JP4982075B2 - Eddy current testing probe - Google Patents

Eddy current testing probe Download PDF

Info

Publication number
JP4982075B2
JP4982075B2 JP2005341292A JP2005341292A JP4982075B2 JP 4982075 B2 JP4982075 B2 JP 4982075B2 JP 2005341292 A JP2005341292 A JP 2005341292A JP 2005341292 A JP2005341292 A JP 2005341292A JP 4982075 B2 JP4982075 B2 JP 4982075B2
Authority
JP
Japan
Prior art keywords
eddy current
detection
coil
coils
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005341292A
Other languages
Japanese (ja)
Other versions
JP2007147411A (en
Inventor
直樹 斎藤
俊 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2005341292A priority Critical patent/JP4982075B2/en
Publication of JP2007147411A publication Critical patent/JP2007147411A/en
Application granted granted Critical
Publication of JP4982075B2 publication Critical patent/JP4982075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本願発明は、検出コイルに被検査体を貫通させて使用する貫通型の渦電流探傷プローブに関する。   The present invention relates to a penetrating eddy current flaw detection probe that is used by passing a test object through a detection coil.

従来貫通型の渦電流探傷プローブとして、被検査体を貫通させる2個の励磁コイルの間に上置型の検出コイルを配置した貫通型の渦電流探傷プローブが提案されている(例えば特許文献1参照)。
図6、図7により従来の貫通型の渦電流探傷プローブを説明する。なお両図に共通の部分は、同じ符号を使用している。
まず図6について説明する。
As a conventional penetrating eddy current flaw probe, a penetrating eddy current flaw probe in which an upper detection coil is disposed between two exciting coils that penetrate an object to be inspected has been proposed (for example, see Patent Document 1). ).
A conventional through-type eddy current flaw detection probe will be described with reference to FIGS. In addition, the same code | symbol is used for the part common to both figures.
First, FIG. 6 will be described.

図6(a)は、渦電流探傷プローブの斜視図、図6(b)は、図6(a)のX1部分の矢印方向の断面図、図6(c)は、被検査体の磁束と渦電流を説明するための図である。
渦電流探傷プローブPbは、ボビン2に巻いた2個の励磁コイルCe1,Ce2、検出コイルCdからなり、円柱状の被検査体1がボビン2を貫通している。励磁コイルCe1,Ce2に励磁信号を印加すると、両励磁コイルによって、被検査体1を通り両励磁コイルのコイル軸方向へ伸びる磁束Mfが発生する。被検査体1には、磁束Mfにより励磁コイルCe1,Ce2の巻き線に沿って流れる一様の渦電流Iが発生する。検出コイルCdには、その渦電流Iによって、起電力が誘起する。その起電力は、検出コイルCdの励磁コイルCe1に近い部分に誘起する起電力と励磁コイルCe2に近い部分に誘起する起電力は、大きさが同じで方向が逆(逆極性)になるから打消し合い、結局検出信号は発生しない。被検査体1の表面にキズがあるときは、そのキズの部分で局部的に渦電流Iの一様性が崩れるため、検出コイルCdに検出信号(キズ信号)が発生する。
6A is a perspective view of the eddy current flaw detection probe, FIG. 6B is a cross-sectional view of the X1 portion of FIG. 6A in the arrow direction, and FIG. It is a figure for demonstrating an eddy current.
The eddy current flaw detection probe Pb includes two exciting coils Ce1 and Ce2 and a detection coil Cd wound around a bobbin 2, and a cylindrical inspection object 1 passes through the bobbin 2. When an excitation signal is applied to the excitation coils Ce1 and Ce2, a magnetic flux Mf that passes through the device under test 1 and extends in the coil axis direction of both excitation coils is generated by both excitation coils. A uniform eddy current I flowing along the windings of the exciting coils Ce1 and Ce2 is generated in the device under test 1 by the magnetic flux Mf. An electromotive force is induced in the detection coil Cd by the eddy current I. The electromotive force cancels because the electromotive force induced in the portion near the excitation coil Ce1 of the detection coil Cd and the electromotive force induced in the portion close to the excitation coil Ce2 have the same magnitude and reverse direction (reverse polarity). In the end, however, no detection signal is generated. When there is a scratch on the surface of the object 1 to be inspected, the uniformity of the eddy current I is locally broken at the scratch portion, so that a detection signal (scratch signal) is generated in the detection coil Cd.

図6の渦電流探傷プローブPbは、被検査体1が励磁コイルCe1,Ce2を貫通しているから、磁束Mfは、被検査体1の全体を通り、渦電流Iは、被検査体1の全周面に発生する。一方検出コイルCdは、被検査体1の一部分に対向して限られた範囲のキズを探傷するから、磁束Mfや渦電流Iの一部が探傷に利用されるのみである。したがって図6の渦電流探傷プローブPbは、磁束Mfや渦電流Iの大部分が無駄になる。   In the eddy current flaw detection probe Pb of FIG. 6, since the inspection object 1 penetrates the exciting coils Ce1 and Ce2, the magnetic flux Mf passes through the entire inspection object 1, and the eddy current I is applied to the inspection object 1. Occurs on the entire circumference. On the other hand, the detection coil Cd detects a limited range of scratches facing a part of the object 1 to be inspected, and therefore only a part of the magnetic flux Mf and the eddy current I is used for the flaw detection. Therefore, most of the magnetic flux Mf and the eddy current I are wasted in the eddy current testing probe Pb of FIG.

図7は、図6の渦電流探傷プローブを、幅広で厚みの薄い(小さい)板状又は帯状の被検査体に適用した例である。
図7(a)は、渦電流探傷プローブの斜視図、図7(b)は、図7(a)のX2部分の矢印方向の断面図、図7(c−1),(c−2)は、図7(b)のX3部分の矢印方向の断面図である。図7(d)は、図7(c−1)と同じ部分の断面図で、被検査体とボビンの間の隙間について説明する図である。
FIG. 7 shows an example in which the eddy current flaw detection probe shown in FIG. 6 is applied to a wide and thin (small) plate-like or strip-like inspection object.
7A is a perspective view of the eddy current flaw detection probe, FIG. 7B is a cross-sectional view of the X2 portion of FIG. 7A in the arrow direction, and FIGS. 7C-1 and 7C-2. These are sectional drawings of the X3 part of FIG.7 (b) in the arrow direction. FIG. 7D is a cross-sectional view of the same portion as FIG. 7C-1 and is a diagram for explaining a gap between the object to be inspected and the bobbin.

図7の渦電流探傷プローブPbは、幅広で厚みの薄い板状又は帯状の被検査体1(幅W、厚みt、W≫t)について、その厚み方向の面(厚み面)のキズを探傷する例である。被検査体1は、幅の広い面(幅広面)12,14と厚み面11,13からなり、厚みtは、例えば1mm、幅Wは、例えば50mm程度である。
図7の渦電流探傷プローブPbの場合、励磁コイルCe1,Ce2の発生する磁束やその磁束によって発生する渦電流は、両励磁コイルの巻き線に沿って被検査体1の面11,12,13,14に分布するが、探傷には、厚み面11の渦電流を利用するのみである。したがって図7の渦電流探傷プローブPbは、探傷に寄与する磁束や渦電流は、図6の渦電流探傷プローブの場合よりもさらに無駄が大きくなる。
The eddy current flaw detection probe Pb in FIG. 7 flaws a surface (thickness surface) in the thickness direction of a wide and thin plate-like or strip-like inspection object 1 (width W, thickness t, W >> t). This is an example. The inspected object 1 includes wide surfaces (wide surfaces) 12 and 14 and thickness surfaces 11 and 13, and the thickness t is, for example, 1 mm and the width W is, for example, about 50 mm.
In the case of the eddy current flaw detection probe Pb shown in FIG. 7, the magnetic flux generated by the exciting coils Ce1 and Ce2 and the eddy current generated by the magnetic flux are the surfaces 11, 12, and 13 of the device under test 1 along the windings of both exciting coils. 14, the eddy current on the thickness surface 11 is only used for flaw detection. Therefore, in the eddy current flaw detection probe Pb in FIG. 7, the magnetic flux and eddy current contributing to flaw detection are further wasted compared to the case of the eddy current flaw detection probe in FIG.

被検査体1が幅広で厚みの小さい板状又は帯状の場合、渦電流探傷プローブPbを移動するとき、渦電流探傷プローブPbを円滑に移動するため、図7(d)のように、ボビン2と被検査体1の幅広面及び厚み面との間にそれぞれ隙間S1,S2を設けなければならない。したがって被検査体1の一方の厚み面がボビン2に接触している場合、検出コイルCdと被検査体1の他方の厚み面との距離は、隙間S1の分大きくなり、検出感度が低下してしまう。また渦電流探傷プローブPbを移動するとき、隙間S1,S2を一定に保持することは困難であるため、隙間S1,S2の変動に伴い検出感度が変化し、検出信号の振幅が変化する。検出信号の振幅が小さい場合には、リフトオフ雑音以外の外部雑音の影響を受けて、検出精度が低下する。   When the inspected object 1 is wide and thin plate-like or belt-like, when the eddy current flaw detection probe Pb is moved, the eddy current flaw detection probe Pb is moved smoothly. As shown in FIG. And gaps S1 and S2 must be provided between the wide surface and the thick surface of the device under test 1, respectively. Therefore, when one thickness surface of the inspection object 1 is in contact with the bobbin 2, the distance between the detection coil Cd and the other thickness surface of the inspection object 1 increases by the gap S1, and the detection sensitivity decreases. End up. Further, when moving the eddy current flaw detection probe Pb, it is difficult to keep the gaps S1 and S2 constant. Therefore, the detection sensitivity changes as the gaps S1 and S2 change, and the amplitude of the detection signal changes. When the amplitude of the detection signal is small, the detection accuracy decreases due to the influence of external noise other than lift-off noise.

特開平10−170481号公報Japanese Patent Laid-Open No. 10-170481

本願発明は、従来の被検査体が励磁コイルを貫通する渦電流探傷プローブ、特に幅広で厚みの薄い板状又は帯状の被検査体の探傷に用いる渦電流探傷プローブの前記問題点に鑑み、探傷に寄与しない励磁磁束や渦電流を小さくして探傷効率を高めるとともに、検出感度を低下させない渦電流探傷プローブを提供することを目的とする。   The present invention has been developed in view of the above-mentioned problems of conventional eddy current flaw detection probes in which an object to be inspected penetrates an exciting coil, in particular, eddy current flaw probes used for flaw detection of wide and thin plate-shaped or band-shaped inspected objects. An object of the present invention is to provide an eddy current flaw detection probe in which the excitation magnetic flux and eddy current that do not contribute to the current are reduced to improve the flaw detection efficiency and the detection sensitivity is not lowered.

本願発明は、その目的を達成るため、請求項1に記載の渦電流探傷プローブは、 被検査体が貫通する2個の検出コイルとその2個の検出コイルの中間に配置した上置型の励磁コイルからなり、その2個の検出コイルは差動接続してあり、被検査体は、断面が四角形で幅広面と厚み面を有する板状体又は帯状体であり、被検査体の検査面は厚み面であることを特徴とする。
請求項2に記載の渦電流探傷プローブは、請求項1に記載の渦電流探プローブにおいて、前記励磁コイルは、コイル軸が被検査体の前記検査面と直交する方向に配置してあることを特徴とする。
請求項3に記載の渦電流探傷プローブは、請求項1に記載の渦電流探プローブにおいて、前記励磁コイルは、コイル面が被検査体の前記検査面と直交する方向に配置してあることを特徴とする。
In order to achieve the object of the present invention, the eddy current flaw detection probe according to claim 1 is provided with two detection coils penetrating the object to be inspected and an upper excitation type arranged between the two detection coils. The two detection coils are differentially connected, and the object to be inspected is a plate-like body or a band-like body having a square cross section and a wide surface and a thick surface. The inspection surface of the object to be inspected is wherein the thickness plane der Rukoto.
Eddy current testing probe according to claim 2, in the eddy current testing probe according to claim 1, wherein the exciting coil, the coil axis is arranged in a direction orthogonal to the inspection surface of the inspection object Features.
Eddy current testing probe according to claim 3, in the eddy current testing probe according to claim 1, wherein the exciting coil, that coil faces are arranged in a direction orthogonal to the inspection surface of the inspection object Features.

本願発明の渦電流探傷プローブは、2個の貫通型の検出コイルの中間に上置型の励磁コイルを配置してあるから、貫通型の渦電流探傷プローブにおいて、被検査体の探傷に必要な限られた範囲にのみ渦電流を発生することができ、特に幅広で厚みの薄い板状又は帯状の被検査体の厚み面にのみ渦電流を発生することができる。したがって本願発明の渦電流探傷プローブは、探傷に寄与しない渦電流の発生を低減して効率的に探傷することができ、特に幅広で厚みの薄い板状又は帯状の被検査体の厚み面を効率的に探傷することができる。   In the eddy current flaw detection probe according to the present invention, the upper excitation coil is arranged between the two penetration detection coils. Therefore, in the penetration eddy current flaw detection probe, the limit necessary for flaw detection of the inspection object is required. An eddy current can be generated only in a specified range, and in particular, an eddy current can be generated only on the thick and thin plate-shaped or strip-shaped object to be inspected. Therefore, the eddy current flaw detection probe according to the present invention can efficiently perform flaw detection by reducing the generation of eddy currents that do not contribute to flaw detection. In particular, the thickness surface of a wide, thin plate-shaped or strip-shaped object to be inspected can be efficiently used. Can be flawlessly detected.

本願発明の渦電流探傷プローブは、2個の検出コイルを用いているから、検出コイルに差動特性をもたせるとき、巻き方向が同じコイル又は巻き方向が異なる2個のコイルを用いて、それらのコイルの接続の仕方を変えることにより、励磁コイルが発生する渦電流の分布に対応した差動接続を容易に実現することができる。また本願発明の渦電流探傷プローブは、差動特性を有するから、リフト雑音を発生することがない。   Since the eddy current flaw detection probe according to the present invention uses two detection coils, when a differential characteristic is given to the detection coil, a coil having the same winding direction or two coils having different winding directions are used. By changing the way of connecting the coils, the differential connection corresponding to the distribution of the eddy current generated by the exciting coil can be easily realized. Moreover, since the eddy current flaw detection probe of the present invention has differential characteristics, it does not generate lift noise.

本願発明の渦電流探傷プローブは、励磁コイルを、そのコイル軸が被検査体の探傷面に直交するように配置することも、またタンジェンシャルコイルを用いて、そのコイル面が被検査体の探傷面に直交するように配置することもできる。したがって本願発明の渦電流探傷プローブは、励磁コイルと検出コイルを種々の形態で組合せることができ、渦電流の分布のパターンを種々変えることができる。
本願発明の渦電流探傷プローブは、励磁コイルを、2個の検出コイルの中間(中央)に配置するから、励磁コイルの位置決めが容易になり、したがって渦電流探傷プローブの作製が容易になる。また励磁コイルの大きさに対応して、2個の検出コイルコイルの間隔を変えることができる。
In the eddy current flaw detection probe according to the present invention, the exciting coil may be arranged so that the coil axis thereof is orthogonal to the flaw detection surface of the object to be inspected. It can also be arranged so as to be orthogonal to the plane. Therefore, the eddy current flaw detection probe according to the present invention can combine the excitation coil and the detection coil in various forms, and can change various patterns of eddy current distribution.
In the eddy current flaw detection probe according to the present invention, since the excitation coil is disposed in the middle (center) between the two detection coils, the positioning of the excitation coil is facilitated, and hence the eddy current flaw detection probe is easily manufactured. Further, the interval between the two detection coil coils can be changed according to the size of the exciting coil.

図1〜図5により本願発明の実施例に係る渦電流探傷プローブを説明する。なお各図に共通の部分は、同じ符号を使用している。   An eddy current flaw detection probe according to an embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is used for the part common to each figure.

図1は、本願発明の実施例に係る渦電流探傷プローブの構成を示す。
図1(a)は、渦電流探傷プローブの斜視図、図1(b)は、図1(a)のX2部分の矢印方向の断面図、図1(c−1),(c−2)は、図1(b)のX3部分の矢印方向の断面図である。図1(d)は、図1(c−1)と同じ部分の断面図で、被検査体とボビンの間の隙間について説明する図である。
FIG. 1 shows the configuration of an eddy current flaw detection probe according to an embodiment of the present invention.
1A is a perspective view of the eddy current flaw detection probe, FIG. 1B is a cross-sectional view of the X2 portion of FIG. 1A in the arrow direction, and FIGS. 1C-1 and C-2. These are sectional drawings of the X3 part of FIG.1 (b) of the arrow direction. FIG.1 (d) is sectional drawing of the same part as FIG.1 (c-1), and is a figure explaining the clearance gap between a to-be-inspected object and a bobbin.

図1において、Pbは貫通型の渦電流探傷プローブ、1は被検査体、2はボビン、Ceは励磁コイル、Cd1、Cd2は検出コイルである。
被検査体1は、断面が四角形で、幅が広く厚みの薄い(小さい)板状又は帯状のもので、幅の広い面(幅広面)12,14と厚み方向の面(厚み面)11,13を有する。被検査体1は、例えば厚みtは1mm、幅Wは50mm程度で、幅に比べて厚みが薄い(W≫t)。なお厚み面11,13は、幅広面12,14と直交する方向の端部の面である。
In FIG. 1, Pb is a through-type eddy current flaw detection probe, 1 is a test object, 2 is a bobbin, Ce is an excitation coil, and Cd1 and Cd2 are detection coils.
The object to be inspected 1 has a quadrangular cross section, a wide and thin (small) plate shape or a strip shape, wide surfaces (wide surfaces) 12, 14 and thickness direction surfaces (thick surfaces) 11, 13 The inspected object 1 has a thickness t of 1 mm and a width W of about 50 mm, for example, and is thinner than the width (W >> t). The thick surfaces 11 and 13 are end surfaces in the direction orthogonal to the wide surfaces 12 and 14.

渦電流探傷プローブPbは、ボビン2、励磁コイルCe、検出コイルCd1,Cd2からなり、ボビン2は、被検査体1が貫通する四角形の開口を備えている。検出コイルCd1,Cd2は、ボビン2の外周に巻いてあり、励磁コイルCeは、ボビン2の外周に、被検査体1の厚み面11と対向するように取付けてある。したがって検出コイルCd1,Cd2は、貫通型のコイルであり、励磁コイルCeは、上置型のコイルである。励磁コイルCeは、円形或いはリング状のコイルで、フェライト等の磁心を備えている。なお励磁コイルCeは、四角形でもよく、また磁心はなくてもよい。
2個の検出コイルCd1,Cd2は、所定間隔をおいて配置し、励磁コイルCeは、検出コイルCd1と検出コイルCd2の中間(中央)に配置してある。そして励磁コイルCeは、そのコイル軸(コイルの中心を通る軸)が被検査体1の厚み面11(検査面)に直交するように、或いはコイル面(巻き線で囲まれた面)が検査面と平行になるように配置してある。
The eddy current flaw detection probe Pb includes a bobbin 2, an exciting coil Ce, and detection coils Cd1 and Cd2, and the bobbin 2 has a rectangular opening through which the device under test 1 passes. The detection coils Cd1 and Cd2 are wound around the outer periphery of the bobbin 2, and the excitation coil Ce is attached to the outer periphery of the bobbin 2 so as to face the thickness surface 11 of the device under test 1. Therefore, the detection coils Cd1 and Cd2 are through-type coils, and the excitation coil Ce is a top-type coil. The exciting coil Ce is a circular or ring-shaped coil and has a magnetic core such as ferrite. The exciting coil Ce may be square or may not have a magnetic core.
The two detection coils Cd1 and Cd2 are arranged at a predetermined interval, and the excitation coil Ce is arranged in the middle (center) between the detection coil Cd1 and the detection coil Cd2. The exciting coil Ce has its coil axis (axis passing through the center of the coil) orthogonal to the thickness surface 11 (inspection surface) of the object to be inspected 1 or the coil surface (surface surrounded by the windings). It is arranged so as to be parallel to the surface.

検出コイルCd1,Cd2は、巻数が同じコイルを用い、後述するように励磁コイルCeによって発生する円形の渦電流に対して差動的に接続してある。即ち検出コイルCd1,Cd2は、巻き方向が同じ2個のコイルを用い、一方の検出コイルの巻き終わりと他方の検出コイルの巻き始めを接続してある。なお検出コイルCd1,Cd2は、巻き方向が異なる場合には、両検出コイルの巻き終わり同士又は巻き始め同士を接続する。検出コイルCd1,Cd2は、励磁コイルCeにより発生する渦電流によって両検出コイルに誘起する起電力の差分を、検出信号として出力する。
渦電流探傷プローブPbは、被検査体1を固定してその被検査体1に沿って移動するか、或いは渦電流探傷プローブPbを固定して被検査体1を移動して、被検査体1の厚み面11の探傷を行う。
The detection coils Cd1 and Cd2 use coils having the same number of turns and are differentially connected to a circular eddy current generated by the excitation coil Ce as will be described later. That is, the detection coils Cd1 and Cd2 use two coils having the same winding direction and connect the winding end of one detection coil and the winding start of the other detection coil. When the winding directions of the detection coils Cd1 and Cd2 are different, the winding ends of the detection coils or the winding starts are connected to each other. The detection coils Cd1 and Cd2 output a difference between electromotive forces induced in both detection coils by an eddy current generated by the excitation coil Ce as a detection signal.
The eddy current flaw detection probe Pb moves along the inspection object 1 while fixing the inspection object 1, or moves the inspection object 1 while fixing the eddy current inspection probe Pb, and the inspection object 1 The thick surface 11 is flaw-detected.

