WO2006003280A1 - Composition thermoplastique biodegradable et procede de preparation - Google Patents

Composition thermoplastique biodegradable et procede de preparation Download PDF

Info

Publication number
WO2006003280A1
WO2006003280A1 PCT/FR2005/001363 FR2005001363W WO2006003280A1 WO 2006003280 A1 WO2006003280 A1 WO 2006003280A1 FR 2005001363 W FR2005001363 W FR 2005001363W WO 2006003280 A1 WO2006003280 A1 WO 2006003280A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
component
weight
glycol
biodegradable
Prior art date
Application number
PCT/FR2005/001363
Other languages
English (en)
Inventor
Gabriel Leon
Original Assignee
C.R.E.C.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C.R.E.C.A. filed Critical C.R.E.C.A.
Priority to JP2007514030A priority Critical patent/JP2008501815A/ja
Priority to EP05775268A priority patent/EP1776414A1/fr
Priority to US11/628,437 priority patent/US20080281026A1/en
Publication of WO2006003280A1 publication Critical patent/WO2006003280A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to biodegradable thermoplastic polymer compositions.
  • Thermoplastic polymers are used increasingly important because of their low cost, their stability, their resistance to water, oils, their resistance to degradation such as corrosion or putrefaction and their moldability.
  • polyesters of the PET family polyethylene glycol terephthalate and derivatives
  • PBT polybutylene glycol terephthalate and derivatives
  • PET polyethylene glycol terephthalate and derivatives
  • PBT polybutylene glycol terephthalate and derivatives
  • these polymers then become considerably more vulnerable. They can hydrolyze spontaneously in a humid environment or through the action of enzymes produced by microbes or microorganisms in the soil, the environment or in composters.
  • polyethylene, polypropylene, polystyrene are difficult to degrade under the usual conditions.
  • very fine fibers from a few nanometers to a micron are more fragile.
  • the degradability of a polymer is therefore a relative notion. It can be modulated.
  • some plastics or similar products are biodegradable.
  • cellophane which is a particular physical state of the cellulose, certain cellulose derivatives, in particular cellulose diacetate, carboxymethyl cellulose or hydroxyethyl cellulose (condensation product of cellulose with ethylene oxide), poly-glycolic acid (PGA), poly -lactic (PLA), poly-hydroxy-butyric (PHB) or poly-hydroxy-valeric acid (PHV).
  • PGA poly-glycolic acid
  • PDA poly -lactic
  • PHB poly-hydroxy-butyric
  • PV poly-hydroxy-valeric acid
  • the object of the present invention is to develop a family of biodegradable thermoplastic polymers capable of replacing polyethylene, polypropylene, polystyrene, at least in some of their applications, that is to say, keeping the physical properties of the compositions thermoplastics, the compositions selected to be implemented by the current techniques of the profession without requiring the use of specific equipment.
  • US-A-4 156 666 relates to the modification of polyethylene (PE), mixed polymers ethylene / propylene or mixtures of PE and polypropylene (PP) by additives such as unsaturated fatty acids or their esters and possibly a calcium-based filler such as calcium carbonate (limestone), calcium sulphate (plaster or gypsum), calcium phosphate, or a magnesium-based filler : carbonate, silicate.
  • PES polyethylene
  • PP polypropylene
  • additives such as unsaturated fatty acids or their esters and possibly a calcium-based filler such as calcium carbonate (limestone), calcium sulphate (plaster or gypsum), calcium phosphate, or a magnesium-based filler : carbonate, silicate.
  • a calcium-based filler such as calcium carbonate (limestone), calcium sulphate (plaster or gypsum), calcium phosphate, or a magnesium-based filler : carbonate, silicate.
  • US-A-4,931,488 discloses the use of a biodegradable additive of the family of starch (high molecular weight organic molecule), optionally chemically modified.
  • the other additives used in the composition are an iron salt of a fatty acid such as ferrous stearate and an unsaturated fatty acid, therefore easily oxidizable, or an ester thereof.
  • starch, its derivatives, as well as cellulose have a poor resistance to heat. They begin to decompose at temperatures barely above 100 ° C, yellowing in a first stage and then charring which can give black spots in the material, and giving off water vapor, which will give bubbles in the final product.
  • the international patent application WO-A-94/13735 is similar to the previous application.
  • the proposed solution is to formulate a stable polymer with a biodegradable component and other additives, so as to constitute a biodegradable synthetic polymer.
  • the biodegradable compounds are preferably selected from the family of polysaccharides of which starch and cellulose are part, plus an oxidizable fatty acid or its ester and iron salts and copper salts.
  • compositions therefore meet the problems indicated above, that is to say a moderate heat resistance and / or an abrasive effect on the processing equipment.
  • the present invention therefore relates to a biodegradable thermoplastic polyester composition not comprising metals, metal salts or starch and comprising:
  • thermoplastic polyester A) at least 50% by weight of a thermoplastic polyester
  • thermoplastic polymer other than component A from 2% to 20% by weight of a low molecular weight biodegradable organic molecule, C) from 0 to 30% by weight of a thermoplastic polymer other than component A.
  • thermoplastic polyester composition means any polymeric composition based on one or more thermoplastic polyester (s) (component A), which may contain up to 30% of a thermoplastic polymer. different from component A (component C) and from 2 to 20% of a biodegradable organic molecule of low molecular weight (component B).
  • component A is chosen from polyethylene glycol terephthalate, polypropylene glycol terephthalate, polybutylene glycol terephthalate and poly 1,3 propanediol terephthalate, polyethylene naphthalate, poly omega caprolactone or mixtures thereof.
  • component A has a Tg (glass transition temperature) greater than 40 ° C.
  • the component C is a polymer selected from the group consisting of polyurethane (PU), polyester, polystyrene (PS) and polyolefins such as polyethylene (PE), polypropylene (PP) and their copolymers, these polymers including low density polyethylenes (PELDs), high density polyethylenes (HDPE), medium density polyethylenes (MDPEs), linear low density polyethylenes (PELDLs) or their blends.
  • PELDs low density polyethylenes
  • HDPE high density polyethylenes
  • MDPEs medium density polyethylenes
  • PELDLs linear low density polyethylenes
  • this component C may also be chosen from the group of thermoplastic copolymers or their mixtures such as copolymers of ethylene and vinyl acetate (EVA), in particular Evatane® sold by the company Atofina, copolymers of ethylene and of methyl acrylate (EMAC) such as Orevac® marketed by Atofina, butylene butylacrylate (EBAC), polymethylacrylate (PMA), polymethylmethacrylate (PMMA) and polyethylene oxide or polyethylene glycol (PEG) or mixtures thereof.
  • EVA ethylene and vinyl acetate
  • EBAC methyl acrylate
  • PMA polymethylacrylate
  • PMMA polymethylmethacrylate
  • PEG polyethylene oxide or polyethylene glycol
  • Component C may also be a thermoplastic polyester other than component A and selected from the group consisting of polyethylene naphthalate, polyethylene glycol terephthalate, polypropylene glycol terephthalate, polybutylene glycol terephthalate, poly 1,3 propanediol terephthalate or poly omega caprolactone their mixtures.
  • the component C is chosen from the group consisting of copolymers of ethylene and of vinyl acetate or of methyl acrylate or polyethylene naphthalate.
  • the component C is a mixture of thermoplastic polymers.
  • the composition according to the present invention does not contain starch.
  • starch means any starch that is natural, esterified or modified in another way, for example by means of silane.
  • the composition according to the present invention contains no polymer other than thermoplastic polymers.
  • polymers selected from the group consisting of cellulose and its derivatives, starch derivatives, alginates, chitin, chitosan and polysaccharides in general.
  • composition according to the present invention does not contain proteins.
  • composition according to the present invention does not include metals or metal salts.
  • composition according to the present invention does not comprise abrasive substances.
  • abrasive substances any substance that may cause premature wear of the material such as the metal salts defined above.
  • the group of "naturally biodegradable" polyesters is not useful in the present invention, although they may be added, such as polyglycolic acid (PGA), poly-lactic acid (PLA), polyhydroxy Butyric acid (PHB), polyhydroxy valeric acid (PHV), ethylene glycol poly-succinate or butylene glycol poly-succinate.
  • PGA polyglycolic acid
  • PLA poly-lactic acid
  • PHB polyhydroxy Butyric acid
  • PV polyhydroxy valeric acid
  • ethylene glycol poly-succinate or butylene glycol poly-succinate.
  • the composition will therefore contain none of these polyesters.
  • biodegradable thermoplastic polyester composition means any thermoplastic polyester composition as defined above which disintegrates into small particles either under the action of the heat in a humid atmosphere and / or the conditions of the invention. composting. Since the thermoplastic composition also contains a naturally biodegradable substance, the small particles thus formed are further degraded by microorganisms such as bacteria, yeasts, fungi and / or enzymes present in them. composting mixtures or in the soil. Complete degradation is thus obtained under adequate conditions.
  • biodegradable organic molecule means any organic molecule that can degrade under the conditions indicated above for the biodegradable thermoplastic polyester composition.
  • the term "low molecular weight organic molecule” is understood to mean any molecule having a molecular weight of less than 5000, advantageously less than 2000.
  • the biodegradable organic molecule (component B) is chosen from group consisting of ethylene glycol diacetate (EGDA); glycerol triacetate and polyol esters diethylene glycol diacetate (DEGDA); triethylene glycol diacetate (TEGDA); polyethylene glycol diacetate (PEGDA) and analogous esters derived from propylene oxide; monoesters or diesters of short chain acids and alcohols, chosen in particular from ethylene glycol or propylene glycol di stearate, methyl stearate, glycerol tristearate or ethyl butyl adipate or methyl; monoesters or diesters of short-chain acid and fatty alcohol, in particular chosen from dodecyl acetate, n-octyl succinate or do
  • component B is chosen from fatty esters, triethylene glycol diacetate, dodecyl acetate or ethylene glycol di stearate. Even more advantageously, it is triethylene glycol diacetate.
  • the amounts of component B used are advantageously between 2 and 10% by weight, even more advantageously between 3 and 6% by weight, and even more advantageously between 4 and 5% by weight. Even more advantageously, it is 5% by weight.
  • the composition according to the present invention has good heat stability, preferably at a temperature between room temperature and 300 ° C. At a temperature of 300 ° C., the composition according to the present invention is in the liquid state.
  • the term "ambient temperature” means a temperature of approximately 20 ° C.
  • good heat stability means the absence of color change, in particular yellowing or blackening, or carbonization of the composition according to the present invention.
  • composition according to the present invention may comprise other ingredients, such as, for example, plasticizers, pigments or dyes, antistats, flame retardants, lubricants, nucleating agents, internal lubricants, release agents or anti-wrinkle agents. .
  • the composition according to the present invention retains properties comparable to those of thermoplastic compositions, that is to say, for example, a simple implementation and interesting mechanical properties.
  • the composition according to the present invention remains stable during storage and intended uses but can be easily degraded after use under the conditions indicated above.
  • the composition according to the present invention can be degraded in less than 3 months, advantageously between 1 and 2 months, in an artificial compost.
  • the artificial compost is produced in 500 ml flasks containing 50 g of microcrystalline cellulose (Alfa Aesar Avocado) suspended in 150 ml of an IM phosphate buffer, pH 8.0, supplemented with 1 ml of a cocktail of vitamins ("Alvityl syrop", Laboratoires Solvay Pharma), 2 g of sucrose and 1 ml of a cocktail of trace elements ("Aguettant trace elements", Laboratoires Aguettant), 2 g of a cocktail of amino acids (pancreatic casein hydrolyzate, Fluka), 2 g of peanut oil and inoculated with a cocktail of soil microorganisms.
  • compositions according to the present invention are stable at temperatures below 0 ° C.
  • the degradation tests are carried out as follows: the flasks contain the artificial compost and samples of the test composition: a sheet of 10x15 cm per flask (ie about 1.25 g). They are stirred mechanically, kept in an atmosphere saturated with water and maintained at the chosen temperature. It is estimated that the product is degraded when at least 90% of its weight has disappeared. The tests were always carried out on film-like samples with a thickness of 50 microns +/- 10 microns of compositions according to the present invention.
  • the present invention also relates to articles comprising a composition according to the present invention, in particular, made from a composition according to the present invention.
  • a composition according to the present invention is a thin film, that is to say of thickness between 10 and 100 microns, of a thick film, that is to say of thickness between 100 microns and 1 mm, a thermoformable film, an injected article, molded or expanded.
  • the present invention relates to a process for the preparation of a composition according to the present invention by mixing component A with component B and optionally component C at the processing temperature of the most viscous polymer among components A and C .
  • the mixture of polymers (solids at ambient temperature) and low molecular weight additives (usually liquid) is generally produced in an extruder, advantageously of the twin-screw type, advantageously at a temperature of approximately 210 ° C.
  • an extruder advantageously of the twin-screw type, advantageously at a temperature of approximately 210 ° C.
  • a ring is obtained which is cooled with water and cut into granules. These granules are carefully dried before further use.
  • Thin films, 10 to 100 microns, are generally obtained by the extrusion blow molding technique.
  • An annular die extrudes a tube that is inflated with air to obtain the desired thickness.
  • Thick films, of the order of mm are generally obtained by calendering.
  • Example 1 Preparation of PETG granules containing a liquid additive: TEGDA.
  • the PETG of the study is the PETG reference 6763 marketed by Eastman Chemicals. This product is a copolymer of terephthalic acid and ethylene glycol supplemented with cyclohexyl 1,4-dimethanol. This product is not considered biodegradable.
  • the PETG is dried at least 4 hours at 70 ° C before any intervention.
  • the mixture of PETG and TEGDA (triethylene glycol diacetate) is made using a twin-screw extruder brand CLEXTRAL BC21 which has two feed hoppers.
  • TEGDA liquid at room temperature
  • the speed of rotation of the screws is 300 revolutions per minute and the temperatures close to 220 ° C.
  • a rod of about 3 mm in diameter is obtained, which is cooled with water and cut into granules of 3 mm long approx. These granules are thoroughly dried for at least 24 hours at 45 ° C before further use.
  • TEGDA amount of TEGDA incorporated was 2; 3; 5; 6; 7.5 and 10% by weight of the final preparation.
  • the granules with 10% TEGDA are slightly sticky, which is not the case for the lower dosages.
  • Example 2 Preparation of PETG granules containing other liquid additives.
  • Example 3 Preparation of thin films PETG / TEGDA.
  • Thin films 10 to 100 microns, are obtained by the extrusion blow molding technique.
  • a COLLIN brand blowing tool is used which is adapted to a MAPRE single-screw extruder, having a screw 30 mm in diameter and 33 D in length (ie one meter).
  • Eight temperature zones can be controlled: three from the hopper, one on the degassing zone, three at the end of the screw and one at the level of the die.
  • the following temperature profile was used (° C): 190 (hopper), 190, 180, 170 ( degassing), 180, 200, 200, 220 (die). The rotational speed of the screw is 35 rpm.
  • the ring die with a diameter of 50 mm extrudes a 1 mm thick tube which is inflated with compressed air and simultaneously stretched to obtain the desired thickness, most often 50 microns +/- 10 ⁇ m.
  • the temperature of the extruder is lower: 140 to 160 ° C.
  • PETG supplemented with triethylene glycol diacetate (TEGDA) becomes biodegradable.
  • TEGDA partially soluble in water and able to migrate into the PETG matrix, is degraded first to leave the PETG in a microporous and hydrophilic form that becomes accessible to degradation by microorganisms in the soil or the soil. environment. It will be noted that such a formulation may not be suitable for the long-term conditioning of wet products, except for the packaging of products to be kept at low temperature (freezer, refrigerator).
  • T g glass transition temperature
  • the ideal proportion of TEGDA is between 3 and 6%, by weight.
  • the degradation times vary from 1 month (6% of TEGDA) to two months (3% of TEGDA) for films with a thickness of 50 microns.
  • Example 4 Preparation of PETG films containing other liquid additives.
  • the technique used was extended without changes to the other additives described in Example 2.
  • the concentration of the additives was set at 4%.
  • the films obtained, with a thickness of 50 .mu.m +/- 10 .mu.m, showed degradation times of two months, substantially, under the conditions of artificial compost defined above.
  • the films obtained are suitable for the packaging of wet products.
  • they will not be recommended for the packaging of fatty food products, unless they have the "food quality" label, as is the case, for example, with ethylene glycol di stearate or certain paraffin oils. low molecular weight.
  • the stability of the film over time (if it is a film) will be closely related to the conditions of use.
  • the migration of the fatty esters is very slow at low temperature for example in the freezer or in the refrigerator but increases in heat. This is a factor to consider in applications.
  • EXAMPLE 5 Addition of Another Polyester To the mixture obtained in Example 1, corresponding to PETG containing 5% by weight of TEGDA, 5 to 20% by weight of polyethylene naphthalate (PEN), a thermoplastic polyester product synthesized by Teijin Dupont Films Japan Limited. This mixture leads to granules that can form films.
  • the films obtained are still biodegradable, in addition the glass transition temperature rises from 10 to 50 ° C according to the proportion of PEN. They will therefore be more stable to heat.
  • the degradation times vary from 1 month (5% PEN) to three months (20% PEN) for films with a thickness of 50 microns.
  • the films obtained do not show no sign of degradation after a period of five months under the conditions of the previous tests.
  • These molding or injection-molding products can also give thin films (from 10 to 100 microns) but which lack flexibility. Thick films (of the order of mm) can be thermoformed.
  • a granulate is prepared using the CLEXTRAL BC21 twin-screw extruder.
  • PETG is introduced, in the other the Atofma reference 1008FE24 low density polyethylene (PELD), and the TEGDA in the feed well, using a dosing pump, so as to obtain granules of final composition by weight: PETG 75, PELD 20, TEGDA 5.
  • PELD low density polyethylene
  • Orevac 18630 (Atofina), an ethylene / methyl acrylate random copolymer, composed of 20% by weight of methyl acrylate.
  • Orevac is used to ensure better compatibility between various polymers including PET / PRTG, PS, PE, EVA, EVOH.
  • the final proportions, by weight are the following: PETG 70, PELD 20, TEGDA 5, Orevac 5.
  • the films are prepared as in Example 3 using the granules defined above.
  • the following temperature profile ( 0 C) was used: 180 (hopper), 180, 170, 160 the
  • the films obtained, with a thickness of 50 ⁇ m +/- 10 ⁇ m, are much more flexible than those obtained in Examples 3, 4, 5.
  • Films composed of PETG and 20% PELD were prepared for comparison. In the absence of TEGDA, the films obtained show no sign of degradation after a period of five months under the conditions of the previous tests.
  • Evatane is a random copolymer of ethylene and vinyl acetate marketed by Atofina.
  • the Evatane 28-03 used contains 28% vinyl acetate.
  • a granulate is prepared using the CLEXTRAL BC21 twin-screw extruder.
  • PETG is introduced, in the other the EVA and TEGDA so as to obtain granules of final composition by weight: * PETG 75, EVA 20, TEGDA 5. * PETG 50, EVA 35, TEGDA 5.
  • the films are prepared as in Example 3. In both cases, the following temperature profile ( 0 C) was used: 160 (hopper), 160, 150, 140 (degassing), 150, 170, 170, 190 (Faculty). The rotational speed of the screw is 70 revolutions per minute.
  • L ⁇ vatane® is not spontaneously biodegradable, but when the other elements of the formulation have been severely degraded, its degradation then becomes possible as has been observed with films treated under the preceding conditions with degradation times varying from two months. (10% Evatane®) at four months (30% Evatane®) for 50 micron films. Note that Evatane® migrates poorly in the macromolecular matrix, but the whole remains biodegradable. In fact, the microorganisms of the environment can hydrolyze the acetic ester functions of Evatane®, oxidize the alcohols to ketone functions and finally cut the macromolecular chain into numerous degradable fragments.
  • Films composed of PETG and 20% EVA were prepared for comparison. In the absence of TEGDA, the films obtained show no sign of degradation after a period of five months under the conditions of the previous tests.
  • Example 6 a granulate is prepared using the CLEXTRAL BC21 twin-screw extruder.
  • PETG containing 4% Loxiol or pure PETG, in the other pure EVA or a mixture of granules of EVA and Orevac granules according to the following compositions, expressed by weight:
  • the films are prepared as in Example 3. In both cases, the following temperature profile (° C) was used: 160 (hopper), 160, 150, 140 (degassing), 150, 170, 170, 190 (Faculty). The rotational speed of the screw is 70 revolutions per minute.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

La présente invention concerne une composition polyester thermoplastique biodégradable ne comprenant pas de métaux, de sels métalliques ni d'amidon et comprenant: A) au moins 50% en poids d'un polyester thermoplastique, B) de 2% à 20% en poids d'une molécule organique biodégradable de bas poids moléculaire, avantageusement de 2 à 10% en poids. C) de 0 à 30% en poids d'un polymère thermoplastique différent du composant A.

Description

TITRE : COMPOSITION THERMOPLASTIQUE BIODEGRADABLE ET PROCEDE DE PREPARATION
La présente invention concerne des compositions polymères thermoplastiques biodégradables.
Les polymères thermoplastiques sont utilisés de façon de plus en plus importante en raison de leur faible coût, de leur stabilité, de leur résistance vis-à-vis de l'eau, des huiles, de leur résistance à la dégradation telle que la corrosion ou la putréfaction et de leur aptitude au moulage.
Toutefois, en raison de la stabilité de ces résines, la quantité de déchets en résine synthétique est en augmentation constante, ce qui cause un problème de pollution des sols, d'environnement et un autre problème concernant le retraitement éventuel de ces produits ou de leurs déchets. C'est en particulier le cas du polyéthylène, du polypropylène et du polystyrène, matières utilisées de façons importantes.
De même, les polyesters de la famille du PET (poly-éthylène glycol téréphtalate et dérivés), du PBT (poly-butylène glycol téréphtalate et dérivés), sont considérés comme non-biodégradables dans les conditions courantes. Par contre s'ils se retrouvent sous une forme finement divisée, sous la forme de filaments très fins ou sous forme poreuse, ces polymères deviennent alors nettement plus vulnérables. Ils peuvent s'hydrolyser spontanément en milieu humide ou par l'action d'enzymes produites par les microbes ou les microorganismes du sol, de l'environnement ou dans des composteurs. D'un autre côté, il est connu que le polyéthylène, le polypropylène, le polystyrène sont difficilement dégradables dans les conditions habituelles. Par contre des fibres très fines (de quelques nanomètres au micron) sont plus fragiles.
La dégradabilité d'un polymère est donc une notion relative. Elle peut être modulée. Inversement, certaines matières plastiques ou produits assimilés sont biodégradables. On peut citer par exemple le cellophane qui est un état physique particulier de la cellulose, certains dérivés de la cellulose dont en particulier le diacétate de cellulose, la carboxyméthyl cellulose ou l'hydroxyéthyl cellulose (produit de condensation de la cellulose avec l'oxyde d'éthylène), l'acide poly-glycolique (PGA), poly-lactique (PLA), poly-hydroxy-butyrique (PHB) ou encore l'acide poly-hydroxy-valerique (PHV). Ces produits sont souvent d'origine végétale ou obtenus par fermentation. Certains peuvent être d'origine fossile (dérivés du pétrole). Dans cette dernière classe* on peut citer le poly-succinate d'éthylène glycol ou le poly-succinate de butylène glycol. Enfin certains des polymères cités peuvent être obtenus par les deux filières. Toutefois, certains de ces polymères sont peu stables dans les conditions habituelles d'utilisation. Or, il est important que les polymères utilisables pour former des films soient stables dans les conditions habituelles d'utilisation, en particulier vis à vis de la température et ce pour une durée convenue à l'avance. Ainsi, il est important que ces polymères manifestent une relative stabilité à l'eau et/ou aux huiles en fonction des utilisations prévues. Enfin des impératifs du type « compatibilité alimentaire » peuvent jouer un rôle crucial dans le choix des composants.
Il est clair que si l'on demande à une matière donnée d'être stable dans toutes les conditions possibles, elle risque d'être difficilement dégradable. La « solution universelle » ne serait donc qu'une utopie.
Le but de la présente invention est de mettre au point une famille de polymères thermoplastiques biodégradables susceptibles de remplacer le polyéthylène, le polypropylène, le polystyrène, au moins dans certaines de leurs applications, c'est-à-dire gardant les propriétés physiques des compositions thermoplastiques, les compositions retenues devant pouvoir être mises en œuvre par les techniques actuelles de la profession sans nécessiter l'utilisation d'un matériel spécifique.
Des compositions dégradables à base de polymères thermoplastiques sont déjà connues. Ainsi :
Le brevet US-A-4 156 666 concerne la modification du polyéthylène (PE), de polymères mixtes éthylène/propylène ou des mélanges de PE et de polypropylène (PP) par des additifs comme des acides gras insaturés ou leurs esters et éventuellement une charge à base de calcium comme le carbonate de calcium (calcaire), le sulfate de calcium (plâtre ou gypse), le phosphate de calcium, ou une charge à base de magnésium : carbonate, silicate. Les produits obtenus sont facilement photodégradables. Cependant, les sels de calcium et de magnésium sont particulièrement abrasifs pour le matériel de mise en œuvre. De plus, en absence de ces sels la composition est peu dégradable. Enfin, ces produits ne sont pas dégradables dans l'obscurité. Le brevet US-A-4 931 488 décrit l'utilisation d'un additif biodégradable de la famille de l'amidon (molécule organique de haut poids moléculaire), éventuellement chimiquement modifié. Les autres additifs utilisés dans la composition sont un sel de fer d'un acide gras comme le stéarate ferreux et un acide gras insaturé, donc facilement oxydable, ou un de ses esters. Or l'amidon, ses dérivés, ainsi que la cellulose ont une mauvaise tenue à la chaleur. Ils commencent à se décomposer à des températures à peine supérieures à 100°C, en jaunissant dans un premier stade puis en se carbonisant ce qui peut donner des points noirs dans la matière, et dégageant de la vapeur d'eau, ce qui donnera des bulles dans le produit final. En outre, la présence de fer ou d'autres métaux, ou de leurs sels, catalyse l'instabilité de l'amidon et présente un effet corrosif ou abrasif pour le matériel utilisé dans la mise en œuvre. La qualité du produit fini risque d'être incertaine ou difficile à maîtriser. La demande internationale de brevet WO-A-94/13735 est similaire à la demande précédente. La solution proposée est de formuler un polymère stable avec un composant biodégradable et d'autres additifs, de manière à constituer un polymère synthétique biodégradable. Les composés biodégradables sont préférentiellement choisis dans la famille des polysaccharides dont l'amidon et la cellulose font partie, plus un acide gras oxydable ou son ester et des sels de fer et des sels de cuivre.
Les problèmes indiqués ci-dessus en ce qui concerne les sels métalliques et les additifs de la famille de l'amidon demeurent.
Outre les brevets mentionnés ci-dessus, de très nombreux autres concernent les matières plastiques dégradables. On y retrouve bien souvent l'addition d'amidon ou de polysaccharides (molécules organiques de haut poids moléculaires), comme c'est le cas de la demande de brevet US 2003/0092793 ou l'addition de sels métalliques, comme c'est le cas de la demande de brevet WO 03/095555 Al.
Ces compositions rencontrent donc les problèmes indiqués ci-dessus, c'est-à-dire une tenue à la chaleur modérée et/ou un effet abrasif sur le matériel de mise en œuvre.
De façon surprenante les inventeurs de la présente demande ont découvert que certains additifs des polymères, comme certains plastifiants, conservateurs ou autres, c'est à dire des molécules organiques de bas poids moléculaire, sont biodégradables, stables thermiquement et ne sont pas abrasives et que leur utilisation dans certaines proportions avec des polyesters thermoplastiques conféraient à ces derniers une bonne biodégradabilité.
La présente invention concerne donc une composition polyester thermoplastique biodégradable ne comprenant pas de métaux, de sels métalliques ni d'amidon et comprenant :
A) au moins 50 % en poids d'un polyester thermoplastique,
B) de 2% à 20 % en poids d'une molécule organique biodégradable de bas poids moléculaire, C) de 0 à 30 % en poids d'un polymère thermoplastique différent du composant A.
Au sens de la présente invention on entend par « composition polyester thermoplastique », toute composition polymérique à base d'un ou plusieurs polyester(s) thermoplastique(s) (composant A), pouvant contenir jusqu'à 30% d'un polymère thermoplastique différent du composant A (composant C) et de 2 à 20 % d'une molécule organique biodégradable de bas poids moléculaire (composant B). Avantageusement, le composant A est choisi parmi le polyéthylène glycol téréphtalate, le polypropylène glycol téréphtalate, le polybutylène glycol téréphtalate, le poly 1,3 propanediol téréphtalate, le polyéthylène naphtalate, le poly oméga caprolactone ou leurs mélanges.
Avantageusement, le composant A a une Tg (température de transition vitreuse) supérieure à 40°C. Avantageusement, le composant C est un polymère choisi dans le groupe constitué par le polyuréthane (PU), le polyester, le polystyrène (PS) et les polyoléfines tels que le polyéthylène (PE), le polypropylène (PP) et leurs copolymères, ces polymères incluant les polyéthylènes basse densité (PELD), les polyéthylènes haute densité (PEHD), les polyéthylènes moyenne densité (PEMD), les polyéthylènes basse densité linéaire (PELDL) ou leurs mélanges.
Par ailleurs, ce composant C peut être choisi également dans le groupe des copolymères thermoplastiques ou leurs mélanges tels que des copolymères de l'éthylène et de l'acétate de vinyle (EVA), en particulier l'Evatane® commercialisé par la société Atofina, les copolymères de l'éthylène et de l'acrylate de méthyle (EMAC) tel que l'Orevac® commercialisé par la société Atofina, le butylène butylacrylate (EBAC), le polyméthylacrylate (PMA), le polyméthylméthacrylate (PMMA) et le polyéthylène oxyde ou polyéthylène glycol (PEG) ou leurs mélanges.
Le composant C peut également être un polyester thermoplastique différent du composant A et choisi dans le groupe constitué du polyéthylène naphtalate, du polyéthylène glycol téréphtalate, du polypropylène glycol téréphtalate, du polybutylène glycol téréphtalate, du poly 1 ,3 propanediol téréphtalate ou du poly oméga caprolactone leurs mélanges.
De façon avantageuse, le composant C est choisi dans le groupe constitué par les copolymères de l'éthylène et de l'acétate de vinyle ou de l'acrylate de méthyle ou le polyéthylène naphtalate.
Avantageusement le composant C est un mélange de polymères thermoplastiques. La composition selon la présente invention ne contient pas d'amidon. Par « amidon », on entend au sens de la présente invention tout amidon qu'il soit naturel, estérifié ou modifié d'une autre façon, par exemple au moyen de silane. Avantageusement, la composition selon la présente invention ne contient aucun polymère autre que des polymères thermoplastiques.
En particulier, elle ne contient pas de polymères choisis dans le groupe constitué par la cellulose et ses dérivés, les dérivés de l'amidon, les alginates, la chitine, le chitosane et les polysaccharides de façon générale.
La composition selon la présente invention ne contient pas de protéines.
La composition selon la présente invention ne comprend pas de métaux ni de sels métalliques.
De façon avantageuse, la composition selon la présente invention ne comprend pas de substances abrasives. Au sens de la présente invention, on entend par « substances abrasives », toute substance pouvant entraîner une usure prématurée du matériel tels que les sels métalliques définis ci-dessus.
Le groupe des polyesters « naturellement biodégradables » n'est pas utile dans la présente invention, même s'ils peuvent y être ajoutés, comme par exemple l'acide poly- glycolique (PGA), poly-lactique (PLA), poly-hydroxy-butyrique (PHB), l'acide poly- hydroxy-valerique (PHV), le poly-succinate d'éthylène glycol ou le poly-succinate de butylène glycol. Avantageusement, la composition ne contiendra donc aucun de ces polyesters.
Au sens de la présente invention, on entend par « composition polyester thermoplastique biodégradable », toute composition polyester thermoplastique telle que définie ci-dessus qui se désintègre en petites particules soit sous l'action de la chaleur en atmosphère humide et/ou des conditions du compostage. Puisque la composition thermoplastique contient également une substance biodégradable naturellement, les petites particules ainsi formées sont de plus dégradées par les microorganismes tels que des bactéries, des levures, des champignons et/ou des enzymes présents dans les mélanges de compostage ou dans le sol. La dégradation complète est ainsi obtenue dans des conditions adéquates.
Au sens de la présente invention, on entend par « molécule organique biodégradable » toute molécule organique pouvant se dégrader dans les conditions indiquées ci-dessus pour la composition polyester thermoplastique biodégradable.
Par ailleurs, au sens de la présente invention, on entend par « molécule organique de bas poids moléculaire » toute molécule ayant un poids moléculaire inférieur à 5000, avantageusement inférieur à 2000. Avantageusement, la molécule organique biodégradable (composant B) est choisie dans le groupe constitué par l'éthylène glycol diacétate (EGDA) ; le glycérol triacétate et les esters de polyols ;le diéthylène glycol diacétate (DEGDA) ; le triéthylène glycol di¬ acétate (TEGDA) ; les polyéthylène glycol diacétate (PEGDA) et les esters analogues dérivés de l'oxyde de propylène ; les monoesters ou les diesters d'acides et d'alcools à courte chaîne en particulier choisis parmi le di stéarate d'éthylène glycol ou du propylène glycol, le stéarate de méthyle, le tristéarate de glycérol ou l'adipate de butyle, d'éthyle ou de méthyle ; les monoesters ou diesters d'acide à courte chaîne et d'alcool gras en particulier choisis parmi l'acétate de dodécyle, le succinate de n-octyle ou le succinate de dodécyle ; les mono ou di esters d'acides gras et d'alcools gras en particulier choisis parmi l'adipate de n-octyle, l'adipate de n-dodécyle ou le 2-éthyl- héxyl-adipate ; les esters gras du polyéthylène glycol, du polypropylène glycol ou du polyoxyméthylène ; des paraffines ou des mélanges de ceux-ci.
De façon avantageuse, le composant B est choisi parmi les esters gras, le triéthylèneglycol di acétate, l'acétate de dodécyle ou le di stéarate d'éthylène glycol. De façon encore plus avantageuse, il s'agit du triéthylène glycol diacétate. Les quantités du composant B utilisées sont avantageusement comprises entre 2 et 10 % en poids, de façon encore plus avantageuse entre 3 et 6 % en poids, de façon encore plus avantageuse, entre 4 et 5% en poids. De façon encore plus avantageuse, il s'agit de 5 % en poids. Dans un mode de réalisation, la composition selon la présente invention présente une bonne stabilité à la chaleur, avantageusement à une température comprise entre la température ambiante et 300°C. A la température de 3000C, la composition selon la présente invention est à l'état liquide. Au sens de la présente invention, on entend par « température ambiante » une température d'environ 2O0C.
Au sens de la présente invention, on entend par « bonne stabilité à la chaleur » l'absence de changement de couleur, en particulier jaunissement ou noircissement, ou de carbonisation de la composition selon la présente invention.
La composition selon la présente invention peut comprendre d'autres ingrédients, tel que par exemple des plastifiants, des pigments ou colorants, des antistatiques, des ignifugeants, des lubrifiants, des agents nucléants, des lubrifiants internes, des agents de démoulage ou des agents antiretraits. La composition selon la présente invention garde des propriétés comparables à celles des compositions thermoplastiques, c'est-à-dire par exemple, une mise en oeuvre simple et des propriétés mécaniques intéressantes. La composition selon la présente invention reste stable lors de son stockage et des utilisations prévues mais peut être facilement dégradée après son utilisation dans les conditions indiquées ci-dessus.
Avantageusement, la composition selon la présente invention peut se dégrader en moins de 3 mois, avantageusement entre 1 et 2 mois, dans un compost artificiel. En particulier, pour chaque essai, le compost artificiel est réalisé dans des flacons de 500 ml contenant 50g de cellulose microcristalline (Alfa Aesar Avocado) en suspension dans 150 ml d'un tampon phosphate IM, pH 8,0, additionnée de 1 ml d'un cocktail de vitamines (« Alvityl syrop », Laboratoires Solvay Pharma), de 2 g de saccharose et de 1 ml d'un cocktail d'oligo-éléments (« Oligo-éléments Aguettant », Laboratoires Aguettant), de 2 g d'un cocktail d'acides aminés (Hydrolysat pancréatique de caséine, Fluka), 2 g d'huile d'arachide et inoculé par un cocktail de microorganismes du sol. Les températures testées sont de 30, 40, 50 et 600C. Dans la plupart des cas, la température de 50° C s'est avérée optimale. En dessous de 40°, plus la température est basse plus la décomposition est lente. Enfin, les compositions selon la présente invention sont stables à des températures inférieures à 0°C.
Les tests de dégradation sont réalisés de la façon suivante : les flacons contiennent le compost artificiel et des échantillons de la composition à tester : une feuille de 10x15 cm par flacon (soit environ 1,25 g). Ils sont agités mécaniquement, conservés dans une atmosphère saturée d'eau et maintenus à la température choisie. On estime que le produit est dégradé quand au moins 90 % de son poids a disparu. Les tests ont toujours été réalisés sur des échantillons de type film d'une épaisseur de 50 microns +/- 10 microns de compositions selon la présente invention.
La présente invention concerne également des articles comprenant une composition selon la présente invention, en particulier, réalisés à partir d'une composition selon la présente invention. Avantageusement, il s'agit d'un film mince, c'est-à-dire d'épaisseur comprise entre 10 et 100 microns, d'un film épais, c'est-à-dire d'épaisseur comprise entre 100 microns et 1 mm, d'un film thermoformable, d'un article injecté, moulé ou expansé.
Enfin, la présente invention concerne un procédé de préparation d'une composition selon la présente invention par mélange du composant A avec le composant B et éventuellement le composant C à la température de mise en œuvre du polymère le plus visqueux parmi les composants A et C.
Le mélange des polymères (solides à température ambiante) et des additifs de bas poids moléculaires (le plus souvent liquides) est en général réalisé dans une extrudeuse, avantageusement de type bi-vis, de façon avantageuse à la température d'environ 210° C. En sortie de filière on obtient un jonc que l'on refroidit à l'eau et coupe en granulés. Ces granulés sont soigneusement séchés avant utilisation ultérieure. Les films minces, 10 à 100 microns, sont en général obtenus par la technique d'extrusion soufflage. Une filière annulaire extrude un tube qui est gonflé par de l'air pour obtenir l'épaisseur souhaitée. Les films épais, de l'ordre du mm sont en général obtenus par calandrage.
Les exemples suivants sont donnés à titres indicatifs et non limitatifs.
Exemple 1 : Préparation de granulés de PETG contenant un additif liquide : Ie TEGDA. Le PETG de l'étude est le PETG référence 6763 commercialisé par Eastman Chemicals. Ce produit est un copolymère de l'acide téréphtalique et de l'éthylène glycol additionné de cyclohexyl 1,4-diméthanol. Ce produit n'est pas considéré comme biodégradable.
Le PETG est séché au moins 4 heures à 70° C préalablement à toute intervention. Le mélange du PETG et du TEGDA (tri éthylène glycol diacétate) est réalisé à l'aide d'une extrudeuse bi-vis de marque CLEXTRAL BC21 qui possède deux trémies d'alimentation. Le TEGDA, liquide à la température ambiante, est introduit par une pompe doseuse dans une des trémies. La vitesse de rotation des vis est 300 tours par minute et les températures voisines de 220° C. En sortie de filière on obtient un jonc d'environ 3 mm de diamètre que l'on refroidit à l'eau et coupe en granulés de 3 mm de long environ. Ces granulés sont soigneusement séchés au moins 24 heures à 45° C avant utilisation ultérieure.
La quantité de TEGDA incorporée a été de 2 ; 3 ; 5 ; 6 ; 7,5 et 10 % en poids de la préparation finale. Les granulés à 10% de TEGDA sont légèrement collants, ce qui n'est pas le cas pour les dosages inférieurs. Exemple 2 : Préparation de granulés de PETG contenant d'autres additifs liquides.
La technique précédente a été étendue sans changements a d'autres gammes d'additifs comme : - divers esters gras de la société Cognis, dont en particulier le « Loxiol G40 », un ester cireux liquide et neutre,
- le « Plaxene 185 », une paraffine commercialisée par la société « Total »,
- le di stéarate d'éthylène glycol,
- l'acétate de dodécyle.
Le plus souvent, ces produits ont été utilisés à la concentration de 4 % en poids.
Le matériel utilisé et les conditions expérimentales sont identiques à ceux utilisés dans l'exemple 1.
Exemple 3 : Préparation de films minces PETG/TEGDA.
Les films minces, 10 à 100 microns, sont obtenus par la technique d'extrusion soufflage. On utilise un outillage de soufflage de gaine de marque COLLIN adapté à une extrudeuse monovis de marque MAPRE, possédant une vis de 30 mm de diamètre et de longueur 33 D (soit un mètre). Huit zones de température peuvent être contrôlées : trois à partir de la trémie, une sur la zone de dégazage, trois en fin de vis et une au niveau de la filière. Pour la préparation de film à partir de granulés décrits dans l'exemple 1 (PETG, TEGDA à 2 et 5 %), le profil de température suivant a été utilisé (° C) : 190 (trémie), 190, 180, 170 (dégazage), 180, 200, 200, 220 (filière). La vitesse de rotation de la vis est 35 tours par minute. La filière annulaire d'un diamètre de 50 mm extrade un tube d'une épaisseur de 1 mm qui est gonflé par de l'air comprimé et simultanément étiré pour obtenir l'épaisseur souhaitée, le plus souvent 50 microns +/- 10 μm. Pour ce qui concerne le PETG additionné de 6, 7, 5 ou 10 % de TEGDA, la température de l'extrudeuse est plus basse : 140 à 160 ° C. Le PETG additionné de triéthylèneglycol diacétate (TEGDA) devient biodégradable. Le TEGDA, partiellement soluble dans l'eau et capable de migrer dans la matrice du PETG, est dégradé en premier pour laisser le PETG sous une forme microporeuse et hydrophile qui devient accessible à la dégradation par les micro-organismes du sol ou de l'environnement. On constatera qu'une telle formulation risque de ne pas convenir pour le conditionnement à long terme, de produits humides, sauf s'il s'agit du conditionnement de produits devant être conservés à basse température (congélateur, réfrigérateur).
En outre on note une diminution de la température de transition vitreuse (Tg) dont il faut tenir compte. Elle peut atteindre des valeurs trop basses pour que le produit soit compatible avec les applications prévues. Aussi dans le présent exemple, a la concentration de 10% en TEGDA le film reste collant à la température ambiante et n'est donc plus manipulable.
Propriétés
Dans cet exemple la proportion idéale de TEGDA se situe entre 3 et 6%, en poids. Dans les conditions du compost artificiel défini précédemment à 50-60° C, les temps de dégradation varient de 1 mois (6 % de TEGDA) à deux mois (3 % de TEGDA) pour des films d'une épaisseur de 50 microns.
Un film de PETG pur, d'une épaisseur de 50 microns, a été préparé et testé dans le même système de dégradation. Au bout de cinq mois d'incubation il ne montre pas de signe notable de dégradation.
Exemple 4 : Préparation de films de PETG contenant d'autres additifs liquides.
La technique utilisée a été étendue sans changements aux autres d'additifs décrits dans l'exemple 2. La concentration des additifs a été fixée à 4%. Les films obtenus, d'une épaisseur de 50 μm +/- 10 μm, ont montré des temps de dégradation de deux mois, sensiblement, dans les conditions de compost artificiel défini précédemment.
Néanmoins, les films contenant du plaxène (une paraffine) ont montré une dégradation plus tardive. En outre, la qualité de ces films a été considérée comme médiocre, par rapport aux autres cas.
A l'exception des films contenant du plaxene qui sont de mauvaise qualité, les films obtenus conviennent pour le conditionnement de produits humides. Par contre ils ne seront pas recommandés pour le conditionnement des produits alimentaires gras, sauf s'ils ont le label « qualité alimentaire », comme c'est le cas, par exemple, du di stéarate d'éthylène glycol ou de certaines huiles de paraffine de bas poids moléculaire. Dans ces conditions, la stabilité du film dans le temps (s'il s'agit d'un film) sera étroitement liée aux conditions d'utilisation. La migration des esters gras est très lente à basse température par exemple au congélateur ou au réfrigérateur mais augmente à la chaleur. C'est un facteur dont il faudra tenir compte dans les applications.
Exemple 5 : Addition d'un autre polyester Au mélange obtenu dans l'exemple 1, correspondant au PETG contenant 5 % en poids de TEGDA, on ajoute 5 à 20 % en poids de polyéthylène naphthalate (PEN), un produit polyester thermoplastique synthétisé par Teijin Dupont Films Japan Limited. Ce mélange conduit à des granulés pouvant former des films. Les films obtenus sont encore biodégradables, en outre la température de transition vitreuse remonte de 10 à 50° C selon la proportion de PEN. Ils seront donc plus stables à la chaleur.
Dans les conditions du compost artificiel à 50-60°C défini précédemment, les temps de dégradation varient de 1 mois (5% de PEN) à trois mois (20% de PEN) pour des films d'une épaisseur de 50 microns. En l'absence de TEGDA, les films obtenus ne montrent pas de signe de dégradation au bout d'un temps de cinq mois dans les conditions des tests précédents.
Ces produits propres au moulage ou à l'injection peuvent également donner des films minces (de 10 à 100 microns) mais qui manquent de souplesse. Les films épais (de l'ordre du mm) peuvent être thermoformés.
De même que dans l'exemple 3, ces produits ne conviendront pas pour le conditionnement, à long terme, de produits humides, sauf s'il s'agit du conditionnement de produits devant être conservés à basse température (congélateur, réfrigérateur).
Exemple 6 :
A - Préparation de granulés de PETG contenant du TEGDA et du polyéthylène
(PELD).
Comme dans l'exemple 1 on prépare un granulé à l'aide de Fextrudeuse bi-vis CLEXTRAL BC21. Dans une trémie on introduit le PETG, dans l'autre le polyéthylène de basse densité (PELD) de référence 1008FE24 d'Atofma, et le TEGDA dans le puits d'alimentation, à l'aide d'une pompe doseuse, de façon à obtenir des granulés de composition finale en poids : PETG 75, PELD 20, TEGDA 5.
En outre, ont été préparés des granulés contenant un compatibilisant : l'Orevac 18630 (Atofina), un copolymère statistique éthylène / acrylate de méthyle, composé de 20 % en poids d'acrylate de méthyle. L'Orevac est utilisé pour assurer une meilleure compatibilité entre divers polymères dont le PET/PRTG, PS, PE, EVA, EVOH. Dans le cas présent, les proportions finales, en poids, sont les suivantes : PETG 70, PELD 20, TEGDA 5, Orevac 5.
B - Préparation des Ωlms.
Les films sont préparés comme dans l'exemple 3 à l'aide des granulés définis ci dessus. Le profil de température suivant (0C) a été utilisé : 180 (trémie), 180, 170, 160 l'
(dégazage), 170, 190, 190, 210 (filière). La vitesse de rotation de la vis est 55 tours par minute.
Les films obtenus, d'une épaisseur de 50 μm +/- 10 μm, sont nettement plus souples que ceux obtenus dans les exemples 3, 4, 5.
C - Propriétés.
Ces films ont montré des temps de dégradation de sensiblement deux mois dans les conditions du compost artificiel défini précédemment. La présence de l'Orevac améliore la qualité finale du produit. La vitesse de dégradation nous a semblé un peu plus rapide pour le film contenant de l'Orevac.
Des films composés de PETG et de 20% de PELD ont été préparés à titre comparatif. En l'absence de TEGDA, les films obtenus ne montrent pas de signe de dégradation au bout d'un temps de cinq mois dans les conditions des tests précédents.
Exemple 7
A - Préparation de granulés de PETG contenant du TEGDA et de Evatane®.
L'évatane (EVA) est un copolymère statistique d'éthylène et d'acétate de vinyle commercialisé par la société Atofina. L'Evatane 28-03 utilisé contient 28 % d'acétate de vinyle.
Comme dans l'exemple 6 on prépare un granulé à l'aide de l'extrudeuse bi-vis CLEXTRAL BC21. Dans une trémie on introduit le PETG, dans l'autre l'EVA et le TEGDA de façon à obtenir des granulés de composition finale en poids : * PETG 75, EVA 20, TEGDA 5. * PETG 50, EVA 35, TEGDA 5. l'
B- Préparation de films de PETG, EVA, TEGDA.
Les films sont préparés comme dans l'exemple 3. Dans les deux cas, le profil de température suivant (0C) a été utilisé: 160 (trémie), 160, 150, 140 (dégazage), 150, 170, 170, 190 (filière). La vitesse de rotation de la vis est 70 tours par minute.
On obtient alors des films nettement plus souples. LΕvatane® n'est pas spontanément biodégradable, mais quand les autres éléments de la formulation ont été fortement dégradés, sa dégradation devient alors possible comme on l'a constaté avec des films traités dans les conditions précédentes avec des temps de dégradation variant de deux mois (10% d'Evatane®) à quatre mois (30% d'Evatane®) pour des films de 50 microns. On notera que l'Evatane® migre mal dans la matrice macromoléculaire, mais l'ensemble reste biodégradable. En effet, les microorganismes de l'environnement peuvent hydrolyser les fonctions ester acétique de l'Evatane®, oxyder les alcools en fonctions cétones et finalement couper la chaîne macromoléculaire en de nombreux fragments dégradables.
Des films composés de PETG et de 20% d'EVA ont été préparés à titre comparatif. En l'absence de TEGDA, les films obtenus ne montrent pas de signe de dégradation au bout d'un temps de cinq mois dans les conditions des tests précédents.
Exemple 8
A - Préparation de granulés de PETG de Evatane® et d'autres produits.
Comme dans l'exemple 6 on prépare un granulé à l'aide de l'extrudeuse bi-vis CLEXTRAL BC21. Dans une trémie on introduit le PETG contenant 4% de Loxiol ou du PETG pur, dans l'autre l'EVA pur ou un mélange de granulés d'EVA et de granulés d'Orevac selon les compositions suivantes, exprimées en poids :
* PETG 80, EVA 20, Loxiol 4.
* PETG 80, EVA 20, Loxiol 4. Orevac 5
* PETG 70, EVA 30, Loxiol 4. B- Préparation de films de PETG, EVA, TEGDA.
Les films sont préparés comme dans l'exemple 3. Dans les deux cas, le profil de température suivant (°C) a été utilisé: 160 (trémie), 160, 150, 140 (dégazage), 150, 170, 170, 190 (filière). La vitesse de rotation de la vis est 70 tours par minute.
On obtient alors des films nettement plus souples.

Claims

REVENDICATIONS
1. Composition polyester thermoplastique biodégradable ne comprenant pas de métaux, de sels métalliques, de polymères choisis dans le groupe constitué par la cellulose et ses dérivés, les dérivés de l'amidon, les alginates, la chitine, le chitosane et les polysaccharides de façon générale, d'amidon ni de protéines et comprenant :
A) au moins 50 % en poids d'un polyester thermoplastique,
B) de 2% à 20 % en poids d'une molécule organique biodégradable de bas poids moléculaire, avantageusement de 2 à 10 % en poids
C) de 0 à 30 % en poids d'un polymère thermoplastique différent du composant A, et présentant une bonne stabilité à une température comprise entre la température ambiante et 300°C.
2. Composition selon la revendication 1 caractérisée en ce que le composant B a un poids moléculaire inférieur à 5000.
3. Composition selon la revendication 3 caractérisée en ce que le composant A est choisi parmi le polyéthylène glycol téréphtalate, le polypropylène glycol téréphtalate, le polybutylène glycol téréphtalate, le poly 1,3 propanediol téréphtalate, le polyéthylène naphtalate ou le poly oméga caprolactane ou leurs mélanges.
4. Composition selon l'une quelconque des revendications précédentes caractérisée en ce que le composé B est choisi dans le groupe constitué par l'éthylène glycol diacétate (EGDA) ; le diéthylène glycol diacétate (DEGDA) ; le triéthylène glycol diacétate (TEGDA) ; les polyéthylène glycol diacétate (PEGDA) ; les monoesters ou les diesters d'acides et d'alcools à courte chaîne en particulier choisis parmi le di stéarate d'éthylène glycol ou du propylène glycol, le stéarate de méthyle, le tristéarate de glycérol ou l'adipate de butyle, d'éthyle ou de méthyle ; les monoesters ou diesters d'acide à courte chaîne et d'alcool gras en particulier choisis parmi l'acétate de dodécyle, le succinate de n-octyle ou le succinate de dodécyle ; les mono ou di esters d'acides gras et d'alcools gras en particulier choisis parmi l'adipate de n-octyle, l'adipate de n-dodécyle ou le 2- éthyl-héxyl-adipate ; les esters gras du polyéthylène glycol, du polypropylène glycol ou du polyoxyméthylène ; des paraffines ou des mélanges de ceux-ci.
5. Composition selon l'une quelconque des revendications précédentes caractérisé en ce que le composant C est un mélange de polymères thermoplastiques.
6. Composition selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'elle ne comprend pas de substances abrasives.
7. Article comprenant une composition selon l'une quelconque des revendications l à 6.
8. Article selon la revendication 7 caractérisé en ce qu'il s'agit d'un film mince, d'un film épais, d'un film thermoformable, d'un article injecté, moulé ou expansé.
9. Procédé de préparation d'une composition selon l'une quelconque des revendications 1 à 6 par mélange du composant A avec le composant B et éventuellement le composant C à la température de mise en œuvre du polymère le plus visqueux parmi les composants A et C.
PCT/FR2005/001363 2004-06-04 2005-06-03 Composition thermoplastique biodegradable et procede de preparation WO2006003280A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007514030A JP2008501815A (ja) 2004-06-04 2005-06-03 生分解性熱可塑性組成物およびその製造方法
EP05775268A EP1776414A1 (fr) 2004-06-04 2005-06-03 Composition thermoplastique biodegradable et procede de preparation
US11/628,437 US20080281026A1 (en) 2004-06-04 2005-06-03 Biodegradable Thermoplastic Composition and Method for the Preparation Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406084 2004-06-04
FR0406084A FR2871166B1 (fr) 2004-06-04 2004-06-04 Composition thermoplastique biodegradable et procede de preparation

Publications (1)

Publication Number Publication Date
WO2006003280A1 true WO2006003280A1 (fr) 2006-01-12

Family

ID=34945967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001363 WO2006003280A1 (fr) 2004-06-04 2005-06-03 Composition thermoplastique biodegradable et procede de preparation

Country Status (5)

Country Link
US (1) US20080281026A1 (fr)
EP (1) EP1776414A1 (fr)
JP (1) JP2008501815A (fr)
FR (1) FR2871166B1 (fr)
WO (1) WO2006003280A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2920234A4 (fr) * 2012-11-16 2016-07-06 Rhodia Operations Composition polymère thermoplastique comprenant un sel hypophosphite de métal alcalin
KR102031278B1 (ko) * 2019-02-07 2019-10-14 권상도 친환경 비닐의 제조방법 및 이에 의해 제조된 친환경 비닐

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611732A1 (fr) * 1987-03-06 1988-09-09 Tecnocolor Sas Celebrano A C Procede pour obtenir la biodegradabilite de produits jetables en matieres plastiques
JPH04146953A (ja) * 1990-10-09 1992-05-20 Agency Of Ind Science & Technol プラスチックの生分解性制御方法
US5540962A (en) * 1992-10-16 1996-07-30 Leonard Pearlstein Degradable package for containment of liquids
US5753782A (en) * 1993-06-02 1998-05-19 Zeneca Limited Polyester composition
WO1999023146A1 (fr) * 1997-10-31 1999-05-14 Monsanto Company Compositions de polyhydroxyalcanoates et leurs procedes d'utilisation dans la production de pieces moulees polymeres

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156666A (en) * 1975-10-31 1979-05-29 Shiseido Company, Ltd. Degradable synthetic resin compositions
US4252853A (en) * 1978-10-17 1981-02-24 Nippon Carbide Kogyo Kabushiki Kaisha Destructible marking film, process for its production and method for marking
US4284671A (en) * 1979-05-11 1981-08-18 Clopay Corporation Polyester compositions for gas and moisture barrier materials
CH671961A5 (fr) * 1987-02-27 1989-10-13 Amrotex Ag
US5352716A (en) * 1992-12-16 1994-10-04 Ecostar International, L.P. Degradable synthetic polymeric compounds
EP0723572B1 (fr) * 1993-10-15 1999-12-08 H.B. Fuller Licensing & Financing, Inc. Adhesifs thermofusibles biodegradables/recyclables en compost constitues de polyester d'acide lactique
JPH09238579A (ja) * 1996-03-05 1997-09-16 Sangyo Gijutsu Kenkyusho:Kk 生分解性成形材料
JP4959057B2 (ja) * 1999-03-12 2012-06-20 ポリプラスチックス株式会社 ポリエステル樹脂組成物
US6482872B2 (en) * 1999-04-01 2002-11-19 Programmable Materials, Inc. Process for manufacturing a biodegradable polymeric composition
JP2003005608A (ja) * 2000-10-18 2003-01-08 Ricoh Co Ltd 像担持体上の付着物除去方法およびその方法を用いる画像形成装置
CN1363625A (zh) * 2001-11-15 2002-08-14 天津丹海股份有限公司 生物降解树脂的生产方法
JP2003171474A (ja) * 2001-12-07 2003-06-20 C I Kasei Co Ltd 生分解性フィルム
JP2004307794A (ja) * 2003-02-18 2004-11-04 Mitsubishi Chemicals Corp ポリブチレンテレフタレート及びその組成物
JP2004307769A (ja) * 2003-02-18 2004-11-04 Mitsui Kagaku Platech Co Ltd 芳香族ポリエステルフィルム
JP2004268940A (ja) * 2003-03-06 2004-09-30 Mitsui Kagaku Platech Co Ltd 生分解性袋
JP2004359892A (ja) * 2003-06-06 2004-12-24 Sakamoto Yakuhin Kogyo Co Ltd ポリエステル樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611732A1 (fr) * 1987-03-06 1988-09-09 Tecnocolor Sas Celebrano A C Procede pour obtenir la biodegradabilite de produits jetables en matieres plastiques
JPH04146953A (ja) * 1990-10-09 1992-05-20 Agency Of Ind Science & Technol プラスチックの生分解性制御方法
US5540962A (en) * 1992-10-16 1996-07-30 Leonard Pearlstein Degradable package for containment of liquids
US5753782A (en) * 1993-06-02 1998-05-19 Zeneca Limited Polyester composition
WO1999023146A1 (fr) * 1997-10-31 1999-05-14 Monsanto Company Compositions de polyhydroxyalcanoates et leurs procedes d'utilisation dans la production de pieces moulees polymeres

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199227, Derwent World Patents Index; Class A23, AN 1992-222620, XP002145695 *

Also Published As

Publication number Publication date
JP2008501815A (ja) 2008-01-24
EP1776414A1 (fr) 2007-04-25
FR2871166A1 (fr) 2005-12-09
US20080281026A1 (en) 2008-11-13
FR2871166B1 (fr) 2006-12-01

Similar Documents

Publication Publication Date Title
EP0579546B1 (fr) Composition thermoformable, son procédé de préparation et son utilisation pour l'obtention d'articles thermoformés
WO2013029018A1 (fr) Bioplastique à base de macrophyte
FR2927084A1 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues.
EP2625221B1 (fr) Plastification de polyesters aliphatiques par des esters alkyliques de dianhydrohexitols
EP3221390A1 (fr) Composition de polyester et d'amidon thermoplastique aux propriétés mécaniques améliorées
EP2596051A1 (fr) Granule thermoplastique a base de caseine et/ou de caseinate, composition et procede de fabrication
WO2020008029A1 (fr) Matiere plastique à haute teneur en pla comprenant un ester de citrate
ES2673023T3 (es) Plástico biodigestible, biocompostable y biodegradable
WO2012069721A1 (fr) Matériau thermoplastique biodégradable
EP1112319B1 (fr) Materiau biodegradable a base de polymere et de farine cerealiere, son procede de fabrication et ses utilisations
WO2006003280A1 (fr) Composition thermoplastique biodegradable et procede de preparation
US9925707B2 (en) Process for preparation of biodegradable biocompostable biodigestible polyolefins
Debiagi et al. Thermoplastic starch-based blends: processing, structural, and final properties
WO2015098001A1 (fr) Composition de résine de polyester aliphatique et corps moulé en résine de polyester aliphatique
FR3040389A1 (fr) Composition plastique biodegradable apte au contact alimentaire, articles en derivant, procedes et utilisations correspondant
EP3818105A1 (fr) Matiere plastique à haute teneur en pla comprenant des oligomeres d'acide lactique
WO2024056823A1 (fr) Article monocouche enzymé ayant des proprietes barrieres a l'eau
EP3861062A1 (fr) Procédé de production d'un polymère biodégradable et neutre vis à vis du dioxyde de carbone et produits d'emballage produits à partir de celui-ci
WO2024056824A1 (fr) Article multicouche enzymé ayant des proprietes barrieres a l'eau
JP2978081B2 (ja) 生分解性組成物
CA2910848C (fr) Un procede de preparation de polymere de peplene biodigestible, biocompostable et biodegradable
WO2023205308A2 (fr) Matériaux thermoplastiques biodégradables
AU2015249059B2 (en) A process for preparation of biodegradable biocompostable biodigestible peplene polymer
FR2697260A1 (fr) Compositions thermoformables biodégradables, leur procédé de préparation et leur utilisation pour l'obtention d'articles thermoformés.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11628437

Country of ref document: US

Ref document number: 2007514030

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005775268

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005775268

Country of ref document: EP