WO2006008324A1 - Método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico - Google Patents

Método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico Download PDF

Info

Publication number
WO2006008324A1
WO2006008324A1 PCT/ES2004/000297 ES2004000297W WO2006008324A1 WO 2006008324 A1 WO2006008324 A1 WO 2006008324A1 ES 2004000297 W ES2004000297 W ES 2004000297W WO 2006008324 A1 WO2006008324 A1 WO 2006008324A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
access points
mobile node
mobile
traffic
Prior art date
Application number
PCT/ES2004/000297
Other languages
English (en)
French (fr)
Inventor
Hans Peter Kurz
Alfredo Calderon
Alfredo Mata
Original Assignee
Teltronic, S.A.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teltronic, S.A.U. filed Critical Teltronic, S.A.U.
Priority to PCT/ES2004/000297 priority Critical patent/WO2006008324A1/es
Publication of WO2006008324A1 publication Critical patent/WO2006008324A1/es

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • H04W36/28Reselection being triggered by specific parameters by agreed or negotiated communication parameters involving a plurality of connections, e.g. multi-call or multi-bearer connections

Definitions

  • the method for connection changes to a new access point based on traffic demand is related, in general, with wireless communications systems and especially with handover and bandwidth management methods within wireless networks that present variations in the time of the demand for this bandwidth.
  • Bluetooth TM and Ultrawideband (UWB) frequency planning is not required.
  • GSM Global System for Mobile Communications
  • access points and base stations operate within a certain spectrum, in a specific place, according to a frequency planning plan.
  • Bluetooth TM and Ultrawideband many networks can operate within the same area and create several independent connections at the same time without serious interference problems.
  • a piconet uses a single channel from among the 79 possible at a given time and, therefore, fifteen or more piconets can be used within a small area.
  • UWB the number of independent networks, in the same area, can be even larger. According to Moore's law, the price of chips decreases permanently.
  • Phone calls and video transmissions are basic applications for many wireless networks. These applications require a handover without interruptions. An interruption of a second in a handover cannot be accepted during Ia communication. The same goes for other applications such as games, video, television or web browsing.
  • the US patent application number US-2002085719-A1 describes methods and systems for enabling handovers without interruptions in local area networks using, for example, Bluetooth TM.
  • this is done by forcing the mobile to become a master of the piconet by connecting the destination network as a slave, subsequently disconnecting the original network and returning to the role of slave in the new piconet.
  • solutions to various situations are covered, for example, when one of the piconets has another slave.
  • European patent application number EP-1283622-A1 describes the handoff technique for a Bluetooth TM system.
  • the terminal eg a mobile phone
  • the second connection is ready and functioning, disconnect the first of the connections and change its role again to the slave. It is seen that the simultaneous connection between the two access points is equivalent to a soft handover.
  • Patent application number US-2003099212-A1 describes how the handoff is performed by creating an auxiliary piconet, which consists of the mobile slave (S1) and another slave (S2) that acts as a master in the auxiliary piconet and that is used as a bridge between the original piconet and the destination piconet, until the connection with the master of the destination piconet is created.
  • the present invention proposes a wireless network comprising a certain number of access points and a certain number of users equipped with wireless (mobile) mobile devices.
  • Users from their mobile phones, smartphones, PDAs or any other mobile device, use IP applications wirelessly, such as browsing the Internet, using email, making conventional phone calls or voice calls over IP, video stream, games, etc.
  • IP applications wirelessly, such as browsing the Internet, using email, making conventional phone calls or voice calls over IP, video stream, games, etc.
  • a user is either in an active state and demands high packet data traffic (high bandwidth) with handovers (connection changes to a new access point or cell) without interruption that provide good quality of service, or It is well in passive state and requires much lower packet data traffic with handovers that provide a not-so-high quality of service and not necessarily without interruptions. Examples of this low demand state would be call input signals (voice), e-mail reception, reception of short data messages or network maintenance traffic.
  • the system gives high priority to active users, providing two or more access points, and low priority to users in passive state.
  • the same access point is shared by several users in passive state.
  • the present invention allows an active user to have a double or even greater bandwidth and a soft handover without interruptions. Users in passive state remain connected. Therefore, the system efficiently resets the resources of the network optimally for active users.
  • - Access points are represented as AP.
  • - Mobile nodes are represented as mn.
  • the elements that are masters of the Bluetooth TM communication are represented in gray while the slave elements appear in white. Access points that are in search status appear with a background of gray diagonal lines.
  • the numerical coding used is based on the following criteria:
  • Figure 1 represents two local area networks (LAN), the first one formed by Bluetooth TM mobile nodes (23) and access points (22) and the second one covers the connections between the access points (22) and the server (twenty-one).
  • An Internet connection also appears (20).
  • the two differentiated areas of communication are the Bluetooth TM domain (43) and the remaining domain (41) that extends to the server (21) or the Internet (20).
  • the demand for data traffic by mobile devices is represented either as "high packet traffic (TA)” or “low packet traffic (TB)", depending on whether the definition of the activity is high traffic or low.
  • FIG. 2 represents the scenario where M mobile nodes (23) maintain packet traffic with the server (21) or Internet (20) through N access points (22).
  • the masters of the Bluetooth TM communication are represented in gray while the slaves appear in white.
  • Each connection (35) between a mobile node (23) and an access point (22) is shown. All connections (33) between an access point (22) and the server (21) also appear. Access points in search mode appear with a background of gray diagonal lines.
  • Figure 3 shows a scenario very similar to that of Figure 2, but here, a mobile node (23-1) maintains high traffic packet communication with two access points (22-1) and (22-3) . The rest of the mobile nodes (23) maintain communications by low traffic packets with two other access points (22-2) and (22-5).
  • Figure 4 shows a scenario in which the mobile node (23-1) has changed a connection (35-11) to a new one (35-15). Three mobile nodes (23-6), (23 -...) and (23-M) have temporarily lost their connections (35-65), (35 -... 5) and (35-M5).
  • Figure 5 shows the three mobile nodes (23-6), (23 -...) and (23-M) that lost their connections (35-65), (35 -... 5) and (35-M5 ) and establish new connections (35-66), (35 -... 6) and (35-M6) with another access point (22-6).
  • the mobile node (23-1) begins to move along the path represented by the arrow (50-1).
  • Figure 6 represents how the mobile node (23-1) has moved along the path indicated by the arrow (50-1) and has lost the connection (35-13) establishing a new one (35-1 N).
  • Figure 7 shows the optimization of resources made by the server (21), which attempts to concentrate as much as possible the connections (35) of the mobile nodes with low traffic packet communication (23) in the minimum number of points of access (22) to provide others with the greatest possible ability to search for new mobile nodes (23) in their coverage area.
  • Figure 8 shows the network addressing (BTaddr / Net-addr), the status
  • the server is the one that manages this information.
  • Figure 9 shows the changes that occur in the server when a mobile node (23-1) establishes communications by high traffic packets (35-11) and (35-13) with two access points (22-1) and (22-3), and the other mobile nodes have to connect to another access point (22-2) "free".
  • Figure 10 shows how the mobile node (23-1) leaves the access point (22-1) and forms another connection by high traffic packets (35-1N) with a new access point (22-N).
  • the "abandoned" access point (22-1) returns to the search status of other mobile nodes within its coverage area.
  • Figure 11 shows a scenario where 12 access points (22) provide coverage to 10 mobile nodes (23)
  • the mobile node (23-6) which maintains high traffic packet communication, is connected to two points of different access (22-1) and (22-8).
  • the remaining mobile nodes (23) are grouped into two different access points (22-2) and (22-7).
  • the table below the figure shows the connections between the access points (22) and the mobile nodes (23).
  • Figure 12 shows the same scenario as Figure 11, but in this scenario two mobile nodes (23-5) and (23-9) have changed their location.
  • the mobile node (23-5) is now connected to the access point (22-12) while the mobile node (23-9) has left the system coverage area (38-1: 4), (38-5 : 8) and (38-9: 12).
  • Figure 13 shows how the mobile node (23-7) requests a high traffic packet connection through the access point (22-2) to which it was connected. The rest of the mobile nodes (23) that were connected to this access point are temporarily disconnected.
  • FIG 14 shows the last step of this process.
  • the mobile nodes that were disconnected from the access point (22-2) are connected to a new access point (22-3). Also in this drawing, the mobile node (23-7) creates another connection by high traffic packets with another access point (22-11).
  • Figure 15 represents an installation with several (N) access points (22).
  • Each access point (22- Y) uses a unidirectional antenna that provides a greater coverage range (38-Y) compared to the coverage range of an antenna omnidirectional (38-Omni).
  • the combined coverage range of the N access points (38-1: N) will be much greater than that of an access point with an omnidirectional antenna.
  • Figure 1 shows the block diagram of a network in which mobile terminals 23 (23-1, 23-2, 23-3), access points 22 (22-1, 22-2, 22- are represented) 3, 22-N), the central server 21 and an access to / from an external network 20 which could be, for example, the Internet. All these devices constitute the local area network (LAN).
  • the subnet 41 can be any type of network that allows access points 22 to be connected to the central server 21, such as an Ethernet cable based LAN or any type of wireless network that uses a communication protocol or even a combination of they.
  • Subnet 43 is any type of wireless communication network based on some wireless communication protocol that allows mobile devices 23 to be connected to access points 22.
  • the technology used for this subnet does not have to match the one used in subnet 41 , in the case that this is also wireless.
  • the connections 33 ( Figure 1: 33-1, 33-2, 33-3, 33-N) between the access points 22 and the central server 21 can be of any type that is suitable for that purpose, either Ethernet cable, Well wireless connections based on proper wireless technology.
  • Connections 35 ( Figure 1: 35-11, 35-12, 35-23, 35-33) between access points 22 and mobile devices 23 can be any type of wireless connection (eg Bluetooth, IEEE 802.11 , etc.) that allow their mobility.
  • High traffic activity or communication (35-11, 35-12 figure 1) means any communication established by the devices in active state within the system and that is critical against interruptions and that, in addition, requires a lot of traffic data between mobile devices and the server (eg voice calls or video streaming). TO This type of communication is necessary to guarantee continuity and optimum quality of service in all situations.
  • the term of activity or communication of low traffic (35-23, 35-33 Figure 1) is used for that communication of less intensity and that is not critical against interruptions of the service both punctual and intermittent without being lost quality of service, as would be the case with connection maintenance procedures or control data.
  • the access points 22 are devices that allow mobile devices 23, which move within the wireless subnet 43, the connection with the server 21 located in the main subnet 41. Typically these access points have a fixed network connection with the server, on the one hand, and, on the other, they act as a wireless connection point for mobile devices 23. These access points 22 can be composed of both one and several physical devices (as shown in Figure 15) . Each physical device is capable of maintaining communication with one or more mobile devices and may be equipped with an omnidirectional antenna, a high gain directional antenna, an intelligent antenna (smart antenna) or they may lack any type of antenna.
  • server 21 applies to any device capable of data processing. This manages and controls in real time all the information of the devices located within the network and their interconnections.
  • This server 21 can be a computer, a router, a bridge, a switch or any other device that can simultaneously act as a controller of the network and / or gateway between the network and another higher network.
  • the server 21 may not be a single device, but a set of physical devices that work in parallel and jointly to manage the network and allow access to and from another external network.
  • external network 20 is used in this document to refer to any type of higher level communications network such as another local network (LAN), a corporate network, an extended area network (WAN), and even Internet. This patent can also be applied to a system that acts in isolation from any external network.
  • LAN local network
  • WAN extended area network
  • This document uses the term master (and is represented by gray devices) for any device that takes control of wireless communication. It can be connected simultaneously to one or several devices that act as slaves of those connections.
  • the master is responsible for managing the connections that he maintains, establishing the timings as well as assigning to each slave the width of appropriate band.
  • both mobile devices 23 and access points 22 can act as a master of wireless communication. The first will be masters when they are in a high traffic communication, taking control of it, while the second will be when they have multiple mobile devices connected with low traffic.
  • slave represented by blank devices
  • These devices communicate with a teacher who is responsible for managing the communication between them.
  • Mobile devices are slaves in connections with low traffic while access points are in connections with high traffic.
  • Access points can be in a third state. In this state they look for new devices within their coverage area. They are always connected to server 21. They continually send information to the central server about all the devices that are in their coverage range. In this state the access points do not have any active connection established within the wireless subnet 43 but, if necessary, they can establish several type communications with low or high traffic. In this state they are represented with a background of gray diagonal lines.
  • the terms hard handover and soft handover are used when a mobile node changes from one access point to another. In the first case, the mobile node breaks the link for a moment before reconnecting again to a new access point, unlike the second case in which the mobile node maintains communication while switching to the new access point.
  • the first process that could occur in the described system would be the arrival of a mobile device.
  • the mobile node 23 has to be discovered by one of the access points 22 of the system that is in search mode for new mobile devices. Once all the necessary information of this mobile device 23 has been exchanged within the system and is stored in the server 21, access to the system can be initiated by both the same mobile node and the server. It is understood that the system has been accessed when communication has been established with low traffic between the mobile device 23 and the server 21 through one of the access points 22. The rest of the access points 22, which do not maintain any communication with a mobile node 23 will remain in the search state of new mobile devices that enter within its coverage area. This process of accessing the system will be repeated as many times as new mobile nodes want to access the system and as long as resources are available for it.
  • the server 21 will minimize the number of access points occupied with low traffic connections based on optimization algorithms, thus allowing as many free access points as possible for other needs. potential.
  • Figure 8 shows a system with M mobile nodes (23-1, 23-2, .., 23-M) and N access points (22-1, 22-2, 22-3, ..., 22-N) in low traffic communication.
  • the information stored on server 21 related to mobile devices 23-1 and 23-2 is shown. This information reflects, at a minimum, the address of the mobile node, the access points to which it is connected and the role they play in this communication. Certain information related to the status and quality of the connection can also be stored.
  • the mobile nodes 23 in low traffic communication may change from access point to another during their movement due to the weakening of the signal or by leaving their coverage area.
  • the first step in this process will be the exchange of information between the devices involved, that is, the mobile device 23, the server 21 and the two access points 22. Both the source and the destination. This exchange of information will make this process faster.
  • the server will stop the flow of information with the mobile node. After this, the source access point will close the connection with the mobile node, indicating it to the server, once this link break is complete. Then, the destination access point will establish a new connection with the mobile node using, for this, the information previously exchanged in the system. Then the access point will inform the server of the success or not of the operation. Once the new connection between the mobile node and the access point is ready, the server will restore the data transmission flow with said device through this new access point. All the information will be updated on the server in real time, so that the server knows at all times the status of the devices and the connections between them.
  • the first step in the process will be to exchange the necessary information between the mobile node 23 with which communication with high traffic is established, the access point to which it is connected 22 and the central server 21.
  • Figure 2 represents a mobile node 23- 1 that is about to establish high traffic communication with server 21 through access point 22-1.
  • the mobile node may move within the system. Sometimes, it may be necessary to change some connections to new access points to guarantee, at the same time, continuity and quality of service. This process will be initiated and managed by the central server 21 based on the information, updated in real time, on the quality of the connections provided by the access points 22.
  • the first step in this process will be the exchange of information between the mobile node (figure 3: 23-1), the access points (figure 3: 22-1, 22-5) and the server (figure 3: 21). This information will make the process faster.
  • the last step of this process will be to break the connection (Figure 3: 35-11) between the source access point and the mobile node 23-1.
  • This access point will go to the search status of new mobile nodes.
  • the information between the server 21 and the mobile device 23-1 is transmitted through all the access points involved (22-1 and 22-5).
  • the device that receives each packet of information processes and chooses the information that arrives through the best quality route and discards the rest of the redundant data.
  • the information stored on the server about the status of the devices and connections is updated in real time.
  • Figure 9 and Figure 10 show how the information changes in the server when the mobile node 23-1 moves from the access point 22-1 to 22-N. 5. Return to low traffic activity
  • the system re-establishes the low traffic connection with the mobile node.
  • all current connections 35 between the mobile device 23 and the access points 22 are disconnected with the exception of one, the one of better quality. Access points that have lost their connection will go to search for new mobile nodes in their coverage area.
  • the mobile device 23 and the access point will change the roles.
  • the mobile node will change from being a master to being a slave while the access point will change from being a slave to being a master in the connection.
  • the mobile node 23 can change its traffic connection under 35 from the current access point 22 to another defined by the server 21 as described in scenario 2.
  • FIG 2 shows the scenario where M mobile nodes 23 (23-1, .., 23-M) are connected to N access points 22 (22-1, .., 22-N) with low traffic connections 35-XY.
  • the way in which the different mobile nodes have accessed the system is identical to the one described above when defining access to the system.
  • the system must use decision algorithms to optimize the available resources so that it attempts to group the largest number of low traffic connections by access point. Thus, it leaves free the greater amount of access points, which continuously search for new mobile nodes within the coverage area of the system. This optimization system must ensure that the quality of service is not affected and that all connections remain active.
  • the movement of mobile devices from one access point to another follows the steps described above for changing the access point with low or hard handover traffic.
  • FIG. 3 This scenario is represented in Figure 3 in which a mobile node 23-1 establishes a high traffic communication (35-11 and 35-13) with two different access points 22-1 and 22-3 The rest of the mobile nodes are in low traffic communication. If the mobile node 23-1, with which the high traffic communication is to be established, is the only one connected in low traffic mode to the access point 22-1 the way in which this communication is established 35-11 and 35 -13 follow the steps described in scenario 3. If, on the other hand, there are other mobile nodes in low traffic communication with the same access point ( Figure 8: 23-2 and 23-M), than the receiving node The high traffic communication, the process represented in Figure 8 and Figure 9 would be followed. Once the system knows that with the mobile node 23-1 a high traffic communication will be established, the necessary information is exchanged between the devices involved to speed up the process.
  • the mobile node 23-1 and the access point 22-1 exchange the role they had within the connection 35-11. Now the mobile node is the master and the access point is the slave. Next, the system establishes a new redundant connection 35-13 between the mobile node and another access point 22-3. More than one redundant connection with the mobile node can be established.
  • the mobile node can establish one or more of these redundant connections depends on the circumstances of the system. If the continuity and quality of the communication is not compromised, it may be that only a single high traffic connection is established with the mobile node even when there are free access points within the system.
  • the device that maintains high traffic communication is the one that moves and must change from one access point to another, two situations can occur. Whether the destination access point is free of connections (access point 22-N figure 9 and figure 10) or that access point has at least one connection with low traffic (access point 22-5 figure 3, figure 4 and figure 5). When an access point has a high traffic connection, it cannot establish other communication. It is completely dedicated to that connection. In the case where the destination access point is free (access point 22-N, figure 9 and figure 10), the steps indicated in scenario 4 will be followed.
  • the new access point is connected to other mobile devices through low traffic connections, these must be disconnected in the same way as when a new high traffic communication is established, as indicated in scenario 7 (figure 3 and figure 4).
  • the establishment of new high traffic connections will depend on whether there are access points available within the coverage area of the mobile node. In the case where there are free access points within the coverage area of the node, the process that is followed to establish the new high traffic communication is the same as described in scenario 7 (figure 11, figure 12, figure 13 and figure 14).
  • High traffic connections have a higher priority over low traffic connections. Depending on the characteristics and conditions of the system, low traffic connections may become disconnected in the event that new high traffic connections need to be prioritized.
  • a mobile node in communication with high traffic may have a single connection to an access point.
  • This single connection must guarantee the continuity and quality of this communication. In this case the communication could be lost if this single connection is broken.
  • a number of access points free of active connections can be reserved to ensure access to the system to new mobile nodes with low traffic connection.
  • Mobile nodes with low traffic connection can be permanently disconnected if the access points to which they are connected are required for other connections with high traffic with higher priority.
  • Different levels of priority can be assigned to mobile nodes and, depending on this level of priority, a different number of active connections can be assigned to a mobile node while in high traffic communication and may even have certain privileges when in communication with low traffic. 8) It would also be possible for a high traffic communication to be disconnected to guarantee communication to another node with a higher priority level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

El método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico aborda los problemas de ancho de banda y handover en redes inalámbricas. En particular, el método se refiere a estándares inalámbricos que están disponibles a precio de consumo y no requieren planificación de redes ( tal como Ultrawideband, Bluetooth™, IEEE 802.11a, 802.11b, 802.11g, etc.). Para proporcionar al usuario activo un alto ancho de banda y un handover sin interrupciones, el dispositivo móvil se convierte en el maestro de varios puntos de acceso durante los momentos de alta demanda de tráfico por paquetes. Normalmente la mayoría de los usuarios están en estado pasivo en una red inalámbrica y requieren un ancho de banda bajo (tráfico bajo de datos por paquetes o flujo de señalización de control). Mientras esté en este modo, el dispositivo móvil será esclavo de un punto de acceso, que es maestro de uno o varios dispositivos móviles esclavos.

Description

MÉTODO PARACAMBIOS DECONEXIÓNAUN NUEVO PUNTODEACCESO BASADO
EN LADEMANDADETRAFICO
OBJETO DELAINVENCIÓN
El método para cambios de conexión a un nuevo punto de acceso basado en Ia demanda de tráfico, está relacionado, de forma general, con sistemas de comunicaciones inalámbricos y en especial con métodos de gestión de handover y ancho de banda dentro de redes inalámbricas que presentan variaciones en el tiempo de Ia demanda de este ancho de banda.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA
En algunos estándares inalámbricos como, por ejemplo, Bluetooth™ y Ultrawideband (UWB) no se requiere una planificación de frecuencias. En otros estándares como GSM o Ia mayoría de los estándares inalámbricos, los puntos de acceso y las estaciones base operan dentro de un cierto espectro, en un lugar en concreto, de acuerdo a un plan de planificación de frecuencias. Dentro de Bluetooth™ y Ultrawideband muchas redes pueden operar dentro de Ia misma área y crear varias conexiones independientes al mismo tiempo sin que aparezcan problemas graves de interferencias. En el caso de Bluetooth™, una piconet usa un sólo canal de entre los 79 posibles en un determinado momento y, por consiguiente, quince o más piconets pueden ser empleadas dentro de un área reducida. En el caso de Ia UWB el número de redes independientes, en un mismo área, puede ser todavía mucho más grande. De acuerdo con Ia ley de Moore, el precio de los chips disminuye de forma permanente. En consecuencia, los puntos de acceso bajan también de precio. Durante el 2003 el precio al nivel de consumo de un punto de acceso Bluetooth™ ha bajado por debajo de los 50 dólares - esto significa que los costes de Ia instalación de un punto de acceso pueden ser muy superiores al precio del mismo. Igualmente pasará en el caso de Ia UWB algún día y ya ocurre para el IEEE 802.11a/b/g. Esto hace que sea interesante desde el punto de vista económico el aumentar el número de puntos de acceso por instalación a cantidades entre, por ejemplo, 5 ó 20 puntos de acceso por instalación.
Las llamadas de teléfono y las transmisiones de vídeo son aplicaciones básicas para muchas redes inalámbricas. Estas aplicaciones requieren de un handover sin interrupciones. Una interrupción de un segundo en un handover no puede ser aceptada durante Ia comunicación. Lo mismo ocurre con otras aplicaciones como juegos, vídeo, televisión o navegación por Ia red.
La relación entre el tiempo hablando y el tiempo sin hablar en los teléfonos, raramente sobrepasa el 10% dentro de las redes comunes de telefonía. Esto implica que Ia mayoría de los teléfonos están, normalmente, en modo pasivo. Estas cifras pueden aumentar o disminuir en el futuro con otras aplicaciones, pero es razonable suponer que el comportamiento humano no va a cambiar de forma drástica y no crecerá por encima del 50% (= un usuario activo por cada dos pasivos). Esto significa que habrá muchos más usuarios en estado pasivo que en estado activo dentro de cada red inalámbrica. Normalmente, las conexiones por paquetes de los usuarios en estado activo son más críticas que las de los usuarios en estado pasivo. Los usuarios pasivos están involucrados en otras operaciones - distintas a las que se basan en tráfico IP - por Io que no es un problema un ancho de banda bajo o periodos cortos de desconexión durante los handovers. La definición de las scatternets dentro de Ia tecnología Bluetooth™ ha sido tratada en los siguientes documentos: Especificaciones Bluetooth™ 1.0b, Nokia WO02/03626, RedM EP 1283622, Norwood system 02/079796.
Sin embargo, de momento, no ha sido probada ninguna aplicación comercial en Ia que, realmente, funcione o bien esta no ha sido instalada, proporcionando servicio a un número grande de usuarios. El mayor motivo del desarrollo de las scatternet en Bluetooth™, es proporcionar servicios de handover. Al mismo tiempo, en los documentos anteriormente mencionados se asume que los cambios de rol maestro/esclavo, si los contemplan, se realizan en periodos de tiempo cortos durante el handover para evitar Ia pérdida del punto de acceso.
Por otro lado, Ia solicitud de patente estadounidense número US-2002085719-A1 describe métodos y sistemas para habilitar handovers sin interrupciones en redes de área local empleando, por ejemplo, Bluetooth™. De acuerdo con Ia descripción, cuando aparece Ia necesidad de transferir Ia conexión a otro punto de acceso, esto se lleva a cabo forzando al móvil a convertirse en maestro de Ia piconet conectando Ia red destino como esclavo, desconectando posteriormente Ia red original y volviendo al rol de esclavo en Ia nueva piconet. Dentro de Ia descripción se abarcan soluciones frente a diversas situaciones como, por ejemplo, cuando una de las piconets tiene otro esclavo.
La solicitud de patente europea número EP-1283622-A1 describe Ia técnica de handoff para un sistema Bluetooth™. El terminal (p.ej. un teléfono móvil) actúa como esclavo hasta que se decide que se necesita realizar un handover. Entonces, él mismo se convierte en maestro del punto de acceso al que estaba conectado y establece una nueva conexión con otro punto de acceso de forma simultánea. Cuando Ia segunda conexión está lista y funcionando, desconecta Ia primera de las conexiones y vuelve a cambiar su rol de nuevo al de esclavo. Se ve que Ia conexión simultánea entre los dos puntos de acceso es equivalente a un soft handover.
La solicitud de patente número US-2003099212-A1 describe cómo el handoff se realiza creando una piconet auxiliar, que consiste en el esclavo móvil (S1) y otro esclavo (S2) que actúa como maestro en Ia piconet auxiliar y que es utilizado como puente entre Ia piconet original y Ia piconet destino, hasta que se crea Ia conexión con el maestro de Ia piconet destino.
La solicitud internacional número WO-03071690-A1 describe una red Bluetooth™ en Ia que tres módulos Bluetooth™, configurados para diferentes tareas dentro de Ia comunicación, han sido integrados dentro de cada punto de acceso. El handover soft se menciona (página 7) pero no se describe con detalle.
Es común a todos los documentos arriba mencionados Ia inexistencia de un reajuste eficiente de los recursos de Ia red desde el punto de vista de los usuarios activos.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención, método para cambios de conexión a un nuevo punto de acceso basado en Ia demanda de tráfico, propone una red inalámbrica que comprende una cierta cantidad de puntos de acceso y un cierto número de usuarios equipados con dispositivos móviles inalámbricos (móviles). Los usuarios, desde sus teléfonos móviles, smartphones, PDAs o cualquier otro dispositivo móvil, hacen uso, de forma inalámbrica, de aplicaciones IP como podría ser el caso de navegar por Internet, usar correo electrónico, realizar llamadas telefónicas convencionales o llamadas mediante voz sobre IP, secuencia de vídeo, juegos, etc. Un usuario o bien está en estado activo y demanda un tráfico alto de datos por paquetes (ancho de banda alto) con handovers (cambios de conexión a un nuevo punto de acceso o célula) sin interrupción que Ie provean de buena calidad de servicio, o bien está en estado pasivo y requiere un tráfico de datos por paquetes mucho menor con handovers que Ie provean de una calidad de servicio no tan alta y no necesariamente sin interrupciones. Ejemplos de este estado de baja demanda serían señalizaciones de entrada de llamada (voz), recepción de e-mail, recepción de mensajes de datos cortos o tráfico de mantenimiento de red.
El sistema da una prioridad alta a los usuarios activos, proporcionándoles dos o más puntos de acceso, y una prioridad baja a los usuarios en estado pasivo. Un mismo punto de acceso es compartido por varios usuarios en estado pasivo.
De acuerdo con esto, Ia presente invención permite a un usuario activo tener un ancho de banda doble o aún mayor y un soft handover sin interrupciones. Los usuarios en estado pasivo siguen conectados. Por consiguiente, el sistema reajusta eficientemente los recursos de Ia red de forma óptima para los usuarios activos.
DESCRIPCIÓN DE LAS FIGURAS
En Ia presente solicitud se emplea Ia siguiente nomenclatura para describir las figuras, que poseen un ámbito explicativo y no limitativo:
- Los puntos de acceso se representan como AP. - Los nodos móviles se representan como mn.
- Los elementos que son maestros de Ia comunicación Bluetooth™ se representan en gris mientras que los elementos esclavos aparecen en blanco. Los puntos de acceso que están en estado de búsqueda aparecen con un fondo de líneas diagonales grises.
La codificación numérica empleada se basa en los siguientes criterios:
Figure imgf000006_0001
La figura 1 representa dos redes de área local (LAN), Ia primera de ellas formada por nodos móviles Bluetooth™ (23) y puntos de acceso (22) y Ia segunda abarca las conexiones entre los puntos de acceso (22) y el servidor (21). También aparece una conexión a Internet (20). Los dos ámbitos diferenciados de comunicación son el dominio Bluetooth™ (43) y el dominio restante (41) que abarca hasta el servidor (21) o Internet (20). La demanda de tráfico de datos por parte de los dispositivos móviles se representa bien como "tráfico alto por paquetes (TA)" o como "tráfico bajo por paquetes (TB)", dependiendo de si Ia definición de Ia actividad es de tráfico alto o bajo.
La figura 2 representa el escenario donde M nodos móviles (23) mantienen tráfico por paquetes con el servidor (21) o Internet (20) a través de N puntos de acceso (22). Los maestros de Ia comunicación Bluetooth™ se representan en gris mientras que los esclavos aparecen en blanco. Se muestra cada conexión (35) entre un nodo móvil (23) y un punto de acceso (22). También aparecen todas las conexiones (33) entre un punto de acceso (22) y el servidor (21). Los puntos de acceso en modo búsqueda aparecen con un fondo de líneas diagonales grises.
En Ia figura 3 se observa un escenario muy similar al de Ia figura 2, pero aquí, un nodo móvil (23-1) mantiene comunicación por paquetes de tráfico alto con dos puntos de acceso (22-1) y (22-3). El resto de nodos móviles (23) mantienen comunicaciones por paquetes de tráfico bajo con otros dos puntos de acceso (22-2) y (22-5). La figura 4 muestra un escenario en el que el nodo móvil (23-1) ha cambiado una conexión (35-11) por otra nueva (35-15). Tres nodos móviles (23-6), (23-...) y (23-M) han perdido sus conexiones temporalmente (35-65), (35-...5) y (35-M5).
La figura 5 muestra los tres nodos móviles (23-6), (23-...) y (23-M) que perdieron sus conexiones (35-65), (35-...5) y (35-M5) y establecen nuevas conexiones (35-66), (35-...6) y (35-M6) con otro punto de acceso (22-6). El nodo móvil (23-1) comienza a moverse siguiendo Ia trayectoria representada mediante Ia flecha (50-1).
La figura 6 representa cómo el nodo móvil (23-1 ) se ha movido siguiendo Ia trayectoria indicada por Ia flecha (50-1) y ha perdido Ia conexión (35-13) estableciendo una nueva (35-1 N). La figura 7 muestra Ia optimización de recursos hecha por el servidor (21), el cual intenta concentrar tanto como sea posible las conexiones (35) de los nodos móviles con comunicación por paquetes de tráfico bajo (23) en el mínimo número de puntos de acceso (22) para proporcionar a los demás de Ia mayor capacidad posible de búsqueda de nuevos nodos móviles (23) en su área de cobertura. La figura 8 muestra el direccionamiento de red (BTaddr/Net-addr), el estado
(maestro/esclavo) y Ia actividad (tráfico alto/bajo) de los nodos móviles (23) y puntos de acceso (22) así como las características de las conexiones (RSSI/Calidad del vínculo) de un sistema formado por 4 puntos de acceso y tres nodos móviles. El servidor es el que gestiona esta información.
La figura 9 muestra los cambios que se producen en el servidor cuando un nodo móvil (23-1) establece comunicaciones por paquetes de tráfico alto (35-11) y(35-13) con dos puntos de acceso (22-1) y (22-3), y los otros nodos móviles tienen que conectarse a otro punto de acceso (22-2) "libre". La figura 10 muestra como el nodo móvil (23-1) abandona el punto de acceso (22-1) y forma otra conexión por paquetes de tráfico alto (35-1N) con un nuevo punto de acceso (22-N). El punto de acceso "abandonado" (22-1) vuelve al estado de búsqueda de otros nodos móviles dentro de su área de cobertura.
En Ia figura 11 se presenta un escenario donde 12 puntos de acceso (22) proveen cobertura a 10 nodos móviles (23) El nodo móvil (23-6), que mantiene una comunicación por paquetes de tráfico alto, está conectado a dos puntos de acceso diferentes (22-1 ) y(22-8). El resto de nodos móviles (23) son agrupados en dos puntos de acceso diferentes (22-2) y (22- 7). La tabla que se encuentra debajo de Ia figura muestra las conexiones entre los puntos de acceso (22) y los nodos móviles (23). La figura 12 muestra el mismo escenario que Ia figura 11 , pero en este escenario dos nodos móviles (23-5) y (23-9) han cambiado su localización. El nodo móvil (23-5) esta conectado ahora al punto de acceso (22-12) mientras que el nodo móvil (23-9) ha salido del área de cobertura del sistema (38-1 :4), (38-5:8) y (38-9:12).
La figura 13 se observa como el nodo móvil (23-7) solicita una conexión por paquetes de tráfico alto a través del punto de acceso (22-2) al que estaba conectado. El resto de nodos móviles (23) que estaban conectados a este punto de acceso son desconectados de forma temporal.
La figura 14 muestra el último paso de este proceso. Los nodos móviles que fueron desconectados del punto de acceso (22-2) se conectan a un nuevo punto de acceso (22-3). También en este dibujo, el nodo móvil (23-7) crea otra conexión por paquetes de tráfico alto con otro punto de acceso (22-11 ).
La figura 15 representa una instalación con varios (N) puntos de acceso (22). Cada punto de acceso (22- Y) emplea una antena unidireccional que Ie provee de un rango de cobertura mayor (38-Y) en comparación con el rango de cobertura de una antena omnidireccional (38-Omni). El rango de cobertura combinado de los N puntos de acceso (38- 1 :N) será mucho mayor que el de un punto de acceso con una antena omnidireccional.
FORMA PREFERENTE DE REALIZACIÓN
La figura 1 muestra el diagrama de bloques de una red en Ia que se representan los terminales móviles 23 (23-1 , 23-2, 23-3), los puntos de acceso 22 (22-1 , 22-2, 22-3, 22-N), el servidor central 21 y un acceso a/desde una red externa 20 que podría ser, por ejemplo, Internet. Todos estos dispositivos constituyen Ia red de área local (LAN). La subred 41 puede ser cualquier tipo de red que permita conectar los puntos de acceso 22 al servidor central 21 , como por ejemplo una LAN basada en cable Ethernet o cualquier tipo de red inalámbrica que emplee un protocolo de comunicación o, incluso, una combinación de ellas. La subred 43 es cualquier tipo de red inalámbrica de comunicación basada en algún protocolo de comunicación inalámbrica que permita conectar los dispositivos móviles 23 a los puntos de acceso 22. La tecnología empleada para esta subred no tiene por qué coincidir con Ia empleada en Ia subred 41 , en el caso que esta también sea inalámbrica. Las conexiones 33 (figura 1: 33-1, 33-2, 33-3, 33-N) entre los puntos de acceso 22 y el servidor central 21 pueden ser de cualquier tipo que sea adecuado para tal propósito, bien cable Ethernet, bien conexiones inalámbricas basadas en una tecnología inalámbrica adecuada.
Las conexiones 35 (figura 1 : 35-11 , 35-12, 35-23, 35-33) entre los puntos de acceso 22 y los dispositivos móviles 23 pueden ser cualquier tipo de conexión inalámbrica (p. ej. Bluetooth, IEEE 802.11, etc.) que permitan Ia movilidad de estos. Los dispositivos móviles 23, tal y como se emplea este término aquí, son cualquier tipo de dispositivo que permita una comunicación inalámbrica con un punto de acceso 22 y que tenga Ia capacidad de desplazarse manteniendo dicha comunicación (p.ej, ordenadores portátiles con tarjetas inalámbricas, teléfonos móviles, PDAs, etc.). Estos dispositivos pueden mantener una comunicación de tráfico alto o de tráfico bajo por paquetes con los puntos de acceso según Io requieran las distintas aplicaciones que estén ejecutándose en ellos.
Por actividad o comunicación de tráfico alto (35-11 , 35-12 figura 1) se entiende cualquier comunicación establecida por los dispositivos en estado activo dentro del sistema y que es crítica frente a interrupciones y que, además, requiere mucha cantidad de tráfico de datos entre los dispositivos móviles y el servidor (p.ej. llamadas de voz o transmisión de vídeo). A este tipo de comunicación es necesario garantizarle una continuidad y una calidad de servicio óptima en todas las situaciones.
Por otro lado, el término de actividad o comunicación de tráfico bajo (35-23, 35-33 figura 1) se emplea para aquella comunicación de menor intensidad y que no es crítica frente a interrupciones del servicio tanto puntuales como intermitentes sin que se pierda calidad de servicio, como sería el caso de procedimientos de mantenimiento de conexión o de datos de control.
Los puntos de acceso 22 son unos dispositivos que permiten a los dispositivos móviles 23, que se mueven dentro de Ia subred inalámbrica 43, Ia conexión con el servidor 21 situado en Ia subred principal 41. Típicamente estos puntos de acceso tienen una conexión de red fija con el servidor, por un lado, y, por otro, actúan como punto de conexión inalámbrico para los dispositivos móviles 23. Estos puntos de acceso 22 pueden estar compuestos tanto de uno como de varios dispositivos físicos (como queda representado en Ia figura 15). Cada dispositivo físico es capaz de mantener comunicación con uno o más dispositivos móviles y puede estar dotado bien de una antena omnidireccional, bien de una antena direccional de alta ganancia, bien de una antena inteligente (smart antenna) o bien pueden carecer de cualquier tipo de antena.
El término servidor 21 , empleado en este documento, se aplica a cualquier dispositivo con capacidad de procesamiento de datos. Este gestiona y controla en tiempo real toda Ia información de los dispositivos situados dentro de Ia red y sus interconexiones. Este servidor 21 puede ser un ordenador, un router, un bridge, un switch o cualquier otro dispositivo que pueda a Ia vez actuar como controlador de Ia red y/o gateway entre Ia red y otra red superior. Según los requisitos del sistema, el servidor 21 puede no ser un único dispositivo, sino un conjunto de dispositivos físicos que trabajan de forma paralela y conjunta para gestionar Ia red y permitir el acceso a y desde otra red externa.
El término red externa 20 se emplea en este documento para referirse a cualquier tipo de red de comunicaciones de nivel superior como podría ser en caso de otra red local (LAN), una red corporativa, una red de área extendida (WAN), e incluso Internet. Esta patente puede ser aplicada también sobre un sistema que actúe de forma aislada de cualquier red externa.
En este documento se emplea el término de maestro (y se representa mediante dispositivos en gris) para cualquier dispositivo que se toma el control de Ia comunicación inalámbrica. Puede estar conectado simultáneamente a uno o varios dispositivos que actúan como esclavos de esas conexiones. El maestro se encarga de gestionar las conexiones que mantiene, estableciendo las temporizaciones así como asignando a cada esclavo el ancho de banda apropiado. En el sistema descrito, pueden actuar como maestro de Ia comunicación inalámbrica tanto los dispositivos móviles 23 como los puntos de acceso 22. Los primeros serán maestros cuando estén en una comunicación de tráfico alto, tomando el control de esta, mientras que los segundos Io serán cuando tengan varios dispositivos móviles conectados con tráfico bajo.
El término esclavo (representado mediante dispositivos en blanco) se emplea para los dispositivos que, estando conectados de forma inalámbrica, no controlan esta conexión. Estos dispositivos se comunican con un maestro que se encarga de gestionar Ia comunicación entre ellos. Los dispositivos móviles son esclavos en las conexiones con tráfico bajo mientras que los puntos de acceso Io son en las conexiones con tráfico alto.
Los puntos de acceso pueden encontrarse en un tercer estado. En este estado buscan nuevos dispositivos dentro de su área de cobertura. Siempre están conectados con el servidor 21. Continuamente envían información al servidor central sobre todos los dispositivos que se encuentran en su rango de cobertura. En este estado los puntos de acceso no tienen ninguna conexión activa establecida dentro de la subred inalámbrica 43 pero, si fuera necesario, pueden establecer varias comunicaciones de tipo con tráfico bajo o alto. En este estado se representan con un fondo de líneas diagonales grises. Los términos hard handover y soft handover se emplean cuando un nodo móvil cambia desde un punto de acceso a otro. En el primer caso, el nodo móvil rompe el vínculo por un momento antes de reconectarse otra vez a un nuevo punto de acceso, a diferencia del segundo caso en el que el nodo móvil mantiene Ia comunicación mientras cambia al nuevo punto de acceso.
A continuación se definirán diferentes estados de funcionamiento del método objeto de Ia presente invención:
1. Acceso al sistema por parte de los nodos móviles
Partiendo un estado inicial en el no haya ningún nodo móvil 23 conectado al sistema, el primer proceso que se podría dar en el sistema descrito sería Ia llegada de un dispositivo móvil. Para poder acceder al sistema, el nodo móvil 23 tiene que ser descubierto por uno de los puntos de acceso 22 del sistema que esté en modo de búsqueda de nuevos dispositivos móviles. Una vez toda Ia información necesaria de este dispositivo móvil 23, ha sido intercambiada dentro del sistema y se encuentra almacenada en el servidor 21 , el acceso ai sistema puede ser iniciado tanto por el mismo nodo móvil como por el servidor. Se entiende que se ha accedido ai sistema cuando se ha establecido una comunicación con tráfico bajo entre el dispositivo móvil 23 y el servidor 21 a través de alguno de los puntos de acceso 22. El resto de puntos de acceso 22, que no mantienen ninguna comunicación con un nodo móvil 23 seguirán en estado de búsqueda de nuevos dispositivos móviles que entren dentro de su área de cobertura. Este proceso de acceso al sistema se repetirá tantas veces como nuevos nodos móviles quieran acceder al sistema y mientras haya recursos disponibles para ello.
En el caso en que más nodos hayan accedido a Ia red del sistema, el servidor 21 minimizará el número de puntos de acceso ocupados con conexiones de tráfico bajo basándose en algoritmos de optimización, permitiendo así tantos puntos de acceso libres como sea posible para otras necesidades potenciales.
En Ia figura 8 se representa un sistema con M nodos móviles (23-1 ,23-2,.., 23-M) y N puntos de acceso (22-1 , 22-2, 22-3,..., 22-N) en comunicación de tráfico bajo. Además se muestra Ia información almacenada en el servidor 21 relativa a los dispositivos móviles 23-1 y 23-2. Esta información refleja, como mínimo, el direccionamiento del nodo móvil, los puntos de acceso a los que está conectado y el rol que tienen en esta comunicación. También puede almacenarse cierta información relacionada con el estado y Ia calidad de Ia conexión.
2. Cambio de punto de acceso con actividad o tráfico bajo (hard handover)
Los nodos móviles 23 en comunicación de tráfico bajo pueden cambiar de punto de acceso a otro durante su movimiento debido a Ia debilitación de Ia señal o por salir de su área de cobertura. El servidor 21 , empleando Ia información almacenada en él, y actualizada en tiempo real, referida a las conexiones disponibles en los puntos de acceso 22, decide cuando debe cambiar Ia conexión del nodo móvil 23 de un punto de acceso a otro y a qué punto de acceso debe cambiarse.
El primer paso de este proceso será el intercambio de información entre los dispositivos involucrados, es decir, el dispositivo móvil 23, el servidor 21 y los dos puntos de acceso 22. Tanto el de origen como el de destino. Este intercambio de información hará que este proceso sea más rápido.
Una vez que todos los dispositivos tienen Ia información necesaria, el servidor detendrá el flujo de información con el nodo móvil. Tras esto, el punto de acceso origen cerrará Ia conexión con el nodo móvil indicándolo a continuación al servidor, una vez que esta ruptura del vínculo se haya completado. A continuación, el punto de acceso destino establecerá una nueva conexión con el nodo móvil empleando, para ello, Ia información intercambiada previamente en el sistema. Entonces el punto de acceso informará al servidor del éxito o no de Ia operación. Una vez Ia nueva conexión entre el nodo móvil y el punto de acceso ya está lista, el servidor restablecerá el flujo de transmisión de datos con dicho dispositivo a través de este nuevo punto de acceso. Toda Ia información será actualizada en el servidor en tiempo real, de forma que el servidor sabe en todo momento el estado de los dispositivos y de las conexiones entre ellos.
3. Recepción por parte de un nodo móvil de una conexión de tráfico alto
Cualquier dispositivo móvil 23 que se encuentra dentro del sistema en comunicación de tráfico bajo, puede pasar en un momento determinado a una comunicación de tráfico alto iniciada bien por él mismo, bien el servidor 21. Esta comunicación de tráfico alto se realizará a través del punto de acceso al que actualmente está conectado en nodo móvil.
El primer paso del proceso será intercambiar Ia información necesaria entre el nodo móvil 23 con el que se establece Ia comunicación con tráfico alto, el punto de acceso al que está conectado 22 y el servidor central 21. La figura 2 representa un nodo móvil 23-1 que está a punto de establecer una comunicación de tráfico alto con el servidor 21 a través del punto de acceso 22-1.
Una vez se ha intercambiado esta información, se establece Ia comunicación de tráfico alto (figura 3: conexión 35-11)
En este momento se realiza un cambio de los roles que los dispositivos toman en Ia comunicación pasando el dispositivo móvil 23-1 de ser esclavo a ser el maestro y el punto de acceso 22-1 de ser maestro a ser el esclavo de Ia conexión entre ellos.
Posteriormente y, si las condiciones del sistema Io permiten, se crearán conexiones redundantes (figura 3: 35-13), Estas nuevas conexiones son establecidas por el nodo móvil de igual forma que Ia primera a través de otros puntos de acceso (figura 3: 22-3), de forma que se Ie pueda garantizar Ia continuidad y calidad necesaria para Ia comunicación de tráfico alto con el servidor en el caso que una de las conexiones se rompa o se debilite por cualquier motivo. Sin embargo, en situaciones en las que Ia calidad del servicio Io permita y/o por limitaciones del sistema, puede ser que a un nodo se Ie asigne una única conexión de tráfico alto con un único punto de acceso. El cambio en Ia información almacenada en el servidor queda reflejado en Ia figura 8 y Ia figura 9, donde el nodo móvil 23-1 entra primero en comunicación de tráfico alto 35-11 a través del punto de acceso 22-1 y posteriormente establece otra comunicación de tráfico alto 35-13 con el punto de acceso 22-3.
4. Cambio de un punto de acceso manteniendo una comunicación de tráfico alto (soft handover)
Una vez el nodo móvil se encuentra en comunicación de tráfico alto puede ser que se mueva dentro del sistema. Algunas veces, puede que sea necesario que se cambien algunas conexiones a nuevos puntos de acceso para garantizar, a Ia vez, Ia continuidad y calidad de servicio. Este proceso será iniciado y gestionado por el servidor central 21 basándose en Ia información, actualizada en tiempo real, sobre Ia calidad de las conexiones que Ie facilitan los puntos de acceso 22.
El primer paso de este proceso será el intercambio de información entre el nodo móvil (figura 3: 23-1), los puntos de acceso (figura 3: 22-1 , 22-5) y el servidor (figura3: 21). Esta información hará que el proceso sea más rápido.
Una vez todos los elementos involucrados en este proceso tienen Ia información necesaria para realizar este cambio de punto de acceso (figura 4), se creará una nueva conexión (35- 15) entre el punto de acceso destino 22-5 y el nodo móvil 23-1. A continuación, se cambiará Ia ruta del flujo de datos del punto de acceso origen 22-1 al punto de acceso destino 22-5 dentro del servidor 21.
El último paso de este proceso, será romper Ia conexión (figura 3: 35-11 ) entre el punto de acceso origen y el nodo móvil 23-1. Este punto de acceso pasará a estado de búsqueda de nuevos nodos móviles. Durante todo el tiempo en que las dos conexiones están activas, Ia información entre el servidor 21 y el dispositivo móvil 23-1 es transmitida a través de todos los puntos de acceso involucrados (22-1 y 22-5). El dispositivo que recibe cada paquete de información procesa y elige Ia información que llega a través de Ia ruta de mejor calidad y descarta el resto de datos redundantes. En todo momento Ia información almacenada en el servidor sobre el estado de los dispositivos y las conexiones es actualizada en tiempo real. En Ia figura 9 y Ia figura 10 queda reflejado el modo en que Ia información cambia en el servidor cuando el nodo móvil 23-1 se mueve desde el punto de acceso 22-1 al 22-N. 5. Retorno a Ia actividad de tráfico bajo
Una vez no se precisa Ia comunicación de tráfico alto por más tiempo, el sistema restablece de nuevo Ia conexión de tráfico bajo con el nodo móvil. Primero se desconectan todas las conexiones actuales 35 entre el dispositivo móvil 23 y los puntos de acceso 22 con excepción de una, Ia de mejor calidad. Los puntos de acceso que han perdido su conexión, pasarán a modo de búsqueda de nuevos nodos móviles en su área de cobertura.
En Ia conexión remanente, el dispositivo móvil 23 y el punto de acceso cambiarán los roles. El nodo móvil pasará de ser maestro a ser esclavo mientras que el punto de acceso cambiará de ser esclavo a ser maestro en Ia conexión.
Si Ia optimización de los recursos del sistema así Io precisa, el nodo móvil 23 puede cambiar su conexión de tráfico bajo 35 desde el punto de acceso actual 22 a otro definido por el servidor 21 tal y como se ha descrito en el escenario 2.
6. Existencia de múltiples nodos móviles en el sistema (actividad con tráfico bajo)
En Ia figura 2 se representa el escenario donde M nodos móviles 23 (23-1 ,.., 23-M) están conectados a N puntos de acceso 22 (22-1,.., 22-N) con conexiones de tráfico bajo 35-XY. La forma en que los distintos nodos móviles han accedido al sistema es idéntica a Ia descrita anteriormente cuando se define el acceso al sistema. El sistema debe emplear algoritmos de decisión para optimizar los recursos disponibles de forma que, intente agrupar el mayor número de conexiones de tráfico bajo por punto de acceso. Así deja libre Ia mayor cantidad de puntos de acceso, que buscan continuamente nuevos nodos móviles dentro del área de cobertura del sistema. Este sistema de optimización debe asegurar que Ia calidad de servicio no se ve afectada y que todas las conexiones permanecen activas. En este escenario en el que todos los nodos móviles están con trafico bajo, el movimiento de los dispositivos móviles desde un punto de acceso a otro sigue los pasos descritos anteriormente para el cambio del punto de acceso con tráfico bajo o hard handover.
7. Existencia de múltiples nodos móviles en el sistema donde uno cambia a actividad con tráfico alto
Este escenario se representa en Ia figura 3 en el que un nodo móvil 23-1 establece una comunicación de tráfico alto (35-11 y 35-13) con dos puntos de acceso diferentes 22-1 y 22-3. El resto de nodos móviles están en comunicación tráfico bajo (Low traffic). Si el nodo móvil 23-1 , con el que se va a establecer Ia comunicación de tráfico alto, es el único conectado en modo de tráfico bajo al punto de acceso 22-1 Ia forma en que se establece esta comunicación 35-11 y 35-13 sigue los pasos descritos en el escenario 3. Si, por el contrario, existieran otros nodos móviles en comunicación de tráfico bajo con el mismo punto de acceso (figura 8: 23-2 y 23-M), que el nodo que recibe Ia comunicación de tráfico alto, se seguiría el proceso representado en Ia figura 8 y figura 9. Una vez el sistema sabe que con el nodo móvil 23-1 se va a establecer una comunicación de tráfico alto, se intercambia Ia información necesaria entre los dispositivos implicados para acelerar el proceso.
A continuación los dispositivos móviles 23-2 y 23-M, que también se encuentran conectados al mismo punto de acceso, son desconectados de forma segura de este punto de acceso 22-1 y conectados posteriormente a otro punto de acceso 22-2 de Ia forma descrita en el escenario 2. La selección del punto de acceso destino 22-2 se lleva a cabo siguiendo el algoritmo de optimización de los recursos del sistema ya comentado previamente.
Entonces el nodo móvil 23-1 y el punto de acceso 22-1 intercambian el rol que tenían dentro de Ia conexión 35-11. Ahora el nodo móvil es el maestro y el punto de acceso es el esclavo. A continuación, el sistema establece una nueva conexión redundante 35-13 entre el nodo móvil y otro punto de acceso 22-3. Se puede establecer más de una conexión redundante con el nodo móvil.
El que el nodo móvil pueda establecer una o varias de estas conexiones redundantes depende de las circunstancias del sistema. Si no se compromete Ia continuidad y calidad de Ia comunicación, puede ser que solamente se establezca una única conexión de tráfico alto con el nodo móvil aún cuando existan puntos de acceso libres dentro del sistema.
8. Cambio de un punto de acceso manteniendo una comunicación de tráfico alto (soft handover) por un nodo móvil dentro de un entorno con múltiples nodos móviles
Si el dispositivo que mantiene Ia comunicación de tráfico alto es el que se mueve y debe cambiar de un punto de acceso a otro, pueden darse dos situaciones. Bien que el punto de acceso destino esté libre de conexiones (punto de acceso 22-N figura 9 y figura 10) o que ese punto de acceso tenga, al menos, una conexión con tráfico bajo (punto de acceso 22-5 figura 3, figura 4 y figura 5). Cuando un punto de acceso tiene una conexión con tráfico alto, no puede establecer otra comunicación. Se dedica por completo a esa conexión. En el caso en que el punto de acceso destino esté libre (punto de acceso 22-N, figura 9 y figura 10), se seguirán los pasos indicados en el escenario 4.
Si, en cambio, el nuevo punto de acceso está conectado a otros dispositivos móviles mediante conexiones de tráfico bajo, se deberá desconectar estos de igual forma que cuando se establece una nueva comunicación de tráfico alto, tal y como se ha indicado en el escenario 7 (figura 3 y figura 4).
Una vez están desconectados del punto de acceso destino y este no tiene ninguna conexión, el proceso es idéntico al detallado en el escenario 4 (figura 4 y figura 5).
9. Retorno a actividad de tráfico bajo en un entorno de múltiples nodos
En los sistemas que contienen múltiples dispositivos móviles, el paso de alguno de ellos de conexión de tráfico alto a bajo es idéntico al descrito en el escenario 5, que describe Ia vuelta a Ia actividad de tráfico bajo. Tras dejar el nodo móvil algunos puntos de accesos libres, el sistema intentará optimizar los recursos disponibles del sistema como se ha descrito anteriormente.
10. Múltiples nodos en actividad de tráfico alto dentro del sistema
En el caso de un sistema que tenga varios dispositivos móviles en tráfico bajo y algunos en tráfico alto, el establecimiento de nuevas conexiones de tráfico alto dependerá de si existen puntos de acceso disponibles dentro del área de cobertura del nodo móvil. En el caso en que haya puntos de acceso libres dentro del área de cobertura del nodo, el proceso que se sigue para establecer Ia nueva comunicación de tráfico alto es igual al descrito en el escenario 7 (figura 11 , figura 12, figura 13 y figura 14).
En cambio, si no hay puntos de acceso libres o no están dentro del área de cobertura, tanto Ia posibilidad del establecimiento de una nueva comunicación de tráfico alto, así como de conexiones redundantes (como se ha descrito en el escenario 7) y Ia gestión de los demás nodos en comunicación con tráfico bajo, quedará sujeta a Ia parametrización propia de los algoritmos de decisión dentro del servidor, y todo ello siempre enfocado en Ia optimización de los recursos del sistema.
En algunos sistemas será conveniente asignar una única conexión de tráfico alto al nuevo nodo móvil o, incluso, no permitir esta nueva comunicación, pero en otros sistemas puede ser más importante establecer esta nueva comunicación que mantener otros nodos móviles en tráfico bajo conectados al sistema. La distribución de los nodos móviles, basándose en las condiciones del sistema, se realizará como se ha descrito en los escenarios 6 y 8.
Si las condiciones no permiten a los nodos en tráfico bajo el hard handover o a los nodos en tráfico alto el soft handover tal y como se ha descrito en los escenarios 6 y 8, estos procesos se llevarán a cabo dependiendo de las condiciones específicas del sistema.
11. Criterios de gestión de Ia saturación del sistema
Conforme se van agotando los recursos disponibles del sistema (capacidad de los puntos de acceso de aceptar nodos móviles en tráfico alto o bajo) se aplicarán ciertos criterios (dependiendo de Ia arquitectura o parametrización específica del sistema) para gestionar tanto el establecimiento de nuevas comunicaciones como para el movimiento de los dispositivos móviles a través de los puntos de acceso del sistema:
1) El sistema intentará asegurar tantas conexiones activas como sea posible ya sean conexiones de tráfico alto o bajo.
2) Las conexiones de tráfico alto se gestionarán y optimizarán de forma dinámica de modo que se garantice Ia continuidad y calidad de servicio.
3) Las conexiones de tráfico alto tienen una prioridad mayor respecto a las conexiones de tráfico bajo. Dependiendo de las características y condiciones del sistema las conexiones de tráfico bajo pueden llegar a ser desconectadas en el caso que se necesite priorizar nuevas conexiones de tráfico alto.
4) Dependiendo de Ia congestión del área de cobertura del sistema, un nodo móvil en comunicación con tráfico alto puede tener una única conexión a un punto de acceso. Esta única conexión deberá garantizar Ia continuidad y calidad de esta comunicación. En este caso podría llegar a perderse Ia comunicación si está única conexión se rompe.
5) Se puede reservar un número de puntos de acceso libres de conexiones activas para garantizar el acceso al sistema a nuevos nodos móviles con conexión de tráfico bajo.
6) Nodos móviles con conexión de tráfico bajo pueden ser desconectados permanentemente si los puntos de acceso a los que están conectados son requeridos para otras conexiones con tráfico alto con mayor prioridad.
7) Se pueden asignar diferentes niveles de prioridad a los nodos móviles y, dependiendo de este nivel de prioridad, a un nodo móvil se Ie puede asignar un número diferente de conexiones activas mientras esté en comunicación con tráfico alto e, incluso, puede tener ciertos privilegios cuando esté en comunicación con tráfico bajo. 8) También sería posible que una comunicación de tráfico alto sea desconectada para garantizar Ia comunicación a otro nodo con un nivel de prioridad mayor.

Claims

REVINDICACIONES
1. Un método para cambios de conexión a un nuevo punto de acceso basado en Ia demanda de tráfico para operar en un sistema inalámbrico que abarca una red externa, donde al menos un servidor estará conectado a dicha red externa, disponiendo dicho servidor de varios puntos de acceso conectados de forma permanente al mismo y varios nodos móviles con un tráfico alto o bajo comunicados por paquetes con Ia red externa caracterizado porque:
- Ia demanda de tráfico de paquetes de datos con Ia red externa puede cambiar de alto a bajo o viceversa,
- un nodo móvil con demanda de tráfico alta de datos por paquetes está conectado a al menos dos puntos de acceso, estando dichos puntos de acceso conectados exclusivamente con dicho nodo móvil,
- un nodo móvil con tráfico bajo de datos por paquetes se conecta a un punto de acceso y dicho punto de acceso esta conectado a uno o varios nodos móviles que requieran tráfico bajo de datos por paquetes, y
- un punto de acceso que no esté conectado a un nodo móvil buscará nuevos nodos móviles en su área de cobertura y enviará los resultados de esa búsqueda al servidor.
2. Método, según Ia reivindicación 1 , caracterizado porque un nodo móvil con tráfico alto de datos por paquetes se conecta a los puntos de acceso llevando a cabo un soft handover.
3. Método, según Ia reivindicación 1, caracterizado porque un nodo móvil con tráfico alto de datos por paquete se desconecta de los puntos de acceso llevando a cabo un soft handover.
4. Método, según Ia reivindicación 1 , caracterizado porque un nodo móvil con tráfico bajo de datos por paquetes se desconecta de un punto de acceso y se conecta a un nuevo punto de acceso realizando un hard handover.
5. Método, según Ia reivindicacióni , caracterizado porque un algoritmo definido en el servidor maximiza el número de puntos de acceso en modo de búsqueda.
6. Método, según Ia reivindicación 1 , caracterizado porque varios puntos de acceso están localizados físicamente en Ia misma localización dentro de una instalación.
7. Método, según Ia reivindicación 5, caracterizado porque los puntos de acceso tienen antenas de alta ganancia.
8. Método, según Ia reivindicación 1 , caracterizado porque los puntos de acceso se conectan por medio de cable con el servidor.
9. Método, según Ia reivindicación 1 , caracterizado porque los puntos de acceso están conectados con el servidor de forma inalámbrica.
10. Método, según Ia reivindicación 5, caracterizado porque se ha incluido al menos un router en Ia instalación.
11. Método, según Ia reivindicación 1 , caracterizado porque el nodo móvil es un dispositivo portátil con pantalla, procesador y memoria.
12. Método, según Ia reivindicación 1 , caracterizado porque las antenas de los puntos de acceso son antenas inteligentes (smart antennas).
13. Método, según Ia reivindicación 1 , caracterizado porque un nodo móvil, que cambia su tráfico de datos por paquetes de bajo a alto, obliga a todos los demás nodos móviles a desconectarse de ese punto de acceso y buscar otro nuevo.
PCT/ES2004/000297 2004-06-23 2004-06-23 Método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico WO2006008324A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/000297 WO2006008324A1 (es) 2004-06-23 2004-06-23 Método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/000297 WO2006008324A1 (es) 2004-06-23 2004-06-23 Método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico

Publications (1)

Publication Number Publication Date
WO2006008324A1 true WO2006008324A1 (es) 2006-01-26

Family

ID=35784895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000297 WO2006008324A1 (es) 2004-06-23 2004-06-23 Método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico

Country Status (1)

Country Link
WO (1) WO2006008324A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614506B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products Inc. Water filter materials and water filters and processes for using the same
US7740766B2 (en) 2001-08-23 2010-06-22 The Procter & Gamble Company Methods for treating water
US7749394B2 (en) 2001-08-23 2010-07-06 The Procter & Gamble Company Methods of treating water
US7850859B2 (en) 2001-08-23 2010-12-14 The Procter & Gamble Company Water treating methods
US7922008B2 (en) 2001-08-23 2011-04-12 The Procter & Gamble Company Water filter materials and water filters containing a mixture of microporous and mesoporous carbon particles
US9210613B2 (en) 2013-11-20 2015-12-08 At&T Mobility Ii Llc Method and apparatus for using a local area network to offload demand of a wide area network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138020A (en) * 1996-09-30 2000-10-24 Telefonaktiebolaget Lm Ericsson Quality-based handover
WO2002054819A1 (en) * 2000-12-29 2002-07-11 Telefonaktiebolaget L M Ericsson (Publ) Method and system for handover of a shared channel in a cdma cellular mobile radio system
WO2003088691A1 (fr) * 2002-04-17 2003-10-23 Nec Corporation Procede de commande de transfert
WO2003107704A1 (en) * 2002-06-13 2003-12-24 Docomo Communications Laboratories Europe Gmbh Proactive deployment of decision mechanisms for optimal handover

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138020A (en) * 1996-09-30 2000-10-24 Telefonaktiebolaget Lm Ericsson Quality-based handover
WO2002054819A1 (en) * 2000-12-29 2002-07-11 Telefonaktiebolaget L M Ericsson (Publ) Method and system for handover of a shared channel in a cdma cellular mobile radio system
WO2003088691A1 (fr) * 2002-04-17 2003-10-23 Nec Corporation Procede de commande de transfert
WO2003107704A1 (en) * 2002-06-13 2003-12-24 Docomo Communications Laboratories Europe Gmbh Proactive deployment of decision mechanisms for optimal handover

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614506B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products Inc. Water filter materials and water filters and processes for using the same
US7740766B2 (en) 2001-08-23 2010-06-22 The Procter & Gamble Company Methods for treating water
US7740765B2 (en) 2001-08-23 2010-06-22 The Procter & Gamble Company Methods for treating water
US7749394B2 (en) 2001-08-23 2010-07-06 The Procter & Gamble Company Methods of treating water
US7850859B2 (en) 2001-08-23 2010-12-14 The Procter & Gamble Company Water treating methods
US7922008B2 (en) 2001-08-23 2011-04-12 The Procter & Gamble Company Water filter materials and water filters containing a mixture of microporous and mesoporous carbon particles
US8119012B2 (en) 2001-08-23 2012-02-21 The Procter & Gamble Company Water filter materials and water filters containing a mixture of microporous and mesoporous carbon particles
US9210613B2 (en) 2013-11-20 2015-12-08 At&T Mobility Ii Llc Method and apparatus for using a local area network to offload demand of a wide area network

Similar Documents

Publication Publication Date Title
ES2290500T3 (es) Metodo para intercambiar informacion de sistema de capa superior en un sistema inalambrico y seleccion de sistema automatico de una red de area local inalambrica.
US8248949B2 (en) Method and device for providing an alternative backhaul portal in a mesh network
ES2745385T3 (es) Aparato y procedimiento para comunicación de red celular en base a una pluralidad de núcleos móviles
US9717104B2 (en) Method and system for providing data access to mobile network nodes of a data network
JP4229182B2 (ja) 無線通信システム、無線通信装置、無線通信方法、および、プログラム
US8982731B2 (en) Bluetooth network configuration
US20050232179A1 (en) Multiple-radio mission critical wireless mesh networks
US20030068975A1 (en) Integrated cellular and ad hoc relaying system
PT1741232E (pt) Transferência de wlan
JP2006229974A (ja) 無線通信ネットワーク及びネットワーク内での無線通信方法
EP3381239B1 (en) Interference mitigation in dense mesh networks
ES2349404T3 (es) Comunicación celular directa.
WO2018084471A1 (en) Method and apparatus for routing data in a wireless communication system
JP2016005099A (ja) 無線通信システム及び無線通信方法
JP2008017419A (ja) 無線通信システム、無線基地局、通信制御方法、および通信制御プログラム
WO2006008324A1 (es) Método para cambios de conexión a un nuevo punto de acceso basado en la demanda de tráfico
ES2301420B1 (es) Metodo para cambios de conexion a un nuevo punto de acceso basado en la demanda de trafico.
EP1359726B1 (en) Packet transmission control apparatus, mobile node, control node, packet communication method, and packet communication system
US20140286216A1 (en) Wireless communication device using common control channel and wireless communication method using the same
JP2007180815A (ja) 無線通信システム
JP2008118202A (ja) 移動通信システムにおける基地局とゲートウェイ装置間の制御信号伝送方法
ES2832502T3 (es) Proceso de traspaso WLAN-IAD
JP2007053474A (ja) マルチホップ通信でのハンドオーバ方法、並びに該方法を実行する基地局及び無線端末
Wu et al. Managed mobility: a novel concept in integrated wireless systems
JP3934346B2 (ja) 通信ネットワーク制御システムおよび方法、ルータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 200650088

Country of ref document: ES

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P200650088

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 200650088

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 200650088

Country of ref document: ES

Kind code of ref document: A