WO2005116223A1 - Herstellungsverfahren geeigneter dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz - Google Patents

Herstellungsverfahren geeigneter dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz Download PDF

Info

Publication number
WO2005116223A1
WO2005116223A1 PCT/DE2004/002838 DE2004002838W WO2005116223A1 WO 2005116223 A1 WO2005116223 A1 WO 2005116223A1 DE 2004002838 W DE2004002838 W DE 2004002838W WO 2005116223 A1 WO2005116223 A1 WO 2005116223A1
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
dna
sequence
vectors
plasmid
Prior art date
Application number
PCT/DE2004/002838
Other languages
English (en)
French (fr)
Inventor
Matthias Schroff
Original Assignee
Mologen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mologen Ag filed Critical Mologen Ag
Priority to US11/569,697 priority Critical patent/US20090004703A1/en
Priority to DK04816287.9T priority patent/DK1749096T3/da
Priority to EP04816287.9A priority patent/EP1749096B1/de
Publication of WO2005116223A1 publication Critical patent/WO2005116223A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes

Definitions

  • the invention relates to a method for producing vectors which, after their transfection into eukaryotic cells, are able to specifically inhibit the formation of defined proteins in these by RNA interference.
  • RNA interference small interference RNA
  • the siRNA does not prevent the reading of the gene, but activates a cell-specific mechanism that breaks down the mRNAs read from the gene and thus prevents the formation of the corresponding protein (post-transcriptional gene silencing).
  • siRNA molecules with 19-23 RNA bases in length, which are homologous to the target mRNA, the conversion of which into a protein is to be prevented.
  • the siRNA molecules combine with special endoribonucleases to form a cell-specific RNA-protein complex called "RISC" (RNA-induced silencing complex).
  • RISC RNA-induced silencing complex
  • acti - fourth RISC arise, each containing a single strand of the siRNA molecule.
  • RISC RNA-induced silencing complex
  • the siRNA can be generated experimentally in the cell or introduced from outside by introducing it. On the one hand, this is achieved using synthetically produced siRNA molecules that can be administered both in vitro and in vivo.
  • siRNA can be generated by vectors in the cell. These are viral or plasmid-based vectors that only lead to the formation of the siRNA sequences in the cell by expression.
  • the advantages compared to transfection with synthetic siRNA lie in the more stable and possibly regulated transcription of the corresponding siRNA sequence.
  • the plasmid-based vectors also show a complex production process. For example, it is necessary to select stable clones. In this often lengthy process, which can take weeks or months, numerous potential difficulties arise that are inherent in cloning experiments. To check the product, sequencing is necessary, which is also labor and cost intensive.
  • the plasmid-based vectors contain antibiotic resistance genes which are necessary for their selection. For this reason, such vectors are not suitable for use in living organisms.
  • the possible recombination with ubiquitous bacteria in the organism carries the risk of one increasing occurrence of antibiotic-resistant bacteria.
  • the spread of antibiotic resistance is a serious problem and unacceptable.
  • viral vectors are capable of efficient and targeted transfection, they offer an advantage over synthetic siRNA molecules as well as plasmid-based vectors.
  • viral vectors of this type can only be used with reservations for therapeutic use.
  • the recombination of viral sequences with naturally occurring viruses represents an inherent security risk, since the generation of new, pathogenic hybrid viruses must be feared.
  • their manufacture is also complex and cost-intensive.
  • the siRNA sequence is understood to mean the RNA sequence which is read from the DNA construct produced according to the invention. It is therefore a singular RNA single strand that is partially self-complementary.
  • siRNA molecule is used for an siRNA which arises due to the refolding and base pairing of a self-complementary siRNA sequence.
  • An siRNA molecule is therefore a double-stranded RNA molecule in which the mating strands are connected on one side by a non-complementary single strand.
  • a method which is characterized by the following steps: a) Mixing of a DNA double strand which contains a 19-23 base long, singular copy of a gene sequence once in the 5 'to 3' direction and once in 3 'to 5' -Direction contains, between the 5 '- 3' and 3 '- 5' orientation of the singular copy of the gene sequence each an 8-12 base sequence sequence of two single strands is arranged, which are chosen so that opposite bases in none Case are complementary to one another and the flanking double-strand regions are thus connected to one another by two single DNA strands, the double-stranded DNA having short projecting ends of single-stranded DNA at the ends with hairpin-shaped oligodeoxynucleotides which have short projecting ends of single-stranded DNA at the ends and one Promoter with short protruding ends of single-stranded DNA, the single-stranded 5 'end of the Prom otors can pair with one of the hairpin-shaped oligo
  • a method in which the promoter is part of a bacterially amplifiable plasmid which, prior to the mixing of the components in the first method step 1 a), is cut with a restriction endonuclease which recognizes an interface flanking the promoter on the plasmid that is not present on the molecule to be produced.
  • the ligation step is carried out in the presence of the restriction endonuclease with which the promoter was cut out of the plasmid.
  • the reaction mixture prior to the final purification step, is digested using an exonuclease that is specific only for 3 'or 5' DNA ends.
  • the DNA double strand which is added at the beginning of the mixture can result from the annealing of a partially self-complementary oligodeoxynucleotide or of two complementary oligodeoxynucleotides.
  • the annealing can also only take place in the reaction mixture, so that only single-stranded complementary oligodeoxynucleotides are added at the start of the method according to the invention.
  • the sequence of the oligodeoxynucleotides is selected such that the resulting hairpins have the recognition sequence for a restriction endonuclease in their double-stranded region.
  • the final purification of the vectors produced by means of the method according to the invention is preferably carried out either by chromatography or gel electrophoresis.
  • the restriction endonuclease with which the promoter is excised from the plasmid is used can be to an enzyme of the group of class II restriction endonucleases, preferably from the group Bbsl, Bbvl, BbvII, Bpil; Bpli, Bsal, BsmAI, BsmBI, BsmFI, BspMI, Eamll04I, Earl, Eco31I, Esp3l, Fokl, Hgal, SfaNl or their isoschizomers.
  • kits for carrying out the method according to the invention containing at least one promoter, hairpin-shaped oligodeoxynucleotides and enzymes.
  • the enzymes are ligases, restriction endonucleases, restriction exonucleases, kinases and polymerases or selected combinations thereof, in the form of an enzyme mix.
  • the kit can also contain means for carrying out the enzymatic reactions and means for purifying the vectors produced.
  • the promoter can be included in the kit as part of a plasmid from which it can be excised using a suitable restriction endonuclease.
  • the present invention furthermore relates to a vector which was produced by the method according to the invention and which is terminated by hairpin-shaped oligodeoxynucleotides, between which a promoter is arranged at the 5 'end and a termination signal at the 3' end of a DNA double strand, where the DNA duplex contains a 19-23 base long, unique copy of a gene sequence once in the 5 '- 3' direction and once in the 3 '- 5' direction, with between the 5 '- 3' and 3 '- 5 Orientation of the singular copy of the gene sequence each has an 8-12 base sequence sequence of two single strands, which are chosen so that opposite bases are in no case complementary to each other and the flanking double strand areas are connected to each other by two DNA single strands ,
  • MISECs Minimalistic siRNA Expression Cassettes
  • the present invention differs from the known prior art in that a fast method is provided by means of which a vector is produced which is free of plasmid or viral components and leads to the expression of siRNA sequences.
  • the method for producing such vectors does not include any PCR steps, is a three-step procedure and can be carried out in a reaction vessel in just a few hours. So there is a process are available, with the help of which very different siRNA sequences can be tested for their functionality very quickly. Screening methods for suitable siRNA sequences can be cost-effective using the kit using the fast and uncomplicated production of the vectors. time-saving. Another advantage of the vectors generated in this way is their small size, which among other things facilitates transfection.
  • the siRNA sequences are single-stranded and consist of a sense and an antisense strand, each comprising 19-23 nucleotides. Scythe. -u. antisense strands are separated by a short spacer region, which allows the later folding of the strands into a double-stranded siRNA molecule. This siRNA pairs with a target mRNA and, as described, leads to its degradation by nucleases.
  • the vector generated by the production process consists only of a suitable promoter sequence, the siRNA sequence to be expressed and a short termination sequence and thus does not carry any undesired sequences of viral or plasmid origin.
  • the ends are covalently linked with a loop of single-stranded oligodinucleotides (ODN), so that a completely covalently closed molecule is formed.
  • ODN single-stranded oligodinucleotides
  • the mutually complementary DNA sequences are not separated by single-stranded regions in a single vector.
  • the mutually complementary 19-23 base long double-stranded sequences are each contained in separate vectors which can be produced analogously by the method according to the invention. These vectors produced in this way thus have the same structure as the vector which contains the sense-loop-antisense-DNA strand between the promoter and hairpin loop, but without the single-stranded region.
  • any eukaryotic promoter sequence such as, for. B. the CMV promoter of cytomegalovirus.
  • Type III polymerase promoters are preferably used, such as the H1 promoter, the 7SK promoter and the human and murine U6 promoter.
  • the promoter sequence can be present on a suitable plasmid vector from which it must be cut out by restriction endonucleases at the start of production, which However, promoter sequence can also be added to the process as an already isolated or synthetically produced sequence.
  • termination sequence Any known DNA sequence which leads to the termination of expression by RNA polymerases can be considered as the termination sequence.
  • the termination sequence does not have to be added to the method according to the invention, but can also be part of the double-stranded region of a hairpin-shaped oligodeoxynucleotide or of the 3 'end of the partial DNA double strand, which has two single strands centrally.
  • the siRNA sequence to be expressed is the sequence complementary to the target mRNA, which is used as a PCR product in the production method according to the invention.
  • the siRNA sequence can also be produced synthetically by oligodinucleotide synthesis. These can be short ODN fragments that have to be annealed and ligated in a first step, but the entire siRNA sequence can also be generated by ODN synthesis.
  • the ODN fragment is phosphorylated by the PNKinase.
  • the manufacturing process of the method according to the invention is as follows and is shown schematically in FIG. 1 for an overview.
  • the plasmid which carries the promoter sequence is completely digested with the restriction enzyme BspTNI overnight at 37 ° C. and the promoter fragment is thus provided.
  • the individual fragments are ligated using the enzyme T4-DNA ligase in the presence of the restriction enzyme BspTNI.
  • the resulting mixture of nucleic acids is treated with the enzyme T7 DNA polymerase.
  • the end product, the vector expressing siRNA is purified by column chromatography and is ready for transfection.
  • the siRNA-expressing vector contains two restriction sites which allow the hairpins to be separated later. This is advantageous because the vector is thus accessible to other processes. Be it the cloning of the sequence into any expression vector, e.g. a plasmid, be it the amplification of the sequence by PCR or the like. This embodiment is shown in FIG. 2.
  • siRNA vectors according to the invention An in vitro test to check the functionality of the siRNA vectors according to the invention was carried out.
  • hamster cells were transfected with different siRNA vectors, which should suppress the expression of the luciferase.
  • Plasmid and vector according to the invention were used as siRNA vectors. Both vectors achieved approximately 90% inhibition of luciferase expression.
  • the method according to the invention advantageously makes it possible to produce a vector which avoids the described disadvantages of the plasmid-based vectors and which is essentially time-consuming. can be manufactured more cost-effectively.
  • the importance of the invention thus arises in the provision of a method for producing suitable vectors which can be used for screening methods and are thus used for the rapid functional checking of potential siRNA sequences.
  • the kit also provides a potential tool for gene therapy, in the sense of switching off pathological genes.
  • DNA expression vectors can also be produced in a simple way.
  • the siRNA sequence is replaced by a DNA sequence coding for a gene. Restriction digestion creates unique overhangs at the ends of the DNA sequence that allow the fragments (promoter, polyA-site and hairpin-shaped ODN) to be ligated in the correct order.
  • Fig. 3 shows schematically this manufacturing route.
  • a kit that allows the production of the DNA expression vectors is also provided. Components of the kit are: suitable plasmid with promoter and polyA-site sequence, coding DNA sequence, hairpin-shaped ODN, ATP, ligase, restriction enzyme, T7 polymerase and chromatography column material for purifying the product.
  • Fig. 1 shows the production route of the siRNA vectors
  • A siRNA sequence to be used in the method, which is homologous to the target mRNA.
  • the sequence consists of the sense-antisense-loop area and a termination sequence.
  • the siRNA sequence can be ligated from individual ODN fragments that anneal with the aid of the enzyme mix. may have to be phosphorylated, it may already be present as a complete ODN fragment.
  • B shows the components that are ligated to the ODN fragment by the enzyme ligase. This is the promoter sequence with corresponding complementary overhangs and hairpin-shaped oligodinucleotides, whose in turn complementary and unique overhangs of 4 bases each result in a covalently closed linear vector consisting of promoter, sense, loop, antisense - And termination sequence exists and is closed at the ends like a hairpin.
  • C In a last step, unligated components are digested by T7 DNA polymerase digestion. The remaining product is purified by column chromatography.
  • Fig. 2 shows the production route of the siRNA vectors with additional restriction sites
  • siRNA sequence to be used in the method which is homologous to the target mRNA.
  • the sequence consists of the sense-antisense-loop area and a termination sequence.
  • the siRNA sequence can be ligated from individual ODN fragments that anneal with the aid of the enzyme mix. may have to be phosphorylated, it may already be present as a complete ODN fragment.
  • A shows the components that are ligated to the ODN fragment by the enzyme ligase.
  • This is the promoter sequence with corresponding complementary overhangs, which was provided with an additional restriction site at the 5 'end, and hairpin-promoting oligodinucleotides, with a hairpin-shaped ODN also carrying an additional restriction site, whose complementary and unique overhangs of 4 bases each result in the formation of a covalently closed linear vector consisting of promoter, sense, loop, antisense and termination sequence exists and is closed at the ends like a hairpin.
  • Fig. 3 shows the production route of DNA coding vectors
  • a plasmid and a coding DNA sequence serve as the starting material.
  • the plasmid carries restriction sites which enable the promoter and the polyA site sequence to be cut out.
  • C Unligated components are broken down by T7 DNA polymerase digestion. The covalently closed vector, consisting of promoter-coding renderer and polyA site sequence, is purified by column chromatography.
  • D DNA-expressing vector which can be used for transfection.
  • siRNA vector (a) produced by the method according to the invention, carrying the siRNA sequence Plasmid (b), positive control to control luciferase expression (c), untreated cells (d) and cells transfected with an empty vector (e).
  • the values represent mean values that were calculated from multiple determinations.
  • the suppression of luciferase expression was not observed in the negative and positive controls.
  • the cells treated with siRNA showed a significantly lower expression of luciferase. Luciferase expression is reduced by up to 90% compared to the positive control.
  • FIG. 5 shows the results of an experiment in which the siRNA expression vector according to the invention is compared with plasmids which contain the identical expression cassettes.
  • CHO-K1 cells were co-transfected with 0.5 ng plasmid encoding Renilla luciferase and 4.5 ng plasmid encoding Firefly luciferase and 195 ng of the corresponding siRNA expression construct, which was directed against expression of Firefly luciferase. 24 hours after the transfection, the cells were lysed and the luciferase activity was determined in a luminometer. The activity of the Firefly luciferase was compared with the activity of the Renilla luciferase and compared with the activity of the control (non-specific siRNA). The results shown show the mean values of three independent tests.
  • the suppression of gene expression by the MISECs which were produced using an “siRNA Expression Vector Kit” using the method according to the invention, is comparable to the effects of the plasmid transfections and the suppression of gene expression is between 70-75% in both transfections. ,
  • CHO-K1 were co-transfected with the specified amounts with 500 ng plasmid coding for Renilla luciferase, 100 ng plasmid coding for Firefly luciferase and siRNA expression constructs against the Firefly luciferase gene. After 24 hours, the cells were lysed and the activity of the luciferases was determined in a luminometer. The activity of the Firefly Luciferase was compared with the activity of the Renilla Luciferase and compared with the activity of the control (non-specific siRNA). The results shown show the mean values of two independent tests.
  • the transfection of the same amount (1000 ng) of the MISECs produced with an “siRNA Expression Vector Kit” using the method according to the invention shows a significant decrease in the luciferase activity.
  • Fig. 7 In another experiment, which was carried out in Dr. Christiane Kleuss at the Institute of Pharmacology at the Free University of Berlin, the effectiveness of gene repression by MISECs, which were produced with an “siRNA Expression Vector Kit” using the method according to the invention, was compared with a plasmid which contains the same expression cassette.
  • CHO-K1 were co-transfected with 12 ng plasmid coding for Renilla luciferase, 6 ng plasmid coding for Firefly luciferase and 182 ng of a corresponding siRNA expression construct against the Firefly luciferase gene.
  • CHO-K1 were co-transfected with the indicated amounts with 500 ng plasmid coding for Renilla luciferase, 100 ng plasmid coding for Firefly luciferase and siRNA expression constructs against the Firefly luciferase gene.
  • the cells were lysed and the activity of the luciferases was determined in a luminometer.
  • the activity of the Firefly Luciferase was compared with the activity of the Renilla Luciferase and compared with the activity of the control (non-specific siRNA).
  • the results shown show the mean values of three independent tests.
  • the siRNA expression vectors which were produced by the process according to the invention show the same effectiveness as the plasmid with the identical expression cassette, which is in each case approximately 75% reduction in luciferase activity compared to the non-specific control plasmid.
  • the inhibition of the constructs produced according to the invention is completely sufficient to identify target sequences which are effectively suitable and suitable for gene repression in a short time in a screening process.
  • Example 1 Preparation of siRNA vectors to suppress luciferase expression
  • siRNALuc The vectors coding for the siRNA of luciferase (siRNALuc) were obtained as follows:
  • the first 19 bases form the sense strand, the following 9 bases the loop area and the remaining 19 bases the antisense strand.
  • Seq. ID 3 5 '-PH-GGG AGT CCA GTT TTC TGG AC-3' (1.2 micrograms) and Seq. ID 4: 5 'PH-TGG AAA GTC CAG TTT TCT GGA CTT-3' (1, 4 micrograms)
  • the individual fragments were ligated using the enzyme T4-DNA ligase in the presence of the restriction enzyme BspTNI.
  • the resulting mixture of nucleic acids was treated with the enzyme T7 DNA polymerase.
  • the final product, the vector expressing siRNALuc was purified by column chromatography and was ready for transfection.
  • Example 3 Production of vectors coding for DNA using the method according to the invention
  • the DNA-vector production takes place in the combined restriction / ligation approach.
  • the plasmid pMCV2.8 used carries four BspTNI or Eco31l interfaces and, after digestion, provides promoters and polyA-sites.
  • the plasmid and the coding DNA fragment are digested with the restriction enzyme BspTNI and ligated with the hairpin-shaped ODN. Sequences of the hairpin-shaped ODN:
  • Seq.lD 3 5 '-PH-GGG AGT CCA GTT TTC TGG AC-3' and Seq.lD 5: 5 'PH- AGG GGT CCA GTT TTC TGG AC-3'
  • the restriction / ligation approach thus contains: plasmid, coding DNA sequence, hairpin-shaped ODN, reaction buffer, ATP, BspTNI and T4-DNA ligase. Incubation takes place over 4 h at 37 ° C. The process is stopped by heat inactivation for 15 'at 70 ° C.
  • the residual vector and all non-ligated fragments are degraded by means of T7 DNA polymerase digestion.
  • the coding vector is purified chromatographically and is ready for transfection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Vektoren, die geeignet sind nach ihrer Transfektion in eukaryote Zellen in diesen die Bildung definierter Proteine durch RNA-Interferenz gezielt zu inhibieren. Das Verfahren zur Herstellung derarti-ger Vektoren beinhaltet keine PCR-Schritte, ist eine Dreischrittprozedur in einem Reaktionsgefäß und in wenigen Stunden durchführbar. Damit steht ein Verfahren zur Verfügung, mit dessen Hilfe man in kürzester Zeit sehr einfach verschiedenste siRNA-Sequenzen auf deren Funktionalität prüfen kann. Screeningverfahren können unter Nutzung der schnellen und unkomplizierte Herstellung der Vektoren mit Hilfe des Kits kosten- und zeitsparend durchgeführt werden. Ein weiterer Vorteil der so erzeugten Vektoren ist ihre Kleinheit, die unter anderem die Transfektion erleichtert.

Description

Herstellungsverfahren geeigneter DNA-Konstrukte zur spezifischen Hemmung der Genexpression durch RNA-Interferenz
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Vektoren, die geeignet sind, nach ihrer Transfektion in eukaryote Zellen, in diesen die Bildung definierter Proteine durch RNA -Interferenz gezielt zu inhibieren.
Eine kürzlich nachgewiesene Möglichkeit der Hemmung der Genexpression beruht auf der Erzeugung von doppelsträngigen RNA-Molekülen. Mit dieser Doppelstrang- RNA (dsRNA) lassen sich hochwirksam und schneller als mit jedem anderen Verfahren einzelne Gene gezielt ausschalten, ohne die Proteinbildung benachbarter Gene zu stören. Das zugrundeliegende Prinzip wird als RNA-Interferenz, kurz RNAi, bezeichnet, die dieses Phänomen verursachende dsRNA-Sequenz als siRNA (small interference RNA).
Die siRNA verhindert nicht das Ablesen des Gens, sondern schaltet einen zelleigenen Mechanismus an, der die vom Gen abgelesenen mRNA's abbaut und so die Bildung des entsprechenden Proteins unterbindet (post-transcriptional gene silen- cing).
Ausgelöst wird dieser gezielte mRNA-Abbau durch kurze siRNA-Moleküle mit 19-23 RNA-Basen Länge, die homolog zu der Target-mRNA sind, deren Umsetzung in ein Protein verhindert werden soll. Die siRNA-Moleküle setzen sich mit speziellen Endo- ribonukleasen zu einem zelleigenen RNA-Proteinkomplex mit der Bezeichnung „RISC" (RNA-induced silencing complex) zusammen. Bei dem Aufbau dieser Kom- plexe dissoziieren die beiden RNA-Stränge voneinander, wodurch sogenannte akti- vierte RISC entstehen, die jeweils einen Einzelstrang des siRNA-Moleküls enthalten. Aktivierte RISC, welche den antisense-Strang enthalten, der komplementär zu der Target-mRNA ist, binden an diese und die Endoribonuklease des RNA- Proteinkomplexes sorgt nun für den sequenzspezifischen mRNA-Abbau.
Die siRNA kann in der Zelle experimentell erzeugt werden oder durch Einschleusen von außen eingebracht werden. Zum Einen gelingt das über synthetisch hergestellte siRNA-Moleküle, die sowohl in-vitro und in-vivo verabreicht werden können.
Diese Methode hat jedoch technische Grenzen. Neben der generellen Instabilität der synthetischen siRNA im Medium als auch in der Zelle, ist die Inhibierung mittels synthetischer siRNA prinzipiell nur transient möglich und viele Zellen (z.B. neuronale Zellen) lassen sich nur sehr ineffizient transfizieren. Studien, die auf der Transfektion mit synthetischer siRNA beruhen, sind daher in der Regel sowohl zeitlich auf 1 - 5 Tage als auch Zelltyp-spezifisch eingeschränkt. Im Weiteren sind die hohen Produktionskosten und die lange Produktionsdauer nachteilig.
Zum Anderen kann siRNA durch Vektoren in der Zelle erzeugt werden. Dabei handelt es sich um virale oder plasmidbasierte Vektoren, die erst in der Zelle durch Expression zur Bildung der siRNA-Sequenzen führen. Die Vorteile gegenüber der Transfektion mit synthetischer siRNA liegen in der stabileren und ggf. regulierteren Transkription der entsprechenden siRNA-Sequenz.
Jedoch zeigen die plasmidbasierten Vektoren neben einer niedrigen Transfektion- seffizienz ebenfalls einen aufwendigen Produktionsprozeß. So ist es bspw. notwendig, stabile Klone zu selektieren. In diesem oftmals langwierigen Prozeß, der Wochen aber auch Monate dauern kann, kommt es häufig zum Auftreten zahlreicher potentieller Schwierigkeiten, die Klonierungsexperimenten innewohnen. Zur Über- prüfung des Produkts sind Sequenzierungen notwendig, die ebenfalls arbeits- und kostenintensiv sind.
Des Weiteren enthalten die plasmidbasierten Vektoren Antibiotika-Resistenzgene, die zu ihrer Selektion notwendig sind. Aus diesem Grund sind derartige Vektoren nicht zur Anwendung in lebenden Organismen geeignet. Die mögliche Rekombinati- on mit ubiquitär im Organismus vorkommenden Bakterien, birgt das Risiko eines zunehmenden Auftretens antibiotikaresistenter Bakterien in sich. Die Verbreitung von Antibiotikaresistenzen ist ein schwerwiegendes Problem und nicht vertretbar.
Da virale Vektoren zur effizienten und gezielten Transfektion fähig sind, bieten sie einen Vorteil gegenüber synthetischen siRNA-Molekülen als auch plasmidbasierten Vektoren.
Für die therapeutische Anwendung sind derartige virale Vektoren jedoch nur mit Vorbehalt einsetzbar. Auch hier stellt die Rekombination viraler Sequenzen mit natürlich vorkommenden Viren ein inhärentes Sicherheitsrisiko dar, da die Erzeugung neuer, pathogener Hybridviren befürchtet werden muß. Zudem ist auch ihre Herstel- lung aufwendig und kostenintensiv.
Eine weitere Möglichkeit Vektoren für siRNA herzustellen, zeigt die Firma Ambion in ihrer Internetpräsenz auf. Der dargestellte Prozess vermeidet die oben genannten Nachteile. Jedoch ist auch dieser Produktionsprozeß zeitaufwendig und durch eine Reihe an notwendigen Vervielfältigungsschritten der betreffenden Sequenzen mit- tels PCR (polymerase chain reaction) sehr fehlerbehaftet. Die Möglichkeit der Erzeugung sowohl unerwünschter als auch unbemerkter Mutationen, die durch den PCR-Prozeß noch potenziert werden, ist sehr groß. So sind auch hier Kontrollsequenzierungen, die den Herstellungsprozeß verlängern und zu erhöhten Kosten beitragen, nötig.
Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung ein geeignetes Verfahren zur in-vitro oder in-vivo Synthese einer definierten siRNA-Sequenz sowie einen dementsprechenden Kit zur Verfügung zu stellen.
Diese Aufgabe wir durch die kennzeichnenden Merkmale der Ansprüche 1 und 11 gelöst.
Im Sinne der vorliegenden Erfindung soll unter siRNA-Sequenz die RNA-Sequenz verstanden werden, die von dem erfindungsgemäß hergestellten DNA-Konstrukt abgelesen wird. Es handelt sich dabei somit um einen singulären RNA-Einzelstrang, der partiell selbstkomplementär ist. Im Sinne der vorliegenden Erfindung wird die Bezeichnung siRNA-Molekül für eine siRNA verwendet, welche aufgrund der Rückfaltung und Basenpaarung einer selbstkomplementären siRNA-Sequenz entsteht. Es handelt sich daher bei einem siRNA-Molekül um ein doppelsträngiges RNA-Molekül, bei dem die miteinander paarenden Stränge an einer Seite durch einen nicht komplementären Einzelstrang verbunden sind.
Erfindungsgemäß ist ein Verfahren vorgesehen, welches durch die folgenden Schritte gekennzeichnet ist a) Mischung eines DNA-Doppelstranges, welcher eine 19 - 23 Basen lange, singuläre Kopie einer Gensequenz einmal in 5' - 3'-Richtung und einmal in 3' - 5'-Richtung enthält, wobei zwischen der 5' - 3'- und 3' - 5'-Orientierung der singulären Kopie der Gensequenz jeweils eine 8 - 12 Basen lange Sequenzfolge von zwei Einzelsträngen angeordnet ist, welche so gewählt sind, dass gegenüberliegende Basen in keinem Fall komplementär zueinander sind und die flankierenden Doppelstrangbereiche so durch zwei DNA- Einzelstränge miteinander verbunden sind, wobei der DNA-Doppelstrang an den Enden kurze überstehende Enden einzelsträngiger DNA aufweist mit haarnadelförmigen Oligodesoxynukleotiden, welche an den Enden kurze ü- berstehende Enden einzelsträngiger DNA aufweisen und einem Promotor mit kurzen überstehenden Enden einzelsträngiger DNA, wobei das einzelsträngige 5'-Ende des Promotors mit einem der haarnadelförmigen Oligodesoxynukleotid paaren kann und das einzelsträngige 3'-Ende des Promotors komplementär zu dem einzelsträngigen 5'-Ende des DNA- Doppelstranges ist und einem Terminationssignal für RNA-Polymerasen mit kurzen überstehenden Enden einzelsträngiger DNA, wobei der 5'-Überhang des Terminations- Signals mit dem 3'-Ende des DNA-Doppelstranges spezifisch paaren kann und der 3'-Überhang des Terminationssignals mit einem haarnadelförmigen Oligodesoxynukleotids spezifisch paaren können, und b) anschließender Ligation der DNA-Fragmente, sowie c) abschließender Aufreinigung der hergestellten Vektoren.
In einer bevorzugten Ausführungsform ist ein Verfahren vorgesehen, bei dem der Promotor Teil eines bakteriell amplifizierbaren Plasmides ist, welches vor der Mischung der Komponenten im ersten Verfahrensschritt 1 a) mit einer Restriktionsen- donuklease geschnitten wird, welche eine den Promotor auf dem Plasmid flankierende Schnittstelle erkennt, die nicht auf dem herzustellenden Molekül vorhanden ist.
Ferner ist es erfindungsgemäß vorgesehen, dass im Falle der Verwendung eines Promotors als Teil eines bakteriell amplifizierbaren Plasmides der Ligationsschritt in Anwesenheit der Restriktionsendonuklease erfolgt, mit welcher der Promotor aus dem Plasmid ausgeschnitten wurde.
In einer Ausführungsform wird vor dem abschließenden Aufreinigungsschritt ein Verdau der Reaktionsmischung mittels einer ausschließlich für 3'- oder 5'-DNA- Enden spezifischen Exonuklease durchgeführt.
Bei dem erfindungsgemäßen Verfahren kann der DNA-Doppelstrang, welcher zu Beginn der Mischung zugegeben wird, aus dem Annealing von einem partiell selbstkomplementären Oligodesoxynukleotid resultieren oder von zwei komplementären Oligodesoxynukleotiden. Das Annealing kann auch erst in der Reaktionsmischung erfolgen, so dass zu Beginn des erfindungsgemäßen Verfahrens lediglich ein- zelsträngige komplementäre Oligodesoxynukleotide zugegeben werden.
Die Sequenz der Oligodesoxynukleotide ist in einer bevorzugten Ausführungsform so gewählt, dass die daraus resultierenden Haarnadeln in ihrem doppelsträngigen Bereich die Erkennungssequenz für eine Restriktionsendonuklease aufweisen.
Die abschließende Aufreinigung der mittels des erfindungsgemäßen Verfahren her- gestellten Vektoren erfolgt bevorzugt entweder durch Chromatographie oder Gelelektrophorese.
Wird der Promotor als Teil eines bakteriell amplifizierbaren Plasmides in das erfindungsgemäße Herstellungsverfahren eingesetzt, so handelt es sich bei der Restriktionsendonuklease, mit welcher der Promotor aus dem Plasmid ausgeschnitten werden kann, um ein Enzym der Gruppe der Klasse-Il-Restriktionsendonukleasen, vorzugsweise aus der Gruppe Bbsl , Bbvl , BbvII , Bpil ; Bpli , Bsal , BsmAI , BsmBI , BsmFI , BspMI , Eamll04I , Earl , Eco31I , Esp3l , Fokl , Hgal , SfaNl oder deren Isoschizomere.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kit zur Durchführung des erfindungsgemäßen Verfahrens enthaltend wenigstens einen Promotor, haar- nadelförmige Oligodesoxynukleotide und Enzyme. Bei den Enzymen handelt es sich um Ligasen, Restriktionsendonukleasen, Restriktionsexonukleasen, Kinasen und Polymerasen oder ausgewählte Kombinationen davon, in Form eines Enzymmixes. Zusätzlich kann der Kit je nach Ausführungsform noch Mittel zur Durchführung der enzymatischen Reaktionen enthalten sowie Mittel zur Aufreinigung der hergestellten Vektoren. Der Promotor kann im Kit als Teil eines Plasmids enthalten sein, aus dem dieser unter Verwendung einer geeigneten Restriktionsendonuklease herausgeschnitten werden kann.
Des weiteren ist ein Vektor Gegenstand der vorliegenden Erfindung, der nach dem erfindungsgemäßen Verfahren hergestellt wurde und der durch haarnadelförmige Oligodesoxynukleotide abgeschlossen ist, zwischen denen ein Promotor am 5'- Ende und ein Terminationssignal am 3'-Ende eines DNA-Doppelstranges angeordnet ist, wobei der DNA-Doppelstrang eine 19 - 23 Basen lange, singuläre Kopie einer Gensequenz einmal in 5' - 3'-Richtung und einmal in 3' - 5'-Richtung enthält, wobei zwischen der 5' - 3'- und 3' - 5'-Orientierung der singulären Kopie der Gensequenz jeweils eine 8 - 12 Basen lange Sequenzfolge von zwei Einzelsträngen angeordnet ist, welche so gewählt sind, dass gegenüberliegende Basen in keinem Fall komplementär zueinander sind und die flankierenden Doppelstrang bereiche so durch zwei DNA-Einzelstränge miteinander verbunden sind. Diese Expressionskassetten werden auch als Minimalistic siRNA Expression Cassettes (MISECs) bezeichnet.
Von dem bekannten Stand der Technik unterscheidet sich die vorliegende Erfindung dadurch, dass ein schnelles Verfahren zur Verfügung gestellt wird, mit dessen Hilfe ein Vektor hergestellt wird, der frei von Plasmid - oder viralen Bestandteilen ist und zur Expression von siRNA-Sequenzen führt. Das Verfahren zur Herstellung derartiger Vektoren beinhaltet keine PCR-Schritte, ist eine Dreischrittprozedur und in einem Reaktionsgefäß in nur wenigen Stunden durchführbar. Damit steht ein Verfah- ren zur Verfügung, mit dessen Hilfe man in kürzester Zeit sehr einfach verschiedenste siRNA-Sequenzen auf deren Funktionalität prüfen kann. Screeningverfahren nach geeigneten siRNA-Sequenzen können unter Nutzung der schnellen und unkomplizierten Herstellung der Vektoren mit Hilfe des Kits kosten-u. zeitsparend durchgeführt werden. Ein weiterer Vorteil der so erzeugten Vektoren ist ihre Kleinheit, die unter anderem die Transfektion erleichtert.
Die siRNA-Sequenzen sind einzelsträngig und bestehen aus einem sense und einem antisense Strang, der jeweils 19-23 Nukleotide umfaßt. Sense. -u. antisense Strang sind durch eine kurze Spacerregion getrennt, die die spätere Faltung der Stränge zu einem doppelsträngigen siRNA-Molekül erlaubt. Diese siRNA paart mit einer Target-mRNA und führt wie beschrieben zu deren Abbau durch Nukleasen.
Der mit dem Herstellungsverfahren erzeugte Vektor besteht lediglich aus einer geeigneten Promotorsequenz, der zu exprimierenden siRNA-Sequenz und einer kurzen Terminationssequenz und trägt somit keine unerwünschten Sequenzen viraler oder plasmidischer Herkunft. Zum Schutz vor Abbau durch Exonukleasen werden die Enden mit je einer Schlaufe aus einzelsträngigen Oligodinukleotiden (ODN) ko- valent verknüpft, so daß ein durchgehend kovalent geschlossenes Molekül entsteht.
In einem alternativen erfindungsgemäßen Herstellungsverfahrenbefinden befinden sich die zueinander komplementären DNA-Sequenzen nicht durch einzelsträngige Bereiche getrennt in einem einzigen Vektor. Die zueinander komplementären 19 - 23 Basen langen doppelsträngigen Sequenzen (sense und antisense) sind jeweils in getrennten Vektoren enthalten, welche durch das erfindungsgemäße Verfahren analog herstellbar sind. Diese so hergestellten Vektoren weisen somit den gleichen Aufbau auf, wie der Vektor, welcher zwischen Promotor und Haarnadelschleife den sense-loop-antisense-DNA-Strang enthält, allerdings ohne den einzelsträngigen Bereich.
Als Promotor für die Transkriptionskontrolle eignet sich prinzipiell jede eukaryote Promotorsequenz wie z. B. der CMV-Promotor des Cytomegalovirus. Bevorzugt werden Typ III Polymerase Promotoren eingesetzt, wie beispielsweise der H1 Pro- motor, der 7SK Promotor sowie der humane und murine U6 Promotor. Die Promotorsequenz kann auf einem geeigneten Plasmidvektor vorliegen, aus dem sie durch Restriktionsendonukleasen zu Herstellungsbeginn ausgeschnitten werden muß, die Promotorsequenz kann jedoch auch als schon isolierte oder synthetisch hergestellte Sequenz dem Verfahren zugesetzt werden.
Als Terminationssequenz kommt jegliche bekannte DNA-Sequenz in Frage, die zum Abbruch der Expression durch RNA-Polymerasen führt. Die Terminationssequenz muss nicht extra dem erfindungsgemäßen Verfahren zugesetzt werden, sondern kann auch Teil des doppelsträngigen Bereichs eines haarnadelförmigen Oligodeso- xynukleotids sein oder des 3'-Endes des partiellen DNA-Doppelstranges, welcher zentral zwei Einzelstränge aufweist.
Die zu exprimierende siRNA-Sequenz ist die zur Target-mRNA komplementäre Se- quenz, die als PCR-Produkt in das erfindungsgemäße Herstellungsverfahren eingesetzt wird. Ebenso kann die siRNA-Sequenz synthetisch durch Oligodinukleotid- synthese hergestellt werden. Dabei kann es sich um kurze ODN-Fragmente handeln, die in einem ersten Schritt annealt und ligiert werden müssen, es kann jedoch auch die gesamte siRNA-Sequenz durch ODN-Synthese erzeugt werden. Das ODN-Fragment wird durch die PNKinase phosphoryliert.
Der Herstellungsprozeß des erfindungsgemäßen Verfahrens ergibt sich wie folgt und ist in Fig. 1 zur Übersicht schematisch dargestellt.
Das Plasmid, das die Promotorsequenz trägt, wird mit dem Restriktionsenzym BspTNI über Nacht bei 37°C vollständig verdaut und somit das Promotorfragment bereitgestellt. Nach Zugabe der betreffenden siRNA-Sequenz sowie der 5' phospho- rylierten haarnadelförmigen Oligodesoxynukleotide im zweifachen Überschuß, werden mit Hilfe des Enzymes T4-DNA Ligase in Anwesenheit des Restriktionsenzy- mes BspTNI die einzelnen Fragmente ligiert. Das resultierende Gemisch an Nukleinsäuren wird mit dem Enzym T7-DNA-Polymerase behandelt. Das Endprodukt, der siRNA exprimierende Vektor, wird durch Säulenchromatographie aufgereinigt und steht zur Transfektion bereit.
In einer Ausführungsform ist vorgesehen, dass der siRNA-exprimierende Vektor zwei Restriktionsschnittstellen enthält, die das spätere Abtrennen der Haarnadeln erlauben. Das ist von Vorteil, da der Vektor damit weiteren Prozessen zugänglich ist. Sei es das Klonieren der Sequenz in einen beliebigen Expressionsvektor, bspw. ein Plasmid, sei es die Vervielfältigung der Sequenz durch PCR oder ähnliches. Diese Ausführungsform ist in Fig. 2 gezeigt.
Ein in-vitro Versuch zur Überprüfung der Funktionalität der erfindungsgemäßen siRNA-Vektoren wurde durchgeführt. Dazu wurden Hamsterzellen mit verschiede- nen siRNA-Vektoren transfiziert, die die Expression der Luciferase unterdrücken sollten. Als siRNA-Vektoren wurden Plasmid und erfindungsgemäßer Vektor eingesetzt. Beide Vektoren erreichten eine ca. 90% Hemmung der Luciferaseexpression. Bei vergleichbarer Wirksamkeit und Transfektionseffizienz gelingt es vorteilhafterweise durch das erfindungsgemäße Verfahren, einen Vektor herzustellen, der die beschriebenen Nachteile der plasmidbasierten Vektoren vermeidet und wesentlich zeit-u. kostensparender hergestellt werden kann.
Die Bedeutung der Erfindung ergibt sich somit in der Bereitstellung eines Verfahrens zur Herstellung geeigneter Vektoren, die zu Screeningverfahren eingesetzt werden können und so zur schnellen funktioneilen Überprüfung potentieller siRNA- Sequenzen dienen. Der Kit stellt weiterhin ein potentielles Werkzeug für die Gentherapie, im Sinne der Abschaltung krankhafter Gene, zur Verfügung.
Mit dem Herstellungsverfahren können jedoch auch auf einfachem Weg DNA- Expressionsvektoren hergestellt werden. Dazu wird die siRNA-Sequenz durch eine für ein Gen kodierende DNA-Sequenz ersetzt. Durch Restriktionsverdau werden an den Enden der DNA-Sequenz einzigartige Überhänge geschaffen, die es erlauben, die Fragmente (Promotor, polyA-site und haarnadelförmige ODN) in der richtigen Anordnung zu ligieren. Fig. 3 zeigt schematisch diesen Herstellungsweg. Ein Kit, der die Herstellung der DNA-Expressionsvektoren erlaubt, ist ebenfalls vorgesehen. Bestandteile des Kits sind: geeignetes Plasmid mit Promotor-und polyA-site- Sequenz, kodierende DNA-Sequenz, haarnadelförmige ODN, ATP, Ligase, Restriktionsenzym, T7-Polymerase sowie Chromatographiesäulenmaterial zur Aufreinigung des Produktes.
Weitere vorteilhafte Maßnahmen sind in den übrigen Unteransprüchen beschrieben; die Erfindung wird anhand von Ausführungsbeispielen und den nachfolgenden Figu- ren näher beschrieben; es zeigt:
Fig. 1 : zeigt den Herstellungsweg der siRNA-Vektoren A: in das Verfahren einzusetzende siRNA-Sequenz, die homolog zur Target- mRNA ist. Die Sequenz besteht aus dem sense-antisense-loop- Bereich und einer Terminationssequenz. Die siRNA-Sequenz kann aus einzelnen ODN- Fragmenten, die mit Hilfe des Enzymmix annealt, ligiert u. ggf. phosphoryliert werden müssen, bestehen, sie kann auch schon als vollständiges ODN- Fragment vorliegen.
B: zeigt die Bestandteile, die durch das Enzym Ligase an das ODN- Fragment ligiert werden. Dabei handelt es sich um die Promotorsequenz mit entsprechenden komplementären Überhängen und um haarnadelförmige O- ligodinukleotide, deren wiederum komplementären und einzigartigen Überhänge von jeweils 4 Basen dazu führen, das ein kovalent geschlossener linearer Vektor entsteht, der aus Promotor, Sense-, Loop-, Antisense- und Terminationssequenz besteht und an den Enden haarnadelförmig geschlossen ist. C: in einem letzten Schritt werden unligierte Bestandteile durch T7-DNA Polymerase Verdau abgebaut. Das zurückbleibende Produkt wird säulenchro- matographisch aufgereinigt.
D: zur Transfektion bereites Endprodukt
Fig.2: zeigt den Herstellungsweg der siRNA-Vektoren mit zusätzlichen Restrikti- onsschnittstellen
A: in das Verfahren einzusetzende siRNA-Sequenz, die homolog zur Target- mRNA ist. Die Sequenz besteht aus dem sense-antisense-loop- Bereich und einer Terminationssequenz. Die siRNA-Sequenz kann aus einzelnen ODN- Fragmenten, die mit Hilfe des Enzymmix annealt, ligiert u. ggf. phosphoryliert werden müssen, bestehen, sie kann auch schon als vollständiges ODN- Fragment vorliegen.
B: zeigt die Bestandteile, die durch das Enzym Ligase an das ODN- Fragment ligiert werden. Dabei handelt es sich um die Promotorsequenz mit entsprechenden komplementären Überhängen, die mit einer zusätzlichen Restriktionsschnittstelle am 5' Ende versehen wurde, und um haarnadelför- mige Oligodinukleotide, wobei ein haarnadelförmiges ODN ebenfalls eine zusätzliche Restriktionsschnittstelle trägt, deren wiederum komplementären und einzigartigen Überhänge von jeweils 4 Basen dazu führen, das ein kova- lent geschlossener linearer Vektor entsteht, der aus Promotor, Sense-, Loop- , Antisense- und Terminationssequenz besteht und an den Enden haarnadel- förmig geschlossen ist.
C: in einem letzten Schritt werden unligierte Bestandteile durch T7-DNA Polymerase Verdau abgebaut. Das zurückbleibende Produkt wird säulenchro- matographisch aufgereinigt. D: zur Transfektion bereites Endprodukt mit zwei Restriktionsschnittstellen
Fig. 3: zeigt den Herstellungsweg DNA-kodierender Vektoren
A: Als Ausgangsmaterial dient ein Plasmid sowie eine kodierende DNA- Sequenz. Das Plasmid trägt Restriktionsschnittstellen, die das Ausschneiden der Promotor-und der polyA-site-Sequenz ermöglichen. B: durch Restriktionsverdau entstehen die Fragmente: Promotor und polyA- site, die jeweils einzigartige komplementäre Überhänge aufweisen sowie Rest-Plasmidfragmente. Nach Zugabe der kodierenden DNA-Sequenz, haarnadelförmiger ODN und in Anwesenheit des Enzyms Ligase werden die Fragmente ligiert. C: unligierte Bestandteile werden durch T7-DNA Polymerase Verdau abgebaut. Der kovalent geschlossene Vektor, bestehend aus Promotor- kodie- render-und polyA-site-Sequenz wird säulenchromatographisch aufgereinigt.
D: zur Transfektion einsetzbarer DNA-exprimierender Vektor.
Fig.4: zeigt die Hemmung der Luciferaseexpression in-vitro durch siRNA Die Expression wurde anhand von relativen Lichteinheiten (rlu) nach Transfektion von CHOK1 -Zellen bestimmt. Eingesetzt wurden: mit erfindungsgemäßem Verfahren hergestellter siRNA-Vektor (a), siRNA-Sequenz tragendes Plasmid (b), Positivkontrolle zur Kontrolle der Luciferaseexpression (c), un- behandelte Zellen (d) und mit Leervektor transfizierte Zellen (e). Die Werte stellen Mittelwerte dar, die aus Mehrfachbestimmungen errechnet wurden. Bei den Negativ-und der Positivkontrollen wurde die Unterdrückung der Luci- feraseexpression erwartungsgemäß nicht beobachtet. Dagegen zeigten die mit siRNA-behandelten Zellen eine signifikant geringere Luciferaseexpression. Die Luciferaseexpression ist bis zu 90% herabgesetzt im Vergleich zur Positivkontrolle.
Fig.5 zeigt die Ergebnisse eines Experiments, bei dem der erfindungsgemäße siRNA Expressionsvektor mit Plasmiden verglichen wird, die die identischen Expressionskassetten enthalten.
CHO-K1 Zellen wurden mit 0.5 ng Plasmid, welches für Renilla Luziferase kodiert und 4.5 ng Plasmid, welches für die Firefly Luziferase kodiert und 195 ng des korrespondierenden siRNA Expressionskonstruktes, welches gegen die Expression der Firefly Luziferase gerichtet war, kotransfiziert. 24 Stunden nach der Transfektion wurden die Zellen lysiert und in einem Lumi- nometer die Luziferase-Aktivität bestimmt. Die Aktivität der Firefly Luziferase wurde gegen die Aktivität der Renilla Luziferase abgeglichen und mit der Aktivität der Kontrolle verglichen (unspezifische siRNA). Die dargestellten Er- gebnisse zeigen die Mittelwerte von drei unabhängigen Versuchen.
Die Unterdrückung der Genexpression durch die MISECs, welche mit einem „siRNA Expression Vector Kit" unter Verwendung des erfindungsgemäßen Verfahrens hergestellt wurden, ist vergleichbar mit den Effekten der Plasmid- Transfektionen und die Unterdrückung der Genexpression liegt bei beiden Transfektionen im Bereich zwischen 70 - 75%.
Fig. 6: zeigt die Dosisabhängigkeit der Genrepression nach der Transfektion von MISECs, welche mit einem „siRNA Expression Vector Kit" hergestellt wurden, wobei die Haarnadel-siRNA gegen das Firefly Luziferasegen gerichtet war, im Vergleich zu nicht spezifischen siRNA Sequenzen. CHO-K1 wurden mit 500 ng Plasmid kodierend für Renilla Luziferase, 100 ng Plasmid kodierend für Firefly Luziferase und siRNA Expressioriskonstrukten gegen das Firefly Luziferasegen mit den angegeben Mengen kotransfiziert. Nach 24 Stunden wurden die Zellen lysiert und in einem Luminometer die Aktivität der Luziferasen bestimmt. Die Aktivität der Firefly Luziferase wurde gegen die Aktivität der Renilla Luziferase abgeglichen und mit der Aktivität der Kontrolle verglichen (unspezifische siRNA). Die dargestellten Ergebnisse zeigen die Mittelwerte von zwei unabhängigen Versuchen.
Mit der unspezifischen siRNA verglichen, zeigt die Transfektion der gleichen Menge (1000 ng) der mit einem „siRNA Expression Vector Kit" unter Verwendung des erfindungsgemäßen Verfahrens hergestellten MISECs eine signifikante Abnahme der Luziferase-Aktivität.
Fig. 7: In einem weiteren Experiment, welches in der Arbeitsgruppe von Dr. Christiane Kleuss am Institut für Pharmakologie der Freien Universität Berlin durchgeführt wurde, wurde die Effektivität der Genrepression durch MISECs, welche mit einem „siRNA Expression Vector Kit" unter Verwendung des erfindungsgemäßen Verfahrens hergestellt wurden, mit einem Plasmid verglichen, welches die Gleiche Expressionskassette enthält.
CHO-K1 wurden mit 12 ng Plasmid kodierend für Renilla Luziferase, 6 ng Plasmid kodierend für Firefly Luziferase und 182 ng eines korrespondierenden siRNA Expressionskonstruktesgegen das Firefly Luziferasegen kotransfiziert. CHO-K1 wurden mit 500 ng Plasmid kodierend für Renilla Luziferase, 100 ng Plasmid kodierend für Firefly Luziferase und siRNA Expressionskon- strukten gegen das Firefly Luziferasegen mit den angegeben Mengen kotransfiziert.
Nach 24 Stunden wurden die Zellen lysiert und in einem Luminometer die Aktivität der Luziferasen bestimmt. Die Aktivität der Firefly Luziferase wurde gegen die Aktivität der Renilla Luziferase abgeglichen und mit der Aktivität der Kontrolle verglichen (unspezifische siRNA). Die dargestellten Ergebnisse zeigen die Mittelwerte von drei unabhängigen Versuchen. Auch in diesem Experiment zeigen die siRNA Expressionsvektoren, welche nach dem erfindungsgemäßen Verfahren hergestellt wurden, die gleiche Effektivität wie das Plasmid mit der identischen Expressionskassette, welche jeweils bei ca. 75% Reduktion der Luziferaseaktivität gegenüber dem unspezifischen Kontrollplasmid liegt. Die Inhibition der erfindungsgemäße hergestellten Konstrukte ist vollkommen ausreichend, um in einem Screeningver- fahren in kurzer Zeit effektiv erfolgreiche Zielsequenzen, welche zur Genrepression geeignet sind, zu identifizieren.
Beispiel 1 : Herstellung von siRNA-Vektoren zur Unterdrückung der Luciferase Expression
Die für die siRNA der Luciferase (siRNALuc) kodierenden Vektoren wurden wie folgt erhalten:
Die zwei ODN-Fragmente für siRNALuc wurden bei 90°C für 3min erhitzt und durch langsames Abkühlen annealt. Dadurch wurde folgende für Luciferase kodierende Sequenz erhalten:
Seq. ID 1: GAGCTGTTTC TGAGGAGCCT TCAAGAGAGG CTCCTCAGAA ACAGCTC
Dabei bilden die 19 ersten Basen den sense Strang, die folgenden 9 Basen den loop Bereich und die restlichen 19 Basen den antisense Strang.
Die Phosphorylierung durch PNKinase erfolgte im Anschluß. Zum Erhalt von 10 Mikrogramm Endprodukt wurden 3,9 Mikrogramm siRNALuc eingesetzt. Nach Zugabe von 5,2 Mikrogramm H1-Promotor (Seq. ID 2) sowie der 5'-phosphorylierten haarnadelförmigen Oligodesoxynukleotide (Seq. ID 3 und 4): Seq. ID 2: ATATTTGCAT GTCGCTATGT GTTCTGGGAA ATCACCATAA ACGTGAAATG TCTTTGGATT TGGGAATCTT ATAAGTTCTGT ATGAGAGCAC AGATAGGG
Seq. ID 3: 5' -PH-GGG AGT CCA GTT TTC TGG AC-3' (1,2 Mikrogramm) und Seq. ID 4: 5' PH-TGG AAA GTC CAG TTT TCT GGA CTT-3' (1 ,4 Mikrogramm)
wurden mit Hilfe des Enzymes T4-DNA Ligase in Anwesenheit des Restriktionsen- zymes BspTNI die einzelnen Fragmente ligiert. Das resultierende Gemisch an Nukleinsäuren wurde mit dem Enzym T7-DNA-Polymerase behandelt. Das Endprodukt, der siRNALuc exprimierende Vektor, wurde durch Säulenchromatographie aufgereinigt und stand zur Transfektion bereit.
Beispiel 2: Unterdrückung der Luciferase Expression in-vitro
Hamsterzellen der CHOK1 Zelllinie wurde in Platten mit 24 Löchern ausgesät, wobei pro Loch 8x104 Zellen in 500 Mikroliter Medium ausgesät wurden. Nach der Inkuba- tion über 24h erfolgte die Transfektion mit verschiedenen siRNALuc exprimierenden Konstrukten. Als Transfektionsreagenz diente FuGeneθ. Als Referenzvektor zur Bestimmung der Firefly- Luciferaseaktivität wurde in jeden Ansatz zusätzlich zu einem Firefly-Luciferase kodierenden Plasmid ein für die Renilla-Luciferase kodierendes Plasmid eingesetzt. Dadurch kann mit Hilfe eines Dual-Assays die Firefly- Luciferaseexpression im Verhältnis zur Marker-Renillaluciferaseexpression bestimmt werden. Als Negativkontrollen dienten untransfizierte Zellen und mit einem Leervektor transfizierte Zellen. Nach Übernacht-Inkubation wurden die Zellen lysiert und in je 15 Mikroliter Passiv-Lysispuffer aufgenommen. Der Nachweis der Expression erfolgte mittels eines Dual-Luciferase Reporter Assays im Luminumeter. Das Ergebnis ist in Figur 4 dargestellt
Beispiel 3: Herstellung von für DNA-kodierende Vektoren mit dem erfindungsgemäßen Verfahren
Die DNA-Vektor Herstellung erfolgt im kombinierten Restriktions- / Ligationsansatz. Das eingesetzte Plasmid pMCV2.8 trägt vier BspTNI- bzw. Eco31l-Schnittstellen und stellt nach dem Verdau Promoter und polyA-site zur Verfügung.
Das Plasmid und das kodierende DNA-Fragment werden mit dem Restriktionsenzym BspTNI verdaut und mit den haarnadelförmigen ODN ligiert. Sequenzen der haarnadelförmigen ODN:
Seq.lD 3: 5' -PH-GGG AGT CCA GTT TTC TGG AC-3' und Seq.lD 5: 5' PH- AGG GGT CCA GTT TTC TGG AC-3'
Der Restriktions- / Ligationsansatz enthält somit: Plasmid, kodierende DNA- Sequenz, haarnadelförmige ODN, Reaktionspuffer, ATP, BspTNI sowie T4-DNA- Ligase. Die Inkubation erfolgt über 4 h bei 37°C. Der Prozeß wird durch Hitzeinakti- vierung für 15' bei 70°C gestoppt.
Der Abbau des Restvektors sowie aller nicht ligierten Fragment erfolgt mittels T7- DNA-Polymerase Verdau. Der kodierende Vektor wird chromatographisch aufgereinigt und steht zur Transfektion bereit.

Claims

Patentansprüche
1. Herstellungsverfahren für Vektoren, die nach ihrer Transfektion in eukaryote Zellen die Bildung definierter Proteine gezielt durch RNA-Interferenz inhibie- ren, gekennzeichnet durch die folgenden Verfahrensschritte a) Mischung eines DNA-Doppelstranges, welcher eine 19 - 23 Basen lange, singuläre Kopie einer Gensequenz einmal in 5' - 3'-Richtung und einmal in 3' - 5'-Richtung enthält, wobei zwischen der 5' - 3'- und 3' - 5'-Orientierung der singulären Kopie der Gensequenz jeweils eine 8 - 12 Basen lange Sequenzfolge von zwei Einzelsträngen angeordnet ist, welche so gewählt sind, dass gegenüberliegende Basen in keinem Fall komplementär zueinander sind und die flankierenden Doppelstrangbereiche so durch zwei DNA-Einzelstränge miteinander verbunden sind, wobei der DNA-Doppelstrang an den Enden kurze überstehende En- den einzelsträngiger DNA aufweist mit haarnadelförmigen Oligodesoxynukleotiden, welche an den Enden kurze überstehende Enden einzelsträngiger DNA aufweisen und einem Promotor mit kurzen überstehenden Enden einzelsträngiger DNA, wobei das einzelsträngige 5'-Ende des Promotors mit einem der haarnadelförmigen Oligodesoxynukleotid paaren kann und das einzelsträngige 3'-Ende des Promotors komplementär zu dem einzelsträngigen 5'-Ende des DNA-Doppelstranges ist und einem Terminationssignal für RNA-Polymerasen mit kurzen überstehenden Enden einzelsträngiger DNA, wobei der 5'-Überhang des Ter- minationssignals mit dem 3'-Ende des DNA-Doppelstränges spezifisch paaren kann und der 3'-Überhang des Terminationssignals mit einem haarnadelförmigen Oligodesoxynukleotids spezifisch paaren kann, und b) anschließender Ligation der DNA-Fragmente, sowie c) abschließender Aufreinigung der hergestellten Vektoren.
2. Verfahren nach Anspruch 1 , wobei der Promotor Teil eines bakteriell amplifizierbaren Plasmides ist, welches vor der Mischung der Komponenten in Ver- fahrensschritt 1 a) mit einer Restriktionsendonuklease geschnitten wird, welche eine den Promotor auf dem Plasmid flankierende Schnittstelle erkennt, die auf dem herzustellenden Molekül nicht vorhanden ist.
3. Verfahren nach Anspruch 2, wobei der Ligationsschritt nach Verfahrensschritt 1 b) in Anwesenheit der Restriktionsendonuklease erfolgt, mit welcher der Promotor aus dem Plasmid gespalten wurde.
4. Verfahren nach Anspruch 2 oder 3, wobei vor dem abschließenden Aufreinigungsschritt nach Verfahrensschritt 1 c) ein Verdau der Reaktionsmischung mittels einer ausschließlich für 3'- oder 5'-DNA-Enden spezifischen Exo- nuklease erfolgt.
5. Verfahren nach wenigstens einem der Ansprüche 2 bis 4, wobei es sich bei der Restriktionsendonuklease um ein Enzym der Gruppe der Klasse-Il- Restriktionsendonukleasen, vorzugsweise ein Enzym aus der Gruppe Bbsl , Bbvl , BbvII , Bpil ; Bpll , Bsal , BsmAI , BsmBI , BsmFI , BspMI , Eamll04I , Earl , Eco31I , Esp3 I , FokI , Hgal , Sf aNI oder deren Isoschizomere handelt.
6. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, wobei der Mischung aus Verfahrensschritt 1 a) ein DNA-Doppelstrang zugegeben wird, der aus dem partiellen Annealing von einem partiell selbstkomplementären Oligodesoxynukleotid oder wenigstens zwei Oligodesoxynukleotiden resultiert.
7. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, wobei es sich bei dem zugegebenen Promotor um den Promotor des humanen Genes für H1 RNA (SeqlD.2) handelt.
8. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, wobei die haarnadelförmigen Oligodesoxynukleotide in ihrem doppelsträngigen Bereich die Erkennungssequenz für eine Restriktionsendonuklease aufweisen.
9. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, wobei die Aufreinigung in Verfahrensschritt 1 c) durch Chromatographie und/oder mittels Gelelektrophorese erfolgt.
10. Kit zur Herstellung von Vektoren, die geeignet sind nach ihrer Transfektion in eukaryote Zellen in diesen die Bildung definierter Proteine durch RNA- Interferenz gezielt zu inhibieren, nach wenigstens einem der Verfahren ge- maß der Ansprüche 1 bis 9, enthaltend zumindest einen Promotor, haarnadelförmige Oligodesoxynukleotide und Enzyme.
11. Kit nach Anspruch 10, wobei die enthaltenen Enzyme ausgewählt sind aus Restriktionsendonukleasen, Restriktionsexonukleasen, Ligasen, Kinasen und Polymerasen.
12. Kit nach Anspruch 11 oder 11, wobei dieser zusätzlich Mittel zur Durchführung der enzymatischen Reaktionen enthält.
13. Kit nach wenigstens einem der Ansprüche 10 bis 12, wobei dieser zusätzlich Mittel zur Aufreinigung der hergestellten Vektoren.
14. Kit nach wenigstens einem der Ansprüche 10 bis 13, wobei der Promotor als Teil eines bakteriell amplifizierbaren Plasmids enthalten ist.
15. Kit nach wenigstens einem der Ansprüche 10 bis 14, wobei eine zur Spaltung des Promotors aus dem Plasmid geeignete Restriktionsendonuklease enthalten ist.
16. Vektor, hergestellt nach wenigstens einem der Ansprüche 1 bis 9, der nach der Transfektion in eukaryote Zellen die Bildung definierter Proteine gezielt durch RNA-Interferenz inhibiert, dadurch gekennzeichnet, dass dieser durch haarnadelförmige Oligodesoxynukleotide abgeschlossen ist, zwischen denen ein Promotor am 5'-Ende und ein Terminationssignal am 3'-Ende eines DNA-Doppelstranges angeordnet ist, wobei der DNA-Doppelstrang eine 19
- 23 Basen lange, singuläre Kopie einer Gensequenz einmal in 5' - 3'- Richtung und einmal in 3' - 5'-Richtung enthält, wobei zwischen der 5' - 3'- und 3' - 5'-Orientierung der singulären Kopie der Gensequenz jeweils eine 8
- 12 Basen lange Sequenzfolge von zwei Einzelsträngen angeordnet ist, welche so gewählt sind, dass gegenüberliegende Basen in keinem Fall komplementär zueinander sind und die flankierenden Doppelstrang bereiche so durch zwei DNA-Einzelstränge miteinander verbunden sind.
PCT/DE2004/002838 2004-05-28 2004-12-28 Herstellungsverfahren geeigneter dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz WO2005116223A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/569,697 US20090004703A1 (en) 2004-05-28 2004-12-28 Method for the Production of Suitable Dna Constructs for Specific Inhibition of Gene Expression by Rna Interference
DK04816287.9T DK1749096T3 (da) 2004-05-28 2004-12-28 Fremgangsmåde til fremstilling af egnede DNA-konstrukter til specifik inhibering af genekspression ved RNA-interferens
EP04816287.9A EP1749096B1 (de) 2004-05-28 2004-12-28 Herstellungsverfahren geeigneter dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026734 2004-05-28
DE102004026734.0 2004-05-28

Publications (1)

Publication Number Publication Date
WO2005116223A1 true WO2005116223A1 (de) 2005-12-08

Family

ID=34960317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002838 WO2005116223A1 (de) 2004-05-28 2004-12-28 Herstellungsverfahren geeigneter dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz

Country Status (4)

Country Link
US (1) US20090004703A1 (de)
EP (1) EP1749096B1 (de)
DK (1) DK1749096T3 (de)
WO (1) WO2005116223A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059760A1 (de) * 2005-11-25 2007-05-31 Mologen Ag Dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580960B2 (en) * 2003-02-21 2009-08-25 Motionpoint Corporation Synchronization of web site content between languages
WO2005080567A1 (de) * 2004-02-20 2005-09-01 Mologen Ag Substituiertes, nicht-kodierendes nukleinsäuremolekül zur therapeutischen und prophylaktischen immunstimulation in menschen und höheren tieren
EP2680162A1 (de) 2010-07-13 2014-01-01 Motionpoint Corporation Lokalisierung eines Websiteinhalts
CN106795522A (zh) * 2014-10-17 2017-05-31 上海斯丹赛生物技术有限公司 定向克隆的方法
LU92821B1 (en) 2015-09-09 2017-03-20 Mologen Ag Combination comprising immunostimulatory oligonucleotides
GB2542425A (en) 2015-09-21 2017-03-22 Mologen Ag Means for the treatment of HIV

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021322A1 (de) * 1996-11-13 1998-05-22 Soft Gene Gmbh Design-prinzip für die konstruktion von expressionskonstrukten für die gentherapie
WO2004027063A1 (en) * 2002-09-19 2004-04-01 Institut National De La Sante Et De La Recherche Medicale-Inserm Use of sirnas for gene silencing in antigen presenting cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675803B1 (fr) * 1991-04-25 1996-09-06 Genset Sa Oligonucleotides fermes, antisens et sens et leurs applications.
DE19826758C1 (de) * 1998-06-15 1999-10-21 Soft Gene Gmbh Darstellung von linearen kovalent geschlossenen DNA-Molekülen als Expressionskonstrukte
WO2003046173A1 (fr) * 2001-11-28 2003-06-05 Center For Advanced Science And Technology Incubation, Ltd. Systeme d'expression d'arn si et procede de production de cellules d'inactivation de genes fonctionnelles et analogues au moyen de ce systeme
GB0130955D0 (en) * 2001-12-24 2002-02-13 Cancer Res Ventures Expression system
EP1623032A2 (de) * 2003-05-09 2006-02-08 University of Pittsburgh of the Commonwealth System of Higher Education Banken von kleiner interferenz-rna und verfahren zur synthese und verwendung
US20050064489A1 (en) * 2003-09-24 2005-03-24 Zhang Fang Liang Engineered U6 and H1 promoters
US20050233994A1 (en) * 2004-04-16 2005-10-20 Ajamete Kaykas Methods and vectors for expressing siRNA

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021322A1 (de) * 1996-11-13 1998-05-22 Soft Gene Gmbh Design-prinzip für die konstruktion von expressionskonstrukten für die gentherapie
WO2004027063A1 (en) * 2002-09-19 2004-04-01 Institut National De La Sante Et De La Recherche Medicale-Inserm Use of sirnas for gene silencing in antigen presenting cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRUMMELKAMP T R ET AL: "A system for stable expression of short interfering RNAs in mammalian cells", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 296, no. 5567, 2002, pages 550 - 553, XP002225638, ISSN: 0036-8075 *
SCHAKOWSKI F ET AL: "A NOVEL MINIMAL-SIZE VECTOR (MIDGE) IMPROVES TRANSGENE EXPRESSION IN COLON CARCINOMA CELLS AND AVOIDS TRANSFECTION OF UNDESIRED DNA", MOLECULAR THERAPY, ACADEMIC PRESS, SAN DIEGO, CA,, US, vol. 3, no. 5, PART 1, May 2001 (2001-05-01), pages 793 - 800, XP001100620, ISSN: 1525-0016 *
WALL NATHAN R ET AL: "Small RNA: can RNA interference be exploited for therapy?", LANCET, XX, XX, vol. 362, no. 9393, 25 October 2003 (2003-10-25), pages 1401 - 1403, XP002330367, ISSN: 0140-6736 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059760A1 (de) * 2005-11-25 2007-05-31 Mologen Ag Dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz
US9012620B2 (en) 2005-11-25 2015-04-21 Mologen Ag DNA constructs for specific inhibition of gene expression by RNA interference

Also Published As

Publication number Publication date
EP1749096B1 (de) 2013-07-17
DK1749096T3 (da) 2013-10-28
US20090004703A1 (en) 2009-01-01
EP1749096A1 (de) 2007-02-07

Similar Documents

Publication Publication Date Title
EP1951870B1 (de) Dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz
EP1798285B1 (de) Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
DE60116506T9 (de) Methoden und reagenzien für molekulares klonieren
DE60221801T2 (de) Cpg-freie synthetische gene und bakterielle plasmide
DE29924298U1 (de) Charakterisierung der Genfunktion unter Verwendung doppelsträngiger RNA-Inhibition
WO2008122314A1 (de) Rna-interferenz tags
WO1999047536A2 (de) Verfahren zur synthese von nucleinsäuremolekülen
EP0776363B1 (de) Ribozym-bibliothek, ihre herstellung und ihre verwendung
EP1749096B1 (de) Herstellungsverfahren geeigneter dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz
DE60202196T2 (de) Orientationsgerichtete konstruktion von plasmiden
EP1427822B1 (de) Nukleinsäure für einen klonierungsvektor
Kelly et al. Recombineered Xenopus tropicalis BAC expresses a GFP reporter under the control of Arx transcriptional regulatory elements in transgenic Xenopus laevis embryos
DE3203537C2 (de)
WO2004097042A1 (de) Sirna-selektionsverfahren
DE112022001365T5 (de) In vivo dna zusammenbau und analyse
DE60127687T2 (de) Testverfahren zur bestimmung der alternativen verlangerung von telomeren in menschlichen zellen
EP3583215A1 (de) System und verfahren zur zelltyp-spezifischen translation von rna-molekülen in eukaryoten
WO2000023604A1 (de) Expressionsvektoren enthaltend regulative sequenzen aus stylonychia lemnae zur heterologen proteinexpression in eukaryontischen protisten und ein verfahren zur identifizierung solcher regulativen sequenzen
EP1352074B1 (de) Verfahren zur herstellung von homogenen nukleinsäure multimeren für pharmazeutische zusammensetzungen
EP2961842A2 (de) Verfahren zur gezielten abtötung von zellen durch zur mrna-anbindung ausgerichtete nukleotid-moleküle sowie nukleotid-moleküle und applikationskit für solche verwendung
WO2001005993A1 (de) Zelluläre aufnahme von dna
EP0733713A1 (de) Verfahren zur Messung Transkriptions-regulatorischer Aktivitäten von DNS-Sequenzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004816287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11569697

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004816287

Country of ref document: EP