WO2005115654A1 - Energy-absorbing element for a vehicle - Google Patents

Energy-absorbing element for a vehicle Download PDF

Info

Publication number
WO2005115654A1
WO2005115654A1 PCT/FR2005/001035 FR2005001035W WO2005115654A1 WO 2005115654 A1 WO2005115654 A1 WO 2005115654A1 FR 2005001035 W FR2005001035 W FR 2005001035W WO 2005115654 A1 WO2005115654 A1 WO 2005115654A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing element
roll
bond
element according
energy absorbing
Prior art date
Application number
PCT/FR2005/001035
Other languages
French (fr)
Inventor
Sylvie Arsene
Laurent Poizat
Jean-Marie Feppon
Original Assignee
Alcan Rhenalu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Rhenalu filed Critical Alcan Rhenalu
Publication of WO2005115654A1 publication Critical patent/WO2005115654A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type

Definitions

  • the invention relates to an element intended to irreversibly absorb energy during an impact.
  • the shock absorber in the automotive field intended, in association with a beam, for a bumper assembly for a motor vehicle.
  • the beam is arranged transversely relative to the direction of movement of the vehicle, and the absorber (s) are arranged either transversely or longitudinally relative to this direction.
  • An energy absorbing element is sometimes referred to as a "deformation element” or "crash-box".
  • absorbers or "crash boxes” or "deformation elements”
  • This development responded to the need, in Europe in particular, to have a system, no longer only resistant, that is to say which deforms without plasticizing, but also absorbent, that is to say which deforms by absorbing energy in a controlled manner, when the impact force exceeds a certain threshold.
  • the absorbers are most often made from aluminum profiles with multi-cell section arranged longitudinally or transversely relative to the direction of movement of the vehicle.
  • patent FR 2760708 (Alusuisse) describes a bumper produced from a beam and absorbers made up of a profile positioned longitudinally and subdivided by at least one longitudinal internal bar.
  • Patent application DE 10041371 (Honda) proposes a hexagonal geometry, subdivided into 6 cells. Other vehicles are equipped with multi-absorbers cells arranged transversely, for example the Audi A2. This type of arrangement is also described in patent application EP 1125798 (Kobe Steel).
  • the energy absorption capacity of a vehicle bumper assembly can be formalized as follows: when the force-displacement curve is recorded at the level of the impactor during the impact, the level of effort does not must not exceed a specified value F max , while maximizing the area under the curve, representative of the energy absorbed, as illustrated in Figure 1.
  • the bumper will be optimal when its response is as "flat” as possible and close to level F max .
  • the curve F (d) of a bumper consisting of a beam and two absorbers will schematically be broken down into three distinct phases: the stripping of the beam corresponding to the elastic deformation of the latter, the crushing of the absorber and crushing of the beam.
  • the effectiveness of a bumper therefore depends on the combined optimization of these three phases.
  • the object of the invention is to provide an element in particular of a bumper for a vehicle allowing a significant absorption of energy in the event of impacts, while remaining as light and compact as possible.
  • the subject of the invention is an element intended to absorb energy irreversibly during an impact, characterized in that it is produced from “roll-bond” panels made from two sheets of aluminum or aluminum alloy welded by colaminating, with the exception of areas previously coated with an ink preventing welding, which are then inflated hydraulically or pneumatically.
  • this element essentially consists of a tubular body, associated with a beam in a bumper assembly for a motor vehicle, and arranged longitudinally or transversely relative to the direction of movement of the vehicle.
  • the “roll-bond” panels used are of the two-sided type with two inflated faces, the inflated zones preferably being distributed non-directionally on the panel and, according to one embodiment of the invention, these inflated zones consist of pellets, forming a structure of the type known as the "boiler".
  • the aluminum alloy is an alloy with structural hardening, for example of the 6000 family and in particular of the type 6016.
  • the invention also relates to a method of manufacturing this energy absorbing element, comprising the production of “roll-bond” panels, their shaping, and optionally their assembly to obtain the tubular body of said energy absorber. energy.
  • the operations of inflating after co-laminating the sheets of the “roll-bond” panel, as well as of shaping the absorbing elements from said panels are carried out after quenching and before tempering, in the case of structural hardening alloys.
  • FIG. 1 represents an example of force-displacement curve showing the absorption of energy W by a bumper during a frontal impact.
  • FIG. 2 represents the cross section of the tubular specimens of alloy 1050 used for the impact absorption energy tests.
  • Figure 3 shows the energy in Joules absorbed during the tests for different configurations and for a displacement of 120 mm.
  • FIG. 4 represents the section of the tubular test pieces of alloy 6016 used for the energy absorption tests at impact.
  • the aluminum panels known under the name of “roll-bond” are produced from two sheets of aluminum or aluminum alloy, one of which is coated, on the zones intended to become the integrated circuit. , an ink intended to prevent welding between the two sheets. Said welding is then carried out by co-laminating.
  • the above-mentioned non-welded zones are then inflated hydraulically or pneumatically to form a circuit, the essential part of which is most often used as a heat exchanger, and in particular as a cooling circuit for household refrigerators.
  • These panels are of the biface type, with two deformed faces, or of the monoface or OSF (one side fiât) type, with a flat face and a deformed face.
  • Patent application DE 4219938 from Showa Aluminum describes the use of single-sided roll-bond panels for external parts or body cladding panels, the external sheet being able to be made of heat-treated alloy (series 2000, 6000 or 7000 ), and the inner sheet of alloy 3000 or 5000. It is indicated that these panels resist very well to deformation and impact forces, the single-sided structure with an outer flat face of heat-treated alloy having a resistance to deformation and a improved rigidity.
  • Patent application WO 02/24371 from Tower Corporation describes high-resistance structural components produced from roll-bond panels, in particular of alloy of the 6000 series.
  • the invention therefore relates to an energy absorbing element essentially consisting of a tubular body, intended for a vehicle bumper assembly, and produced from “roll-bond” panels, preferably of the biface type, in aluminum alloy.
  • the inflated zones are distributed in a non-directional manner, that is to say not oriented in a determined direction, on the “roll-bond” panel; this distribution corresponds to a structure known as of the “boiler” type in the trade of heat exchangers in “roll-bond” panels, characterized in that the inflated zones which are not welded are in the form of “pellets”, for example circular or oval, and not in the form of unidirectional tubes or channels.
  • the invention also relates to a method of manufacturing this energy absorbing element comprising: 1) welding by co-laminating two sheets of aluminum or aluminum alloy, one of which is coated, on the areas intended to become hollow, of an ink intended to prevent welding, 2) Preferably at this stage, in the case of an alloy with structural hardening, the heat treatment of dissolving and quenching of the whole, 3)
  • the inflation of the areas not welded hydraulically or pneumatically to form the hollow parts, the “roll-bond” elements thus produced can preferably be of the biface type, with two deformed faces, but also of the monoface or OSF (one side fiât) type, at one flat face and a deformed face, 4)
  • shaping by folding, rolling, bending or stamping, and optionally assembling said elements to obtain the tubular body of said absorber energy 5) Preferably at this stage in the case of a precipitation hardening alloy, the recovery heat treatment.
  • the operation of inflating the roll-bond and shaping the absorbing element are, in the latter case, preferably carried out after quenching and before tempering, ie in the T4 state.
  • the absorber according to the invention in alloy 1050 conventionally used with regard to the deformed faces of the roll-bond panel, has a very clear gain in energy absorption compared to the same elements produced from sheets of the same alloy, without motive.
  • shock absorbing elements it appeared advantageous to be able to use alloys with structural hardening, preferably of the 6000 family, in order to improve their mechanical resistance, and in particular the alloy 6016, usually used. for body parts.
  • the gains in energy absorption are, in the latter case, preserved, but with a tensile strength Rm in the T6 state, before deformation, of 300 MPa instead of 110 MPa for the 1050 alloy.
  • the tubular specimens have a height of 267 mm and a section shown in FIG. 2 with a flat part (1) of total width 148.5 mm and a part (2) folded in a U of width and depth 59.4 mm.
  • the two parts are spot welded in their adjacent zones (3) and (4).
  • These test pieces were produced from 1.12 mm thick flat sheets without inflated pattern and from single-sided and biface roll-bond panels with linear inflated areas or with a regular distribution of so-called “boiler” circular areas. .
  • test pieces produced from non-formed sheets that is to say without inflated pattern, used as a reference, as well as from linear double-sided and single-sided roll-bond, and from roll- single- and double-sided "boiler” type hop; the test consists of a crushing between two plates of said test pieces in the longitudinal direction at a speed of 10 mm / s and a maximum displacement of 120 mm.
  • the tubular specimens In the case of alloy 6016 in the T6 state, the tubular specimens have a height of 267 mm and a section shown in FIG. 4 in the form of a “double omega” with a total width of 148.5 mm comprising two parts (1 ) and (2) folded into a U of width and depth 59.4 mm. The two parts are spot welded in their adjacent zones (3) and (4).
  • test pieces were produced from 1.12 mm thick flat sheets without inflated pattern and two-sided roll-bond panels with inflated zones according to a regular distribution of circular zones called "boiler" type.
  • test pieces made from non-formed sheets used as a reference as well as from roll-bond of the double-sided “boiler” type; the test consists, as already described for alloy 1050, of a crushing between two plates of said test pieces in the longitudinal direction at a speed of 10 mm / s and with a maximum displacement of 127 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

The invention relates to an energy-absorbing element, particularly an energy-absorbing element which is associated with a beam and used in the bumper part of a vehicle, consisting of preferably dual-surface roll-bond panels made of aluminium alloy. Preferably, the bulging areas are distributed in a non-directional, even manner on the panel in the form of pellets in a fire tube-type structure. Preferably, the alloy used is, a structural hardening alloy of the 6000 family, e.g. type 6016 in state T6. The invention also relates to a method for the production of said absorbers, consisting in the manufacture of said roll-bond panels, the forming thereof and, optionally, the assembly thereof in order to obtain a tubular body that makes up said energy observers.

Description

Elément absorbeur d'énergie pour véhicule Energy absorbing element for vehicle
Domaine de l'inventionField of the invention
L'invention concerne un élément destiné à absorber de l'énergie de façon irréversible lors d'un choc. On citera par exemple le cas de l'absorbeur de choc dans le domaine de l'automobile destiné, en association avec une poutre, à un ensemble pare-chocs pour véhicule à moteur. La poutre est disposée transversalement par rapport à la direction de déplacement du véhicule, et le ou les absorbeurs sont disposés soit transversalement, soit longitudinalement par rapport à cette direction. Un élément absorbeur d'énergie est désigné parfois sous le terme « élément de déformation » ou « crash-box ».The invention relates to an element intended to irreversibly absorb energy during an impact. We will cite for example the case of the shock absorber in the automotive field intended, in association with a beam, for a bumper assembly for a motor vehicle. The beam is arranged transversely relative to the direction of movement of the vehicle, and the absorber (s) are arranged either transversely or longitudinally relative to this direction. An energy absorbing element is sometimes referred to as a "deformation element" or "crash-box".
Etat de la techniqueState of the art
Depuis le milieu des années 90, la plupart des pare-chocs comportent une interface absorbante entre les poutres et les supports longitudinaux des véhicules: les absorbeurs (ou "crash boxes" ou "éléments de déformation"). Cette évolution a répondu à la nécessité, en Europe notamment, d'avoir un système, non plus seulement résistant, c'est-à-dire qui se déforme sans plastifier, mais aussi absorbant, c'est-à-dire qui se déforme en absorbant de l'énergie de manière maîtrisée, lorsque la force d'impact dépasse un certain seuil. Les absorbeurs sont le plus souvent réalisés à partir de profilés en aluminium à section multi-cellulaire disposés longitudinalement ou transversalement par rapport à la direction de déplacement du véhicule. Ainsi, le brevet FR 2760708 (Alusuisse) décrit un pare-chocs réalisé à partir d'une poutre et d'absorbeurs constitués d'un profilé positionné longitudinalement et subdivisé par au moins une barrette intérieure longitudinale. La demande de brevet DE 10041371 (Honda) propose une géométrie hexagonale, subdivisée en 6 cellules. D'autres véhicules sont équipés d'absorbeurs multi- celullaires disposés transversalement, comme par exemple l'Audi A2. Ce type de disposition est également décrit dans la demande de brevet EP 1125798 (Kobe Steel).Since the mid-1990s, most bumpers have had an absorbent interface between the beams and the longitudinal supports of vehicles: absorbers (or "crash boxes" or "deformation elements"). This development responded to the need, in Europe in particular, to have a system, no longer only resistant, that is to say which deforms without plasticizing, but also absorbent, that is to say which deforms by absorbing energy in a controlled manner, when the impact force exceeds a certain threshold. The absorbers are most often made from aluminum profiles with multi-cell section arranged longitudinally or transversely relative to the direction of movement of the vehicle. Thus, patent FR 2760708 (Alusuisse) describes a bumper produced from a beam and absorbers made up of a profile positioned longitudinally and subdivided by at least one longitudinal internal bar. Patent application DE 10041371 (Honda) proposes a hexagonal geometry, subdivided into 6 cells. Other vehicles are equipped with multi-absorbers cells arranged transversely, for example the Audi A2. This type of arrangement is also described in patent application EP 1125798 (Kobe Steel).
Problème poséProblem
La capacité d'absorption d'énergie d'un ensemble pare-chocs de véhicule peut être formalisée de la manière suivante: lorsque on enregistre la courbe force-déplacement au niveau de l'impacteur au cours du choc, le niveau d'effort ne doit pas dépasser une valeur Fmax spécifiée, tout en maximisant l'aire sous la courbe, représentative de l'énergie absorbée, comme illustré à la figure 1. Le pare-chocs sera optimal lorsque sa réponse sera la plus "plate" possible et proche du niveau Fmax.The energy absorption capacity of a vehicle bumper assembly can be formalized as follows: when the force-displacement curve is recorded at the level of the impactor during the impact, the level of effort does not must not exceed a specified value F max , while maximizing the area under the curve, representative of the energy absorbed, as illustrated in Figure 1. The bumper will be optimal when its response is as "flat" as possible and close to level F max .
Il est donc nécessaire, dans le domaine des pare-chocs, de connaître les phénomènes qui régissent l'effort F au cours de la déformation d. La courbe F(d) d'un pare-chocs constitué d'une poutre et de deux absorbeurs va schématiquement se décomposer en trois phases distinctes: le dégalbage de la poutre correspondant à la déformation élastique de celle-ci, l'écrasement de l'absorbeur et l'écrasement de la poutre. L'efficacité d'un pare-chocs dépend donc de l'optimisation combinée de ces trois phases. Le but de l'invention est de fournir un élément notamment de pare-chocs pour véhicule permettant une absorption importante de l'énergie en cas de chocs, tout en restant aussi léger et compact que possible.It is therefore necessary, in the field of bumpers, to know the phenomena which govern the force F during the deformation d. The curve F (d) of a bumper consisting of a beam and two absorbers will schematically be broken down into three distinct phases: the stripping of the beam corresponding to the elastic deformation of the latter, the crushing of the absorber and crushing of the beam. The effectiveness of a bumper therefore depends on the combined optimization of these three phases. The object of the invention is to provide an element in particular of a bumper for a vehicle allowing a significant absorption of energy in the event of impacts, while remaining as light and compact as possible.
Objet de l'invention L'invention a pour objet un élément destiné à absorber de l'énergie de façon irréversible lors d'un choc, caractérisé en ce qu'il est réalisé à partir de panneaux « roll-bond » fabriqués à partir de deux tôles en aluminium ou alliage d'aluminium soudées par colaminage, à l'exception de zones préalablement enduites par une encre empêchant la soudure, qui sont ensuite gonflées par voie hydraulique ou pneumatique.OBJECT OF THE INVENTION The subject of the invention is an element intended to absorb energy irreversibly during an impact, characterized in that it is produced from “roll-bond” panels made from two sheets of aluminum or aluminum alloy welded by colaminating, with the exception of areas previously coated with an ink preventing welding, which are then inflated hydraulically or pneumatically.
Selon un mode de réalisation avantageuse, cet élément est essentiellement constitué d'un corps de forme tubulaire, associé à une poutre dans un ensemble pare-chocs pour véhicule automobile, et disposé longitudinalement ou transversalement par rapport à la direction de déplacement du véhicule. Avantageusement les panneaux « roll-bond » utilisés sont de type biface à deux faces gonflées, les zones gonflées se répartissant de préférence de façon non directionnelle sur le panneau et, selon une modalité de l'invention, ces zones gonflées sont constituées de pastilles, formant une structure du type connu sous le nom de « bouilleur ».According to an advantageous embodiment, this element essentially consists of a tubular body, associated with a beam in a bumper assembly for a motor vehicle, and arranged longitudinally or transversely relative to the direction of movement of the vehicle. Advantageously, the “roll-bond” panels used are of the two-sided type with two inflated faces, the inflated zones preferably being distributed non-directionally on the panel and, according to one embodiment of the invention, these inflated zones consist of pellets, forming a structure of the type known as the "boiler".
De préférence, l'alliage d'aluminium est un alliage à durcissement structural par exemple de la famille 6000 et notamment du type 6016.Preferably, the aluminum alloy is an alloy with structural hardening, for example of the 6000 family and in particular of the type 6016.
L'invention a également pour objet un procédé de fabrication de cet élément absorbeur d'énergie, comportant la réalisation des panneaux « roll-bond », leur mise en forme, et éventuellement leur assemblage pour obtention du corps de forme tubulaire dudit absorbeur d'énergie.The invention also relates to a method of manufacturing this energy absorbing element, comprising the production of “roll-bond” panels, their shaping, and optionally their assembly to obtain the tubular body of said energy absorber. energy.
Selon un mode de réalisation avantageuse, les opérations de gonflage après colaminage des tôles du panneau « roll-bond », ainsi que de mise en forme des éléments absorbeurs à partir desdits panneaux, sont réalisées après trempe et avant revenu, dans le cas d'alliages à durcissement structural.According to an advantageous embodiment, the operations of inflating after co-laminating the sheets of the “roll-bond” panel, as well as of shaping the absorbing elements from said panels, are carried out after quenching and before tempering, in the case of structural hardening alloys.
Description des figuresDescription of the figures
La figure 1 représente un exemple de courbe force-déplacement montrant l'absorption d'énergie W par un pare-chocs au cours d'un choc frontal. La figure 2 représente la section des éprouvettes tubulaires en alliage 1050 utilisées pour les essais d'absorption d'énergie au choc. La figure 3 montre l'énergie en Joules absorbée au cours des essais pour différentes configurations et pour un déplacement de 120 mm. La figure 4 représente la section des éprouvettes tubulaires en alliage 6016 utilisées pour les essais d'absorption d'énergie au choc.FIG. 1 represents an example of force-displacement curve showing the absorption of energy W by a bumper during a frontal impact. FIG. 2 represents the cross section of the tubular specimens of alloy 1050 used for the impact absorption energy tests. Figure 3 shows the energy in Joules absorbed during the tests for different configurations and for a displacement of 120 mm. FIG. 4 represents the section of the tubular test pieces of alloy 6016 used for the energy absorption tests at impact.
Description de l'invention Les panneaux en aluminium connus sous le nom de « roll-bond » sont réalisés à partir de deux tôles en aluminium ou alliage d'aluminium, dont l'une est enduite, sur les zones destinées à devenir le circuit intégré, d'une encre destinée à empêcher la soudure entre les deux tôles. Ladite soudure est ensuite réalisée par colaminage. Les zones précitées non soudées sont alors gonflées par voie hydraulique ou pneumatique pour former un circuit dont la partie essentielle est utilisée le plus souvent comme échangeur de chaleur, et notamment comme circuit de refroidissement des réfrigérateurs ménagers. Ces panneaux sont de type biface, à deux faces déformées, ou de type monoface ou OSF (one side fiât), à une face plane et une face déformée. Le livre « L'aluminium », tome 1 « Production - Propriétés - Alliages - Fabrication des demi-produits - Fabrications annexes », paru aux Editions Eyrolles, Paris 1964, pages 718 - 721, et la publication « Panneaux aluminium à circuits intégrés : deux lignes de fabrication complémentaires pour de multiples produits », parue dans la « Revue de l'Aluminium », février 1982, décrivent le principe du procédé roll-bond pour la fabrication de panneaux de type bi-face, et divulguent le schéma d'une ligne de fabrication en continu, ainsi que les alliages habituellement utilisés à cette fin. Quelques applications des panneaux roll-bond ont été envisagées dans le domaine de l'automobile. Le brevet US 5392625 d'Alcan International décrit l'application aux écrans thermiques. Le gonflage se fait dans ce cas en deux étapes, l'une avant et l'autre après la mise en forme. La demande de brevet DE 4219938 de Showa Aluminium décrit l'utilisation de panneaux roll-bond de type monoface pour des pièces extérieures ou panneaux d'habillage de carrosserie, la tôle extérieure pouvant être en alliage à traitement thermique (séries 2000, 6000 ou 7000), et la tôle intérieure en alliage 3000 ou 5000. II est indiqué que ces panneaux résistent très bien aux forces de déformation et aux chocs, la structure monoface avec une face plane extérieure en alliage à traitement thermique présentant une résistance à la déformation et une rigidité améliorées. La demande de brevet WO 02/24371 de Tower Corporation décrit des composants structuraux à haute résistance réalisés à partir de panneaux roll-bond, notamment en alliage de la série 6000. Ainsi, l'état de la technique enseigne l'utilisation de panneaux roll-bond en alliage d'aluminium pour augmenter la résistance mécanique, mais leur utilisation pour absorber l'énergie en cas de choc n'a jamais été envisagée. L'invention concerne donc un élément absorbeur d'énergie essentiellement constitué d'un corps de forme tubulaire, destiné à un ensemble pare-chocs de véhicule, et réalisé à partir de panneaux « roll-bond », de préférence de type biface, en alliage d'aluminium. De préférence les zones gonflées se répartissent de façon non directionnelle, c'est à dire non orientée selon une direction déterminée, sur le panneau « roll-bond » ; cette distribution correspond à une structure dite du type « bouilleur » dans le métier des échangeurs thermiques en panneaux « roll-bond », caractérisée en ce que les zones gonflées non soudées se présentent sous forme de « pastilles », par exemple circulaires ou ovales, et non sous forme de tubes ou canaux unidirectionnels. L'invention a également pour objet un procédé de fabrication de cet élément absorbeur d'énergie comportant : 1) Le soudage par colaminage de deux tôles en aluminium ou alliage d'aluminium, dont l'une est enduite, sur les zones destinées à devenir creuses, d'une encre destinée à empêcher la soudure, 2) De préférence à ce stade, dans le cas d'un alliage à durcissement structural, le traitement thermique de mise en solution et trempe de l'ensemble, 3) Le gonflage des zones non soudées par voie hydraulique ou pneumatique pour former les parties creuses, les éléments « roll-bond » ainsi réalisés pouvant être préférentiellement de type biface, à deux faces déformées, mais aussi de type monoface ou OSF (one side fiât), à une face plane et une face déformée, 4) A ce stade ou avant gonflage, la mise en forme par pliage, roulage, cintrage ou emboutissage, et éventuellement assemblage desdits éléments pour obtenir le corps de forme tubulaire dudit absorbeur d'énergie, 5) De préférence à ce stade, dans le cas d'un alliage à durcissement structural, le traitement thermique de revenu. L'opération de gonflage du roll-bond et mise en forme de l'élément absorbeur sont, dans ce dernier cas, préférentiellement réalisées après trempe et avant revenu, soit à l'état T4. L'absorbeur selon l'invention en alliage 1050, classiquement utilisé en ce qui concerne les faces déformées du panneau roll-bond, présente un gain très net en absorption d'énergie par rapport aux mêmes éléments réalisés à partir de tôles du même alliage, sans motif. Dans le cas de l'application à des éléments absorbeurs de choc, il est apparu intéressant de pouvoir utiliser des alliages à durcissement structural, préférentiellement de la famille 6000, afin d'améliorer leur résistance mécanique, et notamment l'alliage 6016, utilisé habituellement pour les pièces de carrosserie. Les gains en absorption d 'énergie sont, dans ce dernier cas, conservés, mais avec une résistance à la rupture Rm à l'état T6, avant déformation, de 300 MPa au lieu de 110 MPa pour l'alliage 1050.Description of the invention The aluminum panels known under the name of “roll-bond” are produced from two sheets of aluminum or aluminum alloy, one of which is coated, on the zones intended to become the integrated circuit. , an ink intended to prevent welding between the two sheets. Said welding is then carried out by co-laminating. The above-mentioned non-welded zones are then inflated hydraulically or pneumatically to form a circuit, the essential part of which is most often used as a heat exchanger, and in particular as a cooling circuit for household refrigerators. These panels are of the biface type, with two deformed faces, or of the monoface or OSF (one side fiât) type, with a flat face and a deformed face. The book "Aluminum", volume 1 "Production - Properties - Alloys - Manufacture of semi-finished products - Additional manufacturing", published by Editions Eyrolles, Paris 1964, pages 718 - 721, and the publication "Aluminum panels with integrated circuits: two complementary manufacturing lines for multiple products ", published in the" Aluminum Review ", February 1982, describe the principle of the roll-bond process for the manufacture of two-sided type panels, and disclose the diagram of a continuous production line, as well as the alloys usually used for this purpose. Some applications of roll-bond panels have been considered in the automotive field. Alcan International patent US 5392625 describes the application to thermal screens. The inflation takes place in this case in two stages, one before and the other after the shaping. Patent application DE 4219938 from Showa Aluminum describes the use of single-sided roll-bond panels for external parts or body cladding panels, the external sheet being able to be made of heat-treated alloy (series 2000, 6000 or 7000 ), and the inner sheet of alloy 3000 or 5000. It is indicated that these panels resist very well to deformation and impact forces, the single-sided structure with an outer flat face of heat-treated alloy having a resistance to deformation and a improved rigidity. Patent application WO 02/24371 from Tower Corporation describes high-resistance structural components produced from roll-bond panels, in particular of alloy of the 6000 series. Thus, the state of the art teaches the use of roll panels -bond made of aluminum alloy to increase mechanical resistance, but their use to absorb energy in the event of impact has never been considered. The invention therefore relates to an energy absorbing element essentially consisting of a tubular body, intended for a vehicle bumper assembly, and produced from “roll-bond” panels, preferably of the biface type, in aluminum alloy. Preferably the inflated zones are distributed in a non-directional manner, that is to say not oriented in a determined direction, on the “roll-bond” panel; this distribution corresponds to a structure known as of the “boiler” type in the trade of heat exchangers in “roll-bond” panels, characterized in that the inflated zones which are not welded are in the form of “pellets”, for example circular or oval, and not in the form of unidirectional tubes or channels. The invention also relates to a method of manufacturing this energy absorbing element comprising: 1) welding by co-laminating two sheets of aluminum or aluminum alloy, one of which is coated, on the areas intended to become hollow, of an ink intended to prevent welding, 2) Preferably at this stage, in the case of an alloy with structural hardening, the heat treatment of dissolving and quenching of the whole, 3) The inflation of the areas not welded hydraulically or pneumatically to form the hollow parts, the “roll-bond” elements thus produced can preferably be of the biface type, with two deformed faces, but also of the monoface or OSF (one side fiât) type, at one flat face and a deformed face, 4) At this stage or before inflation, shaping by folding, rolling, bending or stamping, and optionally assembling said elements to obtain the tubular body of said absorber energy, 5) Preferably at this stage in the case of a precipitation hardening alloy, the recovery heat treatment. The operation of inflating the roll-bond and shaping the absorbing element are, in the latter case, preferably carried out after quenching and before tempering, ie in the T4 state. The absorber according to the invention in alloy 1050, conventionally used with regard to the deformed faces of the roll-bond panel, has a very clear gain in energy absorption compared to the same elements produced from sheets of the same alloy, without motive. In the case of application to shock absorbing elements, it appeared advantageous to be able to use alloys with structural hardening, preferably of the 6000 family, in order to improve their mechanical resistance, and in particular the alloy 6016, usually used. for body parts. The gains in energy absorption are, in the latter case, preserved, but with a tensile strength Rm in the T6 state, before deformation, of 300 MPa instead of 110 MPa for the 1050 alloy.
ExemplesExamples
On a évalué l'aptitude à l'absorption d'énergie de corps de forme tubulaire réalisés à partir de tôles et de panneaux roll-bond en alliage 1050 sans traitement thermique et en alliage 6016 après trempe et revenu, soit à l'état T6.The aptitude for energy absorption of tubular bodies made from sheets and roll-bond panels of 1050 alloy without heat treatment and of 6016 alloy after quenching and tempering, ie in the T6 state, was evaluated. .
Exemple 1Example 1
Dans le cas de l'alliage 1050, les éprouvettes tubulaires ont une hauteur de 267 mm et une section représentée à la figure 2 avec une partie plane (1) de largeur totale 148,5 mm et une partie (2) pliée en U de largeur et de profondeur 59,4 mm. Les deux parties sont soudées par résistance par points dans leurs zones adjacentes (3) et (4). Ces éprouvettes ont été réalisées à partir de tôles plates d'épaisseur 1,12 mm sans motif gonflé et de panneaux roll-bond mono-face et biface avec des zones gonflées linéaires ou avec une répartition régulière de zones circulaires dits du type « bouilleur ».In the case of alloy 1050, the tubular specimens have a height of 267 mm and a section shown in FIG. 2 with a flat part (1) of total width 148.5 mm and a part (2) folded in a U of width and depth 59.4 mm. The two parts are spot welded in their adjacent zones (3) and (4). These test pieces were produced from 1.12 mm thick flat sheets without inflated pattern and from single-sided and biface roll-bond panels with linear inflated areas or with a regular distribution of so-called “boiler” circular areas. .
Les essais ont porté sur des éprouvettes réalisées à partir de tôles non formées, c'est à dire sans motif gonflé, utilisées comme référence, ainsi qu'à partir de roll-bond linéaires à double et simple face, et à partir de roll-bond du type « bouilleur » à simple et double face; l'essai consiste en un écrasement entre deux plaques desdites éprouvettes dans la direction longitudinale à une vitesse de 10 mm/s et un déplacement maximum de 120 mm.The tests were carried out on test pieces produced from non-formed sheets, that is to say without inflated pattern, used as a reference, as well as from linear double-sided and single-sided roll-bond, and from roll- single- and double-sided "boiler" type hop; the test consists of a crushing between two plates of said test pieces in the longitudinal direction at a speed of 10 mm / s and a maximum displacement of 120 mm.
Le principal résultat a été, par rapport à la référence (A sur la figure 3), une augmentation de l'énergie absorbée de 50% dans le cas des absorbeurs en roll-bond du type « bouilleur » à simple face (B sur la figure 3), et de 75% dans le cas des absorbeurs en roll-bond du type « bouilleur » à double face (C sur la figure 3) comme le montrent le tableau 1 récapitulatif ci-après et la figure 3 pour un déplacement de 120 mm. Tableau 1The main result was, compared to the reference (A in Figure 3), an increase in the energy absorbed by 50% in the case of single-sided "boiler" type roll-up absorbers (B on the Figure 3), and 75% in the case of double-sided "boiler" type roll-bond absorbers (C in Figure 3) as shown in the summary table 1 below and in Figure 3 for a displacement of 120 mm. Table 1
Figure imgf000009_0001
Figure imgf000009_0001
Exemple2Example2
Dans le cas de l'alliage 6016 à l'état T6, les éprouvettes tubulaires ont une hauteur de 267 mm et une section représentée à la figure 4 en forme de « double oméga » de largeur totale 148,5 mm comportant deux parties (1) et (2) pliées en U de largeur et de profondeur 59,4 mm. Les deux parties sont soudées par résistance par points dans leurs zones adjacentes (3) et (4).In the case of alloy 6016 in the T6 state, the tubular specimens have a height of 267 mm and a section shown in FIG. 4 in the form of a “double omega” with a total width of 148.5 mm comprising two parts (1 ) and (2) folded into a U of width and depth 59.4 mm. The two parts are spot welded in their adjacent zones (3) and (4).
Ces éprouvettes ont été réalisées à partir de tôles plates d'épaisseur 1,12 mm sans motif gonflé et de panneaux roll-bond biface avec des zones gonflées selon une répartition régulière de zones circulaires dits du type « bouilleur ».These test pieces were produced from 1.12 mm thick flat sheets without inflated pattern and two-sided roll-bond panels with inflated zones according to a regular distribution of circular zones called "boiler" type.
Ils ont porté sur des éprouvettes réalisées à partir de tôles non formées utilisées comme référence, ainsi qu' à partir de roll-bond du type « bouilleur » à double face ; l'essai consiste comme déjà décrit pour l'alliage 1050 en un écrasement entre deux plaques desdites éprouvettes dans la direction longitudinale à une vitesse de 10 mm/s et avec un déplacement maximum de 127 mm.They related to test pieces made from non-formed sheets used as a reference, as well as from roll-bond of the double-sided “boiler” type; the test consists, as already described for alloy 1050, of a crushing between two plates of said test pieces in the longitudinal direction at a speed of 10 mm / s and with a maximum displacement of 127 mm.
Le principal résultat a été une augmentation de l'énergie absorbée de 50% dans le cas des absorbeurs en roll-bond du type « bouilleur » à double face comme le montre le tableau 2 récapitulatif ci-après pour un déplacement de 100 mm. Tableau 2The main result was an increase in the absorbed energy of 50% in the case of double-sided “boiler” type roll-bond absorbers as shown in the summary table 2 below for a displacement of 100 mm. Table 2
Figure imgf000010_0001
Figure imgf000010_0001

Claims

Revendications claims
1. Elément destiné à absorber de l'énergie de façon irréversible lors d'un choc, caractérisé en ce qu'il est réalisé à partir de panneaux « roll-bond » fabriqués à partir de deux tôles en aluminium ou alliage d'aluminium soudées par colaminage, à l'exception de zones préalablement enduites par une encre empêchant la soudure, qui sont ensuite gonflées par voie hydraulique ou pneumatique.1. Element intended to absorb energy irreversibly during an impact, characterized in that it is produced from “roll-bond” panels made from two sheets of welded aluminum or aluminum alloy by co-lamination, with the exception of areas previously coated with an ink preventing welding, which are then inflated hydraulically or pneumatically.
2. Elément selon la revendication 1, caractérisé en ce qu'il est associé à une poutre dans un ensemble pare-chocs pour véhicule automobile, essentiellement constitué d'un corps de forme tubulaire, et disposé longitudinalement ou transversalement par rapport à la direction de déplacement du véhicule.2. Element according to claim 1, characterized in that it is associated with a beam in a bumper assembly for a motor vehicle, essentially consisting of a tubular body, and arranged longitudinally or transversely with respect to the direction of moving the vehicle.
3. Elément absorbeur d'énergie selon l'une des revendications 1 ou 2, caractérisé en ce que les panneaux « roll-bond » utilisés sont de type biface à deux faces gonflées.3. Energy absorbing element according to one of claims 1 or 2, characterized in that the "roll-bond" panels used are of the two-sided type with two inflated faces.
4. Elément absorbeur d'énergie selon l'une des revendications 1 à 3, caractérisé en ce que les zones gonflées du panneau « roll-bond » se répartissent de façon non directionnelle. 4. Energy absorbing element according to one of claims 1 to 3, characterized in that the inflated areas of the "roll-bond" panel are distributed in a non-directional manner.
5. Elément absorbeur d'énergie selon l'une des revendications 1 à 4, caractérisé en ce que les zones gonflées du panneau « roll-bond » sont constituées de pastilles, en structure du type connu sous le nom de « bouilleur ».5. Energy absorbing element according to one of claims 1 to 4, characterized in that the inflated areas of the "roll-bond" panel consist of pellets, in structure of the type known under the name of "boiler".
6. Elément absorbeur d'énergie selon l'une des revendications 1 à 5, caractérisé en ce que l'alliage d'aluminium est un alliage à durcissement structural.6. Energy absorbing element according to one of claims 1 to 5, characterized in that the aluminum alloy is a structural hardening alloy.
7. Elément absorbeur d'énergie selon la revendication 6, caractérisé en ce que l'alliage d'aluminium est un alliage de la famille 6000. 7. Energy absorbing element according to claim 6, characterized in that the aluminum alloy is an alloy of the family 6000.
8. Elément absorbeur d'énergie selon la revendication 7, caractérisé en ce que l'alliage d'aluminium est un alliage du type 6016.8. Energy absorbing element according to claim 7, characterized in that the aluminum alloy is an alloy of the type 6016.
9. Procédé de fabrication de l'élément absorbeur d'énergie selon l'une des revendications 1 à 8, comportant la réalisation des panneaux « roll-bond », leur mise en forme, et éventuellement leur assemblage pour obtention du corps de forme tubulaire dudit absorbeur d'énergie.9. A method of manufacturing the energy absorbing element according to one of claims 1 to 8, comprising the production of "roll-bond" panels, their shaping, and optionally their assembly to obtain the tubular body of said energy absorber.
10. Procédé de fabrication de l'élément absorbeur d'énergie selon la revendication 9, caractérisé en ce que les opérations de gonflage après colaminage des tôles du panneau « roll-bond », ainsi que de mise en forme pour obtention du corps de forme tubulaire dudit élément absorbeur d'énergie à partir desdits panneaux, sont réalisées après trempe et avant revenu, dans le cas d'alliages à durcissement structural. 10. A method of manufacturing the energy absorbing element according to claim 9, characterized in that the inflation operations after co-laminating the sheets of the "roll-bond" panel, as well as shaping for obtaining the shape body tubular of said energy absorbing element from said panels, are produced after quenching and before tempering, in the case of alloys with structural hardening.
PCT/FR2005/001035 2004-04-30 2005-04-27 Energy-absorbing element for a vehicle WO2005115654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0404653 2004-04-30
FR0404653A FR2869577B1 (en) 2004-04-30 2004-04-30 ENERGY ABSORBER ELEMENT FOR VEHICLE

Publications (1)

Publication Number Publication Date
WO2005115654A1 true WO2005115654A1 (en) 2005-12-08

Family

ID=34945751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001035 WO2005115654A1 (en) 2004-04-30 2005-04-27 Energy-absorbing element for a vehicle

Country Status (3)

Country Link
AR (1) AR049031A1 (en)
FR (1) FR2869577B1 (en)
WO (1) WO2005115654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH700604A1 (en) * 2009-03-30 2010-09-30 Ludger Hovestadt C O Inst Fuer Apparatus for structural reinforcement.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987810A (en) * 1954-12-08 1961-06-13 Olin Mathieson Metal working
FR1347949A (en) * 1962-12-17 1964-01-04 Olin Mathieson Aluminum-based alloy composition and method of manufacturing articles comprising this composition, in particular panels with tubular passages formed by expansion
US4538756A (en) * 1981-10-15 1985-09-03 Texas Instruments Incorporated Process for producing reinforced structural members
DE19714631A1 (en) * 1996-04-20 1997-10-30 Volkswagen Ag Self-supporting motor vehicle body
FR2817954A1 (en) * 2000-12-11 2002-06-14 Pechiney Rhenalu PROCESS FOR PRODUCING ALUMINUM PANELS WITH INTEGRATED CIRCUIT
EP1262374A1 (en) * 2001-05-29 2002-12-04 Inalfa Industries B.V. Crash energy absorbing element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987810A (en) * 1954-12-08 1961-06-13 Olin Mathieson Metal working
FR1347949A (en) * 1962-12-17 1964-01-04 Olin Mathieson Aluminum-based alloy composition and method of manufacturing articles comprising this composition, in particular panels with tubular passages formed by expansion
US4538756A (en) * 1981-10-15 1985-09-03 Texas Instruments Incorporated Process for producing reinforced structural members
DE19714631A1 (en) * 1996-04-20 1997-10-30 Volkswagen Ag Self-supporting motor vehicle body
FR2817954A1 (en) * 2000-12-11 2002-06-14 Pechiney Rhenalu PROCESS FOR PRODUCING ALUMINUM PANELS WITH INTEGRATED CIRCUIT
EP1262374A1 (en) * 2001-05-29 2002-12-04 Inalfa Industries B.V. Crash energy absorbing element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH700604A1 (en) * 2009-03-30 2010-09-30 Ludger Hovestadt C O Inst Fuer Apparatus for structural reinforcement.

Also Published As

Publication number Publication date
FR2869577A1 (en) 2005-11-04
FR2869577B1 (en) 2006-06-16
AR049031A1 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
RU2715982C2 (en) Structural element for vehicle front part and method of its manufacturing, as well as vehicle
US7617916B2 (en) Tapered crushable polygonal structure
EP2846961B1 (en) Tube for a heat exchanger
CN102390434B (en) Front longitudinal beam structure for automobiles
JP5488069B2 (en) Crash box and car body
KR101134946B1 (en) A mounting method of bumper beam
EP2081797B1 (en) Shield for protection against impacts on the front panel of a motor vehicle, and front panel module comprising such a shield
EP2934953A1 (en) Shock absorbing device for the front or rear structure of a vehicle
EP2736791B1 (en) Motor vehicle body shell chassis frame side rail of octagonal cross section and vehicle fitted with such chassis frame side rails
CN110043593B (en) Honeycomb energy absorption structure and preparation method thereof
JP4045846B2 (en) Impact energy absorbing member
JP2016533939A (en) Shock absorber system for vehicle
JP2010111239A (en) Collision energy absorbing member
EP1788273A1 (en) Macro cell structure for energy absorption and method of manufacturing of such a structure
WO2005115654A1 (en) Energy-absorbing element for a vehicle
FR2834922A1 (en) METHOD FOR MANUFACTURING A STRUCTURAL ELEMENT AND ELEMENT PROVIDED BY SAID METHOD
EP0637538B1 (en) Energy absorption beam, especially for longitudianl or transverse chassis members of vehicles
JP2009280141A (en) Bumper stay and bumper structure
JP5354928B2 (en) Composite aluminum alloy extruded material for welded structures
FR2908714A1 (en) SHOCK ABSORPTION ASSEMBLY FOR MOTOR VEHICLE AND CORRESPONDING FRONT PANEL
JPH07145842A (en) Energy absorbing member made of aluminum alloy for automobile
JP4689300B2 (en) Shock absorbing member for vehicle
CN101336172A (en) Automobile impact beam with integrated brackets and the manufacturing method thereof
CN111806562B (en) Transverse pushing element
JP2008222035A (en) Shock absorbing unit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase