重なっている状態で地理情報表示装置が受信すると 、ユーザは表示ユニットを操作ユニットから離すため、表示ユニットの姿勢は操作ュニ ットに比べてさらに大きく変化する。オフセットデータの基になる計測データが表す方 位空間内の位置がばらついているほど、オフセットデータの精度が向上する。したが つて、表示ユニットに方位センサを内蔵することにより、オフセットデータの精度が向 上する。  The geographic information display device is connected to the operation unit so as to be able to reciprocate between an operation unit that accepts a display operation, a first posture that overlaps the operation unit, and a second posture that is separated from the operation unit. A built-in display unit may be further provided. When the geographic information display apparatus receives the display unit in a state where the display unit overlaps with the operation unit, the user moves the display unit away from the operation unit, so that the attitude of the display unit changes more greatly than the operation unit. As the position in the location space represented by the measurement data that is the basis of the offset data varies, the accuracy of the offset data improves. Therefore, the accuracy of the offset data is improved by incorporating the orientation sensor in the display unit.
[0037] (35) [0037] (35)
前記オフセットデータ更新手段は、前記表示ユニットが前記第一姿勢から前記第二 姿勢に変化する作動の完了に伴って前記計測データの蓄積を終了してもよい。 計測データの蓄積が終了した後には、他の処理に対するハードウェアリソースの割 当が増大する。 [0038] (36) The offset data update unit may end the accumulation of the measurement data when the operation of the display unit changing from the first posture to the second posture is completed. After the measurement data has been accumulated, the allocation of hardware resources to other processes increases. [0038] (36)
前記オフセットデータ更新手段は、少なくとも前記通信ユニット、前記表示ユニット のレ、ずれか一方から漏洩する磁力による、前記方位センサに印加されてレ、る磁界の 前記作動に伴う変化に応じて前記オフセットデータを補正してもよい。  The offset data update means is configured to detect the offset data according to a change in the magnetic field applied to the direction sensor due to a magnetic force leaking from at least one of the communication unit and the display unit. May be corrected.
方位センサの計測データは地理情報表示装置力 漏洩する磁力の影響を受ける。 表示ユニットの姿勢変化中には、その影響が変化するため、その変化を加味してォ フセットデータを補正することにより、オフセットデータの精度が向上する。  The measurement data of the azimuth sensor is affected by the leakage power of the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the offset data accuracy is improved by correcting the offset data in consideration of the change.
[0039] (37) [0039] (37)
上記第二の目的を達成するための地理情報表示装置は、計測データを順次出力 する方位センサと、発信操作を含む通信操作を受け付ける操作ユニットと、前記発信 操作に応じて発信する通信手段と、前記操作ユニットが前記発信操作を受け付ける 作動に伴って前記計測データの蓄積を開始し、蓄積された前記計測データに基づ レ、て前記方位センサのオフセットデータを更新するオフセットデータ更新手段と、実 質的に最新の前記計測データと前記オフセットデータとに基づいて方位データを出 力する方位データ出力手段と、前記方位データに基づいて前記表示ユニットに地理 情報を表示させる表示制御手段と、を備える。  The geographic information display device for achieving the second object includes an orientation sensor that sequentially outputs measurement data, an operation unit that receives a communication operation including a transmission operation, a communication unit that transmits in response to the transmission operation, An offset data updating unit that starts accumulating the measurement data in response to an operation in which the operation unit receives the transmission operation, and updates the offset data of the direction sensor based on the accumulated measurement data; Azimuth data output means for outputting azimuth data based on the qualitatively latest measurement data and the offset data, and display control means for displaying geographic information on the display unit based on the azimuth data. .
[0040] ユーザは操作ユニットに対して発信操作を行った後に、通話のために地理情報表 示装置を頭部に近づけたり、鞫ゃ衣服のポケットに地理情報表示装置をしまう動作を する可能性が高い。この動作中には、地理情報表示装置の姿勢が大きく変化する。 したがって、発信操作を受け付ける作動に伴って方位センサの計測データの蓄積を 開始すると、蓄積される複数の計測データが表す方位空間内の位置が大きくばらつ く。したがって、このように蓄積される計測データに基づいて方位センサのオフセット データを更新する地理情報表示装置によると、ユーザはキャリブレーションのために 特別な操作をする必要がなレ、。 [0040] After the user performs a call operation on the operation unit, the user may move the geographic information display device closer to his / her head for a call or may cause the geographic information display device to be put in a pocket of clothes. Is expensive. During this operation, the attitude of the geographic information display device changes greatly. Therefore, when the accumulation of measurement data of the azimuth sensor is started in response to the operation for accepting the transmission operation, the position in the azimuth space represented by the plurality of accumulated measurement data varies greatly. Therefore, according to the geographical information display device that updates the offset data of the direction sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for calibration.
[0041] (38) [0041] (38)
前記第二の目的を達成するための地理情報表示装置は、表示操作を受け付ける 操作ユニットと、画面を有し、前記画面の裏面が前記操作ユニットに重なる第一姿勢 力 前記操作ユニットから離れた第二姿勢まで前記画面とほぼ垂直な軸線を中心に 揺動可能に前記操作ユニットに連結される表示ユニット、前記表示ユニットに内蔵さ れ計測データを順次出力する方位センサと、前記表示ユニットが前記第一姿勢から 前記第二姿勢に変化する作動期間に前記計測データを蓄積し、蓄積された前記計 測データに基づいて前記方位センサのオフセットデータを更新するオフセットデータ 更新手段と、実質的に最新の前記計測データと前記オフセットデータとに基づいて 方位データを出力する方位データ出力手段と、前記表示操作に応じて、前記方位デ ータに基づいて前記表示ユニットに地理情報を表示させる表示制御手段と、を備え る。 A geographic information display device for achieving the second object includes an operation unit that accepts a display operation and a screen, and a first posture force that a back surface of the screen overlaps the operation unit. Up to two postures, centering on an axis that is almost perpendicular to the screen A display unit that is swingably connected to the operation unit, a direction sensor that is built in the display unit and sequentially outputs measurement data, and an operation period during which the display unit changes from the first posture to the second posture. Offset data updating means for accumulating the measurement data and updating offset data of the orientation sensor based on the accumulated measurement data, and direction data based on the most recent measurement data and the offset data Azimuth data output means for outputting, and display control means for displaying geographic information on the display unit based on the azimuth data in response to the display operation.
[0042] 表示ユニットに方位センサが内蔵されている場合、画面とほぼ垂直な軸線を中心に 表示ユニットが第一姿勢から第二姿勢に揺動する期間中に蓄積される計測データが 表す方位空間内の位置は大きくばらつく。したがって、このように蓄積される計測デ ータに基づいて方位センサのオフセットデータを更新する地理情報表示装置による と、ユーザはキャリブレーションのために特別な操作をする必要がない。  [0042] When an orientation sensor is built in the display unit, an orientation space represented by measurement data accumulated during a period in which the display unit swings from the first orientation to the second orientation about an axis substantially perpendicular to the screen The position inside varies greatly. Therefore, according to the geographic information display device that updates the offset data of the direction sensor based on the measurement data accumulated in this way, the user does not need to perform a special operation for calibration.
[0043] (39) [0043] (39)
表示操作を受け付ける操作ユニットと、画面を有し、前記画面の裏面が前記操作ュ ニットに重なる第一姿勢から前記操作ユニットから離れた第二姿勢まで前記画面とほ ぼ垂直な軸線を中心に揺動可能に前記操作ユニットに連結される表示ユニットと、前 記表示ユニットに内蔵され計測データを順次出力する方位センサと、前記表示ュニ ットが前記第二姿勢から前記第一姿勢に変化する作動期間に前記計測データを蓄 積し、蓄積された計測データに基づいて前記方位センサのオフセットデータを更新 するオフセットデータ更新手段と、実質的に最新の前記計測データと前記オフセット データとに基づいて方位データを出力する方位データ出力手段と、前記表示操作に 応じて、前記方位データに基づいて前記表示ユニットに地理情報を表示させる表示 制御手段と、を備える。  An operation unit that accepts a display operation and a screen, and swings around an axis that is substantially perpendicular to the screen from a first posture in which the back surface of the screen overlaps the operation unit to a second posture away from the operation unit. A display unit that is movably connected to the operation unit, a direction sensor that is built in the display unit and sequentially outputs measurement data, and the display unit changes from the second posture to the first posture. Based on the offset data updating means for accumulating the measurement data during an operation period and updating the offset data of the azimuth sensor based on the accumulated measurement data, and based on the most recent measurement data and the offset data. Direction data output means for outputting direction data, and according to the display operation, geographical information is displayed on the display unit based on the direction data. Comprising a display control means for, the.
[0044] 表示ユニットに方位センサが内蔵されている場合、画面とほぼ垂直な軸線を中心に 表示ユニットが第二姿勢から第一姿勢に揺動する期間中に蓄積される計測データが 表す方位空間内の位置は大きくばらつく。したがって、このように蓄積される計測デ ータに基づいて方位センサのオフセットデータを更新する地理情報表示装置による と、ユーザはキャリブレーションのために特別な操作をする必要がない。 [0044] When an orientation sensor is built in the display unit, an orientation space represented by measurement data accumulated during a period in which the display unit swings from the second orientation to the first orientation about an axis substantially perpendicular to the screen The position inside varies greatly. Therefore, the geographic information display device updates the offset data of the direction sensor based on the measurement data accumulated in this way. The user does not need to perform a special operation for calibration.
[0045] (40)  [0045] (40)
前記オフセットデータ更新手段は、少なくとも前記通信ユニット、前記表示ユニット のレ、ずれか一方から漏洩する磁力による、前記方位センサに印加されてレ、る磁界の 前記表示ユニットの揺動に伴う変化に応じて前記オフセットデータを補正してもよい。 方位センサの計測データは地理情報表示装置力 漏洩する磁力の影響を受ける。 表示ユニットの姿勢変化中には、その影響が変化するため、その変化を加味してォ フセットデータを補正することにより、オフセットデータの精度が向上する。  The offset data update means responds to a change in the magnetic field applied to the direction sensor due to the magnetic force leaked from at least one of the communication unit and the display unit, and the displacement of the display unit. The offset data may be corrected. The measurement data of the azimuth sensor is affected by the leakage power of the geographic information display device. Since the influence changes during the change in the attitude of the display unit, the offset data accuracy is improved by correcting the offset data in consideration of the change.
[0046] (41) [0046] (41)
上記第二の目的を達成する地理情報表示装置は、計測データを順次出力する方 位センサと、画面を有する外装と、前記外装の 2面以上に散在する光源と、複数の前 記光源を順に発光させる発光制御手段と、前記光源が順に発光する期間中に前記 計測データを蓄積し、蓄積された前記計測データに基づいて前記方位センサのオフ セットデータを更新するオフセットデータ更新手段と、実施的に最新の前記計測デー タと前記オフセットデータとに基づいて方位データを出力する方位データ出力手段と 、前記方位データに基づいて前記画面に地理情報を表示させる表示制御手段と、を 備える。  The geographic information display device that achieves the second object described above sequentially includes a direction sensor that sequentially outputs measurement data, an exterior having a screen, light sources scattered on two or more surfaces of the exterior, and a plurality of the light sources. A light emission control means for emitting light, an offset data updating means for accumulating the measurement data during a period in which the light source emits light in sequence, and updating the offset data of the direction sensor based on the accumulated measurement data; Azimuth data output means for outputting azimuth data based on the latest measurement data and the offset data, and display control means for displaying geographic information on the screen based on the azimuth data.
[0047] 外装に散在する光源が順に発光すると、その発光順にユーザの注意が引きつられ る。外装の複数の面に散在する光源が順に発光すれば、ユーザは、発光する光源を 視認できるように、すなわち、発光している光源がある面が自分の方を向くように、地 理情報表示装置の姿勢を操作する可能性が高い。したがって、外装の 2面以上に散 在する光源が順に発光する期間中は、外装とともに姿勢変化する方位センサの計測 データが表す方位空間内の位置が大きくばらつく可能性が高い。したがつてこの期 間中に蓄積される計測データに基づレ、て方位センサのオフセットデータを更新する 地理情報表示装置によると、キャリブレーション操作をユーザに強く意識させることな ぐオフセットデータの更新に必要な計測データを蓄積できる。  [0047] When the light sources scattered on the exterior emit light in order, the user's attention is drawn in the order of light emission. If the light sources scattered on multiple surfaces of the exterior emit light sequentially, the user can see the light source that emits light, that is, the geological information display so that the surface with the light source that is emitting is facing you. The possibility of manipulating the attitude of the device is high. Therefore, during a period in which light sources scattered on two or more surfaces of the exterior emit light sequentially, the position in the orientation space represented by the measurement data of the orientation sensor that changes its attitude with the exterior is likely to vary greatly. Therefore, the offset data of the direction sensor is updated based on the measurement data accumulated during this period. According to the geographic information display device, the offset data is updated without making the user strongly aware of the calibration operation. The necessary measurement data can be accumulated.
[0048] (42)  [0048] (42)
上記第二の目的を達成するための地理情報表示装置は、計測データを順次出力 する方位センサと、 2面以上に画面を有する外装と、前記画面にターゲットを表示し、 前記ターゲットを前記外装の 2面以上の範囲で移動させるターゲット表示制御手段と 、前記ターゲットの移動期間中に前記計測データを蓄積し、蓄積された前記計測デ ータに基づいて前記方位センサのオフセットデータを更新するオフセットデータ更新 手段と、実質的に最新の前記計測データと前記オフセットデータとに基づいて方位 データを出力する方位データ出力手段と、前記方位データに基づいて前記画面に 地理情報を表示させる地理表示制御手段と、を備える。 The geographic information display device for achieving the second object sequentially outputs measurement data. An orientation sensor, an exterior having a screen on two or more surfaces, a target display control means for displaying a target on the screen, and moving the target in a range of two or more surfaces of the exterior; and during the movement period of the target Offset data updating means for accumulating the measurement data and updating offset data of the orientation sensor based on the accumulated measurement data, and a direction based on the most recent measurement data and the offset data. Azimuth data output means for outputting data, and geographical display control means for displaying geographical information on the screen based on the azimuth data.
[0049] 外装の 2面以上の画面にターゲットが表示され、そのターゲットが外装の 2面以上の 範囲で移動すると、ユーザは、ターゲットを視認できるように、すなわち、ターゲットが 表示されている画面が自分の正面に位置するように、地理情報表示装置の姿勢を操 作する可能性が高レ、。したがって、外装の 2面以上の範囲でターゲットが移動する期 間中は、外装とともに姿勢変化する方位センサの計測データが表す方位空間内の位 置が大きくばらつく可能性が高い。したがつてこの期間中に蓄積される計測データに 基づいて方位センサのオフセットデータを更新する地理情報表示装置によると、キヤ リブレーシヨン操作をユーザに強く意識させることなぐオフセットデータの更新に必 要な計測データを蓄積できる。  [0049] When a target is displayed on two or more screens of the exterior and the target moves in a range of two or more surfaces of the exterior, the user can visually recognize the target, that is, the screen on which the target is displayed is displayed. There is a high possibility of manipulating the attitude of the geographic information display device so that it is located in front of you. Therefore, during the period in which the target moves over two or more surfaces of the exterior, the position in the orientation space represented by the measurement data of the orientation sensor that changes its orientation with the exterior is likely to vary greatly. Therefore, according to the geographic information display device that updates the offset data of the direction sensor based on the measurement data accumulated during this period, the measurement required for updating the offset data without making the user strongly aware of the calibration operation. Data can be accumulated.
[0050] (43)  [0050] (43)
上記第二の目的を達成するための地理情報表示装置は、計測データを順次出力 する方位センサと、画面を有する外装と、前記計測データを蓄積し、蓄積された前記 計測データに基づいて前記方位センサのオフセットデータを更新するオフセットデー タ更新手段と、前記計測データの蓄積期間中に、前記計測データに応じて前記画面 に前記方位センサの姿勢を操作するための案内を報知する操作案内制御手段と、 実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データを 出力する方位データ出力手段と、前記方位データに基づいて前記画面に地理情報 を表示させる地理表示制御手段と、を備える。  The geographic information display device for achieving the second object includes an orientation sensor that sequentially outputs measurement data, an exterior having a screen, the measurement data is accumulated, and the orientation is based on the accumulated measurement data. Offset data updating means for updating the offset data of the sensor, and operation guidance control means for notifying guidance for operating the orientation sensor on the screen according to the measurement data during the accumulation period of the measurement data Azimuth data output means for outputting azimuth data based on the most recent measurement data and offset data, and geographic display control means for displaying geographic information on the screen based on the azimuth data. Prepare.
方位センサの計測データの蓄積期間中に、計測データに応じて、すなわち、方位 センサの姿勢に応じて、方位センサの姿勢を操作するための案内が報知されると、ォ フセットデータの更新に必要な操作をユーザは容易に理解できる。 [0051] (44) During the accumulation period of the direction sensor measurement data, if the guidance for operating the direction sensor is notified according to the measurement data, that is, according to the direction of the direction sensor, the offset data is updated. The user can easily understand the necessary operations. [0051] (44)
前記オフセットデータ更新手段は、蓄積された前記計測データを合格、不合格の いずれか一方と判定し、合格と判定した場合にのみ蓄積した前記計測データに基づ いて前記オフセットデータを更新してもよいし、前記地理情報表示装置は、蓄積され た前記計測データが不合格と判定された場合、不合格を報知する不合格報知手段 をさらに備えてもよい。  The offset data updating means determines whether the accumulated measurement data is either pass or fail, and updates the offset data based on the accumulated measurement data only when it is determined to be acceptable. The geographic information display device may further include failure notification means for notifying the failure when the accumulated measurement data is determined to be failed.
オフセットデータは、オフセットデータの基になる複数の計測データが多いほど、ま た、それらの計測データが表す方位空間内の位置がばらついているほど、正確に更 新される。したがって、オフセットデータの基になる複数の計測データが特定の基準 を満たす場合にのみオフセットデータが更新されれば、オフセットデータは正確に更 新される。また、オフセットデータの基になる複数の計測データが特定の基準を満た さなレ、場合に不合格が報知される地理情報表示装置によると、ユーザにキヤリブレー シヨン操作の再実行を促すことができる。  The offset data is updated more accurately as there are a plurality of measurement data on which the offset data is based, and the position in the azimuth space represented by the measurement data varies. Therefore, if the offset data is updated only when a plurality of measurement data on which the offset data is based meets a specific standard, the offset data is updated accurately. In addition, according to the geographic information display device in which a plurality of measurement data on which offset data is based does not satisfy a specific standard, a failure is notified in some cases, the user can be prompted to re-execute the calibration operation. .
[0052] (45) [0052] (45)
前記地理情報表示装置は、蓄積された前記計測データが合格と判定された場合 に合格を報知する合格報知手段をさらに備えてもよい。  The geographic information display device may further include a pass notification unit that notifies pass when the accumulated measurement data is determined to be pass.
オフセット更新のために蓄積された計測データについて合格が報知される地理情 報表示装置によると、ユーザは地理情報の信頼性を確認できる。  According to the geographic information display device that reports the acceptance of the measurement data accumulated for offset update, the user can confirm the reliability of the geographic information.
[0053] 尚、本発明に備わる複数の手段の各機能は、構成自体で機能が特定されるハード ウェア資源、プログラムにより機能が特定されるハードウェア資源、又はそれらの組み 合わせにより実現される。また、これら複数の手段の各機能は、各々が物理的に互い に独立したハードウェア資源で実現されるものに限定されない。 [0053] It should be noted that each function of the plurality of means provided in the present invention is realized by a hardware resource whose function is specified by the configuration itself, a hardware resource whose function is specified by a program, or a combination thereof. Further, the functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.
また、本発明は装置の発明として特定できるだけでなぐプログラムの発明としても、 そのプログラムを記録した記録媒体の発明としても、方法の発明としても特定すること ができる。  Further, the present invention can be specified not only as an invention of a program but also as an invention of a program, an invention of a recording medium on which the program is recorded, and an invention of a method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0054] 以下、本発明の実施の形態を複数の実施例に基づいて説明する。各実施例にお レ、て同一の符号が付された構成要素は、その符号が付された他の実施例の構成要 素と対応する。 Hereinafter, embodiments of the present invention will be described based on a plurality of examples. The components having the same reference numerals in each embodiment are the constituent elements of the other embodiments having the reference numerals. Corresponds to the prime.
(実施例 1)  (Example 1)
図 2及び図 3は、本発明に係る地理情報表示装置の第一実施例としての電話機 1 を示す外観図である。電話機 1は、携帯可能な小型の電話機であって、無線通話機 能と現在地周辺の地図表示機能とを有する。電話機 1は、複数のキー 21を備える操 作ユニット 2と、画面 31を備える表示ユニット 3で構成されている。表示ユニット 3は、 操作ユニット 2に揺動可能に連結されている。図 3に示すように表示ユニット 3が操作 ユニット 2に重なった状態では、操作ユニット 2のキー 21は表示ユニット 3に覆われ、 表示ユニット 3の画面 31は操作ユニット 2に覆われる。表示ユニット 3が操作ユニット 2 に重なった状態でボタン 33が押圧されると、図示しないパネの弾力によって表示ュ ニット 3が揺動し、図 2に示すように表示ユニット 3が操作ユニット 2から離れる。  2 and 3 are external views showing a telephone 1 as a first embodiment of the geographic information display device according to the present invention. The telephone 1 is a small portable telephone having a wireless call function and a map display function around the current location. The telephone 1 includes an operation unit 2 having a plurality of keys 21 and a display unit 3 having a screen 31. The display unit 3 is swingably connected to the operation unit 2. As shown in FIG. 3, when the display unit 3 is overlapped with the operation unit 2, the key 21 of the operation unit 2 is covered with the display unit 3, and the screen 31 of the display unit 3 is covered with the operation unit 2. When the button 33 is pressed while the display unit 3 overlaps the operation unit 2, the display unit 3 swings due to the elasticity of the panel (not shown), and the display unit 3 moves away from the operation unit 2 as shown in FIG. .
[0055] 図 4は、電話機 1のハードウェア構成を示すブロック図である。 FIG. 4 is a block diagram showing a hardware configuration of the telephone 1.
通信手段としての RF部 202は、受信信号を受信側の回路に通過させ送信信号を アンテナ 200に通過させるデュプレクサ、アンプ、フィルタ等を有する。  The RF unit 202 serving as a communication unit includes a duplexer, an amplifier, a filter, and the like that allow a reception signal to pass through a reception-side circuit and a transmission signal to pass through an antenna 200.
通信手段としての変復調部 204は、受信時、受信信号を復調器で復調した後に A /D変換器でディジタル信号に変換し、ディジタル信号をベースバンド信号として C DMA部 206に出力する。変復調部 204は、送信時、 CDMA部 206から出力された ベースバンド信号を D/A変換器でアナログ信号に変換した後に変調器で変調し、 変調後のアナログ信号を送信信号として RF部 202に出力する。  At the time of reception, the modulation / demodulation unit 204 as communication means demodulates the received signal with a demodulator, converts it to a digital signal with an A / D converter, and outputs the digital signal to the C DMA unit 206 as a baseband signal. The modulation / demodulation unit 204 converts the baseband signal output from the CDMA unit 206 into an analog signal by a D / A converter and then modulates it by the modulator during transmission, and sends the modulated analog signal to the RF unit 202 as a transmission signal. Output.
[0056] 通信手段としての CDMA部 206は、信号に拡散コードを加えて拡散処理または逆 拡散処理をするための回路、基地局と電話機 1とが通信するための制御信号と音声 信号とを分離または合成するための回路等を備える。受信時の CDMA部 206は、変 復調部 204から出力されたベースバンド信号に逆拡散処理を施し、逆拡散処理後の 信号を制御信号と音声信号とに分離する。また送信時の CDMA部 206は、音声処 理部 208から出力された音声信号に制御信号を合成した後に拡散処理を施す。そし て CDMA部 206は、拡散処理後の信号をベースバンド信号として変復調部 204に 出力する。 [0056] The CDMA unit 206 as a communication means separates a control signal and a voice signal for communication between the base station and the telephone set 1, a circuit for performing a spreading process or a despreading process by adding a spreading code to the signal Alternatively, a circuit for synthesis is provided. At the time of reception, CDMA section 206 performs despreading processing on the baseband signal output from modulation / demodulation section 204, and separates the signal after despreading processing into a control signal and a voice signal. In addition, the CDMA unit 206 at the time of transmission performs spreading processing after synthesizing a control signal with the audio signal output from the audio processing unit 208. Then, CDMA section 206 outputs the signal after spreading processing to modulation / demodulation section 204 as a baseband signal.
[0057] 通信手段としての音声処理部 208は、 D/A変換器、 A/D変換器、発話音声を表 すディジタル信号を圧縮するための音声圧縮回路を有する。受信時の音声処理部 2 08は、 CDMA部 206から出力された音声信号を D/A変換器でアナログ信号に変 換し、アナログ信号を受話音声信号として音声スピーカ 300に出力する。また送信時 の音声処理部 208は、マイクロホン 210から出力された発話音声を表す電気信号を A/D変換器でディジタル信号に変換し、ディジタル信号を音声圧縮回路で圧縮し て音声信号を生成する。 [0057] The voice processing unit 208 as a communication means displays a D / A converter, an A / D converter, and a speech voice. And a voice compression circuit for compressing the digital signal. The voice processing unit 208 at the time of reception converts the voice signal output from the CDMA unit 206 into an analog signal by the D / A converter, and outputs the analog signal to the voice speaker 300 as a received voice signal. Further, the voice processing unit 208 at the time of transmission converts an electric signal representing the speech voice output from the microphone 210 into a digital signal by an A / D converter, and compresses the digital signal by a voice compression circuit to generate a voice signal. .
[0058] マイクロホン 210は、操作ユニット 2に設けられる。マイクロホン 210は、ユーザの発 話音声を電気信号に変換する。  The microphone 210 is provided in the operation unit 2. The microphone 210 converts the user's speech voice into an electrical signal.
GPS受信部 214は、アンプ、周波数変換器、 AZD変換器、アンテナ 212で受信し た GPS信号に基づいて位置データを生成する回路などを有する。ここで位置データ とは、電話機 1の地球上の現在位置を一意に特定可能なデータである。 GPS受信部 214は、 GPS信号をアンプで増幅した後に周波数変換器で所定の周波数に変換す る。そして GPS受信部 214は、周波数変換器から出力されたアナログ信号を A/D 変換器でディジタル信号に変換し、そのディジタル信号力 位置データを生成する。  The GPS receiving unit 214 includes an amplifier, a frequency converter, an AZD converter, a circuit that generates position data based on the GPS signal received by the antenna 212, and the like. Here, the position data is data that can uniquely identify the current position of the telephone 1 on the earth. The GPS receiver 214 amplifies the GPS signal with an amplifier, and then converts it to a predetermined frequency with a frequency converter. The GPS receiving unit 214 converts the analog signal output from the frequency converter into a digital signal by an A / D converter, and generates the digital signal force position data.
[0059] CPU216は、図示しない I/Oインタフェースを介して主操作部 224、副操作部 30 2、撮像部 304、表示部 306、発光部 308等の周辺装置に接続されている。 CPU21 6は、 ROM218に格納された各種のコンピュータプログラムを RAM220にロードして 実行することにより、電話機 1の全体を制御する。  The CPU 216 is connected to peripheral devices such as a main operation unit 224, a sub operation unit 302, an imaging unit 304, a display unit 306, and a light emitting unit 308 via an I / O interface (not shown). The CPU 216 controls the entire telephone 1 by loading various computer programs stored in the ROM 218 into the RAM 220 and executing them.
主操作部 224は、操作ユニット 2に設けられ、各種のキー 21を備える。キー 21が押 圧されると、主操作部 224は CPU216に所定の信号を出力することによってユーザ の操作を受け付ける。  The main operation unit 224 is provided in the operation unit 2 and includes various keys 21. When the key 21 is pressed, the main operation unit 224 receives a user operation by outputting a predetermined signal to the CPU 216.
[0060] 音声スピーカ 300は、表示ユニット 3に設けられる。音声スピーカ 300は、音声処理 部 208から出力される受話音声信号に応じて音波を空間に放射することにより受話 音声を発生させる。  The audio speaker 300 is provided in the display unit 3. The audio speaker 300 generates a received voice by radiating a sound wave into the space according to the received voice signal output from the voice processing unit 208.
副操作部 302は、表示ユニット 3に設けられ、ダイヤルスィッチ 32を備える。ダイヤ ノレスィッチ 32が回転すると、副操作部 302は CPU216に所定の信号を出力すること によってユーザの操作を受け付ける。  The sub operation unit 302 is provided in the display unit 3 and includes a dial switch 32. When the diamond switch 32 rotates, the sub-operation unit 302 receives a user operation by outputting a predetermined signal to the CPU 216.
[0061] 撮像部 304は、表示ユニット 3に設けられ、レンズ 34、図示しないエリアイメージセン サ、 AD変換器及び画像処理プロセッサを備える。レンズ 34は、画面 31の裏側に設 けられ、画面 31に垂直な光軸を有し、光軸上の対象物をエリアイメージセンサに結 像させる。 [0061] The imaging unit 304 is provided in the display unit 3, and includes a lens 34, an area image sensor (not shown). And an AD converter and an image processor. The lens 34 is provided on the back side of the screen 31, has an optical axis perpendicular to the screen 31, and images an object on the optical axis to the area image sensor.
表示部 306は、液晶表示パネルで構成される画面 31、表示回路、フレームメモリ等 で構成される。  The display unit 306 includes a screen 31 configured by a liquid crystal display panel, a display circuit, a frame memory, and the like.
[0062] 報知手段としての発光部 308は、表示ユニット 3に設けられ、 LED等で構成される 複数の光源 35 (図 3参照)を備える。光源 35は、画面 31の裏側に設けられ、 CPU21 6から出力される受信報知信号に応じて発光し、受信をユーザに報知する。  [0062] The light emitting unit 308 as a notification unit includes a plurality of light sources 35 (see FIG. 3) provided in the display unit 3 and configured by LEDs or the like. The light source 35 is provided on the back side of the screen 31, emits light according to a reception notification signal output from the CPU 216, and notifies the user of reception.
開閉センサ 309は、表示ユニット 3の全閉状態と全開状態と中間状態とを検出する 。したがって、開閉センサ 309は、表示ユニット 3が全閉状態から開き始めるタイミング と、表示ユニット 3が全開状態から閉じ始めるタイミングを検出できる。  The open / close sensor 309 detects the fully closed state, the fully opened state, and the intermediate state of the display unit 3. Therefore, the open / close sensor 309 can detect the timing when the display unit 3 starts to open from the fully closed state and the timing when the display unit 3 starts to close from the fully open state.
[0063] 報知手段としての報知スピーカ 310は、表示ユニット 3に設けられる。報知スピーカ  The notification speaker 310 as notification means is provided in the display unit 3. Notification speaker
310は、音源部 312から出力される報知音信号に応じて音波を空間に放射すること により、受信音を発生させ、受信をユーザに報知する。  310 emits a sound wave to the space according to the notification sound signal output from the sound source unit 312 to generate a reception sound and notifies the user of the reception.
報知手段としての振動部 314は、振動を発生させるァクチユエータを備える。振動 部 314は、 CPU216から出力される受信報知信号に応じて振動し、受信をユーザに 報知する。  The vibration unit 314 as notification means includes an actuator that generates vibration. The vibration unit 314 vibrates according to the reception notification signal output from the CPU 216 and notifies the user of reception.
計時部 316は、リアルタイムクロック、発振器などを有し、 CPU216に計時データを 出力する。計時データとは、例えば年、 日、時、分、秒、曜日を表すデータである。  The timekeeping unit 316 has a real time clock, an oscillator, and the like, and outputs timekeeping data to the CPU 216. The time data is data representing, for example, year, day, hour, minute, second, day of the week.
[0064] 方位センサモジュール 318は、表示ユニット 3に設けられている。方位センサモジュ ール 318は、互いに直交する 3軸に分解して地磁気(地球が持つ磁界)の方向と大き さを検出する 3軸の磁気センサ 334、 336、 338、サーミスタ、又はバンドギャップリフ アレンス型等の温度センサ 330、制御部 40とのインタフェース部 320等を備える。磁 気センサ 334、 336、 338は、磁気抵抗素子、磁気抵抗素子にバイアス磁界を印加 するためのコイルなどを有する磁気抵抗センサである。切換部 332は磁気センサ 33 4、 336、 338のそれぞれから出力される出力信号のいずれか 1つの出力信号を磁 気センサ信号として出力する。切換部 326はアンプ 328で増幅された磁気センサ信 号、温度センサ 330の出力信号、傾きセンサ 342、 344、 346から出力される出力信 号のいずれか 1つを出力する。切換部 326から出力された出力信号は、 A/D変換 器 324で発振器 322から出力されるクロック信号に基づいてサンプリングされる。イン タフエース部 320は、 A/D変換器 324から出力されるディジタル信号を計測データ として制御部 40に出力する。この結果、方位センサモジュール 318は、磁気センサ 3 34、 336、 338のそれぞれから出力される出力信号、温度センサ 330の出力信号、 姿勢センサモジュール 340に実装されている傾きセンサ 342、 344、 346から出力さ れる出力信号のいずれ力、 1つに対応する計測データを出力する。尚、切換部 326お よび切換部 332は、制御部 40の制御に基づいて任意の出力信号を選択して出力し てもよいし、予め決められた順番とタイミングで所定の出力信号を選択して出力しても よい。 The direction sensor module 318 is provided in the display unit 3. The orientation sensor module 318 is a three-axis magnetic sensor 334, 336, 338, a thermistor, or a band gap reference type that detects the direction and magnitude of the geomagnetism (the magnetic field of the earth) by breaking it into three axes orthogonal to each other. The temperature sensor 330 and the like, and the interface unit 320 with the control unit 40 are provided. The magnetic sensors 334, 336, and 338 are magnetoresistive sensors having a magnetoresistive element and a coil for applying a bias magnetic field to the magnetoresistive element. The switching unit 332 outputs any one of the output signals output from the magnetic sensors 334, 336, and 338 as a magnetic sensor signal. The switching unit 326 includes a magnetic sensor signal amplified by the amplifier 328, an output signal of the temperature sensor 330, and an output signal output from the inclination sensors 342, 344, and 346. Output one of the numbers. The output signal output from the switching unit 326 is sampled by the A / D converter 324 based on the clock signal output from the oscillator 322. The interface unit 320 outputs the digital signal output from the A / D converter 324 to the control unit 40 as measurement data. As a result, the orientation sensor module 318 is output from the output signals output from the magnetic sensors 3 34, 336, and 338, the output signal of the temperature sensor 330, and the tilt sensors 342, 344, and 346 mounted on the attitude sensor module 340. Measurement data corresponding to one of the output signals is output. The switching unit 326 and the switching unit 332 may select and output an arbitrary output signal based on the control of the control unit 40, or select a predetermined output signal in a predetermined order and timing. May be output.
[0065] 姿勢センサモジュール 340は、方位センサモジュール 318の切り換え部 326に接 続され、互いに直交する 3軸に分解して重力の方向と大きさを検出する 3軸の傾きセ ンサ 342、 344、 346を備えてレヽる。ィ頃きセンサ 342、 344、 346ίま、圧電振動ジャィ 口などを有するセンサである。姿勢センサモジュール 340のアナログ出力信号は方位 センサモジュール 318に入力される。  [0065] The attitude sensor module 340 is connected to the switching unit 326 of the orientation sensor module 318, and is decomposed into three axes orthogonal to each other to detect the direction and magnitude of gravity, and three axis tilt sensors 342, 344, It is equipped with 346. Cirro-sensors 342, 344, 346ί, sensors with piezoelectric vibration jacks, etc. The analog output signal of the attitude sensor module 340 is input to the orientation sensor module 318.
[0066] 図 5、図 6、図 7は、方位計測データに基づいて算出されるオフセットデータが示す 方位球と、正しい方位球の関係を説明するための模式図である。方位球とは、方位 センサのオフセットに対応する方位空間上の一点を中心とし半径が地磁気の強さに 対応する球である。図 5、図 6、図 7では、方位球に代えて、方位球の xy平面への投 影である方位円が示されてレ、る。  FIG. 5, FIG. 6, and FIG. 7 are schematic diagrams for explaining the relationship between the azimuth sphere indicated by the offset data calculated based on the azimuth measurement data and the correct azimuth sphere. An azimuth sphere is a sphere centered at a point on the azimuth space corresponding to the offset of the azimuth sensor and whose radius corresponds to the strength of the geomagnetism. In FIGS. 5, 6, and 7, an azimuth circle that is a projection of the azimuth sphere onto the xy plane is shown instead of the azimuth sphere.
[0067] 図 5に示すように方位計測データの個数が少ない場合、算出される方位球の精度 は低くなる。図 6に示すように方位計測データの個数が多くても方位計測データの分 布が狭い場合、算出される方位球の精度は低くなる。 xy座標平面、 yz座標平面、 zx 座標平面上において、各座標平面への正しい方位球の投影である 3つの方位円の 中心を中心として 90度以上の範囲に方位計測データが分布していることが望ましレヽ 。図 7に示すように方位計測データの個数が多く方位計測データの分布が広くても方 位計測データの分布が方位円の周方向に一様でない場合、算出される方位球の精 度は低くなる。すなわち、方位計測データの個数が多ぐ方位計測データの分布が 広ぐ方位計測データの分布が周方向に一様になるように、方位オフセットデータを 算出する基礎となる方位計測データを収集することにより、正確な方位オフセットデ ータを算出することができる。以下、この原理に基づいて方位オフセットデータを算出 するためのアルゴリズムを具体的に説明する。尚、 3軸の方位センサモジュール 318 の方位計測データを用いるため方位球でアルゴリズムを説明する力 2軸の方位セン サの方位計測データを用いる場合であれば方位球を方位円に読み替えたァルゴリズ ムが成立するのは勿論である。 As shown in FIG. 5, when the number of azimuth measurement data is small, the accuracy of the calculated azimuth sphere is low. As shown in Fig. 6, the accuracy of the calculated azimuth sphere is low when the distribution of the azimuth measurement data is narrow even if the number of azimuth measurement data is large. On the xy coordinate plane, the yz coordinate plane, and the zx coordinate plane, the orientation measurement data must be distributed in a range of 90 degrees or more around the center of the three orientation circles that are projections of the correct orientation sphere onto each coordinate plane. I want it. As shown in Fig. 7, if the direction measurement data distribution is not uniform in the circumferential direction of the azimuth circle even if the number of azimuth measurement data is large and the distribution of the azimuth measurement data is wide, the accuracy of the calculated azimuth sphere is low. Become. That is, the distribution of direction measurement data with a large number of direction measurement data is Accurate azimuth offset data can be calculated by collecting azimuth measurement data that is the basis for calculating azimuth offset data so that the distribution of the wide azimuth measurement data is uniform in the circumferential direction. The algorithm for calculating the azimuth offset data based on this principle will be specifically described below. Note that the force used to explain the algorithm in the azimuth sphere because the azimuth measurement data of the 3-axis azimuth sensor module 318 is used. If the azimuth measurement data of the 2-axis azimuth sensor is used, the algorithm is obtained by replacing the azimuth sphere with an azimuth circle. Of course, this holds true.
[0068] (モード A) [0068] (Mode A)
方位オフセット更新処理のモード Aでは、図 8に示すように、直前に蓄積した方位計 測データが表す方位空間内の位置 (以下、単に方位計測データの位置という。)と方 位計測部 66から出力される最新の方位計測データの位置との距離 dが所定値以上 になる場合にのみ、最新の方位計測データを蓄積する(後述のステップ S208参照)  In mode A of the azimuth offset update process, as shown in FIG. 8, the position in the azimuth space represented by the azimuth measurement data stored immediately before (hereinafter simply referred to as the position of the azimuth measurement data) and the direction measurement unit 66 The latest direction measurement data is stored only when the distance d to the position of the latest direction measurement data to be output is a predetermined value or more (see step S208 described later).
[0069] モード Aでは、方位計測データの個数が所定数 (例えば 25個)以上になるまで、方 位オフセットデータを算出しない(後述のステップ S212参照)。 In mode A, the direction offset data is not calculated until the number of azimuth measurement data reaches a predetermined number (for example, 25) or more (see step S212 described later).
モード Aでは、所定個数以上の方位計測データに基づレ、てオフセットデータ候補と しての方位オフセットデータを算出しても、算出した方位オフセットデータを検証し、 基準に合格する場合にのみ算出結果を採用する(後述のステップ S218、 S220参照 )。合格基準は次のとおりである。  In mode A, even if azimuth offset data is calculated as a candidate offset data based on a predetermined number of azimuth measurement data, the calculated azimuth offset data is verified and calculated only when the standard is passed. The result is adopted (see steps S218 and S220 described later). The acceptance criteria are as follows.
[0070] 合格基準 1 :蓄積された方位計測データが表す座標の各軸の最大値と最小値の差( Wx、 Wy、 Wz :図 9参照)が算出された方位球の半径より大きい。尚、 z座標が基準を 満たさなくても xy座標が基準を満たせば合格としてもよい。例えば、 z座標が基準を 満たさない場合には、 X軸磁気センサ 334及び y軸磁気センサ 336のオフセットだけ を更新するようにしてもよい。  [0070] Acceptance criteria 1: The difference between the maximum value and the minimum value of each axis of coordinates represented by the accumulated azimuth measurement data (Wx, Wy, Wz: see Fig. 9) is larger than the calculated radius of the azimuth sphere. Even if the z-coordinate does not meet the standard, it may be accepted if the xy-coordinate meets the standard. For example, when the z coordinate does not satisfy the standard, only the offsets of the X-axis magnetic sensor 334 and the y-axis magnetic sensor 336 may be updated.
合格基準 2:算出された方位球の中心から蓄積された方位計測データの位置までの 距離 (r:図 10参照)の分散が所定値未満。例えばその分散が、算出された方位球半 径の 5分の 1以下で準合格とし、 10分の 1以下で合格とする。尚、 z座標が基準を満 たさなくても xy座標が基準を満たせば合格としてもよい。 モード Aで方位オフセットデータが更新されると、方位オフセット更新処理はモード Bに遷移する。 Acceptance criteria 2: The variance of the distance (r: see Fig. 10) from the calculated center of the azimuth sphere to the position of the accumulated azimuth measurement data is less than the predetermined value. For example, if the variance is less than one-fifth of the calculated azimuth sphere radius, it will be acceptable, and less than one-tenth will be acceptable. Even if the z-coordinate does not meet the standard, it may be accepted if the xy-coordinate meets the standard. When the azimuth offset data is updated in mode A, the azimuth offset update process transitions to mode B.
[0071] (モード B) [0071] (Mode B)
モード Bでは、図 11に示すように方位球を区画分割し、区画毎に所定数 (例えば 1 個)の方位計測データを更新しながら蓄積する。区画は、例えば図 11に示すように、 方位計測データの位置から xz平面に下ろした垂線の xz平面との交点と、算出された 方位球の中心とを結ぶ線分が X軸となす角( Θ z)及び方位計測データの位置と方位 球の中心とを結ぶ線分が xz平面となす角( Θ y)に応じて設定することができる。最新 の方位計測データが属する区画に既に方位計測データが蓄積されている場合、古 い方位計測データを最新の方位計測データで上書きする(後述のステップ S232参 照)。尚、区画毎に複数の方位計測データを蓄積してもよい。  In mode B, the azimuth sphere is partitioned as shown in FIG. 11, and a predetermined number (for example, one) of azimuth measurement data is updated and stored for each section. For example, as shown in FIG. 11, the section is an angle formed by a line segment connecting the intersection of the perpendicular line drawn from the position of the azimuth measurement data to the xz plane with the xz plane and the center of the calculated azimuth sphere with the X axis ( It can be set according to the angle (Θ y) between the line segment connecting the position of the orientation measurement data and the center of the orientation sphere with the xz plane. If the direction measurement data is already stored in the section to which the latest direction measurement data belongs, the old direction measurement data is overwritten with the latest direction measurement data (see step S232 described later). In addition, you may accumulate | store several azimuth | direction measurement data for every division.
[0072] モード Bでも、算出した方位オフセットデータの精度を上述したモード Aの合格基準 と同一の合格基準で検証し、基準に合格する場合にのみ算出結果を採用する(後述 のステップ S238、 S240参照)。尚、この合格基準を満たさない場合、方位処理モー ドはモード Bからモード Aに遷移する(後述のステップ S244参照)。  [0072] Even in mode B, the accuracy of the calculated bearing offset data is verified with the same acceptance criteria as the above-mentioned acceptance criteria of mode A, and the calculation result is adopted only when the criteria are passed (steps S238 and S240 described later). reference). If this acceptance criterion is not satisfied, the azimuth processing mode transitions from mode B to mode A (see step S244 described later).
[0073] モード Bで方位オフセットが大きく変動すると、前回算出された方位オフセットデー タに対応する方位球の中心から最新の方位計測データの位置までの距離 (D)が前 回算出された方位オフセットデータに対応する方位球の半径 (Rs)に比べて相当大 きくなる(図 12参照)。また、方位センサモジュール 318は、時分割で各軸の方位計 測データを出力するため、電話機 1を早く動かし過ぎても同じ現象が起こる。また、電 話機 1に印加されている磁界が短時間に大きく変動しても同じ現象が起こる。これら の場合、過去に蓄積された方位計測データに基づいて方位オフセットデータを算出 するとオフセットデータの誤差が大きくなる。したがってモード Bでこのような状況が発 生すると、方位処理モードはモード Aに移行する(後述のステップ S230、 S244、 S2 46参照)。  [0073] When the bearing offset fluctuates greatly in mode B, the distance (D) from the center of the bearing sphere corresponding to the previously calculated bearing offset data to the position of the latest bearing measurement data is the previously calculated bearing offset. It is considerably larger than the radius (Rs) of the azimuth sphere corresponding to the data (see Fig. 12). Further, since the direction sensor module 318 outputs the direction measurement data of each axis in a time division manner, the same phenomenon occurs even if the telephone 1 is moved too quickly. The same phenomenon occurs even if the magnetic field applied to the telephone 1 fluctuates greatly in a short time. In these cases, if the azimuth offset data is calculated based on the azimuth measurement data accumulated in the past, the error of the offset data increases. Therefore, when such a situation occurs in mode B, the azimuth processing mode shifts to mode A (see steps S230, S244, and S246 described later).
尚、モード A及びモード Bを併用する場合、モード Aでは所定の期間中に後述する 方位計測部 66から出力される最新の方位計測データを全て蓄積し、そのように蓄積 した方位計測データに基づいて方位オフセットデータを算出してもよい。 [0074] 図 13は方位処理装置、方位測定装置及び地理情報表示装置の機能要素を示す ブロック図である。 When mode A and mode B are used together, mode A accumulates all the latest azimuth measurement data output from the azimuth measurement unit 66, which will be described later, during a predetermined period, and based on the accumulated azimuth measurement data. Thus, the azimuth offset data may be calculated. FIG. 13 is a block diagram showing functional elements of the orientation processing device, orientation measuring device, and geographic information display device.
方位計測部 66は、方位センサモジュール 318で構成され、電話機 1の姿勢と地磁 気に応じて、 X軸磁気センサ 334、 y軸磁気センサ 336及び z軸磁気センサ 338の各 出力値に対応する 3次元の方位計測データを出力する。  The azimuth measuring unit 66 is composed of the azimuth sensor module 318 and corresponds to the output values of the X-axis magnetic sensor 334, the y-axis magnetic sensor 336, and the z-axis magnetic sensor 338 according to the attitude and geomagnetism of the telephone 1. Output dimensional orientation measurement data.
制卸部 40は、 CPU216と、 ROM218と、 RAM220と、 CPU216で実行される地 理情報表示プログラムとで構成される。  The wholesaler 40 includes a CPU 216, a ROM 218, a RAM 220, and a geographical information display program executed by the CPU 216.
[0075] 方位データ出力手段としての方位演算部 48は、地理情報表示プログラムで構成さ れ、方位計測データ、方位オフセットデータ、傾斜計測データ及び傾斜オフセットデ ータに基づいて方位を示す方位データを出力する。尚、方位演算部 48は温度セン サ 330から出力される温度計測データを参照して方位データを補正してもよい。方位 データは、図 14に示すように磁界(地磁気)の方向及び強さを示す磁界ベクトルと平 行で地表面と垂直な平面と画面 31の両方に含まれる直線 Lの北側方向を示すデー タである。方位演算部 48は、方位オフセット更新処理のモード Αでは、方位計測デー タが所定数蓄積されるまでの期間、地理情報表示プログラムの前回の終了時に設定 されていた方位オフセットデータに基づいて方位データを算出する。モード Aでは、 方位計測データが所定数蓄積され、蓄積された方位計測データに基づレ、て方位ォ フセットデータが算出される。方位演算部 48は、モード Aで方位オフセットデータが 更新された後、方位オフセット更新処理のモード Bで方位オフセットデータを更新しな 力 Sら方位データを算出する。  [0075] The azimuth calculation unit 48 as the azimuth data output means is configured by a geographic information display program, and azimuth data indicating the azimuth based on the azimuth measurement data, the azimuth offset data, the tilt measurement data, and the tilt offset data. Output. The azimuth calculation unit 48 may correct the azimuth data with reference to the temperature measurement data output from the temperature sensor 330. As shown in Fig. 14, the azimuth data is the data indicating the north direction of the straight line L included in both the plane plane perpendicular to the ground surface and the screen 31 in parallel with the magnetic field vector indicating the direction and strength of the magnetic field (geomagnetism). It is. In the azimuth offset update mode Α, the azimuth calculation unit 48 determines the azimuth data based on the azimuth offset data set at the previous end of the geographic information display program during the period until a predetermined number of azimuth measurement data is accumulated. Is calculated. In mode A, a predetermined number of azimuth measurement data is accumulated, and azimuth offset data is calculated based on the accumulated azimuth measurement data. After the azimuth offset data is updated in mode A, the azimuth calculation unit 48 calculates the azimuth data from the force S without updating the azimuth offset data in mode B of the azimuth offset update process.
[0076] 方位データ格納部 50は、地理情報表示プログラムで構成され、方位データを RA M220の所定領域に格納する。  The direction data storage unit 50 is configured by a geographic information display program, and stores the direction data in a predetermined area of the RAM 220.
地理表示制御手段としての方位表示部 52は、地理情報表示プログラムで構成され 、方位データ及び位置データに基づいて地理情報を画面 31に表示させる。方位表 示部 52は、地理情報として例えば、北の方角を画面 31に表示したり、現在地の周辺 地図を電話機 1の姿勢に応じて画面 31に表示する。  The azimuth display unit 52 as the geographic display control means is configured by a geographic information display program, and displays geographic information on the screen 31 based on the azimuth data and the position data. The azimuth display unit 52 displays, for example, a north direction on the screen 31 as geographic information, or displays a map around the current location on the screen 31 according to the attitude of the telephone 1.
[0077] 第一蓄積手段としての格納判定部 58は、地理情報表示プログラムで構成され、モ ード Aにおいて、最新の方位計測データを蓄積するかどうかを判定する。 第一蓄積手段としての第一の方位計測データ格納部 60は、地理情報表示プログ ラムで構成され、モード Aにおいて、格納判定部 58によって蓄積対象として判定され た方位計測データを、所定数まで RAM220の所定領域に格納する。 [0077] The storage determination unit 58 as the first storage means is configured by a geographic information display program, and determines whether or not the latest azimuth measurement data is stored in mode A. The first azimuth measurement data storage unit 60 as the first accumulation means is composed of a geographic information display program. In the mode A, up to a predetermined number of azimuth measurement data determined as the accumulation target by the storage determination unit 58 are stored in the RAM 220. Stored in a predetermined area.
[0078] 第二蓄積手段としての第二の方位計測データ格納部 62は、地理情報表示プログ ラムで構成され、モード Bにおいて、方位空間内の区画毎に RAM220に設定する領 域毎に方位計測データを格納し、領域毎に最新の方位計測データを 1つだけ記憶 するように、領域毎に方位計測データを更新する。尚、領域毎に記憶する方位計測 データの個数は前述したとおり 2個以上であってもよい。  [0078] The second azimuth measurement data storage unit 62 as the second storage means is configured by a geographic information display program, and in mode B, azimuth measurement is performed for each area set in the RAM 220 for each section in the azimuth space. Store the data and update the direction measurement data for each area so that only one latest direction measurement data is stored for each area. Note that the number of orientation measurement data stored for each region may be two or more as described above.
[0079] 方位オフセット計算部 56は、地理情報表示プログラムで構成され、蓄積された方位 計測データに基づいて、方位オフセットデータを算出する。方位オフセットデータの 計算式は例えば以下の通りである。尚、方位オフセットデータを他の計算式を用いて 算出できることは勿論である。例えば、 2軸の方位センサの方位計測データに基づい て方位オフセットデータを算出するのであれば、計算式を 2次元の方位計測データに 応じて変形することができる。  The azimuth offset calculation unit 56 is configured by a geographic information display program, and calculates azimuth offset data based on the accumulated azimuth measurement data. The calculation formula of the bearing offset data is as follows, for example. Of course, the bearing offset data can be calculated using other calculation formulas. For example, if the azimuth offset data is calculated based on the azimuth measurement data of the biaxial azimuth sensor, the calculation formula can be modified according to the two-dimensional azimuth measurement data.
[0080] [数 1]  [0080] [Equation 1]
Ax 2{x - XOsf + A^(y - YOsf + (z - ZOs† = Rs2 A x 2 (x-XOsf + A ^ (y-YOsf + (z-ZOs † = Rs 2
ε = y.¾( ; - XOs)2 + Ay 2{yi - YOsf + (ζ,·— ZOs)2 - Rs2 ε = y.¾ ( ; -XOs) 2 + A y 2 (y i -YOsf + (ζ, · — ZOs) 2 -Rs 2
= {z- +
Figure imgf000027_0001
+ Ay 2YOs2 + ZOs2 ) - Rs2 f
= (z- +
Figure imgf000027_0001
+ A y 2 YOs 2 + ZOs 2 )-Rs 2 f
[数 2] [Equation 2]
Ζ 〗 鬧 Ζ〗 鬧
、 ^: [1800]  , ^: [1800]
[V]- D N [/] [p] [q] [V]-D N [/] [p] [q]
[/"] - d [/] [ ] [fo] Up] [fa] [M  [/ "]-d [/] [] [fo] Up] [fa] [M
3 [33] [3/7] [ ] \?<ιλ  3 [33] [3/7] [] \? <Ιλ
[p] [M [ψ] [pp] [pq]  [p] [M [ψ] [pp] [pq]
J [ ] [p] [ ] [Pつ] [つつ]  J [] [p] [] [P] [tsutsu]
ひ]— a Uq] [^] [qq]  Hi] — a Uq] [^] [qq]
oe  oe
0 = ( ) + ^ + + SOZ'P + + S¼ + '») ¾  0 = () + ^ + + SOZ'P + + S¼ + '») ¾
― 3Q  ― 3Q
0 = J/(D + J'/ + 3!a + SOZ'P + + R¼ + ·'") ¾ 0 = J / (D + J '/ + 3 ! A + SOZ'P + + R¼ + ·'") ¾
~ 3Q  ~ 3Q
ΞΘ  ΞΘ
0 = lKO + J1/ + + SOZ'P + + a¼ + 0 = l KO + J 1 / + + SOZ'P + + a¼ +
― 3Q  ― 3Q
o o
Figure imgf000028_0001
Figure imgf000028_0001
o =つ to + ^ + + soz'p + + a'q + '"):く z; =; o = !q(D + d o = tsu to + ^ + + soz'p + + a'q + '"): z; =; o = ! q (D + d
Figure imgf000028_0002
Figure imgf000028_0002
? — = ? — =
- = h  -= h
=  =
z2 = L OlO/ OOZdT/13d 92 iI0/900Z OAV [0082] 尚、 z 2 = L OlO / OOZdT / 13d 92 iI0 / 900Z OAV [0082] Incidentally,
計測データが表す方位空間内の位置: (x , y., z.) i= l、 · · ·Ν  Position in the azimuth space represented by the measurement data: (x, y., Z.) I = l, · · · Ν
方位オフセットデータが表す方位空間内の位置:(X〇s、 Y〇s、 ZOs)  Position in bearing space represented by bearing offset data: (X〇s, Y〇s, ZOs)
方位球半径: Rs  Azimuth radius: Rs
X軸磁気センサ 334に対する z軸磁気センサ 338の感度比: Ax  Sensitivity ratio of z-axis magnetic sensor 338 to X-axis magnetic sensor 334: Ax
y軸磁気センサ 336に対する z軸磁気センサ 338の感度比: Ay  Sensitivity ratio of z-axis magnetic sensor 338 to y-axis magnetic sensor 336: Ay
とする。  And
以上の連立方程式を解くことにより、二乗誤差を最小とする B、 C、 Z〇、 E、 F、 Gが 求まる。さらに (1)力、ら Ax、 Ay、 X〇、 YO、 Rsも求まる。  By solving the above simultaneous equations, B, C, Z〇, E, F, and G that minimize the square error can be obtained. In addition, (1) Power, Ax, Ay, X〇, YO, Rs are also obtained.
[0083] 方位オフセット更新手段としての方位オフセット格納部 54は、地理情報表示プログ ラムで構成され、方位オフセットデータを検証し、方位オフセット計算部 56が算出し た方位オフセットデータが合格基準を満たす場合には RAM220の所定領域に格納 されてレ、る方位オフセットデータを上書きする。 [0083] The azimuth offset storage unit 54 as the azimuth offset update means is configured by a geographic information display program, verifies the azimuth offset data, and the azimuth offset data calculated by the azimuth offset calculation unit 56 satisfies the acceptance criteria. The azimuth offset data stored in a predetermined area of the RAM 220 is overwritten.
[0084] 傾斜計測部 64は、姿勢センサモジュール 340及び方位センサモジュール 318で構 成され、 X軸傾きセンサ 342、 y軸傾きセンサ 344及び z軸傾きセンサ 346の各出力値 に対応する 3次元の傾斜計測データを出力する。傾斜計測データは重力の大きさと 方向を表す。 The tilt measuring unit 64 includes an attitude sensor module 340 and an orientation sensor module 318, and is a three-dimensional corresponding to the output values of the X-axis tilt sensor 342, the y-axis tilt sensor 344, and the z-axis tilt sensor 346. Output tilt measurement data. Tilt measurement data represents the magnitude and direction of gravity.
[0085] 傾斜計測データ格納部 42は、地理情報表示プログラムで構成され、重力球内の区 画毎に RAM220に設定する領域毎に傾斜計測データを格納し、領域毎に最新の 傾斜計測データを 1つだけ記憶するように、領域毎に傾斜計測データを更新する。 尚、領域毎に記憶する傾斜計測データの個数は 2個以上であってもよい。重力球と は、 X軸傾きセンサ 342、 y軸傾きセンサ 344及び z軸傾きセンサ 346の各出力値に 対応する 3次元の傾斜計測データで表現されるベクトル空間に定義される球である。 重力球の中心は姿勢センサモジュール 340のオフセットと感度に対応する。区画を 設定するために用いる重力球は、最新の傾斜オフセット及び感度に基づいて定義す る。  [0085] The tilt measurement data storage unit 42 is configured by a geographic information display program, stores tilt measurement data for each area set in the RAM 220 for each partition in the gravity sphere, and stores the latest tilt measurement data for each area. Tilt measurement data is updated for each region so that only one is stored. Note that the number of tilt measurement data stored for each region may be two or more. A gravity sphere is a sphere defined in a vector space represented by three-dimensional tilt measurement data corresponding to the output values of the X-axis tilt sensor 342, the y-axis tilt sensor 344, and the z-axis tilt sensor 346. The center of the gravity sphere corresponds to the offset and sensitivity of the attitude sensor module 340. The gravity sphere used to set the compartment is defined based on the latest tilt offset and sensitivity.
[0086] 傾斜オフセット '感度計算部 44は、地理情報表示プログラムで構成され、傾斜計測 データに基づいて X軸傾きセンサ 342、 y軸傾きセンサ 344及び z軸傾きセンサ 346 の傾斜オフセットと感度とを算出する。 [0086] Tilt offset 'Sensitivity calculation unit 44 is configured by a geographic information display program, and based on tilt measurement data, X-axis tilt sensor 342, y-axis tilt sensor 344, and z-axis tilt sensor 346 The slope offset and sensitivity of the are calculated.
傾斜オフセット '感度格納部 46は、地理情報表示プログラムで構成され、傾斜オフ セットと感度とを検証し、合格基準を満たす場合には傾斜オフセット '感度計算部 44 が算出した X軸傾きセンサ 342、 y軸傾きセンサ 344及び z軸傾きセンサ 346の傾斜 オフセットと感度とを RAM220の所定領域に格納する。  The tilt offset 'sensitivity storage unit 46 is composed of a geographic information display program, verifies the tilt offset and sensitivity, and if the acceptance criteria are met, the X-axis tilt sensor 342 calculated by the tilt offset' sensitivity calculation unit 44, The tilt offset and sensitivity of the y-axis tilt sensor 344 and z-axis tilt sensor 346 are stored in a predetermined area of the RAM 220.
[0087] 尚、上述した格納判定部 58、第一の方位計測データ格納部 60、第二の方位計測 データ格納部 62、方位オフセット計算部 56、方位演算部 48、方位データ格納部 50 、方位表示部 52、傾斜計測データ格納部 42、傾斜オフセット '感度計算部 44及び 傾斜オフセット '感度格納部 46は、コンピュータプログラムの実行が処理に伴わずハ 一ドウエアだけで機能が特定される論理回路で実現することも可能である。  It should be noted that the storage determination unit 58, the first azimuth measurement data storage unit 60, the second azimuth measurement data storage unit 62, the azimuth offset calculation unit 56, the azimuth calculation unit 48, the azimuth data storage unit 50, the azimuth described above. The display unit 52, the tilt measurement data storage unit 42, the tilt offset 'sensitivity calculation unit 44, and the tilt offset' sensitivity storage unit 46 are logic circuits whose functions are specified only by hardware without executing the computer program. It can also be realized.
[0088] 図 15及び図 1は、上述したアルゴリズムを用いた制御部 40による具体的な方位処 理方法を示すフローチャートである。  FIG. 15 and FIG. 1 are flowcharts showing a specific azimuth processing method by the control unit 40 using the algorithm described above.
主操作部 224がユーザの地理情報表示要求を受け付けると、制御部 40は地理情 報表示プログラムを起動し、制御部 40は以下の方位オフセット更新処理を開始する( S100)。方位オフセット更新処理は、地理情報表示プログラムの起動後、地理情報 表示プログラムが終了するまで繰り返し実行される。  When the main operation unit 224 receives the user's geographic information display request, the control unit 40 starts the geographic information display program, and the control unit 40 starts the following azimuth offset update process (S100). The azimuth offset updating process is repeatedly executed after the geographic information display program is started until the geographic information display program ends.
[0089] はじめに、制御部 40は、前回地理情報表示プログラムが終了する直前に方位オフ セット格納部 54が RAM220の所定領域に格納した最後の方位オフセットデータを 不揮発性メモリから読み込み、 RAM220の所定領域に格納する(S102)。以後、モ ード Aで方位オフセットデータが更新されるまでの期間、方位演算部 48は、この段階 で格納した方位オフセットデータを用いて方位データを算出する。  First, the control unit 40 reads from the nonvolatile memory the last azimuth offset data stored in the predetermined area of the RAM 220 by the azimuth offset storage unit 54 immediately before the end of the previous geographic information display program. (S102). Thereafter, during the period until the azimuth offset data is updated in mode A, the azimuth calculation unit 48 calculates the azimuth data using the azimuth offset data stored at this stage.
[0090] ステップ S104では、制御部 40は方位処理モードをモード Aに設定する。すなわち 制御部 40は、ユーザの地理情報表示要求を受け付けた直後は、方位オフセットデ ータをモード Aで算出する。  In step S104, control unit 40 sets the azimuth processing mode to mode A. That is, the control unit 40 calculates the azimuth offset data in mode A immediately after receiving the user's geographical information display request.
ステップ S106では、制御部 40は方位計測データの読み込み間隔を設定する。具 体的にはタイマを設定する。  In step S106, the control unit 40 sets the reading interval of the direction measurement data. Specifically, a timer is set.
[0091] 以上の初期化が終了すると、ステップ S106で設定された時間間隔で図 1に示す処 理が制御部 40によって繰り返し実行される(ステップ S 200)。 ステップ S202では、方位計測部 66から出力される方位計測データを方位演算部 4 8と、格納判定部 58又は第二の方位計測データ格納部 62とが取得する。この結果、 方位演算部 48と、格納判定部 58又は第二の方位計測データ格納部 62とは、タイマ に設定された時間間隔で実質的に最新の方位計測データを取得する。モード Aでは 格納判定部 58が取得し、モード Bでは第二の方位計測データ格納部 62が取得する ステップ S204では、方位演算部 48が方位計測データ、方位オフセットデータ、傾 斜計測データ、傾斜オフセットデータ、傾斜感度データに基づいて方位データを算 出する。 When the above initialization is completed, the process shown in FIG. 1 is repeatedly executed by the control unit 40 at the time interval set in step S106 (step S200). In step S202, the azimuth calculation unit 48 and the storage determination unit 58 or the second azimuth measurement data storage unit 62 acquire the azimuth measurement data output from the azimuth measurement unit 66. As a result, the azimuth calculation unit 48, the storage determination unit 58, or the second azimuth measurement data storage unit 62 acquires substantially the latest azimuth measurement data at the time interval set in the timer. Acquired by the storage determination unit 58 in mode A, and acquired by the second azimuth measurement data storage unit 62 in mode B. Calculate bearing data based on data and tilt sensitivity data.
ステップ S206では、制御部 40は現在のモードを判定する。  In step S206, the control unit 40 determines the current mode.
[0092] (モード A)  [0092] (Mode A)
ステップ S206で方位処理モードがモード Aと判定された場合、格納判定部 58は、 ステップ S202で取得した方位計測データを蓄積するかどうかを判定する(S208)。 格納判定部 58は、上述したとおり、直前に蓄積した方位計測データの位置と方位計 測部 66から出力される最新の方位計測データの位置との距離が所定値以上になる 場合にのみ、最新の方位計測データを蓄積対象と判定する。  When it is determined in step S206 that the azimuth processing mode is mode A, the storage determination unit 58 determines whether or not to store the azimuth measurement data acquired in step S202 (S208). As described above, the storage determination unit 58 is updated only when the distance between the position of the direction measurement data accumulated immediately before and the position of the latest direction measurement data output from the direction measurement unit 66 is equal to or greater than a predetermined value. Is determined as an accumulation target.
[0093] ステップ S210では、第一の方位計測データ格納部 58が蓄積対象の最新の方位 計測データを RAM220に確保された配列 Aに蓄積する。  In step S 210, the first azimuth measurement data storage unit 58 accumulates the latest azimuth measurement data to be accumulated in the array A secured in the RAM 220.
ステップ S212では、方位オフセット計算部 56は蓄積されている方位計測データに 基づレ、て方位オフセットデータを計算すべきかどうかを判定する。方位オフセット計 算部 56は、上述したとおり、配列 Aに蓄積されている方位計測データの個数を数え 上げ、その個数が所定数 (例えば 25個)以上である場合には方位オフセットデータを 計算すべきと判定する。  In step S212, the azimuth offset calculator 56 determines whether to calculate azimuth offset data based on the accumulated azimuth measurement data. As described above, the azimuth offset calculation unit 56 counts the number of azimuth measurement data stored in the array A, and calculates the azimuth offset data when the number is equal to or greater than a predetermined number (for example, 25). Judge that it should be.
[0094] ステップ S214では、方位オフセット計算部 56が配列 Aに蓄積されている方位計測 データに基づいて方位オフセットデータを算出する。算出に用レ、る計算式は、上述し たとおりである。  In step S214, the azimuth offset calculation unit 56 calculates azimuth offset data based on the azimuth measurement data stored in the array A. The calculation formula used for the calculation is as described above.
ステップ S216では、方位オフセット格納部 54は、ステップ S214で算出された方位 オフセットデータを上述の合格基準 1及び 2に照らして検証し、その方位オフセットデ ータが合格基準 1及び 2を満たす場合には、その方位オフセットデータを RAM220 の所定領域に格納し、方位オフセットデータを更新する (ステップ S218、 S220)。 In step S216, the azimuth offset storage unit 54 verifies the azimuth offset data calculated in step S214 against the above-mentioned acceptance criteria 1 and 2, and determines the azimuth offset data. If the data satisfies the acceptance criteria 1 and 2, the direction offset data is stored in a predetermined area of the RAM 220, and the direction offset data is updated (steps S218 and S220).
[0095] ステップ S222では、制御部 40は方位オフセット更新処理のモードをモード Bに設 定する。 [0095] In step S222, control unit 40 sets the direction offset update processing mode to mode B.
ステップ S224では、第二の方位計測データ格納部 62は、モード Aで配列 Aに蓄積 された方位計測データをモード Bで方位計測データを蓄積するための配歹 IJBに移動 させる。配列 Bの配列要素は、上述した方位球の区画毎に 1つずつ設定されている。 したがって、ステップ S224では、配列 Aに蓄積された方位計測データの位置に基づ いて、各方位計測データに対応する配列 Bの配列要素を特定し、各方位計測データ を対応する配列 Bの配列要素に格納する。配列 Bの特定の配列要素に対応する複 数の方位計測データが配列 Aに格納されている場合、それらのいずれかが配列 Bに 格納される。  In step S224, the second azimuth measurement data storage unit 62 moves the azimuth measurement data stored in the array A in mode A to the layout IJB for storing the azimuth measurement data in mode B. One array element of array B is set for each section of the orientation sphere described above. Therefore, in step S224, based on the position of the orientation measurement data accumulated in the array A, the array element of the array B corresponding to each orientation measurement data is specified, and each orientation measurement data is assigned to the array element of the corresponding array B. To store. When multiple orientation measurement data corresponding to a specific array element of array B are stored in array A, one of them is stored in array B.
[0096] ステップ S218で方位オフセットデータが不合格と判定された場合、第一の方位計 測データ格納部 60は、その方位オフセットデータを算出する基になった方位計測デ ータが格納されている配列 Aに所定数 (例えば 30個)の方位計測データが格納され ているか否かを判定する (ステップ S226)。配列 Aに所定数の方位計測データが格 納されている場合、所定数 (例えば最古の 1個)の方位計測データを古い順に配列 A 力 削除する。尚、方位オフセットデータが不合格と判定された場合、第一の方位計 測データ格納部 60は、配列 Aの方位計測データを全削除してもよレ、。  [0096] If it is determined in step S218 that the azimuth offset data is unacceptable, the first azimuth measurement data storage unit 60 stores the azimuth measurement data from which the azimuth offset data is calculated. It is determined whether or not a predetermined number (for example, 30) of azimuth measurement data is stored in the array A (step S226). When a predetermined number of direction measurement data is stored in array A, the predetermined number (for example, the oldest one) of direction measurement data is deleted in order from the oldest. If it is determined that the azimuth offset data is not acceptable, the first azimuth measurement data storage unit 60 may delete all the azimuth measurement data in array A.
[0097] (モード B)  [0097] (Mode B)
ステップ S206で方位オフセット更新処理モードがモード Bと判定された場合、制御 部 40は、方位オフセットが大きく動いたかどうかを判定する(ステップ S230)。具体的 には制御部 40は、前述の図 12に示すように方位オフセットデータに対応する方位球 の中心から最新の方位計測データの位置までの距離 (D)が方位オフセットデータに 対応する方位球の半径 (Rs)に比べて相当大きい場合、方位オフセットが大きく動い たと判定する。  If it is determined in step S206 that the azimuth offset update processing mode is mode B, the control unit 40 determines whether or not the azimuth offset has moved significantly (step S230). Specifically, as shown in FIG. 12, the control unit 40 determines that the distance (D) from the center of the bearing ball corresponding to the bearing offset data to the position of the latest bearing measurement data corresponds to the bearing offset data. If it is considerably larger than the radius (Rs), it is determined that the bearing offset has moved greatly.
[0098] 方位オフセットが大きく動いた場合、制御部 40は方位オフセット更新処理モードを モード Aに設定し (S244)、配列 A及び配歹 1JBに蓄積されている方位計測データを全 削除する(S246)。 [0098] When the azimuth offset moves greatly, the control unit 40 sets the azimuth offset update processing mode to mode A (S244), and all the azimuth measurement data stored in the array A and the layout 1JB are stored. It is deleted (S246).
方位オフセットが大きく動いていない場合、第二の方位計測データ格納部 62は上 述した方位球の区画毎に配列要素が設定された配歹 1JBに最新の方位計測データを 蓄積する (ステップ S232)。このとき第二の方位計測データ格納部 62は、配列要素 に古レヽ方位計測データが格納されてレ、る場合、古レ、方位計測データを新しレヽ方位 計測データで更新する。  When the azimuth offset does not move significantly, the second azimuth measurement data storage unit 62 accumulates the latest azimuth measurement data in the 1JB array element in which the array elements are set for each azimuth sphere section described above (step S232). . At this time, when the old layout measurement data is stored in the array element, the second orientation measurement data storage unit 62 newly updates the old layout and direction measurement data with the layout measurement data.
[0099] ステップ S234では、方位オフセット計算部 56は、方位オフセットデータを計算する 必要があるか否かを判定する。具体的には方位オフセット計算部 56は、ステップ S2 32で新しい方位計測データを格納しょうとする配列要素が空である場合、方位オフ セットを計算すべきと判定する。方位計測データを格納しょうとする配列要素に方位 計測データが格納されてレ、なレ、場合、最新の方位計測データをカ卩味して方位オフセ ットデータを再計算すると、前回計算した時よりもデータ数が多く分布が広い方位計 測データに基づいて方位オフセットデータを計算することになるため、方位オフセット データの精度向上を見込めるためである。また、方位オフセット計算部 56は、ステツ プ S232で新しレ、配列要素に方位計測データを格納しなレ、場合でも、連続して所定 回数 (例えば 100回)配列 Bを更新した場合には、方位オフセットデータを再計算す べきと判定する。 In step S234, the azimuth offset calculation unit 56 determines whether or not azimuth offset data needs to be calculated. Specifically, the azimuth offset calculation unit 56 determines that the azimuth offset should be calculated when the array element for storing new azimuth measurement data is empty in step S232. If the orientation measurement data is stored in the array element that is going to store the orientation measurement data, and if the orientation offset data is recalculated taking into account the latest orientation measurement data, it will be more than the previous calculation. This is because azimuth offset data is calculated based on azimuth measurement data with a large number of data and a wide distribution. Further, the direction offset calculation unit 56 does not store the direction measurement data in the array element in step S232, but if the array B is continuously updated a predetermined number of times (for example, 100 times), Determine that the bearing offset data should be recalculated.
[0100] ステップ S236では、方位オフセット計算部 56は、配列 Bに格納されている方位計 測データに基づいて方位オフセットデータを計算する。計算式はモード Aと同様で上 述したとおりである。  [0100] In step S236, the azimuth offset calculation unit 56 calculates azimuth offset data based on the azimuth measurement data stored in the array B. The calculation formula is the same as in mode A and is as described above.
ステップ S238では、方位オフセット格納部 54は、ステップ S236で算出された方位 オフセットデータを検証する。検証方法は、モード Aのステップ S216と同様で上述し たとおりである。  In step S238, the azimuth offset storage unit 54 verifies the azimuth offset data calculated in step S236. The verification method is the same as that in step S216 of mode A and is as described above.
[0101] 方位オフセット格納部 54は、方位オフセットデータを合格と判定した場合には、そ の方位オフセットデータを RAM220の所定領域に格納し、方位オフセットデータを 更新する(ステップ S240、 S242)。  [0101] When it is determined that the azimuth offset data is acceptable, the azimuth offset storage unit 54 stores the azimuth offset data in a predetermined area of the RAM 220 and updates the azimuth offset data (steps S240 and S242).
方位オフセット格納部 54が方位オフセットデータを不合格と判定した場合には、制 御部 40は、方位処理モードをモード Aに設定し (ステップ S244)、配列 A及び配列 B の方位計測データを全削除する (ステップ S246)。 If the azimuth offset storage unit 54 determines that the azimuth offset data is unacceptable, the control unit 40 sets the azimuth processing mode to mode A (step S244), and array A and array B All the direction measurement data of is deleted (step S246).
[0102] 図 16は、制御部 40による傾斜処理方法を示すフローチャートである。図 16に示す シーケンスは、ステップ S 106で設定された時間間隔で繰り返し実行される。 FIG. 16 is a flowchart showing a tilt processing method by the control unit 40. The sequence shown in FIG. 16 is repeatedly executed at the time interval set in step S106.
ステップ S106で設定された間隔で割り込みが発生すると(S300)、ステップ S302 では、傾斜計測データ格納部 42は傾斜計測部 64から出力される最新の傾斜計測 データを読み込む。  When an interrupt occurs at the interval set in step S106 (S300), in step S302, the inclination measurement data storage unit 42 reads the latest inclination measurement data output from the inclination measurement unit 64.
[0103] ステップ S304では、傾斜計測データ格納部 42は、モード Bで方位球の区画毎に 方位計測データを蓄積する処理に準じて、区画毎に配列要素が設定された配列に 傾斜計測データを蓄積する。  [0103] In step S304, the tilt measurement data storage unit 42 stores the tilt measurement data in the array in which the array elements are set for each section in accordance with the process of storing the direction measurement data for each section of the azimuth sphere in mode B. accumulate.
ステップ S306では、傾斜オフセット '感度計算部 44は、蓄積されている傾斜計測 データに基づいて傾斜オフセットデータ及び傾斜感度データを計算すべきかどうか を判定する。判定基準は、モード Bにおける再計算判定基準と同様で、空の区画に 対応する傾斜計測データが読み込まれたときと、配列の更新が所定回数 (例えば 10 0回)連続して行われたときに傾斜オフセット '感度計算部 44は再計算が必要である と判定する。  In step S306, the inclination offset'sensitivity calculation unit 44 determines whether to calculate inclination offset data and inclination sensitivity data based on the accumulated inclination measurement data. The judgment criteria are the same as the recalculation judgment criteria in mode B. When tilt measurement data corresponding to an empty section is read, and when the array is updated continuously for a predetermined number of times (for example, 100 times). The slope offset 'sensitivity calculation unit 44 determines that recalculation is necessary.
[0104] ステップ S308では、傾斜オフセット '感度計算部 44は、方位処理で述べた方位ォ フセットデータの算出方法に準じて傾斜オフセットデータ及び姿勢センサモジュール 340の感度を表す傾斜感度データを算出する。  In step S308, the inclination offset 'sensitivity calculation unit 44 calculates inclination offset data and inclination sensitivity data representing the sensitivity of the attitude sensor module 340 in accordance with the direction offset data calculation method described in the direction processing. .
ステップ S310では、傾斜オフセット '感度格納部 46はステップ S308で算出した傾 斜オフセットデータ及び傾斜感度データをモード Aのステップ S216の方法に準じた 方法で検証する。  In step S310, the inclination offset'sensitivity storage unit 46 verifies the inclination offset data and inclination sensitivity data calculated in step S308 by a method according to the method of step S216 of mode A.
[0105] 傾斜オフセット '感度格納部 46は、傾斜オフセットデータ及び傾斜感度データを合 格と判定した場合には、それらのデータを RAM220の所定領域に格納し、それらの データを更新する(ステップ S312、 S314)。その後、方位演算部 48によって方位デ ータが算出されるときは (ステップ S204参照)、更新された傾斜オフセットデータ及び 傾斜感度データに基づレ、て行われる。  [0105] When the slope offset 'sensitivity storage unit 46 determines that the slope offset data and the slope sensitivity data are acceptable, the data is stored in a predetermined area of the RAM 220 and the data is updated (step S312). , S314). Thereafter, when the azimuth data is calculated by the azimuth calculation unit 48 (see step S204), it is performed based on the updated tilt offset data and tilt sensitivity data.
[0106] 以上説明した第一実施例によると、地理情報表示プログラムの実行期間中、最新 の方位計測データに基づいて方位オフセットデータが更新され続けるため、正確な 方位データに基づレ、て正確な地理情報を表示することができる。また第一実施例に よると、方位オフセットデータを算出する基礎になる方位計測データを、正確な方位 オフセットデータが保障されるように選択的に蓄積するため、ユーザがどのように電話 機 1を操作するかにかかわらず、正確な方位オフセットデータを算出するために必要 な方位計測データを効率よく蓄積することができる。また制御部 40が地理情報表示 プログラムの実行期間中、方位計測データを選択的に蓄積し続けるため、ユーザは 方位計測データの蓄積に必要な操作を無意識に実施することができる。したがって、 本発明の第一実施例によると、方位センサモジュール 318の取り扱いが容易である。 [0106] According to the first embodiment described above, the azimuth offset data is continuously updated based on the latest azimuth measurement data during the execution period of the geographic information display program. Accurate geographical information can be displayed based on the azimuth data. In addition, according to the first embodiment, the direction measurement data that is the basis for calculating the direction offset data is selectively accumulated so that accurate direction offset data is guaranteed. Regardless of the operation, the azimuth measurement data required to calculate accurate azimuth offset data can be accumulated efficiently. In addition, since the control unit 40 continues to selectively store the direction measurement data during the execution period of the geographic information display program, the user can unconsciously perform the operation necessary for storing the direction measurement data. Therefore, according to the first embodiment of the present invention, the orientation sensor module 318 can be easily handled.
[0107] 尚、第一実施例では 3軸の方位センサモジュール 318と 3軸の姿勢センサモジユー ル 340とを用いた方位処理方法を説明した力 2軸の方位センサモジュールを用い て方位データを算出してもよいし、姿勢センサモジュールを用いずに方位センサモジ ユールだけを用いて方位データを算出してもよレ、。また、姿勢センサモジュールのォ フセットを固定値として方位データを算出してもよい。また、電話機 1は表示ユニット 3 と操作ユニット 2がー体に形成されている構造であってもよい。また、方位センサモジ ユール 318は操作ユニット 2に内蔵されていてもよい。  In the first embodiment, the azimuth data is calculated using the force biaxial azimuth sensor module, which explains the azimuth processing method using the triaxial azimuth sensor module 318 and the triaxial attitude sensor module 340. It is also possible to calculate azimuth data using only the azimuth sensor module without using the attitude sensor module. Further, the azimuth data may be calculated with the offset of the attitude sensor module as a fixed value. The telephone 1 may have a structure in which the display unit 3 and the operation unit 2 are formed in a single body. In addition, the direction sensor module 318 may be built in the operation unit 2.
[0108] (第二実施例)  [0108] (Second Example)
次に本発明の第二実施例を説明する。第二実施例では、表示ユニット 3が操作ュ ニット 2から離れる動作、すなわち表示ユニット 3が開く動作に連動して制御部 40が 方位データの算出に必要な方位計測データの蓄積を開始する。第一実施例では、 地理情報表示プログラムが起動すると方位計測データの蓄積が開始され、方位オフ セットデータの更新と方位データの更新が並列に実施されていたが、第二実施例で は、開閉センサ 309が表示ユニット 3の開く動作の開始を検出すると、方位計測デー タの蓄積を開始する。  Next, a second embodiment of the present invention will be described. In the second embodiment, the control unit 40 starts accumulating azimuth measurement data necessary for calculating azimuth data in conjunction with an operation in which the display unit 3 moves away from the operation unit 2, that is, an operation in which the display unit 3 opens. In the first example, when the geographic information display program is started, accumulation of direction measurement data is started, and direction offset data update and direction data update are performed in parallel. When the sensor 309 detects the start of the opening operation of the display unit 3, accumulation of direction measurement data is started.
[0109] 図 17及び図 18は、本発明の第二実施例による方位処理方法を示すフローチヤ一 トである。第一実施例と実質的に同一の処理には同一の符号を付して説明を省略す る。  FIGS. 17 and 18 are flowcharts showing the azimuth processing method according to the second embodiment of the present invention. Processes that are substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
開閉センサ 309が表示ユニット 3の開く動作の開始タイミングを検出すると割り込み が発生し、制御部 40は方位オフセット更新処理を開始する(ステップ S400)。 制御部 40は、第一実施例で説明したモード Aの方位処理によって所定数の方位 計測データを蓄積すると、蓄積した方位計測データに基づいて方位オフセットデータ を算出し、方位オフセットデータを更新すると (ステップ S220)、方位処理を終了する 。方位処理の実行中は表示ユニット 3の開動作開始直後で地理情報表示プログラム の実行前なので、制御部 40は、方位データの算出処理(第一実施例の S204参照) を実施しない。 When the opening / closing sensor 309 detects the start timing of the opening operation of the display unit 3, an interrupt is generated, and the control unit 40 starts the azimuth offset update process (step S400). When accumulating a predetermined number of azimuth measurement data by the mode A azimuth processing described in the first embodiment, the control unit 40 calculates the azimuth offset data based on the accumulated azimuth measurement data and updates the azimuth offset data ( Step S220), the direction processing is terminated. During execution of the azimuth process, the control unit 40 does not perform the azimuth data calculation process (see S204 in the first embodiment) because it is immediately after the opening operation of the display unit 3 is started and before the geographic information display program is executed.
[0110] 尚、制御部 40は、モード Aに続いてモード Bによる方位オフセットデータの更新処 理を実施してもよいし、モード Bのみによる方位オフセットデータの更新処理を実施し てもよレ、。モード Bによる方位オフセットデータの更新処理を実施する場合、配列 Bの 全ての配列要素に方位計測データが格納され、それらの方位計測データに基づい て方位オフセットデータが更新された時点で方位オフセットデータの更新処理を終了 させてもよい。  [0110] It should be noted that the control unit 40 may perform the azimuth offset data update process in mode B following mode A, or the azimuth offset data update process only in mode B. ,. When azimuth offset data is updated in mode B, azimuth measurement data is stored in all array elements of array B, and azimuth offset data is updated when azimuth offset data is updated based on those azimuth measurement data. The update process may be terminated.
[0111] また制御部 40は、所定期間中に方位計測部 66から出力される全ての方位計測デ ータを蓄積し、蓄積した方位計測データに基づいて方位オフセットデータを算出して もよレ、。すなわち、制御部 40は第一実施例のアルゴリズムと全く異なるアルゴリズムで 方位オフセットデータを算出してもよい。  [0111] Further, the control unit 40 may accumulate all the azimuth measurement data output from the azimuth measurement unit 66 during a predetermined period, and calculate the azimuth offset data based on the accumulated azimuth measurement data. ,. That is, the control unit 40 may calculate the azimuth offset data using an algorithm that is completely different from the algorithm of the first embodiment.
[0112] また制御部 40は地理情報表示プログラムの実行中に、第一実施例で説明したモ ード A及びモード B若しくはモード Bのみによる方位オフセットデータの更新処理を実 施してもよいし、地理情報表示プログラムの実行中は方位オフセットデータの更新処 理を実施しなくてもよい。  [0112] Further, the control unit 40 may perform the azimuth offset data update process only in the mode A and mode B or mode B described in the first embodiment during execution of the geographic information display program, During the execution of the geographic information display program, it is not necessary to update the direction offset data.
[0113] ユーザは表示ユニット 3を開いた後、音声スピーカ 300を耳元にあてるために電話 機 1を操作したり、表示ユニット 3を再び閉じたり、電話機 1を大きく動かす可能性が高 レ、。このような動作中、電話機 1は複雑に姿勢変化する。また表示ユニット 3に内蔵さ れている方位センサモジュール 318は、表示ユニット 3の閉動作とともに姿勢変化す るため、さらに複雑に姿勢変化する。尚、方位センサモジュール 318は操作ユニット 2 に内蔵されていてもよい。  [0113] After opening the display unit 3, the user is likely to operate the telephone 1 to put the audio speaker 300 on his ear, close the display unit 3 again, or move the telephone 1 greatly. During such an operation, the telephone 1 changes its posture in a complicated manner. Further, since the orientation sensor module 318 built in the display unit 3 changes its posture with the closing operation of the display unit 3, its posture changes more complicatedly. The direction sensor module 318 may be built in the operation unit 2.
[0114] 本発明の第二実施例によると、制御部 40は表示ユニット 3の開動作開始をきつかけ にして方位計測データの蓄積を開始するため、方位空間内に広く分布する方位計測 データを短時間に蓄積することができる。したがって制御部 40は、方位オフセットデ ータを正確に更新するために必要な方位計測データを短時間で蓄積することができ る。また、制御部 40が表示ユニット 3の開動作開始をきつかけにして方位計測データ の蓄積を開始するため、ユーザは方位計測データの蓄積に必要な操作を無意識に 実施すること力 Sできる。したがって、本発明の第二実施例によると、方位センサモジュ ール 318の取り扱いが容易である。 [0114] According to the second embodiment of the present invention, the control unit 40 starts accumulating azimuth measurement data in response to the start of the opening operation of the display unit 3, and therefore azimuth measurement widely distributed in the azimuth space. Data can be accumulated in a short time. Therefore, the control unit 40 can accumulate the azimuth measurement data necessary for accurately updating the azimuth offset data in a short time. In addition, since the control unit 40 starts accumulating the azimuth measurement data in response to the start of the opening operation of the display unit 3, the user can perform the operation necessary for accumulating the azimuth measurement data unconsciously. Therefore, according to the second embodiment of the present invention, the orientation sensor module 318 can be easily handled.
[0115] (第三実施例) [0115] (Third embodiment)
ユーザは表示ユニット 3を閉じた後、電話機 1を衣服のポケットに入れたり、机の上 に置いたり、鞫にしまったりする可能性が高い。これらの動作中、電話機 1は複雑に 姿勢変化する。また表示ユニット 3に内蔵されている方位センサモジュール 318は、 表示ユニット 3の閉動作とともに姿勢変化するため、さらに複雑に姿勢変化する。 そこで制御部 40は、表示ユニット 3が操作ユニット 2に近付く動作、すなわち表示ュ ニット 3が閉じる動作に連動して制御部 40が方位データの算出に必要な方位計測デ ータの蓄積を開始してもよい。すなわち第二実施例の S400の処理に代えて、表示 ユニット 3の閉動作開始を検出する処理を実施してもよい。 After the display unit 3 is closed, the user is likely to put the telephone 1 in a pocket of clothes, put it on a desk, or put it in a bag. During these operations, the phone 1 changes its posture in a complicated manner. Further, since the orientation sensor module 318 built in the display unit 3 changes its posture with the closing operation of the display unit 3 , its posture changes more complicatedly. Therefore, the control unit 40 starts accumulating azimuth measurement data necessary for calculating the azimuth data in conjunction with the operation in which the display unit 3 approaches the operation unit 2, that is, the operation in which the display unit 3 is closed. May be. That is, instead of the process of S400 of the second embodiment, a process of detecting the start of the closing operation of the display unit 3 may be performed.
[0116] (第四実施例) [0116] (Fourth Example)
図 19、図 20、図 21は本発明の第四実施例による電話機 1の外観を示す平面図で ある。外装を除いたハードウェア構成は第一実施例と実質的に同一であるため説明 を省略する。  19, 20, and 21 are plan views showing the appearance of the telephone 1 according to the fourth embodiment of the present invention. Since the hardware configuration excluding the exterior is substantially the same as that of the first embodiment, the description is omitted.
第四実施例の電話機 1では、画面 31にほぼ垂直な軸線を中心に揺動可能に表示 ユニット 3が操作ユニット 2に連結されている。表示ユニット 3の揺動範囲は 180度であ る。表示ユニット 3に内蔵された方位センサモジュール 318は、表示ユニット 3とともに 180度の範囲で操作ユニット 2に対して揺動する。  In the telephone 1 of the fourth embodiment, the display unit 3 is connected to the operation unit 2 so as to be swingable about an axis substantially perpendicular to the screen 31. The swing range of display unit 3 is 180 degrees. The direction sensor module 318 built in the display unit 3 swings with respect to the operation unit 2 within a range of 180 degrees together with the display unit 3.
[0117] 図 22、図 23は、本発明の第四実施例による方位処理方法を示すフローチャートで ある。第一実施例と実質的に同一の処理には同一の符号を付して説明を省略する。 制御部 40は、開閉センサ 309が表示ユニット 3の開動作開始を検出すると方位ォ フセットの更新処理を開始する(ステップ S500)。表示ユニット 3の開動作とは、表示 ユニット 3と操作ユニット 2とが重なった状態から、それらが互いに離れた状態に遷移 する動作をいう。 FIGS. 22 and 23 are flowcharts showing an azimuth processing method according to the fourth embodiment of the present invention. Processes substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. When the opening / closing sensor 309 detects the opening operation start of the display unit 3, the control unit 40 starts the azimuth offset update process (step S500). The opening operation of display unit 3 is a transition from the state where display unit 3 and operation unit 2 overlap to the state where they are separated from each other. The operation to do.
[0118] 制御部 40は、開閉センサ 309が表示ユニット 3が全開状態まで揺動したことを検出 すると方位オフセットの更新処理を終了する(ステップ S201)。  [0118] When the opening / closing sensor 309 detects that the display unit 3 has swung to the fully open state, the control unit 40 ends the azimuth offset updating process (step S201).
尚、制御部 40は、表示ユニット 3の閉動作中に方位計測データを蓄積し、蓄積した 方位計測データに基づいて方位オフセットデータを算出してもよい。  Note that the control unit 40 may accumulate the azimuth measurement data during the closing operation of the display unit 3, and calculate the azimuth offset data based on the accumulated azimuth measurement data.
また制御部 40は、表示ユニット 3の開閉動作中に方位計測部 66から出力される全 ての方位計測データを蓄積し、蓄積した方位計測データに基づいて方位オフセット データを算出してもよい。すなわち、第一実施例のアルゴリズムと全く異なるアルゴリ ズムで方位オフセットデータを算出してもよい。  The control unit 40 may accumulate all the azimuth measurement data output from the azimuth measurement unit 66 during the opening / closing operation of the display unit 3, and may calculate the azimuth offset data based on the accumulated azimuth measurement data. That is, the azimuth offset data may be calculated by an algorithm that is completely different from the algorithm of the first embodiment.
[0119] 以上説明した本発明の第四実施例によると、表示ユニット 3の開閉動作中に方位ォ フセットの更新処理を実施し、表示ユニット 3の開閉動作が完了すると方位オフセット の更新処理を終了するため、消費電力を低減することができる。また、方位センサモ ジュール 318は、開閉動作中に表示ユニット 3とともに 180度回転するため、本発明 の第四実施例によると、方位オフセットデータを正確に更新するために必要な方位 計測データを短時間で確実に蓄積することができる。  [0119] According to the fourth embodiment of the present invention described above, the azimuth offset updating process is performed during the opening / closing operation of the display unit 3, and the azimuth offset updating process is completed when the opening / closing operation of the display unit 3 is completed. Therefore, power consumption can be reduced. In addition, since the direction sensor module 318 rotates 180 degrees together with the display unit 3 during the opening / closing operation, according to the fourth embodiment of the present invention, the direction measurement data necessary for accurately updating the direction offset data is transmitted in a short time. Can be reliably accumulated.
[0120] (第五実施例)  [0120] (Fifth Example)
上述の第二実施例、第三実施例及び第四実施例では、表示ユニット 3が操作ュニ ット 2に対して姿勢変化する期間中に制御部 40が方位計測データを蓄積する実施例 を説明した。一般に、音声スピーカ 300、報知スピーカ 310等に備わる永久磁石と方 位センサモジュール 318との相対的な位置関係が変動すると、地磁気が一定であつ ても方位センサモジュール 318の方位計測データが変動する。したがって、表示ュニ ット 3が操作ユニット 2に対して姿勢変化する期間中に制御部 40が方位オフセットを 更新するための方位計測データを蓄積する場合、電話機 1に備わる永久磁石と方位 センサモジュール 318との相対的な位置関係の変動を加味して方位オフセットを補 正することが望ましい。  In the second embodiment, the third embodiment, and the fourth embodiment described above, the control unit 40 accumulates the direction measurement data during the period in which the display unit 3 changes its posture with respect to the operation unit 2. explained. In general, when the relative positional relationship between the permanent magnets and the direction sensor module 318 included in the audio speaker 300, the notification speaker 310, and the like changes, the direction measurement data of the direction sensor module 318 changes even if the geomagnetism is constant. Therefore, when the control unit 40 accumulates azimuth measurement data for updating the azimuth offset during the period in which the display unit 3 changes its attitude with respect to the operation unit 2, the permanent magnet and the azimuth sensor module provided in the telephone 1 are stored. It is desirable to correct the azimuth offset by taking into account the relative positional change with 318.
[0121] 表示ユニット 3が全開又は全閉の状態における音声スピーカ 300、報知スピーカ 31 0等に備わる永久磁石等の漏洩磁界の発生源と方位センサモジュール 318との位置 関係は構造上特定されている。表示ユニット 3を開く動作は表示ユニット 3と操作ュニ ット 2の連結構造によって決まる。 [0121] The positional relationship between the direction sensor module 318 and the source of the leakage magnetic field such as a permanent magnet provided in the audio speaker 300, the notification speaker 310, etc. when the display unit 3 is fully open or fully closed is specified structurally. . The operation to open Display Unit 3 is the same as that for Display Unit 3. Depends on the connection structure of
したがって、表示ユニット 3が開く動作中の方位計測データの位置の軌跡は、漏洩 磁界の発生源による磁化の強さと、表示ユニット 3が全開状態又は全閉状態での方 位センサモジュール 318の姿勢と、地磁気の強さが決まれば一意に特定される。全 開状態又は全閉状態での方位センサモジュール 318の姿勢と地磁気の強さは、全 開状態又は全閉状態での方位オフセットが特定できれば、特定可能である。表示ュ ニット 3が開く動作中の漏洩磁界の発生源による磁化の強さは、データサンプリングよ り特定可能である。したがって、電話機 1に備わる永久磁石と方位センサモジュール 318との相対的な位置関係の変動を加味して方位オフセットを補正することができる  Accordingly, the locus of the position of the orientation measurement data during the operation of opening the display unit 3 shows the strength of magnetization due to the source of the leakage magnetic field and the attitude of the direction sensor module 318 when the display unit 3 is in the fully open state or the fully closed state. If the strength of geomagnetism is determined, it is uniquely identified. The orientation and geomagnetic strength of the orientation sensor module 318 in the fully open state or the fully closed state can be specified if the orientation offset in the fully open state or the fully closed state can be specified. The strength of magnetization due to the source of the leakage magnetic field during the operation of opening the display unit 3 can be specified by data sampling. Therefore, it is possible to correct the azimuth offset by taking into account the change in the relative positional relationship between the permanent magnet provided in the telephone 1 and the azimuth sensor module 318.
[0122] (第六実施例) [0122] (Sixth embodiment)
音源部 312が報知スピーカ 310から受信音を発生させたり、振動部 314が振動した り、発光部 308が光源 35を発光させたりすることによってユーザに受信が報知される と、ユーザは、鞫、衣服のポケット、机の上などから電話機 1を取り上げて音声スピー 力 300を耳に近づけたり、画面 31を目視するために電話機 1を大きく動かす可能性 が高い。このような動作中、電話機 1は複雑に姿勢変化する。そこで、制御部 40は、 受信をきつかけにして方位オフセットデータの更新に必要な方位計測データの蓄積 を開始してもよい。すなわち第二実施例の S400の処理に代えて、 CDMA部 206に よる通話又は電子メールの受信を制御部 40が検出する処理を実施してもよい。  When the sound source unit 312 generates a reception sound from the notification speaker 310, the vibration unit 314 vibrates, or the light emitting unit 308 causes the light source 35 to emit light, the user is notified of the reception. There is a high possibility that the telephone 1 is picked up from a pocket of clothes, a desk, etc., and the voice speaker 300 is moved closer to the ear, or the telephone 1 is moved greatly to view the screen 31. During such an operation, the telephone 1 changes its posture in a complicated manner. Therefore, the control unit 40 may start accumulating azimuth measurement data necessary for updating the azimuth offset data triggered by reception. That is, instead of the process of S400 of the second embodiment, a process in which the control unit 40 detects a call or e-mail reception by the CDMA unit 206 may be performed.
[0123] 尚、受信をきつかけにして方位オフセットデータを更新する場合、方位センサモジュ 一ノレ 318は、操作ユニット 2に内蔵されていてもよい。また操作ユニット 2と表示ュニッ ト 3とは一体に形成されていてもよレ、。またモード Aに続いて前述したモード Bによる 方位オフセットデータの更新処理を実施してもよいし、モード Bのみによる方位オフセ ットデータの更新処理を実施してもよい。モード Bによる方位オフセットデータの更新 処理を実施する場合、配列 Bの全ての配列要素に方位計測データが格納され、それ らの方位計測データに基づいて方位オフセットデータが更新された時点で方位オフ セットデータの更新処理を終了させてもよい。  It should be noted that the azimuth sensor module module 318 may be incorporated in the operation unit 2 when the azimuth offset data is updated in response to reception. The operation unit 2 and the display unit 3 may be formed integrally. In addition, following the mode A, the azimuth offset data updating process in the mode B described above may be performed, or the azimuth offset data updating process in the mode B alone may be performed. When updating the bearing offset data in mode B, bearing measurement data is stored in all array elements of array B, and the bearing offset data is updated when the bearing offset data is updated based on these bearing measurement data. The data update process may be terminated.
[0124] (第七実施例) ユーザは、通話や電子メールの発信操作を行った後、マイク 210を口元に近づけ たり、鞫、衣服のポケットに電話機 1をしまったり、机の上などに電話機 1を置いたりす るために電話機 1を大きく動かす可能性が高い。このような動作中、電話機 1は複雑 に姿勢変化する。そこで、制御部 40は、ユーザの発信操作をきつかけにして方位ォ フセットデータの更新に必要な方位計測データの蓄積を開始してもよい。すなわち第 二実施例の S400の処理に代えて、主操作部 224又は副操作部 302が受け付ける 発信操作を制御部 40が検出する処理を実施してもよい。 [0124] (Seventh Example) After performing a call or e-mail sending operation, the user places the microphone 210 close to his / her mouth, puts the phone 1 in his bag, clothing pocket, or places the phone 1 on a desk or the like. There is a high possibility of moving 1 greatly. During such operations, the telephone 1 changes its posture in a complicated manner. Therefore, the control unit 40 may start accumulating azimuth measurement data necessary for updating the azimuth offset data in response to a user's transmission operation. That is, instead of the process of S400 of the second embodiment, a process in which the control unit 40 detects a call operation accepted by the main operation unit 224 or the sub operation unit 302 may be performed.
[0125] 尚、発信操作をきつかけにして方位オフセットデータを更新する場合、方位センサ モジュール 318は、操作ユニット 2に内蔵されていてもよい。また操作ユニット 2と表示 ユニット 3とは一体に形成されていてもよレ、。またモード Aに続いて前述したモード B による方位オフセットデータの更新処理を実施してもよいし、モード Bのみによる方位 オフセットデータの更新処理を実施してもよレ、。モード Bによる方位オフセットデータ の更新処理を実施する場合、配列 Bの全ての配列要素に方位計測データが格納さ れ、それらの方位計測データに基づいて方位オフセットデータが更新された時点で 方位オフセットデータの更新処理を終了させてもよい。  It should be noted that the azimuth sensor module 318 may be built in the operation unit 2 when the azimuth offset data is updated in response to a transmission operation. The operation unit 2 and the display unit 3 may be formed integrally. Following mode A, the azimuth offset data update process in mode B described above may be performed, or the azimuth offset data update process only in mode B may be performed. When azimuth offset data is updated in mode B, azimuth measurement data is stored in all array elements of array B, and azimuth offset data is updated when azimuth offset data is updated based on those azimuth measurement data. The update process may be terminated.
[0126] (第八実施例)  [0126] (Eighth embodiment)
図 24は、本発明の第八実施例による電話機 1の外観を示す斜視図である。外装を 除レ、たハードウェア構成は第一実施例と実質的に同一であるため説明を省略する。 電話機 1の外装に散在する光源 400— 426が点灯すると、点灯している光源にユー ザの注意が向けられる。ユーザは、 目視しょうとする対象物が自分の正面に位置する ように対象物を操作する可能性が高レ、。したがって、光源 400— 426を外装の 2面以 上に散在させ、点灯させる光源 400 426を時間の経過に応じて制御部 40で選択 し、ユーザが目視しょうとする位置を外装上で移動させると、ユーザが電話機 1の姿 勢を変化させる可能性が高い。電話機 1の姿勢を大きく変化させる操作中に方位ォ フセットデータを更新するために必要な方位計測データを蓄積することにより、正確 な方位オフセットデータを算出することができる。すなわち、制御部 40がユーザの操 作を誘導するために点灯させる光源を時間の経過に応じて適切に選択しながら方位 オフセットの更新処理を実行すると、制御部 40は正確な方位オフセットデータを算出 する基礎となる方位計測データを蓄積することができる。以下、この原理を利用した 方位オフセット更新方法の一実施例を説明する。 FIG. 24 is a perspective view showing an appearance of the telephone 1 according to the eighth embodiment of the present invention. Since the hardware configuration except for the exterior is substantially the same as that of the first embodiment, the description thereof is omitted. When light sources 400-426 scattered on the exterior of phone 1 are lit, the user's attention is directed to the lit light source. The user is highly likely to operate the object so that the object to be viewed is located in front of him. Therefore, if the light sources 400-426 are scattered on two or more surfaces of the exterior, the light source 400 426 to be lit is selected by the control unit 40 as time passes, and the position that the user wants to visually observe is moved on the exterior. The user is likely to change the appearance of the phone 1. Accumulating azimuth offset data can be calculated by accumulating azimuth measurement data necessary for updating the azimuth offset data during operations that greatly change the attitude of the telephone 1. In other words, when the control unit 40 executes the azimuth offset update process while appropriately selecting the light source to be turned on in order to guide the user's operation, the control unit 40 calculates accurate azimuth offset data. It is possible to accumulate azimuth measurement data that is the basis for the operation. Hereinafter, an embodiment of a direction offset updating method using this principle will be described.
[0127] 図 25は、本発明の第八実施例による方位オフセット更新処理を説明するためのフ ローチャートである。発光制御手段としての制御部 40が図 25に示す誘導処理と、前 述したモード A、モード Bによる方位オフセットデータの更新処理とを並列に実施する ことにより、方位オフセットデータを正確かつ確実に更新することができる。  FIG. 25 is a flowchart for explaining the azimuth offset update processing according to the eighth embodiment of the present invention. The control unit 40 as the light emission control means performs the guidance process shown in FIG. 25 and the update process of the azimuth offset data in the mode A and mode B described above in parallel, thereby accurately and reliably updating the azimuth offset data. can do.
制御部 40は、図 25に示す誘導処理を電話機 1が待機状態にある期間中であれば いつ開始してもよい。例えば制御部 40は、充電期間終了直後に誘導処理を開始し てもよい。  The control unit 40 may start the guidance process shown in FIG. 25 at any time during the period in which the telephone 1 is in the standby state. For example, the control unit 40 may start the induction process immediately after the end of the charging period.
[0128] ステップ S800力らステップ S814では、制御部 40は図 26に示す A方向に電話機 1 を 360度回転させるようにユーザを誘導する。すなわち、まず制御部 40は第一の外 装面に一列に設けられた光源 406、光源 408、光源 410、光源 412を順に所定期間 ずつ点灯させる。次に、第一の外装面の裏面に相当する第二の外装面に 1列に設け られた光源 426、光源 424、光源 422、光源 420を順に所定期間づっ点灯させる。 光源棚、光源柳、光源 410、光源 412、光源 426、光源 424、光源 422、光源 42 0の点燈順と、外装面での配列順は一致してレ、る。  In step S800 from step S800, the control unit 40 guides the user to rotate the telephone 1 360 degrees in the direction A shown in FIG. That is, first, the control unit 40 turns on the light source 406, the light source 408, the light source 410, and the light source 412 provided in a line on the first exterior surface in order for a predetermined period. Next, the light source 426, the light source 424, the light source 422, and the light source 420 provided in a row on the second exterior surface corresponding to the back surface of the first exterior surface are turned on in order for a predetermined period. The lighting order of the light source shelf, the light source willow, the light source 410, the light source 412, the light source 426, the light source 424, the light source 422, and the light source 420, and the arrangement order on the exterior surface match.
[0129] ステップ S816では、制御部 40は図 26に示す A方向に電話機 1を回転させるように ユーザを誘導する処理を終了するか否かを判定する。例えば、ステップ S800からス テツプ S814までの繰り返し回数が所定回数以上であることを終了基準としてもよいし 、蓄積された方位計測データの位置の分布範囲の広さを終了基準としてもよいし、傾 斜計測データの位置の分布範囲の広さを終了基準としてもよい。  [0129] In step S816, control unit 40 determines whether or not to end the process of guiding the user to rotate telephone 1 in the direction A shown in FIG. For example, the end criterion may be that the number of repetitions from step S800 to step S814 is equal to or greater than a predetermined number, or the width of the distribution range of accumulated orientation measurement data positions may be the end criterion. The width of the distribution range of the position of the oblique measurement data may be used as the end reference.
[0130] ステップ S818からステップ S824では、制御部 40は図 26に示す B方向に電話機 1 を 360度回転させるようにユーザを誘導する。すなわち制御部 40は、まず第一の外 装面に設けられた光源 406、 408、 410、 412を同時に所定期間点灯させ、次に光 源 406、 408、 410、 412の配列方向と垂直な方向で第一の外装面と隣り合う第三の 外装面に設けられた光源 414、 416、 418を同時に所定期間点灯させ、次に第一の 外装面の裏面に相当する第二の外装面に設けられた光源 420、 422、 424、 426を 同時に所定期間点灯させ、次に第三の外装面の裏面に相当する第四の外装面に設 けられた光源 400、 402、 404を同時に所定期間点灯させる。 [0130] From step S818 to step S824, control unit 40 guides the user to rotate telephone 1 360 degrees in the direction B shown in FIG. That is, the control unit 40 first turns on the light sources 406, 408, 410, and 412 provided on the first exterior surface at the same time for a predetermined period, and then the direction perpendicular to the arrangement direction of the light sources 406, 408, 410, and 412. The light sources 414, 416, 418 provided on the third exterior surface adjacent to the first exterior surface are simultaneously turned on for a predetermined period, and then provided on the second exterior surface corresponding to the back surface of the first exterior surface. The light sources 420, 422, 424, and 426 are turned on at the same time for a predetermined period, and then installed on the fourth exterior surface corresponding to the back surface of the third exterior surface. The light sources 400, 402, and 404 are turned on simultaneously for a predetermined period.
[0131] ステップ S826では、制御部 40は図 26に示す B方向に電話機 1を回転させるように ユーザを誘導する処理を終了するか否かを判定する。例えば、ステップ S818からス テツプ S824までの繰り返し回数が所定回数以上であることを判定基準としてもよいし 、蓄積された方位計測データの位置の分布範囲の広さを判定基準としてもよいし、傾 斜計測データの位置の分布範囲の広さを判定基準としてもよい。 [0131] In step S826, control unit 40 determines whether or not to end the process of guiding the user to rotate telephone 1 in the direction B shown in FIG. For example, the determination criterion may be that the number of repetitions from step S818 to step S824 is a predetermined number or more, or the width of the distribution range of the accumulated azimuth measurement data position may be the determination criterion. The width of the distribution range of the position of the oblique measurement data may be used as the determination criterion.
[0132] 尚、互いに直交する 2軸を中心として電話機 1がそれぞれ 360度回転するようにュ 一ザを誘導するための誘導方法を説明したが、どのような操作を誘導するかは適宜 選択しうる設計事項である。例えば図 27に示すように、互いに直交する 3軸を中心と してそれぞれ電話機 1が 90度ずつ回転するように誘導してもよいし、図 28に示すよう に、互いに直交する 3軸を中心としてそれぞれ電話機 1が 180度ずつ回転するように 誘導してもよレ、。尚、前述したモード A、モード Bによる方位オフセットデータの更新処 理と並列して制御部 40が発光部 308を制御する場合、キャリブレーション操作手順 は方位オフセットデータの精度に実質的に影響しない。また、誘導処理と並列に実 行する方位オフセット更新処理は、前述したモード A、モード Bによる方位オフセット データの更新処理に限らず、例えば蓄積対象の方位計測データを選択しなレ、方位 オフセットデータの更新処理を実行してもよレ、。 [0132] Although the guidance method for guiding the user so that the telephone 1 rotates 360 degrees around two axes orthogonal to each other has been described, the operation to be guided is appropriately selected. Design item. For example, as shown in FIG. 27, the telephone 1 may be guided to rotate 90 degrees around three axes orthogonal to each other, or the three axes orthogonal to each other as shown in FIG. You can also guide each phone 1 to rotate 180 degrees. When the control unit 40 controls the light emitting unit 308 in parallel with the azimuth offset data update process in mode A and mode B described above, the calibration operation procedure does not substantially affect the accuracy of the azimuth offset data. Further, the azimuth offset update process executed in parallel with the guidance process is not limited to the azimuth offset data update process in the above-described mode A and mode B. For example, the azimuth offset data is selected without selecting the azimuth measurement data to be stored. You can run the update process.
以上説明した本発明の第八実施例によると、ユーザにキャリブレーション操作を強 く意識させることなぐ制御部 40は方位オフセットデータの更新に必要な方位計測デ ータを蓄積することができる。  According to the eighth embodiment of the present invention described above, the control unit 40 that does not make the user strongly aware of the calibration operation can accumulate the direction measurement data necessary for updating the direction offset data.
[0133] (第九実施例) [Ninth Example]
図 29は、本発明の第九実施例による電話機 1の外装を示す斜視図である。第九実 施例による電話機 1の表示ユニット 3の操作ユニット 2に向かい合う面の外装は図 2に 示した外装と同一である。画面 36は表示ユニット 3に設けられ画面 31の裏側に位置 してレ、る。画面 36は表示部 306 (図 4参照)によって駆動される液晶表示パネルで構 成される。ターゲット表示制御手段としての制御部 40は、上述した方位オフセット更 新処理の実行と並列して表示部 306を制御して画面 31及び画面 36にターゲット Tを 表示する誘導処理を実行する。尚、誘導処理と並列に実行する方位オフセット更新 処理は、前述したモード A、モード Bによる方位オフセットデータの更新処理に限らず 、例えば蓄積対象の方位計測データを選択しなレ、方位オフセットデータの更新処理 を制御部 40は実行してもよい。 FIG. 29 is a perspective view showing the exterior of the telephone 1 according to the ninth embodiment of the present invention. The exterior facing the operation unit 2 of the display unit 3 of the telephone 1 according to the ninth embodiment is the same as that shown in FIG. Screen 36 is provided on display unit 3 and is located behind screen 31. The screen 36 is composed of a liquid crystal display panel driven by a display unit 306 (see FIG. 4). The control unit 40 as the target display control means controls the display unit 306 in parallel with the execution of the azimuth offset update process described above, and executes a guidance process for displaying the target T on the screen 31 and the screen 36. Note that the bearing offset update is executed in parallel with the guidance process. The processing is not limited to the azimuth offset data update processing in the above-described mode A and mode B. For example, the control unit 40 may execute the azimuth offset data update processing without selecting the azimuth measurement data to be stored. .
[0134] 図 30は方位オフセット更新処理の実行と並列して実行される誘導処理を示すフロ 一チャートである。図 31及び図 32は画面 31及び画面 36に表示されるターゲットの 移動軌跡を説明するための模式図である。制御部 40は、誘導処理を電話機 1が待 機状態にある期間中であればいつ開始してもよい。例えば制御部 40は、充電期間 終了直後に誘導処理を開始してもよい。ターゲット Tの態様は、ユーザの注意を喚起 する態様であればどのようなものであってもよぐ円などの幾何学形状でもよいし、顔 のイラストでもよいし、現在時刻などの文字でもよい。制御部 40は、誘導処理の実行 中、ターゲット Tの表示位置を時間の経過に伴って移動させる。ターゲット Tの移動軌 跡は、誘導処理と並列して実行される方位オフセット更新処理で蓄積される方位計 測データの位置が幅広く均一に分布するように設定することが望ましい。以下、ター ゲット Tの移動軌跡の一例を具体的に説明する。  FIG. 30 is a flowchart showing a guidance process executed in parallel with the execution of the azimuth offset update process. 31 and 32 are schematic diagrams for explaining the movement trajectory of the target displayed on the screen 31 and the screen 36. FIG. The control unit 40 may start the guidance process at any time during the period in which the telephone 1 is in a standby state. For example, the control unit 40 may start the induction process immediately after the end of the charging period. The target T may be any geometrical shape such as a circle, a face illustration, or a character such as the current time, as long as it attracts the user's attention. . The control unit 40 moves the display position of the target T with the passage of time during the execution of the guidance process. It is desirable to set the movement trajectory of the target T so that the position of the direction measurement data accumulated in the direction offset update process executed in parallel with the guidance process is distributed widely and uniformly. Hereinafter, an example of the movement trajectory of the target T will be specifically described.
[0135] はじめに、制御部 40は図 31の C方向に電話機 1が回転するようにユーザを誘導す る(S900)。具体的には例えば、制御部 40はターゲット Tを画面 31の左端(画面 31 を見るユーザを基準とする。)に表示し、画面 31の左端から右端に向かってターゲッ ト Tを移動させる。ターゲット Tが画面 31の右端に到達すると、制御部 40はターゲット Tが画面 31の外に移動するように見えるようにターゲット Tを徐々に画面 31から消失 させる。次に制御部 40は、画面 31の裏側に位置する画面 36の左端(画面 36を見る ユーザを基準とする。 )にターゲット Tを表示し、画面 36の左端から右端に向かってタ 一ゲット Tを移動させる。  First, the control unit 40 guides the user so that the telephone 1 rotates in the direction C in FIG. 31 (S900). Specifically, for example, the control unit 40 displays the target T on the left end of the screen 31 (based on the user viewing the screen 31), and moves the target T from the left end of the screen 31 toward the right end. When the target T reaches the right end of the screen 31, the control unit 40 gradually causes the target T to disappear from the screen 31 so that the target T appears to move out of the screen 31. Next, the control unit 40 displays the target T on the left end of the screen 36 located on the back side of the screen 31 (based on the user viewing the screen 36), and targets T from the left end of the screen 36 toward the right end. Move.
[0136] 次に、制御部 40は図 31の C方向に電話機 1が回転するようにユーザを誘導する処 理の終了判定を行う(S902)。制御部 40は、ステップ S900の繰り返し回数を判定基 準にしてもよいし、方位オフセット更新処理で蓄積された方位計測データの位置の分 布範囲の広さを判定基準にしてもよい。  Next, the control unit 40 determines whether to end the process of guiding the user so that the telephone 1 rotates in the direction C in FIG. 31 (S902). The control unit 40 may use the number of repetitions of step S900 as a determination criterion, or may use the width of the distribution range of the position measurement data accumulated in the azimuth offset update process as a determination criterion.
[0137] C方向の誘導が終了すると、制御部は図 32の D方向に電話機 1が回転するように ユーザを誘導する(S904)。具体的には例えば、制御部 40はターゲット Tを画面 31 の下端 (操作ユニット 2に近い方の端)に表示し、画面 31の下端から上端に向かって ターゲット Tを移動させる。ターゲット Tが画面 31の上端に到達すると、制御部 40はタ 一ゲット Tが画面 31の外に移動するように見えるようにターゲット Tを徐々に画面 31 力 消失させる。次に制御部 40は、画面 31の裏側に位置する画面 36の上端 (操作 ユニット 2から遠い方の端)にターゲット Tを表示し、画面 36の上端から下端に向かつ てターゲット Tを移動させる。 [0137] When the guidance in the C direction is completed, the control unit guides the user so that the telephone 1 rotates in the D direction in Fig. 32 (S904). Specifically, for example, the control unit 40 displays the target T on the screen 31. Is displayed on the lower end of the screen (the end closer to the control unit 2), and the target T is moved from the lower end of the screen 31 toward the upper end. When the target T reaches the upper end of the screen 31, the control unit 40 gradually dissipates the target T so that the target T appears to move out of the screen 31. Next, the control unit 40 displays the target T on the upper end of the screen 36 located on the back side of the screen 31 (the end far from the operation unit 2), and moves the target T from the upper end of the screen 36 toward the lower end. .
[0138] 次に、制御部は図 32の D方向に電話機 1が回転するようにユーザを誘導する処理 の終了判定を行う(S906)。制御部 40は、ステップ S904の繰り返し回数を判定基準 にしてもょレ、し、方位オフセット更新処理で蓄積された方位計測データの位置の分布 範囲の広さを判定基準にしてもよい。  Next, the control unit determines whether to end the process of guiding the user so that the telephone 1 rotates in the direction D in FIG. 32 (S906). The control unit 40 may use the number of repetitions of step S904 as a criterion, and may use the width of the distribution range of the orientation measurement data accumulated in the orientation offset update process as a criterion.
以上説明した本発明の第九実施例によると、ユーザにキャリブレーション操作を強 く意識させることなぐ制御部 40は方位オフセットデータの更新に必要な方位計測デ ータを蓄積することができる。  According to the ninth embodiment of the present invention described above, the control unit 40 that does not make the user strongly aware of the calibration operation can accumulate the azimuth measurement data necessary for updating the azimuth offset data.
[0139] (第十実施例)  [0139] (Tenth embodiment)
本発明の第十実施例による電話機 1では、操作案内制御手段としての制御部 40は 、方位オフセットデータの更新に必要な方位計測データを蓄積しながら、最新の方位 計測データに応じて表示部 306を制御して画面 31にユーザを誘導するための画像 を表示させる。  In the telephone 1 according to the tenth embodiment of the present invention, the control unit 40 as the operation guidance control unit accumulates the azimuth measurement data necessary for updating the azimuth offset data, and displays the display unit 306 according to the latest azimuth measurement data. To display an image for guiding the user on the screen 31.
[0140] 図 33及び図 34は、本発明の第十実施例による方位処理方法を示すフローチヤ一 トである。第一実施例と実質的に同一の処理には同一の符号を付して説明を省略す る。  FIG. 33 and FIG. 34 are flowcharts showing the azimuth processing method according to the tenth embodiment of the present invention. Processes that are substantially the same as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
ユーザの方位オフセット更新指示を主操作部 224 (図 4参照)が受け付けると、制御 部 40は方位オフセット更新プログラムを起動し、制御部 40は図 33に示す初期化を 開始する(S1000)。  When the main operation unit 224 (see FIG. 4) accepts the user's direction offset update instruction, the control unit 40 starts the direction offset update program, and the control unit 40 starts initialization shown in FIG. 33 (S1000).
[0141] ステップ S1002では、制御部 40はキャリブレーション操作の開始をユーザに促す 誘導画面を画面 31に表示する。誘導画面は、ユーザにキャリブレーション操作を促 す内容であればどのような内容であってもよぐ例えば図 35に示すようにメッセージと イラストを組み合わせたものであってもよいし、メッセージだけでもよいし、イラストだけ でもよい。 [0141] In step S1002, the control unit 40 displays on the screen 31 a guidance screen that prompts the user to start the calibration operation. The guidance screen may be any content that prompts the user to perform a calibration operation. For example, the guidance screen may be a combination of a message and an illustration as shown in FIG. 35, or a message alone. Good, only illustration But you can.
[0142] 初期化が終了した後、方位計測部 66から出力された最新の方位計測データの位 置と前回蓄積された方位計測データの位置との距離が基準値以上に離れている場 合、最新の方位計測データが上述したようにステップ S210で配列 Aに蓄積される。  [0142] After the initialization is completed, if the distance between the position of the latest direction measurement data output from the direction measurement unit 66 and the position of the direction measurement data accumulated last time is more than the reference value, The latest orientation measurement data is stored in array A in step S210 as described above.
[0143] 配歹 IJAに最新の方位計測データが格納されると、制御部 40は最新の方位計測デ ータに応じて誘導画面を更新する (ステップ S1004)。更新後の誘導画面は、電話機 1を動かすべき方向を案内する内容であればどのような内容であってもよい。具体的 には例えば、制御部 40は、図 36に示すように電話機 1の姿勢に応じて傾きが変わる キャラクタの顔と操作内容を案内する文字列とを画面 31に表示する。図 36では電話 機 1が図 35に示す状態から鉛直線を回転軸として 45度回転した状態を表している。 また例えば制御部 40は、図 37に示すように撮像部 304 (図 4参照)が生成した被写 体 Mのディジタル写真画像を編集し、被写体 Mの一部を画面 31に矢印とメッセージ とともに表示したり、被写体 Mを傾けて画面 31に矢印とメッセージとともに表示しても よい。電話機 1を動かすべき方向は、方位オフセットデータを算出する基礎となる配 歹 IJAに格納されている方位計測データに応じて決まる。すなわち、配列 Aに蓄積され ている方位計測データの位置の分布範囲外に位置する方位計測データが方位計測 部 66から出力される方向力 電話機 1を動かすべき方向である。尚、キヤリブレーショ ン操作の誘導方法としては、画面 31に誘導画面を表示するのではなぐ音源部 312 (図 4参照)が報知スピーカ 310から発生させる人工合成音声で誘導してもよいし、誘 導画面と人工合成音声を併用して誘導してもよい。また、キャリブレーション操作の誘 導中に、音源部 312は所定の音楽や効果音を報知スピーカ 310から発生させるよう にすることで、ユーザに現在が誘導中であることを認識させることができる。  [0143] When the latest orientation measurement data is stored in the layout IJA, the control unit 40 updates the guidance screen according to the latest orientation measurement data (step S1004). The updated guidance screen may have any content as long as it guides the direction in which the telephone 1 should be moved. Specifically, for example, as shown in FIG. 36, the control unit 40 displays on the screen 31 a character face whose inclination changes according to the posture of the telephone 1 and a character string that guides the operation content. FIG. 36 shows a state in which telephone 1 is rotated 45 degrees from the state shown in FIG. 35 with the vertical line as the rotation axis. For example, as shown in FIG. 37, the control unit 40 edits a digital photographic image of the subject M generated by the imaging unit 304 (see FIG. 4), and displays a part of the subject M on the screen 31 with an arrow and a message. Or tilt the subject M and display it on the screen 31 with an arrow and a message. The direction in which the telephone 1 should be moved is determined according to the direction measurement data stored in the layout IJA, which is the basis for calculating the direction offset data. That is, the azimuth force data output from the azimuth measurement unit 66 is the direction in which the telephone 1 should be moved. As a method for guiding the calibration operation, the sound source unit 312 (see FIG. 4), which does not display the guidance screen on the screen 31, may be guided by an artificially synthesized voice generated from the notification speaker 310. The guidance screen and artificially synthesized speech may be used in combination for guidance. In addition, the sound source unit 312 can generate a predetermined music or sound effect from the notification speaker 310 during guidance of the calibration operation, so that the user can recognize that the user is currently guiding.
[0144] 上述したステップ S220で方位オフセットデータが更新されると、制御部 40はにキヤ リブレーシヨン操作の成功をユーザに報知する。制御部 40は、図 38に示すように画 面 31にメッセージとイラストを表示してもよいし、人工合成音声または成功を連想させ る音楽や効果音を報知スピーカ 310から発生させてもよい。図 38では電話機 1が図 3 5に示す状態から鉛直線を回転軸として 90度回転した状態を示している。  [0144] When the azimuth offset data is updated in step S220 described above, the control unit 40 notifies the user of the success of the calibration operation. The control unit 40 may display a message and an illustration on the screen 31 as shown in FIG. 38, or may generate artificially synthesized speech or music or sound effect reminiscent of success from the notification speaker 310. FIG. 38 shows a state in which the telephone 1 is rotated 90 degrees from the state shown in FIG.
[0145] オフセットデータが不合格であって、上述したステップ S226で制御部 40が配列 A に所定数の方位計測データが格納されてレ、ると判定した場合、制御部 40はキヤリブ レーシヨン操作の失敗をユーザに報知する。制御部 40は、図 39に示すように画面 3 1に失敗を報知するメッセージを表示してもよレ、し、メッセージとイラストを表示してもよ いし、人工合成音声または失敗を連想させる音楽や効果音を報知スピーカ 310から 発生させてもよい。また、制御部 40は図 39に示すようにキャリブレーション操作をやり 直す(OK)か否か(Cancel)をユーザに選択させるメニューを画面 31に表示してもよ レ、。 [0145] The offset data is unacceptable, and the control unit 40 uses the array A in step S226 described above. When it is determined that a predetermined number of azimuth measurement data is stored in the control unit 40, the control unit 40 notifies the user of the failure of the calibration operation. As shown in FIG. 39, the control unit 40 may display a message notifying the failure on the screen 31 or may display a message and an illustration. Or sound effects may be generated from the notification speaker 310. In addition, the control unit 40 may display a menu on the screen 31 that allows the user to select whether to perform the calibration operation again (OK) or not (Cancel) as shown in FIG.
[0146] キャリブレーション操作のやり直しが選択されると、配列 Aに蓄積された方位計測デ 一タを全削除し、ステップ S1002と同様の処理を実施 (ステップ S1012)した後、方 位計測データの蓄積を再開する。  [0146] When the redo of the calibration operation is selected, all the direction measurement data stored in array A are deleted, and the same processing as step S1002 is performed (step S1012). Restart accumulation.
以上説明した本発明の第十実施例によると、方位オフセットデータの更新に必要な 方位計測データを蓄積している期間中に、最新の方位計測データに応じてキヤリブ レーシヨン操作を誘導する案内がユーザに報知されるため、ユーザはキヤリブレーシ ヨン操作を容易に実行することができる。  According to the tenth embodiment of the present invention described above, during the period in which the azimuth measurement data necessary for updating the azimuth offset data is accumulated, the guidance for guiding the calibration operation according to the latest azimuth measurement data is provided to the user. Therefore, the user can easily perform the calibration operation.
図面の簡単な説明  Brief Description of Drawings
[0147] [図 1]本発明の第一実施例による方位処理方法を示すフローチャート。  FIG. 1 is a flowchart showing an azimuth processing method according to the first embodiment of the present invention.
[図 2]本発明に第一実施例による電話機の外観を示す斜視図。  FIG. 2 is a perspective view showing the appearance of the telephone according to the first embodiment of the present invention.
[図 3]本発明に第一実施例による電話機の外観を示す斜視図。  FIG. 3 is a perspective view showing the appearance of the telephone according to the first embodiment of the present invention.
[図 4]本発明の第一実施例による電話機のハードウェア構成を示すブロック図。  FIG. 4 is a block diagram showing a hardware configuration of the telephone according to the first embodiment of the present invention.
[図 5]本発明の第一実施例にかかる模式図。  FIG. 5 is a schematic diagram according to the first embodiment of the present invention.
[図 6]本発明の第一実施例にかかる模式図。  FIG. 6 is a schematic diagram according to the first embodiment of the present invention.
[図 7]本発明の第一実施例にかかる模式図。  FIG. 7 is a schematic diagram according to the first embodiment of the present invention.
[図 8]本発明の第一実施例にかかる模式図。  FIG. 8 is a schematic diagram according to the first embodiment of the present invention.
[図 9]本発明の第一実施例にかかる模式図。  FIG. 9 is a schematic diagram according to the first embodiment of the present invention.
[図 10]本発明の第一実施例に力かる模式図。  FIG. 10 is a schematic diagram useful for the first embodiment of the present invention.
[図 11]本発明の第一実施例に力かる模式図。  FIG. 11 is a schematic diagram useful for the first embodiment of the present invention.
[図 12]本発明の第一実施例に力かる模式図。  FIG. 12 is a schematic diagram useful for the first embodiment of the present invention.
[図 13]本発明の第一実施例に力かる機能要素を示すブロック図。 [図 14]本発明の第一実施例にかかる模式図。 FIG. 13 is a block diagram showing functional elements that are relevant to the first embodiment of the present invention. FIG. 14 is a schematic diagram according to the first embodiment of the present invention.
[図 15]本発明の第一実施例による方位処理方法を示すフローチャート。  FIG. 15 is a flowchart showing an azimuth processing method according to the first embodiment of the present invention.
園 16]本発明の第一実施例に力かるフローチャート。 Sono 16] A flowchart useful for the first embodiment of the present invention.
[図 17]本発明の第二実施例による方位処理方法を示すフローチャート。  FIG. 17 is a flowchart showing an azimuth processing method according to the second embodiment of the present invention.
[図 18]本発明の第二実施例による方位処理方法を示すフローチャート。  FIG. 18 is a flowchart showing an azimuth processing method according to the second embodiment of the present invention.
園 19]本発明の第四実施例による電話機 1の外観を示す平面図。 19] A plan view showing the appearance of the telephone 1 according to the fourth embodiment of the present invention.
[図 20]本発明の第四実施例による電話機 1の外観を示す平面図。  FIG. 20 is a plan view showing the appearance of a telephone 1 according to a fourth embodiment of the present invention.
園 21]本発明の第四実施例による電話機 1の外観を示す平面図。 21] A plan view showing the appearance of the telephone 1 according to the fourth embodiment of the present invention.
[図 22]本発明の第四実施例による方位処理方法を示すフローチャート。  FIG. 22 is a flowchart showing an azimuth processing method according to the fourth embodiment of the present invention.
[図 23]本発明の第四実施例による方位処理方法を示すフローチャート。  FIG. 23 is a flowchart showing an azimuth processing method according to the fourth embodiment of the present invention.
園 24]本発明の第八実施例による電話機の外観を示す斜視図。 24] A perspective view showing the appearance of a telephone according to the eighth embodiment of the present invention.
園 25]本発明の第八実施例による方位オフセット更新処理を説明するためのフロー チャート。 25] A flow chart for explaining an azimuth offset update process according to the eighth embodiment of the present invention.
[図 26]本発明の第八実施例にかかる模式図。  FIG. 26 is a schematic diagram according to the eighth embodiment of the present invention.
[図 27]本発明の第八実施例にかかる模式図。 FIG. 27 is a schematic diagram according to the eighth embodiment of the present invention.
[図 28]本発明の第八実施例にかかる模式図。 FIG. 28 is a schematic diagram according to the eighth embodiment of the present invention.
[図 29]本発明の第九実施例による電話機の外観を示す斜視図である。  FIG. 29 is a perspective view showing an appearance of a telephone according to a ninth embodiment of the present invention.
園 30]本発明の第九実施例に力かる誘導処理を示すフローチャートである。 [Sen 30] This is a flow chart showing the guidance process that works in the ninth embodiment of the present invention.
[図 31]本発明の第九実施例にかかる模式図である。 FIG. 31 is a schematic diagram according to the ninth embodiment of the present invention.
園 32]本発明の第九実施例に力かる模式図である。 [32] FIG. 32 is a schematic diagram useful for the ninth embodiment of the present invention.
[図 33]本発明の第十実施例による方位処理方法を示すフローチャートである。  FIG. 33 is a flowchart showing an azimuth processing method according to the tenth embodiment of the present invention.
[図 34]本発明の第十実施例による方位処理方法を示すフローチャートである。 園 35]本発明の第十実施例に力、かる模式図である。  FIG. 34 is a flowchart showing an azimuth processing method according to the tenth embodiment of the present invention. [Sen 35] This is a schematic diagram of the tenth embodiment of the present invention.
園 36]本発明の第十実施例に力、かる模式図である。 [36] It is a schematic diagram that is effective in the tenth embodiment of the present invention.
園 37]本発明の第十実施例に力、かる模式図である。 37] This is a schematic diagram showing power in the tenth embodiment of the present invention.
園 38]本発明の第十実施例に力、かる模式図である。 [38] It is a schematic diagram that focuses on the tenth embodiment of the present invention.
園 39]本発明の第十実施例に力、かる模式図である。 [Sen 39] This is a schematic diagram that focuses on the tenth embodiment of the present invention.
符号の説明 1 電話機、 2 操作ユニット、 3 表示ユニット、 31 画面、 36 画面、 40 制御部、 4 8 方位演算部、 50 方位データ格納部、 52 方位表示部、 54 方位オフセット格納 部、 56 方位オフセット計算部、 58 方位計測データ格納部、 58 格納判定部、 60 方位計測データ格納部、 62 方位計測データ格納部、 66 方位計測部、 224 主 操作部、 304 撮像部、 306 表示部、 308 発光部、 309 開閉センサ、 310 報知 スピーカ、 312 音源部、 314 振動部、 318 方位センサモジュール、 320 インタフ エース部、 T ターゲット Explanation of symbols 1 telephone, 2 operation unit, 3 display unit, 31 screen, 36 screen, 40 control unit, 4 8 azimuth calculation unit, 50 azimuth data storage unit, 52 azimuth display unit, 54 azimuth offset storage unit, 56 azimuth offset calculation unit, 58 Direction measurement data storage unit, 58 Storage determination unit, 60 Direction measurement data storage unit, 62 Direction measurement data storage unit, 66 Direction measurement unit, 224 Main operation unit, 304 Imaging unit, 306 Display unit, 308 Light emitting unit, 309 Open / close Sensor, 310 Alarm Speaker, 312 Sound Source, 314 Vibration, 318 Direction Sensor Module, 320 Interface, T Target

Claims

請求の範囲 The scope of the claims
[1] 方位センサから順次出力される計測データに基づいて方位データを出力するため の方位処理装置であって、  [1] An azimuth processing device for outputting azimuth data based on measurement data sequentially output from an azimuth sensor,
実質的に最新の前記計測データを選択的に蓄積する蓄積手段と、  Storage means for selectively storing the most recent measurement data;
前記蓄積手段によって蓄積されている複数の前記計測データに基づいて前記方 位センサのオフセットデータを更新するオフセットデータ更新手段と、  Offset data updating means for updating offset data of the direction sensor based on the plurality of measurement data accumulated by the accumulation means;
を備えることを特徴とする方位処理装置。  An azimuth processing apparatus comprising:
[2] 実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力手段をさらに備えることを特徴とする請求項 1に記載 の方位処理装置。  2. The azimuth processing apparatus according to claim 1, further comprising azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data.
[3] 前記蓄積手段は、実質的に最新の前記計測データと直前に蓄積された前記計測 データとを比較し、実質的に最新の前記計測データを比較結果に応じて選択的に蓄 積することを特徴とする請求項 1又は 2に記載の方位処理装置。  [3] The accumulation means compares the most recent measurement data with the measurement data accumulated immediately before, and selectively accumulates the most recent measurement data according to the comparison result. The azimuth processing device according to claim 1 or 2, wherein
[4] 前記蓄積手段は、実質的に最新の前記計測データが表す方位空間内の位置と直 前に蓄積された前記計測データが表す前記方位空間内の位置との距離に応じて選 択的に実質的に最新の前記計測データを蓄積することを特徴とする請求項 3に記載 の方位処理装置。  [4] The storage means is selectively selected according to a distance between a position in the azimuth space represented by the latest measurement data and a position in the azimuth space represented by the measurement data stored immediately before. The azimuth processing device according to claim 3, wherein the measurement data that is substantially latest is stored in the azimuth processing device.
[5] 前記蓄積手段は、蓄積された複数の前記計測データが表す方位空間内の位置と、 前記蓄積手段によって蓄積されている前記計測データに基づいて算出されるオフセ ットデータ候補が表す前記方位空間内の位置との距離のばらつきが所定基準を満た さない場合、蓄積された前記計測データの少なくとも一部を削除し、前記オフセット データ候補で前記オフセットデータを更新しないことを特徴とする請求項 1一 4のい ずれか一項に記載の方位処理装置。  [5] The accumulating unit includes the azimuth space represented by the offset data candidate calculated based on the position in the azimuth space represented by the plurality of accumulated measurement data and the measurement data accumulated by the accumulation unit. 2. The offset data is deleted by deleting at least a part of the accumulated measurement data and not updating the offset data with the offset data candidate when the variation in the distance to the position does not satisfy a predetermined criterion. One of the azimuth processing devices according to any one of four.
[6] 前記蓄積手段は、蓄積された複数の前記計測データが表す方位空間内の位置の ばらつきが所定基準を満たさない場合、蓄積された前記計測データの少なくとも一部 を削除することを特徴とする請求項 1一 5のいずれか一項に記載の方位処理装置。  [6] The storage unit may delete at least a part of the stored measurement data when variation in position in the azimuth space represented by the plurality of stored measurement data does not satisfy a predetermined standard. The azimuth processing device according to any one of claims 1 to 5.
[7] 前記蓄積手段は、実質的に最新の前記計測データを、方位空間の区画毎に更新 しながら、前記区画毎に蓄積することを特徴とする請求項 1又は 2に記載の方位処理 装置。 [7] The azimuth processing according to claim 1 or 2, wherein the accumulation means accumulates the latest measurement data for each section while updating the latest measurement data for each section of the azimuth space. apparatus.
[8] 前記蓄積手段は、蓄積された複数の前記計測データが表す前記方位空間内の位 置と、前記蓄積手段によって蓄積されている前記計測データに基づいて算出される オフセットデータ候補が表す前記方位空間内の位置との距離のばらつきが所定基準 を満たさない場合、蓄積された前記計測データの少なくとも一部を削除し、前記オフ セットデータ候補で前記オフセットデータを更新しないことを特徴とする請求項 7に記 載の方位処理装置。  [8] The storage means represents the position in the azimuth space represented by the plurality of stored measurement data and the offset data candidate calculated based on the measurement data stored by the storage means When the variation in the distance from the position in the azimuth space does not satisfy a predetermined criterion, at least a part of the accumulated measurement data is deleted, and the offset data is not updated with the offset data candidate. The azimuth processing device according to Item 7.
[9] 前記蓄積手段は、蓄積された複数の前記計測データが表す前記方位空間内の位 置のばらつきが所定基準を満たさない場合、蓄積された前記計測データの少なくとも 一部を削除することを特徴とする請求項 7又は 8に記載の方位処理装置。  [9] The storage means deletes at least a part of the stored measurement data when variation in position in the azimuth space represented by the plurality of stored measurement data does not satisfy a predetermined standard. The azimuth processing device according to claim 7 or 8, wherein
[10] 方位センサから順次出力される計測データに基づいて方位データを出力するため の方位処理装置であって、  [10] An azimuth processing device for outputting azimuth data based on measurement data sequentially output from the azimuth sensor,
前記計測データを所定数まで蓄積する第一蓄積手段と、  First accumulation means for accumulating the measurement data up to a predetermined number;
前記第一蓄積手段によって前記所定数の前記第一計測データが蓄積された後に 、蓄積された前記計測データに基づいて方位センサのオフセットデータを生成する オフセットデータ生成手段と、  After the predetermined number of the first measurement data is accumulated by the first accumulation means, offset data generation means for generating offset data of the direction sensor based on the accumulated measurement data;
前記オフセットデータが生成された後に、前記計測データを、方位空間の区画毎に 更新しながら、前記区画毎に蓄積する第二蓄積手段と、  A second accumulating unit for accumulating the measurement data for each section while updating the measurement data for each section of the azimuth space after the offset data is generated;
前記オフセットデータが生成された後に、前記第二蓄積手段によって蓄積された前 記計測データに基づいて前記オフセットデータを更新するオフセットデータ更新手段 と、  Offset data updating means for updating the offset data based on the measurement data accumulated by the second accumulation means after the offset data is generated;
を備えることを特徴とする方位処理装置。  An azimuth processing apparatus comprising:
[11] 実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力手段をさらに備えることを特徴とする請求項 10に記 載の方位処理装置。 11. The azimuth processing apparatus according to claim 10, further comprising azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data.
[12] 前記第一蓄積手段は、前記第一蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置と、前記蓄積手段によって蓄積されている前記計測デ ータに基づいて算出されるオフセットデータ候補が表す前記方位空間内の位置との 距離のばらつきが所定基準を満たさない場合、前記第一蓄積手段に蓄積された前 記計測データの少なくとも一部を削除し、前記オフセットデータ候補で前記オフセット データを更新しないことを特徴とする請求項 10又は 11に記載の方位処理装置。 [12] The first storage means is based on the position in the azimuth space represented by the plurality of measurement data stored in the first storage means and the measurement data stored by the storage means. With the position in the azimuth space represented by the calculated offset data candidate The offset data is not updated with the offset data candidate by deleting at least a part of the measurement data stored in the first storage means when the variation in distance does not satisfy a predetermined criterion. The orientation processing apparatus according to 10 or 11.
[13] 前記第一蓄積手段は、前記第一蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置のばらつきが所定基準を満たさない場合、前記第一蓄 積手段に蓄積された前記計測データの少なくとも一部を削除することを特徴とする請 求項 10、 11又は 12に記載の方位処理装置。  [13] The first accumulation means accumulates in the first accumulation means when variation in position in the azimuth space represented by the plurality of measurement data accumulated in the first accumulation means does not satisfy a predetermined standard. 13. The azimuth processing apparatus according to claim 10, 11 or 12, wherein at least a part of the measured data is deleted.
[14] 前記第二蓄積手段は、前記第二蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置と、前記オフセットデータが表す前記方位空間内の位 置との距離のばらつきが所定基準を満たさない場合、前記第二蓄積手段に蓄積され た前記計測データの少なくとも一部を削除することを特徴とする請求項 10— 13のい ずれか一項に記載の方位処理装置。  [14] The second storage means is a distance between a position in the azimuth space represented by the plurality of measurement data stored in the second storage means and a position in the azimuth space represented by the offset data. 14. The azimuth processing apparatus according to claim 10, wherein if the variation does not satisfy a predetermined standard, at least a part of the measurement data stored in the second storage unit is deleted. .
[15] 前記第二蓄積手段は、前記第二蓄積手段に蓄積された複数の前記計測データが 表す前記方位空間内の位置のばらつきが所定基準を満たさない場合、前記第二蓄 積手段に蓄積された前記計測データの少なくとも一部を削除することを特徴とする請 求項 10— 14のいずれか一項に記載の方位処理装置。  [15] The second accumulation means accumulates in the second accumulation means when variation in position in the azimuth space represented by the plurality of measurement data accumulated in the second accumulation means does not satisfy a predetermined standard. 15. The azimuth processing apparatus according to any one of claims 10 to 14, wherein at least a part of the measured data is deleted.
[16] 実質的に最新の前記計測データが表す方位空間内の位置と前記オフセットデータ が表す前記方位空間内の位置との距離が基準値以上である場合、前記オフセット生 成手段によって前記オフセットデータが再生成されるまで、前記第一蓄積手段によつ て前記計測データを再蓄積させるリセット手段をさらに備えることを特徴とする請求項 10— 15のいずれか一項に記載の方位処理装置。  [16] When the distance between the position in the azimuth space represented by the most recent measurement data and the position in the azimuth space represented by the offset data is greater than or equal to a reference value, the offset generation means performs the offset data. The azimuth processing apparatus according to any one of claims 10 to 15, further comprising reset means for causing the first accumulation means to re-accumulate the measurement data until it is regenerated.
[17] 方位センサから順次出力される計測データに基づいて方位データを出力するため の方位処理方法であって、  [17] An azimuth processing method for outputting azimuth data based on measurement data sequentially output from an azimuth sensor,
実質的に最新の前記計測データを選択的に蓄積する蓄積段階と、  An accumulation stage for selectively accumulating the most recent measurement data;
前記蓄積手段によって蓄積されている複数の前記計測データに基づいて前記方 位センサのオフセットデータを更新するオフセットデータ更新段階と、  An offset data update step of updating offset data of the direction sensor based on a plurality of the measurement data stored by the storage means;
を含むことを特徴とする方位処理方法。  An azimuth processing method comprising:
[18] 方位センサから順次出力される計測データに基づいて方位データを出力するため の方位処理プログラムであって、コンピュータを、 [18] To output azimuth data based on measurement data sequentially output from the azimuth sensor A direction processing program for a computer,
実質的に最新の前記計測データを選択的に蓄積する蓄積手段と、  Storage means for selectively storing the most recent measurement data;
前記蓄積手段によって蓄積されている複数の前記計測データに基づいて前記方 位センサのオフセットデータを更新するオフセットデータ更新手段と、  Offset data updating means for updating offset data of the direction sensor based on the plurality of measurement data accumulated by the accumulation means;
して機能させることを特徴とする方位処理プログラム。  A direction processing program characterized by being made to function.
[19] 計測データを順次出力する方位センサと、  [19] A direction sensor that outputs measurement data sequentially,
実質的に最新の前記計測データを選択的に蓄積する蓄積手段と、  Storage means for selectively storing the most recent measurement data;
前記蓄積手段によって蓄積されている複数の前記計測データに基づいて前記方 位センサのオフセットデータを更新するオフセットデータ更新手段と、  Offset data updating means for updating offset data of the direction sensor based on the plurality of measurement data accumulated by the accumulation means;
実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力手段と、  Azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data;
を備えることを特徴とする方位測定装置。  An azimuth measuring device comprising:
[20] 画面と、 [20] screen,
計測データを順次出力する方位センサと、  An orientation sensor that sequentially outputs measurement data;
実質的に最新の前記計測データを選択的に蓄積する蓄積手段と、  Storage means for selectively storing the most recent measurement data;
前記蓄積手段によって蓄積されている複数の前記計測データに基づいて前記方 位センサのオフセットデータを更新するオフセットデータ更新手段と、  Offset data updating means for updating offset data of the direction sensor based on the plurality of measurement data accumulated by the accumulation means;
実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力手段と、  Azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data;
前記方位データに基づいて前記画面に地理情報を表示させる表示制御手段と、 を備えることを特徴とする地理情報表示装置。  Display control means for displaying geographical information on the screen based on the azimuth data, and a geographical information display device.
[21] 方位センサから順次出力される計測データに基づいて方位データを出力するため の方位処理方法であって、 [21] An azimuth processing method for outputting azimuth data based on measurement data sequentially output from an azimuth sensor,
前記計測データを所定数まで蓄積する選択蓄積段階と、  A selective accumulation step for accumulating the measurement data up to a predetermined number;
前記選択蓄積段階において前記所定数の前記第一計測データが蓄積された後に 、蓄積された前記計測データに基づいて方位センサのオフセットデータを生成する オフセットデータ生成段階と、  After the predetermined number of the first measurement data is accumulated in the selective accumulation step, an offset data generation step of generating offset data of the direction sensor based on the accumulated measurement data;
前記オフセットデータが生成された後に、前記計測データを、方位空間の区画毎に FIFOで更新しながら、前記区画毎に蓄積する区画蓄積段階と、 After the offset data is generated, the measurement data is A partition accumulation stage that accumulates for each partition while updating with the FIFO, and
前記オフセットデータが生成された後に、前記区画蓄積段階において蓄積された 前記計測データに基づいて前記オフセットデータを更新するオフセットデータ更新段 階と、  After the offset data is generated, an offset data update stage that updates the offset data based on the measurement data accumulated in the partition accumulation stage;
実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力段階と、  An azimuth data output stage for outputting the azimuth data based on the most recent measurement data and the offset data;
を含むことを特徴とする方位処理方法。  An azimuth processing method comprising:
[22] 方位センサから順次出力される計測データに基づいて方位データを出力するため の方位処理プログラムであって、コンピュータを、 [22] An azimuth processing program for outputting azimuth data based on measurement data sequentially output from an azimuth sensor, comprising:
前記計測データを所定数まで蓄積する第一蓄積手段と、  First accumulation means for accumulating the measurement data up to a predetermined number;
前記第一蓄積手段によって前記所定数の前記第一計測データが蓄積された後に 、蓄積された前記計測データに基づいて方位センサのオフセットデータを生成する オフセットデータ生成手段と、  After the predetermined number of the first measurement data is accumulated by the first accumulation means, offset data generation means for generating offset data of the direction sensor based on the accumulated measurement data;
前記オフセットデータが生成された後に、前記計測データを、方位空間の区画毎に FIFOで更新しながら、前記区画毎に蓄積する第二蓄積手段と、  After the offset data is generated, the measurement data is updated by the FIFO for each section of the azimuth space, while storing the second storage means for each section,
前記オフセットデータが生成された後に、前記第二蓄積手段によって蓄積された前 記計測データに基づいて前記オフセットデータを更新するオフセットデータ更新手段 と、  Offset data updating means for updating the offset data based on the measurement data accumulated by the second accumulation means after the offset data is generated;
実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力手段と、  Azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data;
して機能させることを特徴とする方位処理プログラム。  A direction processing program characterized by being made to function.
[23] 計測データを順次出力する方位センサと、 [23] An orientation sensor that sequentially outputs measurement data;
前記計測データを所定数まで蓄積する第一蓄積手段と、  First accumulation means for accumulating the measurement data up to a predetermined number;
前記第一蓄積手段によって前記所定数の前記第一計測データが蓄積された後に 、蓄積された前記計測データに基づいて方位センサのオフセットデータを生成する オフセットデータ生成手段と、  After the predetermined number of the first measurement data is accumulated by the first accumulation means, offset data generation means for generating offset data of the direction sensor based on the accumulated measurement data;
前記オフセットデータが生成された後に、前記計測データを、方位空間の区画毎に FIFOで更新しながら、前記区画毎に蓄積する第二蓄積手段と、 前記オフセットデータが生成された後に、前記第二蓄積手段によって蓄積された前 記計測データに基づいて前記オフセットデータを更新するオフセットデータ更新手段 と、 After the offset data is generated, the measurement data is updated by the FIFO for each section of the azimuth space, while storing the second storage means for each section, Offset data updating means for updating the offset data based on the measurement data accumulated by the second accumulation means after the offset data is generated;
実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力手段と、  Azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data;
を備えることを特徴とする方位測定装置。  An azimuth measuring device comprising:
[24] 画面と、 [24] screen,
計測データを順次出力する方位センサと、  An orientation sensor that sequentially outputs measurement data;
前記計測データを所定数まで蓄積する第一蓄積手段と、  First accumulation means for accumulating the measurement data up to a predetermined number;
前記第一蓄積手段によって前記所定数の前記第一計測データが蓄積された後に 、蓄積された前記計測データに基づいて方位センサのオフセットデータを生成する オフセットデータ生成手段と、  After the predetermined number of the first measurement data is accumulated by the first accumulation means, offset data generation means for generating offset data of the direction sensor based on the accumulated measurement data;
前記オフセットデータが生成された後に、前記計測データを、方位空間の区画毎に FIFOで更新しながら、前記区画毎に蓄積する第二蓄積手段と、  After the offset data is generated, the measurement data is updated by the FIFO for each section of the azimuth space, while storing the second storage means for each section,
前記オフセットデータが生成された後に、前記第二蓄積手段によって蓄積された前 記計測データに基づいて前記オフセットデータを更新するオフセットデータ更新手段 と、  Offset data updating means for updating the offset data based on the measurement data accumulated by the second accumulation means after the offset data is generated;
実質的に最新の前記計測データと前記オフセットデータとに基づいて前記方位デ ータを出力する方位データ出力手段と、  Azimuth data output means for outputting the azimuth data based on the most recent measurement data and the offset data;
前記方位データに基づいて前記画面に地理情報を表示させる表示制御手段と、 を備えることを特徴とする地理情報表示装置。  And a display control means for displaying geographical information on the screen based on the orientation data.
[25] マイクロホンと、 [25] with a microphone,
発信操作を含む通信操作を受け付ける操作ユニットと、  An operation unit that accepts communication operations including outgoing operations;
前記発信操作が受け付けられると、前記マイクロホン力 出力される音響信号を伝 送する通信手段と、  A communication means for transmitting an acoustic signal output from the microphone force when the transmission operation is accepted;
前記操作ユニットに重なる第一姿勢と前記操作ユニットから離れた第二姿勢とを往 復可能に前記操作ユニットに連結される表示ユニットと、  A display unit coupled to the operation unit so as to be able to go back and forth between a first posture overlapping the operation unit and a second posture away from the operation unit;
計測データを順次出力する方位センサと、 前記表示ユニットが前記第一姿勢から前記第二姿勢に変化する作動に伴って前記 計測データの蓄積を開始し、蓄積された前記計測データに基づいて前記方位セン サのオフセットデータを更新するオフセットデータ更新手段と、 An orientation sensor that sequentially outputs measurement data; Offset data that starts accumulating the measurement data in accordance with the operation of the display unit changing from the first attitude to the second attitude, and updates the offset data of the azimuth sensor based on the accumulated measurement data. Update means;
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記方位データに基づいて前記表示ユニットに地理情報を表示させる表示制御手 段と、  A display control means for displaying geographic information on the display unit based on the orientation data;
を備えることを特徴とする地理情報表示装置。  A geographic information display device comprising:
[26] 前記表示ユニットは前記方位センサを内蔵していることを特徴とする請求項 25に記 載の地理情報表示装置。 26. The geographical information display device according to claim 25, wherein the display unit incorporates the direction sensor.
[27] 前記オフセットデータ更新手段は、前記作動の完了に伴って前記計測データの蓄 積を終了することを特徴とする請求項 25又は 26に記載の地理情報表示装置。 27. The geographic information display device according to claim 25 or 26, wherein the offset data updating means terminates accumulation of the measurement data upon completion of the operation.
[28] 前記オフセットデータ更新手段は、前記作動に伴う少なくとも前記操作ユニット、前 記表示ユニットのいずれか一方から漏洩する磁力による、前記方位センサに印加さ れている磁界の変化に応じて前記オフセットデータを補正することを特徴とする請求 項 25— 27のいずれか一項に記載の地理情報表示装置。 [28] The offset data update means is configured to change the offset according to a change in a magnetic field applied to the direction sensor due to a magnetic force leaking from at least one of the operation unit and the display unit accompanying the operation. The geographic information display device according to any one of claims 25 to 27, wherein the data is corrected.
[29] 計測データを順次出力する方位センサと、 [29] An orientation sensor that sequentially outputs measurement data;
表示操作を受け付ける操作ユニットと、  An operation unit that accepts display operations;
前記操作ユニットに重なる第一姿勢と前記操作ユニットから離れた第二姿勢とを往 復可能に前記操作ユニットに連結される表示ユニットと、  A display unit coupled to the operation unit so as to be able to go back and forth between a first posture overlapping the operation unit and a second posture away from the operation unit;
前記表示ユニットが前記第二姿勢から前記第一姿勢に変化する作動に伴って前記 計測データの蓄積を開始し、蓄積された前記計測データに基づいて前記方位セン サのオフセットデータを更新するオフセットデータ更新手段と、  Offset data that starts accumulating the measurement data as the display unit changes from the second attitude to the first attitude, and updates the offset data of the bearing sensor based on the accumulated measurement data. Update means;
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記表示操作に応じて、前記方位データに基づいて前記表示ユニットに地理情報 を表示させる表示制御手段と、  Display control means for displaying geographic information on the display unit based on the orientation data in response to the display operation;
を備えることを特徴とする地理情報表示装置。 A geographic information display device comprising:
[30] 前記表示ユニットは前記方位センサを内蔵していることを特徴とする請求項 29に記 載の地理情報表示装置。 30. The geographical information display device according to claim 29, wherein the display unit incorporates the direction sensor.
[31] 前記オフセットデータ更新手段は、前記表示ユニットが前記作動の完了に伴って前 記計測データの蓄積を終了することを特徴とする請求項 30に記載の地理情報表示 装置。 31. The geographic information display device according to claim 30, wherein the offset data updating means ends the accumulation of the measurement data when the display unit completes the operation.
[32] 前記オフセットデータ更新手段は、少なくとも前記操作ユニット、前記表示ユニット のレ、ずれか一方から漏洩する磁力による、前記方位センサに印加されてレ、る磁界の 前記作動に伴う変化に応じて前記オフセットデータを補正することを特徴とする請求 項 28— 31のいずれか一項に記載の地理情報表示装置。  [32] The offset data update means is configured to respond to a change accompanying the operation of the magnetic field applied to the direction sensor, due to a magnetic force leaking from at least one of the operation unit and the display unit. 32. The geographic information display device according to claim 28, wherein the offset data is corrected.
[33] 計測データを順次出力する方位センサと、 [33] An orientation sensor that sequentially outputs measurement data;
通信手段と、  Communication means;
画面と、  Screen,
前記通信手段による受信を報知する受信報知手段と、  Reception notification means for notifying reception by the communication means;
前記通信手段による受信に伴って前記計測データの蓄積を開始し、蓄積された前 記計測データに基づいて前記方位センサのオフセットデータを更新するオフセットデ ータ更新手段と、  An offset data updating unit that starts accumulating the measurement data upon reception by the communication unit, and updates the offset data of the direction sensor based on the accumulated measurement data;
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記方位データに基づいて前記画面に地理情報を表示させる表示制御手段と、 を備えることを特徴とする地理情報表示装置。  And a display control means for displaying geographical information on the screen based on the orientation data.
[34] 前記地理情報表示装置は、表示操作を受け付ける操作ユニットと、 [34] The geographic information display device includes an operation unit that receives a display operation;
前記操作ユニットに重なる第一姿勢と前記操作ユニットから離れた第二姿勢とを往 復可能に前記操作ユニットに連結され前記方位センサを内蔵する表示ユニットをさら に備えることを特徴とする請求項 33に記載の地理情報表示装置。  The display device further includes a display unit that is connected to the operation unit so as to be able to go back and forth between a first posture that overlaps the operation unit and a second posture that is separated from the operation unit. The geographic information display device described in 1.
[35] 前記オフセットデータ更新手段は、前記表示ユニットが前記第一姿勢から前記第二 姿勢に変化する作動の完了に伴って前記計測データの蓄積を終了することを特徴と する請求項 33又は 34に記載の地理情報表示装置。 [35] The offset data update means ends the accumulation of the measurement data upon completion of the operation of the display unit changing from the first posture to the second posture. The geographic information display device described in 1.
[36] 前記オフセットデータ更新手段は、少なくとも前記通信ユニット、前記表示ユニット のレ、ずれか一方から漏洩する磁力による、前記方位センサに印加されてレ、る磁界の 、前記作動に伴う変化に応じて前記オフセットデータを補正することを特徴とする請 求項 33、 34又は 35に記載の地理情報表示装置。 [36] The offset data update means includes at least the communication unit and the display unit. Claims 33 and 34, wherein the offset data is corrected in accordance with a change in the magnetic field applied to the azimuth sensor due to the magnetic force leaking from one of the two or the deviation. Or the geographic information display device according to 35.
[37] 計測データを順次出力する方位センサと、 [37] A direction sensor that sequentially outputs measurement data;
発信操作を含む通信操作を受け付ける操作ユニットと、  An operation unit that accepts communication operations including outgoing operations;
前記発信操作に応じて発信する通信手段と、  A communication means for transmitting in response to the transmission operation;
前記操作ユニットが前記発信操作を受け付ける作動に伴って前記計測データの蓄 積を開始し、蓄積された前記計測データに基づいて前記方位センサのオフセットデ ータを更新するオフセットデータ更新手段と、  An offset data updating unit that starts accumulating the measurement data in response to an operation in which the operation unit accepts the transmission operation, and updates offset data of the direction sensor based on the accumulated measurement data;
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記方位データに基づいて前記表示ユニットに地理情報を表示させる表示制御手 段と、  A display control means for displaying geographic information on the display unit based on the orientation data;
を備えることを特徴とする地理情報表示装置。  A geographic information display device comprising:
[38] 表示操作を受け付ける操作ユニットと、 [38] an operation unit that accepts a display operation;
画面を有し、前記画面の裏面が前記操作ユニットに重なる第一姿勢から前記操作 ユニットから離れた第二姿勢まで前記画面とほぼ垂直な軸線を中心に揺動可能に前 記操作ユニットに連結される表示ユニットと、  It has a screen and is connected to the operation unit so as to be swingable about an axis substantially perpendicular to the screen from a first posture in which the back surface of the screen overlaps the operation unit to a second posture away from the operation unit. Display unit
前記表示ユニットに内蔵され計測データを順次出力する方位センサと、 前記表示ユニットが前記第一姿勢から前記第二姿勢に変化する作動期間に前記 計測データを蓄積し、蓄積された前記計測データに基づいて前記方位センサのオフ セットデータを更新するオフセットデータ更新手段と、  A direction sensor built in the display unit that sequentially outputs measurement data; and the measurement unit accumulates the measurement data during an operation period in which the display unit changes from the first attitude to the second attitude, and based on the accumulated measurement data Offset data updating means for updating the offset data of the direction sensor,
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記表示操作に応じて、前記方位データに基づいて前記表示ユニットに地理情報 を表示させる表示制御手段と、  Display control means for displaying geographic information on the display unit based on the orientation data in response to the display operation;
を備えることを特徴とする地理情報表示装置。  A geographic information display device comprising:
[39] 表示操作を受け付ける操作ユニットと、 画面を有し、前記画面の裏面が前記操作ユニットに重なる第一姿勢から前記操作 ユニットから離れた第二姿勢まで前記画面とほぼ垂直な軸線を中心に揺動可能に前 記操作ユニットに連結される表示ユニットと、 [39] An operation unit that accepts display operations; It has a screen and is connected to the operation unit so as to be swingable about an axis substantially perpendicular to the screen from a first posture in which the back surface of the screen overlaps the operation unit to a second posture away from the operation unit. Display unit
前記表示ユニットに内蔵され計測データを順次出力する方位センサと、 前記表示ユニットが前記第二姿勢から前記第一姿勢に変化する作動期間に前記 計測データを蓄積し、蓄積された前記計測データに基づいて前記方位センサのオフ セットデータを更新するオフセットデータ更新手段と、  An orientation sensor built in the display unit that sequentially outputs measurement data; and the measurement unit accumulates the measurement data during an operation period in which the display unit changes from the second attitude to the first attitude, and based on the accumulated measurement data Offset data updating means for updating the offset data of the direction sensor,
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記表示操作に応じて、前記方位データに基づいて前記表示ユニットに地理情報 を表示させる表示制御手段と、  Display control means for displaying geographic information on the display unit based on the orientation data in response to the display operation;
を備えることを特徴とする地理情報表示装置。  A geographic information display device comprising:
[40] 前記オフセットデータ更新手段は、少なくとも前記通信ユニット、前記表示ユニット のレ、ずれか一方から漏洩する磁力による、前記方位センサに印加されてレ、る磁界の 前記表示ユニットの揺動に伴う変化に応じて前記オフセットデータを補正することを 特徴とする請求項 38又は 39に記載の地理情報表示装置。  [40] The offset data update means is accompanied by a swing of the display unit caused by a magnetic field applied to the direction sensor due to a magnetic force leaking from at least one of the communication unit and the display unit. The geographical information display device according to claim 38 or 39, wherein the offset data is corrected according to a change.
[41] 計測データを順次出力する方位センサと、  [41] A direction sensor that outputs measurement data sequentially,
画面を有する外装と、  An exterior having a screen;
前記外装の二面以上に散在する複数の光源と、  A plurality of light sources scattered on two or more sides of the exterior;
複数の前記光源を順に発光させる発光制御手段と、  A light emission control means for sequentially emitting a plurality of the light sources;
前記光源が順に発光する期間中に前記計測データを蓄積し、蓄積された前記計 測データに基づいて前記方位センサのオフセットデータを更新するオフセットデータ 更新手段と、  Offset data updating means for accumulating the measurement data during a period in which the light sources emit light in order, and updating offset data of the azimuth sensor based on the accumulated measurement data;
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記方位データに基づいて前記画面に地理情報を表示させる表示制御手段と、 を備えることを特徴とする地理情報表示装置。  Display control means for displaying geographical information on the screen based on the azimuth data, and a geographical information display device.
[42] 計測データを順次出力する方位センサと、 2面以上に画面を有する外装と、 [42] A direction sensor that sequentially outputs measurement data; An exterior having a screen on two or more sides;
前記画面にターゲットを表示し、前記ターゲットを前記外装の 2面以上の範囲で移 動させるターゲット表示制御手段と、  Target display control means for displaying a target on the screen and moving the target in a range of two or more surfaces of the exterior;
前記ターゲットの移動期間中に前記計測データを蓄積し、蓄積された前記計測デ ータに基づいて前記方位センサのオフセットデータを更新するオフセットデータ更新 手段と、  Offset data updating means for accumulating the measurement data during a movement period of the target and updating offset data of the azimuth sensor based on the accumulated measurement data;
実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Azimuth data output means for outputting azimuth data based on the most recent measurement data and the offset data;
前記方位データに基づいて前記画面に地理情報を表示させる地理表示制御手段 と、  Geographic display control means for displaying geographic information on the screen based on the orientation data;
を備えることを特徴とする地理情報表示装置。  A geographic information display device comprising:
[43] 計測データを順次出力する方位センサと、 [43] An orientation sensor that sequentially outputs measurement data;
画面を有する外装と、  An exterior having a screen;
前記計測データを蓄積し、蓄積された前記計測データに基づいて前記方位センサ のオフセットデータを更新するオフセットデータ更新手段と、  Offset data updating means for accumulating the measurement data and updating offset data of the azimuth sensor based on the accumulated measurement data;
前記計測データの蓄積期間中に、前記計測データに応じて前記画面に前記方位 センサの姿勢を操作するための案内を報知する操作案内制御手段と、 実質的に最新の前記計測データと前記オフセットデータとに基づいて方位データ を出力する方位データ出力手段と、  Operation guidance control means for notifying the screen for operating the orientation of the azimuth sensor according to the measurement data during the measurement data accumulation period, and substantially the latest measurement data and the offset data Direction data output means for outputting direction data based on
前記方位データに基づいて前記画面に地理情報を表示させる地理表示制御手段 と、  Geographic display control means for displaying geographic information on the screen based on the orientation data;
を備えることを特徴とする地理情報表示装置。  A geographic information display device comprising:
[44] 前記オフセットデータ更新手段は、蓄積された前記計測データを合格、不合格の いずれか一方と判定し、合格と判定した場合にのみ蓄積した前記計測データに基づ レ、て前記オフセットデータを更新し、 [44] The offset data update means determines whether the accumulated measurement data is either pass or fail, and based on the measurement data accumulated only when it is determined to be acceptable, the offset data Update
蓄積された前記計測データが不合格と判定された場合、不合格を報知する不合格 報知手段をさらに備えることを特徴とする請求項 41一 43のいずれか一項に記載の 地理情報表示装置。 蓄積された前記計測データが合格と判定された場合に合格を報知する合格報知 手段をさらに備えることを特徴とする請求項 41一 44のいずれか一項に記載の地理 情報表示装置。 44. The geographical information display device according to any one of claims 41 to 43, further comprising a failure notifying unit that notifies a failure when the accumulated measurement data is determined to be failed. The geographic information display device according to any one of claims 41 to 44, further comprising a pass notification unit that notifies pass when the accumulated measurement data is determined to be pass.
PCT/JP2004/010479 2004-07-23 2004-07-23 Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device WO2006011184A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PCT/JP2004/010479 WO2006011184A1 (en) 2004-07-23 2004-07-23 Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device
PCT/JP2005/007702 WO2006011276A1 (en) 2004-07-23 2005-04-22 Direction processing device, direction processing method, direction processing program, direction measuring device, and geographic information display
TW094119301A TWI277721B (en) 2004-07-23 2005-06-10 Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
US11/149,707 US8065083B2 (en) 2004-07-23 2005-06-10 Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
CN2005800249193A CN101023323B (en) 2004-07-23 2005-07-22 Direction processor, direction processing method, direction measuring instrument, inclination offset correcting method, direction measuring method, direction sensor unit and portable electronic appara
EP05766407A EP1793200A4 (en) 2004-07-23 2005-07-22 Direction processor, direction processing method, direction processing program, direction measuring instrument, inclination offset correcting method, direction measuring method, direction sensor unit and portable electronic device
PCT/JP2005/013469 WO2006009247A1 (en) 2004-07-23 2005-07-22 Direction processor, direction processing method, direction processing program, direction measuring instrument, inclination offset correcting method, direction measuring method, direction sensor unit and portable electronic device
KR1020077001528A KR100876030B1 (en) 2004-07-23 2005-07-22 Azimuth processing device, azimuth processing method, computer readable recording medium recording azimuth processing program, azimuth measuring device, a method of correcting a tilt offset, azimuth measuring method, azimuth sensor unit and portable electronic device
CN2009102055366A CN101738181B (en) 2004-07-23 2005-07-22 Correction method of inclination and offset, azimuth measuring method, azimuth sensor unit and portable electronic equipment
JP2006529294A JP4311447B2 (en) 2004-07-23 2005-07-22 Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, tilt offset correction method, azimuth measurement method, azimuth sensor unit, and portable electronic device
US12/870,726 US8090535B2 (en) 2004-07-23 2010-08-27 Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
US13/306,740 US20120072114A1 (en) 2004-07-23 2011-11-29 Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/010479 WO2006011184A1 (en) 2004-07-23 2004-07-23 Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device

Publications (1)

Publication Number Publication Date
WO2006011184A1 true WO2006011184A1 (en) 2006-02-02

Family

ID=35785943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010479 WO2006011184A1 (en) 2004-07-23 2004-07-23 Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device

Country Status (1)

Country Link
WO (1) WO2006011184A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566169A (en) * 1979-06-27 1981-01-22 Japan Radio Co Ltd Method and device for magnetic-field vector detection
JPH08105745A (en) * 1994-10-05 1996-04-23 Fujitsu Ltd Method and apparatus for correction of azimuth error of terrestrial magnetism sensor
JPH09133530A (en) * 1995-11-10 1997-05-20 Jeco Co Ltd Bearing detector for vehicle
JP2003156549A (en) * 2001-11-22 2003-05-30 Yamaha Corp Electronic apparatus
JP2004012416A (en) * 2002-06-11 2004-01-15 Asahi Kasei Corp Azimuth measuring apparatus, calibration method, and calibration program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566169A (en) * 1979-06-27 1981-01-22 Japan Radio Co Ltd Method and device for magnetic-field vector detection
JPH08105745A (en) * 1994-10-05 1996-04-23 Fujitsu Ltd Method and apparatus for correction of azimuth error of terrestrial magnetism sensor
JPH09133530A (en) * 1995-11-10 1997-05-20 Jeco Co Ltd Bearing detector for vehicle
JP2003156549A (en) * 2001-11-22 2003-05-30 Yamaha Corp Electronic apparatus
JP2004012416A (en) * 2002-06-11 2004-01-15 Asahi Kasei Corp Azimuth measuring apparatus, calibration method, and calibration program

Similar Documents

Publication Publication Date Title
US8065083B2 (en) Azimuth processing device, azimuth processing method, azimuth processing program, direction finding device, tilt offset correcting method, azimuth measuring method, compass sensor unit, and portable electronic device
WO2006011276A1 (en) Direction processing device, direction processing method, direction processing program, direction measuring device, and geographic information display
JP4311447B2 (en) Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, tilt offset correction method, azimuth measurement method, azimuth sensor unit, and portable electronic device
US7756638B2 (en) Mobile terminal device and program
EP2124138B1 (en) Mobile terminal using proximity sensing
CN103312890A (en) Mobile terminal
CN107576321A (en) Determine the method, device and mobile terminal of magnetic azimuth
WO2003081176A1 (en) Portable terminal
CN110174699B (en) Method, device and storage medium for determining fault closure
KR20120059239A (en) Mobile terminal and method for sharing real-time road view
US8989770B2 (en) Method and apparatus for estimating displacement of a user terminal
KR20090070050A (en) Mobile terminal and its method for controlling of user interface menu
CN111753606A (en) Intelligent model upgrading method and device
KR101537684B1 (en) Mobile terminal and method of calibration sensitivity of proximity touch therefor
JP3975781B2 (en) Mobile terminal device
KR20120083159A (en) Mobile terminal and method for controlling electronic devices of the same
WO2006011184A1 (en) Azimuth processing device, azimuth processing method, azimuth processing program, azimuth measurement device, and geographical information display device
CN106506748B (en) A kind of information processing method and mobile terminal
CN106027879B (en) A kind of image acquiring method and device and mobile terminal
JP2005107324A (en) Information display device
JP4407407B2 (en) Geomagnetic sensor correction method and portable information terminal
CN113099378A (en) Positioning method, device, equipment and storage medium
KR101779504B1 (en) Mobile terminal and control method for mobile terminal
KR20100081177A (en) Mobile terminal and method for managing workout data using there
JP4669751B2 (en) Direction measuring apparatus with wireless communication function, direction measuring method, and program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11149707

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP