WO2005114165A1 - Eddy current flaw inspecting probe and eddy current flaw inspecting apparatus - Google Patents

Eddy current flaw inspecting probe and eddy current flaw inspecting apparatus Download PDF

Info

Publication number
WO2005114165A1
WO2005114165A1 PCT/JP2005/009282 JP2005009282W WO2005114165A1 WO 2005114165 A1 WO2005114165 A1 WO 2005114165A1 JP 2005009282 W JP2005009282 W JP 2005009282W WO 2005114165 A1 WO2005114165 A1 WO 2005114165A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
eddy current
flaw
detection
probe
Prior art date
Application number
PCT/JP2005/009282
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hoshikawa
Kiyoshi Koyama
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2006513746A priority Critical patent/JPWO2005114165A1/en
Publication of WO2005114165A1 publication Critical patent/WO2005114165A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Definitions

  • the present invention relates to an eddy current flaw detection probe in which a quadrangle, triangular or other polygonal detection coil and an excitation coil are arranged orthogonal to each other, and an eddy current flaw detector equipped with the eddy current flaw detection probe.
  • an eddy current flaw detection probe in which a quadrangular, triangular, or other polygonal detection coil and an excitation coil are arranged orthogonally is generally referred to as a probe.
  • the eddy current flaw detection probe P includes a pancake-shaped excitation coil Ce and a rectangular detection coil Cd, and the detection coil Cd is arranged in the excitation coil Ce.
  • the excitation coil Ce and the detection coil Cd are arranged so that the coil surfaces of both coils are orthogonal.
  • the eddy current flaw detection probe P has a coil surface of the exciting coil Ce parallel to an inspection surface of the inspection object T on an inspection object T such as a metal plate, and as shown in FIG.
  • the detection coil is installed so that the coil surface of Cd is perpendicular to the inspection surface. As shown in FIG.
  • the eddy current inspection probe P is placed on the test object T so that the detection coil Cd is parallel to the defect F of the test object T, and the Y is perpendicular to the longitudinal direction of the defect F. Flaw detection by scanning in the direction.
  • the coil surfaces of the excitation coil and the detection coil refer to surfaces surrounded by windings constituting both coils.
  • the conventional eddy current flaw detection probe P shown in FIGS. 1A to 1C is basically a lift-off noise, that is, noise caused by a change in the distance between the eddy current flaw detection probe and the test object, as described later.
  • the detection coil Cd that does not generate a flaw detection signal that is a detection signal only when the test object T has a flaw F, does not generate a flaw detection signal when there is no flaw F.
  • the conventional eddy current flaw detection probe P has excellent flaw detection characteristics, but since the detection coil Cd is disposed in the excitation coil Ce, the length of the detection coil Cd, that is, The length or width of the coil surface of the detection coil Cd in the direction parallel to the coil surface of the excitation coil Ce is shorter than the inner diameter of the excitation coil Ce. Therefore, as a result of the experiment of the present invention and the like, when the depth of the flaw F of the test object T is small, the conventional eddy current flaw detection probe P has the output level power of the flaw detection signal detected by the detection coil Cd, It became difficult, and it was difficult to perform high-precision flaw detection and evaluation. As shown in FIG.
  • the eddy current flaw detection probe P described above can detect flaws F parallel to the detection coil Cd, but flaws perpendicular to the detection coil Cd were difficult to detect.
  • the eddy current flaw detection probe proposed so far has only one excitation coil and one detection coil. In the case of an inspection object with a wide flaw detection range, such as in the above, it takes a long time for flaw detection.
  • a method of arranging a plurality of eddy current inspection probes P in a line and scanning at the same time can be considered.
  • eddy current inspection it is necessary to sequentially switch and drive the probe P, and the switching mechanism becomes complicated.
  • the present invention can detect flaws shallow without impairing the excellent flaw detection characteristics of the conventional eddy current flaw detection probe, and flaws perpendicular to the detection coil with high sensitivity.
  • Another object of the present invention is to provide an eddy current inspection probe capable of detecting a wide range of flaws in one scan.
  • An eddy current flaw detection probe has a plurality of polygonal detection coils and an excitation coil arranged in the detection coils, and the detection coils and the excitation coils are arranged such that their coil surfaces cross each other. It is arranged.
  • the detection coil is longer than the excitation coil. It is desirable.
  • the exciting coil has a pancake shape and that the detecting coil has a rectangular shape.
  • the eddy current inspection probe it is preferable that two or more excitation coils are arranged in parallel along the winding of the detection coil.
  • the eddy current flaw detector according to the present invention is arranged such that two or more excitation coils are arranged side by side along a winding of the detection coil in one polygonal detection coil, and the detection coil and the excitation coil are connected to each other.
  • An eddy current flaw detection probe that is arranged so as to intersect each other's coil surface, an excitation signal generator that sequentially switches to two or more excitation coils to apply excitation signals, and detects a flaw detection signal from the detection coil And a flaw detection evaluation section for flaw detection and evaluation of flaws on the test object.
  • the excitation coil is arranged in a detection coil having a polygonal shape such as a square or a triangle, and the detection coil is made longer than the excitation coil.
  • flaws can be detected and evaluated with high sensitivity and high accuracy for the presence, position and depth of flaws.
  • the eddy current inspection probe according to the present invention since a plurality of excitation coils are arranged in parallel within one polygonal detection coil, the range that can be inspected by one scan is widened. Since the eddy current inspection probe according to the present invention sequentially drives a plurality of excitation coils, it is possible to identify the excitation coil in which the inspection signal is generated, and to identify the position of the flaw of the inspection object.
  • the eddy current flaw detection probe since one detection coil may be provided for a plurality of excitation coils, there is no need to switch the detection coil in accordance with the switching of the excitation coil. Therefore, there is no need to provide means for switching the detection coil.
  • the eddy current flaw detection probe according to the present invention requires only one detection coil to be disposed for a plurality of excitation coils, so that the structure is simplified and the assembly is facilitated.
  • FIG. 1A is a side view showing a conventional eddy current flaw detection probe
  • FIG. 1B is a plan view of the eddy current flaw detection probe
  • FIG. 1C is a cross-sectional view taken along line AA of FIG. 1A.
  • FIG. 2 is a side view showing an embodiment of a multi-probe to which the present invention is applied.
  • FIG. 3 is a plan view of the multi-probe shown in FIG. 2.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a perspective view showing a detection coil.
  • FIG. 6 is a perspective view showing an exciting coil.
  • FIG. 7 is a block diagram showing an eddy current flaw detector using the multi-probe according to the present invention.
  • FIG. 8 is a plan view showing a state where an inspection object is scanned by a multi-probe.
  • FIG. 9A is a plan view showing a state where a multi- ⁇ probe is placed on a test object
  • FIG. 9B is a plan view of the test object showing a state of eddy current generated when the test object has no scratches
  • FIG. 9C is a plan view of the test object showing a state of an eddy current generated when the test object has a flaw.
  • FIG. 10A is a plan view showing a state in which a multi- ⁇ probe is scanned to detect a flaw parallel to the detection coil and the detection coil is in front of the flaw
  • FIG. 10B is a detection view
  • FIG. 10C is a plan view showing a state where the coil is located directly above the flaw of the test object
  • FIG. 10C is a plan view showing a state immediately after the detection coil has passed through the flaw of the test object.
  • FIG. 11A is a diagram showing a signal pattern of a flaw detection signal generated when the multi-probe according to the present invention scans an inspection object having a horizontal flaw in a detection coil
  • FIG. Eddy current probe scans over test object with horizontal scratch on detection coil
  • FIG. 6 is a diagram showing a signal pattern of a flaw detection signal generated when the detection is performed.
  • FIG. 12 is a diagram showing the relationship between the depth of a flaw and the amplitude of a flaw detection signal in a multi-layer probe to which the present invention is applied and a conventional eddy current flaw detection probe.
  • FIG. 13A is a plan view showing a state in which a multi- ⁇ probe is scanned to detect flaws perpendicular to the detection coil and the detection coil is in front of the flaw
  • FIG. 13B is a detection view
  • FIG. 13C is a plan view showing a state where the coil is located directly above the flaw of the test object
  • FIG. 13C is a plan view showing a state immediately after the detection coil has passed through the flaw of the test object.
  • FIG. 14A is a diagram showing a signal pattern of a flaw detection signal generated when the multi-beam probe according to the present invention scans an inspection object having a defect perpendicular to the detection coil
  • FIG. FIG. 3 is a diagram showing a signal pattern of a flaw detection signal generated when the eddy current flaw detection probe scans an inspection object having a flaw perpendicular to a detection coil.
  • the eddy current inspection probe to which the present invention is applied also has one polygonal detection coil and one or more excitation coil forces, and the excitation coils are juxtaposed and juxtaposed within the detection coil along the winding of the detection coil. And both coils are arranged such that the coil planes intersect or cross at right angles. Therefore, the length of the detection coil, that is, the length or width of the coil surface of the detection coil in a direction parallel to the coil surface of the excitation coil, is at least one of the excitation coil lengths in the length direction of the detection coil. It is longer than the length or width of the coil surface of the exciting coil over the entire surface. When the exciting coil has a pancake shape, the width of the coil surface of the exciting coil is the outer diameter of the exciting coil.
  • an eddy current inspection probe in which one or more excitation coils are arranged within one polygonal detection coil and both coils are arranged so as to intersect or intersect the coil surface is hereinafter referred to as a multi- ⁇ ⁇ ⁇ probe.
  • a multi-probe MP includes a rectangular detection coil C1 and pancake-like excitation coils C21 to C24.
  • the multi-probe MP to which the present invention is applied specifically, as shown in FIGS. 2 and 3, includes four excitations C21 to C24 and one detection coil C1, and the excitation coils C21 to C24 are It is located in the detection coil C1 and is arranged in parallel along the winding of the detection coil C1.
  • the four excitation coils C21 to C24 and the detection coil C1 are arranged so that the coil surfaces intersect or intersect at right angles, as shown in FIGS.
  • the detection coil C1 is formed in a long rectangular shape as shown in FIG. 5, and the excitation coils C21 to C24 are formed in a ring shape as shown in FIG.
  • the detection coil C1 has four exciting coils C21 to C24 arranged in parallel, and is formed in a rectangular shape having a length C1L in which one side force also extends to the other side. Contrary to the arrangement, as shown in FIGS. 2 and 3, the four excitations C21 to C24 arranged in parallel are formed in a size large enough to be arranged inside.
  • the length C1L of the detection coil C1 is formed longer than the outer diameter of at least one exciting coil, and is not limited to the inner diameter of the exciting coil as in the conventional eddy current testing probe described above. Can be set to length.
  • the length C1L of the detection coil C1 is the length or width of the coil surface in a direction parallel to the coil surfaces of the excitation coils C21 to C24, and the length or width of the excitation coils C21 to C24 is This is the length of the coil surface in the length direction of the detection coil C1, or the outer diameter of the excitation coils C21 to C24.
  • the multi- ⁇ probe MP is installed in a so-called vertical position where the coil surface of the detection coil C1 is perpendicular to the inspection surface of the inspection object T, and the coil surfaces of the excitation coils C21 to C24 are As shown in FIG. 2, it is arranged on the inspection object T so as to be parallel to the inspection surface of the inspection object T.
  • the multi- ⁇ probe MP shown in FIGS. 2 to 4 has been described with an example in which four excitation coils are arranged, one or more probes may be used.
  • the range that can be detected by one scan of the multi-probe MP is narrow !, but shallow! It does not change whether the number is one or more.
  • the eddy current flaw detection device includes an excitation signal generation unit 11 and a flaw detection evaluation unit 12.
  • the excitation signal generator 11 constituting the eddy current flaw detector applies excitation signals to the four excitation coils C21 to C24 of the multi-probe MP sequentially, for example, in the order of C21, C22, C23, and C24. Since the excitation coils C21 to C24 are arranged close to each other, if excitation signals are applied to the adjacent excitation coils C21 to C24 at the same time, interference occurs. In order to avoid the interference, excitation signals are sequentially applied to each of the excitation coils C21 to C24 with a time lag. When an excitation signal is applied to the excitation coils C21 to C24, an eddy current is generated in the test object T corresponding to each excitation coil as described later.
  • the flaw detection evaluation section 12 detects the flaw detection signal generated in the detection coil C1, and flaw-detects and evaluates the presence / absence, position, depth, etc., of the test object T.
  • the excitation coils C21 to C24 are divided into two groups every other excitation coil C21 to C24, and the excitation signals are grouped. May be configured so that excitation signals are applied in group units by switching the supply lines.
  • the number of groups of the exciting coils is not limited to two, and may be further increased.
  • the excitation signal generation unit 11 has a small number of switching switches for the excitation coils, thereby simplifying the configuration.
  • the configuration of the flaw detection evaluation unit 12 is simpler than a configuration in which a plurality of conventional eddy current flaw detection probes are arranged in parallel.
  • the multi-probe MP to which the present invention is applied scans along the inspection surface of the inspection object T in the direction of the arrow X perpendicular to the flaw F as shown in FIG.
  • the multi- ⁇ probe MP moves over the flaw F of the test object T
  • an excitation signal is applied to the exciting coil C22 located above the flaw F
  • the flaw F is generated around the flaw F as described later.
  • An eddy current is generated, and the eddy current induces a flaw detection signal in the detection coil C1.
  • the multi- ⁇ probe MP can detect a range of four exciting coils in one scan.
  • the excitation signal When the excitation signal is applied by sequentially switching to the excitation coils C21 to C24, a flaw detection signal is generated in the detection coil C1 when the excitation signal closest to the flaw F, for example, the excitation signal is applied to the excitation coil C22. Therefore, the position of the flaw can be specified by specifying any one of the excitation coils C21 to C24 when the flaw detection signal is generated.
  • FIGS. 9A to 9C the state of the eddy current generated in the test object T by the multi- ⁇ ⁇ ⁇ probe MP is shown in FIGS. 9A to 9C.
  • FIG. 9A shows a state where the multi- ⁇ probe MP is placed on the specimen T
  • FIG. 9B shows an eddy current when the specimen T has no flaw
  • FIG. 9C shows a state where the specimen T has flaw. It shows the eddy current in the case. Note that only one excitation coil is shown.
  • FIG. 9A when the multi- ⁇ probe MP is placed on the test object T and an excitation signal (excitation current) is supplied to the excitation coil C21, if the test object T has no flaw, FIG. As shown in (1), an eddy current I is generated and flows along the winding of the exciting coil C21. On the other hand, when the specimen T has a flaw, as shown in FIG. 9C, the eddy currents i, i, i, i, i
  • the eddy currents which are widely distributed on both sides of the top and bottom and the ends of the flaw F, contribute most to the generation of the flaw detection signal, and are the eddy currents i, i, i, i generated around the flaw F.
  • FIGS.10A to 10C show an example of detecting a flaw parallel to the detection coil.
  • the specimen T Is not shown.
  • the eddy currents i, i, i, i shown in FIGS.10A to 10C are shown in FIG.
  • FIG. 10A shows a state in which the multi-probe MP scans the test object T (not shown) in the direction of the arrow X, and the detection coil C1 is in front of the flaw F.
  • the flaw detection signal (differential signal) is generated. That is, a flaw detection signal is generated.
  • the flaw detection signal increases as the detection coil C1 approaches the flaw F, and becomes maximum at the position where the detection coil C1 comes closest to the flaw F of the test object T as shown in FIG. 10A.
  • the flaw detection signal is more eddy current i than the signal induced by eddy current i.
  • FIG. 10B shows a state in which the detection coil C1 is located directly above the flaw F of the test object T.
  • the detection coil is detected by the currents i and i.
  • the signals induced in the coil C1 are equal in magnitude but opposite in direction, and are canceled out, so that no detection signal is generated in the detection coil C1.
  • FIG. 10C shows a state immediately after the detection coil C1 has passed the flaw F of the test object T.
  • a differential signal (detection signal) is induced in the detection coil C1 by the eddy currents i and i.
  • the detection coil C1 is located closest to the flaw F of the test object T, so that the flaw detection signal becomes maximum.
  • the signal induced by eddy current i is eddy current i
  • FIG. 11A shows a signal pattern of a flaw detection signal generated when the multi-probe MP scans the inspection object T as shown in FIGS. 10A to 10C described above.
  • FIG. 11B shows a signal pattern of a flaw detection signal generated when the above-described conventional eddy current flaw detection probe P scans the inspection object T for comparison with the multi-probe of the present invention.
  • the horizontal axis shows the flaw detection signal component (unit: V) in phase with the excitation signal.
  • the vertical axis shows the flaw detection signal component (unit: V) whose phase differs from that of the excitation signal by 90 degrees.
  • the signal pattern whose depth of the flaw is 20% of the thickness of the test object T is indicated by S
  • the signal pattern of 60% is indicated by S
  • the signal pattern of 80% is indicated by S.
  • phase of the flaw detection signal changes according to the depth of the flaw without being affected by the lift-off noise.
  • the signal patterns S 1, S 2, and S 3 shown in 11 A have a large amplitude even when the scratch is shallow.
  • the multi- ⁇ probe MP to which the present invention is applied can detect flaws with higher sensitivity and higher precision than the conventional eddy current flaw detection probe P even when the scratch is shallow.
  • the size of the multi-probe MP according to the present invention used for measuring the flaw detection signal pattern is such that the detection coil has a length of 50 mm, a height of 9 mm, a winding cross-sectional area of 1 X lmm 2 , and an excitation coil of outer diameter 9 mm, a winding cross-sectional area 1. 5 X 1. 5mm 2.
  • the specimen used was a 1.5 mm thick brass plate, and the brass plate had slits with a length of 15 mm, a width of 0.5 mm, and a depth of 20%, 40%, 60%, and 80% of the plate thickness. Was formed and scratched.
  • the excitation signal was set to 20 kHz and the lift-off was set to 0.2 mm.
  • FIG. 12 shows the relationship between the depth of a flaw and the amplitude of a flaw detection signal in a multi- ⁇ probe MP to which the present invention is applied and a conventional eddy current flaw detection probe P.
  • FIG. 12 shows the peaks of the signal patterns S 1, S 2 and S 3 at the respective depths of the flaws shown in FIGS. 11A and 11B.
  • FIG. 11A and FIG. 1 IB do not show a signal pattern when the depth of the flaw is 40% of the plate thickness.
  • the horizontal axis indicates the depth (%) of the flaw with respect to the plate thickness
  • the vertical axis indicates the flaw detection signal.
  • the depth of the flaw with respect to the plate thickness is 80% and the amplitude is normalized.
  • a comparison of the characteristics of the multi- ⁇ probe MP shown by the solid line in FIG. 12 with the characteristics of the conventional eddy current inspection probe P shown by the broken line in FIG. 12 shows that if the depth of the flaw is the same, the amplitude of the flaw detection signal is
  • the force of the multi- ⁇ probe MP according to the invention is larger than that of the conventional eddy current inspection probe P, and becomes larger even when the scratch is shallow. Therefore, the multi-layer probe MP according to the present invention has higher flaw detection sensitivity than the conventional eddy current flaw detection probe P, and can detect and evaluate the presence / absence, position, and depth of flaw even with a shallow flaw with high accuracy. .
  • 13A to 13C show an example of detecting a flaw perpendicular to the detection coil.
  • the test object T is not shown.
  • Figure 13A shows the multi- ⁇ probe MP scanned in the direction of the arrow X against the specimen T (not shown).
  • a flaw detection signal is induced in the detection coil C1 by the eddy current i3.
  • the flaw detection signal increases as the detection coil C1 approaches the flaw F, and becomes maximum at the position where the detection coil C1 comes closest to the flaw F as shown in FIG. 13A.
  • FIG. 13B shows a state where the detection coil C1 is located between the flaws F of the test object T.
  • the detection coil C1 is located between the flaws F, no flaw detection signal is generated because there is no eddy current flowing along the winding of the detection coil C1. That is, eddy currents i and i
  • FIG. 13C shows a state immediately after the detection coil C1 has passed the flaw F of the test object T.
  • a flaw detection signal is induced in the detection coil C1 by the eddy current i4.
  • the detection coil C1 is located closest to the flaw F of the test object T, so that the flaw detection signal becomes maximum. Eddy current i
  • the polarity of the flaw detection signal is opposite to that of the flaw detection signal shown in FIG. 13A.
  • FIG. 14A shows a signal pattern of a flaw detection signal generated when the multi-probe MP according to the present invention is scanned on the inspection object T as shown in FIGS. 13A to 13C described above.
  • FIG. 14B shows a signal pattern of a flaw detection signal generated when the above-described conventional eddy current flaw detection probe P scans the inspection object T for comparison with the multi-probe of the present invention. Show.
  • the horizontal axis shows the flaw detection signal component (unit V) in phase with the excitation signal
  • the vertical axis shows the flaw detection signal component (unit V) 90 degrees out of phase with the excitation signal.
  • flaw depth 20%, 60% and 80% of the thickness of the specimen.
  • the signal pattern whose depth of the flaw is 20% of the thickness of the test object T is indicated by S
  • the signal pattern of 60% is indicated by S
  • the signal pattern of 80% is indicated by S.
  • a stable 8-character signal pattern is drawn for each depth, and the phase changes according to the depth of the flaw. That is, it is difficult for the conventional eddy current inspection probe P to detect flaws perpendicular to the detection coil, but the multi- ⁇ probe MP according to the present invention detects flaws perpendicular to the detection coil with high sensitivity and high accuracy. it can.
  • the excitation coil used in the above-mentioned multi-probe MP and the eddy current inspection device using the multi-probe MP has been described as a pancake-shaped coil, but may be a rectangular or other quadrangular coil. Further, the detection coil is not limited to a rectangular shape, and may be a polygon other than a rectangle, such as a quadrangle or a triangle.
  • the eddy current inspection device provided with the eddy current inspection probe according to the present invention can inspect the inspection object for the presence or absence of flaws without contacting the inspection object.

Abstract

An eddy current flaw inspecting probe (MP) for inspecting flaws on an inspecting object is composed of one rectangular inspecting coil (C1) and four pancake-shaped magnetizing coils (C21-C24). The inspecting coil (C1) and the magnetizing coils (C21-C24) are arranged to orthogonally intersect. The magnetizing coils (C21-C24) are arranged in an inspecting coil (C1). The eddy current flaw inspecting device (MP) is arranged on an inspecting object (T) so as to have the inspecting coil (C1) vertical to the inspecting object (T) and the magnetizing coils (C21-C24) parallel to the inspecting object (T). A magnetizing signal is applied on the magnetizing coils (C21-C24) through subsequent switching so as to evade interference.

Description

渦電流探傷プローブ及び渦電流探傷装置  Eddy current inspection probe and eddy current inspection device
技術分野  Technical field
[0001] 本発明は、四角形、三角形等の多角形の検出コイルと励磁コイルを直交させて配 置した渦電流探傷プローブ及びこの渦電流探傷プローブを備えた渦電流探傷装置 に関する。  The present invention relates to an eddy current flaw detection probe in which a quadrangle, triangular or other polygonal detection coil and an excitation coil are arranged orthogonal to each other, and an eddy current flaw detector equipped with the eddy current flaw detection probe.
ここで四角形、三角形等の多角形の検出コイルと励磁コイルを直交させて配置した 渦電流探傷プローブは、一般に Θプローブとも称される。  Here, an eddy current flaw detection probe in which a quadrangular, triangular, or other polygonal detection coil and an excitation coil are arranged orthogonally is generally referred to as a probe.
本出願は、日本国において 2004年 5月 21日に出願された日本特許出願番号 200 4—151469を基礎として優先権を主張するものであり、この出願は参照することによ り、本出願に援用される。  This application claims priority based on Japanese Patent Application No. 2004-151469 filed on May 21, 2004 in Japan, and this application is incorporated herein by reference. Incorporated.
背景技術  Background art
[0002] 従来、この種の渦電流探傷プローブとして、特開 2003— 344361号公報、「平成 1 3年度秋季大会講演概要集」第 153〜154頁、平成 13年 10月 2日、社団法人日本 非破壊検査協会発行、に記載されたものがある。  [0002] Conventionally, as this kind of eddy current flaw detection probe, Japanese Patent Application Laid-Open No. 2003-344361, "Summary of Lectures for the Fall Meeting of 2001," pp. 153 to 154, October 2, 2001, Japan Published by the Non-Destructive Inspection Association.
この渦電流探傷プローブ Pは、図 1A〜図 1Cに示すように、パンケーキ状の励磁コ ィル Ceと矩形状の検出コイル Cdからなり、検出コイル Cdは、励磁コイル Ce内に配置 し、励磁コイル Ceと検出コイル Cdは、両コイルのコイル面が直交するように配置して ある。渦電流探傷プローブ Pは、図 1Aに示すように、金属板等の検査体 T上に、励 磁コイル Ceのコイル面が検査体 Tの検査面と平行になり、図 1Cに示すように、検出 コイル Cdのコイル面がその検査面と垂直になるように設置してある。渦電流探傷プロ ーブ Pは、図 1Bに示すように、検出コイル Cdが検査体 Tのキズ Fと平行になるように 検査体 T上に載置し、キズ Fの長手方向に垂直な Y方向へ走査して探傷する。 ここで、励磁コイルと検出コイルのコイル面とは、両コイルを構成する巻き線で囲ま れた面をいう。  As shown in FIGS.1A to 1C, the eddy current flaw detection probe P includes a pancake-shaped excitation coil Ce and a rectangular detection coil Cd, and the detection coil Cd is arranged in the excitation coil Ce. The excitation coil Ce and the detection coil Cd are arranged so that the coil surfaces of both coils are orthogonal. As shown in FIG.1A, the eddy current flaw detection probe P has a coil surface of the exciting coil Ce parallel to an inspection surface of the inspection object T on an inspection object T such as a metal plate, and as shown in FIG. The detection coil is installed so that the coil surface of Cd is perpendicular to the inspection surface. As shown in FIG. 1B, the eddy current inspection probe P is placed on the test object T so that the detection coil Cd is parallel to the defect F of the test object T, and the Y is perpendicular to the longitudinal direction of the defect F. Flaw detection by scanning in the direction. Here, the coil surfaces of the excitation coil and the detection coil refer to surfaces surrounded by windings constituting both coils.
図 1A〜図 1Cに示す従来の渦電流探傷プローブ Pは、後述するように原理的にリフ トオフ雑音、すなわち、渦電流探傷プローブと検査体の距離の変化に起因する雑音 の発生がなぐ検出コイル Cdには、検査体 Tにキズ Fがあるときのみ検出信号である 探傷信号を発生し、キズ Fがないときは探傷信号を発生しない。このように、従来の渦 電流探傷プローブ Pは、優れた探傷特性を有しているが、検出コイル Cdは、励磁コィ ル Ce内に配置されているから、検出コイル Cdの長さ、すなわち、励磁コイル Ceのコ ィル面と平行な方向の検出コイル Cdのコイル面の長さ又は幅は、励磁コイル Ceの内 径よりも短くなる。そのため、従来の渦電流探傷プローブ Pは、本発明等の実験の結 果、検査体 Tのキズ Fの深さが浅い場合には、検出コイル Cdにより検出される探傷信 号の出力レベル力 、さくなり、高精度の探傷、評価が困難であることが分力つた。 そして、上述した渦電流探傷プローブ Pは、図 1Bに示すように、検出コイル Cdと並 行なキズ Fは探傷できるが、検出コイル Cdに垂直なキズは、探傷が困難であった。 また、従来提案されている渦電流探傷プローブは、励磁コイルと検出コイルがそれ ぞれ 1個であるから、 1度に探傷できる範囲が狭ぐ検査体が圧延金属板、ガスタンク 等のプラント、航空機等のように探傷範囲の広い検査体の場合には、探傷に長時間 を要する。その点を改善する方法として、複数個の渦電流探傷プローブ Pを一列に 並置して同時に走査する方法が考えられるが、その場合に、渦電流探傷プローブ P 間の干渉を避けるため、渦電流探傷プローブ Pを順次切り換えて駆動する必要があり 、切換機構が複雑になる。また、多数の渦電流探傷プローブ Pの位置関係を正確に 調整する必要があり、組立てが困難となってしまっている。 The conventional eddy current flaw detection probe P shown in FIGS. 1A to 1C is basically a lift-off noise, that is, noise caused by a change in the distance between the eddy current flaw detection probe and the test object, as described later. The detection coil Cd that does not generate a flaw detection signal that is a detection signal only when the test object T has a flaw F, does not generate a flaw detection signal when there is no flaw F. As described above, the conventional eddy current flaw detection probe P has excellent flaw detection characteristics, but since the detection coil Cd is disposed in the excitation coil Ce, the length of the detection coil Cd, that is, The length or width of the coil surface of the detection coil Cd in the direction parallel to the coil surface of the excitation coil Ce is shorter than the inner diameter of the excitation coil Ce. Therefore, as a result of the experiment of the present invention and the like, when the depth of the flaw F of the test object T is small, the conventional eddy current flaw detection probe P has the output level power of the flaw detection signal detected by the detection coil Cd, It became difficult, and it was difficult to perform high-precision flaw detection and evaluation. As shown in FIG. 1B, the eddy current flaw detection probe P described above can detect flaws F parallel to the detection coil Cd, but flaws perpendicular to the detection coil Cd were difficult to detect. In addition, the eddy current flaw detection probe proposed so far has only one excitation coil and one detection coil. In the case of an inspection object with a wide flaw detection range, such as in the above, it takes a long time for flaw detection. As a method of improving this point, a method of arranging a plurality of eddy current inspection probes P in a line and scanning at the same time can be considered.In this case, in order to avoid interference between the eddy current inspection probes P, eddy current inspection It is necessary to sequentially switch and drive the probe P, and the switching mechanism becomes complicated. In addition, it is necessary to accurately adjust the positional relationship between a large number of eddy current detection probes P, which makes assembly difficult.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明は、上述した従来の渦電流探傷プローブが有する問題点に鑑み、従来の渦 電流探傷プローブの優れた探傷特性を損なうことなぐ浅いキズゃ検出コイルに垂直 なキズも高感度で探傷でき、し力も、 1度の走査で広い範囲の探傷が可能な渦電流 探傷プローブを提供することを目的とする。  In view of the above-mentioned problems of the conventional eddy current flaw detection probe, the present invention can detect flaws shallow without impairing the excellent flaw detection characteristics of the conventional eddy current flaw detection probe, and flaws perpendicular to the detection coil with high sensitivity. Another object of the present invention is to provide an eddy current inspection probe capable of detecting a wide range of flaws in one scan.
本発明に係る渦電流探傷プローブは、個の多角形の検出コイルと、この検出コイル 内に配置された励磁コイルとを有し、検出コイルと励磁コイルとを、互いのコイル面を 交差させて配置したものである。  An eddy current flaw detection probe according to the present invention has a plurality of polygonal detection coils and an excitation coil arranged in the detection coils, and the detection coils and the excitation coils are arranged such that their coil surfaces cross each other. It is arranged.
本発明に係る渦電流探傷プローブにおいて、検出コイルは、励磁コイルよりも長い ことが望ましい。 In the eddy current inspection probe according to the present invention, the detection coil is longer than the excitation coil. It is desirable.
また、励磁コイルは、パンケーキ状であり、さらに、検出コイルは、矩形状であること が望ましい。  Further, it is desirable that the exciting coil has a pancake shape and that the detecting coil has a rectangular shape.
本発明に係る渦電流探傷プローブにおいて、励磁コイルは、検出コイルの巻き線 に沿って 2個以上並列して配置されることが望ましい。  In the eddy current inspection probe according to the present invention, it is preferable that two or more excitation coils are arranged in parallel along the winding of the detection coil.
本発明に係る渦電流探傷装置は、 1個の多角形の検出コイル内に 2個以上の励磁 コイルを検出コイルの巻き線に沿って並置するように配置するとともに、検出コイルと 励磁コイルとが互 、のコイル面を交差するように配置されて!、る渦電流探傷プローブ と、 2個以上の励磁コイルに順次切り換えて励磁信号を印加する励磁信号発生部と、 検出コイルから探傷信号を検出して検査体のキズを探傷し評価する探傷評価部とを 備えている。  The eddy current flaw detector according to the present invention is arranged such that two or more excitation coils are arranged side by side along a winding of the detection coil in one polygonal detection coil, and the detection coil and the excitation coil are connected to each other. An eddy current flaw detection probe that is arranged so as to intersect each other's coil surface, an excitation signal generator that sequentially switches to two or more excitation coils to apply excitation signals, and detects a flaw detection signal from the detection coil And a flaw detection evaluation section for flaw detection and evaluation of flaws on the test object.
本発明に係る渦電流探傷プローブは、四角形、三角形等の多角形の検出コイル内 に励磁コイルを配置し、検出コイルを励磁コイルよりも長くすることにより、浅いキズゃ 検出コイルに垂直なキズについても、キズの有無、位置、深さを高感度、高精度で探 傷し評価できる。  In the eddy current inspection probe according to the present invention, the excitation coil is arranged in a detection coil having a polygonal shape such as a square or a triangle, and the detection coil is made longer than the excitation coil. In addition, flaws can be detected and evaluated with high sensitivity and high accuracy for the presence, position and depth of flaws.
また、本発明に係る渦電流探傷プローブは、 1個の多角形の検出コイル内に複数 の励磁コイルを並列して配置してあるから、一回の走査で探傷できる範囲が広くなる さらに、本発明に係る渦電流探傷プローブは、複数の励磁コイルを順次切り換えて 駆動するから、探傷信号が発生した励磁コイルを特定することができ、検査体のキズ の位置ち特定することがでさる。  Further, in the eddy current inspection probe according to the present invention, since a plurality of excitation coils are arranged in parallel within one polygonal detection coil, the range that can be inspected by one scan is widened. Since the eddy current inspection probe according to the present invention sequentially drives a plurality of excitation coils, it is possible to identify the excitation coil in which the inspection signal is generated, and to identify the position of the flaw of the inspection object.
さらにまた、本発明に係る渦電流探傷プローブは、複数個の励磁コイルに対して 1 個の検出コイルを設ければよいから、励磁コイルの切換えに対応して検出コイルを切 り換える必要がないので、検出コイルの切換手段を設ける必要がなくなる。  Furthermore, in the eddy current flaw detection probe according to the present invention, since one detection coil may be provided for a plurality of excitation coils, there is no need to switch the detection coil in accordance with the switching of the excitation coil. Therefore, there is no need to provide means for switching the detection coil.
さらにまた、本発明に係る渦電流探傷プローブは、複数個の励磁コイルに対して 1 個の検出コイルを配置するだけでよいから、構造が簡単になり、組立てが容易になる さらにまた、本発明に係る渦電流探傷プローブは、リフトオフ雑音が発生しないから 、探傷信号の位相がリフトオフ雑音の影響を受けずに、検査体のキズの深さに対応し て変化するので、探傷信号の位相に基づいてキズの深さを評価することができる。 本発明のさらに他の目的、本発明によって得られる利点は、以下において図面を 参照して説明される実施に形態から一層明らかにされるであろう。 Furthermore, the eddy current flaw detection probe according to the present invention requires only one detection coil to be disposed for a plurality of excitation coils, so that the structure is simplified and the assembly is facilitated. The eddy current flaw detection probe according to Since the phase of the flaw detection signal changes according to the depth of the flaw of the test object without being affected by the lift-off noise, the flaw depth can be evaluated based on the phase of the flaw detection signal. Still other objects of the present invention and advantages obtained by the present invention will become more apparent from the embodiments described below with reference to the drawings.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1 Aは従来の渦電流探傷プローブを示す側面図であり、図 1Bは渦電流探傷 プローブの平面図であり、図 1Cは図 1Aの A— A線断面図である。  FIG. 1A is a side view showing a conventional eddy current flaw detection probe, FIG. 1B is a plan view of the eddy current flaw detection probe, and FIG. 1C is a cross-sectional view taken along line AA of FIG. 1A.
[図 2]図 2は、本発明を適用したマルチ Θプローブの実施の形態を示す側面図である  FIG. 2 is a side view showing an embodiment of a multi-probe to which the present invention is applied.
[図 3]図 3は、図 2に示すマルチ Θプローブの平面図である。 FIG. 3 is a plan view of the multi-probe shown in FIG. 2.
[図 4]図 4は、図 3の IV— IV線断面図である。 FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
[図 5]図 5は、検出コイルを示す斜視図である。 FIG. 5 is a perspective view showing a detection coil.
[図 6]図 6は、励磁コイルを示す斜視図である。 FIG. 6 is a perspective view showing an exciting coil.
[図 7]図 7は、本発明に係るマルチ Θプローブを用いた渦電流探傷装置を示すブロッ クである。  FIG. 7 is a block diagram showing an eddy current flaw detector using the multi-probe according to the present invention.
[図 8]図 8は、マルチ Θプローブにより検査体上を走査する状態を示す平面図である  [FIG. 8] FIG. 8 is a plan view showing a state where an inspection object is scanned by a multi-probe.
[図 9]図 9Aはマルチ Θプローブを検査体上に載置した状態を示す平面図であり、図 9Bは検査体にキズがないときに発生する渦電流の状態を示す検査体の平面図であ り、図 9Cは検査体にキズがあるときに発生する渦電流の状態を示す検査体の平面 図である。 [FIG. 9] FIG. 9A is a plan view showing a state where a multi-Θ probe is placed on a test object, and FIG. 9B is a plan view of the test object showing a state of eddy current generated when the test object has no scratches. FIG. 9C is a plan view of the test object showing a state of an eddy current generated when the test object has a flaw.
[図 10]図 10Aはマルチ Θプローブを走査し、検出コイルに平行なキズを探傷する状 態であって、検出コイルがキズの手前にある状態を示す平面図であり、図 10Bは検 出コイルが検査体のキズの真上に位置するときの状態を示す平面図であり、図 10C は検出コイルが検査体のキズを通過した直後の状態を示す平面図である。  [FIG. 10] FIG. 10A is a plan view showing a state in which a multi-Θ probe is scanned to detect a flaw parallel to the detection coil and the detection coil is in front of the flaw, and FIG. 10B is a detection view. FIG. 10C is a plan view showing a state where the coil is located directly above the flaw of the test object, and FIG. 10C is a plan view showing a state immediately after the detection coil has passed through the flaw of the test object.
[図 11]図 11 Aは本発明に係るマルチ Θプローブが検出コイルに水平なキズを有する 検査体上を走査したときに発生する探傷信号の信号パターンを示す図であり、図 11 Bは従来の渦電流探傷プローブが検出コイルに水平なキズを有する検査体上を走査 したときに発生する探傷信号の信号パターンを示す図である。 FIG. 11A is a diagram showing a signal pattern of a flaw detection signal generated when the multi-probe according to the present invention scans an inspection object having a horizontal flaw in a detection coil, and FIG. Eddy current probe scans over test object with horizontal scratch on detection coil FIG. 6 is a diagram showing a signal pattern of a flaw detection signal generated when the detection is performed.
[図 12]図 12は、本発明が適用されたマルチ Θプローブ及び従来の渦電流探傷プロ ーブにおけるキズの深さと探傷信号の振幅の関係を示す図である。  FIG. 12 is a diagram showing the relationship between the depth of a flaw and the amplitude of a flaw detection signal in a multi-layer probe to which the present invention is applied and a conventional eddy current flaw detection probe.
[図 13]図 13Aはマルチ Θプローブを走査し、検出コイルに垂直なキズを探傷する状 態であって、検出コイルがキズの手前にある状態を示す平面図であり、図 13Bは検 出コイルが検査体のキズの真上に位置するときの状態を示す平面図であり、図 13C は検出コイルが検査体のキズを通過した直後の状態を示す平面図である。 [FIG. 13] FIG. 13A is a plan view showing a state in which a multi-Θ probe is scanned to detect flaws perpendicular to the detection coil and the detection coil is in front of the flaw, and FIG. 13B is a detection view. FIG. 13C is a plan view showing a state where the coil is located directly above the flaw of the test object, and FIG. 13C is a plan view showing a state immediately after the detection coil has passed through the flaw of the test object.
[図 14]図 14Aは本発明に係るマルチ Θプローブが検出コイルに垂直なキズを有する 検査体上を走査したときに発生する探傷信号の信号パターンを示す図であり、図 14 Bは従来の渦電流探傷プローブが検出コイルに垂直なキズを有する検査体上を走査 したときに発生する探傷信号の信号パターンを示す図である。 FIG. 14A is a diagram showing a signal pattern of a flaw detection signal generated when the multi-beam probe according to the present invention scans an inspection object having a defect perpendicular to the detection coil, and FIG. FIG. 3 is a diagram showing a signal pattern of a flaw detection signal generated when the eddy current flaw detection probe scans an inspection object having a flaw perpendicular to a detection coil.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明が適用された渦電流探傷プローブは、 1個の多角形の検出コイルと 1個以上 の励磁コイル力もなり、励磁コイルは、検出コイル内に検出コイルの巻き線に沿って 並列して並置するように配置し、両コイルは、コイル面が交差又は直交するように配 置してある。したがって、検出コイルの長さ、すなわち、励磁コイルのコイル面と平行 な方向の検出コイルのコイル面の長さ又は幅は、少なくとも 1個の励磁コイルの長さ である検出コイルの長さ方向に亘る励磁コイルのコイル面の長さ又は幅よりも長くなる 。なお、励磁コイルがパンケーキ状の場合には、励磁コイルのコイル面の幅は、励磁 コイルの外径である。  The eddy current inspection probe to which the present invention is applied also has one polygonal detection coil and one or more excitation coil forces, and the excitation coils are juxtaposed and juxtaposed within the detection coil along the winding of the detection coil. And both coils are arranged such that the coil planes intersect or cross at right angles. Therefore, the length of the detection coil, that is, the length or width of the coil surface of the detection coil in a direction parallel to the coil surface of the excitation coil, is at least one of the excitation coil lengths in the length direction of the detection coil. It is longer than the length or width of the coil surface of the exciting coil over the entire surface. When the exciting coil has a pancake shape, the width of the coil surface of the exciting coil is the outer diameter of the exciting coil.
ここで、 1個の多角形の検出コイル内に 1個以上の励磁コイルを配置し、両コイルが コイル面を交差又は直交するように配置してある渦電流探傷プローブを以下マルチ Θプローブという。  Here, an eddy current inspection probe in which one or more excitation coils are arranged within one polygonal detection coil and both coils are arranged so as to intersect or intersect the coil surface is hereinafter referred to as a multi- マ ル チ probe.
以下、本発明を適用した渦電流探傷プローブ及びマルチ Θプローブの実施の形 態を図面を参照して説明する。  Hereinafter, embodiments of an eddy current inspection probe and a multi-probe to which the present invention is applied will be described with reference to the drawings.
以下の説明するいくつかの実施の形態において、共通の符号を付して説明する。 本発明の一実施の形態であるマルチ Θプローブ MPは、図 2,図 3,図 4に示すよう に、矩形状の検出コイル C1と、パンケーキ状の励磁コイル C21〜C24を備える。 本発明が適用されたマルチ Θプローブ MPは、具体的に、図 2及び図 3に示すよう に、 4個の励磁 C21〜C24と 1個の検出コイル C1からなり、励磁コイル C21〜C24は 、検出コイル C1内に位置し、検出コイル C1の巻き線に沿って並列して配置されてい る。そして、 4個の励磁コイル C21〜C24と検出コイル C1とは、図 2〜図 4に示すよう に、コイル面を交差又は直交するようにして配置してある。ここで、検出コイル C1は、 図 5に示すように、長尺な矩形状に形成され、励磁コイル C21〜C24は、図 6に示す ように、リング状に形成されている。 In some embodiments described below, common reference numerals are used for description. As shown in FIGS. 2, 3, and 4, a multi-probe MP according to an embodiment of the present invention includes a rectangular detection coil C1 and pancake-like excitation coils C21 to C24. The multi-probe MP to which the present invention is applied, specifically, as shown in FIGS. 2 and 3, includes four excitations C21 to C24 and one detection coil C1, and the excitation coils C21 to C24 are It is located in the detection coil C1 and is arranged in parallel along the winding of the detection coil C1. The four excitation coils C21 to C24 and the detection coil C1 are arranged so that the coil surfaces intersect or intersect at right angles, as shown in FIGS. Here, the detection coil C1 is formed in a long rectangular shape as shown in FIG. 5, and the excitation coils C21 to C24 are formed in a ring shape as shown in FIG.
検出コイル C1は、並列配置された 4個の励磁コイル C21〜C24を一方の側力も他 方の側に亘る長さ C1Lを有する矩形状に形成され、前述した従来の渦電流探傷プロ ーブの配置とは逆に、図 2及び図 3に示すように、並列配置された 4つの励磁 C21〜 C24を内側に配置するに足る大きさに形成されて!、る。  The detection coil C1 has four exciting coils C21 to C24 arranged in parallel, and is formed in a rectangular shape having a length C1L in which one side force also extends to the other side. Contrary to the arrangement, as shown in FIGS. 2 and 3, the four excitations C21 to C24 arranged in parallel are formed in a size large enough to be arranged inside.
したがって、検出コイル C1の長さ C1Lは、少なくとも 1個の励磁コイルの外径よりも 長く形成され、前述した従来の渦電流探傷プローブのように励磁コイルの内径に制 限されることなぐ任意の長さに設定できる。  Therefore, the length C1L of the detection coil C1 is formed longer than the outer diameter of at least one exciting coil, and is not limited to the inner diameter of the exciting coil as in the conventional eddy current testing probe described above. Can be set to length.
なお、ここで、検出コイル C1の長さ C1Lは、励磁コイル C21〜C24のコイル面と平 行な方向のコイル面の長さ又は幅であり、励磁コイル C21〜C24の長さ又は幅は、 検出コイル C1の長さ方向のコイル面の長さであり、又は励磁コイル C21〜C24の外 径である。  Here, the length C1L of the detection coil C1 is the length or width of the coil surface in a direction parallel to the coil surfaces of the excitation coils C21 to C24, and the length or width of the excitation coils C21 to C24 is This is the length of the coil surface in the length direction of the detection coil C1, or the outer diameter of the excitation coils C21 to C24.
マルチ Θプローブ MPは、図 4に示すように、検出コイル C1のコイル面が検査体 T の検査面に対して垂直となるいわゆる縦置きに設置され、励磁コイル C21〜C24の コイル面が、図 2に示すように、検査体 Tの検査面と平行になるように、検査体 T上に 配置される。  As shown in Fig. 4, the multi-Θ probe MP is installed in a so-called vertical position where the coil surface of the detection coil C1 is perpendicular to the inspection surface of the inspection object T, and the coil surfaces of the excitation coils C21 to C24 are As shown in FIG. 2, it is arranged on the inspection object T so as to be parallel to the inspection surface of the inspection object T.
図 2〜図 4に示すマルチ Θプローブ MPは、 4個の励磁コイルを配置した例を上げ て説明したが、 1個以上任意でよい。なお、励磁コイルが 1個の場合には、マルチ Θ プローブ MPの 1回の走査で探傷できる範囲は狭!、が、浅!、キズや検出コイル C1に 垂直なキズに対する探傷感度は、励磁コイルが 1個であっても、複数個であっても変 わりない。  Although the multi-Θ probe MP shown in FIGS. 2 to 4 has been described with an example in which four excitation coils are arranged, one or more probes may be used. When one excitation coil is used, the range that can be detected by one scan of the multi-probe MP is narrow !, but shallow! It does not change whether the number is one or more.
次に、本発明に係るマルチ Θプローブを用いた渦電流探傷装置を説明する。 この渦電流探傷装置は、図 7に示すように、励磁信号発生部 11と、探傷評価部 12 とを備える。 Next, an eddy current flaw detector using the multi-probe according to the present invention will be described. As shown in FIG. 7, the eddy current flaw detection device includes an excitation signal generation unit 11 and a flaw detection evaluation unit 12.
渦電流探傷装置を構成する励磁信号発生部 11は、マルチ Θプローブ MPの 4個の 励磁コイル C21〜C24に、順次例えば、 C21, C22, C23, C24の順に励磁信号を 印加する。励磁コイル C21〜C24は、互いに接近して配置されているので、隣接する 励磁コイル C21〜C24に同時に励磁信号を印加すると干渉する。その干渉を避ける ため、各励磁コイル C21〜C24には、時間的にずらせて励磁信号を順次印加してい る。励磁コイル C21〜C24に励磁信号が印加されると、検査体 Tには、後述するよう に各励磁コイルに対応して渦電流が発生する。検査体 Tにキズがあるときは、そのキ ズに起因する渦電流が発生し、検出コイル C1に探傷信号が発生する。探傷評価部 1 2は、検出コイル C1に発生した探傷信号を検出して、検査体 Tのキズの有無、位置、 深さ等を探傷、評価する。  The excitation signal generator 11 constituting the eddy current flaw detector applies excitation signals to the four excitation coils C21 to C24 of the multi-probe MP sequentially, for example, in the order of C21, C22, C23, and C24. Since the excitation coils C21 to C24 are arranged close to each other, if excitation signals are applied to the adjacent excitation coils C21 to C24 at the same time, interference occurs. In order to avoid the interference, excitation signals are sequentially applied to each of the excitation coils C21 to C24 with a time lag. When an excitation signal is applied to the excitation coils C21 to C24, an eddy current is generated in the test object T corresponding to each excitation coil as described later. If the inspection object T has a flaw, an eddy current is generated due to the flaw, and a flaw detection signal is generated in the detection coil C1. The flaw detection evaluation section 12 detects the flaw detection signal generated in the detection coil C1, and flaw-detects and evaluates the presence / absence, position, depth, etc., of the test object T.
励磁コイル C21〜C24は、 C21, C22, C23, C24の順に 1個ずつ励磁信号を印 加する代わりに、例えば励磁コイル C21〜C24を 1つおきに 2つのグループに分けて グループ毎に励磁信号の供給線を設け、その供給線を切り換えて、グループ単位で 励磁信号を印加するように構成してもよい。励磁コイルのグループは、 2つに限らず、 さら〖こ多くすることもできる。励磁コイルをグループに分けると、励磁信号発生部 11は 、励磁コイルの切換スィッチの個数が少なくなり、構成が簡単になる。  Instead of applying excitation signals one by one in the order of C21, C22, C23, and C24, for example, the excitation coils C21 to C24 are divided into two groups every other excitation coil C21 to C24, and the excitation signals are grouped. May be configured so that excitation signals are applied in group units by switching the supply lines. The number of groups of the exciting coils is not limited to two, and may be further increased. When the excitation coils are divided into groups, the excitation signal generation unit 11 has a small number of switching switches for the excitation coils, thereby simplifying the configuration.
なおマルチ Θプローブ MPは、 1個の検出コイル C1を設けるのみであるから、探傷 評価部 12に検出コイルの切換スィッチを設ける必要がない。したがって、探傷評価 部 12は、従来の渦電流探傷プローブを複数個並列して配置する構成に比べて構成 が簡単になる。  Since the multi-Θ probe MP has only one detection coil C1, it is not necessary to provide a detection coil switching switch in the flaw detection evaluation unit 12. Therefore, the configuration of the flaw detection evaluation unit 12 is simpler than a configuration in which a plurality of conventional eddy current flaw detection probes are arranged in parallel.
本発明が適用されたマルチ Θプローブ MPは、図 8に示すように、検査体 Tの検査 面に沿ってキズ Fに垂直な矢印 X方向へ走査する。マルチ Θプローブ MPが検査体 Tのキズ Fの上に移動すると、このキズ Fの上に位置する励磁コイル C22に励磁信号 が印加されると、後述するようにキズ Fの周囲にキズ Fに起因する渦電流が発生し、そ の渦電流によって検出コイル C1に探傷信号が誘起する。  The multi-probe MP to which the present invention is applied scans along the inspection surface of the inspection object T in the direction of the arrow X perpendicular to the flaw F as shown in FIG. When the multi-Θ probe MP moves over the flaw F of the test object T, when an excitation signal is applied to the exciting coil C22 located above the flaw F, the flaw F is generated around the flaw F as described later. An eddy current is generated, and the eddy current induces a flaw detection signal in the detection coil C1.
4個の励磁コイル C21〜C24に励磁信号を印加すると、検査体 Tの検査面には、 励磁コイル C21〜C24に対応する位置に渦電流が発生する。したがって、マルチ Θ プローブ MPは、 1回の走査で励磁コイル 4個分の範囲を探傷できる。 When an excitation signal is applied to the four excitation coils C21 to C24, the inspection surface of the inspection object T An eddy current is generated at a position corresponding to the exciting coils C21 to C24. Therefore, the multi-Θ probe MP can detect a range of four exciting coils in one scan.
励磁コイル C21〜C24に順次切り換えて励磁信号を印加すると、キズ Fに最も近い 、例えば励磁コイル C22に励磁信号が印加されると、検出コイル C1に探傷信号が発 生する。したがって、探傷信号が発生したときの励磁コイル C21〜C24のいずれかを 特定することにより、キズの位置を特定することができる。  When the excitation signal is applied by sequentially switching to the excitation coils C21 to C24, a flaw detection signal is generated in the detection coil C1 when the excitation signal closest to the flaw F, for example, the excitation signal is applied to the excitation coil C22. Therefore, the position of the flaw can be specified by specifying any one of the excitation coils C21 to C24 when the flaw detection signal is generated.
ここで、マルチ Θプローブ MPによって、検査体 Tに発生する渦電流の様子を図 9A 〜図 9Cに示す。  Here, the state of the eddy current generated in the test object T by the multi- マ ル チ probe MP is shown in FIGS. 9A to 9C.
図 9Aは、マルチ Θプローブ MPを検査体 Tに上に配置した状態を示し、図 9Bは、 検査体 Tにキズがない場合の渦電流を示し、図 9Cは、検査体 Tにキズがある場合の 渦電流を示す。なお、励磁コイルは 1個のみ図示してある。  9A shows a state where the multi-Θ probe MP is placed on the specimen T, FIG. 9B shows an eddy current when the specimen T has no flaw, and FIG. 9C shows a state where the specimen T has flaw. It shows the eddy current in the case. Note that only one excitation coil is shown.
図 9Aに示すように、検査体 T上にマルチ Θプローブ MPを配置したとき、励磁コィ ル C21に励磁信号 (励磁電流)を供給すると、検査体 Tにキズがない場合には、図 9 Bに示すように渦電流 Iが発生し、励磁コイル C21の巻き線に沿って流れる。一方、検 查体 Tにキズがある場合には、図 9Cに示すようにキズ Fに起因する渦電流 i , i , i , i  As shown in FIG. 9A, when the multi-Θ probe MP is placed on the test object T and an excitation signal (excitation current) is supplied to the excitation coil C21, if the test object T has no flaw, FIG. As shown in (1), an eddy current I is generated and flows along the winding of the exciting coil C21. On the other hand, when the specimen T has a flaw, as shown in FIG. 9C, the eddy currents i, i, i, i, i
1 2 3 が発生する。なお、キズ Fに起因して発生する渦電流は、キズ Fの両側(図 9C中の 1 2 3 occurs. The eddy current generated due to the flaw F is on both sides of the flaw F (Fig. 9C).
4 Four
上下)及びキズ Fの両端の延長側にも広く分布するが、探傷信号の発生に最も寄与 する渦電流は、キズ Fの周囲に発生する渦電流 i , i , i , iである。 The eddy currents, which are widely distributed on both sides of the top and bottom and the ends of the flaw F, contribute most to the generation of the flaw detection signal, and are the eddy currents i, i, i, i generated around the flaw F.
1 2 3 4  1 2 3 4
検査体 Tにキズがない場合、図 9Βに示すように、検出コイル C1の巻き線に沿って 流れる渦電流はないから、検出コイル C1には、信号は誘起しない。すなわち、検査 体 Τにキズがない場合には、探傷信号は発生しない。一方、検査体 Τにキズ Fがある 場合には、図 9Cに示すように、渦電流 i , iによって検出コイル CIに探傷信号が誘  When there is no flaw in the inspection object T, no signal is induced in the detection coil C1 because there is no eddy current flowing along the winding of the detection coil C1 as shown in Fig. 9Β. That is, if there is no flaw in the inspection body 傷, no flaw detection signal is generated. On the other hand, when the specimen F has a flaw F, as shown in FIG. 9C, a flaw detection signal is induced to the detection coil CI by the eddy currents i and i.
1 2  1 2
起する。すなわち、検査体 Tにキズ Fがある場合には、探傷信号が発生する。 Wake up. That is, when the inspection object T has the flaw F, a flaw detection signal is generated.
なお、検査体 Tにキズがない場合、検出コイル C1には、信号を誘起しないから、マ ルチ Θプローブ MPの走査の過程にお!、て、マルチ Θプローブ MPと検査体 Tの距 離(間隔)が変動しても、その変動によってリフトオフ雑音が発生することはない。 以上は、他の励磁コイル C22〜C24についても同様である。  If there is no flaw in the test object T, no signal is induced in the detection coil C1. Therefore, during the scanning of the multi-probe MP, the distance between the multi-probe MP and the test object T ( Does not cause lift-off noise. The same applies to the other excitation coils C22 to C24.
図 10A〜図 10Cは、検出コイルと平行なキズを探傷する例を示す。なお、検査体 T は図示を省略してある。 図 10A〜図 10C中に示す渦電流 i , i , i , iは、図 9Cに 10A to 10C show an example of detecting a flaw parallel to the detection coil. The specimen T Is not shown. The eddy currents i, i, i, i shown in FIGS.10A to 10C are shown in FIG.
1 2 3 4  1 2 3 4
示すの渦電流 i , i , i , i Eddy currents i, i, i, i
1 2 3 4と同じである。  Same as 1 2 3 4.
図 10Aは、マルチ Θプローブ MPを図示しない検査体 Tに対し矢印 X方向へ走査 し、検出コイル C1がキズ Fの手前にある状態を示す。  FIG. 10A shows a state in which the multi-probe MP scans the test object T (not shown) in the direction of the arrow X, and the detection coil C1 is in front of the flaw F.
励磁コイルに励磁信号を印加すると、キズ Fの周囲に渦電流 i , i , i , iが発生する  When an excitation signal is applied to the excitation coil, eddy currents i, i, i, i are generated around the wound F.
1 2 3 4  1 2 3 4
から、検出コイル C1には、渦電流 i , iによって信号が誘起する。その場合、渦電流 i Therefore, a signal is induced in the detection coil C1 by the eddy currents i, i. In that case, the eddy current i
1 2 1 1 2 1
, iは、互いに逆向きに流れているから、検出コイル C1には、両電流によって誘起す, i flow in opposite directions, so the detection coil C1 is induced by both currents.
2 2
る信号の差信号 (差動信号)が発生する。すなわち、探傷信号が発生する。探傷信 号は、検出コイル C1がキズ Fに近付くほど大きくなり、図 10Aに示すように、検出コィ ル C1が検査体 Tのキズ Fに最も近付いた位置で最大になる。探傷信号は、渦電流 i によって誘起する信号よりも渦電流 i Signal (differential signal) is generated. That is, a flaw detection signal is generated. The flaw detection signal increases as the detection coil C1 approaches the flaw F, and becomes maximum at the position where the detection coil C1 comes closest to the flaw F of the test object T as shown in FIG. 10A. The flaw detection signal is more eddy current i than the signal induced by eddy current i.
2によって誘起する信号の方が大きいから、探傷 信号の極性は、渦電流 i  Since the signal induced by 2 is larger, the polarity of the flaw detection signal is
2によって決まる。  Depends on 2.
図 10Bは、検出コイル C1が検査体 Tのキズ Fの真上に位置するときの状態を示す。 検出コイル C1が検査体 Tのキズ Fの真上にあるときは、電流 i , iによって検出コィ  FIG. 10B shows a state in which the detection coil C1 is located directly above the flaw F of the test object T. When the detection coil C1 is located directly above the flaw F of the test object T, the detection coil is detected by the currents i and i.
1 2  1 2
ル C1に誘起する信号は、大きさが同じで方向が反対であるから相殺され、検出コィ ル C1には探傷信号は発生しな 、。 The signals induced in the coil C1 are equal in magnitude but opposite in direction, and are canceled out, so that no detection signal is generated in the detection coil C1.
図 10Cは、検出コイル C1が検査体 Tのキズ Fを通過した直後の状態を示す。  FIG. 10C shows a state immediately after the detection coil C1 has passed the flaw F of the test object T.
図 10Cの場合、検出コイル C1には渦電流 i , iによって差動信号 (探傷信号)が誘  In the case of Fig. 10C, a differential signal (detection signal) is induced in the detection coil C1 by the eddy currents i and i.
1 2  1 2
起する。図 1 OAに示す場合と同様に、検出コイル C1は、検査体 Tのキズ Fに最も近 い位置にあるから、探傷信号は最大になる。その場合、渦電流 iによって誘起する信 号は、渦電流 i Wake up. As in the case shown in FIG. 1 OA, the detection coil C1 is located closest to the flaw F of the test object T, so that the flaw detection signal becomes maximum. In that case, the signal induced by eddy current i is eddy current i
2によって誘起する信号よりも大きいから、探傷信号の極性は、渦流 i  2, the polarity of the flaw detection signal is
1 によって決まり、図 10Aに示す状態の探傷信号と逆になる。  1 and opposite to the flaw detection signal shown in Fig. 10A.
図 11Aは、マルチ Θプローブ MPを、前述した図 10A〜図 10Cに示すように検査 体 T上を走査したときに発生する探傷信号の信号パターンを示す。  FIG. 11A shows a signal pattern of a flaw detection signal generated when the multi-probe MP scans the inspection object T as shown in FIGS. 10A to 10C described above.
図 11Bは、本発明のマルチ Θプローブと比較するため、前述した従来の渦電流探 傷プローブ Pにより検査体 T上を走査したときに発生する探傷信号の信号パターンを 示す。  FIG. 11B shows a signal pattern of a flaw detection signal generated when the above-described conventional eddy current flaw detection probe P scans the inspection object T for comparison with the multi-probe of the present invention.
図 11A、図 11Bにおいて、横軸は、励磁信号と同相の探傷信号成分 (単位 V)を示 し、縦軸は、励磁信号と位相が 90度異なる探傷信号成分 (単位 V)を示す。キズの深 さは、検査体の板厚の 20%、 60%、 80%の 3種類である。 11A and 11B, the horizontal axis shows the flaw detection signal component (unit: V) in phase with the excitation signal. The vertical axis shows the flaw detection signal component (unit: V) whose phase differs from that of the excitation signal by 90 degrees. There are three types of flaw depth: 20%, 60% and 80% of the thickness of the specimen.
ここで、キズの深さが、検査体 Tの板厚の 20%の信号パターンを Sで示し、 60%の 信号パターンを Sで示し、 80%の信号パターンを Sで示す。  Here, the signal pattern whose depth of the flaw is 20% of the thickness of the test object T is indicated by S, the signal pattern of 60% is indicated by S, and the signal pattern of 80% is indicated by S.
2 3  twenty three
図 11Aに示すの信号パターン S , S , Sと、図 11Bに示す信号パターン S , S , S  The signal patterns S 1, S 2, S 3 shown in FIG. 11A and the signal patterns S 1, S 2, S 3 shown in FIG.
1 2 3 1 2 を比較すると、図 11Aに示す信号パターン S , S , Sは、図 11Bに示す信号パター Comparing 1 2 3 1 2, the signal patterns S 1, S 2, and S 3 shown in FIG.
3 1 2 3 3 1 2 3
ン S , S , Sと同様に、キズの深さ毎に安定した 8字型の信号パターンを描き、キズLike S, S, S, draw a stable 8-character signal pattern for each depth of the
1 2 3 one two Three
の深さに対応して位相が変化している。すなわちマルチ Θプローブ MPは、従来の渦 電流探傷プローブ Pと同様にリフトオフ雑音が発生しないから、探傷信号の位相は、 リフトオフ雑音の影響を受けることなぐキズの深さに対応して変化している。 The phase changes in accordance with the depth of. That is, since the multi-Θ probe MP does not generate lift-off noise as in the conventional eddy current probe P, the phase of the flaw detection signal changes according to the depth of the flaw without being affected by the lift-off noise. .
カロえて、 11 Aに示す信号パターン S , S , Sは、キズが浅いときも振幅が大きぐ安  The signal patterns S 1, S 2, and S 3 shown in 11 A have a large amplitude even when the scratch is shallow.
1 2 3  one two Three
定している。すなわちキズの深さが検査体 Tの板厚の 20%の場合、図 11Bに示す信 号パターン Sの振幅は、急激に小さくなる力 図 11Aに示す信号パターン Sの振幅 の変化は図 11Bに示す信号パターン Sに比し小さい。したがって、本発明を適用し たマルチ Θプローブ MPは、キズが浅いときも、従来の渦電流探傷プローブ Pよりも高 感度、高精度で探傷できる。 It is fixed. That is, when the depth of the flaw is 20% of the thickness of the specimen T, the amplitude of the signal pattern S shown in FIG. 11B is a force that rapidly decreases.The change in the amplitude of the signal pattern S shown in FIG. 11A is shown in FIG. 11B. It is smaller than the signal pattern S shown. Therefore, the multi-Θ probe MP to which the present invention is applied can detect flaws with higher sensitivity and higher precision than the conventional eddy current flaw detection probe P even when the scratch is shallow.
ここで、探傷信号パターンの測定に用いた本発明に係るマルチ Θプローブ MPの 大きさは、検出コイルが、長さ 50mm、高さ 9mm、巻き線断面積 1 X lmm2,励磁コィ ルが、外径 9mm、巻き線断面積 1. 5 X 1. 5mm2である。また、検査体は、厚さが 1. 5mmの黄銅板を用い、その黄銅板に長さ 15mm、幅 0. 5mm、深さが板厚の 20%, 40%、 60%、 80%のスリットを形成してキズとした。励磁信号は、 20kHz,リフトオフ は、 0. 2mmに設定した。 Here, the size of the multi-probe MP according to the present invention used for measuring the flaw detection signal pattern is such that the detection coil has a length of 50 mm, a height of 9 mm, a winding cross-sectional area of 1 X lmm 2 , and an excitation coil of outer diameter 9 mm, a winding cross-sectional area 1. 5 X 1. 5mm 2. The specimen used was a 1.5 mm thick brass plate, and the brass plate had slits with a length of 15 mm, a width of 0.5 mm, and a depth of 20%, 40%, 60%, and 80% of the plate thickness. Was formed and scratched. The excitation signal was set to 20 kHz and the lift-off was set to 0.2 mm.
図 12は、本発明が適用されたマルチ Θプローブ MP及び従来の渦電流探傷プロ ーブ Pにおけるキズの深さと探傷信号の振幅の関係を示す。図 12は、図 11A及び図 11Bに示すのキズの各深さの信号パターン S , S , Sのピーク ピークの大きさをプ  FIG. 12 shows the relationship between the depth of a flaw and the amplitude of a flaw detection signal in a multi-Θ probe MP to which the present invention is applied and a conventional eddy current flaw detection probe P. FIG. 12 shows the peaks of the signal patterns S 1, S 2 and S 3 at the respective depths of the flaws shown in FIGS. 11A and 11B.
1 2 3  one two Three
ロットしたものである。なお、図 11A、図 1 IBには、キズの深さが板厚の 40%の場合 の信号パターンは図示してない。 It is a lot. Note that FIG. 11A and FIG. 1 IB do not show a signal pattern when the depth of the flaw is 40% of the plate thickness.
図 12において、横軸は、板厚に対するキズの深さ(%)を示し、縦軸は、探傷信号 の振幅を示し、振幅は板厚に対すキズの深さが 80%で正規ィ匕してある。 In FIG. 12, the horizontal axis indicates the depth (%) of the flaw with respect to the plate thickness, and the vertical axis indicates the flaw detection signal. The depth of the flaw with respect to the plate thickness is 80% and the amplitude is normalized.
図 12中に実線で示すマルチ Θプローブ MPの特性と、図 12中破線で示す従来の 渦電流探傷プローブ Pの特性を比較すると、キズの深さが同じ場合、探傷信号の振 幅は、本発明に係るマルチ Θプローブ MPの方力 従来の渦電流探傷プローブ Pの よりも大きくなり、キズが浅い場合も大きくなる。したがって、本発明に係るマルチ Θプ ローブ MPは、従来の渦電流探傷プローブ Pよりも探傷感度が高くなり、浅いキズであ つてもキズの有無、位置、深さを高精度で探傷し評価できる。  A comparison of the characteristics of the multi-Θ probe MP shown by the solid line in FIG. 12 with the characteristics of the conventional eddy current inspection probe P shown by the broken line in FIG. 12 shows that if the depth of the flaw is the same, the amplitude of the flaw detection signal is The force of the multi-Θ probe MP according to the invention is larger than that of the conventional eddy current inspection probe P, and becomes larger even when the scratch is shallow. Therefore, the multi-layer probe MP according to the present invention has higher flaw detection sensitivity than the conventional eddy current flaw detection probe P, and can detect and evaluate the presence / absence, position, and depth of flaw even with a shallow flaw with high accuracy. .
図 13A〜図 13Cは、検出コイルに垂直なキズを探傷する例を示す。なお、検査体 Tは、図示を省略してある。  13A to 13C show an example of detecting a flaw perpendicular to the detection coil. The test object T is not shown.
図 13Aは、マルチ Θプローブ MPを図示しない検査体 Tに対し矢印 X方向へ走査  Figure 13A shows the multi-Θ probe MP scanned in the direction of the arrow X against the specimen T (not shown).
2  2
し、検出コイル C1がキズ Fの手前にある状態を示す。 This shows a state in which the detection coil C1 is in front of the flaw F.
励磁コイルに励磁信号を印加すると、キズ Fの周囲には、前述した図 10Aの場合と 同様に渦電流 i , i , i , i  When the excitation signal is applied to the excitation coil, the eddy currents i, i, i, i, i
1 2 3 4が発生するから、検出コイル C1には、渦電流 i3によって探 傷信号が誘起する。探傷信号は、検出コイル C1がキズ Fに近付くほど大きくなり、図 13Aに示すように、検出コイル C1がキズ Fに最も近付いた位置で最大になる。  Since 1 2 3 4 is generated, a flaw detection signal is induced in the detection coil C1 by the eddy current i3. The flaw detection signal increases as the detection coil C1 approaches the flaw F, and becomes maximum at the position where the detection coil C1 comes closest to the flaw F as shown in FIG. 13A.
図 13Bは、検出コイル C1が検査体 Tのキズ Fの中間にあるときの状態を示す。 検出コイル C 1がキズ Fの中間にあるときは、検出コイル C 1の巻き線に沿つて流れる 渦電流はないから、探傷信号は発生しない。すなわち渦電流 i , i  FIG. 13B shows a state where the detection coil C1 is located between the flaws F of the test object T. When the detection coil C1 is located between the flaws F, no flaw detection signal is generated because there is no eddy current flowing along the winding of the detection coil C1. That is, eddy currents i and i
1 2は、検出コイル C1 の巻き線と直交する方向に流れるから、探傷信号の発生に寄与しない。  Since 12 flows in a direction orthogonal to the winding of the detection coil C1, it does not contribute to the generation of a flaw detection signal.
図 13Cは、検出コイル C1が検査体 Tのキズ Fを通過した直後の状態を示す。  FIG. 13C shows a state immediately after the detection coil C1 has passed the flaw F of the test object T.
図 13Cの場合、検出コイル C1には、渦電流 i4によって探傷信号が誘起する。検出 コイル C1は、図 13Aに示す場合と同様に、検査体 Tのキズ Fに最も近い位置にある から、探傷信号は最大になる。渦電流 i  In the case of FIG. 13C, a flaw detection signal is induced in the detection coil C1 by the eddy current i4. As in the case shown in FIG. 13A, the detection coil C1 is located closest to the flaw F of the test object T, so that the flaw detection signal becomes maximum. Eddy current i
4は、流れる方向が渦電流 i  4 indicates that the flowing direction is eddy current i
3と反対になるから Because it's the opposite of 3
、探傷信号の極性は、図 13Aに示す探傷信号と逆になる。 The polarity of the flaw detection signal is opposite to that of the flaw detection signal shown in FIG. 13A.
図 14Aは、本発明に係るマルチ Θプローブ MPを、前述した図 13A〜図 13Cに示 すように検査体 T上を走査したときに発生する探傷信号の信号パターンを示す。 図 14Bは、本発明のマルチ Θプローブと比較するため、前述した従来の渦電流探 傷プローブ Pにより検査体 T上を走査したときに発生する探傷信号の信号パターンを 示す。 FIG. 14A shows a signal pattern of a flaw detection signal generated when the multi-probe MP according to the present invention is scanned on the inspection object T as shown in FIGS. 13A to 13C described above. FIG. 14B shows a signal pattern of a flaw detection signal generated when the above-described conventional eddy current flaw detection probe P scans the inspection object T for comparison with the multi-probe of the present invention. Show.
図 14A、図 14Bにおいて、横軸は、励磁信号と同相の探傷信号成分 (単位 V)を示 し、縦軸は、励磁信号と位相が 90度異なる探傷信号成分 (単位 V)を示す。キズの深 さは、検査体の板厚の 20%、 60%、 80%の 3種類である。  14A and 14B, the horizontal axis shows the flaw detection signal component (unit V) in phase with the excitation signal, and the vertical axis shows the flaw detection signal component (unit V) 90 degrees out of phase with the excitation signal. There are three types of flaw depth: 20%, 60% and 80% of the thickness of the specimen.
ここで、キズの深さが、検査体 Tの板厚の 20%の信号パターンを Sで示し、 60%の 信号パターンを Sで示し、 80%の信号パターンを Sで示す。  Here, the signal pattern whose depth of the flaw is 20% of the thickness of the test object T is indicated by S, the signal pattern of 60% is indicated by S, and the signal pattern of 80% is indicated by S.
2 3  twenty three
ここで、図 14Aに示す信号パターン S , S , Sと、図 14Bに示す信号パターン S ,  Here, the signal patterns S 1, S 2 and S 3 shown in FIG. 14A and the signal patterns S 1 and S 2 shown in FIG.
1 2 3 1 1 2 3 1
S , Sを比較すると、図 14Bに示す信号パターン S , S , Sは振幅が小さぐ不明瞭Comparing S 1 and S 2, the signal patterns S 1, S 2 and S 3 shown in FIG.
2 3 1 2 3 2 3 1 2 3
であるが、図 14Aに示す信号パターン S, S, Sは振幅が大きぐ検査体 Tのキズの However, the signal patterns S, S, and S shown in FIG.
1 2 3  one two Three
深さ毎に安定した 8字型の信号パターンを描き、キズの深さに対応して位相が変化し ている。すなわち、従来の渦電流探傷プローブ Pは、検出コイルに垂直なキズの探傷 は困難であるが、本発明に係るマルチ Θプローブ MPは、検出コイルに垂直なキズも 高感度にしかも高精度で探傷できる。 A stable 8-character signal pattern is drawn for each depth, and the phase changes according to the depth of the flaw. That is, it is difficult for the conventional eddy current inspection probe P to detect flaws perpendicular to the detection coil, but the multi-Θ probe MP according to the present invention detects flaws perpendicular to the detection coil with high sensitivity and high accuracy. it can.
上述したマルチ Θプローブ MP及びこのマルチ Θプローブ MPを用いた渦電流探 傷装置に用いられる励磁コイルは、パンケーキ状のコイルについて説明したが、矩形 状等四角形のコイルであってもよい。また、検出コイルは、矩形状に限らず矩形以外 の四角形、三角形等の多角形であってもよい。  The excitation coil used in the above-mentioned multi-probe MP and the eddy current inspection device using the multi-probe MP has been described as a pancake-shaped coil, but may be a rectangular or other quadrangular coil. Further, the detection coil is not limited to a rectangular shape, and may be a polygon other than a rectangle, such as a quadrangle or a triangle.
なお、本発明は、図面を参照して説明した上述の実施例に限定されるものではなく The present invention is not limited to the above-described embodiment described with reference to the drawings.
、添付の請求の範囲及びその主旨を逸脱することなぐ様々な変更、置換又はその 同等のものを行うことができることは当業者にとって明らかである。 産業上の利用可能性 It will be apparent to those skilled in the art that various modifications, substitutions, or equivalents can be made without departing from the scope of the appended claims and their spirit. Industrial applicability
本発明に係る渦電流探傷プローブを備えた渦電流探傷装置は、検査体に対し非 接触の状態で、検査体のキズの有無を検査することができる。  The eddy current inspection device provided with the eddy current inspection probe according to the present invention can inspect the inspection object for the presence or absence of flaws without contacting the inspection object.

Claims

請求の範囲 The scope of the claims
[1] 1. 1個の多角形の検出コイルと、  [1] 1. One polygonal detection coil,
前記検出コイル内に配置された励磁コイルとを有し、  An excitation coil disposed in the detection coil,
前記検出コイルと上記励磁コイルとは、互 、のコイル面を交差させて配置されて ヽ ることを特徴とする渦電流探傷プローブ。  An eddy current flaw detection probe, wherein the detection coil and the excitation coil are arranged with their coil surfaces crossing each other.
[2] 2.前記検出コイルは、前記励磁コイルよりも長いことを特徴とする請求の範囲第 1項 記載の渦電流探傷プローブ。  2. The eddy current inspection probe according to claim 1, wherein the detection coil is longer than the excitation coil.
[3] 3.前記励磁コイルは、パンケーキ状であることを特徴とする請求の範囲第 1項記載 の渦電流探傷プローブ。 3. The eddy current flaw detection probe according to claim 1, wherein the excitation coil has a pancake shape.
[4] 4.前記検出コイルは、矩形状であることを特徴とする請求の範囲第 1項記載の渦電 流探傷プローブ。 4. The eddy current flaw detection probe according to claim 1, wherein the detection coil has a rectangular shape.
[5] 5.前記励磁コイルは、前記検出コイルの巻き線に沿って 2個以上並列して配置され ていることを特徴とする請求の範囲第 1項記載の渦電流探傷プローブ。  5. The eddy current inspection probe according to claim 1, wherein two or more exciting coils are arranged in parallel along a winding of the detection coil.
[6] 6. 1個の多角形の検出コイル内に 2個以上の励磁コイルを検出コイルの巻き線に沿 つて並置するように配置するとともに、前記検出コイルと前記励磁コイルとが互いのコ ィル面を交差するように配置されて ヽる渦電流探傷プローブと、  [6] 6. Two or more excitation coils are arranged in a polygonal detection coil so as to be juxtaposed along the winding of the detection coil, and the detection coil and the excitation coil are connected to each other. An eddy current probe arranged to intersect the
前記 2個以上の励磁コイルに順次切り換えて励磁信号を印加する励磁信号発生部 と、  An excitation signal generator for sequentially switching to the two or more excitation coils and applying an excitation signal;
前記検出コイルから探傷信号を検出して検査体のキズを探傷し評価する探傷評価 部と  A flaw detection evaluation unit that detects a flaw detection signal from the detection coil to detect and evaluate flaws on the test object;
を備えて 、ることを特徴とする渦電流探傷装置。  An eddy current flaw detection device comprising:
PCT/JP2005/009282 2004-05-21 2005-05-20 Eddy current flaw inspecting probe and eddy current flaw inspecting apparatus WO2005114165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513746A JPWO2005114165A1 (en) 2004-05-21 2005-05-20 Eddy current flaw detection probe and eddy current flaw detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004151469 2004-05-21
JP2004-151469 2004-05-21

Publications (1)

Publication Number Publication Date
WO2005114165A1 true WO2005114165A1 (en) 2005-12-01

Family

ID=35428484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009282 WO2005114165A1 (en) 2004-05-21 2005-05-20 Eddy current flaw inspecting probe and eddy current flaw inspecting apparatus

Country Status (2)

Country Link
JP (1) JPWO2005114165A1 (en)
WO (1) WO2005114165A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406193A (en) * 2021-06-23 2021-09-17 厦门大学 Flexible eddy current sensing film based on trapezoidal coil array, detection device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132961U (en) * 1988-02-29 1989-09-11
JPH05149923A (en) * 1991-11-29 1993-06-15 Kaisei Enjinia Kk Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
JP2714386B2 (en) * 1987-02-19 1998-02-16 アトミック エナジー オブ カナダ リミテッド Circumferentially compensated eddy current probe
JP2002214202A (en) * 2001-01-16 2002-07-31 Marktec Corp Eddy current flaw detection probe
JP2003066009A (en) * 2001-08-24 2003-03-05 Daido Steel Co Ltd Eddy current flaw detector
JP3406649B2 (en) * 1992-08-14 2003-05-12 アトミック エナジー オブ カナダ リミテッド An eddy current probe with a differential transmission / reception method including a wrist-shaped cylinder composed of multiple coil units
JP2003149209A (en) * 2001-11-12 2003-05-21 Univ Nihon Probe for eddy current flaw detection and eddy current flaw detecting apparatus using the same
JP2003232776A (en) * 2002-02-08 2003-08-22 Marktec Corp Eddy current flaw detecting apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714386B2 (en) * 1987-02-19 1998-02-16 アトミック エナジー オブ カナダ リミテッド Circumferentially compensated eddy current probe
JPH01132961U (en) * 1988-02-29 1989-09-11
JPH05149923A (en) * 1991-11-29 1993-06-15 Kaisei Enjinia Kk Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
JP3406649B2 (en) * 1992-08-14 2003-05-12 アトミック エナジー オブ カナダ リミテッド An eddy current probe with a differential transmission / reception method including a wrist-shaped cylinder composed of multiple coil units
JP2002214202A (en) * 2001-01-16 2002-07-31 Marktec Corp Eddy current flaw detection probe
JP2003066009A (en) * 2001-08-24 2003-03-05 Daido Steel Co Ltd Eddy current flaw detector
JP2003149209A (en) * 2001-11-12 2003-05-21 Univ Nihon Probe for eddy current flaw detection and eddy current flaw detecting apparatus using the same
JP2003232776A (en) * 2002-02-08 2003-08-22 Marktec Corp Eddy current flaw detecting apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406193A (en) * 2021-06-23 2021-09-17 厦门大学 Flexible eddy current sensing film based on trapezoidal coil array, detection device and method

Also Published As

Publication number Publication date
JPWO2005114165A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4392129B2 (en) Method and apparatus for long range inspection of plate-type ferromagnetic structures
US8519702B2 (en) Orthogonal eddy current probe for multi-directional inspection
US6373245B1 (en) Method for inspecting electric resistance welds using magnetostrictive sensors
JP5922633B2 (en) Eddy current flaw detection probe and eddy current flaw detection method
JP2009019909A (en) Method and device for discriminating defect
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
JP4117645B2 (en) Eddy current testing probe and eddy current testing equipment for magnetic materials
WO2005114165A1 (en) Eddy current flaw inspecting probe and eddy current flaw inspecting apparatus
JPH102883A (en) Eddy current flaw detection apparatus
JP3981964B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
KR102265354B1 (en) annular array eddy currentprobe non-destructive inspection device equipped with magnetic lenses
JP2004028897A (en) Eddy-current flaw detection apparatus
US11169116B2 (en) Probe for nondestructive testing device using crossed gradient induced current and method for manufacturing induction coil for nondestructive testing device
JP3979606B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP3942165B2 (en) Eddy current testing probe
JP2007163263A (en) Eddy current flaw detection sensor
Lepage Development of a flexible cross-wound eddy current array probe
JP4484723B2 (en) Eddy current testing probe
JP4982075B2 (en) Eddy current testing probe
JPH1114600A (en) Eddy current flaw-detecting device
JP7450305B1 (en) Inspection equipment and inspection method
JPH07294494A (en) Electromagnetic ultrasonic transducer
JP2006010665A (en) Eddy current flaw detecting method and eddy current flaw detecting probe for realizing deep penetration of eddy current
JPH08261991A (en) Eddy current probe
JPH09178710A (en) Flaw detecting element for eddy current flaw detection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006513746

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase