WO2006001436A1 - Vibrating linear actuator - Google Patents

Vibrating linear actuator Download PDF

Info

Publication number
WO2006001436A1
WO2006001436A1 PCT/JP2005/011780 JP2005011780W WO2006001436A1 WO 2006001436 A1 WO2006001436 A1 WO 2006001436A1 JP 2005011780 W JP2005011780 W JP 2005011780W WO 2006001436 A1 WO2006001436 A1 WO 2006001436A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
coil
vibration
linear actuator
weight
Prior art date
Application number
PCT/JP2005/011780
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Kugou
Minoru Ueda
Takesi Kogawa
Tosio Ueki
Original Assignee
Namiki Seimitsu Houseki Kabusikikaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Seimitsu Houseki Kabusikikaisha filed Critical Namiki Seimitsu Houseki Kabusikikaisha
Publication of WO2006001436A1 publication Critical patent/WO2006001436A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system

Definitions

  • the present invention relates to a small vibration device as a vibration alarm device, and more particularly, to a vibration linearizer mounted in an information terminal device such as a mobile phone, a portable electronic device, and a portable liquid crystal TV game machine.
  • vibration calling functions such as silent mode and manner mode
  • silent mode and manner mode notify the user of an incoming call by bodily vibration
  • the vibration generator uses a cylindrical or flat compact vibration motor that rotates an eccentric weight, a speaker-driven multifunction device (MFD), or the like to generate vibration, sound, and sound.
  • MFD speaker-driven multifunction device
  • Application devices are generally well known, but with the recent trend toward miniaturization of portable information terminal bodies, the space that can be taken by vibration generators inside devices has become limited year by year.
  • the vibration generator is reduced in size and power consumption is reduced, but a new structure that can generate a vibration force that allows a user to reliably recognize an incoming call. Development of vibration devices is desired.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-154314
  • the outer yoke which is a mover
  • the general vibration motor as described above has a complicated structure with a large number of parts and vibrates at a high speed, which causes a problem in the reliability of the sliding portion.
  • the multi-function device (MFD) adopts the basic structure of a speaker, the area of the amplitude of the magnetic circuit of the mover and the amplitude of the sound or sound diaphragm overlaps with little force. Thus, there was a problem that sufficient vibration force or acoustic characteristics could not be obtained within the limited thickness range.
  • the present invention is characterized by a vibration generating function as a thin vibration device, has a simple structure and excellent durability, and makes the best use of a limited space so that the user can clearly see it. It is an object of the present invention to provide a small-diameter flat type vibration linear actuator capable of generating a recognizable vibration force.
  • a mover including a permanent magnet, a housing main body that houses the mover, a thin plate-like elastic body that connects and supports the mover and the housing main body, and a stator for driving the mover
  • a vibration device comprising a side coil
  • the permanent magnet is magnetized in the amplitude direction of the mover, and a weight body serving as a weight is integrally provided on the outer periphery of the permanent magnet, and the opposing coils are slightly spaced on the inner diameter side of the permanent magnet.
  • a cylindrical pole piece is provided on the inner diameter of the coil wound in a cylindrical shape so as to penetrate the center.
  • the center position of the magnetic field which is the center of the permanent magnet in the thickness direction, and the center position of the magnetic field generated when the coil is energized do not coincide with each other in the amplitude direction. It is characterized by being offset at the part side.
  • the gap between the outer peripheral surface of the mover and the inner surface of the side wall of the housing body, and the inner periphery of the mover is narrow within a range of 0.08 mm to 0.15 mm, and the upper surface side of the mover and the housing body change according to the movement of the mover
  • An air damper for limiting the amount of air movement between the space formed by the inner wall of the upper surface and the space formed by the lower surface side of the mover and the terminal board serving as the lid of the housing body It is characterized by having a structure.
  • the weight body is formed of a weight of a non-magnetic material whose main component is high specific weight gold having a specific gravity of 10 or more, such as tungsten or tantalum.
  • the weight body is formed by a weight of a general non-magnetic material having a large specific gravity of 8 or less and less than 10 such as brass or copper! /
  • the bottom surface side of the terminal board has a terminal board structure compatible with solder reflow.
  • the terminal shape corresponding to the solder reflow of the terminal board is composed of a positive electrode (or negative electrode) located in the center and concentrically divided, and a negative electrode (or positive electrode) region of an annular band located on the outer periphery thereof. It is characterized by that.
  • a mover supported by an elastic body and a stator side coil that generates a magnetic field that vibrates the mover are opposed to each other inside the housing body, and a magnetic field generated when a current flows through the coil, and the permanent magnet Due to the magnetic repulsion force or magnetic attraction force acting between the generated magnetic field and the magnetic attraction force, the mover portion resonates and vibrates in the thrust direction which is the thickness direction of the cylindrical housing body.
  • a driving force is obtained by arranging the outer peripheral surface of the coil and the inner peripheral surface of the permanent magnet so as to have a slight gap and further providing a pole piece penetrating the center of the cylindrical coil. The improvement of magnetic efficiency can be expected.
  • a weight body is integrally provided on the outer periphery of the movable permanent magnet so that sufficient vibration force can be obtained in a limited space in the housing body. It plays the role of weight as a moving child.
  • the opposed cylindrical coil on the stator side with respect to the permanent magnet magnetized in the amplitude direction is located on the inner diameter side of the permanent magnet via a slight gap and is wound into the cylindrical shape.
  • a columnar pole piece is provided in the inner diameter of the coil so that it passes through the center of the coil. Magnetic flux passes magnetically through the pole piece and narrows the gap. The density is improved, and the magnetic flux force from the stator side coil works efficiently on the permanent magnet on the mover side.
  • the magnetic field of the permanent magnet and the magnetic field generated when a current is passed through the coil are different, the magnetic field of the permanent magnet and the magnetic field generated when a current is passed through the coil The magnetic force applied between them is energized to the coil without being balanced at that position, and at the same time, the mover quickly moves in one amplitude direction, reliably starts and repeats vibration. .
  • the NS magnetic field force generated by the permanent magnet force The magnetic field center position M of the permanent magnet 2 and the coil have a positional relationship as shown in FIG. In the initial non-energized state where the magnetic field center position C of 5 coincides, the balance of magnetic balance is maintained at the time of starting the current, and the mover 9 does not operate. On the other hand, in the positional relationship shown in FIG. 5, the magnetic field center position M of the permanent magnet 2 of the mover 9 that translates in the axial direction in particular is offset with respect to the magnetic field center position C of the coil 5.
  • the permanent magnet 2 Due to the NS magnetic flux generated at both ends of 5, the permanent magnet 2 itself receives a linear force in the axial direction, starts in the amplitude direction with the unloaded elastic body plane as the reference plane, and is supported by the elastic body 4. In the resonance point region, the mover 9 reciprocates on a straight line, thereby generating vibration force. Can be generated.
  • the clearance between the outer peripheral surface of the mover and the inner wall of the housing body and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both within the range of 0.08 mm to 0.15 mm.
  • the resonance frequency band is wide, the obtained peak can be obtained. Therefore, a stable vibration force can be obtained without the sudden decrease of the vibration force. Further, durability and reliability such as life are improved.
  • the clearance between the outer peripheral surface of the mover and the inner wall of the side wall of the housing body, and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both 0.08 mm to 0.15 mm.
  • the reason for this is that if the gap width is 0.08 mm or less, the mover side and the stator side will be buffered during operation, and conversely if the gap width is greater than 0.15 mm, the air damper will be effective. This is because no fruit can be obtained.
  • the weight of the heavy body formed by a high specific gravity metal body containing a non-magnetic material whose main component is tungsten, tantalum or the like is larger by reciprocating integrally with a permanent magnet as a mover. Vibration force can be obtained.
  • the weight body is formed by a weight of a metal body containing a non-magnetic material mainly composed of high specific polymerized gold having a specific gravity of 10 or more, such as tungsten or tantalum, so that it can move to the maximum extent in a limited small space. You can gain weight as a child.
  • tungsten alloys, tantalum alloys, cobalt alloys, etc. can be used within the range of industrially usable metal materials.
  • the specific gravity of brass, copper, etc. is a relatively large specific gravity of 8 or more and less than 10, and the weight of the weight formed by the metal body of non-magnetic material reciprocates integrally with the permanent magnet as a mover. A large vibration force can be obtained.
  • the weight body is formed by a weight of a specific non-magnetic material such as brass or copper, and a specific gravity of 8 or more and less than 10, so an inexpensive material can be used in a limited space. The best mover weight can be obtained.
  • the terminal board surface at the bottom of the housing main body can be directly solder-reflow-fixed on the circuit board, and the power supply land of the circuit board can be easily energized. This can reduce the man-hours in the assembly work process and can also be put on the solder reflow automation line in the mass production process.
  • the reflow component can be easily arranged on the circuit board.
  • an automatic machine such as a robot or an operator performs manual placement, but when the reflow parts to be placed are disc-shaped, the direction of the terminal position on the bottom side is difficult to identify.
  • there is a defect such as inability to obtain electrical continuity even when the solder is fixed, and it is difficult to match the position of the power supply land on the circuit board on the side where it is placed.
  • the center portion of the circular position of the terminal board and the concentric outer annular band portion are divided to correspond to the power feeding land, and the circular reflow component is independent of the force rotation direction. Can be aligned.
  • the vibration linear actuator 1 includes a substantially cylindrical housing body 7 having a recess 7a at the center, and a rib 11 on one end side of the housing body 7 that is open.
  • the base plate 10 is incorporated as a fitting guide to form an outer frame housing, and the terminal board 14 is arranged at the bottom.
  • outer diameter ⁇ 15mn! ⁇ 10mm, thickness 5mn! It is designed as a vibration device with a small flat shape of ⁇ 3mm.
  • the internal configuration is such that the annular surface corresponding to the bottom surface of the recess 7a on the inside of the housing body 7 has an outer diameter dimension close to the inner diameter side frame of the housing body 7 as shown in FIG.
  • the plate-like elastic body 4 is concentrically fixed by the tip convex portion of the cylindrical main shaft 12 in the inner diameter hole 8 of the annular surface of the concave portion 7a.
  • the main shaft 12 is formed integrally with the pole piece 3 standing perpendicular to the center bearing hole 10a of the plate surface of the base plate 10 and has the same coaxial diameter, and the main shaft 12 portion is made of a non-magnetic grease body. Is formed.
  • the main shaft 12 has a structure for supporting and fixing the elastic body 4 with respect to the reference surface of the base plate 10 so as to keep the plate surface of the elastic body 4 horizontal.
  • a weight body 6 formed in a substantially concave annular section having an outer diameter equal to that of the elastic body 4 is attached to the outer peripheral edge of the lower surface side of the elastic body 4 so as to be suspended, and its weight
  • a thrust-oriented annular permanent magnet 2 is fitted and fixed within the same thickness range as the substantially concave bottom surface portion of the weight body 6 to constitute the entire movable element 9.
  • the permanent magnet 2 is, for example, magnetized in the axial direction so that the upper surface side is N-pole and the lower-side force pole.
  • the stator side coil 5 facing the permanent magnet 2 on the side of the mover 9 is wound around the outer periphery of the cylindrical pole piece 3 made of the magnetic material and is combined with the pole piece 3.
  • the NS magnetic flux is substantially concentrated near both ends of the cylindrical coil 5 in the axial direction.
  • the pole piece 3 is made of stainless steel (SUS420J) in this embodiment, which is preferably a ferromagnetic material.
  • the material is not limited to this. Further, it may be a metal or alloy mainly composed of iron, cobalt and nickel.
  • the pole piece 3 itself is supported by a bearing hole 10a in the center of the substantially disc-shaped base plate 10, and maintains the positional relationship between the stator side coil 5 and the mover side permanent magnet 2 while maintaining the tip of the pole piece 3 itself.
  • the main shaft 12 positioned on the side, it plays a central role in the housing in which the housing body 7 and the base plate 10 are fitted.
  • a permanent magnet 2 formed in an annular shape on the outer periphery of the coil 5 is slightly spaced from the outer peripheral surface of the coil 5, that is, magnetically. Installed through the gap. For this reason, the base plate 10 needs to be accurately assembled without variation with respect to the louvering body 7 so that there is no physical buffer between the mover side permanent magnet 2 and the stator side coil 5 during operation. .
  • both the clearance between the outer peripheral surface of the movable element 9 and the inner surface of the side wall of the housing body 7, and the clearance between the inner peripheral surface of the movable element 9 and the outer peripheral surface of the coil 5 are both 0.08 mm to 0.15.
  • An air damper structure is provided for restricting the amount of air movement between the space formed by the base plate 10 serving as the lid of the hooding main body 7 and the space.
  • both the clearance between the outer peripheral surface of the mover and the inner surface of the side wall of the housing body, and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both 0.08 mm to 0.15 mm.
  • the gap between the movable element and the stator is 0.08mn!
  • the air in the space above and below the mover 9 suppresses the vertical movement of the mover 9 so that the air from the space to the space The amount of movement can be limited.
  • an air damper effect works, and the resonance frequency band required for the movable element 9 to obtain a vibration force exceeding a necessary level is substantially expanded.
  • Fig. 10 is a graph comparing the air damper structure with and without the air damper structure.
  • the horizontal axis shows the relationship between the input frequency (Hz) and the vertical axis shows the acceleration (G). .
  • The curve F has an air damper structure.
  • the acceleration G at peak F0 is The curve P is 1.0G, whereas the curve F is 0.9G, which is slightly inferior in acceleration. If the resonance frequency fluctuates and the resonance frequency fluctuates up to the resonance frequency of F1 or F2, for example, the acceleration G at that time is 0.8G for curve F, and 0.6G for curve P, which is larger at 0.8G. The width falls and the drop from the peak F0 value becomes intense.
  • the permanent magnet 2 and the coil 5 have the following positional relationship. Is desirable in design.
  • the center position M of the magnetic field that is the center in the thickness direction of the permanent magnet 2 and the center position C of the magnetic field that is generated when the coil 5 is energized do not coincide with each other in the amplitude direction. Therefore, it is necessary to place them so that they are offset toward the end of one coil 5.
  • the NS magnetic force generated from the permanent magnet 2 When the NS magnetic poles at both ends of the coil 5 wound in a cylindrical shape have a positional relationship as shown in FIG. 6, for example, the magnetic field of the permanent magnet 2 In the initial non-energized state where the center position M and the magnetic field center position C of the coil 5 coincide.
  • the magnetic balance is always maintained, and the mover 9 does not operate.
  • the magnetic field center position C of the permanent magnet 2 of the mover 9 that translates in the axial direction is lowered by structurally lowering the height of the magnetic field center position C of the coil 5.
  • the magnetic attractive force and repulsive force due to NS magnetic flux generation at both ends of the coil 5 act on the magnetic field on the permanent magnet 2 side of the mover 9 and move in the axial direction.
  • a linear force is applied, and the elastic body 4 in the unloaded state is used as a reference plane, and starts downward in the direction of the arrow in the figure. Generate power.
  • Symbol S3 indicates the depth dimension of the annular weight body 6 that is recessed into the concave shape on the upper surface side, and the arm portion 4a of the elastic body 4 when this bending elastically deforms due to the vertical movement of the mover 9. It is structured to avoid contact and buffering.
  • the weight body 6 employs a tungsten sintered alloy having a specific gravity of 18 and a high specific gravity made of a nonmagnetic material.
  • the weight 6 to be added to the permanent magnet 2 of the mover 9 is a weight of a non-magnetic material whose main component is a high specific gravity gold with a specific gravity of 10 or more, such as tungsten or tantalum, which is preferred for a material having a large specific gravity. It is an important element that leads to an increase in vibration power.
  • a weight increase is realized compared to a general non-magnetic material having a specific gravity of 8 or more and less than 10 such as brass or copper.
  • a terminal board 14 for supplying current to the coil 5 is provided, and the bottom side of the terminal board 14 is This is a planar terminal structure compatible with solder reflow.
  • the shape of the flat terminals 14A and 14B corresponding to solder reflow of the terminal substrate 14 is such that the positive electrode (or negative electrode) located at the center of the concentric section and the negative electrode (or positive electrode) of the annular band located on the outer periphery ) Area and A flat terminal portion is formed.
  • the terminal board 14 attached to the bottom of the louvering body 7 includes a flat terminal 14A located at the center of the concentric section and an annular band located on the outer periphery thereof. With the flat terminal 14B, two regions are fixed by solder reflow. Incidentally, the planar terminals 14A and 14B of the terminal board 14 are provided through the through hole H so that the wiring patterns on the front and back sides can be conducted, and the end portions of the wire 5 of the coil 5 are shown in FIG. 7 (B). When connected to one of the auxiliary wiring terminal surfaces 14A and 14B, wiring is made simultaneously to the planar terminals 14A and 14B on the back surface thereof.
  • terminal board 13 shown in FIG. 8 Another example of the terminal board having a slightly different shape is the terminal board 13 shown in FIG.
  • the shape of the terminal board 14 is completely circular, whereas the terminal board 13 shown in FIG. 8 is a positive electrode (or negative electrode) planar terminal 13A located at the center and a negative electrode located in one direction on the outer periphery thereof.
  • the flat terminals 13A and 13B are composed of the (or positive) flat terminal 13B region, and in this case, just place the mounting direction of the flat terminal 13B on the outer peripheral side in line with the power supply land pattern on the circuit board! ,.
  • the vibration linear actuator 1 is directly solder-fixed to the power feeding land surface on the plate surface of the circuit board 50 to be installed in the equipment housing 100 shown in FIG.
  • heat treatment by solder reflow can be performed at the same time. This eliminates the problem of the installation space on the equipment casing 100 side, eliminates the need for a holding accessory for installation, and makes it possible to incorporate it in an automated line during the manufacturing process.
  • the vibration linear actuator 1 includes a permanent magnet 2, a weight body 6, and an elastic body 4 on the movable element 9 side.
  • the stator side is coil 5, It comprises a roll piece 3, a housing body 7, a base plate 10, a main shaft 12, and a terminal board 14.
  • Figure 5 shows an enlarged view of the movement of the mover 9 due to the internal structure and magnetic flux generation.
  • the permanent magnet 2 is assumed to be magnetized in an axial direction in which the upper part is an N pole and the lower part is an S pole.
  • FIGS. 1 and 5 both show the initial state of no load before the coil 5 is elastically deformed when the coil 5 is not energized.
  • the positional relationship with the magnetic pole of the permanent magnet 2 in the initial state is as follows.
  • the N pole on the permanent magnet side is magnetically attracted, and below, the N pole on the coil 5 side and the S pole on the permanent magnet side are magnetically attracted.
  • the entire mover 9 is activated downward in the figure.
  • the moving width of the mover 9 is supported by the balance between the magnetic attraction force and the elastic deformation holding force of the elastic body 4, and in terms of operation, as shown in FIG.
  • the mover 9 moves down to the position closest to the surface.
  • the frequency of the current flowing in the coil 5 is determined by the natural frequency (resonance frequency) determined by the total weight of the mover 9 including the permanent magnet 2 and the weight body 6 and the panel constant of the elastic body 4. ),
  • the vibration linear actuator of the present embodiment 1 can obtain the maximum acceleration, that is, the vibration amount as a vibration device.
  • an alternating current having a frequency characteristic such as a sine wave or a rectangular wave flows through the coil 5, and the total weight of the mover 9 including the permanent magnet 2 and the weight body 6 and the elastic body 4
  • the maximum vibration force can be obtained in terms of the correlation between the wall constant and the resonance frequency determined by the overall natural frequency after the vibration linear actuator 1 is assembled.
  • the total weight of the device itself is 100 g or less, and in general, the vibration force with a resonance frequency of around 140 Hz is felt most sensibly.
  • the entire movable element 9 with the weight repeats a linear reciprocating motion by a series of magnetic action 'reactions', so that the inside of the limited housing composed of the housing body 7 and the base plate 10 In the space, the center of gravity of the mover 9 moves up and down while obtaining the maximum acceleration, and the moment of the force is transmitted to the mover 9 side force, the main shaft 12 that supports it, and from the main shaft 12 to the entire housing, Finally, the vibration linear actuator 1 vibrates strongly.
  • the weight body 6 made of high-specific-polymerization gold is used as a part of the mover 9, and the mover 9 can move within the housing body 7.
  • the area can be expanded, and even in a limited space, the maximum possible stroke of the mover 9 can be secured, and the user can clearly recognize it even though the entire device is small. Sufficient vibration force can be obtained.
  • the elastic body 4 is sandwiched between the main shaft 12 at the tip of the pole piece 3 serving as the central axis and the bottom surface inner diameter hole 8 of the recess 7a formed in the annular surface of the housing body 7. Since the mover 9 is supported, the volume of the space in which the mover 9 can move in the space inside the housing 7 can be increased, and the amplitude of the mover 9 can be reduced while downsizing the device body. The maximum vibration force can be obtained.
  • the coil 5 is energized, the coil 5 is energized promptly and surely to start and stand up, and always obtain a good vibration force without variation. Can do.
  • the housing body 7 and the base By limiting the amount of air moving back and forth between the two upper and lower sealed spaces sandwiching the mover 9 relative to the mover 9 moving in the space sealed by the plate 10, the curve F in FIG. As shown in the resonance frequency characteristics, a gentle frequency band can be realized by expanding the frequency band. As a result, even if the value of the resonance frequency is slightly changed, the predetermined vibration can be stably obtained without a sudden decrease in the obtained vibration force.
  • the structure is simple, the durability is excellent, the magnetic drive parts can be arranged efficiently, and the number of parts is further reduced to the minimum necessary. As a result, the number of man-hours in the assembly manufacturing process, the manufacturing cost, and the labor of parts management can be greatly reduced.
  • FIG. 1 is a cross-sectional view showing the outline of the internal structure of a vibration linear actuator according to the present invention.
  • FIG. 2 is a perspective exploded view showing an outline of an internal structure and component configuration of a vibration linear actuator according to the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the movement of the mover in the internal structure of the vibration linear actuator according to the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the movement of the mover in the internal structure of the vibration linear actuator according to the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing an outline of the positional relationship between the mover and the coil and the movement of the mover in the internal structure of the vibration linear actuator according to the present invention.
  • FIG. 6 is an enlarged sectional view showing an outline as a bad example in the positional relationship between the mover and the coil in the internal structure of the vibration linear actuator according to the present invention.
  • FIG. 7 is a schematic diagram (A) showing a planar terminal shape of the terminal board viewed from the bottom force of the vibration linear actuator according to the present invention, and a schematic diagram (B) on the spare wiring terminal side of the terminal board.
  • FIG. 8 is a schematic diagram showing a planar terminal shape on the terminal board as seen from the bottom force of the vibration linear actuator according to the present invention.
  • FIG. 9 shows a vibration linear actuator according to the present invention on a circuit board inside a portable device casing. Image diagram when installed.
  • FIG. 10 is a diagram schematically showing acceleration with respect to an input frequency in the vicinity of a resonance frequency band of 140 Hz for the vibration linear actuator according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

