WO2005121634A1 - ガス吸着容器 - Google Patents

ガス吸着容器 Download PDF

Info

Publication number
WO2005121634A1
WO2005121634A1 PCT/JP2004/008303 JP2004008303W WO2005121634A1 WO 2005121634 A1 WO2005121634 A1 WO 2005121634A1 JP 2004008303 W JP2004008303 W JP 2004008303W WO 2005121634 A1 WO2005121634 A1 WO 2005121634A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
change
gas
pressure
gas adsorption
Prior art date
Application number
PCT/JP2004/008303
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Kanazawa
Haruya Ota
Yasuhiko Urabe
Takefumi Ishikura
Kazuhiro Tabata
Original Assignee
Tokyo Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co., Ltd. filed Critical Tokyo Gas Co., Ltd.
Priority to PCT/JP2004/008303 priority Critical patent/WO2005121634A1/ja
Publication of WO2005121634A1 publication Critical patent/WO2005121634A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]

Definitions

  • the present invention relates to a gas adsorption container that can be used for gas recovery and the like. More particularly, the present invention relates to a gas-absorbing container for collecting low-pressure flammable gas which can be suitably used for recovering flammable gas of atmospheric pressure or higher remaining in a gas meter or the like of city gas.
  • City gas which is used for cooking, hot water supply, and cooling / heating, is supplied to each customer through a gas transport conduit, which is a key underground, a gas transport conduit for intake, and a gas meter.
  • the gas meter is required by law to be replaced at regular intervals.
  • Patent Document 1 discloses an example of a pressure vessel in which an adsorbent is filled. When storing flammable gas such as natural gas inside, it is customary to use a pressure vessel as described in the patent document.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-35053 Disclosure of the invention
  • the recovery container used in the invention relating to the above-described gas recovery is generally a metal container in consideration of combustible gas.
  • Metal containers have the advantage that the inside of the container can withstand both high pressure and reduced pressure, and there is little concern about safety.
  • the recovery container is heavy and the burden on the gas recovery operator increases, and the cost of manufacturing the container increases.
  • the transportation cost is increased due to the heavy container.
  • An object of the present invention is to provide a gas adsorption container for gas recovery that is lightweight and easy to handle. Second, it is to provide a measure that can safely handle flammable gas even with a lightweight and simple gas adsorption container for gas recovery.
  • the gas adsorption container of the present invention comprises: a plastic container which shrinks to such an extent that the entire outer shape cannot be held if the inside of the gas adsorption container is reduced to a pressure lower than the atmospheric pressure; an activated carbon filled in the plastic container; And a gas input / output valve connected to the plastic container.
  • a lightweight gas adsorption container can be configured.
  • a plastic container which can not hold its entire outer shape if the inside is depressurized to a pressure lower than the atmospheric pressure, and shrinks to a certain degree. Can be configured.
  • the main structures that govern the weight of the gas adsorption container are the container structure and activated carbon, but the container structure of the present invention is a very thin plastic container compared to the case where a conventional metal container is used, and is extremely remarkable. Weight reduction can be realized.
  • activated carbon is filled even if the plastic container shrinks under reduced pressure. So there is no problem in use. If the plastic container is not filled with activated carbon and the plastic container is used alone, the pressure inside the plastic container shrinks, or the width of the shrinkage is large, and the plastic container is destroyed. Alternatively, fatigue failure occurs due to repeated contraction and expansion of the plastic container. However, in the present invention, since the inside is filled with activated carbon, no extreme shrinkage of the plastic container occurs, and therefore no expansion after shrinkage occurs, and the plastic container is broken. No fatigue or fatigue failure.
  • the activated carbon is used as a structure for maintaining the shape of the gas adsorption container under a reduced pressure.
  • the activated carbon is used as a structure for maintaining the shape of the gas adsorption container under a reduced pressure.
  • a slight shrinkage of the plastic container can be recognized.
  • part of the plastic container is depressurized to below atmospheric pressure
  • the pressure is reduced to below atmospheric pressure without filling part of the plastic container with anything.
  • a shape maintaining member such as activated carbon
  • the “outer shape” is the outer shape of the plastic container, and the “entire outer shape” is that the outer shape of the plastic container when decompressed does not retain the original shape as a whole. is there. In other words, this includes the case where the external shape does not retain the original shape as a whole when the pressure is reduced, but there is a part that maintains the original shape.
  • the plastic container for example, there are portions having high mechanical strength such as corner portions, and therefore, some portions retain the original shape even when the pressure is reduced.
  • a plastic container including such a part is also referred to as a “plastic container” here.
  • shrinking to the extent that the external shape cannot be maintained refers to a case where the internal volume of the plastic container is significantly reduced by pressure reduction. Strictly speaking, any vessel (even a metal vessel) must be depressurized and contract due to external pressure from the atmosphere. However, such shrinkage in a strict sense does not significantly impair the original shape, and the internal volume is not significantly reduced by internal decompression. In other words, even if there is a strict contraction, the decrease in the container volume due to such contraction can be ignored. “Shrinkage” here does not include such strictly shrinkage.
  • Plastic container is a container whose main component is plastic. “Plastic” is a material that uses a high polymer as an essential component and gives shape to the product during its processing. Examples of the “plastic container” include a commercially available polyethylene tank (so-called poly tank). Commercially available By using a plastic container, the gas adsorption container of the present invention can be manufactured at low cost.
  • Activated carbon preferably has excellent adsorption of combustible gas such as methane, but is not particularly limited by its gas adsorption performance.
  • the shape of the activated carbon is arbitrary, such as a powder or a formed body.
  • the “gas input / output valve” functions as a gas inlet / outlet port, and is not particularly limited as long as gas sealing can be realized.
  • the valve may be a single valve that has both gas input and gas output, or two valves that share the functions of gas input and gas output.
  • the plastic container has a partial region in which a change in the outer shape due to the reduced pressure is smaller than that in another region, and the inner wall of the partial region and the activated carbon And a pressure detecting means for detecting that the internal pressure of the plastic container has reached atmospheric pressure.
  • a pressure detecting means for detecting that the internal pressure of the plastic container has reached atmospheric pressure.
  • a partition wall that expands or contracts in accordance with a change in the internal pressure of the plastic container to prevent gas from entering the plastic container into the inside thereof;
  • a pair of opposing structural walls that do not change their positions due to a change in the internal pressure of the partition, and a switch that is installed on one of the structural walls and whose contact is turned on or off by pressing a pressing portion;
  • the pressing part And a balloon disposed between the other of the structural walls and inflating or deflating in response to a change in the internal pressure of the partition wall.
  • the switch is turned on or off by inflating or reducing the balloon.
  • a movable portion that expands or contracts in response to a change in the internal pressure of the plastic container, and a structural portion that does not change its position depending on a change in the internal pressure of the plastic container, wherein at least a part of the structural portion is provided.
  • a partition having a pair of opposing opposing portions, and preventing intrusion of adsorbed gas into the inside thereof; a switch installed on one of the opposing portions, the contact being turned on or off by pressing a pressing portion; A balloon disposed between the pressing portion of the switch and the other of the opposing portions and inflating or deflating in response to a change in the internal pressure of the partition, wherein the switch is inflated or contracted by the balloon. , Which may be turned on or off.
  • the movable portion that expands or contracts in response to a change in the internal pressure of the plastic container, and a structural portion that does not change its position depending on a change in the internal pressure of the plastic container, and adsorbs gas into the inside thereof.
  • a switch that is installed in the structure unit and that turns on or off a contact by pressing a pressing unit, and that the switch is turned on or off by the movement of the movable unit. What is done can also be exemplified.
  • Each of these pressure detecting means using a switch having a contact has an explosion-proof structure that is isolated from gas adsorbed inside the plastic container by a partition wall. Therefore, even if the adsorbed gas is flammable, it can be handled safely.
  • a pressure detecting means a first resonance circuit including a first inductive element disposed in a movable portion that expands or contracts in accordance with a change in the internal pressure of the plastic container;
  • a second resonance circuit including a second inductive element inductively coupled to the first inductive element, the second resonance circuit being disposed on a fixed portion whose position does not change depending on a change, and a resonance of the first resonance circuit or the second resonance circuit;
  • a detecting means for detecting a change in frequency.
  • the dielectric is disposed on a movable portion that expands or contracts in response to a change in the internal pressure of the plastic container, and the dielectric is disposed on a fixed portion that does not change its position due to a change in the internal pressure of the plastic container, Including a capacitive element composed of opposed flat electrodes with the dielectric disposed therebetween And a detection unit that detects a change in the resonance frequency of the resonance circuit.
  • the detecting means using these inductive elements or capacitive elements detects the movement of the position of the movable portion due to the pressure change as a change in the mutual induction coefficient of the inductive elements or a change in the capacitance of the capacitive elements. Since a change in the mutual induction coefficient or the capacitance value can be detected as a change in the resonance frequency of the resonance circuit, the change in the resonance frequency is used as a pressure change signal in the present invention. In such a detection method using two resonant circuits, there is no mechanical contact in the electric circuit, so even if the electric circuit is exposed to flammable gas, there is little risk of explosion and the gas adsorption container should be handled safely. Becomes possible.
  • another gas adsorption container of the present invention is a container outer shell, a film container disposed inside the container outer shell, having a sealable opening and a lid, and disposed inside the film container. Activated carbon filling the inside of the container outer shell, and a gas input / output valve connected to the lid.
  • a lightweight gas adsorption container can be configured similarly to the above-mentioned gas adsorption container. That is, for example, a paper material such as cardboard can be used as the container outer shell, and an extremely lightweight film container can be used as a substantial gas storage container.
  • the “film container” is a container having a film as a main component, and the “film” is a film-like material.
  • a film thickness of less than 0.25 mm may be classified as a “film”, and a film thickness of 0.25 mm or more may be classified as a “sheet”.
  • the “sheet” is also a part of the “film”.
  • a film-like material whose shape can be easily changed by an external pressure is defined as a “film”.
  • Specific materials for the film container include polyethylene and polyethylene terephthalate as plastic, aluminum and tin-free steel plate as metal, and cloth and paper coated with resin to prevent gas permeation. Can be exemplified. The interpretation of the terms such as activated carbon and gas input / output valves is the same as above.
  • the pressure detecting means can be arranged in the gas adsorption container to which the film container is applied, similarly to the above.
  • the wall material (film) of the film container can be easily moved by a change in internal pressure, and this can be used for pressure detection. That is, the inside of the outer shell of the container is The film container and the inner wall of the container outer shell have a gap facing each other, and a switch in which a contact is turned on or off by pressing a pressing portion can be disposed in the gap.
  • a gap in which the film container and the inner wall of the container outer shell face each other, and a first resonance element including a first guiding element disposed in the film container in the gap.
  • a second resonance circuit including a circuit, a second inductive element disposed on the inner wall of the outer shell in the gap, and inductively coupled to the first inductive element; and a first resonance circuit or the second resonance circuit. Detecting means for detecting a change in the resonance frequency.
  • a resonance circuit is provided on the inner wall of the shell and includes a capacitive element formed of opposed flat plate electrodes and the dielectric is disposed between the resonance circuit and detection means for detecting a change in the resonance frequency of the resonance circuit.
  • the detecting element switch or resonance circuit for position movement is arranged outside the film container in which the adsorbed gas is occluded, but is not exposed by the occluded gas. For this reason, it is not necessary to use an explosion-proof pressure detection means.
  • FIG. 1 is a sectional view showing an example of a gas adsorption container according to an embodiment of the present invention.
  • FIG. 2 is an enlarged partial cross-sectional view of part A in FIG.
  • FIG. 3 is a sectional view showing an example of the pressure sensor 4.
  • FIG. 4 is a cross-sectional view showing an example of a gas adsorption container according to another embodiment of the present invention.
  • FIG. 5 is an enlarged sectional view showing a part B of the pressure sensor 34.
  • FIG. 6 is a sectional view showing another example of the pressure sensor.
  • FIG. 7 is a sectional view showing still another example of the pressure sensor.
  • FIG. 8 is a sectional view showing still another example of the pressure sensor.
  • FIG. 9 is a sectional view showing still another example of the pressure sensor. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a sectional view showing an example of a gas adsorption container according to an embodiment of the present invention.
  • the gas adsorption container of the first embodiment includes a plastic container 1, activated carbon 2, a valve 3 for gas input / output, and a pressure sensor 4.
  • the valve 3 is connected to the lid 5 via the pipe 6, and the pressure sensor 4 is connected to the alarm 9 by the wiring 7 passing through the lid 8.
  • the plastic container 1 is a commercially available general-purpose plastic container such as a plastic tank used for storing kerosene or water. It is preferable to use a handle having a handle portion 10 at the upper portion because the transfer becomes easy. Commercially available plastic containers are not intended to be used under reduced pressure, so they should not be used under reduced pressure. However, if measures are taken to keep the airtightness between the plastic container 1 and the lids 5 and 8, it can be practically used in applications where the inside is depressurized. Although not used in the present invention, if the inside of the plastic container 1 is depressurized without any structural material, the plastic container 1 is easily compressed by the atmospheric pressure.
  • the inside is filled with activated carbon 2 as described later, the activated carbon functions as a structural material, and the inside is depressurized. Even so, the plastic container 1 does not compress significantly.
  • FIG. 2 is an enlarged partial cross-sectional view of part A in FIG.
  • Threads are provided on the outer surface of the opening 11 of the plastic container 1 and the inner surface of the lid 5, respectively, and the lid 5 can be turned into the opening 11 to close the opening. At this time, a sufficient airtightness can be maintained by sandwiching the gasket 12 between the lid 5 and the opening 11 and applying vacuum grease to the surface of the gasket 12.
  • the pipe 6 connected to the valve 3 is provided with a thread on the outer peripheral surface of the end 13, and is screwed into a tap portion 14 formed on the lid 5 to provide airtightness. Is held. If Teflon (R) tape is wrapped between the thread of the end 13 and the tap portion 14, the airtightness can be further improved. It should be noted that a similar measure can be taken for the lid 8 to maintain the same airtightness.
  • the gap between the lid 8 and the wiring 7 can be filled with an acrylic resin or the like and sealed.
  • Activated carbon 2 is filled in plastic container 1. Since the activated carbon 2 is filled inside, the gas occlusion efficiency can be improved. In order to store city gas in the gas adsorption container of the present embodiment, it is preferable to use activated carbon having high methane storage efficiency.
  • the shape of the activated carbon is arbitrary, such as a formed body having a predetermined shape such as a tablet shape or a column shape, or a powder shape. In general, activated carbon is more excellent in bulk density than powdered activated carbon.Therefore, it is preferable that the activated carbon to be filled in the container is formed activated carbon.However, there is a space in the container where the activated carbon is not filled. The storage efficiency may be reduced.
  • the activated carbon having a predetermined shape may be filled first, and the gap may be filled with powdered activated carbon to increase the filling rate of the activated carbon into the container.
  • the activated carbon 2 functions as a structural material for maintaining the outer shape of the plastic container 1 when the pressure inside the container is reduced.
  • the higher the filling ratio of activated carbon the higher the gas storage efficiency.
  • the packing ratio of the activated carbon 2 is preferably as high as possible, but the packing compressed to such an extent that the pore structure of the activated carbon is destroyed is not preferable.
  • a general valve can be applied to the valve 3.
  • a vacuum valve is preferable in consideration of reducing the pressure in the plastic container 1 to a reduced pressure state close to a vacuum state.
  • Commercially available diaphragm valves and needle valves can be applied.
  • the pressure sensor 4 is a sensor that detects that the internal pressure of the plastic container 1 has reached near atmospheric pressure.
  • FIG. 3 is a sectional view showing an example of the pressure sensor 4.
  • the pressure sensor 4 includes a partition wall 20, a structure 21 provided in the partition wall, a switch 22 in the structure 21 and a balloon 23.
  • the switch 22 includes a pressing lever 24 and a button 25.
  • the pressing lever 24 presses the button 25 by pressing the lever, and turns the contact of the switch 22 on or off.
  • the partition wall 20 is made of a porous film such as a synthetic rubber, for example, and responds to changes in external pressure. It is made of a material that easily expands and contracts. The pressure at the bottom of the partition wall 20 changes according to the change of the external pressure.
  • the partition 20 when the external pressure decreases, the partition 20 expands, and the internal pressure of the partition 20 also decreases. Conversely, when the external pressure increases, the partition wall 20 contracts, and the pressure at the upper part also increases. Further, the partition wall 20 impedes the flow of gas between the outside and the inside thereof, and is preferably a material having a low leak rate of gas existing inside and outside.
  • the inside of the structure 21 is open to the outside, so that its shape does not change depending on the internal pressure and the external pressure of the partition wall 20.
  • the shape of the structure 21 is not particularly limited, but has at least a pair of opposed wall surfaces sandwiching the switch 22 and the balloon 23.
  • a switch 22 is disposed on one wall surface.
  • the lever 24, which is a pressing portion of the switch 22, is arranged so as to face the balloon 23.
  • the balloon 23 is made of a material that easily expands and contracts according to a change in the external pressure, similarly to the partition wall 20.
  • the tension of the balloon 23, or the distance between the opposing walls of the structure 21 so that the external pressure corresponding to the state changed to the on or off state becomes the atmospheric pressure, It becomes possible to detect the state of reaching atmospheric pressure.
  • the ON state or OFF state of the switch 22 is monitored by the alarm 9 to inform the operator whether the pressure is higher than the atmospheric pressure or the pressure is reduced.
  • the partition wall 20 provides an explosion-proof structure. Since the switch 22 has mechanical contacts, a small spark may be generated when the contacts are turned on and off.However, the pressure sensor of the present embodiment employs an explosion-proof structure, which may explode flammable gas. Hana.
  • the gas adsorption container of the present embodiment is as described above. Here, an example of a method of using the above-described gas adsorption container will be described. First, exhaust the gas (air and flammable gas remaining after last use) existing in the container.
  • Exhaust is performed by connecting an exhaust means such as a vacuum pump to the pipe on the open side of valve 3 and opening valve 3. After evacuating for a sufficient time, the pressure inside the container reaches almost 0 atm (at least 0.1 atm or less), depending on the performance of the vacuum pump. In this state, close valve 3 and disconnect the vacuum pump. In this state, the gas adsorption container is ready for use in operations such as gas recovery.
  • the gas recovery operation is performed by connecting the open pipe of valve 3 to the pipe filled with the gas to be recovered, such as the pipe connected to the gas meter to be replaced, with the connection pipe, and opening valve 3. Since the interior of the gas adsorption container is already under reduced pressure, the gas to be collected flows into the gas adsorption container naturally.
  • the gas adsorption container is configured to be very light, so that the work load on the operator can be greatly reduced.
  • the weight of the gas adsorption container of the present embodiment is reduced to such an extent that it can be considered substantially only the weight of activated carbon.
  • the gas volume that can be recovered is designed to be 100 liters, a cylindrical stainless steel container with a capacity of 100 liters (height: 300 millimeters x inner diameter: 206 millimeters, meat)
  • a commercially available crushed activated carbon (specific surface area: 1,000 square meters / gram, pore volume: 0.4 milliliters / gram) within a packing rate of 0.5 kilograms / liter within 4 millimeters thick.
  • the desired recovery gas volume is obtained by filling.
  • the total weight in this case is 15 kilograms.
  • the weight of the activated carbon to be filled is 10 kg and the total weight is Weighed 10.8 kilograms.
  • the adsorption capacity of the recovered gas is about 200 liters.
  • the present embodiment and the above-described stainless steel container Compared to the case where it is completed, the weight is reduced by about 30% even though the recovery performance is doubled.
  • the inside is filled with activated carbon
  • the capacity of the collected gas can be increased as compared with using a plastic container as it is.
  • the inside is filled with activated carbon
  • the plastic container can be used even under reduced pressure.
  • repeated use will result in repeated pressure fluctuations between reduced pressure and atmospheric pressure, which will cause the plastic container to undergo repeated contraction and expansion.
  • the inside is filled with activated carbon, the width of such repeated shrinkage and expansion is reduced, which has the effect of suppressing fatigue fracture of the plastic container and extending its service life.
  • the gas adsorption container of the present embodiment is provided with a pressure sensor, gas is not injected excessively, and the pressure sensor has an explosion-proof structure. Therefore, it is possible to safely recover flammable gas such as methane gas.
  • FIG. 4 is a cross-sectional view showing an example of a gas adsorption container according to another embodiment of the present invention.
  • the gas adsorption container according to the second embodiment includes an outer shell 30, a film container 31, activated carbon 2 similar to the first embodiment, a valve 3 similar to the first embodiment, and a pressure sensor 34.
  • the film container 31 is provided with a lid 5 similar to that of the first embodiment.
  • the outer shell 30 has a function of determining the outer shape of the container, but also substantially functions as a protective container of the film container 31.
  • the outer shell 30 can be exemplified by a light box such as a cardboard box.
  • the film container 31 is a bag in which a plastic film of polyethylene or the like is formed in a bag shape, a lid 5 is provided in the opening, and the lid 5 is closed to maintain airtightness. Obviously, the weight of the film container 31 is extremely small.
  • Such a film container 31 is arranged inside the outer shell 30, and the same activated carbon 2 as in the first embodiment is filled in the film container 31. At this time, the shape of the state filled with the activated carbon 2 is determined by the outer shell 30.
  • the method of using the gas adsorption container of the present embodiment is the same as that of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a portion B of the pressure sensor 34 in an enlarged manner.
  • Pressure sensor Reference numeral 34 denotes a configuration including only the switch 22 described in the first embodiment, and only the switch 22 is disposed in the gap between the film container 31 and the outer shell 30.
  • Film container 34 denotes a configuration including only the switch 22 described in the first embodiment, and only the switch 22 is disposed in the gap between the film container 31 and the outer shell 30.
  • the film container 31 expands due to an increase in the internal pressure as shown by a broken line 3 1 ′. This bulge raises the switch 22 as shown by the broken line 2 2 ′, and the lever 24 is pressed as shown by the broken line 24 ′. This makes it possible to detect that the pressure in the film container has reached atmospheric pressure or higher by turning the switch on or off.
  • the same effects as in the first embodiment can be obtained by the gas adsorption container of the present embodiment, but in the present embodiment, the container can be made of a lighter material than in the first embodiment. Is added. Further, since the pressure sensor of the present embodiment is not installed inside the film container, it is not necessary to adopt an explosion-proof structure. This also has the effect of simplifying the configuration of the sensor and reducing the manufacturing cost of the container.
  • the present invention has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and can be modified without departing from the gist of the present invention.
  • a structure as shown in Fig. 6 as an explosion-proof structure pressure sensor. That is, in the sensor shown in FIG. 6, a part 41 that expands and contracts due to a change in the internal and external pressure is provided in a part of the partition wall 40.
  • the other partition portions are made of a material that does not easily change in position due to changes in internal and external pressures.
  • the portion 41 that expands and contracts in response to pressure fluctuations outside the partition walls 40 and 41 expands and contracts, and the pressure inside the partition wall changes accordingly.
  • the valve 23 expands and contracts according to the pressure fluctuation inside the partition, and the switch 22 can be turned on or off.
  • the expanding and contracting part 41 of the partition presses the lever 24 of the switch 22 according to the expansion and contraction, and the switch 22 can be turned on and off according to the pressure fluctuation outside the partition. It becomes.
  • a resonance circuit as shown in FIG. 8 can be used as the pressure sensor. That is, the coil L 1 and the capacitor C 1 are added to the outer shell 30 of the second embodiment.
  • the resonance circuit 51 consisting of the coil L 2 and the capacitor C 2 is attached to the film container 31.
  • an external voltage is applied to the resonance circuit 51 so as to excite it at the resonance frequency.
  • the mutual induction coefficient between L1 and L2 also changes from Ml to M2,
  • the resonance frequency of the resonance circuit 51 changes.
  • the resonance frequency of the resonance circuit 51 changes, a deviation occurs from the excitation frequency excited before that, and the resonance circuit 51 stops resonating.
  • the resonance circuit 52 of FIG. 8 may be replaced with a dielectric 55.
  • the dielectric 55 rises as the film container 31 rises, and the dielectric 55 is arranged so as to be inserted inside the capacitor C1 of the resonance circuit 51.
  • the volume of the dielectric inserted into the capacitor C1 changes, and the capacitance value of the capacitor C1 changes. This means a change in the resonance frequency of the resonance circuit 51, and it is necessary to monitor the resonance phenomenon of the resonance circuit 51 and detect the arrival of the pressure in the container to the atmospheric pressure as in the case of FIG. Can be done.
  • the present invention relates to a gas adsorption container that can be used for gas recovery and the like.
  • the present invention relates to a gas adsorption container for recovering a low-pressure flammable gas which can be suitably used for recovering a flammable gas having an atmospheric pressure or higher remaining in a gas meter or the like of a city gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

ガス吸着容器 技術分野
本発明は、ガス回収等に利用できるガス吸着容器に関する。 特に都市ガス等の ガスメータ等に残留する大気圧力以上の可燃性ガスを回収する場合に好適に利用 できる低圧力可燃性ガス回収用のガ明ス吸着容器に関する。 背景技術 書
調理、 給湯あるいは冷暖房といった用途に利用される都市ガスは、 地中の基幹 となるガス輸送導管、 引き込み用のガス輸送導管、 さらにガスメータを介して各 顧客に供給されている。 ガスメータは、 法律により一定期間毎に交換することが 義務付けられている。
ガスメータを交換する際には、 ガスメータの少なく とも上流側をバルブで封止 し、 ガスメータ内部に残留するガス圧力を大気圧以下に減圧する必要がある。 こ の際、 残留ガスを大気に放出する方策が考え得るが自然環境への影響や安全性を 考慮すると好ましくない。 また、 可燃性ガスであることを考慮して、 末端ガス機 器による燃焼消費または残留部に別途取り付けた燃焼機器による燃焼消費によつ て残留ガスを取り除く方策が考えられる。 しかし、 燃焼消費による方法では有限 な資源であるガスを無駄に消費することとなり、 また、 二酸化炭素増加による自 然環境への影響からも好ましくない。 そこで本発明者らは、 これらガスメータ等 に残留するガスの回収に好適な発明を為し、 特願 2 0 0 2— 2 9 9 5 4 6号に添 付した明細書にその内容を開示している。
なお、 特許文献 1には、 その内部に吸着材を充填した圧力容器の一例が開示さ れている。 内部に天然ガス等の可燃性ガスを貯蔵する場合には、 当該特許文献に 記載されているような圧力容器を用いるのが通例である。
特許文献 1 特開 2 0 0 3— 3 5 3 9 9号公報 発明の開示
前記したガス回収に関する発明で用いる回収容器は、 可燃性ガスであることを 考慮して、 金属性容器が一般的に採用されている。 金属製容器であれば容器内部 が高圧および減圧の何れの圧力にも耐え、 安全性への不安がほとんどないという メ リッ トがある。 しかし、 回収容器が重く、 ガス回収作業者の負担が大きくなる ことや、 容器製造コス トが大きくなる問題がある。 また、 回収後のガスを輸送す る際にも容器が重いため輸送コス 卜が大きくなるという問題もある。
本発明の目的は、 軽量で取り扱いの簡便なガス回収用のガス吸着容器を提供す ることにある。 第二に、 軽量かつ簡便なガス回収用のガス吸着容器であっても、 可燃性ガスを安全に取り扱える方策を提供することにある。
本発明は以下のような構成を有する。 すなわち、 本発明のガス吸着容器は、 そ の内部を大気圧未満に減圧すればその外形形状の全体が保持できない程度に収縮 するプラスチック容器と、 前記プラスチック容器の内部に充填した活性炭と、 前 記プラスチック容器に接続したガス入出力バルブと、 を有する。
本発明では容器本体としてプラスチック容器を用いるので軽量なガス吸着容器 が構成できる。 しかも、 プラスチック容器として、 その内部を大気圧未満に減圧 すればその外形形状の全体が保持できなレ、程度に収縮するものを採 するので、 相対的にその肉厚が薄く極めて軽いガス吸着容器を構成できる。 ガス吸着容器の 重量を支配する主な構造は容器構造体と活性炭であるが、 従来金属容器を採用し ていた場合と比較すると本願発明の容器構造体は肉厚の薄いプラスチック容器で あり極めて顕著な重量低減を実現できる。
なお、 実際にガス吸着容器を使用する場合には容器内部を減圧にする必要があ るが、 本願発明ではプラスチック容器が減圧で収縮するものであっても内部に活 性炭を充填しているので使用に際し問題はない。 仮にプラスチック容器内に活性 炭を充填せず、 プラスチック容器を単独で用いると、 内部を減圧にすることによ りプラスチック容器が収縮し、 あるいは収縮幅が大きく、 プラスチック容器が破 壊される。 もしくはプラスチック容器の収縮膨張の繰り返しにより疲労破壊を生 じる。 しかし、 本願発明では内部に活性炭を充填するのでプラスチック容器の極 端な収縮が発生せず、 従って収縮後の膨張も発生せず、 プラスチック容器が破壊 されたり疲労破壊を起こしたりすることがない。 つまり本願発明では、 活性炭を 減圧状態下でのガス吸着容器の形状保持用構造体として使用しているのである。 但し、 活性炭が充填されていない一部の部分や活性炭の充填が十分ではない部分 が仮に存在すれば若干ではあるがプラスチック容器の収縮が認められるのは勿論 である。
ここで、 「その內部を大気圧未満に減圧すれば」 とは、 プラスチック容器の內 部に何も充填しないで大気圧未満に減圧すればという意味である。 前記の通りそ の內部に活性炭等の形状保持用部材を充填すれば減圧にしてもプラスチック容器 に収縮が防止できることは勿論である。
「その外形形状」 とは、 プラスチック容器の外形形状であり、 「外形形状の全 体」 とは、 減圧にした場合のプラスチック容器の外形が全体として元の形状を保 持していないという趣旨である。 つまり、 减圧にした場合の外形形状が全体とし て元の形状を保持していないものの一部には元の形状を維持している部分が存在 する場合を含む。 プラスチック容器の形状によっては、 たとえば角の部分等機械 的強度が高い部分を有するため、 滅圧にしても元の形状を保持する部分がある。 このような部分を含むプラスチック容器もここでいう 「プラスチック容器」 であ る。
「外形形状が保持できない程度に収縮」 とは、 プラスチック容器の内容積が減 圧によって著しく減少するような場合をいう。 厳密には、 どのような容器であつ ても (たとえ金属製の容器であっても) その内部を減圧にすることによって大気 からの外部圧力を受けて収縮が発生しているはずである。 しかし、 このような厳 密な意味での収縮は元形状を大きく損なうわけではなく'、 内部減圧によっても内 容積を大きく減ずることはない。 つまり厳密な意味の収縮があつたとしてもその ような収縮による容器内容積の減少は無視できる。 ここでいう 「収縮」 には、 こ のような厳密な意味の収縮を含まない。
「プラスチック容器」 とは、 プラスチックを主構成要素とする容器である。 「 プラスチック」 は、 高重合体を必須の構成成分とし、 その加工段階で流れによつ て形を与える材料である。 「プラスチック容器」 の例としては、 たとえば市販の ポリエチレン製タンク (いわゆるポリタンク) を挙げることができる。 市販のプ ラスチック容器を利用することにより本発明のガス吸着容器を低コス卜で製造で さる。
本発明では容器内部に活性炭を充填することによりガスの吸蔵量を大幅に向上 することが可能となっている。 活性炭は、 メタン等の可燃性ガスの吸着に優れた ものが好ましいが、 そのガス吸着性能によって特に限定されることはない。 活性 炭の形状は、 粉末、 形成体等任意である。
「ガス入出力バルブ」 はガスの入出ポ一卜として機能し、 ガスの封止が実現で きるものであれば特に限定されることはない。 バルブはガス入力およびガス出力 の両方を兼ねる単一のバルブであっても良いし、 ガス入力およびガス出力の各々 の機能を分担する 2つのバルブであってもよい。
上記した本願発明のガス吸着容器において、 前記プラスチック容器には、 前記 減圧によるその外形形状の変化が他の領域に比較して小さい一部領域を有し、 前 記一部領域の内壁と前記活性炭との間に空隙を設け、 前記空隙に、 前記プラスチ ック容器の内部圧力が大気圧に達したことを検知する圧力検知手段を設けること ができる。 このような圧力検知手段を設けることによって、 容器内部の圧力が大 気圧以上になるタイミングを速やかに検知し、 容器へのガスの過剰な注入を防止 できる。 本願発明のガス吸着容器は軽量に構成しているので過剰なガス注入に対 して十分な耐性を有さない。 しかし、 圧力検知手段を設けることによって過剰注 入を防止し、 可燃性ガス等危険ガスに対しても安全に取り扱うことが可能になる ここで、 「減圧によるその外形形状の変化が他の領域に比較して小さい一部領 域」 とは、 前記した 「外形形状」 に関する説明で述べた 「収縮したとしても元の 形状を保持する一部領域」 である。 「空隙」 はプラスチック容器内部への活性炭 の充填を一部行わないことにより形成することができる。
上記した圧力検知手段として、 前記プラスチック容器の内部圧力の変化に応じ て膨張または収縮を行い、 その内部への前記プラスチック容器内のガスの侵入を 阻害する隔壁と、 前記隔壁の内部に配置され、 前記隔壁の内部圧力の変化によつ てはその位置を変化しない一対の対向した構造壁と、 前記構造壁の一方に設置さ れ、 押圧部への押圧によって接点がオンまたはオフするスィッチと、 前記押圧部 と前記構造壁の他方との間に配置され、 前記隔壁の内部圧力の変化に応じて膨張 または収縮を行うバルーンと、 を有し、 前記バルーンの膨張または縮小によって 前記スィツチのオンまたはオフを行うものを例示できる。
また、 前記プラスチック容器の内部圧力の変化に応じて膨張または収縮を行う 可動部および前記プラスチック容器の内部圧力の変化によってはその位置を変化 しない構造部を有し、 前記構造部の少なくとも一部は一対の対向した対向部を有 し、 その内部への吸着ガスの侵入を阻害する隔壁と、 前記対向部の一方に設置さ れ、 押圧部への押圧によって接点がオンまたはオフするスィッチと、 前記スイツ チの押圧部と、 前記対向部の他方との間に配置され、 前記隔壁の内部圧力の変化 に応じて膨張または収縮を行うバルーンと、 を有し、 前記バルーンの膨張または 縮小によって前記スィツチのオンまたはオフを行うものであってもよレ、。
さらに、 前記プラスチック容器の内部圧力の変化に応じて膨張または収縮を行 う可動部および前記プラスチック容器の内部圧力の変化によってはその位置を変 化しない構造部を有し、 その内部への吸着ガスの侵入を阻害する隔壁と、 前記構 造部に設置され、 押圧部への押圧によって接点がオンまたはオフするスィッチと 、 を有し、 前記可動部の動きによって前記スィ ッチのオンまたはオフを行うもの も例示することができる。
これら接点を有するスィツチを用いる圧力検知手段は、 何れも隔壁によってプ ラスチック容器内部に吸着されるガスから隔離される防爆構造を持つ。 よって吸 着ガスが可燃性であっても安全に取り扱うことが可能となる。
また、 圧力検知手段として、 前記プラスチック容器の内部圧力の変化に応じて 膨張または収縮を行う可動部に配置された第 1誘導素子を含む第 1共'振回路と、 前記プラスチック容器の内部圧力の変化によってはその位置を変化しない固定部 に配置され、 前記第 1誘導素子に誘導結合される第 2誘導素子を含む第 2共振回 路と、 前記第 1共振回路または前記第 2共振回路の共振周波数の変化を検出する 検出手段と、 を含むものを例示できる。 あるいは、 前記プラスチック容器の内部 圧力の変化に応じて膨張または収縮を行う可動部に配置された誘電体と、 前記プ ラスチック容器の内部圧力の変化によってはその位置を変化しない固定部に配置 され、 前記誘電体をその間に配置する対向した平板電極からなる容量素子を含む 共振回路と、 前記共振回路の共振周波数の変化を検出する検出手段と、 を含むも のを例示できる。
これら誘導素子または容量素子を用いる検知手段では、 圧力変化による可動部 の位置移動を誘導素子の相互誘導係数の変化あるいは容量素子の容量の変化とし て検知する。 相互誘導係数あるいは容量値の変化は共振回路の共振周波数の変化 として検出可能であるから、 本発明ではこの共振周波数の変化を圧力変化の信号 として利用する。 このような二つの共振回路による検出方法では電気回路に機械 的な接点を有さないので仮に電気回路が可燃性ガスに暴露されたとしても爆発の 危険性は少なく安全にガス吸着容器を取り扱うことが可能になる。
また、 本発明の他のガス吸着容器は、 容器外殻と、 前記容器外殻の内部に配置 され、 密閉可能な開口および蓋を有するフィルム容器と、 前記フィルム容器の内 部に配置され、 前記容器外殻の内部を充填する活性炭と、 前記蓋に接続されたガ ス入出力バルブと、 を有するものである。 このようなガス吸着容器によっても前 記のガス吸着容器と同様に軽量なガス吸着容器が構成できる。 すなわち、 容器外 殻としてはたとえばダンボール等の紙材料を適用することができ、 実質的なガス の保存容器としては極めて軽量なフィルム容器を採用できる。 ここで、 「フィル ム容器」 とは、 フィルムを主構成要素とする容器であり、 「フィルム」 は膜状の 材料のものをいう。 なお、 膜の厚さが 0 . 2 5 m m未満を 「フィルム」 、 0 . 2 5 m m以上を 「シート」 と分類することもあるが、 ここでは 「シート」 も 「フィ ルム」 の一部に含むこととする。 外圧力によって容易にその形状を変化し得る膜 状物をここでは 「フィルム」 と定義する。 フィルム容器の具体的な材料としては 、 プラスチックと してはポリエチレン、 ポリエチレンテレフタレート等、 金属と してはアルミやティンフリ一鋼板、 さらに内部を樹脂等でコーティングしてガス の透過を防止した布や紙で構成される多層材料を例示できる。 なお、 活性炭、 ガ ス入出力バルブ等の文言に関する解釈は前記と同様である。
前記フィルム容器を適用するガス吸着容器にも、 前記同様圧力検知手段を配置 することができる。 但し、 フィルム容器を適用するガス吸着容器では、 内部圧力 の変化によってフィルム容器の壁材 (フィルム) が容易に可動するので、 これを 圧力検出に利用することが可能である。 すなわち、 前記容器外殻の内部には、 前 記フィルム容器と前記容器外殻の内壁とが対向する空隙を有し、 前記空隙に、 押 圧部への押圧によって接点がオンまたはオフするスィツチを配置することができ る。 あるいは、 前記容器外殻の内部には、 前記フィルム容器と前記容器外殻の内 壁とが対向する空隙を有し、 前記空隙の前記フィルム容器に配置された第 1誘導 素子を含む第 1共振回路と、 前記空隙の前記外殻の内壁に配置され、 前記第 1誘 導素子に誘導結合される第 2誘導素子を含む第 2共振回路と、 前記第 1共振回路 または前記第 2共振回路の共振周波数の変化を検出する検出手段と、 を含むこと ができる。 あるいは、 前記容器外殻の内部には、 前記フィルム容器と前記容器外 殻の内壁とが対向する空隙を有し、 前記空隙の前記フィルム容器に配置された誘 電体と、 前記空隙の前記外殻の内壁に配置され、 前記誘電体をその間に配置する 対向した平板電極からなる容量素子を含む共振回路と、 前記共振回路の共振周波 数の変化を検出する検出手段と、 を含むことができる。
これら圧力検出手段では、 位置移動の検出素子 (スィッチまたは共振回路) は 吸着ガスが吸蔵されるフィルム容器内部でなく、 外部に配置されるので、 吸蔵ガ スによって暴露されることがない。 このため圧力検出手段を防爆構造にする必要 は無い。 図面の簡単な説明
第 1図は、 本発明の一実施の形態であるガス吸着容器の一例を示した断面図で ある。
第 2図は、 第 1図の A部を拡大して示した一部断面図である。
第 3図は、 圧力センサ 4の一例を示した断面図である。
第 4図は、 本発明の他の実施の形態であるガス吸着容器の一例を示した断面図 である。
第 5図は、 圧力センサ 3 4の部分 Bを拡大して示した断面図を示す。
第 6図は、 圧力センサの他の例を示した断面図である。
第 7図は、 圧力センサのさらに他の例を示した断面図である。
第 8図は、 圧力センサのさらに他の例を示した断面図である。
第 9図は、 圧力センサのさらに他の例を示した断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。 ただし、 本発明 は多くの異なる態様で実施することが可能であり、 本実施の形態の記載内容に限 定して解釈すべきではない。 なお、 全体を通して同じ要素には同じ番号を付する ものとする。
(実施の形態 1 )
第 1図は、 本発明の一実施の形態であるガス吸着容器の一例を示した断面図で ある。 本実施の形態 1のガス吸着容器は、 プラスチック容器 1、 活性炭 2、 ガス 入出力用のバルブ 3、 圧力センサ 4を含む。 バルブ 3は配管 6を介して蓋 5に接 続され、 圧力センサ 4は蓋 8を通る配線 7で警報機 9に接続される。
プラスチック容器 1は、 たとえば灯油や水の保管用に用いられるポリタンク等 市販の汎用プラスチック容器である。 上部に持ち手部 1 0を有するものであれば 搬送が容易になり好ましい。 市販のプラスチック容器は内部を減圧にして使用す ることを想定していないため、 本来は内部を減圧状態にして使用されることはな レ、。 しかし、 プラスチック容器 1と蓋 5 , 8との気密性を十分に保つ方策を施せ ば内部を減圧にして使用する用途に実用的に用いることが可能になる。 なお、 本 発明では採用しない使用法であるが、 プラスチック容器 1の内部に構造材料をな んら入れない状態で内部を減圧にするとプラスチック容器 1は大気圧によって容 易に圧縮される。 本来そのような使用を想定しないで設計されているので当然の 帰結であるが、 本発明では後に説明するように内部に活性炭 2を充填するので、 活性炭が構造材料として機能し、 内部を減圧状態にしてもプラスチック容器 1が 著しく圧縮することはない。
第 2図は、 第 1図の A部を拡大して示した一部断面図である。 プラスチック容 器 1の開口部 1 1の外側面と蓋 5の内側面には各々ねじ山が設けられ、 蓋 5を回 し込んで開口部 1 1に閉じることが出来る。 このとき、 蓋 5と開口部 1 1との間 にガスケッ ト 1 2を挟みこみ、 ガスケッ ト 1 2の表面に真空グリスを塗布すれば 十分な気密性が保持できる。 なお、 バルブ 3に接続される配管 6は、 端部 1 3の 外周面にねじ山が設けられ、 蓋 5に形成されたタップ部 1 4にねじ込んで気密性 が保持される。 端部 1 3のねじ山とタップ部 1 4との間にテフロン (R ) テープ を巻き込めば、 より気密性を向上させることができる。 なお、 蓋 8についても同 様な気密性を保持する方策を施すことができる。 蓋 8と配線 7との隙間にはァク リル樹脂等を充填して封止することができる。
活性炭 2は、 プラスチック容器 1の内部に充填される。 活性炭 2が内部に充填 されているため、 ガスの吸蔵効率を向上することができる。 なお、 本実施の形態 のガス吸着容器には都市ガスを吸蔵することを目的とするため、 メタン吸蔵効率 の高い活性炭を用いることが好ましい。 活性炭の形状は、 タブレッ ト状、 円柱状 等所定の形状を有する形成体あるいは粉末状等任意である。 一般に活性炭の嵩密 度は粉末状活性より形成活性炭の方が優れているので、 容器内部に充填する活性 炭は形成活性炭であることが好ましいが、 容器内部に活性炭が充填されない空間 が発生し、 吸蔵効率が低下する恐れがある。 よって所定形状の形成活性炭を先に 充填し、 隙間を粉末活性炭で埋めるようにして容器内部への活性炭の充填率を高 めるようにしても良い。 前記したとおり活性炭 2はプラスチック容器 1の内部を 減圧にした時の容器外形を保持するための構造材として機能させる。 また活性炭 の充填率が高いほどガスの吸蔵効率も高くなる。 このため活性炭 2の充填率は高 いほど好ましいが活性炭の細孔構造を破壊する程度にまで圧縮した充填は好まし くない。
バルブ 3には、 一般的なバルブを適用することが可能である。 但し、 プラスチ ック容器 1の内部を真空状態に近い減圧状態まで減圧することを考慮すれば真空 バルブであることが好ましい。 市販のダイアフラムバルブやニードルバルブを適 用することができる。
圧力センサ 4は、 プラスチック容器 1の内部圧力が大気圧近傍に達したことを 検知するセンサである。 第 3図は圧力センサ 4の一例を示した断面図である。 圧 力センサ 4は、 隔壁 2 0と、 隔壁内に設けられた構造体 2 1と、 構造体 2 1内の スィッチ 2 2およびバルーン 2 3とを有する。 スィッチ 2 2には、 押圧用のレバ 一 2 4およびボタン 2 5を含む。 押圧用のレバー 2 4は、 レバーを押圧すること によってボタン 2 5を押下し、 スィッチ 2 2の接点をオンまたはオフする。 隔壁 2 0は、 たとえば合成ゴム等の弹性膜で構成され、 外部圧力の変化に応じ て容易に伸縮する材料で構成する。 隔壁 2 0の內部の圧力は外部圧力の変化に応 じて変化する。 たとえば外部圧力が下がると隔壁 2 0が膨張し、 隔壁 2 0の内部 圧力も低下する。 逆に外部圧力が上昇すると隔壁 2 0が縮小し內部圧力も上昇す る。 また、 隔壁 2 0はその外部と内部との間の気体の流通を阻害するものであり 、 内外部に存在するガスのリーク速度が低い材料であることが好ましい。
構造体 2 1は、 その内部が外部に対して開放されているものであり、 よって隔 壁 2 0の内部圧力および外部圧力によってはその形状が変化しない。 構造体 2 1 の形状は特に制限されないが、 少なくともスィツチ 2 2とバルーン 2 3とを間に 挟む一対の対向した壁面を有する。 一方の壁面にはスィツチ 2 2が配置される。 この場合スィツチ 2 2の押圧部であるレバー 2 4がバルーン 2 3に対向するよう 配置される。 バルーン 2 3は隔壁 2 0と同様にその外部圧力の変化に応じて容易 に伸縮する材料で構成される。
このような圧力センサ 4の動作について以下に説明する。 圧力センサ 4の外部 圧力が低下すると破線 2 0 'で示したように隔壁 2 0が膨張し、 隔壁 2 0の内部 圧力も低下する。 隔壁内部の圧力低下に伴ってバル一ン 2 3が破線 2 3 'で示し たように膨張し、 構造体 2 1の対向する壁面に押される状態以上にバルーン 2 3 が膨張すると、 バルーン 2 3はスィツチ 2 2のレバー 2 4を押圧することになる 。 これによりスィツチ 2 2がオン状態からオフ状態にあるいはオフ状態からオン 状態になる。 このオンまたはオフ状態に変更される状態に対応する外部圧力が大 気圧になるようバルーン 2 3の内部圧力あるいはバルーン 2 3の張力あるいは構 造体 2 1の対向する壁面間距離を調整すれば、 大気圧に達した状態を検出するこ とが可能になる。 スィツチ 2 2のオン状態またはオフ状態を警報機 9でモニタし 、 大気圧以上である状態であるか減圧状態であるかを作業者に知らせることがで さる。
なお、 隔壁 2 0の内外でガスの流通は阻害されるから、 隔壁 2 0の外部が可燃 性ガスで充満されても隔壁 2 0の内部には可燃性ガスは侵入しない。 つまり隔壁 2 0は防爆構造を提供していることになる。 スィツチ 2 2は機械的接点を有する ため、 接点のオンオフの際に微少な火花が発生する可能性があるが、 本実施の形 態の圧力センサでは防爆構造を採るので可燃性ガスを爆発させる危険はな.い。 本実施の形態のガス吸着容器は上記に説明の通りである。 ここで上記したガス 吸着容器の使用方法の一例を説明する。 まず、 容器内部に存在するガス (空気や 前回使用の後の残留可燃性ガス) を排気する。 排気はバルブ 3の開放側配管に真 空ポンプ等の排気手段を接続しバルブ 3を開くことによって行う。 十分な時間排 気を行った後、 真空ポンプの性能にも依存するが容器内部の圧力はほぼ 0気圧 ( 少なく とも 0 . 1気圧以下) に達する。 この状態でバルブ 3を閉じ、 真空ポンプ の接続を解除する。 この状態でガス吸着容器はガス回収等の作業に使える状態と なる。 ガス回収作業は、 交換対象のガスメータが接続されている配管等回収する ガスが充満された部分にバルブ 3の開放側配管を接続配管で接続し、 バルブ 3を 開くことによって行う。 ガス吸着容器の内部は予め減圧状態にあるので回収対象 のガスは自然にガス吸着容器内に流れ込む。 十分な時間を経過した後、 バルブ 3 を閉じ、 接続配管を解除すれば回収作業が終了する。 このようにして簡便な操作 によってガスの回収が行えるが、 何度か回収作業を繰り返せば、 回収作業の途中 で容器内圧力が大気圧を超える場合が発生する。 .しかし、 容器内部圧力が大気圧 を超えた場合速やかに警報機 9がそれを作業者に知らせることが出来るので作業 者は回収作業を一旦中断し、 別の容器に置き換えて回収作業を継続できる。
なお、 この回収作業の際、 ガス吸着容器は非常に軽く構成されているので作業 者の作業負担を大きく軽減することができる。 本実施の形態のガス吸着容器の重 量は実質的に活性炭の重量のみとみなせる程度に軽減される。 たとえば回収でき るガス容量を 1 0 0リ ツ トルとして設計した場合で考えると、 容量 1 0リ ツ トル の円筒形ステンレス容器 (高さ 3 0 0 ミ リメートル X内径 2 0 6 ミ リメー トル、 肉厚 4ミリメー トル) 内に市販の破砕状活性炭 (比表面積 1 0 0 0平方メートル /グラム ·細孔容量 0 . 4 ミ リ リ ッ トル/グラム) を 0 . 5キログラム/リ ッ トル の充填率で充填することで所望の回収ガス容量となる。 この場合の総重量は 1 5 キログラムになる。 一方、 本実施の形態のガス吸着容器として 2 0リツ トルのポ リエチレンタンクを用いた場合、 上記同様の活性炭充填率で活性炭を充填すると 、 充填される活性炭の重量は 1 0キログラムであり総重量は 1 0 . 8キログラム となった。 ここで容器の実容量が 2 0 リツ トルあるので回収ガスの吸着容量はお よそ 2 0 0 リ ツ トルとなる。 つまり本実施の形態と前述のステンレス製容器で構 成した場合とを比較すれば、 回収性能が 2倍に向上しているにも関わらず重量は 約 3 0 %軽減される。 なお、 本実施の形態のガス吸着容器では、 内部に活性炭が 充填されているので、 プラスチック容器をそのまま用いるより回収ガスの容量を 多く出来ることは勿論である。 また、 内部に活性炭が充填されているため、 ブラ スチック容器を減圧下でも使用できる。 さらに、 使用を繰り返すことにより減圧 および大気圧間で繰り返しの圧力変動を受けることになるがこれに伴ってプラス チック容器が繰り返しの収縮伸張を受けることになる。 しかし内部に活性炭が充 填されているのでこのような繰り返しの収縮伸張幅が小さくなり、 プラスチック 容器の疲労破壊を抑制しその使用寿命を長くできる効果もある。
また、 本実施の形態のガス吸着容器では圧力センサを備えるのでガスが過剰に 注入されることもなく、 また圧力センサは防爆構造を採る。 このためメタンガス のような可燃性ガスであっても安全に回収作業を行うことができる。
(実施の形態 2 )
第 4図は、 本発明の他の実施の形態であるガス吸着容器の一例を示した断面図 である。 本実施の形態 2のガス吸着容器は、 外殻 3 0、 フィルム容器 3 1、 実施 の形態 1同様の活性炭 2、 実施の形態 1同様のバルブ 3、 圧力センサ 3 4を含む 。 フィルム容器 3 1には実施の形態 1同様の蓋 5が設けられる。
外殻 3 0は、 容器の外形状を決める機能を持つが、 実質的にはフィルム容器 3 1の保護容器としても機能する。 外殻 3 0はたとえば段ボール箱等の軽量な箱が 例示できる。
フィルム容器 3 1は、 ポリエチレン等のプラスチックフィルムを袋状に構成し 開口部に蓋 5を設けて蓋 5を閉じることによつて気密性を保持できるようにした 袋である。 フィルム容器 3 1の重量が極めて軽く構成されることは自明であろう 。 このようなフィルム容器 3 1を外殻 3 0の内部に配置し、 実施の形態 1同様の 活性炭 2をフィルム容器 3 1内に充填する。 このとき、 活性炭 2が充填された状 態の形状は外殻 3 0が決めることになる。
なお、 本実施の形態のガス吸着容器の使用方法は実施の形態 1の場合と同様で ある。
第 5図に圧力センサ 3 4の部分 Bを拡大して示した断面図を示す。 圧力センサ 3 4は、 実施の形態 1で説明したスィッチ 2 2のみで構成され、 スィッチ 2 2を フィルム容器 3 1と外殻 3 0の隙間に配置しただけの構成である。 フィルム容器
3 1内に吸着ガスが充満し、 やがて大気圧以上のガスが注入されてくると、 フィ ルム容器 3 1は破線 3 1 'で示すように内部圧力の上昇を受けて膨らんでくる。 この膨らみがスィ ッチ 2 2を破線 2 2 'で示すように持ち上げ、 レバー 2 4が破 線 2 4 'のように押圧されることになる。 これによりスィツチのオンまたはオフ でフィルム容器内の圧力が大気圧以上に達したことを検知することが可能となる
本実施の形態のガス吸着容器によっても、 実施の形態 1と同様の効果が得られ ることは勿論であるが、 本実施の形態ではさらに実施の形態 1よりも軽量な材料 で容器を構成できることを付記する。 さらに、 本実施の形態の圧力センサはフィ ルム容器に内部に設置するわけではないので、 防爆構造を採る必要が無い。 よつ てセンサの構成を簡略化して容器の製造コス トを低減できる効果もある。
以上本発明を実施の形態に基づき具体的に説明したが、 本発明は前記実施の形 態に限定されるものではなく、 その要旨を逸脱しない範囲で変更することが可能 である。
たとえば、 防爆構造の圧力センサとして第 6図に示すような構造を採用するこ とも可能である。 つまり、 第 6図に示すセンサでは、 隔壁 4 0の一部に内外圧力 の変化によって伸縮する部分 4 1を設ける。 そして、 その他の隔壁の部分は内外 圧力の変化では容易に位置変動を生じない材料で構成する。 このようなセンサで は、 隔壁 4 0, 4 1の外部の圧力変動に応じて伸縮する部分 4 1が伸縮し、 隔壁 内部の圧力がそれに応じて変化する。 そして隔壁内部の圧力変動に応じてバル一 ン 2 3が伸縮し、 スィツチ 2 2をオンまたはオフさせることが可能である。 また、 第 7図に示すセンサの構造を採用することも可能である。 第 7図のセン サでは、 隔壁の伸縮する部分 4 1がその伸縮に応じてスィッチ 2 2のレバ一 2 4 を押圧し、 隔壁外部の圧力変動に応じてスィツチ 2 2をオンオフすることが可能 となる。
また、 圧力センサとして、 第 8図に示すような共振回路を利用することも可能 である。 すなわち、 実施の形態 2の外殻 3 0にコイル L 1およびコンデンサ C 1 からなる共振回路 5 1を取り付け、 フィルム容器 3 1にコイル L 2およびコンデ ンサ C 2からなる共振回路 5 2を取り付ける。 ここで共振回路 5 1はその共振周 波数で励振するよう外部電圧を印加しておく。 この状態で共振回路 5 2の少なく ともコイル L 2が容器内部の圧力増加に伴って上昇してくると、 L 1と L 2との 間も相互誘導係数が M lから M 2に変化し、 共振回路 5 1の共振周波数に変化が 発生する。 共振回路 5 1の共振周波数が変化すると、 それ以前に励振していた励 振周波数との間にズレが生じ、 共振回路 5 1は共振しなくなる。 この共振現象を モニタすれば容器内圧力が大気圧に達したことを検知することが可能となる。 また、 第 9図に示すように第 8図の共振回路 5 2を誘電体 5 5に置き換えても 良レ、。 但し、 誘電体 5 5はフィルム容器 3 1の上昇に伴って上昇し、 誘電体 5 5 は共振回路 5 1のコンデンサ C 1の内部に挿入されるように配置する。 フィルム 容器 3 1の上昇 (つまり圧力の上昇) によってコンデンサ C 1内に挿入される誘 電体の体積が変化し、 コンデンサ C 1の容量値が変化する。 これはすなわち共振 回路 5 1の共振周波数の変化を意味し、 第 8図の場合と同様に共振回路 5 1の共 振現象をモニタすることによって容器内圧力の大気圧への到達を検知することが できる。
(発明の効果)
本願で開示される発明のうち、 代表的なものによって得られる効果は、 以下の 通りである。 すなわち、 本発明により、 軽量で取り扱いの簡便なガス回収用のガ ス吸着容器を提供できる。 また、 軽量かつ簡便なガス回収用のガス吸着容器であ つても、 可燃性ガスを安全に取り扱える方策を提供できる。 産業上の利用分野
本発明は、ガス回収等に利用できるガス吸着容器に関する。 特に都市ガス等の ガスメータ等に残留する大気圧力以上の可燃性ガスを回収する場合に好適に利用 できる低圧力可燃性ガス回収用のガス吸着容器に関する。

Claims

請 求 の 範 囲 その内部を大気圧未満に減圧すればその外形形状の全体が保持できない程度 に収縮するプラスチック容器と、
前記プラスチック容器の内部に充填した活性炭と、
前記プラスチック容器に接続したガス入出力バルブと、
を有するガス吸着容器。
前記プラスチック容器には、 前記減圧によるその外形形状の変化が他の領域 に比較して小さい一部領域を有し、
前記一部領域の内壁と前記活性炭との間に空隙を設け、
前記空隙に、 前記プラスチック容器の内部圧力が大気圧に達したことを検 知する圧力検知手段を設けた請求の範囲第 1項記載のガス吸着容器。
前記圧力検知手段は、
前記プラスチック容器の内部圧力の変化に応じて膨張または収縮を行い、 その内部への前記プラスチック容器内のガスの侵入を阻害する隔壁と、 前記隔壁の内部に配置され、 前記隔壁の内部圧力の変化によってはその位 置を変化しない一対の对向した構造壁と、
前記構造壁の一方に設置され、 押圧部への押圧によって接点がオンまたは オフするスィツチと、
前記押圧部と前記構造壁の他方との間に配置され、 前記隔壁の内部圧力の 変化に応じて膨張または収縮を行うバルーンと、 を有し、
前記バルーンの膨張または縮小によって前記スィツチのオンまたはオフを 行う請求の範囲第 2項記載のガス吸着容器。
前記圧力検知手段は、
前記プラスチック容器の内部圧力の変化に応じて膨張または収縮を行う可 動部および前記プラスチック容器の内部圧力の変化によってはその位置を変 化しない構造部を有し、 前記構造部の少なく とも一部は一対の対向した対向 部を有し、 その内部への吸着ガスの侵入を阻害する隔壁と、
前記対向部の一方に設置され、 押圧部への押圧によって接点がオンまたは オフするスィツチと、
前記スィ ッチの押圧部と、 前記対向部の他方との間に配置され、 前記隔壁 の内部圧力の変化に応じて膨張または収縮を行うバルーンと、 を有し、 前記バルーンの膨張または縮小によって前記スィツチのオンまたはオフを 行う請求の範囲第 2項記載のガス吸着容器。
前記圧力検知手段は、
前記プラスチック容器の内部圧力の変化に応じて膨張または収縮を行う可 動部および前記プラスチック容器の内部圧力の変化によってはその位置を変 ィ匕しなし、構造部を有し、 その内部への吸着ガスの侵入を阻害する隔壁と、 前記構造部に設置され、 押圧部への押圧によって接点がオンまたはオフす るスィツチと、 を有し、
前記可動部の動きによって前記スィツチのオンまたはオフを行う請求の範 囲第 2項記載のガス吸着容器。
前記圧力検知手段は、
前記プラスチック容器の内部圧力の変化に応じて膨張または収縮を行う可 動部に配置された第 1誘導素子を含む第 1共振回路と、
前記プラスチック容器の内部圧力の変化によってはその位置を変化しない 固定部に配置され、 前記第 1 誘導素子に誘導結合される第 2誘導素子を含む 第 2共振回路と、
前記第 1共振回路または前記第 2共振回路の共振周波数の変化を検出する 検出手段と、
を含む請求の範囲第 2項記載のガス吸着容器。
前記圧力検知手段は、
前記プラスチック容器の内部圧力の変化に応じて膨張または収縮を行う可 動部に配置された誘電体と、
前記プラスチック容器の内部圧力の変化によってはその位置を変化しない 固定部に配置され、 前記誘電体をその間に配置する対向した平板電極からな る容量素子を含む共振回路と、
前記共振回路の共振周波数の変化を検出する検出手段と、 を含む請求の範囲第 2項記載のガス吸着容器。
容器外殻と、
前記容器外殻の内部に配置され、 密閉可能な開口および蓋を有するフィル ム容器と、
前記フィルム容器の内部に配置され、 前記容器外殻の内部を充填する活性 灰と、
前記蓋に接続されたガス入出力バルブと、
を有するガス吸着容器。
前記容器外殻の内部には、 前記フィルム容器と前記容器外殻の内壁とが対向 する空隙を有し、
前記空隙に、 押圧部への押圧によって接点がオンまたはオフするスィツチ を配置した請求の範囲第 8項記載のガス吸着容器。
. 前記容器外殻の内部には、 前記フィルム容器と前記容器外殻の内壁とが 対向する空隙を有し、
前記空隙の前記フィルム容器に配置された第 1誘導素子を含む第 1共振回 路と、
前記空隙の前記外殻の内壁に配置され、 前記第 1誘導素子に誘導結合され る第 2誘導素子を含む第 2共振回路と、
前記第 1共振回路または前記第 2共振回路の共振周波数の変化を検出する 検出手段と、
を含む請求の範囲第 8項記載のガス吸着容器。
. 前記容器外殻の内部には、 前記フィルム容器と前記容器外殻の内壁とが 対向する空隙を有し、
前記空隙の前記フィルム容器に配置された誘電体と、
前記空隙の前記外殻の内壁に配置され、 前記誘電体をその間に配置する対 向した平板電極からなる容量素子を含む共振回路と、
前記共振回路の共振周波数の変化を検出する検出手段と、
を含む請求の範囲第 8項記載のガス吸着容器。
PCT/JP2004/008303 2004-06-08 2004-06-08 ガス吸着容器 WO2005121634A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/008303 WO2005121634A1 (ja) 2004-06-08 2004-06-08 ガス吸着容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/008303 WO2005121634A1 (ja) 2004-06-08 2004-06-08 ガス吸着容器

Publications (1)

Publication Number Publication Date
WO2005121634A1 true WO2005121634A1 (ja) 2005-12-22

Family

ID=35503149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008303 WO2005121634A1 (ja) 2004-06-08 2004-06-08 ガス吸着容器

Country Status (1)

Country Link
WO (1) WO2005121634A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393256B2 (en) 2011-09-16 2016-07-19 Gilead Pharmasset Llc Methods for treating HCV
JP6335346B1 (ja) * 2017-02-07 2018-05-30 東京瓦斯株式会社 ガス回収容器
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139000U (ja) * 1986-02-26 1987-09-02
JP2000146372A (ja) * 1998-11-17 2000-05-26 Sanyo Electric Co Ltd 冷媒回収装置
JP2000292032A (ja) * 1999-04-01 2000-10-20 Matsushita Electric Ind Co Ltd 空気調和装置の施工に用いる置換用気体回収容器
JP2002031297A (ja) * 2000-05-09 2002-01-31 Kunio Komaba ガス容器
JP2002349794A (ja) * 2001-05-17 2002-12-04 Zuishun So 液体エネルギ用ボンベの構造
JP2003074797A (ja) * 2001-08-30 2003-03-12 Kubota Corp テント式ガス貯留装置
JP2004132662A (ja) * 2002-10-11 2004-04-30 Tokyo Gas Co Ltd ガスの回収方法およびガスの回収システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139000U (ja) * 1986-02-26 1987-09-02
JP2000146372A (ja) * 1998-11-17 2000-05-26 Sanyo Electric Co Ltd 冷媒回収装置
JP2000292032A (ja) * 1999-04-01 2000-10-20 Matsushita Electric Ind Co Ltd 空気調和装置の施工に用いる置換用気体回収容器
JP2002031297A (ja) * 2000-05-09 2002-01-31 Kunio Komaba ガス容器
JP2002349794A (ja) * 2001-05-17 2002-12-04 Zuishun So 液体エネルギ用ボンベの構造
JP2003074797A (ja) * 2001-08-30 2003-03-12 Kubota Corp テント式ガス貯留装置
JP2004132662A (ja) * 2002-10-11 2004-04-30 Tokyo Gas Co Ltd ガスの回収方法およびガスの回収システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393256B2 (en) 2011-09-16 2016-07-19 Gilead Pharmasset Llc Methods for treating HCV
US10456414B2 (en) 2011-09-16 2019-10-29 Gilead Pharmasset Llc Methods for treating HCV
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
JP6335346B1 (ja) * 2017-02-07 2018-05-30 東京瓦斯株式会社 ガス回収容器
JP2018128046A (ja) * 2017-02-07 2018-08-16 東京瓦斯株式会社 ガス回収容器

Similar Documents

Publication Publication Date Title
US9636626B2 (en) Rectangular parallelepiped fluid storage and dispensing vessel
TW201229513A (en) Method of and apparatus for measuring the true contents of a cylinder of gas under pressure
WO2000014782A1 (fr) Dispositif d'apport de grande quantite de gaz de traitement de semiconducteurs
CN102822070B (zh) 气体吸附器件结构体及其使用方法
WO1999056057A1 (en) Fluid storage and dispensing system
JPH09509386A (ja) 包装カバーを不活性化する方法、その装置およびその方法に使用する包装カバー
US9683701B2 (en) Tank
JP4271492B2 (ja) ガス吸着容器
JP2015174690A (ja) 容器
WO2005121634A1 (ja) ガス吸着容器
US5509255A (en) Pressure vessel
EP3625495A1 (en) Pressure vessel for the storage of pressurized fluids and vehicle comprising such a pressure vessel
CN210463760U (zh) Voc气体处理装置
JP6425680B2 (ja) 低温タンク
CN115571510B (zh) 一种使物料隔绝空气转移的装置和方法
WO2002030757A2 (en) Variable volume container for a liquified gas fluid
CN215726559U (zh) 一种压力容器制造用密封性检测装置
US20100200433A1 (en) Gas Storage and Dispensing Module
JP5722578B2 (ja) ゴム製品の梱包方法
EP0794131A1 (en) Pressure vessel
WO2015169998A1 (en) Isolation method for cryogenic gases and liquids
CA2169107C (en) Pressure vessel
JP2022184418A (ja) ガス供給装置
Sanghvi et al. Designing and Analysis of Cryogenic Storage Vessel
JPH08159103A (ja) アキュームレータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP