WO2006002724A1 - Verfahren zum betreiben eines hybrid-kraftfahrzeuges - Google Patents

Verfahren zum betreiben eines hybrid-kraftfahrzeuges Download PDF

Info

Publication number
WO2006002724A1
WO2006002724A1 PCT/EP2005/005934 EP2005005934W WO2006002724A1 WO 2006002724 A1 WO2006002724 A1 WO 2006002724A1 EP 2005005934 W EP2005005934 W EP 2005005934W WO 2006002724 A1 WO2006002724 A1 WO 2006002724A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
electric motor
torque
starting
Prior art date
Application number
PCT/EP2005/005934
Other languages
English (en)
French (fr)
Other versions
WO2006002724A8 (de
Inventor
Michael Zillmer
Matthias Holz
Ekkehard Pott
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Publication of WO2006002724A1 publication Critical patent/WO2006002724A1/de
Publication of WO2006002724A8 publication Critical patent/WO2006002724A8/de
Priority to US11/641,294 priority Critical patent/US7562732B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • the invention relates to a method for operating a hybrid motor vehicle, which has an internal combustion engine and at least one electric motor, according to the preamble of patent claim 1.
  • hybrid vehicles having an electric machine (e.g., starter generator) between an engine and a transmission.
  • the electric motor is usually separable in manual transmissions with respect to the transmission with a clutch, this clutch also serves as a starting clutch.
  • the internal combustion engine can be switched off to save fuel in such vehicles.
  • an automatic start-stop control / regulating device for an internal combustion engine of a motor vehicle is known.
  • hybrid vehicles have much more powerful electric motors compared to a conventional starter, engine restart is possible with high comfort.
  • Due to the high electromotive torque of the internal combustion engine can be towed in a short time to its starting speed or idling speed, so that the driver is a barely noticeable start delay.
  • the starting process is acoustically more comfortable, since the typical Einspur- and running noise of a conventional starter is eliminated.
  • alternating torques are due to the individual working cycles of the internal combustion engine - primarily the compression and subsequent expansion phase. They are in particular of the number of cycles (two- or four-stroke engine), of the number of cylinders, depending on the timing and the compression ratio. Furthermore, alternating torques are caused by the oscillating mass forces.
  • the run-up of the internal combustion engine at startup is performed by a speed or torque-controlled method in order to follow a predetermined desired course with the smallest possible deviations.
  • the global setpoint or desired torque curve specifies how the internal combustion engine runs from standstill to its start or idle speed. In this global setpoint course, the influence of the alternating torques is not included.
  • deviations from the set course are basically compensated for by superposed controls, the alternating torques practically generate disturbances for the control, so that control deviations occur, in particular with the speed control of the electric motor - but also with torque control (even with constant torque pre-control, the changing reaction torques occur the internal combustion engine torque fluctuations). For this reason, there is potential for comfort improvement for the very short-term, highly dynamic starting process of the internal combustion engine.
  • the invention has for its object to improve a performance of a hybrid motor vehicle in the startup or shutdown.
  • the forces introduced via engine mounts and / or gearbox bearings and / or further assembly bearings into a vehicle body are measured, wherein the measurement takes place only in advance to optimize the torque pilot control curve and / or permanently by sensors arranged in the vehicle.
  • a torque curve of the electric motor for starting the internal combustion engine or when switching off the internal combustion engine is thereby pre-controlled in such a way that the forces on the engine mounts and / or gearbox bearings and / or other aggregate bearings have minimal amplitudes. This makes it possible to obtain a measure of the subjective sense of comfort in order to be able to perform or apply a comfort-optimized engine start based thereon.
  • an automatic start-stop system which shuts off the engine in predetermined operating situations and starts again when the load is requested by a driver by means of the starter generator.
  • the torque curve of the electric motor or of the starter generator is pre-controlled such that an excitation of natural frequencies of the vehicle body is minimized.
  • the torque curve of the starter generator is so controlled that a predetermined basic torque curve to overcome a mean friction and ensuring a predetermined angular velocity of a crankshaft of the internal combustion engine is superimposed on a dependent of the position of the crankshaft change moment.
  • the method is carried out until reaching a predetermined starting speed, at which a fuel injection begins, or a predetermined idling speed.
  • a further increase in comfort when starting the internal combustion engine with particularly soft incipient combustion engine operation is achieved in that the method is additionally carried out after reaching the starting speed for a predetermined period of time, in addition to the precontrolled torque curve of the electric motor or the starter generator superimposed on a counter-moment which damps torque fluctuations due to first incipient combustion processes.
  • the method according to the invention is preferably used when switching off or starting an internal combustion engine of a hybrid motor vehicle with an internal combustion engine and an electric machine (eg starter generator), wherein in predetermined operating situations, for example when stopping at a traffic light or in overrun, a start-stop -Automatik the internal combustion engine for fuel saving off (stop-phase) and restarts when requested by a driver by means of the electric machine.
  • an electric machine eg starter generator
  • 16 denotes a time t 0 at which an engine start starts.
  • a time ti 18 is designated, in which a starting speed at which a fuel injection and possibly an ignition takes place in the gasoline engine, or an idle speed is reached.
  • a dashed line 20 indicates this start or idle speed.
  • a dashed line first graph 22 illustrates the time course of the rotational speed of the internal combustion engine between the time t 0 16 and the time tj 18 at conventional torque precontrol of the electric machine.
  • a drawn with a solid line second graph 24 illustrates the time course of the speed of the internal combustion engine between the time t 0 16 and the time tt 18 in inventive torque feedforward control of the electric machine.
  • a dashed line third graph 26 illustrates the timing of a conventional torque feedforward control of the electric machine between time t 0 16 and time t
  • a solid line drawn fourth graph 28 illustrates the time course of a torque feedforward control of the electric machine according to the invention between the time t 0 16 and the time ti 18. 30 are torque increase of the inventive time curve of the torque feedforward electrical machine referred to torque irregularities due compensate the compression work by the internal combustion engine.
  • an improvement in the quality of the engine run-up is achieved by taking account of known alternating torque influences already in the torque precontrol of the electric machine.
  • the starting of the internal combustion engine takes place in such a manner that the electric machine is precontrolled by means of a crankshaft angle related torque curve in the control unit of the electric machine, which takes into account the fluctuations caused by the alternating torques such that a predetermined nominal speed curve (FIG. Also Sollmomentenverlauf) with minimum deviations is maintained.
  • This method can also be superimposed on a control to compensate for remaining deviations.
  • the default torque curve can be determined beforehand by tests on the internal combustion engine by measuring the torque and the angular position of the crankshaft in a time-resolved manner during starting operations or even when operating at different constant rotational speeds. Alternatively, the default torque curve can also be calculated. Ideally, the influence of different engine temperatures (eg by determining the coolant or oil temperature) and / or the intake air pressure and / or the intake air mass flow and / or the cylinder charge and / or the intake air temperature and / or the valve control times and / or valve strokes is also taken into consideration the friction behavior, the heat transfer behavior and the compression work can change as a result of different engine fillings.
  • different engine temperatures eg by determining the coolant or oil temperature
  • the intake air pressure and / or the intake air mass flow and / or the cylinder charge and / or the intake air temperature and / or the valve control times and / or valve strokes is also taken into consideration the friction behavior, the heat transfer behavior and the compression work can change as a result of different
  • the predetermined for the engine start torque curve is then determined by a Grundfitmomentverlauf to overcome the average friction and ensuring the desired angular acceleration of the engine crankshaft superimposed on the crankshaft angle, weighted alternating torque is superimposed so that the speed deviations (or torque fluctuations) are minimal.
  • the setpoint torque curve is determined by measuring the forces introduced into the vehicle body via the engine and / or transmission bearings during a starting process and specifying the torque curve of the electric motor to be predetermined in such a way that the bearing forces have minimal amplitudes .
  • the torque curve can also be tuned in such a way that the excitation of body natural frequencies is as low as possible. For example, the subjective perceived by a driver or vehicle occupant disturbing action on the body is detected and minimized by mapping in the default torque curve for the engine start.
  • the target torque curve is assigned to the crank position of the engine.
  • a discharge detection can be used, which detects the angular position of the crankshaft when stopping the engine or a method are used, that the engine stops in a defined angular position.
  • a known method for setting a defined crankshaft position is disclosed for example in DE 102 01 278 A1.
  • the method may also be used for a predetermined period of time beyond the time when the starting speed 20 is reached.
  • the starting rotational speed 20 is that rotational speed at which fuel injection and, if necessary, ignition start or take place (gasoline engine).
  • the torque fluctuations caused by the first incipient combustion processes are additionally taken into account and dampened with corresponding electromotive counter-torques of the electric motor in the torque course to be precontrolled. to ensure a particularly soft onset of internal combustion engine operation at the start of the engine. These precontrol torques are then deactivated in a subsequent second period of time.
  • a method in which an optimal speed increase during the starting process of the internal combustion engine or speed drop during the switching off of the internal combustion engine can be achieved (specification of a time course in an instationary phase).
  • the optimum course of the speed increase or of the speed drop is determined by an evaluation of the forces introduced into the body via the assembly mounting. This makes it possible to obtain a measure of the subjective sense of comfort in order to perform or apply a comfort-optimized start or shutdown of the internal combustion engine based thereon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges, welches eine Brennkraftmaschine und mindestens eine E-Maschine aufweist. Hierbei wird beim Abschalten der Brennkraftmaschine und/oder beim Starten der Brennkraftmaschine ein Momentenverlauf der E-Maschine zum Starten der Brennkraftmaschine oder beim Abschalten der Brennkraftmaschine vorgesteuert.

Description

Beschreibung
Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges
Die Erfindung betrifft ein Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges, welches eine Brennkraftmaschine und mindestens eine E-Maschine aufweist, gemäß dem Oberbegriff des Patentanspruchs 1.
Es sind im Stand der Technik Hybridfahrzeuge bekannt, die zwischen einer Brennkraftmaschine und einem Getriebe eine E-Maschine (z.B. Startergenerator) aufweisen. Die E-Maschine ist üblicherweise bei Handschaltgetrieben gegenüber dem Getriebe mit einer Kupplung trennbar, wobei diese Kupplung auch als Anfahrkupplung dient.
Zumindest im Fahrzeugstillstand, aber auch in Verzögerungsphasen, kann bei solchen Fahrzeugen die Brennkraftmaschine zur Kraftstoffeinsparung abgeschaltet werden. Hierzu ist beispielsweise aus der DE 100 40 094 A1 eine automatische Start-Stopp-Steuer/Regelvorrichtung für eine Brennkraftmaschine eines Kraftfahrzeuges bekannt. Der Wiederstart der Brennkraftmaschine erfolgt über die E-Maschine, auch Startergenerator genannt, spätestens bei Vorliegen eines Fahrerwunschmomentes. Da Hybridfahrzeuge über im Vergleich zu einem konventionellen Anlasser deutlich leistungsstärkere Elektromotoren verfügen, ist der Motorwiederstart mit hohem Komfort möglich. Aufgrund des hohen elektromotorischen Momentes kann der Verbrennungsmotor in kurzer Zeit auf seine Startdrehzahl bzw. auf Leerlaufdrehzahl hoch geschleppt werden, sodass für den Fahrer eine kaum merkliche Startverzögerung entsteht. Zudem ist der Startvorgang auch akustisch komfortabler, da das typische Einspur- und Laufgeräusch eines konventionellen Anlassers entfällt.
Dennoch ist auch der Start bzw. Wiederstart des Verbrennungsmotors nach einer Stopp- Phase in Hybridfahrzeugen spürbar, was vorrangig auf die beim Durchdrehen des Verbrennungsmotors entstehenden Wechseldrehmomente zurückzuführen ist. Die Wechseldrehmomente sind auf die einzelnen Arbeitstakte des Verbrennungsmotors - vorrangig die Verdichtungs- und anschließende Expansionsphase - zurückzuführen. Sie sind insbesondere von der Taktzahl (Zwei- oder Viertaktmotor), von der Zylinderzahl, den Steuerzeiten und dem Verdichtungsverhältnis abhängig. Des weiteren werden Wechseldrehmomente durch die oszillierenden Massenkräfte hervorgerufen.
In bekannten Steuerungen von hybriden Antriebssystemen wird der Hochlauf des Verbrennungsmotors beim Start durch ein drehzahl- oder momentengeregeltes Verfahren durchgeführt, um einem vorgegebenen Sollverlauf mit möglichst geringen Abweichungen zu folgen. Die globale Solldrehzahl- oder Sollmomentenverlauf gibt dabei vor, wie der Verbrennungsmotor vom Stillstand auf seine Start- bzw. Leerlaufdrehzahl hoch läuft. In diesem globalen Sollverläufen ist der Einfluss der Wechseldrehmomente nicht enthalten. Durch eine überlagerte Regelungen werden Abweichungen vom Sollverlauf zwar grundsätzlich ausgeglichen, praktisch erzeugen die Wechseldrehmomente jedoch Störgrößen für die Regelung, sodass insbesondere bei der Drehzahlregelung der E-Maschine - aber auch bei einer Momentenregelung - Regelabweichungen entstehen (auch bei konstanter Momentenvorsteuerung entstehen durch die wechselnden Reaktionsmomente des Verbrennungsmotors Momentenschwankungen). Aus diesem Grunde besteht für den nur sehr kurzzeitig andauernden, hochdynamischen Start-Vorgang der Brennkraftmaschine Potenzial für die Komfortverbesserung.
Aus der DE 198 14 402 C2 ist es bekannt, bei einem Antriebssystem mit elektrischer Maschine dieser in der ersten Phase des Anfahrvorgangs eine Doppelfunktion zu geben. Einerseits dient die elektrische Maschine zum Anfahren der Fahrzeugbeschleunigung und andererseits dreht die elektrische Maschine den Verbrennungsmotor zum Starten hoch. Zusätzlich erzeugt die elektrische Maschine ein Wechseldrehmoment, welches betragsgleich gegenphasig zu Drehmomentschwankungen ist, welche der Verbrennungsmotor beim Mitschleppen erzeugt.
Aus der DE 102 01 278 A1 ist ein Verfahren zum Abstellen einer Brennkraftmaschine mit einer definierten Stellung der Kurbelwelle bekannt.
Der Erfindung liegt die Aufgabe zugrunde, ein Betriebsverhalten eines Hybrid-Kraftfahrzeuges im Start- bzw. Abschaltbetrieb zu verbessern.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben. Dazu ist es bei einem Verfahren der o.g. Art erfindungsgemäß vorgesehen, dass beim Abschalten der Brennkraftmaschine und/oder beim Starten der Brennkraftmaschine ein Momentenverlauf der E-Maschine zum Starten der Brennkraftmaschine oder beim Abschalten der Brennkraftmaschine vorgesteuert wird.
Dies hat den Vorteil, dass als subjektiv störend empfundene Einwirkungen auf die Karosserie des Kraftfahrzeugs während des Startens oder Abschaltens der Brennkraftmaschine unmittelbar minimiert werden.
In einer bevorzugten Ausführungsform werden die über Motorlager und/oder Getriebelager und/oder weitere Aggregatelager in eine Fahrzeugkarosserie eingeleiteten Kräfte gemessen, wobei die Messung nur Vorab zur Optimierung des Drehmoment- Vorsteuerverlaufes und/oder dauerhaft durch im Fahrzeug angeordnete Messaufnehmer erfolgt. Ein Momentenverlauf der E-Maschine zum Starten der Brennkraftmaschine oder beim Abschalten der Brennkraftmaschine wird dabei derart vorgesteuert, dass die Kräfte an den Motorlagern und/oder Getriebelagern und/oder weiteren Aggregatelager minimale Amplituden aufweisen. Hierdurch ist es möglich, einen Maßstab für das subjektive Komfortempfinden zu gewinnen, um darauf basierend einen komfortoptimierten Motorstart durchführen bzw. applizieren zu können.
Zweckmäßigerweise ist eine Start-Stopp-Automatik vorgesehen, welche die Brennkraftmaschine in vorbestimmten Betriebssituationen abschaltet und bei Lastanforderung durch einen Fahrer wieder mittels des Startergenerators startet.
In einer bevorzugten Weiterbildung der Erfindung wird der Momentenverlauf der E- Maschine bzw. des Startergenerators derart vorgesteuert, dass eine Anregung von Eigenfrequenzen der Fahrzeugkarosserie minimiert wird.
Zur weiteren Minimierung von Drehungleichförmigkeiten aufgrund von Gaskräften in Zylindern der Brennkraftmaschine wird der Momentenverlauf des Startergenerators derart vorgesteuert, dass einem vorbestimmten Grunddrehmomentverlauf zur Überwindung einer mittleren Reibung und Gewährleistung einer vorbestimmten Winkelgeschwindigkeit einer Kurbelwelle der Brennkraftmaschine ein von der Stellung der Kurbelwelle abhängiges Wechselmoment überlagert wird. Zweckmäßigerweise wird im Falle des Startens der Brennkraftmaschine das Verfahren bis zum Erreichen einer vorbestimmten Startdrehzahl, bei der eine Kraftstoffeinspritzung beginnt, oder einer vorbestimmten Leerlaufdrehzahl ausgeführt.
Eine weitere Komforterhöhung beim Starten der Brennkraftmaschine mit besonders weich einsetzendem verbrennungsmotorischen Betrieb erzielt man dadurch, dass das Verfahren zusätzlich nach Erreichen der Startdrehzahl über eine vorbestimmte Zeitspanne hinaus weiter ausgeführt wird, wobei zusätzlich dem vorgesteuerten Drehmomentverlauf der E-Maschine bzw. des Startergenerators ein Gegenmoment überlagert wird, welches Drehmomentschwankungen aufgrund von ersten einsetzenden Verbrennungsprozessen bedämpft.
Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Diese zeigt in der einzigen Fig. einen Verlauf der Motordrehzahl und eines Drehmomentes der elektrischen Maschine über die Zeit zwischen einem Starten der Brennkraftmaschine und einem Erreichen einer Start- bzw. Leerlaufdrehzahl.
Das erfindungsgemäße Verfahren wird vorzugsweise beim Abschalten beziehungsweise Starten einer Brennkraftmaschine eines Hybrid-Kraftfahrzeuges mit einer Brennkraftmaschine und einer elektrischen Maschine (z. B. Startergenerator) angewendet, wobei in vorbestimmten Betriebssituationen, beispielsweise beim Halten an einer Ampel oder im Schubbetrieb, eine Start-Stopp-Automatik die Brennkraftmaschine zur Kraftstoffeinsparung abschaltet (Stopp-Phase) und bei Anforderung durch einen Fahrer mittels der elektrischen Maschine wieder startet. Nachfolgend wird das erfindungsgemäße Verfahren anhand der einzigen Fig. für das Starten veranschaulicht und beschrieben. Dies ist jedoch nicht als Einschränkung des erfindungsgemäßen Verfahrens auf das Starten der Brennkraftmaschine zu verstehen.
In der einzigen Fig. sind auf der horizontalen Achse 10 die Zeit, auf der vertikalen Achse 12 die Drehzahl der Brennkraftmaschine und auf der vertikalen Achse 14 das Drehmoment der elektrischen Maschine aufgetragen. Mit 16 ist ein Zeitpunkt t0 bezeichnet, bei dem ein Motorstart beginnt. Mit 18 ist ein Zeitpunkt ti bezeichnet, bei dem eine Startdrehzahl, bei der eine Kraftstoffeinspritzung sowie ggf. eine Zündung beim Ottomotor erfolgt, bzw. eine Leerlaufdrehzahl erreicht ist. Eine gestrichelten Linie 20 gekennzeichnet diese Start- bzw. Leerlaufdrehzahl. Ein mit gestrichelter Linie gezeichneter erster Graph 22 veranschaulicht den zeitlichen Verlauf der Drehzahl der Brennkraftmaschine zwischen dem Zeitpunkt t0 16 und dem Zeitpunkt t-j 18 bei konventioneller Drehmomentvorsteuerung der elektrischen Maschine. Ein mit durchgezogener Linie gezeichneter zweiter Graph 24 veranschaulicht den zeitlichen Verlauf der Drehzahl der Brennkraftmaschine zwischen dem Zeitpunkt t0 16 und dem Zeitpunkt t-t 18 bei erfindungsgemäßer Drehmomentvorsteuerung der elektrischen Maschine. Ein mit gestrichelter Linie gezeichneter dritter Graph 26 veranschaulicht den zeitlichen Verlauf einer konventionellen Drehmomentvorsteuerung der elektrischen Maschine zwischen dem Zeitpunkt t0 16 und dem Zeitpunkt t| 18. Ein mit durchgezogener Linie gezeichneter vierter Graph 28 veranschaulicht den zeitlichen Verlauf einer erfindungsgemäßen Drehmomentvorsteuerung der elektrischen Maschine zwischen dem Zeitpunkt t0 16 und dem Zeitpunkt t-i 18. Mit 30 sind Momentenerhöhung des erfindungsgemäßen zeitlichen Verlaufes der Drehmomentvorsteuerungen der elektrischen Maschine bezeichnet, um Drehmomentungleichförmigkeiten aufgrund der Verdichtungsarbeit durch die Brennkraftmaschine auszugleichen.
Erfindungsgemäß wird eine Verbesserung der Qualität des Motorhochlaufs dadurch erreicht, dass schon in der Momentenvorsteuerung der elektrischen Maschine bekannte Wechseldrehmomenteinflüsse berücksichtigt werden. Erfindungsgemäß ist es daher vorgesehen, dass der Start der Brennkraftmaschine in der Art erfolgt, dass die elektrische Maschine anhand eines im Steuergerät der elektrischen Maschine abgelegten, Kurbelwellenwinkel bezogenen Drehmomentverlaufs vorgesteuert wird, welcher die durch die Wechseldrehmomente hervorgerufenen Schwankungen derart berücksichtigt, dass ein vorgegebener Solldrehzahlverlauf (auch Sollmomentenverlauf) mit möglichst geringen Abweichungen eingehalten wird. Diesem Verfahren kann weiterhin eine Regelung überlagert werden, um restliche Abweichungen auszugleichen.
Der Vorgabe-Drehmomentverlauf kann im Vorfeld durch Versuche am Verbrennungsmotor ermittelt werden, indem das Drehmoment und die Winkelstellung der Kurbelwelle bei Startvorgängen oder auch bei Betrieb mit unterschiedlichen konstanten Drehzahlen zeitaufgelöst gemessen wird. Alternativ kann der Vorgabe- Drehmomentverlauf auch berechnet werden. Dabei wird Idealerweise auch der Einfluss unterschiedlicher Motortemperaturen (z.B. durch Bestimmung von Kühlmittel- oder Öltemperatur) und/oder des Ansaugluftdruckes und/oder des Ansaugluftmassenstroms und/oder der Zylinderfüllung und/oder der Ansauglufttemperatur und/oder der Ventilsteuerzeiten und/oder Ventilhübe berücksichtigt, wodurch sich das Reibverhalten, das Wärmeübergangsverhalten und die Verdichtungsarbeit infolge unterschiedlicher Motorfüllungen verändern können. Des weiteren kann auch der Einfluss verschiedener Aggregate berücksichtigt werden, die ihrerseits zusätzliche konstante oder auch wechselnde Drehmomente aufprägen (zum Beispiel Ansaugluftkompressoren, Klimakompressor usw.), die ebenfalls zumindest temperaturabhängig sein können. Da die Kompressionsarbeit des ersten verdichtenden Zylinders aufgrund der Leckage bei stehendem Motor abhängig von der Kolben- bzw. Kurbelwellenstellung geringer ausfallen kann, ist hier ggf. eine zusätzliche Korrektur vorgesehen.
Der für den Motorstart vorzugebende Drehmomentverlauf wird dann ermittelt, indem einem Grunddrehmomentverlauf zur Überwindung der mittleren Reibung und Gewährleistung der gewünschten Winkelbeschleunigung der Motorkurbelwelle ein auf den Kurbelwellenwinkel bezogenes, gewichtetes Wechselmoment derart überlagert wird, dass die Drehzahlabweichungen (bzw. Momentschwankungen) minimal werden.
In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird der Solldrehmomentverlauf bestimmt, indem während eines Startvorgangs die über die Motor- und/oder Getriebelager in die Fahrzeugkarosserie eingeleiteten Kräfte gemessen werden und der vorzugebende Momentenverlauf der E-Maschine derart vorgegeben wird, dass die Lagerkräfte minimale Amplituden aufweisen. Alternativ kann der Momentenverlauf auch in der Art abgestimmt werden, dass die Anregung von Karosserieeigenfrequenzen möglichst gering ist. Beispielsweise wird die von einem Fahrer oder Fahrzeuginsassen subjektiv als störend empfundene Einwirkung auf die Karosserie detektiert und durch Abbildung im Vorgabe-Drehmomentverlauf für den Motorstart minimiert.
Für das vorgeschlagene Verfahren ist es erforderlich, dass der Solldrehmomentverlauf der Kurbelstellung des Motors zugeordnet wird. Dazu kann eine Auslauferkennung verwendet werden, die die Winkellage der Kurbelwelle beim Abstellen des Motors detektiert bzw. ein Verfahren eingesetzt werden, dass die Brennkraftmaschine in einer definierten Winkellage abstellt. Ein bekanntes Verfahren zur Einstellung einer definierten Kurbelwellenstellung ist beispielsweise in der DE 102 01 278 A1 offenbart.
In erweiterter Form kann das Verfahren auch eine vorbestimmte Zeitspanne über den Zeitpunkt des Erreichens der Startdrehzahl 20 hinaus eingesetzt werden. Die Startdrehzahl 20 ist dabei diejenige Drehzahl, bei der eine Kraftstoffeinspritzung sowie ggf. eine Zündung beginnt bzw. erfolgt (Ottomotor). Dabei werden zusätzlich auch die durch die ersten einsetzenden Verbrennungsprozesse verursachten Drehmomentschwankungen berücksichtigt und mit entsprechenden elektromotorischen Gegenmomenten der E-Maschine im vorzusteuernden Drehmomentverlauf bedämpft, um ein besonders weiches Einsetzen des verbrennungsmotorischen Betriebs beim Start der Brennkraftmaschine zu gewährleisten. Diese Vorsteuermomente werden dann in einer anschließenden zweiten Zeitspanne abgesteuert.
Zusammenfassend wird ein Verfahren zur Verfügung gestellt, bei dem ein optimaler Drehzahlanstieg während des Startvorgangs der Brennkraftmaschine bzw. Drehzahlabfall während des Abschaltens der Brennkraftmaschine erzielt werden kann (Vorgabe eines zeitlichen Verlaufes in einer Instationärphase). Erfindungsgemäß wird dabei der optimale Verlauf des Drehzahlanstiegs bzw. des Drehzahlabfalls durch eine Auswertung der über die Aggregatelagerung in die Karosserie eingeleiteten Kräfte ermittelt. Hierdurch ist es möglich, einen Maßstab für das subjektive Komfortempfinden zu gewinnen, um darauf basierend einen komfortoptimierten Start bzw. ein Abschalten der Brennkraftmaschine durchzuführen bzw. zu applizieren.
Bezugszeichenliste
horizontale Achse: Zeit vertikale Achse: Drehzahl der Brennkraftmaschine vertikale Achse: Drehmoment der elektrischen Maschine Zeitpunkt t0: Motorstart Zeitpunkt ti: Start- bzw. Leerlaufdrehzahl erreicht gestrichelten Linie: Start- bzw. Leerlaufdrehzahl erster Graph: zeitlicher Verlauf der Drehzahl (gemäß StdT) zweiter Graph: zeitlicher Verlauf der Drehzahl (gemäß Erfindung) dritte Graph: zeitlicher Verlauf einer konventionellen Drehmomentvorsteuerung vierter Graph: zeitlicher Verlauf einer erfindungsgemäßen
Drehmomentvorsteuerung Momentenerhöhungen

Claims

PAT E NTAN S P RÜ C H E
1. Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges, welches eine Brennkraftmaschine und mindestens eine E-Maschine aufweist, dadurch gekennzeichnet, dass beim Abschalten der Brennkraftmaschine und/oder beim Starten der Brennkraftmaschine ein Momentenverlauf der E-Maschine zum Starten der Brennkraftmaschine oder beim Abschalten der Brennkraftmaschine vorgesteuert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die über Motorlager und/oder Getriebelager und/oder weitere Aggregatelager in eine Fahrzeugkarosserie eingeleiteten Kräfte gemessen werden, wobei die Messung nur Vorab zur Optimierung des Drehmoment-Vorsteuerverlaufes und/oder dauerhaft durch im Fahrzeug angeordnete Messaufnehmer erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Momentenverlauf der E-Maschine zum Starten der Brennkraftmaschine oder beim Abschalten der Brennkraftmaschine derart vorgesteuert wird, dass die Kräfte an den Motorlagern und/oder Getriebelagern und/oder weiteren Aggregatelager minimale Amplituden aufweisen.
4. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Start-Stopp-Automatik die Brennkraftmaschine in vorbestimmten Betriebssituationen abschaltet und bei Anforderung durch einen Fahrer wieder mittels der E-Maschine startet.
5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Momentenverlauf der E-Maschine derart vorgesteuert wird, dass eine Anregung von Eigenfrequenzen der Fahrzeugkarosserie minimiert wird.
6. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Momentenverlauf der E-Maschine derart vorgesteuert wird, dass einem vorbestimmten Grunddrehmomentverlauf zur Überwindung einer mittleren Reibung und Gewährleistung einer vorbestimmten Winkelgeschwindigkeit einer Kurbelwelle der Brennkraftmaschine ein von der Stellung der Kurbelwelle abhängiges Wechselmoment überlagert wird.
7. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Vorsteuerung des Momentenverlaufes der E-Maschine zusätzlich eine Regelung überlagert wird, um die Lagerkräfte zu minimieren.
8. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Falle des Startens der Brennkraftmaschine das Verfahren bis zum Erreichen einer vorbestimmten Startdrehzahl, bei der eine Kraftstoffeinspritzung beginnt, oder einer vorbestimmten Leerlaufdrehzahl ausgeführt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Verfahren zusätzlich nach Erreichen der Startdrehzahl über eine vorbestimmte Zeitspanne hinaus weiter ausgeführt wird, wobei zusätzlich dem vorgesteuerten Drehmomentverlauf der E-Maschine ein Gegenmoment überlagert wird, welches Drehmomentschwankungen aufgrund von ersten einsetzenden Verbrennungsprozessen bedämpft.
10. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die E-Maschine ein Startergenerator ist.
11. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die E-Maschine eine Leistung von 7kW bis 25kW, bevorzugt 8kW bis 2OkW, besonders bevorzugt von etwa 15kW hat.
PCT/EP2005/005934 2004-07-02 2005-06-02 Verfahren zum betreiben eines hybrid-kraftfahrzeuges WO2006002724A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/641,294 US7562732B2 (en) 2004-07-02 2006-12-19 Method for operating a hybrid motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004032173.6 2004-07-02
DE102004032173.6A DE102004032173B4 (de) 2004-07-02 2004-07-02 Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/641,294 Continuation US7562732B2 (en) 2004-07-02 2006-12-19 Method for operating a hybrid motor vehicle

Publications (2)

Publication Number Publication Date
WO2006002724A1 true WO2006002724A1 (de) 2006-01-12
WO2006002724A8 WO2006002724A8 (de) 2006-12-14

Family

ID=34969713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005934 WO2006002724A1 (de) 2004-07-02 2005-06-02 Verfahren zum betreiben eines hybrid-kraftfahrzeuges

Country Status (4)

Country Link
US (1) US7562732B2 (de)
CN (1) CN100556725C (de)
DE (1) DE102004032173B4 (de)
WO (1) WO2006002724A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529947A (zh) * 2010-12-29 2012-07-04 上海汽车集团股份有限公司 一种混合动力系统的控制方法
CN104859634A (zh) * 2015-05-07 2015-08-26 郑州宇通客车股份有限公司 一种混合动力汽车发动机快速停机方法和混合动力系统

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293138B2 (ja) * 2005-02-03 2009-07-08 トヨタ自動車株式会社 内燃機関の制御装置及びその制御装置を備えた自動車
US20070163819A1 (en) * 2006-01-18 2007-07-19 Timothy Gerard Richter Hybrid drive system and method of installing same
DE102006006107A1 (de) * 2006-02-10 2007-08-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Antriebsvorrichtung eines Hybridfahrzeugs
US7669569B2 (en) * 2006-06-27 2010-03-02 Gm Global Technology Operations, Inc. Crankshaft stop positioning control system
US7996145B2 (en) 2007-05-03 2011-08-09 GM Global Technology Operations LLC Method and apparatus to control engine restart for a hybrid powertrain system
DE102007022983A1 (de) 2007-05-15 2008-11-20 Ricardo Deutschland Gmbh Verfahren zur Regelung eines Verbrennungsmotors
US8142328B2 (en) 2007-07-05 2012-03-27 Schaeffler Technologies AG & Co. KG Method for controlling a starting clutch
US7573151B2 (en) * 2007-10-11 2009-08-11 Lear Corporation Dual energy-storage for a vehicle system
DE102008004366A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Triebstranganordnung eines Fahrzeugs und Verfahren zur Steuerung des Betriebes einer Triebstranganordnung eines Fahrzeugs
US8261864B2 (en) 2008-06-17 2012-09-11 GM Global Technology Operations LLC Hybrid powertrain auto start control system with engine pulse cancellation
DE102008043555A1 (de) * 2008-11-07 2010-05-12 Robert Bosch Gmbh Verfahren einer Steuerung für eine Startvorrichtung, Computerprogrammprodukt und Steuerung
DE102009033544B4 (de) 2009-07-14 2018-08-23 Volkswagen Ag Verfahren und Vorrichtung zum Anlassen einer Verbrennungskraftmaschine
JP5213914B2 (ja) * 2010-06-15 2013-06-19 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
DE102010030800A1 (de) * 2010-07-01 2012-01-05 Bayerische Motoren Werke Aktiengesellschaft Berechnung eines zeitlichen Verlaufs einer Soll-Drehzahl bei Änderung einer Soll-Drehzahl-Vorgabe
EP2628648B1 (de) * 2010-10-14 2016-08-10 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für ein fahrzeugantriebssystem
DE102011006641A1 (de) * 2011-04-01 2012-10-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Generators
US9316195B2 (en) 2012-10-29 2016-04-19 Cummins Inc. Systems and methods for optimization and control of internal combustion engine starting
US9709014B2 (en) 2012-10-29 2017-07-18 Cummins Inc. Systems and methods for optimization and control of internal combustion engine starting
DE102013009649A1 (de) * 2013-06-08 2014-12-24 Volkswagen Aktiengesellschaft Verfahren zum Steuern und/oder Regeln einer Hybridantriebsanordnung eines Kraftfahrzeuges
DE102014213080A1 (de) * 2013-09-20 2015-04-16 Robert Bosch Gmbh Verfahren zum Abstellen einer Brennkraftmaschine
CN104608759B (zh) * 2014-12-23 2017-05-10 潍柴动力股份有限公司 一种发动机启动控制方法
US20210189980A1 (en) * 2015-01-12 2021-06-24 Tula Technology, Inc. Mitigation of powertrain and accessory torsional oscillation through electric motor/generator control
CN109989840B (zh) 2015-01-12 2021-11-02 图拉技术公司 用于操作混合动力传动系的方法及混合动力传动系控制器
FR3050487B1 (fr) * 2016-04-21 2019-08-30 Valeo Equipements Electriques Moteur Systeme de commande pour demarrage cooperatif entre un alterno-demarreur et un demarreur de vehicule automobile
US10308138B2 (en) 2016-05-11 2019-06-04 Ford Global Technologies, Llc Hybrid electric vehicle creep control
USD815906S1 (en) 2016-08-11 2018-04-24 Dart Industries Inc. Bottle with cap
DE102017222980A1 (de) * 2017-12-18 2019-06-19 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Verbrennungskraftmaschine
EP3717290A4 (de) * 2018-02-27 2022-04-06 Tula Technology, Inc. Verminderung von drehschwingungen eines antriebsstrangs und zubehörs durch elektromotor-/generatorsteuerung
US10605221B2 (en) * 2018-07-31 2020-03-31 Ford Global Technologies, Llc Methods and system for positioning an engine for starting
DE102019100968A1 (de) 2019-01-16 2020-07-16 Schaeffler Technologies AG & Co. KG Verfahren zur aktiven Dämpfung einer Startresonanz eines Torsionsdämpfers beim Start eines Verbrennungsmotors
US11555461B2 (en) 2020-10-20 2023-01-17 Tula Technology, Inc. Noise, vibration and harshness reduction in a skip fire engine control system
CN117662291B (zh) * 2024-01-31 2024-05-03 泰州市海锋机械制造有限公司 一种含静音结构的发电机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495127A (en) * 1993-09-02 1996-02-27 Nippondenso Co., Ltd. Engine starting apparatus for vehicles
US5537967A (en) * 1992-12-28 1996-07-23 Nippondenso Co., Ltd. Vibration damping control apparatus for vehicle
EP0839683A2 (de) * 1996-10-29 1998-05-06 Toyota Jidosha Kabushiki Kaisha Antriebsanordnung, Motorsteuerung und Verfahren zur Steuerung der Antriebsanordnung und des Motors
DE19814402A1 (de) 1998-03-31 1999-10-14 Isad Electronic Sys Gmbh & Co Antriebssystem für ein Kraftfahrzeug sowie Verfahren zum Betreiben desselben
US6192847B1 (en) * 1999-06-24 2001-02-27 Ford Global Technologies, Inc. Method and apparatus for selectively controlling the speed of an engine
DE10040094A1 (de) 1999-08-16 2001-04-19 Honda Motor Co Ltd Automatische Start-Stopp-Steuer/Regel-Vorrichtung für eine Brennkraftmaschine
DE10201278A1 (de) 2001-01-16 2002-08-01 Gen Motors Corp Kurbelwellenrotationssteuerung in einem Hybrid-Elektrofahrzeug
EP1369281A1 (de) * 2002-06-05 2003-12-10 Peugeot Citroen Automobiles SA Vorrichtung und Verfahren zum Ab- und Zuschalten der Brennkraftmaschine eines seriellen Hybridfahrzeugs

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314484B2 (ja) * 1992-12-28 2002-08-12 株式会社デンソー 車両制振装置
EP1055545B1 (de) * 1999-05-26 2004-01-28 Toyota Jidosha Kabushiki Kaisha Hybrid Kraftfahrzeug mit eingebauten Brennstoffzellen und Steuerverfahren dafür
US6253140B1 (en) * 1999-08-04 2001-06-26 Ford Global Technologies, Inc. Engagement control logic for an automatic transmission clutch with adaptive engagement feel
US7185722B1 (en) * 2000-02-04 2007-03-06 Hitachi, Ltd. Power transmission apparatus of motor vehicles
JP3775562B2 (ja) * 2000-03-07 2006-05-17 ジヤトコ株式会社 パラレルハイブリッド車両
GB2370130B (en) * 2000-10-11 2004-10-06 Ford Motor Co A control system for a hybrid electric vehicle
US7407026B2 (en) * 2000-10-11 2008-08-05 Ford Global Technologies, Llc Control system for a hybrid electric vehicle to anticipate the need for a mode change
US7163480B2 (en) * 2001-05-03 2007-01-16 Ford Global Technologies, Llc Powertrain for a hybrid vehicle with all-wheel drive capability and method for controlling wheel slip
JP3815401B2 (ja) * 2002-08-09 2006-08-30 アイシン・エィ・ダブリュ株式会社 ハイブリッド車用の制御装置
JP3817516B2 (ja) * 2002-12-26 2006-09-06 本田技研工業株式会社 ハイブリッド車両の駆動制御装置
WO2004067949A1 (en) * 2003-01-27 2004-08-12 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine
JP3815441B2 (ja) * 2003-02-04 2006-08-30 トヨタ自動車株式会社 内燃機関の停止始動制御装置
US6809501B2 (en) * 2003-03-11 2004-10-26 General Motors Corporation Method of improving fuel economy
WO2004083870A2 (en) * 2003-03-19 2004-09-30 The Regents Of The University Of California Method and system for controlling rate of change of ratio in a continuously variable transmission
US7115064B2 (en) * 2003-09-10 2006-10-03 Ford Global Technologies, Llc Method for controlling a hybrid vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537967A (en) * 1992-12-28 1996-07-23 Nippondenso Co., Ltd. Vibration damping control apparatus for vehicle
US5495127A (en) * 1993-09-02 1996-02-27 Nippondenso Co., Ltd. Engine starting apparatus for vehicles
EP0839683A2 (de) * 1996-10-29 1998-05-06 Toyota Jidosha Kabushiki Kaisha Antriebsanordnung, Motorsteuerung und Verfahren zur Steuerung der Antriebsanordnung und des Motors
DE19814402A1 (de) 1998-03-31 1999-10-14 Isad Electronic Sys Gmbh & Co Antriebssystem für ein Kraftfahrzeug sowie Verfahren zum Betreiben desselben
EP1068090A1 (de) * 1998-03-31 2001-01-17 Continental ISAD Electronic Systems GmbH & Co. oHG Hybridantriebssystem für ein kraftfahrzeug, sowie verfahren zum betreiben desselben in der anfahrphase
US6192847B1 (en) * 1999-06-24 2001-02-27 Ford Global Technologies, Inc. Method and apparatus for selectively controlling the speed of an engine
DE10040094A1 (de) 1999-08-16 2001-04-19 Honda Motor Co Ltd Automatische Start-Stopp-Steuer/Regel-Vorrichtung für eine Brennkraftmaschine
DE10201278A1 (de) 2001-01-16 2002-08-01 Gen Motors Corp Kurbelwellenrotationssteuerung in einem Hybrid-Elektrofahrzeug
EP1369281A1 (de) * 2002-06-05 2003-12-10 Peugeot Citroen Automobiles SA Vorrichtung und Verfahren zum Ab- und Zuschalten der Brennkraftmaschine eines seriellen Hybridfahrzeugs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102529947A (zh) * 2010-12-29 2012-07-04 上海汽车集团股份有限公司 一种混合动力系统的控制方法
CN104859634A (zh) * 2015-05-07 2015-08-26 郑州宇通客车股份有限公司 一种混合动力汽车发动机快速停机方法和混合动力系统

Also Published As

Publication number Publication date
DE102004032173A1 (de) 2006-02-02
US7562732B2 (en) 2009-07-21
WO2006002724A8 (de) 2006-12-14
CN100556725C (zh) 2009-11-04
US20070099749A1 (en) 2007-05-03
CN1980807A (zh) 2007-06-13
DE102004032173B4 (de) 2015-07-30

Similar Documents

Publication Publication Date Title
DE102004032173B4 (de) Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges
DE102014209737B4 (de) Starten einer kraftmaschine eines hybridelektrofahrzeugs mit einer vorgespannten dämpferfeder
DE102012209205B4 (de) Verfahren zum ausführen einer getriebeumschaltung in einem antriebsstrangsystem mit einer drehmomentmaschine und einer brennkraftmaschine
DE102007043607A1 (de) Verfahren und Steuerung zur Funktionsüberwachung eines Verbrennungsmotors
EP2235358A1 (de) Verfahren und vorrichtung zur ermittlung und prädiktion eines zum starten eines verbrennungsmotors notwendigen startmoments oder startmomentenverlaufs
DE10233887A1 (de) Gerät und Verfahren zum Steuern eines Automatikstopps einer Verbrennungskraftmaschine
DE10221844A1 (de) Steuerungs/Regelungssystem für ein Hybridfahrzeug
EP2238339A1 (de) Verfahren zum betreiben einer hybridantriebsvorrichtung
EP1922234A2 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102013207555B3 (de) Verfahren zur Einspritzmengenadaption
DE102014211335A1 (de) Drehmoment zum anschleppen der kraftmaschine mit bezug auf eine kraftmaschinenabschaltposition
WO2011047916A1 (de) Verfahren und vorrichtung zur verbesserung des wiederstartens eines mit start-stopp-betrieb ausgestatteten fahrzeugs
WO2017012785A1 (de) Verfahren zum ermitteln einer drehmomentgenauigkeit eines von einem riemen-getriebenen startergenerator einer brennkraftmaschine auf die brennkraftmaschine übertragenen drehmoments
DE102017119755A1 (de) Maschinenanlasssystem
DE10015843A1 (de) Elektromotorantriebssteuervorrichtung für ein Fahrzeug
DE102011007986A1 (de) Steuersystem und -Verfahren zum Verhindern von Maschinenabsterben
EP3351787A2 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
DE102014201276A1 (de) Verfahren zur Ansteuerung eines Verbrennungsmotors sowie eine Vorrichtung zur Ansteuerung eines Verbrennungsmotors
DE102016005122B4 (de) Verfahren zum Betreiben einer Hybridantriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Hybridantriebseinrichtung
DE10005178A1 (de) Verfahren und Vorrichtung zur Dämpfung von Drehschwingungen in einem Antriebssystem, sowie Steuereinrichtung und Antriebssystem
DE19727595A1 (de) Verfahren und Vorrichtung zum Starten einer Brennkraftmaschine mit Zweimassenschwungrad
EP1477654B1 (de) Verfahren zum Anhalten einer Brennkraftmaschine in einer gewuenschten Ruheposition
DE10252571A1 (de) Ausgangsleistungsregelsystem für eine Brennkraftmaschine
WO2004018246A1 (de) Kraftfahrzeug mit hybridantrieb sowie verfahren zum betreiben desselben
DE102017206198B4 (de) Steuervorrichtung für fahrzeuge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11641294

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580022661.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 11641294

Country of ref document: US

122 Ep: pct application non-entry in european phase