[PROBLEMS] To provide a vibrating linear actuator simply formed, having excellent durability, and capable of developing a vibrating force of such a degree that a user can clearly recognize it by efficiently swinging a movable element by efficiently and maximally utilizing a limited space in a housing body. [MEANS FOR SOLVING PROBLEMS] This vibrating linear actuator comprises a vibrating device having the movable element with a permanent magnet, the housing body storing the movable element, a thin-sheet like elastic body supportedly connecting the movable element to the housing body, and a stator side coil for driving the movable element. Thepermanent magnet is magnetized in the direction of the amplitude of the movable element and comprises a weight body used as a weight formed integrally with each other at the outer periphery thereof. Also, the opposed coil is positioned on the inner diameter side of the permanent magnet through a small clearance, and a columnar ball piece is installed in the inner diameter of the coil wrapped around in a cylindrical shape in such a way that the columnar ball piece passes the center thereof.

Description

明 細 書  Specification
振動リニアァクチユエータ  Vibration linear actuator
技術分野  Technical field
[0001] 本発明は、振動アラーム装置としての小型振動デバイスに係り、特に、携帯電話、 携帯電子機器、及び携帯液晶 TVゲーム機等の情報端末機器に搭載される振動リニ ァァクチユエータに関する。  TECHNICAL FIELD [0001] The present invention relates to a small vibration device as a vibration alarm device, and more particularly, to a vibration linearizer mounted in an information terminal device such as a mobile phone, a portable electronic device, and a portable liquid crystal TV game machine.
背景技術  Background art
[0002] 現在、携帯電話に代表される携帯情報端末機において、体感振動により使用者に 着信を知らせる振動呼び出し機能 (サイレントモード、マナーモード等のパイブ機能) は、社会的に、またマナーの面から必要不可欠なものとなっており、これに合わせて 様々な機構の小型振動発生装置が開発されている。  [0002] Currently, in portable information terminals represented by mobile phones, vibration calling functions (pib functions such as silent mode and manner mode) that notify the user of an incoming call by bodily vibration are socially and manner-oriented. Therefore, small vibration generators with various mechanisms have been developed.
[0003] 振動発生装置には、例えば、偏心分銅を回転させる円筒又は偏平型の小型振動 モータや、スピーカー駆動型のマルチファンクションデバイス(MFD)等を用いて、振 動と音と音声を発生させる応用装置が一般的に周知であるが、近年の携帯情報端末 機本体の小型化への傾向に伴い、機器内部の振動発生装置が取り得るスペースも 年々限られたものとなってきている。  [0003] The vibration generator uses a cylindrical or flat compact vibration motor that rotates an eccentric weight, a speaker-driven multifunction device (MFD), or the like to generate vibration, sound, and sound. Application devices are generally well known, but with the recent trend toward miniaturization of portable information terminal bodies, the space that can be taken by vibration generators inside devices has become limited year by year.
[0004] このような制限の中で、振動発生装置の小型化を図り、消費電力を抑えつつも、使 用者にあっては確実に着信が認識できる程度の振動力を発生させる新規な構造の 振動デバイスの開発が望まれて 、る。 [0004] Under such restrictions, the vibration generator is reduced in size and power consumption is reduced, but a new structure that can generate a vibration force that allows a user to reliably recognize an incoming call. Development of vibration devices is desired.
[0005] 上記課題を解決するため、例えば、特許文献 1に示される振動発生装置において は、シャフトを中心とした内ヨークとコイルとを固定子とし、その外周に配置された外ョ ークを可動子とした振動発生装置が開発されている (例えば、特許文献 1参照)。 特許文献 1 :特開 2003— 154314号公報 [0005] In order to solve the above problems, for example, in the vibration generator shown in Patent Document 1, an inner yoke and a coil centered on a shaft are used as a stator, and an outer yoke arranged on the outer periphery thereof is used. A vibration generator using a mover has been developed (see, for example, Patent Document 1). Patent Document 1: Japanese Unexamined Patent Publication No. 2003-154314
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、上記特許文献 1に代表される振動発生装置にあっては、可動子であ る外ヨークは円板を中抜きした環状に形成されているため、振動を発生させるのに十 分な可動子としての重量を得ることが難しぐ発振効率が低ぐ振動力が必ずしも十 分とは言えない。また、上述のような一般的な振動モータにあっては、部品点数が多 ぐ構造が複雑な上に高速回転で振動するため、摺動部の信頼性に問題が残る。ま た、前記マルチファンクションデバイス(MFD)は、スピーカの基本構造を採用してい るために、可動子の磁気回路の振幅と、音又は音声のダイァフラムの振幅との領域 が少な力 ず重なり合うようになり、限られた厚み寸法の範囲内では十分な振動力、 又は音響特性が得られな 、と 、う問題があった。 However, in the vibration generator represented by Patent Document 1 described above, the outer yoke, which is a mover, is formed in an annular shape with a disc cut out, so that vibration is generated. Ten The vibration force with low oscillation efficiency that makes it difficult to obtain a sufficient weight as a mover is not necessarily sufficient. In addition, the general vibration motor as described above has a complicated structure with a large number of parts and vibrates at a high speed, which causes a problem in the reliability of the sliding portion. In addition, since the multi-function device (MFD) adopts the basic structure of a speaker, the area of the amplitude of the magnetic circuit of the mover and the amplitude of the sound or sound diaphragm overlaps with little force. Thus, there was a problem that sufficient vibration force or acoustic characteristics could not be obtained within the limited thickness range.
[0007] そこで本発明は、薄型の振動デバイスとしての振動発生機能に特ィ匕し、構造が単 純で耐久性に優れ、かつ限られたスペースを最大限活用して、使用者がはっきりと認 識できる振動力を発することのできる小径偏平型の振動リニアァクチユエータを提供 することを目的とする。 [0007] Therefore, the present invention is characterized by a vibration generating function as a thin vibration device, has a simple structure and excellent durability, and makes the best use of a limited space so that the user can clearly see it. It is an object of the present invention to provide a small-diameter flat type vibration linear actuator capable of generating a recognizable vibration force.
課題を解決するための手段  Means for solving the problem
[0008] 前記課題を解決するため、請求項 1に記載の発明では、 [0008] In order to solve the above problem, in the invention according to claim 1,
永久磁石を備える可動子と、前記可動子を収納するハウジング本体と、前記可動 子と前記ハウジング本体とを連結して支持する薄板状の弾性体と、前記可動子を駆 動させるための固定子側コイルと、を備える振動デバイスにおいて、  A mover including a permanent magnet, a housing main body that houses the mover, a thin plate-like elastic body that connects and supports the mover and the housing main body, and a stator for driving the mover A vibration device comprising a side coil,
前記永久磁石は、可動子の振幅方向に着磁され、かつ永久磁石外周には分銅と なる重量体を一体に備えており、また対向する前記コイルは、前記永久磁石の内径 側に僅かな隙間を介して位置し、その円筒状に卷回されたコイル内径には、柱状の ポールピースが中心を貫通する形で設けられていることを特徴としている。  The permanent magnet is magnetized in the amplitude direction of the mover, and a weight body serving as a weight is integrally provided on the outer periphery of the permanent magnet, and the opposing coils are slightly spaced on the inner diameter side of the permanent magnet. A cylindrical pole piece is provided on the inner diameter of the coil wound in a cylindrical shape so as to penetrate the center.
[0009] また請求項 2に記載の発明では、請求項 1に記載の発明にお!/、て、 [0009] In the invention according to claim 2, the invention according to claim 1 is! /
前記永久磁石の厚み方向中心となる磁界の中心位置と、前記コイルに通電された 時に発生する磁界の中心位置とを振幅方向で一致させず、振幅方向での双方の位 置関係が、コイル一端部側寄りにオフセットさせて配置したことを特徴として 、る。  The center position of the magnetic field, which is the center of the permanent magnet in the thickness direction, and the center position of the magnetic field generated when the coil is energized do not coincide with each other in the amplitude direction. It is characterized by being offset at the part side.
[0010] また請求項 3に記載の発明では、請求項 1または請求項 2に記載の発明において、 前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前記可動 子の内周面と前記コイルの外周面との隙間、を共に 0.08mm〜0.15mmの範囲内で幅 狭にし、可動子の動きによって変化する前記可動子の上面側と前記ハウジング本体 の上面内壁とで形成される空間と、前記可動子の下面側と前記ハウジング本体の蓋 部となる端子基板とで形成される空間、との間の空気の移動量を制限するためのェ ァーダンパー構造を備えたことを特徴として 、る。 [0010] Further, in the invention according to claim 3, in the invention according to claim 1 or 2, the gap between the outer peripheral surface of the mover and the inner surface of the side wall of the housing body, and the inner periphery of the mover The gap between the coil and the outer peripheral surface of the coil is narrow within a range of 0.08 mm to 0.15 mm, and the upper surface side of the mover and the housing body change according to the movement of the mover An air damper for limiting the amount of air movement between the space formed by the inner wall of the upper surface and the space formed by the lower surface side of the mover and the terminal board serving as the lid of the housing body It is characterized by having a structure.
[0011] また請求項 4に記載の発明は、請求項 1〜請求項 3のいずれか一項に記載の発明 において、 [0011] The invention according to claim 4 is the invention according to any one of claims 1 to 3,
前記重量体は、タングステン、タンタル等の比重 10以上の高比重合金を主成分とす る非磁性材料の重りにより形成されて 、ることを特徴として 、る。  The weight body is formed of a weight of a non-magnetic material whose main component is high specific weight gold having a specific gravity of 10 or more, such as tungsten or tantalum.
[0012] また請求項 5に記載の発明では、請求項 1〜請求項 3のいずれか一項に記載の発 明において、  [0012] Further, in the invention described in claim 5, in the invention described in any one of claims 1 to 3,
前記重量体は、黄銅、銅等の比重 8以上 10未満の比重の大きい一般非磁性体材 料の重りにより形成されて 、ることを特徴として!/、る。  The weight body is formed by a weight of a general non-magnetic material having a large specific gravity of 8 or less and less than 10 such as brass or copper! /
[0013] また請求項 6に記載の発明は、請求項 1〜請求項 5のいずれか一項に記載の発明 において、 [0013] The invention according to claim 6 is the invention according to any one of claims 1 to 5,
前記端子基板の底面側が、半田リフロー対応の端子基板構造であることを特徴とし ている。  The bottom surface side of the terminal board has a terminal board structure compatible with solder reflow.
[0014] また請求項 7に記載の発明は、請求項 6に記載の発明において、  [0014] The invention according to claim 7 is the invention according to claim 6,
前記端子基板の半田リフロー対応の端子形状が、同心円状に区切られた中心に 位置する正極 (又は負極)とその外周に位置する環状帯体の負極 (又は正極)領域と により構成されて 、ることを特徴として 、る。  The terminal shape corresponding to the solder reflow of the terminal board is composed of a positive electrode (or negative electrode) located in the center and concentrically divided, and a negative electrode (or positive electrode) region of an annular band located on the outer periphery thereof. It is characterized by that.
発明の効果  The invention's effect
[0015] 請求項 1に記載の発明によれば、 [0015] According to the invention of claim 1,
弾性体により支持された可動子と、前記可動子を振動させる磁界を発生する固定 子側コイルとを、ハウジング本体内部で対向配置し、前記コイルに電流が流れた時に 生ずる磁界と、前記永久磁石の発生する磁界との間に作用する磁気反発力又は磁 気吸引力により、前記可動子部分が共振して円筒状ハウジング本体の厚み方向であ るスラスト方向に振動する。この時、前記コイルの外周面と前記永久磁石の内周面と が僅かな間隙を有するように配設し、さらに前記円筒状コイルの中心を貫通するポー ルピースを設けることにより、駆動力を得る磁気的な効率の向上が望める。 [0016] さらに加えると、可動する永久磁石外周には、分銅 (重り)となる重量体を一体に備 えており、限られたハウジング本体内のスペース中で、十分な振動力を得るための可 動子としての重りの役割を果たしている。また振幅方向に着磁された永久磁石に対し 、対向する固定子側の円筒状コイルは、前記永久磁石の内径側に僅かな隙間を介 して位置し、またその円筒状に卷回されたコイル内径には、柱状のポールピースが中 心を貫通する形で設けられているので、磁気的に磁束がポールピース内^^中的に 通過し、ギャップを狭くすることにより、部分的な磁束密度が向上し、前記固定子側コ ィルからの磁束力 可動子側の永久磁石に効率よく作用する。 A mover supported by an elastic body and a stator side coil that generates a magnetic field that vibrates the mover are opposed to each other inside the housing body, and a magnetic field generated when a current flows through the coil, and the permanent magnet Due to the magnetic repulsion force or magnetic attraction force acting between the generated magnetic field and the magnetic attraction force, the mover portion resonates and vibrates in the thrust direction which is the thickness direction of the cylindrical housing body. At this time, a driving force is obtained by arranging the outer peripheral surface of the coil and the inner peripheral surface of the permanent magnet so as to have a slight gap and further providing a pole piece penetrating the center of the cylindrical coil. The improvement of magnetic efficiency can be expected. [0016] In addition, a weight body (weight) is integrally provided on the outer periphery of the movable permanent magnet so that sufficient vibration force can be obtained in a limited space in the housing body. It plays the role of weight as a moving child. Further, the opposed cylindrical coil on the stator side with respect to the permanent magnet magnetized in the amplitude direction is located on the inner diameter side of the permanent magnet via a slight gap and is wound into the cylindrical shape. A columnar pole piece is provided in the inner diameter of the coil so that it passes through the center of the coil. Magnetic flux passes magnetically through the pole piece and narrows the gap. The density is improved, and the magnetic flux force from the stator side coil works efficiently on the permanent magnet on the mover side.
[0017] このため前記コイルに電流が流された時、前記永久磁石と重量体とを有して構成さ れる可動子の加速度が増し、振動方向に対して、より大きな力、すなわち振動力が得 られる。これにより超小型サイズの振動デバイスを搭載した携帯情報機器の使用者が 、着信時にはつきりと認識できる程度の十分な振動力を得ることができる。  [0017] For this reason, when a current is passed through the coil, the acceleration of the mover composed of the permanent magnet and the weight body increases, and a greater force, that is, a vibration force is generated in the vibration direction. can get. As a result, a user of a portable information device equipped with a vibration device of an ultra-small size can obtain a sufficient vibration force that can be recognized by the user when receiving an incoming call.
[0018] また、請求項 2に記載の発明によれば、請求項 1に記載の発明と同様の効果を得る ことができる他、  [0018] According to the invention of claim 2, the same effect as that of the invention of claim 1 can be obtained,
前記永久磁石の磁界の中心位置とコイルに通電された時に生じる磁界の中心位置 とが異なるように構成されているため、前記永久磁石の磁界と前記コイルに電流が流 された時に生じる磁界との間に作用される磁気的な力がその位置で均衡することが なぐ前記コイルに通電されると同時に、前記可動子が、一方の振幅方向に速やかに 移動し、確実に起動して振動を繰り返す。  Since the center position of the magnetic field of the permanent magnet and the center position of the magnetic field generated when the coil is energized are different, the magnetic field of the permanent magnet and the magnetic field generated when a current is passed through the coil The magnetic force applied between them is energized to the coil without being balanced at that position, and at the same time, the mover quickly moves in one amplitude direction, reliably starts and repeats vibration. .
[0019] つまり前記永久磁石力 生じる N-S磁界力 前記円筒状に卷回したコイル両端の磁 極の反転に対し、例えば図 6で示すような位置関係で、永久磁石 2の磁界中心位置 M とコイル 5の磁界中心位置 Cとが一致した無通電の初期状態では、電流起動時にお いて磁気的なバランスの均衡が保たれてしまい、可動子 9は動作しない。これに対し 図 5で示す位置関係では、特に軸方向に平行移動する可動子 9の永久磁石 2の磁界 中心位置 Mは、コイル 5の磁界中心位置 Cに対しオフセットされており、これにより前記 コイル 5の両端位置の N-S磁束発生によって、永久磁石 2自身は、軸方向にリニアな 力を受け、無負荷の弾性体平面を基準面として振幅方向に起動し、弾性体 4に支持 された状態の共振点領域で、可動子 9が直線上を往復振動し、それにより振動力を 発生させることが可能となる。 In other words, the NS magnetic field force generated by the permanent magnet force The magnetic field center position M of the permanent magnet 2 and the coil have a positional relationship as shown in FIG. In the initial non-energized state where the magnetic field center position C of 5 coincides, the balance of magnetic balance is maintained at the time of starting the current, and the mover 9 does not operate. On the other hand, in the positional relationship shown in FIG. 5, the magnetic field center position M of the permanent magnet 2 of the mover 9 that translates in the axial direction in particular is offset with respect to the magnetic field center position C of the coil 5. Due to the NS magnetic flux generated at both ends of 5, the permanent magnet 2 itself receives a linear force in the axial direction, starts in the amplitude direction with the unloaded elastic body plane as the reference plane, and is supported by the elastic body 4. In the resonance point region, the mover 9 reciprocates on a straight line, thereby generating vibration force. Can be generated.
[0020] また、請求項 3に記載の発明によれば、請求項 1及び請求項 2に記載の発明と同様 の効果を得ることができる他、  [0020] Further, according to the invention described in claim 3, the same effect as the invention described in claim 1 and claim 2 can be obtained.
寸法的に前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前 記可動子の内周面と前記コイルの外周面との隙間、を共に 0.08mm〜0.15mmの範囲 内で幅狭に設定することにより、前記可動子の上面側と前記ハウジング本体の上面 内壁とで形成される空間と、前記可動子の下面と前記端子基板とで形成される空間 、との空気の移動量を制限することができ、この構造によりエアーダンパー効果が働 き、前記可動子が最適な振動を得るための共振周波数帯域が拡大できる。これによ り例えば、落下や衝突により携帯情報端末機器の固有振動数が変化することによつ て共振周波数が僅かに変化した場合であっても、前記共振周波数帯域が広ければ、 得られるピークの振動力が急激に減少することがなぐ常に安定した振動力を得るこ とができる。さらに耐久性及びライフ等の信頼性が向上する。  Dimensionally, the clearance between the outer peripheral surface of the mover and the inner wall of the housing body and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both within the range of 0.08 mm to 0.15 mm. By setting the width narrow, the movement of air between the space formed by the upper surface side of the mover and the inner wall of the upper surface of the housing body, and the space formed by the lower surface of the mover and the terminal substrate The amount can be limited, and the air damper effect is exerted by this structure, and the resonance frequency band for obtaining the optimum vibration of the movable element can be expanded. Thus, for example, even if the resonance frequency slightly changes due to a change in the natural frequency of the portable information terminal device due to a drop or a collision, if the resonance frequency band is wide, the obtained peak can be obtained. Therefore, a stable vibration force can be obtained without the sudden decrease of the vibration force. Further, durability and reliability such as life are improved.
[0021] 尚この時、前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び 前記可動子の内周面と前記コイルの外周面との隙間、を共に 0.08mm〜0.15mmの範 囲内にする理由として、隙間の幅が 0.08mm以下であると可動子側と固定子側で、動 作時に緩衝してしまい、逆に隙間の幅が 0.15mmより大きいと、エアーダンパーの効 果が得られな ヽためである。  At this time, the clearance between the outer peripheral surface of the mover and the inner wall of the side wall of the housing body, and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both 0.08 mm to 0.15 mm. The reason for this is that if the gap width is 0.08 mm or less, the mover side and the stator side will be buffered during operation, and conversely if the gap width is greater than 0.15 mm, the air damper will be effective. This is because no fruit can be obtained.
[0022] また、請求項 4に記載の発明によれば、請求項 1〜請求項 3に記載の発明と同様の 効果を得ることができる他、  [0022] According to the invention described in claim 4, the same effects as the invention described in claims 1 to 3 can be obtained,
タングステン、タンタル等を主成分とする非磁性材料を含む高比重の金属体によつ て形成された前記重量体の重りが、可動子として永久磁石と一体に往復運動するこ とにより、より大きな振動力が得られるものである。特に、前記重量体は、タングステン 、タンタル等の比重 10以上の高比重合金を主成分とする非磁性材料を含む金属体 の重りにより形成するため、限られた小さなスペース内において、最大限の可動子と しての重量を得ることができる。生産性やコストを考え、工業的に使用できる金属材 料の範囲の中で、タングステン合金、タンタル合金、コバルト合金等の使用が可能で ある。 [0023] また、請求項 5に記載の発明によれば、請求項 1〜請求項 3に記載の発明と同様の 効果を得ることができる他、 The weight of the heavy body formed by a high specific gravity metal body containing a non-magnetic material whose main component is tungsten, tantalum or the like is larger by reciprocating integrally with a permanent magnet as a mover. Vibration force can be obtained. In particular, the weight body is formed by a weight of a metal body containing a non-magnetic material mainly composed of high specific polymerized gold having a specific gravity of 10 or more, such as tungsten or tantalum, so that it can move to the maximum extent in a limited small space. You can gain weight as a child. In consideration of productivity and cost, tungsten alloys, tantalum alloys, cobalt alloys, etc. can be used within the range of industrially usable metal materials. [0023] According to the invention described in claim 5, the same effects as the invention described in claims 1 to 3 can be obtained.
黄銅、銅等の比重 8以上 10未満の比較的比重の大き 、非磁性体材料の金属体によ つて形成された前記重量体の重りが、可動子として永久磁石と一体に往復運動する ことにより、大きな振動力が得られるものである。特に、前記重量体は、黄銅、銅等の 比重 8以上 10未満の比重の大き 、一般的な非磁性体材料の金属体の重りにより形成 されるため、限られたスペース内において安価な材料を用いて最良の可動子として の重量を得ることができる。  The specific gravity of brass, copper, etc. is a relatively large specific gravity of 8 or more and less than 10, and the weight of the weight formed by the metal body of non-magnetic material reciprocates integrally with the permanent magnet as a mover. A large vibration force can be obtained. In particular, the weight body is formed by a weight of a specific non-magnetic material such as brass or copper, and a specific gravity of 8 or more and less than 10, so an inexpensive material can be used in a limited space. The best mover weight can be obtained.
[0024] また、請求項 6に記載の発明によれば、請求項 1〜請求項 5に記載の発明と同様の 効果を得ることができる他、  [0024] Further, according to the invention described in claim 6, the same effect as the invention described in claims 1 to 5 can be obtained.
携帯情報端末機側の回路基板面に対し、ハウジング本体底部の端子基板面を前 記回路基板上に直接的に半田リフロー固定ができ、前記回路基板の給電ランドへの 通電が容易に行える。これにより組み立て作業工程における工数を削減でき、量産 工程における半田リフロー自動化ラインに載せることも可能となる。  With respect to the circuit board surface on the portable information terminal side, the terminal board surface at the bottom of the housing main body can be directly solder-reflow-fixed on the circuit board, and the power supply land of the circuit board can be easily energized. This can reduce the man-hours in the assembly work process and can also be put on the solder reflow automation line in the mass production process.
[0025] また、請求項 7に記載の発明によれば、請求項 6に記載の発明と同様の効果を得る ことができる他、  [0025] According to the invention of claim 7, the same effect as that of the invention of claim 6 can be obtained,
前記半田リフロー工程におけるリフロー部品の回路基板上への配置が容易になる。 通常はロボットなどによる自動機あるいはオペレータが手動で配置を行うが、配置す るリフロー部品が円盤状の場合、その底面側の端子位置の方向の識別が難しぐ例 えば回転方向に向きがズレた場合などは、半田固定した状態でも導通が得られない などの不良問題があり、配置する側の回路基板上の給電ランド位置との一致が難し い。このため本発明のように、前記端子基板の円形位置の中心部分と、その同心円 状外方の環状帯体部分とを分けて給電ランドに対応させ、円形形状のリフロー部品 力 回転方向に無関係に位置合わせができる。  In the solder reflow process, the reflow component can be easily arranged on the circuit board. Normally, an automatic machine such as a robot or an operator performs manual placement, but when the reflow parts to be placed are disc-shaped, the direction of the terminal position on the bottom side is difficult to identify. In some cases, there is a defect such as inability to obtain electrical continuity even when the solder is fixed, and it is difficult to match the position of the power supply land on the circuit board on the side where it is placed. For this reason, as in the present invention, the center portion of the circular position of the terminal board and the concentric outer annular band portion are divided to correspond to the power feeding land, and the circular reflow component is independent of the force rotation direction. Can be aligned.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、図面を参照して本発明の実施形態に係る振動リニアァクチユエータについて 説明する。 Hereinafter, a vibration linear actuator according to an embodiment of the present invention will be described with reference to the drawings.
[0027] <実施形態 > 図 2に示すように、本実施形態に係る振動リニアァクチユエータ 1は、中心部に凹部 7aを有する略円筒形状のハウジング本体 7を備え、ハウジング本体 7の開口する一端 側に、リブ 11を嵌め合いのガイドとして基台プレート 10が組み込まれて外枠の筐体が 構成され、端子基板 14が底部に配置されている。外観寸法的には、外径 φ 15mn!〜 1 0mm程度、厚み 5mn!〜 3mm程度の小型偏平形状の振動デバイスとして設計されて ヽ る。 <Embodiment> As shown in FIG. 2, the vibration linear actuator 1 according to the present embodiment includes a substantially cylindrical housing body 7 having a recess 7a at the center, and a rib 11 on one end side of the housing body 7 that is open. The base plate 10 is incorporated as a fitting guide to form an outer frame housing, and the terminal board 14 is arranged at the bottom. In terms of external dimensions, outer diameter φ15mn! ~ 10mm, thickness 5mn! It is designed as a vibration device with a small flat shape of ~ 3mm.
[0028] また内部構成は、前記ハウジング本体 7内側の凹部 7aの底面に相当する円環面に 、図 1に示すような、ハウジング本体 7の内径側枠に近接する外径寸法を有する略円 板状の弾性体 4が、前記凹部 7a円環面の内径穴 8で、円柱状の主軸 12の先端凸部に よって同心状に固着されている。前記主軸 12は、前記基台プレート 10の板面の中心 軸受穴 10aに垂直に立てられるポールピース 3と一体に、同軸同径で形成されており 、主軸 12部分は非磁性の榭脂体により形成されている。また主軸 12は前記弾性体 4 を前記基台プレート 10の基準面に対し、弾性体 4の板面の水平を保つように支持固 定する構造を有している。  [0028] Further, the internal configuration is such that the annular surface corresponding to the bottom surface of the recess 7a on the inside of the housing body 7 has an outer diameter dimension close to the inner diameter side frame of the housing body 7 as shown in FIG. The plate-like elastic body 4 is concentrically fixed by the tip convex portion of the cylindrical main shaft 12 in the inner diameter hole 8 of the annular surface of the concave portion 7a. The main shaft 12 is formed integrally with the pole piece 3 standing perpendicular to the center bearing hole 10a of the plate surface of the base plate 10 and has the same coaxial diameter, and the main shaft 12 portion is made of a non-magnetic grease body. Is formed. The main shaft 12 has a structure for supporting and fixing the elastic body 4 with respect to the reference surface of the base plate 10 so as to keep the plate surface of the elastic body 4 horizontal.
[0029] また弾性体 4の下面側の外周縁には、前記弾性体 4と等しい外径寸法を有する断面 略凹環状に形成された重量体 6が、釣り下げられるように取り付けられ、その重量体 6 の内径側には、スラスト配向型の円環状永久磁石 2が、前記重量体 6の略凹形状底 面部と同一な厚み範囲内で嵌合固定され、可動子 9全体を構成している。前記永久 磁石 2は、例えば、その上面側が N極で下面側力 極となるように軸方向に着磁されて いる。この可動子 9の構造において、主軸 12を中心に可動子 9全体の組み込み精度、 取り付けバランス等の仕上がりは、装置固有の振動特性を左右するため、部品寸法 公差を厳密にする必要があり、量産時の個々の製品のバラツキを最小限に抑える必 要がある。  [0029] Further, a weight body 6 formed in a substantially concave annular section having an outer diameter equal to that of the elastic body 4 is attached to the outer peripheral edge of the lower surface side of the elastic body 4 so as to be suspended, and its weight On the inner diameter side of the body 6, a thrust-oriented annular permanent magnet 2 is fitted and fixed within the same thickness range as the substantially concave bottom surface portion of the weight body 6 to constitute the entire movable element 9. . The permanent magnet 2 is, for example, magnetized in the axial direction so that the upper surface side is N-pole and the lower-side force pole. In this mover 9 structure, the assembly accuracy and mounting balance of the mover 9 as a whole centered on the main shaft 12 affect the vibration characteristics unique to the device. It is necessary to minimize the variation of individual products over time.
[0030] また一方、可動子 9側の永久磁石 2に対向する固定子側コイル 5は、前記磁性材料 力らなる円柱状ポールピース 3の外周に卷回され、ポールピース 3と組み合わせた状 態で、実質的に円筒状コイル 5の軸方向両端付近に N-S磁束が集中するようになる。 またポールピース 3は、強磁性材料であることが好ましぐ本実施形態においてはステ ンレス鋼(SUS420J)を採用した。ただし材料はこれに限定されるものではなぐ例えば 、鉄、コバルト、ニッケルを主成分とする金属又は合金であってもよい。さらにポール ピース 3自身は、略円板状の基台プレート 10の中央部の軸受穴 10aで支持され、固定 子側コイル 5と前記可動子側永久磁石 2との配置関係を保ちつつ、その先端側に位 置する主軸 12と共に、ハウジング本体 7と基台プレート 10を嵌め合わせた筐体内の中 心軸的な役割を果たしてる。 On the other hand, the stator side coil 5 facing the permanent magnet 2 on the side of the mover 9 is wound around the outer periphery of the cylindrical pole piece 3 made of the magnetic material and is combined with the pole piece 3. Thus, the NS magnetic flux is substantially concentrated near both ends of the cylindrical coil 5 in the axial direction. The pole piece 3 is made of stainless steel (SUS420J) in this embodiment, which is preferably a ferromagnetic material. However, the material is not limited to this. Further, it may be a metal or alloy mainly composed of iron, cobalt and nickel. Furthermore, the pole piece 3 itself is supported by a bearing hole 10a in the center of the substantially disc-shaped base plate 10, and maintains the positional relationship between the stator side coil 5 and the mover side permanent magnet 2 while maintaining the tip of the pole piece 3 itself. Along with the main shaft 12 positioned on the side, it plays a central role in the housing in which the housing body 7 and the base plate 10 are fitted.
[0031] 図 1に示す構造断面図からわ力るように、コイル 5の外周には、環状に形成された永 久磁石 2が、前記コイル 5の外周面カゝら僅かな間隙、つまり磁気ギャップを介して取り 付けられて 、る。このため動作時に可動子側永久磁石 2と固定子側コイル 5との間で 物理的な緩衝が出ないように、ノ、ウジング本体 7に対し基台プレート 10をバラツキ無く 正確に組み込む必要がある。  As shown in the structural cross-sectional view shown in FIG. 1, a permanent magnet 2 formed in an annular shape on the outer periphery of the coil 5 is slightly spaced from the outer peripheral surface of the coil 5, that is, magnetically. Installed through the gap. For this reason, the base plate 10 needs to be accurately assembled without variation with respect to the louvering body 7 so that there is no physical buffer between the mover side permanent magnet 2 and the stator side coil 5 during operation. .
[0032] また、前記可動子 9の外周面と前記ハウジング本体 7の側壁内面との隙間、及び 前記可動子 9の内周面と前記コイル 5の外周面との隙間、を共に 0.08mm〜0.15mmの 範囲内で幅狭にし、可動子 9の動きによって変化する前記可動子 9の上面側と前記 ハウジング本体 7の上面内壁とで形成される空間と、前記可動子 9の下面側と前記ハ ウジング本体 7の蓋部となる基台プレート 10とで形成される空間、との間の空気の移 動量を制限するためのエアーダンパー構造を備えている。  [0032] Further, both the clearance between the outer peripheral surface of the movable element 9 and the inner surface of the side wall of the housing body 7, and the clearance between the inner peripheral surface of the movable element 9 and the outer peripheral surface of the coil 5 are both 0.08 mm to 0.15. A space formed by the upper surface side of the movable element 9 and the inner wall of the upper surface of the housing body 7 which is narrowed within a range of mm and changes according to the movement of the movable element 9, and the lower surface side of the movable element 9 and the An air damper structure is provided for restricting the amount of air movement between the space formed by the base plate 10 serving as the lid of the hooding main body 7 and the space.
[0033] この時、前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前 記可動子の内周面と前記コイルの外周面との隙間、を共に 0.08mm〜0.15mmの範囲 内にする必要がある。理由としては、隙間の幅が 0.08mm以下であると可動子側と固 定子側で、動作時に緩衝してしまい、逆に隙間の幅が 0.15mmより大きいと、本発明 のエアーダンパーの効果が得られな 、ためである。  [0033] At this time, both the clearance between the outer peripheral surface of the mover and the inner surface of the side wall of the housing body, and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both 0.08 mm to 0.15 mm. Must be within range. The reason is that if the gap width is 0.08 mm or less, the mover side and the stator side will be buffered during operation, and conversely if the gap width is larger than 0.15 mm, the effect of the air damper of the present invention is effective. It is because it is not obtained.
[0034] 寸法的に前記可動子と前記固定子との対向する隙間を 0.08mn!〜 0.15mmの範囲 内で幅狭に設計することにより、前記可動子 9を挟んだ上下にある前記空間の空気 は、可動子 9の上下動を抑制する形で、空間から空間への空気の移動量を制限する ことができる。この構造によりエアーダンパー効果が働き、前記可動子 9が必要レベル 以上の振動力を得るために必要とされる共振周波数帯域が実質的に拡大する。  [0034] Dimensionally, the gap between the movable element and the stator is 0.08mn! By designing it to be narrow within a range of 0.15 mm, the air in the space above and below the mover 9 suppresses the vertical movement of the mover 9 so that the air from the space to the space The amount of movement can be limited. With this structure, an air damper effect works, and the resonance frequency band required for the movable element 9 to obtain a vibration force exceeding a necessary level is substantially expanded.
[0035] 図 10は、前記エアーダンパー構造を採用したのものとそうでないものを比較したグ ラフであり、横軸に入力周波数 (Hz)、縦軸に加速度 (G)の関係を示している。図に ぉ 、て曲線 Fがエアーダンパー構造のものである。グラフにお 、て Q値が低 、なだら 力な曲線 Fと、 Q値が高い鋭い曲線 Pとを比較すると、例えば落下や衝突により可動 子部分が変形したり、携帯情報端末機器の固有振動数が変化することなどによって 振動デバイス装置の共振周波数が変化 (共振周波数域が変動)した場合、当然なが ら前記 Fと Pの二つの曲線の違 ヽによる加速度( =振動力) Gの変化の違 、が現れる。 [0035] Fig. 10 is a graph comparing the air damper structure with and without the air damper structure. The horizontal axis shows the relationship between the input frequency (Hz) and the vertical axis shows the acceleration (G). . In the figure て The curve F has an air damper structure. In the graph, when the curve Q with a low Q value and a gentle force is compared with the sharp curve P with a high Q value, the mover part deforms due to, for example, a drop or a collision, or the natural vibration of the mobile information terminal device If the resonance frequency of the vibration device changes due to changes in the number (the resonance frequency range fluctuates), naturally the acceleration (= vibration force) G changes due to the difference between the two curves F and P. The difference appears.
[0036] 図 10における曲線 Fと曲線 Pの共振周波数を仮に 140Hzと同一とみなし、その共 振周波数 F0からの変動の幅を仮に破線で示す F1と F2とした場合、ピーク F0における 加速度 Gは、曲線 Pが 1.0Gであるのに対し、曲線 Fは 0.9Gと、多少加速度の数値が劣 る。し力し共振周波数が変動してしまうと、例えば、 F1又は F2の共振周波数までズレ たとすると、その時の加速度 Gは、曲線 Fの方が逆に 0.8Gで大きぐ曲線 Pは 0.6Gと大 幅に下がり、ピーク F0値との落差が激しくなる。このように、 F1と F2の破線部領域を見 ると、エアーダンパー構造である曲線 Fの加速度(=振動力) Gは、入力周波数帯域 の破線部領域全体において、広く安定した特性が得られ、ピーク F0から外れた時の 加速度の急激な減少は少なぐ周波数の変化に対し常に安定した振動力を得ること ができる。 [0036] If the resonance frequency of curve F and curve P in Fig. 10 is assumed to be the same as 140Hz and the range of fluctuation from the resonance frequency F0 is assumed to be F1 and F2 indicated by broken lines, the acceleration G at peak F0 is The curve P is 1.0G, whereas the curve F is 0.9G, which is slightly inferior in acceleration. If the resonance frequency fluctuates and the resonance frequency fluctuates up to the resonance frequency of F1 or F2, for example, the acceleration G at that time is 0.8G for curve F, and 0.6G for curve P, which is larger at 0.8G. The width falls and the drop from the peak F0 value becomes intense. Thus, looking at the broken line area of F1 and F2, the acceleration (= vibration force) G of the curve F, which is an air damper structure, has a wide and stable characteristic over the entire broken line area of the input frequency band. A sudden decrease in acceleration when it deviates from the peak F0 can always obtain a stable vibration force against a small change in frequency.
[0037] さらに図 1又はそれを拡大した図 5で示すように、本発明の振動リニアァクチユエ一 タを組み込む場合、永久磁石 2とコイル 5との間には、次のような位置関係であること が設計上望ましい。例えば、前記永久磁石 2の厚み方向の中心となる磁界の中心位 置 Mと、前記コイル 5に通電された時に発生する磁界の中心位置 Cとを、振幅方向で 一致させずに、振幅方向での双方の位置関係が、一方のコイル 5端部側寄りにオフ セットさせて配置する必要がある。  Further, as shown in FIG. 1 or an enlarged view of FIG. 5, when the vibration linear actuator according to the present invention is incorporated, the permanent magnet 2 and the coil 5 have the following positional relationship. Is desirable in design. For example, the center position M of the magnetic field that is the center in the thickness direction of the permanent magnet 2 and the center position C of the magnetic field that is generated when the coil 5 is energized do not coincide with each other in the amplitude direction. Therefore, it is necessary to place them so that they are offset toward the end of one coil 5.
[0038] これは前記永久磁石 2の磁界と前記コイル 5に電流が流された時に生じる磁界との 間に作用する磁気的な力が、その無通電の初期状態の位置で可動子 9が均衡するこ とがないように、前記コイル 5に通電されると同時に、前記可動子 9がー方の振幅方向 に速やかに移動し、確実に起動して、振動を繰り返すための構造設計である。  [0038] This is because the magnetic force acting between the magnetic field of the permanent magnet 2 and the magnetic field generated when an electric current is passed through the coil 5 balances the mover 9 at the position of the initial state of non-energization. In order to prevent this, the coil 5 is energized, and at the same time, the mover 9 moves quickly in the direction of the amplitude in the opposite direction, starts reliably, and repeats vibration.
[0039] つまり前記永久磁石 2から生じる N-S磁界力 前記円筒状に卷回したコイル 5の両端 の N-S磁極の反転に対し、例えば図 6で示すような位置関係である場合、永久磁石 2 の磁界中心位置 Mとコイル 5の磁界中心位置 Cとが一致した無通電の初期状態では 、電流起動時において、磁気的なバランスの均衡が常に保たれてしまい、可動子 9は 動作しない。これに対し図 5で示す位置関係のように、コイル 5の磁界中心位置 Cの高 さを構造的に下げ、軸方向に平行移動する可動子 9の永久磁石 2の磁界中心位置 M を、図のように段違いにオフセットすることにより、電流起動時に磁気的な吸引反発力 がすぐに働く。 That is, the NS magnetic force generated from the permanent magnet 2 When the NS magnetic poles at both ends of the coil 5 wound in a cylindrical shape have a positional relationship as shown in FIG. 6, for example, the magnetic field of the permanent magnet 2 In the initial non-energized state where the center position M and the magnetic field center position C of the coil 5 coincide. When the current is activated, the magnetic balance is always maintained, and the mover 9 does not operate. On the other hand, as shown in the positional relationship shown in FIG. 5, the magnetic field center position C of the permanent magnet 2 of the mover 9 that translates in the axial direction is lowered by structurally lowering the height of the magnetic field center position C of the coil 5. By offsetting in steps like this, the magnetic attractive repulsive force works immediately when the current is activated.
[0040] 図 5に示すように、前記コイル 5の両端位置での N-S磁束発生による磁気的な吸引 力、反発力は、可動子 9の永久磁石 2側の磁界に作用し、軸方向に動くリニアな力を 与え、無負荷状態の弾性体 4平面を基準面として、図の矢印方向下側に起動し、弾 性体 4と共に可動子 9全体が共振しながら直線上を往復振動し、振動力を発生する。  As shown in FIG. 5, the magnetic attractive force and repulsive force due to NS magnetic flux generation at both ends of the coil 5 act on the magnetic field on the permanent magnet 2 side of the mover 9 and move in the axial direction. A linear force is applied, and the elastic body 4 in the unloaded state is used as a reference plane, and starts downward in the direction of the arrow in the figure. Generate power.
[0041] 実際の可動子 9部分の動きは、図 1に示す無通電状態から図 3に示す最下点位置 に移動し、次に図 1の姿勢に戻って力 反対位置に移動し、図 4に示す最上点位置 までの振幅範囲を往復運動する。ここで図 1に示す符号 S1と S2とは、共に可動子 9が 無通電状態の時の最大振幅許容範囲を示すものであり、可動子 9が振動した時に筐 体側との緩衝を考慮して、ストッパー手段等を配置するなどして、ストロークが上下均 等にかつ最大になるように S1と S2が設計されている。また符号 S3は、円環状の重量体 6上面側の凹形状に抉れた深さ寸法を示し、この抉れが可動子 9の上下動によって弾 性変形する時の弾性体 4のアーム部 4aとの接触や緩衝を避ける構造となっている。  [0041] The actual movement of the mover 9 part moves from the non-energized state shown in FIG. 1 to the lowest point position shown in FIG. 3, then returns to the posture shown in FIG. Reciprocate within the amplitude range up to the top point shown in Fig. 4. Here, the symbols S1 and S2 shown in FIG. 1 both indicate the maximum allowable amplitude range when the mover 9 is in a non-energized state, taking into account the buffer with the housing side when the mover 9 vibrates. In addition, S1 and S2 are designed so that the stroke is evenly and maximally by arranging stopper means. Symbol S3 indicates the depth dimension of the annular weight body 6 that is recessed into the concave shape on the upper surface side, and the arm portion 4a of the elastic body 4 when this bending elastically deforms due to the vertical movement of the mover 9. It is structured to avoid contact and buffering.
[0042] また本実施形態に係る重量体 6は、非磁性材料で高比重な、比重 18のタングステン 焼結合金を採用している。可動子 9の永久磁石 2に付加する重量体 6は、比重の大き い材料が好ましぐタングステン、タンタル等の比重 10以上の高比重合金を主成分と する非磁性材料の重りは、装置自身の振動力アップにつながる重要な要素である。 本実施形態においては、黄銅、銅等の比重 8以上 10未満の一般非磁性体材料に対 して、より重量増を実現している。  In addition, the weight body 6 according to the present embodiment employs a tungsten sintered alloy having a specific gravity of 18 and a high specific gravity made of a nonmagnetic material. The weight 6 to be added to the permanent magnet 2 of the mover 9 is a weight of a non-magnetic material whose main component is a high specific gravity gold with a specific gravity of 10 or more, such as tungsten or tantalum, which is preferred for a material having a large specific gravity. It is an important element that leads to an increase in vibration power. In the present embodiment, a weight increase is realized compared to a general non-magnetic material having a specific gravity of 8 or more and less than 10 such as brass or copper.
[0043] また前記ハウジング本体 7の開放端側に取り付けられる基台プレート 10の背面側に は、前記コイル 5に電流を通電するための端子基板 14が備えられており、端子基板 14 の底面側が半田リフロー対応の平面端子構造である。さらに前記端子基板 14の半田 リフロー対応の平面端子 14A、 14Bの形状が、同心円状に区切られた中心に位置す る正極 (又は負極)と、その外周に位置する環状帯体の負極 (又は正極)領域と、によ り平面端子部が構成されている。 [0043] Further, on the back side of the base plate 10 attached to the open end side of the housing body 7, a terminal board 14 for supplying current to the coil 5 is provided, and the bottom side of the terminal board 14 is This is a planar terminal structure compatible with solder reflow. Further, the shape of the flat terminals 14A and 14B corresponding to solder reflow of the terminal substrate 14 is such that the positive electrode (or negative electrode) located at the center of the concentric section and the negative electrode (or positive electrode) of the annular band located on the outer periphery ) Area and A flat terminal portion is formed.
[0044] 図 7(A)に示すように、ノ、ウジング本体 7の底部に取り付ける端子基板 14は、同心円 状に区切られた中心に位置する平面端子 14Aと、その外周に位置する環状帯体の平 面端子 14Bとにより、二つの領域が半田リフローにより固定される形状を有している。 ちなみに、端子基板 14の前記平面端子 14A、 14Bは、スルーホール Hにより、表裏の 配線パターンが導通可能に設けられており、前記コイル 5の卷線材の端部を、図 7(B) に示す、一方の予備配線端子面 14A、 14Bに接続すると、その裏面の前記平面端子 1 4A、 14Bに同時に配線される。  [0044] As shown in FIG. 7 (A), the terminal board 14 attached to the bottom of the louvering body 7 includes a flat terminal 14A located at the center of the concentric section and an annular band located on the outer periphery thereof. With the flat terminal 14B, two regions are fixed by solder reflow. Incidentally, the planar terminals 14A and 14B of the terminal board 14 are provided through the through hole H so that the wiring patterns on the front and back sides can be conducted, and the end portions of the wire 5 of the coil 5 are shown in FIG. 7 (B). When connected to one of the auxiliary wiring terminal surfaces 14A and 14B, wiring is made simultaneously to the planar terminals 14A and 14B on the back surface thereof.
[0045] 又、半田リフローによる固定の際、接合強度を考慮して、端子基板 14の平面端子 14 A、 14Bの接合面積のみならず、ハウジング本体 7の外周に延長部を設け、その部分 を折り曲げて、半田リフロー時にハウジング本体 7も同時に固定することも、接合強度 アップになる。  [0045] When fixing by solder reflow, considering the bonding strength, not only the bonding area of the flat terminals 14A and 14B of the terminal board 14 but also an extension is provided on the outer periphery of the housing body 7, Bending and fixing the housing body 7 at the same time during solder reflow also increases the bonding strength.
[0046] また、別の形状の多少違う端子基板の一例としては、図 8に示す端子基板 13のもの がある。形状は、前記端子基板 14が全くの円形状であるのに対し、図 8に示す端子 基板 13は中心に位置する正極 (又は負極)の平面端子 13Aと、その外周の一方向に 位置する負極 (又は正極)の平面端子 13B領域と、により平面端子 13A、 13Bが構成さ れ、この場合、外周側の平面端子 13Bの取り付け方向を回路基板の給電ランドバタ ーンと合わせて置くだけでよ!、。  [0046] Another example of the terminal board having a slightly different shape is the terminal board 13 shown in FIG. The shape of the terminal board 14 is completely circular, whereas the terminal board 13 shown in FIG. 8 is a positive electrode (or negative electrode) planar terminal 13A located at the center and a negative electrode located in one direction on the outer periphery thereof. The flat terminals 13A and 13B are composed of the (or positive) flat terminal 13B region, and in this case, just place the mounting direction of the flat terminal 13B on the outer peripheral side in line with the power supply land pattern on the circuit board! ,.
[0047] これらの端子基板 13、 14を用いて振動リニアァクチユエータ 1を、図 9に示す機器筐 体 100内に取り付ける回路基板 50の板面上の給電ランド面に、直接、半田固定するこ とができ、他の一般電子部品と同様に、半田リフローでの熱処理が同時に行える。こ のため、機器筐体 100側への取り付けスペースの問題が無くなり、また取り付けるため の保持付属部品が不要となり、製造工程においての自動化ラインでの組み込みが可 能となる。  [0047] Using these terminal boards 13 and 14, the vibration linear actuator 1 is directly solder-fixed to the power feeding land surface on the plate surface of the circuit board 50 to be installed in the equipment housing 100 shown in FIG. As with other general electronic components, heat treatment by solder reflow can be performed at the same time. This eliminates the problem of the installation space on the equipment casing 100 side, eliminates the need for a holding accessory for installation, and makes it possible to incorporate it in an automated line during the manufacturing process.
[0048] 次に、図面を参照して本発明の実施形態に係る振動リニアァクチユエータの作用 動作について説明する。  Next, the operation and operation of the vibration linear actuator according to the embodiment of the present invention will be described with reference to the drawings.
[0049] 図 1、図 3、図 4、及び図 5に示すように、本実施形態に係る振動リニアァクチユエ一 タ 1は、可動子 9側が永久磁石 2、重量体 6、弾性体 4力 なり、固定子側がコイル 5、ポ ールピース 3、ハウジング本体 7、基台プレート 10、主軸 12及び端子基板 14とから構成 されている。 図 5に、内部構造と磁束発生による可動子 9の動きを拡大したものを示 す。各図において、永久磁石 2は、説明の簡易上、上方が N極、下方が S極となるよう に振幅する軸方向に着磁されて ヽるものとする。 As shown in FIG. 1, FIG. 3, FIG. 4, and FIG. 5, the vibration linear actuator 1 according to the present embodiment includes a permanent magnet 2, a weight body 6, and an elastic body 4 on the movable element 9 side. The stator side is coil 5, It comprises a roll piece 3, a housing body 7, a base plate 10, a main shaft 12, and a terminal board 14. Figure 5 shows an enlarged view of the movement of the mover 9 due to the internal structure and magnetic flux generation. In each figure, for the sake of simplicity of explanation, the permanent magnet 2 is assumed to be magnetized in an axial direction in which the upper part is an N pole and the lower part is an S pole.
[0050] 円柱状ポールピース 3の外周方向に卷回された円筒状のコイル 5に対し、弾性体 4 により支持されている永久磁石 2が、図 1に示すように、磁界中心位置 Mより下方側の Cの位置で段違いに配置される。図 1と図 5は共に、コイル 5が無通電時のもので、前 記弾性体 4が弾性変形の動作をする前の無負荷の初期状態を示している。  [0050] For the cylindrical coil 5 wound in the outer circumferential direction of the cylindrical pole piece 3, the permanent magnet 2 supported by the elastic body 4 is below the magnetic field center position M as shown in FIG. It is arranged in a different way at the position of C on the side. FIGS. 1 and 5 both show the initial state of no load before the coil 5 is elastically deformed when the coil 5 is not energized.
[0051] このコイル 5に、例えば正弦波または矩形波等の周波数特性を有する交流電流が 流されると、ポールピース 3に卷回された前記円筒状コイル 5の円筒両端には S極と N 極の磁束が生じる。この時、コイル 5に流れる電流の向きにより、前記コイル 5の円筒 両端には S極と N極が交互に反転しながら磁束の発生が繰り返される。  [0051] When an alternating current having a frequency characteristic such as a sine wave or a rectangular wave flows through the coil 5, for example, an S pole and an N pole are provided at both ends of the cylindrical coil 5 wound around the pole piece 3. The magnetic flux is generated. At this time, depending on the direction of the current flowing through the coil 5, the generation of magnetic flux is repeated while the S pole and the N pole are alternately reversed at both ends of the cylinder of the coil 5.
[0052] 図 5においては、仮にコイル 5上方が S極、下方が N極とした場合、初期状態の永久 磁石 2の磁極との位置関係は、コイル 5上方では、コイル 5側の S極と永久磁石側の N 極が磁気吸引し、下方では、コイル 5側 N極と永久磁石側の S極が磁気吸引し、結果 的に、可動子 9全体が図の矢印下方側へ起動する。この時、可動子 9の移動幅は、そ の磁気吸引力と弾性体 4の弾性変形保持力との力のバランスにより支持され、動作的 には図 3に示すように、基台プレート 10の面に最も近接した位置まで可動子 9が下が る。  [0052] In FIG. 5, if the upper part of the coil 5 is S pole and the lower part is N pole, the positional relationship with the magnetic pole of the permanent magnet 2 in the initial state is as follows. The N pole on the permanent magnet side is magnetically attracted, and below, the N pole on the coil 5 side and the S pole on the permanent magnet side are magnetically attracted. As a result, the entire mover 9 is activated downward in the figure. At this time, the moving width of the mover 9 is supported by the balance between the magnetic attraction force and the elastic deformation holding force of the elastic body 4, and in terms of operation, as shown in FIG. The mover 9 moves down to the position closest to the surface.
[0053] 続いてコイル 5の磁極が入れ替わり、上方が N極、下方が S極となった場合、永久 磁石 2の磁極との位置関係は、コイル 5に対しお互い同極同士の並びになり、磁気反 発力と弾性体 4の弾性変形保持力が作用し合い、可動子 9は逆に急激に上昇し、上 側の頂点位置で再び弾性体 4の弾性保持力との力のバランスにより支持され、図 4の 動作状態となる。このとき、コイル 5側上方の N極と永久磁石 2側の S極が磁気吸引力 で引き合う位置になる。  [0053] Subsequently, when the magnetic poles of the coil 5 are switched, and the upper part is the N pole and the lower part is the S pole, the positional relationship with the magnetic pole of the permanent magnet 2 is the same polarity with respect to the coil 5, and the magnetic The repulsive force and the elastic deformation holding force of the elastic body 4 interact, and the mover 9 suddenly rises and is supported by the balance of the elastic holding force of the elastic body 4 again at the upper vertex position. Figure 4 shows the operating state. At this time, the N pole on the upper side of the coil 5 and the S pole on the permanent magnet 2 side are attracted to each other by the magnetic attractive force.
[0054] そして、前記コイル 5に流れる電流の周波数が、前記永久磁石 2及び重量体 6を備 える可動子 9の総重量と、弾性体 4のパネ定数とによって定まる固有振動数 (共振周 波数)と等しくチューニング調整できた時に、本実施形態の振動リニアァクチユエータ 1は、振動デバイスとして最大の加速度、すなわち振動量を得ることができる。 [0054] The frequency of the current flowing in the coil 5 is determined by the natural frequency (resonance frequency) determined by the total weight of the mover 9 including the permanent magnet 2 and the weight body 6 and the panel constant of the elastic body 4. ), The vibration linear actuator of the present embodiment 1 can obtain the maximum acceleration, that is, the vibration amount as a vibration device.
[0055] つまり、コイル 5には前述のように正弦波あるいは矩形波等の周波数特性を有する 交流電流が流れ、永久磁石 2と重量体 6を備える可動子 9の総重量と、弾性体 4のバ ネ定数、さらには、振動リニアァクチユエータ 1を組み立てた後の全体の固有振動数 により定まる共振周波数と、の相互関係において、最大の振動力を得ることができる 。携帯電話等の通信機器においては、機器自体の総重量が 100g以下であり、一般 的に、共振周波数 140Hz前後の振動力 最も体感的に好ましく感じられる。  That is, as described above, an alternating current having a frequency characteristic such as a sine wave or a rectangular wave flows through the coil 5, and the total weight of the mover 9 including the permanent magnet 2 and the weight body 6 and the elastic body 4 The maximum vibration force can be obtained in terms of the correlation between the wall constant and the resonance frequency determined by the overall natural frequency after the vibration linear actuator 1 is assembled. In communication devices such as mobile phones, the total weight of the device itself is 100 g or less, and in general, the vibration force with a resonance frequency of around 140 Hz is felt most sensibly.
[0056] このように、重りを備えた可動子 9全体が一連の磁気的作用 '反作用によるリニアな 往復動作を繰り返すことにより、ハウジング本体 7と基台プレート 10からなる限られた 筐体内部のスペースの中で、可動子 9の重心点が、最大加速度を得ながら上下動し 、その力のモーメントが可動子 9側力 それを支える主軸 12に伝わり、また主軸 12から 筐体全体に伝わり、最終的に振動リニアァクチユエータ 1が力強く振動する。  [0056] In this way, the entire movable element 9 with the weight repeats a linear reciprocating motion by a series of magnetic action 'reactions', so that the inside of the limited housing composed of the housing body 7 and the base plate 10 In the space, the center of gravity of the mover 9 moves up and down while obtaining the maximum acceleration, and the moment of the force is transmitted to the mover 9 side force, the main shaft 12 that supports it, and from the main shaft 12 to the entire housing, Finally, the vibration linear actuator 1 vibrates strongly.
[0057] すなわち、本実施形態に係る振動リニアァクチユエータ 1では、高比重合金からなる 重量体 6を可動子 9の一部とし、前記ハウジング本体 7の内部における可動子 9の取り 得る移動領域を拡大することができ、限られた小さなスペースであっても、無駄なぐ 最大限の可動子 9のストロークを確保することができ、装置全体が小さいながらも、使 用者がはっきりと認識できる十分な振動力を得ることができる。  That is, in the vibration linear actuator 1 according to the present embodiment, the weight body 6 made of high-specific-polymerization gold is used as a part of the mover 9, and the mover 9 can move within the housing body 7. The area can be expanded, and even in a limited space, the maximum possible stroke of the mover 9 can be secured, and the user can clearly recognize it even though the entire device is small. Sufficient vibration force can be obtained.
[0058] 例えば前述のように、中心軸となるポールピース 3先端の主軸 12と、ハウジング本体 7の円環面に形成された凹部 7aの底面内径穴 8とで弾性体 4を挟持することによって、 可動子 9を支持する構成としたので、ハウジン本体 7側内部の空間に占める可動子 9 が移動できる空間の体積を大きく取ることができ、装置本体を小型化しつつも、可動 子 9の振幅を大きくすることができ、最大の振動力を得ることができる。  [0058] For example, as described above, the elastic body 4 is sandwiched between the main shaft 12 at the tip of the pole piece 3 serving as the central axis and the bottom surface inner diameter hole 8 of the recess 7a formed in the annular surface of the housing body 7. Since the mover 9 is supported, the volume of the space in which the mover 9 can move in the space inside the housing 7 can be increased, and the amplitude of the mover 9 can be reduced while downsizing the device body. The maximum vibration force can be obtained.
[0059] また、本実施形態に係る振動リニアァクチユエータ 1では、限られた小さなスペース の中で、前記永久磁石 2の磁界と、前記コイル 5に通電された時に生じる磁界と、の間 に作用される磁気的な力が均衡することなく配置され、前記コイル 5に通電されると同 時に、速やかに、かつ確実に、起動して立ち上がり、常にバラツキのない良好な振動 力を得ることができる。  [0059] Further, in the vibration linear actuator 1 according to the present embodiment, the magnetic field of the permanent magnet 2 and the magnetic field generated when the coil 5 is energized in a limited small space. When the coil 5 is energized, the coil 5 is energized promptly and surely to start and stand up, and always obtain a good vibration force without variation. Can do.
[0060] また、本実施形態に係る振動リニアァクチユエータ 1では、ハウジング本体 7と基台 プレート 10により密閉される空間内を移動する可動子 9に対し、可動子 9を挟む前記 密閉された上下二つの空間を行き来して移動する空気の量を制限することにより、図 10の曲線 Fの共振周波数特性に見られるような、周波数帯域を拡大したなだらかな 曲線の周波数帯域を実現できる。これにより共振周波数の値が僅かに変化したとし ても、得られる振動力が急激に減少することがなぐ安定して所定の振動を得ることが できる。 [0060] Further, in the vibration linear actuator 1 according to the present embodiment, the housing body 7 and the base By limiting the amount of air moving back and forth between the two upper and lower sealed spaces sandwiching the mover 9 relative to the mover 9 moving in the space sealed by the plate 10, the curve F in FIG. As shown in the resonance frequency characteristics, a gentle frequency band can be realized by expanding the frequency band. As a result, even if the value of the resonance frequency is slightly changed, the predetermined vibration can be stably obtained without a sudden decrease in the obtained vibration force.
[0061] さらに、本実施形態に係る振動リニアァクチユエータでは、構造が簡単で、耐久性 に優れ、効率の良い磁気駆動部品の配置が可能となり、さらに部品点数を必要最小 限に抑えることにより、組み立て製造工程における工数、および製造コスト、部品管 理の手間を大幅に減少させることができる。  [0061] Furthermore, in the vibration linear actuator according to the present embodiment, the structure is simple, the durability is excellent, the magnetic drive parts can be arranged efficiently, and the number of parts is further reduced to the minimum necessary. As a result, the number of man-hours in the assembly manufacturing process, the manufacturing cost, and the labor of parts management can be greatly reduced.
図面の簡単な説明  Brief Description of Drawings
[0062] [図 1]本発明に係る振動リニアァクチユエータの内部構造の概略を示す断面図である  FIG. 1 is a cross-sectional view showing the outline of the internal structure of a vibration linear actuator according to the present invention.
[図 2]本発明に係る振動リニアァクチユエータの内部構造と部品構成の概略を示す斜 視分解図である。 FIG. 2 is a perspective exploded view showing an outline of an internal structure and component configuration of a vibration linear actuator according to the present invention.
[図 3]本発明に係る振動リニアァクチユエータの内部構造における可動子の動きの概 略を示す断面図である。  FIG. 3 is a cross-sectional view schematically showing the movement of the mover in the internal structure of the vibration linear actuator according to the present invention.
[図 4]本発明に係る振動リニアァクチユエータの内部構造における可動子の動きの概 略を示す断面図である。  FIG. 4 is a cross-sectional view schematically showing the movement of the mover in the internal structure of the vibration linear actuator according to the present invention.
[図 5]本発明に係る振動リニアァクチユエータの内部構造における可動子とコイルとの 位置関係、及び可動子の動きの概略を示す拡大断面図である。  FIG. 5 is an enlarged cross-sectional view showing an outline of the positional relationship between the mover and the coil and the movement of the mover in the internal structure of the vibration linear actuator according to the present invention.
[図 6]本発明に係る振動リニアァクチユエータの内部構造における可動子とコイルとの 位置関係における悪い例としての概略を示す拡大断面図である。  FIG. 6 is an enlarged sectional view showing an outline as a bad example in the positional relationship between the mover and the coil in the internal structure of the vibration linear actuator according to the present invention.
[図 7]本発明に係る振動リニアァクチユエ一タの底部力 見た端子基板における平面 端子形状を示す概略図 (A)、と端子基板の予備配線端子側の概略図 (B)。  FIG. 7 is a schematic diagram (A) showing a planar terminal shape of the terminal board viewed from the bottom force of the vibration linear actuator according to the present invention, and a schematic diagram (B) on the spare wiring terminal side of the terminal board.
[図 8]本発明に係る振動リニアァクチユエ一タの底部力 見た端子基板における平面 端子形状を示す概略図。  FIG. 8 is a schematic diagram showing a planar terminal shape on the terminal board as seen from the bottom force of the vibration linear actuator according to the present invention.
[図 9]本発明に係る振動リニアァクチユエータを、携帯機器筐体内部の回路基板上に 取り付けたときのイメージ図。 FIG. 9 shows a vibration linear actuator according to the present invention on a circuit board inside a portable device casing. Image diagram when installed.
[図 10]本発明に係る振動リニアァクチユエータについて、共振周波数帯域 140Hz付 近での入力周波数に対する加速度を概略的に示した図。  FIG. 10 is a diagram schematically showing acceleration with respect to an input frequency in the vicinity of a resonance frequency band of 140 Hz for the vibration linear actuator according to the present invention.
符号の説明 Explanation of symbols
1 振動リニアァクチユエータ 1 Vibration linear actuator
2 永久磁石 2 Permanent magnet
3 ポーノレピース 3 Ponole piece
4 弾性体 4 Elastic body
5 コイル 5 coils
6 重量体 6 weight
7 ハウジング本体 7 Housing body
8 内径穴 8 bore
9 可動子 9 Mover
10 基台プレート 10 Base plate
11 リブ 11 Ribs
12 主軸 12 Spindle
13、 14 端子基板  13, 14 Terminal board
14a, 14b 予備配線端子 14a, 14b Spare wiring terminals
14A、 14B 平面端子14A, 14B planar terminal
0 回路基板  0 Circuit board
100 機器筐体 100 Equipment housing

Claims

請求の範囲 The scope of the claims
[1] 永久磁石を備える可動子と、前記可動子を収納するハウジング本体と、前記可動子 と前記ハウジング本体とを連結して支持する薄板状の弾性体と、前記可動子を駆動 させるための固定子側コイルと、を備える振動デバイスにおいて、  [1] A mover including a permanent magnet, a housing main body that houses the mover, a thin plate-like elastic body that connects and supports the mover and the housing main body, and a drive for driving the mover In a vibration device comprising a stator side coil,
前記永久磁石は、可動子の振幅方向に着磁され、かつ永久磁石外周には分銅と なる重量体を一体に備えており、また対向する前記コイルは、前記永久磁石の内径 側に隙間を介して位置し、その円筒状に卷回されたコイル内径には、柱状のポール ピースが中心を貫通する形で設けられていることを特徴とする振動リニアァクチユエ ータ。  The permanent magnet is magnetized in the amplitude direction of the mover, and a weight body serving as a weight is integrally provided on the outer periphery of the permanent magnet. The vibrating linear actuator is characterized in that a cylindrical pole piece is provided in the inner diameter of the coil wound in a cylindrical shape so as to penetrate the center.
[2] 前記永久磁石の厚み方向中心となる磁界の中心位置と、前記コイルに通電された時 に発生する磁界の中心位置とを振幅方向で一致させず、振幅方向での双方の位置 関係が、一方のコイル端部側寄りにオフセットさせて配置したことを特徴とする請求項 1に記載の振動リニアァクチユエータ。  [2] The center position of the magnetic field that is the center of the permanent magnet in the thickness direction and the center position of the magnetic field that is generated when the coil is energized do not coincide with each other in the amplitude direction. 2. The vibration linear actuator according to claim 1, wherein the vibration linear actuator is arranged so as to be offset toward one coil end side.
[3] 前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前記可動子 の内周面と前記コイルの外周面との隙間、を共に 0.08mm〜0.15mmの範囲内で幅狭 にし、可動子の動きによって変化する前記可動子の上面側と前記ハウジング本体の 上面内壁とで形成される空間と、前記可動子の下面側と前記ハウジング本体の蓋部 となる端子基板とで形成される空間、との間の空気の移動量を制限するためのエア 一ダンパー構造を備えたことを特徴とする請求項 1または請求項 2に記載の振動リニ ァァクチユエータ。  [3] The width between the outer peripheral surface of the mover and the inner surface of the side wall of the housing body and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both within a range of 0.08 mm to 0.15 mm. A space formed by the upper surface side of the mover and the inner wall of the upper surface of the housing body, which is narrowed and changed by the movement of the mover; 3. The vibration regenerator according to claim 1, further comprising an air damper structure for restricting an amount of air movement between the formed space and the space.
[4] 前記重量体は、タングステン、タンタル等の比重 10以上の高比重合金を主成分とす る非磁性材料の重りにより形成されて 、ることを特徴とする請求項 1〜請求項 3の ヽ ずれか一項に記載の振動リニアァクチユエータ。  [4] The weight body according to any one of claims 1 to 3, wherein the weight body is formed of a weight of a nonmagnetic material mainly composed of high specific weight gold having a specific gravity of 10 or more, such as tungsten or tantalum.振動 The vibration linear actuator described in one of the items.
[5] 前記重量体は、黄銅、銅等の比重 8以上 10未満の非磁性体材料の重りにより形成さ れていることを特徴とする請求項 1〜請求項 3のいずれか一項に記載の振動リニアァ クチユエータ。 [5] The weight body according to any one of claims 1 to 3, wherein the weight body is formed by a weight of a nonmagnetic material having a specific gravity of 8 or more and less than 10 such as brass or copper. Vibration linear actuator.
[6] 前記端子基板の底面側が、半田リフロー対応の端子基板構造であることを特徴とす る請求項 1〜請求項 5に記載の振動リニアァクチユエータ。 前記端子基板の半田リフロー対応の端子形状が、同心円状に区切られた中心に位 置する正極 (又は負極)と、その外周に位置する環状帯体の負極 (又は正極)領域と6. The vibration linear actuator according to any one of claims 1 to 5, wherein a bottom surface side of the terminal board has a terminal board structure compatible with solder reflow. A terminal shape corresponding to solder reflow of the terminal board is a positive electrode (or negative electrode) positioned at the center concentrically divided, and a negative electrode (or positive electrode) region of an annular band positioned on the outer periphery thereof.
、により構成されていることを特徴とする請求項 6に記載の振動リニアァクチユエータ。 The vibration linear actuator according to claim 6, comprising:
PCT/JP2005/011780 2004-06-29 2005-06-28 Vibrating linear actuator WO2006001436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-191100 2004-06-29
JP2004191100A JP2006007161A (en) 2004-06-29 2004-06-29 Oscillating linear actuator

Publications (1)

Publication Number Publication Date
WO2006001436A1 true WO2006001436A1 (en) 2006-01-05

Family

ID=35774977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011780 WO2006001436A1 (en) 2004-06-29 2005-06-28 Vibrating linear actuator

Country Status (2)

Country Link
JP (1) JP2006007161A (en)
WO (1) WO2006001436A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024951A1 (en) * 2011-08-18 2013-02-21 금오공과대학교 산학협력단 Linear vibration motor
CN104205589A (en) * 2012-07-19 2014-12-10 艾姆突斯系统有限公司 Haptic actuator
CN104205589B (en) * 2012-07-19 2016-11-30 艾姆突斯系统有限公司 Tactile actuator
CN107135665A (en) * 2014-09-24 2017-09-05 泰克宣技术有限公司 Produce the system and method for activating plane motion for the damping electromagnetic of audio frequency vibration
WO2017166399A1 (en) * 2016-03-28 2017-10-05 歌尔声学股份有限公司 Vibration motor and portable device
WO2018058808A1 (en) * 2016-09-30 2018-04-05 歌尔股份有限公司 Linear vibration motor, and electronic device
CN108472686A (en) * 2015-09-16 2018-08-31 泰克宣技术有限公司 The device and method of the perception of audio-tactual space and bass for sound
US10573139B2 (en) 2015-09-16 2020-02-25 Taction Technology, Inc. Tactile transducer with digital signal processing for improved fidelity
CN113954591A (en) * 2021-09-23 2022-01-21 北京航空航天大学 Electromagnetic-driven miniature amphibious robot
US11729555B2 (en) 2021-01-12 2023-08-15 Sound Solutions International Co., Ltd. Adjustable magnetic spring for actuator

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229582A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Reciprocating vibration generator
KR100748592B1 (en) 2006-11-15 2007-08-10 김정훈 Subminiature linear vibrator
KR100793682B1 (en) 2007-01-16 2008-01-10 김정훈 Subminiature linear vibrator
US20100052578A1 (en) * 2006-11-15 2010-03-04 J&J Corp. Subminiature linear vibrator
JP2008225690A (en) 2007-03-09 2008-09-25 Sony Corp Vibration body, tactile sense function-equipped input device, and electronic equipment
JP2010104864A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Reciprocating vibration generator
KR20100087519A (en) * 2009-01-28 2010-08-05 엘지이노텍 주식회사 Linear vibrator
JP5351640B2 (en) * 2009-03-23 2013-11-27 日本電産セイミツ株式会社 Flat vibration motor
WO2011043536A1 (en) * 2009-10-05 2011-04-14 주식회사래모트론 Linear vibrator
KR101085461B1 (en) * 2010-01-18 2011-11-21 한국과학기술원 Apparatus for small sized actuator using different elastic spring
JP5659426B2 (en) * 2010-02-16 2015-01-28 日本電産セイミツ株式会社 Vibration generator
JP5537984B2 (en) * 2010-02-16 2014-07-02 日本電産セイミツ株式会社 Reciprocating vibration generator
KR100995000B1 (en) * 2010-02-18 2010-11-18 자화전자(주) Linear vibration generating device
KR101101713B1 (en) 2010-03-02 2012-01-05 주식회사 비에스이 Vibration motor and method of making the same
KR101036483B1 (en) * 2010-03-02 2011-05-24 주식회사 비에스이 Vibration motor
KR101091411B1 (en) 2010-04-16 2011-12-07 엘지이노텍 주식회사 Linear vibrator and mobile device having broadband
WO2011129475A1 (en) * 2010-04-16 2011-10-20 엘지이노텍 주식회사 Linear vibrator having a broad bandwidth, and mobile device
KR101175356B1 (en) * 2010-08-18 2012-08-23 자화전자(주) Linear vibration generating device
KR101752718B1 (en) * 2010-11-18 2017-07-26 (주)파트론 Linear vibrator
KR101142284B1 (en) 2010-11-30 2012-05-07 자화전자(주) Linear vibration generating device
KR101163612B1 (en) 2010-12-01 2012-07-09 자화전자(주) Linear vibration generating device
KR101258914B1 (en) 2010-12-09 2013-04-29 한국과학기술원 Vibration generating module, handheld device using the same, method for generating vibration and recording medium thereof
KR101266793B1 (en) * 2011-03-09 2013-05-24 (주)엠투시스 Haptic actuator
US8872394B2 (en) * 2011-06-16 2014-10-28 Jahwa Electronics Co., Ltd. Linear vibration generating apparatus
CN103107670A (en) * 2011-11-09 2013-05-15 株式会社永进高科 Linear vibration device
JP5496990B2 (en) * 2011-11-28 2014-05-21 株式会社永進ハイ−テック Linear vibration device
KR101439937B1 (en) * 2012-03-16 2014-09-17 크레신 주식회사 Linear vibrator
WO2013137578A1 (en) * 2012-03-16 2013-09-19 크레신 주식회사 Linear oscillator
JP2013233537A (en) * 2012-04-10 2013-11-21 Hosiden Corp Vibrator
WO2013157670A1 (en) * 2012-04-16 2013-10-24 (주)엠투시스 Haptic actuator
US20130342034A1 (en) * 2012-06-26 2013-12-26 Samsung Electro-Mechanics Co., Ltd. Linear vibrator
JP6377904B2 (en) * 2013-12-27 2018-08-22 日本電産コパル株式会社 Vibration actuator and portable information terminal
EP3121946A4 (en) 2014-03-17 2017-08-23 Nidec Sankyo Corporation Linear actuator
US10252295B2 (en) 2014-07-30 2019-04-09 Nidec Sankyo Corporation Linear actuator
JP6626725B2 (en) 2016-01-29 2019-12-25 日本電産サンキョー株式会社 Actuator
US10389219B2 (en) 2016-07-01 2019-08-20 Jahwa Electronics Co., Ltd. Vibration actuator
JP7026508B2 (en) 2016-08-09 2022-02-28 日本電産サンキョー株式会社 Linear actuator
US10951104B2 (en) 2016-08-09 2021-03-16 Nidec Sankyo Corporation Linear actuator
KR101783628B1 (en) 2017-04-27 2017-10-24 주식회사 블루콤 Linear type vibration motor vibrated Verticality
US20230336064A1 (en) * 2020-07-02 2023-10-19 Foster Electric Company, Limited Oscillatory actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329542A (en) * 2001-05-02 2002-11-15 Shin Etsu Polymer Co Ltd Press contact type adapter
JP2003154315A (en) * 2001-11-22 2003-05-27 Matsushita Electric Ind Co Ltd Vibratory linear actuator
JP2003199311A (en) * 2002-01-04 2003-07-11 Tokyo Denki Univ Linear vibrating actuator
JP2003251278A (en) * 2002-03-07 2003-09-09 Nec Tokin Corp Multifunction vibration actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329542A (en) * 2001-05-02 2002-11-15 Shin Etsu Polymer Co Ltd Press contact type adapter
JP2003154315A (en) * 2001-11-22 2003-05-27 Matsushita Electric Ind Co Ltd Vibratory linear actuator
JP2003199311A (en) * 2002-01-04 2003-07-11 Tokyo Denki Univ Linear vibrating actuator
JP2003251278A (en) * 2002-03-07 2003-09-09 Nec Tokin Corp Multifunction vibration actuator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024951A1 (en) * 2011-08-18 2013-02-21 금오공과대학교 산학협력단 Linear vibration motor
CN104205589A (en) * 2012-07-19 2014-12-10 艾姆突斯系统有限公司 Haptic actuator
CN104205589B (en) * 2012-07-19 2016-11-30 艾姆突斯系统有限公司 Tactile actuator
CN111035364A (en) * 2014-09-24 2020-04-21 泰克宣技术有限公司 Device for imparting motion to the skin of a user
CN107135665A (en) * 2014-09-24 2017-09-05 泰克宣技术有限公司 Produce the system and method for activating plane motion for the damping electromagnetic of audio frequency vibration
US10820117B2 (en) 2014-09-24 2020-10-27 Taction Technology, Inc. Systems and methods for generating damped electromagnetically actuated planar motion for audio-frequency vibrations
US10812913B2 (en) 2014-09-24 2020-10-20 Taction Technology, Inc. Systems and methods for generating damped electromagnetically actuated planar motion for audio-frequency vibrations
EP3198618A4 (en) * 2014-09-24 2018-05-23 Taction Technology Inc. Systems and methods for generating damped electromagnetically actuated planar motion for audio-frequency vibrations
US10659885B2 (en) 2014-09-24 2020-05-19 Taction Technology, Inc. Systems and methods for generating damped electromagnetically actuated planar motion for audio-frequency vibrations
US10390139B2 (en) 2015-09-16 2019-08-20 Taction Technology, Inc. Apparatus and methods for audio-tactile spatialization of sound and perception of bass
US10573139B2 (en) 2015-09-16 2020-02-25 Taction Technology, Inc. Tactile transducer with digital signal processing for improved fidelity
CN108472686A (en) * 2015-09-16 2018-08-31 泰克宣技术有限公司 The device and method of the perception of audio-tactual space and bass for sound
US11263879B2 (en) 2015-09-16 2022-03-01 Taction Technology, Inc. Tactile transducer with digital signal processing for improved fidelity
WO2017166399A1 (en) * 2016-03-28 2017-10-05 歌尔声学股份有限公司 Vibration motor and portable device
WO2018058808A1 (en) * 2016-09-30 2018-04-05 歌尔股份有限公司 Linear vibration motor, and electronic device
US11729555B2 (en) 2021-01-12 2023-08-15 Sound Solutions International Co., Ltd. Adjustable magnetic spring for actuator
CN113954591A (en) * 2021-09-23 2022-01-21 北京航空航天大学 Electromagnetic-driven miniature amphibious robot
CN113954591B (en) * 2021-09-23 2023-12-22 北京航空航天大学 Electromagnetic driven miniature amphibious robot

Also Published As

Publication number Publication date
JP2006007161A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
WO2006001436A1 (en) Vibrating linear actuator
US7038335B2 (en) Vertical vibrator
CN102315747B (en) Horizontal linear vibrator
KR101746007B1 (en) Linear type vibration motor vibrated Verticality
CN107847975B (en) Linear vibration motor and mobile electronic device including the same
US8384259B2 (en) Horizontal linear vibrator
KR100541113B1 (en) A vertical vibrator of pattern coil type
KR100748592B1 (en) Subminiature linear vibrator
KR20140113857A (en) Vibrator and electronic apparatus having thereof
KR20100119970A (en) Linear vibrator
JP4602788B2 (en) Vibration generator
US20110068641A1 (en) Horizontal linear vibrator
JP2017070017A (en) Linear vibration motor
JPWO2016114383A1 (en) Linear vibration motor
US20030117223A1 (en) Vibrating linear actuator
KR20140128525A (en) Linear Actuator
CN102570769A (en) Linear vibrator
JP2002238089A (en) Electro-mechanical/acoustic converter
CN102223958B (en) Linear vibrator
KR100804023B1 (en) Vibrator
KR100842092B1 (en) Vibrating mechanism of electric sounder
WO2006064750A1 (en) Vibrating linear actuator
WO2008004729A1 (en) Vibrator
JP2016131915A (en) Linear vibration motor
KR101198077B1 (en) Linear vibration actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase