VERFAHREN ZUM ANSCHWEISSEN EINES HALTERS AN EIN BLECH MIT ABTRAGUNG ETWAS HALTERMATERIALS UND DEPONIERUNG AUF DAS BLECH
Die Befindung bezieht sich auf ein Verfahren zum Anschweißen eines Halters mit einem Schmalflächenstumpf an ein Blech, insbesondere Karosserieblech.
Für die Verbindung von bolzen- oder stiftförmigen Haltern mit einem Blech ist das Bolzenschweißverfahren bekannt. Dabei wird zwischen der Stirnfläche des Halters und dem Blech ein Lichtbogen erzeugt, beide Teile werden angeschmolzen und unter geringfügigem Druck zusammengeführt, sie sind dadurch miteinander verbunden.
Bei dem Bolzenschweißen mit Hubzündung wird ein Bolzen durch einen Hubmechanismus in Kontakt mit dem Blech gebracht und eine Spannung zwischen Bolzen und Blech angelegt. Der Bolzen wird etwas vom Blech abgehoben, dabei wird ein Pilotlichtbogen mit geringer Stromstärke gezündet. Anschließend erfolgt die Zündung eines Hauptlichtbogens zwischen Bolzenspitze und Blech. Dabei werden Bolzen und Werkstück angeschmolzen. Nach Ablauf einer eingestellten Schweißzeit wird der Bolzen in die Werkstückschmelze eingetaucht. Die dadurch ausgepresste Werkstückschmelze bildet eine nach außen gewölbte (konvexe) Schweißnaht. Die Stromquelle wird abgeschaltet, die Schmelze erstarrt und kühlt ab. Es entsteht eine Kraftfluss brechende Nahtverbindung. Dabei wird die Werkstückstruktur im Bolzeneintauchbereich inhomogen.
Das Bolzenschweißverfahren wird u. a. im Bereich der Automobilindustrie eingesetzt. Es hat den Vorteil, dass die vom Bolzen abgewandte Fläche des Blechs möglichst wenig beeinflusst wird, so dass sie die Außenfläche einer Karosserie bilden kann. Es hat sich aber herausgestellt, dass das Bolzenschweißen nicht immer zu ausreichenden Resultaten führt. Insbesondere müssen Automobilhersteller feststellen, dass Bolzen abfallen wegen Materialstrukturschwäche im Bereich des Bolzenkopfes oder bildet sich der Rost, insbesondere aufgrund eingeschlossenen Kondenswassers an Schweißübergängen. Hier setzt nun die Erfindung ein. Sie hat es sich zur Aufgabe gemacht, das Schweißverfahren abzuwandeln und so auszubilden, dass eine zuverlässigere Verbindung zwischen Halter und Blech erfolgt und vorzugsweise die vom Halter abgewandte Oberfläche des Bleches noch weniger als bisher beeinflusst wird. ferrATiGUNGSKOPiE
Diese Aufgabe wird gelöst durch ein Verfahren zum Anschweißen eines Halters, der eine Schmalfläche aufweist, mit dieser Schmalfläche an ein Blech, insbesondere an ein Karosserieblech angebracht wird, bei welchem Verfahren der Halter in einem freien Abstand seiner Schmalfläche zum Blech gehalten wird, wobei zwischen Halter und Blech eine elektrische Spannung anliegt und zwischen Schmalfläche und Blech ein Lichtbogen brennt, aufgrund des Lichtbogens etwas Material von der Schmalfläche abgetragen und als deponierte Schmelze auf das Blech aufgetragen wird. Anschließend wird der Halter mit dem Blech in Kontakt gebracht, wobei der Halter mit der Schmalfläche in die deponierte Schmelze eintaucht, die Spannung abgeschaltet wird und der Lichtbogen erlischt.
Bei diesem Verfahren werden im Gegensatz zum Bolzenschweißverfahren nicht stift- oder bolzenförmige Halter angeschweißt, sondern Halter, die eine längliche Schmalfläche aufweisen. Im Wesentlichen sind die Halter flache Blechstücke, die mit einer Schmalseite aufgeschweißt werden. Die Blechstücke können aber auch beliebig geformt, beispielsweise gebogen sein. Es bleibt aber bei der im Wesentlichen länglichen Schmalseite.
Unter der Wirkung des Lichtbogens wird der Halter im Bereich der Schmalfläche etwas abgetragen und wird das abgetragene Material als deponierte Schmelze auf das Blech aufgetragen. Lediglich der Halter wird langsam abgeschmolzen, das Blech wird erhitzt und verbindet sich mit der nach und nach deponierten Schmelze. Die zum Halter zugewandte Oberfläche des Bleches wird durch die vom Halter aufgetragene Eigenschmelze aufgebaut und dadurch verstärkt. Nach einer festgelegten Abschmelzzeit, die beispielsweise 30 bis 200 Millisekunden betragen kann und die im Wesentlichen der Zeitdauer des Lichtbogens entspricht, wird der Halter mit dem Blech in Kontakt gebracht, wobei er praktisch kraftfrei in die deponierte Schmelze, die weitgehend schmelzflüssig ist, eintaucht und an der Oberfläche des Blechs anstoßen kann. Es zeigt sich nun, dass dabei die deponierte Schmelze sich zum Halter hin bewegt und an diesem etwas hochgezogen wird, wie man es auch bei unterschiedlichen Materialien, beispielsweise Glas und Wasser, kennt. Mit diesem anschließenden Kohäsionseffekt entsteht eine Kraftfließende Nahtverbindung. Zur Schweißnaht trägt auch schmelzflüssiges Material bei, das sich (noch) an der Schmalfläche 22
befindet. Da die deponierte Schmelze aus dem Material des Halters besteht, wird das vorliegende Verfahren auch als Kohäsionsschweißen bezeichnet. Entscheidend ist jedenfalls, dass es ohne Zusatzwerkstoffe abläuft, die Schweißung im Lichtbogen erfolgt wie beim Bolzenschweißverfahren lediglich zwischen Halter und Blech.
Besonders entscheidend ist die gezielte Abschmelzung von etwas Material aus dem Halter und der Übergang bzw. das Auftragen dieses Materials auf dem Blech, wo es die deponierte Schmelze bildet. Das Blech wird dadurch selbst zwar deutlich erhitzt, aber ansonsten nicht beeinflusst. Die direkte Einflussnahme auf die oder gar Zerstörung der Blechstruktur, wie sie beim Bolzenschweißen oft auftritt, wird verhindert. Anders als beim Bolzenschweißen, wo sich ein nach außen hin gewölbter (konvexer) Wulst rings um den Bolzen im Bereich der Verbindungsstelle ergibt, stellt man bei dem erfindungsgemäßen Schweißverfahren eine nach innen hin gewölbten (konkave), jedenfalls nicht nach außen hin gewölbte (konvexe) Nacht, bzw. Anfüllung fest. Beim Kontakt zwischen Halter und Blech am Ende des Schweißvorgangs zieht sich das Material aus der deponierten Schmelze etwa an die angrenzende Fläche des Halters hoch und bildet diese konkave Naht bzw. Anfüllung.
Die Verbindung der so angeschweißten Halter mit dem Blech ist ausgesprochen gut, es werden sehr hohe Festigkeiten erreicht. Insbesondere aber bleiben beim späteren Überlackieren keine Hohlräume zurück. Das Aufplatzen von Lackschichten, unter denen Kondenswasser eingeschlossen war, während des Lacktrocknens in einem Ofen, wird nicht beobachtet. Es hat sich als vorteilhaft erwiesen, vor dem eigentlichen Lichtbogen einen Vorläuferlichtbogen, auch Pilotlichtbogen genannt, zu zünden. Dieser schafft die Voraussetzungen, dass der Hauptlichtbogen stabil zündet, gut brennt und lokalisiert ist. Der Vorläuferlichtbogen kann durch einen kleinen, vorläufigen Strom aufrechterhalten werden, der deutlich kleiner ist als der eigentliche Schweißstrom. Der Vorläuferlichtbogen kann aber auch auf andere Weise erzeugt werden, beispielsweise durch eine Plasma Entladung oder durch eine höhere elektrische Spannung, die unmittelbar einen Lichtbogen über einen größeren Abstand zündet.
Bei dem erfindungsgemäßen Verfahren wird beim Anschweißen der Halter kürzer. Dies beobachtet man auch beim Bolzenschweißverfahren. Ein Teil des Materials der
Schmalfläche wird für den Schweißvorgang benötigt. Der Halter ist typischerweise im angeschweißten Zustand mindestens I mm kürzer, meistens 2 bis 3 mm kürzer als vor dem Anschweißen.
Das Verfahren eignet sich für elektrisch leitende Halter und Bleche, insbesondere Bleche und Halter aus Stahl, legiert und unlegiert. Es ist auch für andere Metalle, beispielsweise für Aluminium, einsetzbar.
Vorzugsweise ist die Schmalfläche des Halters vor dem Anschweißen nicht eben, sondern leicht gebogen, hat eine stumpfe oder scharfe Spitze, ein Kuppe oder auch eine Wölbung. Im Folgenden wird allgemein von einem Vorsprung an der Schmalfläche gesprochen. An diesem Vorsprung zündet der Lichtbogen. Er befindet sich im geringsten Abstand zum ebenen Blech. Der Vorsprung befindet sich Vorteilhafterweise in der Mitte der Schmalfläche. Der Hauptlichtbogen erstreckt sich über die gesamte Stirnfläche des Halters im Bereich seiner Schmalfläche, der Hauptlichtbogen ist also nicht irgendwie lokalisiert. Die Schmalfläche verläuft im Wesentlichen parallel zum Blech.
Die Schmalfläche hat eine Länge, die deutlich größer ist als ihre Breite. Im Wesentlichen ist die Schmalfläche daher länglich. Sie hat vorzugsweise eine konstante Breite, ist also eine schmale Rechteckfläche. Sie kann beliebig gebogen sein, z.B. S- förmig, L- förmig oder in Form eines Rohres. Der Halter kann auch selbst ein geschlossenes Rohr sein. Entscheidend ist, dass die Schmalfläche relativ lang gestreckt ist, insbesondere mindestens eine viermal, vorzugsweise mindestens eine zehnmal größere Länge als Breite aufweist, so dass die Schmalfläche im Vergleich zu der kompakten Stirnfläche eines Bolzens nach dem Stand der Technik eine relativ große Erstreckung aufweist.
Das Verfahren ist keineswegs auf die Verbindung von Haltern und Karosserieblechen beschränkt, vielmehr kann es überall dort eingesetzt werden, wo heute auch das Bolzenschweißverfahren, insbesondere das Hubzündverfahreri, eingesetzt wird. Der Halter selbst kann eine beliebige Form haben, sofern er nur im Bereich der Schmalfläche die lang gestreckte Geometrie aufweist. Im Abstand von der Schmalfläche und in dem Bereich, in dem kein Material vom Halter abgetragen wird,
kann der Halter eine beliebige Form haben, beispielsweise sich stark ausdehnen, relativ lang sein und dergleichen. Für den Schweißvorgang kommt es nur auf die Ausbildung der Schmalfläche und auf ihre unmittelbare Umgebung, sozusagen die unmittelbar benachbarten ca. 5 mm, an.
Auch das Blech muss bestimmte Bedingungen erfüllen. Es muss gewährleistet sein, dass unter der Wirkung des Lichtbogens die deponierte Schmelze sich ausreichend mit dem Blech verbindet. Das Blech muss eine ausreichende Temperatur im Bereich der Stelle erreichen können, auf der sich die deponierte Schmelze befindet. Karosseriebleche aus dem Kraftfahrzeugbereich erfüllen diese Bedingung im Allgemeinen, sie haben eine Dicke von etwa 0,6 bis maximal 5 mm, beispielsweise 1 ,6 mm. Auch der Abstand d zwischen Halter und Blech ist wichtig.
Es scheint sich als günstig zu erweisen, die Materialstärke des Halters im Bereich seiner Schmalfläche an die Dicke des Karosserieblechs anzupassen. Dadurch wird die erfindungsgemäße Erosion von Material des Halters und Auftragen dieses Materials als deponierte Schmelze auf das Blech begünstigt. So sollte man bei dünnen Blechen dünne Halter verwenden und umgekehrt. Die Materialdicke des Halters im Bereich seiner Schmalfläche soll sich möglichst nicht mehr als um den Faktor 5 von der Dicke des Blechs unterscheiden. Es ist vorteilhaft, wenn die Breite der Schmalfläche nicht sehr unterschiedlich ist von der Dicke des Blechs, beispielsweise höchstens halb bis doppelt so dick ist wie die Dicke des Blechs. Die Unterschiede sollten möglichst noch darunter liegen.
Die Erfindung wird in folgenden, anhand von Ausführungsbeispielen, die nicht einschränkend zu verstehen sind, näher erläutert. Diese dienen auch der Erläuterung des erfindungsgemäßen Verfahrens. Die Erläuterung erfolgt unter Bezugnahme auf die Zeichnung. In dieser zeigen
Fig. 1 eine prinzipielle Seitenansicht eines Halters der sich im Abstand von einem Blech befindet, Fig. 2 eine Draufsicht auf die Schmalfläche des Halters, Fig. 3 eine Seitenansicht wie Figur I, jedoch ist der Halter nunmehr in Kontakt mit dem Blech und es fließt ein vorläufiger Strom,
Fig. 4 eine Darstellung ähnlich Figur I, jedoch ist nun ein Vorläuferlichtbogen gezündet Fig. 5 eine Darstellung wie Figur 4, jedoch ist nunmehr ein Hauptlichtbogen gezündet, der die Voraussetzungen für den späteren Schweißvorgang schafft, Fig. 6 ein Schnittbild durch den Verbindungsbereich des Halters mit dem Blech in vergrößerter Darstellung und Fig. 7 eine Zusammenstellung der einzelnen Abläufe in einem Schaubild mit vier Teilbildern.
Der Halter 20 ist ein im Wesentlichen flaches Blechteil aus Stahlblech. Seine Ma- terialdicke beträgt etwa 1,5 mm. Er hat eine untere Schmalfläche 22, die unmittelbar einem Blech 24 gegenüber liegt und weitgehend parallel zu dem Blech steht. Der Abstand beträgt etwa 2 - 6 mm. Das Blech hat eine Materialstärke von etwa 2 mm.
Der Halter 20 hat eine parallel zum Blech gemessene Breite von etwa 18mm. Der Abstand der Schmalfläche 22 zu einer freien, oberen Kante 26 beträgt etwa 30 mm. Die Schmalfläche 22 ist abgerundet, dabei befindet sich ein Vorsprung 28 im Flächenmittelpunkt bzw. im mittleren Bereich der Schmalfläche 22. Der Vorsprung 28 liegt dem Blech 24 näher als die anderen Bereiche der Schmalfläche 22. Anstelle einer Abrundung kann eine Spitze oder dergleichen vorgesehen werden, wobei bevorzugt ist, dass die Schmalfläche 22 etwa in ihrem Flächenmittelpunkt dem Blech 24 am nächsten ist.
Fig. 2 zeigt, dass die Schmalfläche 22 im Wesentlichen länglich ist. Die Rechtecklänge, die der Breite des Halters 20 entspricht, ist der als 10-mal größer als die Rechteckhöhe, die der Blechdicke entspricht. Fig. 2 soll die längliche Ausbildung der Schmalfläche 25 verdeutlichen. Anstelle der gezeigten gestreckten Ausführung der Schmalfläche 22 kann diese auch gebogen, geknickt usw. verlaufen.
Beim praktischen Einsatz ist das Blech 24 zumeist irgendwie festgelegt oder mit einem größeren Teil verbunden, so dass es stationär ist. Der Halter 20 wird normalerweise bewegt. Er ist in einer Haltevorrichtung 30 gehalten, diese kann im Sinne eines Doppelpfeiles 32 rechtwinklig zum Blech 24 bewegt werden. In Fig. 3 ist die
Haltevorrichtung 30 nur angedeutet und es kann eine beliebige Haltevorrichtung 30 eingesetzt werden, beispielsweise auch eine Haltevorrichtung 30, wie sie aus den Verfahren für Bolzenschweißung bekannt ist.
Der Halter 20 ist an eine Spannungsquelle 34 angeschlossen, die den Schweißstrom liefert. Die Spannungsquelle hat eine Ausgangspannung von 0,1 bis I Volt beispielsweise 0,5 bis 0,6 Volt Gleichspannung. Der Pluspol ist mit dem Halter 20 verbunden. Dabei ist vorzugsweise die Haltevorrichtung 30 so ausgebildet, dass sie zugleich den elektrischen Kontakt mit dem Halter 20 liefert. Der Minuspol der Spannungsquelle ist über einen Widerstand 36 großflächig mit dem Blech 24 verbunden. Die Kontaktierung mit dem Blech 24 erfolgt großflächig und so, dass keine Veränderungen oder Beeinflussungen am Blech 24 auftreten, sie erfolgt vorzugsweise auf der selben Seite des Blechs, auf der auch der Halter 20 angeschweißt werden soll.
Im Gegensatz zur Darstellung nach Fig. I ist in Fig. 3 der Halter 20 nun im Bereich seines Vorsprungs 28 in Kontakt mit dem Blech 24. Damit liegt ein geschlossener Stromkreis vor, der Kurzschlussstrom wird durch den Widerstand 36 auf einen kleinen, vorläufigen Strom begrenzt wird, der beispielsweise bei 50 A liegt.
In Fig. 4 ist ausgehend von der Position gemäß Fig. 3 der Halter 20 nun mittels der Haltevorrichtung 30 nach oben, vom Blech 24 wegbewegt. Dabei bildet sich ein Vorläuferlichtbogen aus, der durch die Spannungsquelle 34 gespeist ist. Es fließt weiterhin ein Strom von etwa 50 A. Der Vorläuferlichtbogen 38 hat eine E-nergie, die etwa bei 25 Watt liegt, sie ist für den Schweißvorgang nicht ausreichend. Der Vorläuferlichtbogen 38 ebnet den Weg für den späteren, eigentlichen Lichtbogen 42. Fig. 4 zeigt den Zustand mit dem Vorläuferlichtbogen 38. Die Schmalfläche 22 des Halters 20 befindet sich in einem Abstand von Blech 24, der etwa bei 3 mm liegt, typischerweise liegt er zwischen 0,5 und 6 mm.
Fig. 5 entspricht der Darstellung gemäß Fig. 4, jedoch ist nun der Widerstand 36 überbrückt. Dies erfolgt über einen Schalter 40, der aus Vereinfachungsgründen in den bisherigen Figuren nicht dargestellt ist. Es kann nur ein hoher Strom fließen, der beispielsweise im Bereich von 350 bis 2000 A liegt, er wird auch als Schweißstrom bezeichnet. Dadurch wird eine deutliche Verstärkung des Lichtbogens erreicht, wie ein
Vergleich der Fig. 4 und 5 zeigt. Der Lichtbogen ist nun in Fig. 5 mit dem Bezugszeichen 42 versehen und wird auch als Hauptlichtbogen bezeichnet. In diesem Lichtbogen 42 ist nun eine viel höhere Energie enthalten, die zu einem starken Erhitzen von Blech 24 und Halter 20 führt, wobei diese Erhitzungen lokal begrenzt sind auf die unmittelbare Nähe des Lichtbogens 42. Eine Wärmeleitung findet zwar statt, angesichts der sehr kurzen Zeitdauer des Schweißvorgangs kann sie aber vernachlässigt werden. Der Lichtbogen 42 führt dazu, dass unter der sehr starken Erhitzung des Halters im Bereich der Schmalfläche 22 Material des Halters 20 abgetragen wird. Dies erfolgt an den Stellen 44 Das abgetragene Material schlägt sich auf dem Blech 24 nieder, genauer auf der der Schmalfläche gegenüberliegenden Seite des Blechs 24, und bildet dort eine deponierte Schmelze. Diese verbindet sich mit dem Blech 24, dass durch den Lichtbogen 42 für diese Verbindung entsprechend heiß erhitzt ist. Nach einer Dauer von 5 bis 250 Millisekunden, beispielsweise 90 Millisekunden, in der der hohe Strom fließt und der Lichtbogen 42 besteht, wird der Halter 20 wieder dem Blech 24 angenähert, bis er in Kontakt mit der deponierten Schmelze 46 kommt und diese eintaucht. Dabei erlischt der Lichtbogen 42 aufgrund des Kurzschlusses. Der Strom wird abgeschaltet.
Der Halter 20 hat etwas von seiner Gesamtlänge verloren, beispielsweise mindestens 1mm, typischerweise 2 bis 3 mm. Beim Eintauchen in die deponierte Schmelze kommt er mit dieser und zumeist auch der Oberfläche des Blechs 24 in Kontakt. Das Eintauchen erfolgt ohne Kraft. Beim Eintauchen zieht sich das Material der deponierten Schmelze 46 an dem heißen Halter 20 etwas hoch, wie man es von adhäsiven Vorgängen kennt. Da es sich hier aber um gleiches Material handelt, wird von einer Kohäsion gesprochen. Das Ergebnis zeigt Fig. 6, die einen Schnitt in Richtung des Doppelpfeils 32, aber rechtwinklig zur Papierebene der Darstellung gemäß Fig. 5 zeigt. Es ist zu erkennen, dass das Material, das vom Halter 20 stammt, eine im Wesentlichen dreieckförmige Naht bzw. Anfüllung 48 bildet, die konkav gewölbt ist, jedenfalls nicht nach außen konvex gewölbt ist. Ihr Zustand ist typisch für eine gute Schweißverbindung. Nach Erkalten und Entfernen der Hilfsgeräte ist die Schweißverbindung fertig gestellt.
Die beschriebenen Vorgänge sollen noch einmal anhand der Darstellung gemäß Fig. 7 erläutert werden, die die einzelnen Phasen in einem Schaubild zusammenfasst, das als
waagerechte Achse (x-Achse) die Zeitachse hat. Im obersten Teil ist der Halter 20 in fünf unterschiedlichen Positionen dargestellt, die er während des Zeitverlaufs einnimmt. Unter dem Halter befindet sich Blech 24, das stationär ist und durchlaufend gezeigt ist.
Direkt unter diesem obersten ersten Teilbild von Fig. 7 ist in einem zweiten Teilbild der Abstand d des Halters vom Blech 24 über der Zeit dargestellt.
Darunter ist im dritten Teilbild die Stärke des Lichtbogens 42 in willkürlichen Einheiten D über der Zeit t dargestellt, z.B. optisch gemessen, insbesondere über die Lichtintensität D. Man erkennt zunächst einen kleinen Lichtbogen 38 mit der relativen Stärke I, danach einen starken Lichtbogen 42 mit der relativen Stärke 5. Im vierten Teilbild wiederum ist der Verlauf des Schweißstroms I über der Zeit t dargestellt, er nimmt z.B. die Werte 30 A und 2000 A an.
Es wird nun auf die einzelnen Zustände eingehend eingegangen: Vor dem Zeitpunkt t=0 befindet sich der Halter 20 in einem Abstand d von etwa 15 mm vom Blech 26. Er wird dann zum Zeitpunkt 0 auf das Blech 24 hin bewegt und erreicht einen Kontakt mit dem Blech, der kurz nach dem Zeitpunkt 0 auftritt. In diesem Zustand wird nun die Schweißspannung eingeschaltet, die in einer Alternative aber auch schon vor dem mechanischen Kontakt eingeschaltet sein kann. Es fließt ein vorläufiger Strom I von etwa 30 A. Er liegt nach etwa 80 ms vor. Etwas später wird der Halter 20 vom Blech 26 abgehoben und hat dann eine Entfernung von etwa d = 6 mm vom Blech 24. Beim Abheben des Halters 20 vom Blech 24 bildet sich ein Vorläuferlichtbogen 38 aus. Zum Zeitpunkt 120 ms hat der Halter 20 einen Abstand d von etwa 6 mm vom Blech 24, der Lichtbogen 38 brennt mit der relativen Stärke I und es fließt ein Strom von etwa 30 A. Dieser Zustand kann an sich relativ lange aufrechterhalten werden. Es hat sich gezeigt, dass es günstig ist, nach etwa 180 Millisekunden den vollen Schweißstrom von etwa 2000 A einzuschalten. Dadurch springt der Lichtbogen auf die relative Stärke 5 und liegt nun als Haupt-Lichtbogen 42 vor. Der Abstand d des Halters 20 vom Blech 24 verbleibt bei 6 mm. Die Zeitdauer des großen Schweißstroms und auch des Lichtbogens 42 ist kritisch und wichtig, da das Schweißergebnis davon abhängt. Der volle Schweißstrom liegt etwa 150 ms an. Während dieser Zeit ist der Halter 20 zunächst noch weiterhin im Abstand 6 mm vom
Blech 24. Zum Zeitpunkt etwa t=260 ms wird der Halter 20 dem Blech 24 genähert. Er ist nun etwas kürzer geworden, da ein Teil seines Materials abgetragen wurde. Der Kontakt mit dem Blech 24 kommt bei minus 3 mm zustande, anders ausgedrückt hat der Halter 3 mm seiner Länge verloren, siehe Abschmelztiefe in Fig. 7. Beim Kontakt mit der deponierten Schmelze 46 auf dem Blech 24 reißt der Lichtbogen 42 ab. Der Schweißstrom kann kurz noch einmal bewusst erhöht werden oder wird allein durch den Kontakt bzw. Kurzschluss erhöht, siehe Anstieg auf über 2000 A. Er wird dann abgeschaltet. Nach 350 ms ist der Schweißstrom auf 0. Der Schweißvorgang ist beendet.
Ein Vorteil des Kohäsionsschweißens, wie es oben beschrieben wurde, liegt darin, dass das Material aus der deponierten Schmelze kriechend bzw. fließend am Halter hochgezogen wird, sobald der Halter in Kontakt mit der deponierten Schmelze 46 kommt und in diese eintaucht. Es bildet sich eine flache bis konkave Schweißnaht bzw. Anfüllung 48. Dadurch wird ein ausgefüllter und fließender Übergang zwischen Blech 24 und Halter 20 geschaffen, der ideal für die aufzufangenden Kräfte, beispielsweise Zug, Druck, Biegung und Torsion ist. Der Kohäsionseffekt bewirkt eine fließende Übergangsverbindung zwischen dem Halter 20 und dem Blech 24.
Es ist günstig, wenn sich beim Schweißvorgang der Halter 20 lotrecht oberhalb des Bleches 24 befindet. Es kann auch ein Winkel vorliegen, beispielsweise kann der Doppelpfeil 32 auch waagerecht liegen. Allerdings hat es sich gezeigt, dass dann Material auch etwas nach unten, im Sinne der Gravitation, fließt. Es wird daher bevorzugt, dass der Doppelpfeil 32 parallel zum Lot ist und der Halter 20 lotrecht oberhalb des Bleches 24 ist.
Durch das langsame teilweise Abschmelzen des Halters 20 wird das Blech wenig beeinflusst, insbesondere wird eine Veränderung des Bleches, wie sie beim Bolzenschweißen häufig auftritt, weitgehend verhindert. Das Verfahren arbeitet ohne Zusatzwerkstoffe.
Wenn man ausgehend von dem Zustand gemäß Fig. 5 zwar den Schweißstrom so, wie z.B. im vierten Teilbild von Fig. 7 zeitgerecht abschaltet, wodurch der Lichtbogen 42 erlischt, im Gegensatz zu dem oben beschriebenen Ablauf nun aber nicht den Halter 20
auf das Blech 24 bewegt, vielmehr den Halter 20 in seiner Position gemäß Fig. 5 blockiert, stellt man folgendes fest: Es ist kein Schweißvorgang erfolgt, weil dieser bewusst unterbrochen wurde. Auf dem Blech 24 befindet sich nachweisbar eine deponierte Schmelze 46, das Material stammt vom Halter. Die deponierte Schmelze 46 hat eine feste Verbindung mit dem Blech 24 nach Erkalten. Am Halter 20 kann man abgetragene Stellen 44 feststellen.
Bezuαszeichenliste
20 Halter
21 Schmalfläche
24 Blech
25 freie, obere Kante
28 Vorsprung
30 Haltevorrichtung
32 Doppelpfeil
34 Spannungsquelle
36 Widerstand
38 Vorläuferlichtbogen
40 Schalter
42 Lichtbogen
44 abgetragene Stelle
46 deponierte Schmelze
48 konkave Schweißnaht bzw. Auffüllung