WO2006007876A1 - A magnetic resonance apparatus - Google Patents

A magnetic resonance apparatus Download PDF

Info

Publication number
WO2006007876A1
WO2006007876A1 PCT/EP2004/051529 EP2004051529W WO2006007876A1 WO 2006007876 A1 WO2006007876 A1 WO 2006007876A1 EP 2004051529 W EP2004051529 W EP 2004051529W WO 2006007876 A1 WO2006007876 A1 WO 2006007876A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic structure
magnet
guides
poles
patient
Prior art date
Application number
PCT/EP2004/051529
Other languages
English (en)
French (fr)
Inventor
Luigi Satragno
Eugenio Biglieri
Fabio Rezzonico
Osvaldo Pugliese
Orfeo Contrada
Original Assignee
Esaote, S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esaote, S.P.A. filed Critical Esaote, S.P.A.
Priority to PCT/EP2004/051529 priority Critical patent/WO2006007876A1/en
Priority to JP2007520676A priority patent/JP4606461B2/ja
Priority to CN2004800434965A priority patent/CN1981205B/zh
Publication of WO2006007876A1 publication Critical patent/WO2006007876A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets

Definitions

  • the invention relates to a magnetic resonance imaging apparatus, and particularly to a multipurpose dedicated imaging apparatus having improved features for imaging the region of the vertebral column.
  • Imaging the vertebral column may require the possibility of bringing the patient in an upright position in order to have the vertebral column loaded by the weight of the patient. In the normal laying down position of the patient on a bed or table having an horizontal orientation, the vertebral column will be in an unloaded and ideal condition. Thus, most pathologies may not arise clearly and the examination will lead to unclear results or to negative results despite the fact that the patient is showing typical symptoms of a disease of the vertebral column. [0003] Actually known magnetic resonance imaging apparati use so called total body scanners which magnetic structure houses the entire body or a considerable part of it inside the patient examining space defined by the magnetic structure. [0004] U.S. Patent Nos.
  • the magnetic structure is designed to generate a horizontal magnetic field.
  • the patient is brought inside the examining space by means of a patient positioning device which is a bed or table mounted on a carriage, which bed or table can be further tilted around horizontal axis for giving different orientations to the bed or table with respect to the vertical direction.
  • the bed or table or carriage may be associated with an elevator which displaces the patient up and down relative to the examining space between the poles of the magnetic structure.
  • the actual devices are very big, heavy, and expensive. Big and heavy magnetic structures have problems of installation, since the room where the imaging apparatus has to be installed must necessarily have a floor which can support the weight of the imaging apparatus. Furthermore, the room must be sufficiently big to permit installation.
  • the patient positioning device is also relatively expensive due to the tillable or swingable bed or table and due to the necessity of an elevator for displacing the patient relative to the imaging space in the magnetic structure.
  • an elevator for displacing the patient relative to the imaging space in the magnetic structure.
  • An object of the present invention is to provide for a magnetic resonance imaging apparatus which has a smaller magnetic structure than the conventional so called total body apparatus and which allows nevertheless imaging of the vertebral column under various conditions.
  • a further aim is to provide for such a magnetic imaging apparatus which has simpler and less expensive means for positioning the patient in the examination space of the magnetic structure.
  • a further object of the present invention is to provide for a magnetic resonance imaging apparatus which can be used also for examinations of other anatomic regions of the body of the patient, by allowing in a simple way to displace the patient relative to the examination space in the magnetic structure in order to bring the desired anatomic region or a certain limited region thereof in the examination space.
  • One embodiment of the present invention includes a magnetic resonance imaging apparatus comprising a magnet having a two opposite and spaced apart poles and a column or wall transverse to the poles and connecting the poles; the poles defining two opposite walls delimiting a patient-imaging space, the two opposite walls extending along substantially parallel planes which are substantially perpendicular to a vertical plane; and a patient positioning table which is slidably connected to one of the two poles in a position between the two poles and which table extends substantially parallel to the two opposite poles; the table being slidable with respect to the magnet in a direction parallel to a longitudinal axis of the table; a drive for displacing the table relative to the magnet; a lock for locking the table in a selected position relative to the magnet; the magnet being supported rotatobly along a central horizontal axis of the transverse wall or column; a drive provided for rotating the magnet about the axis; the table being connected to the magnet such that the table rotates with the magnet when the magnet
  • Another embodiment of the present invention includes a method for magnetic resonance imaging with a magnetic structure having two opposite poles spaced apart one from the other and oriented substantially perpendicular to a vertical plane and defining a patient imaging space; and a table for a patient secured to one of the two poles in a slidable way in a longitudinal direction of the table relative to the magnetic structure and between the two poles of the magnetic structure, the table being oriented parallel to the poles, the table having a footrest at one end thereof, the magnetic structure and the table being rotatable together around an axis which is transverse to a longitudinal axis of the table and parallel to the table.
  • the method comprises: rotating the magnetic structure with the table to a patient positioning position in which the table is substantially horizontal; sliding the table to an end position, in which a part of the table is outside the magnetic structure; -A- arranging the patient on the table in a lying down position; sliding the table along its longitudinal axis relative to the magnetic structure until the magnetic structure is correctly centered with a part of the patient's body to be examined; locking the table relative to the magnetic structure together with the table in a position in which the table is not horizontal or vertical; carrying out an imaging procedure; rotating the magnetic structure together with the table to a position in which the table is substantially horizontal; and sliding the table to one of two positions in which a part of the table is outside the magnetic structure and letting the patient step down from the table.
  • Another embodiment of the present invention includes a method for carrying out magnetic resonance imaging with providing a magnetic structure having two opposite poles spaced apart one from the other and oriented substantially perpendicular to a vertical plane and defining a patient imaging space; and a table having a footrest at one end and slides for engaging guides for a longitudinal displacement of the table; and a table supporting structure which has wheels and which is completely independent from the magnetic structure, one of the poles of the magnetic structure and the table supporting frame have identical guides with which the slides of the table are adapted to engage.
  • the method comprises: rotating the magnetic structure such that the guides for the table are horizontal and aligning the table supporting frame with the guides of the table supporting frame aligned with the guides on the pole of the magnetic structure; lying the patient down on the table; sliding the table along a longitudinal direction thereof away from the table supporting frame and against the pole having the guides and engaging at the same time a free end of the slides of the table with the guides on the pole; sliding the table with the patient on the table until the table is completely disengaged from the table supporting frame and engaged with the pole of the magnetic structure; sliding further the table along its longitudinal axis relative to the magnetic structure until the magnetic structure is correctly centered with a part of the patient's body to be examined; supporting the magnetic structure and the table in such a way as to be rotatable together around an axis which is transverse to the longitudinal axis of the table and substantially parallel to the table; locking the table relative to further sliding and rotating the magnetic structure together with the table with the patient on it in a position in which the table is not horizontal; carrying out the imaging procedure; rotating the
  • Another embodiment of the present invention includes a method for carrying out magnetic resonance imaging with a magnetic structure having two opposite poles spaced apart one from the other and oriented substantially perpendicular to a vertical plane and defining a patient imaging space; and a table for a patient to one of the two poles in a slidable way in a longitudinal direction of the table relative to the magnetic structure and between the two poles of the magnetic structure, the table being oriented substantially parallel to the poles; the magnetic structure and the table being rotatable together around an axis which is transverse to the longitudinal axis of the table and parallel to the table.
  • the method comprises: rotating the magnetic structure together with the table in a position in which the table is not horizontal; providing a seat plate secured at an angle to the table; sitting the patient down on the seat plate; carrying out the imaging procedure; and letting the patient step out of the magnetic structure.
  • FIG. 1 is a schematic frontal view of an embodiment of a magnetic resonance imaging apparatus according to the invention.
  • FIG. 2 is a schematic lateral view partly sectioned of the apparatus according to Figure 1.
  • Figures 3 to 6 are simplified frontal views of an embodiment of the apparatus according to the invention in its position with the table oriented along the horizontal plane and in different relative positions of the table with respect to the magnetic structure.
  • Figures 7 and 8 are perspective views of an embodiment of the apparatus according to the present invention with the magnetic structure and the table in the position in which the table is horizontal and in the position in which the table is vertical.
  • Figure 9 illustrates a lateral view of an embodiment of the apparatus according to the present invention in which a seat is associated to the table.
  • Figure 10 illustrates a frontal view of an embodiment of the magnetic resonance imaging apparatus according to the present invention in combination with a separate supporting frame for the table.
  • Figure 11 shows a partial section of a enlarged particular of one slide and guide of the table according to one embodiment of the present invention.
  • FIG. 1 a magnetic resonance imaging apparatus according to an embodiment of the invention is schematically illustrated.
  • the magnetic resonance imaging apparatus comprises a supporting element 1 in the form of a vertical wall.
  • a magnetic structure 2 is secured to the supporting element 1 in a overhanging way.
  • the magnetic structure 2 comprises two opposite poles 102, 202 which are oriented perpendicularly with respect to the supporting wall 1 , and which are connected together in a spaced apart relationship by means of a column or wall 302 which extends parallel to the supporting wall 1 and which is secured to the wall by means of a shaft 3 perpendicular to the supporting wall 1 and to the transverse connecting wall 302 of the magnetic structure 2.
  • the axis of the shaft 3 which is rotatable in a housing in the supporting wall and is also parallel to the poles 102, 202 and perpendicular to the magnetic field generated between them.
  • the axis of the shaft 3 is coincident with the center of symmetry of the wall 302 of the magnetic structure, although this is not a necessary feature in order to ensure the functions of the present magnetic resonance imaging apparatus.
  • a coaxial frontally toothed crown 101 on the supporting wall 1 cooperates with a driving pinion 4 which is driven by a motor 5 by means of a transmission 6.
  • the motor 5 can cause the rotation of the magnetic structure 2 around the axis of the shaft 3 relative to the supporting wall 1.
  • the frontally toothed coaxial crown 101 is illustrated mounted on the supporting wall 1, the same result could be reached by providing the toothed crown on the wall 302 of the magnetic structure and the motor 5, the transmission 6 and the pinion 4 on the supporting wall. This solution would avoid elements on the wall 302 which could cause disturbance to the circulation of the magnetic flux within said wall 302.
  • a table 7 is slidably mounted in a direction parallel to its longitudinal axis on the lower pole 102 of the magnetic structure.
  • the term "table” may be a bed, bed plate, table plate, or other flat surface on which a patient may lie for purposes of examination.
  • the table or bed plate 7 is oriented with its longitudinal axis perpendicular to the axis of the shaft 3 and parallel to the wall 302 of the magnetic structure 2.
  • the table 7 is supported slidably in its longitudinal direction by means of a combination of guides and slides, motorized means being also provided for deriving the displacement of the said table 7 relative to the magnetic structure 2.
  • motorized means being also provided for deriving the displacement of the said table 7 relative to the magnetic structure 2.
  • two longitudinal slides 107 are provided underneath the table 7 and are secured thereto.
  • the slides 107 extend along opposite longitudinal sides of the table 7 are slidably engaged in guides 8, 8' provided at the transverse ends of the lower pole 102 of the magnetic structure.
  • a combination of a longitudinal rack secured to the table 7 and a pinion driven by a motor ensures a motorised displacement of the table along it longitudinal axis and in both directions.
  • the racks may be formed also by the one or both slides 107, a surface of which has a toothed longitudinal region which engages with a corresponding pinion 4 housed in a recess of the one or both guides 8, 8'.
  • the pinion or pinions 4 are driven by a motor 9 through a shaft 104. See Figures 2 and 11.
  • the slides 107 and the guides 8, 8' have a cross section which forms a mutual undercut for avoiding the slipping out of the slides 107 from the guides when the magnetic structure is rotated together with the table 7 from the horizontal position of the table to a vertical position.
  • Many different designs of the slides and of the guides may be chosen.
  • One simple solution illustrated in Figure 11 comprises a lateral continuous tooth 207 on each slide 107 which engages a lateral continuous slot 108 in the corresponding lateral wall.
  • nonillustrated releasable locking means of the table 7 relative to the magnetic structure 2 are provided.
  • This locking means may consist in the combination of the rack and pinion mechanism which might be of the nonreversible kind if the motor is deenergised.
  • mechanical locking means such as releasable locking teeth engaging the rack, may be provided which means may be driven alternatively in an active position of engagement and in an inactive position of disengagement by means of manual, electric or other kinds of actuators.
  • the table 7 may be also slidable in a direction transverse to its longitudinal axis, i.e., in a direction perpendicular to the wall 302 of the magnetic structure 2. This may be obtained in a similar way as the method described with reference to the longitudinal displacement of the table 7.
  • the guides 8, 8' on each side of the pole 102 are arranged on a transverse slide 10 which engages a transverse guide 11.
  • the transverse guide and slides may have a cross-section with mutually engaging undercuts as described with reference to the longitudinal guides and slides and according to Fig. 11.
  • releasable locking means may be provided which may be activated or deactivated as described with reference to the releasable locking means for the longitudinal displacement of the table 7.
  • the magnetic resonance imaging apparatus allows positioning of the patient on the table 7 when the magnetic structure with the table are rotated in an horizontal position of the poles 102, 202 and of the table 7.
  • the table 7 may be brought to its maximum longitudinal displacement, as illustrated in Figure 3.
  • the table may be displaced relative to the magnetic structure 2 in its longitudinal direction or if provided also in its transverse direction.
  • Figures 4 to 6 illustrates different relative positions of the table
  • FIG. 3 to 6 also clearly illustrate that the magnetic resonance imaging apparatus according to the present invention allows not only to carry out useful images of the vertebral column but due to the fact that the table 7 might be displaced continuously in longitudinal and transverse directions, the patient can be brought every time with a different anatomic region in the examination space formed between the two poles 102, 202, thus allowing different kinds of examinations.
  • the table In order to reduce the load on the guides and slides of the overhanging table 7 at its extreme positions ( Figures 3 and 6), the table might be provided at one or both of its ends with a couple of wheeled legs 15 as is shown in Figure 1. This allows an extraction of the table from the magnetic structure for almost its entire length, provided the end without the wheeled supporting legs will rest engaged for a terminal length with the magnetic structure.
  • the magnetic structure 2 can be rotated together with the table 7 through an angle of 90°. In this position the table is vertical and the patient is in an upright position. In order to allow the patient to reach the upright position, at the end of the table associated with the feet a footrest
  • This footrest may be fixed or it may be formed by a plate which is secured in position to the table after having positioned the patient or the footrest may be formed by a prolongation of the table 7 which is hinged to the table 7 in such a way as to be brought and blocked alternatively in the overhanging position and in a position parallel to the rest of the plate 7.
  • the magnetic structure and the table may be rotated for an angle less than 90°, thus modulating the load on the vertebral column of the patient due to the weight of the patient itself.
  • the magnetic structure 2 and the table 7 can be rotated again in the position where the table 7 is horizontal.
  • the table can then be displaced to one of its end positions, and the patient can leave the apparatus.
  • a separate supporting structure 20 may be provided for the table 7.
  • This separate supporting structure is formed by a frame having wheeled legs.
  • the supporting structure 20 is provided on its top with guides 8" which are identical in position and cross section to the guides 8,8' for the longitudinal slides 107 of the plate 7.
  • guides 8" on the separate supporting structure 20 for the plate 7 with the guides 8, 8' of the pole 102, the table 7 may be transferred by longitudinal displacement from the said supporting structure 20 to the guides 8, 8' on the pole 102, and vice versa.
  • the patient might be prepared for examination on a table outside the magnetic structure while another patient is subjected to examination in the apparatus.
  • the plate 7 can be inserted in the magnetic structure from one side and extracted from the magnetic structure on the opposite side, and by providing at least two plates 7 with at least two supporting frames 20 one for each plate, it is possible to control the traffic of patients to be examined.
  • the table with a patient who has just finished the examination is extracted from the magnetic structure, for example, from the left hand end of the structure 2 of Figure 10, while the table 7 with a following patient is inserted in the magnetic structure from the right hand side of the magnetic structure 2.
  • This solution also allows preparation of the patient for examination on a table outside the magnetic imaging apparatus so that a patient can be prepared for examination while another patient is examined in the apparatus.
  • Providing a disengagement of the bed or table from the magnetic structure from one side of the magnetic structure and the engagement of the following bed or table with the magnetic structure on the opposite side of it the apparatus is even more rational regarding the traffic of patient.
  • the insertion or extraction of the table 7 in and from the magnetic structure 2 can also be carried out in a transverse direction of the table 7.
  • a seat plate 21 may be provided.
  • the seat plate 21 may be secured directly to the table 7 at different heights or there might be provided a supporting rod 22 which is secured parallel to the plate 7 to the plate itself or to the magnetic structure.
  • the rod 22 carries an overhanging seat plate, the seat plate being secured to the rod by means of a slide engaging the rod, releasab ⁇ e locking means being provided for locking the seat plate 21 at a desired height.
  • the magnetic structure of the imaging apparatus is preferably of the so called dedicated kind, forming a patient imaging space which is at least shorter than the mean height of adult patients.
  • Such magnetic structures are relatively light and less costly than total body magnets or similar magnets.
  • Furthermore such dedicated magnetic structures are handy and can be supported in a displaceable manner without taking into account high expenses for the means which allow the displacement of the magnetic structure.
  • the table or table plate has a length which is greater that the corresponding dimension of the poles of the magnetic structure and a width which is of the order of the corresponding dimension of the poles.
  • An embodiment according to the invention allows also a simpler and less expensive patient positioning, due to the fact that the table and the magnetic structure are supported in a way as to be rotated together, the positioning of the patient, by sliding the table relatively to the magnetic structure is carried out in the condition of rotation of the magnet and of the table in which the table is horizontal.
  • the means for allowing the sliding displacement of the table as well as the means for driving the displacement of the table can be of reduced strength and of reduced power with respect to the solution disclosed in the above mentioned prior art documents. This on the other hand leads to lower costs, weight reduction and a slighter and simpler construction.
  • the patient may lay down on the table or bed without any difficulty since the table or the bed might be displaced in one of the two opposite end positions in which it extends out from the magnetic structure for a very relevant part.
  • the bed or table can also be designed in a manner as to be used also in other diagnostic devices or apparati.
  • Providing not only a footrest, but also a seat plate which might be formed by a section of the bed or table allows examinations of the patient also in a sitting position.
  • the patient enters the magnetic structure with the bed or table in the horizontal position and in lying the patient takes a lying position lying on the bed or table and against the seat.
  • the magnet and the table can be rotated to a substantially vertical position of the bed or table and thus moving the patient to a sitting position.
  • the patient enters the magnetic structure when the bed or table and the magnet are rotated in the vertical position of the bed or table and stands on a footrest or sits down on a seat.
  • One example of a method according to the present invention comprises the following steps:
  • the bed or table may be completely disengaged from the magnetic structure and at the same time engaged in a slidably way onto an independent and separate wheeled supporting frame.
  • Such an alternative embodiment comprises the steps of:
  • the bed or table is transferred onto the pole of the magnetic structure from the supporting frame and back from the pole on the said supporting frame after examination by sliding the bed or table always in the same longitudinal direction of Hie bed or table, so that a further step of the method includes displacing the supporting frame from the first side of the magnetic structure at which the bed or table has been transferred to the pole to the second opposite side of the pole and aligning the guides of the supporting frame with the guides on the pole of the magnetic structure;
  • the above mentioned method may provide a rotation of the magnetic structure together with the patient lying on it from the horizontal position to a nonhorizontal position which in intermediate with respect to the horizontal position and to the vertical position.
  • a further embodiment of imaging may comprise the following steps:
  • each one of the alternative methods may further comprise the step of sliding the bed or table or the seat plate transverse to the longitudinal axis of the bed or table.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
PCT/EP2004/051529 2004-07-16 2004-07-16 A magnetic resonance apparatus WO2006007876A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/EP2004/051529 WO2006007876A1 (en) 2004-07-16 2004-07-16 A magnetic resonance apparatus
JP2007520676A JP4606461B2 (ja) 2004-07-16 2004-07-16 磁気共鳴撮像装置
CN2004800434965A CN1981205B (zh) 2004-07-16 2004-07-16 一种磁共振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/051529 WO2006007876A1 (en) 2004-07-16 2004-07-16 A magnetic resonance apparatus

Publications (1)

Publication Number Publication Date
WO2006007876A1 true WO2006007876A1 (en) 2006-01-26

Family

ID=34958634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051529 WO2006007876A1 (en) 2004-07-16 2004-07-16 A magnetic resonance apparatus

Country Status (3)

Country Link
JP (1) JP4606461B2 (zh)
CN (1) CN1981205B (zh)
WO (1) WO2006007876A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1913869A2 (en) * 2006-10-19 2008-04-23 Esaote S.p.A. Diagnostic imaging method and apparatus for the anatomical region of the pelvic floor
ES2323032A1 (es) * 2007-03-07 2009-07-03 Joan Verdaguer Codina Dispositivo de posicionamiento para maquinas de resonancia magnetica mnuclear.
CN102023288A (zh) * 2010-11-22 2011-04-20 中联煤层气国家工程研究中心有限责任公司 测试装置和利用该装置对核磁共振设备进行测试的方法
CN109713851A (zh) * 2018-12-06 2019-05-03 佛山瑞加图医疗科技有限公司 磁共振系统的电机驱动装置及屏蔽方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186531B2 (ja) * 2010-05-27 2013-04-17 エサオテ ソチエタ ペル アチオニ 磁気共鳴撮像装置
CN104083171B (zh) * 2014-07-10 2016-05-04 吴锋 可旋转式核磁共振成像设备
CN106483481B (zh) * 2016-12-20 2020-09-15 河南中医药大学 一种核磁共振磁体组件
CN113476030B (zh) * 2021-07-26 2024-02-23 山东大学 一种可旋转式双姿态核磁共振成像装置
CN113552512B (zh) * 2021-07-26 2022-10-25 山东大学 一种用于核磁共振设备的旋转装置
CN114159044A (zh) * 2021-12-08 2022-03-11 深圳市澈影医生集团有限公司 一种脑灌注成像用核磁共振数据处理装置及处理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517452A1 (en) * 1991-06-03 1992-12-09 General Electric Company Open MRI magnet
US5779637A (en) * 1995-05-11 1998-07-14 Elscint, Ltd. Magnetic resonance imaging system including an image acquisition apparatus rotator
US6218837B1 (en) * 1994-11-25 2001-04-17 Hitachi Medical Corporation Magnetic resonance imaging system
WO2003041577A1 (en) * 2001-11-14 2003-05-22 Koninklijke Philips Electronics N.V. Docking means for medical system comprising examination device and patient support device
US20040138553A1 (en) * 2002-11-25 2004-07-15 Fonar Corporation Method, apparatus, and facility for magnetic resonance imaging dual scanning
EP1460443A2 (en) * 2003-03-18 2004-09-22 Esaote S.p.A. Open magnetic resonance imaging apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697659B1 (en) * 1991-12-04 2004-02-24 Bonutti 2003 Trust-A Method of imaging a joint in a body of patient
CN2342769Y (zh) * 1998-05-09 1999-10-13 深圳安科高技术有限公司 检查床
CN2397891Y (zh) * 1999-10-20 2000-09-27 深圳安科高技术有限公司 一种磁共振成像系统
JP3891810B2 (ja) * 2001-09-28 2007-03-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0517452A1 (en) * 1991-06-03 1992-12-09 General Electric Company Open MRI magnet
US6218837B1 (en) * 1994-11-25 2001-04-17 Hitachi Medical Corporation Magnetic resonance imaging system
US5779637A (en) * 1995-05-11 1998-07-14 Elscint, Ltd. Magnetic resonance imaging system including an image acquisition apparatus rotator
WO2003041577A1 (en) * 2001-11-14 2003-05-22 Koninklijke Philips Electronics N.V. Docking means for medical system comprising examination device and patient support device
US20040138553A1 (en) * 2002-11-25 2004-07-15 Fonar Corporation Method, apparatus, and facility for magnetic resonance imaging dual scanning
EP1460443A2 (en) * 2003-03-18 2004-09-22 Esaote S.p.A. Open magnetic resonance imaging apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1913869A2 (en) * 2006-10-19 2008-04-23 Esaote S.p.A. Diagnostic imaging method and apparatus for the anatomical region of the pelvic floor
EP1913869A3 (en) * 2006-10-19 2008-12-10 Esaote S.p.A. Diagnostic imaging method and apparatus for the anatomical region of the pelvic floor
US8457710B2 (en) 2006-10-19 2013-06-04 Esaote S.P.A. Diagnostic imaging method and apparatus for the anatomical region of the pelvic floor
ES2323032A1 (es) * 2007-03-07 2009-07-03 Joan Verdaguer Codina Dispositivo de posicionamiento para maquinas de resonancia magnetica mnuclear.
CN102023288A (zh) * 2010-11-22 2011-04-20 中联煤层气国家工程研究中心有限责任公司 测试装置和利用该装置对核磁共振设备进行测试的方法
CN102023288B (zh) * 2010-11-22 2013-02-20 中联煤层气国家工程研究中心有限责任公司 测试装置和利用该装置对核磁共振设备进行测试的方法
CN109713851A (zh) * 2018-12-06 2019-05-03 佛山瑞加图医疗科技有限公司 磁共振系统的电机驱动装置及屏蔽方法

Also Published As

Publication number Publication date
CN1981205A (zh) 2007-06-13
JP4606461B2 (ja) 2011-01-05
CN1981205B (zh) 2013-11-06
JP2008506430A (ja) 2008-03-06

Similar Documents

Publication Publication Date Title
US8755863B2 (en) Magnetic resonance imaging apparatus
US7844318B2 (en) Patient support device, such as a patient bed, table or chair for use with magnetic resonance imaging apparatuses
EP1771744B1 (en) A magnetic resonance imaging apparatus
EP0965853B1 (en) Vertical magnet apparatus suitable for MRI
WO2006007876A1 (en) A magnetic resonance apparatus
WO2011111119A1 (ja) 断層撮像装置
US9375187B2 (en) Modular patient handling system for medical imaging apparatus
CN101496721B (zh) 一种检查床
US5199123A (en) Examination bed for NMR or tomodensitometry apparatus
CN114129351A (zh) 一种智慧医疗的服务检查转运设备
KR100981927B1 (ko) 휠체어 겸용 검진장치
JP5186531B2 (ja) 磁気共鳴撮像装置
JP2018500985A (ja) 固定式/可動式患者ハンドリングシステム
CN114947809A (zh) 一种适用于移动式磁共振成像装置的老年人检查床
CN110141440A (zh) 一种带有液压支架的医用推车
CN218529133U (zh) 一种移位机
CN215959865U (zh) 一种ct用磁共振成像扫描装置
JPH09294735A (ja) 医療用寝台装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043496.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007520676

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application