渦電流探傷プローブPbは、励磁コイルCeに励磁信号を印加すると、その励磁コイルCeは、コイル軸方向(厚み面11と直交する方向)の磁束を発生する。その磁束は、後述するように、主に被検査体1の厚み面11に励磁コイルCeの巻き線に沿って流れる渦電流を発生するが、厚み面11以外の他の面には発生しない。即ち渦電流探傷プローブPbは、励磁コイルCeに励磁信号を印加しても、被検査体1の厚み面11に渦電流を発生するのみであるから、探傷に寄与しない渦電流は、非常に小さくなり、効率的な探傷が可能になる。したがって渦電流探傷プローブPbは、幅広で厚みの薄い板状又は帯状の被検査体について、その厚み面11の探傷を行うのに適している。   When the eddy current flaw detection probe Pb applies an excitation signal to the excitation coil Ce, the excitation coil Ce generates a magnetic flux in the coil axis direction (direction perpendicular to the thickness surface 11). As will be described later, the magnetic flux generates an eddy current that mainly flows along the winding of the exciting coil Ce on the thickness surface 11 of the device under test 1, but does not occur on other surfaces than the thickness surface 11. That is, since the eddy current flaw detection probe Pb only generates an eddy current on the thickness surface 11 of the inspection object 1 even when an excitation signal is applied to the excitation coil Ce, the eddy current that does not contribute to flaw detection is very small. And efficient flaw detection becomes possible. Therefore, the eddy current flaw detection probe Pb is suitable for flaw detection on the thick surface 11 of a wide and thin plate-like or strip-like inspection object.

渦電流探傷プローブPbは、その移動を円滑にするため、図1(d)のように、ボビン2と被検査体1の幅広面及び厚み面との間にそれぞれ隙間S1,S2を設けてあるが、励磁コイルCeは、被検査体1の厚み面11(検査面)と対向する位置に取付けてあるから、励磁コイルCeの発生する磁束は、厚み面11に集中し、主に厚み面11に渦電流を発生する。したがって渦電流探傷プローブPbは、隙間S1,S2の影響が小さく安定した検出感度で探傷することができる。   In order to make the eddy current flaw detection probe Pb move smoothly, gaps S1 and S2 are provided between the bobbin 2 and the wide surface and the thick surface of the object 1 to be inspected as shown in FIG. However, since the exciting coil Ce is attached at a position facing the thickness surface 11 (inspection surface) of the object 1 to be inspected, the magnetic flux generated by the exciting coil Ce is concentrated on the thickness surface 11 and mainly the thickness surface 11. Generate eddy currents. Therefore, the eddy current flaw detection probe Pb can detect flaws with a stable detection sensitivity with little influence of the gaps S1 and S2.

以上のように図1の渦電流探傷プローブPbは、検出コイルCd1,Cd2を貫通型にし、励磁コイルCeを上置型(非貫通型)とすることにより、貫通型の渦電流探傷プローブPbでありながら、励磁磁束を被検査体1の厚み面11(検査面)に集中させてその厚み面11にのみ渦電流を発生させることができるから、効率よく励磁して安定した検出感度で探傷することができる。また励磁コイルCeは、2個の検出コイルコイルCd1,Cd2の中間(中央)に配置するから、励磁コイルCeの位置決めが容易になり、渦電流探傷プローブPbの作製が容易になる。そして励磁コイルCeの大きさに対応して、検出コイルCd1,Cd2の間隔を変えることができる。   As described above, the eddy current testing probe Pb in FIG. 1 is a through type eddy current testing probe Pb by making the detection coils Cd1 and Cd2 through-type and the exciting coil Ce into a top-type (non-through-type). However, since the excitation magnetic flux can be concentrated on the thickness surface 11 (inspection surface) of the object to be inspected 1 and an eddy current can be generated only on the thickness surface 11, efficient excitation and flaw detection with stable detection sensitivity are possible. Can do. Further, since the exciting coil Ce is disposed in the middle (center) between the two detection coil coils Cd1 and Cd2, the exciting coil Ce can be easily positioned and the eddy current flaw detection probe Pb can be easily manufactured. The distance between the detection coils Cd1 and Cd2 can be changed in accordance with the size of the excitation coil Ce.

次に図2により、図1の渦電流探傷プローブの渦電流について説明する。
図2(a)は、被検査体の厚み面における励磁コイル、検出コイルとキズの位置関係を示し、図2(b−1)〜(b−4)、図2(c)は、渦電流探傷プローブを被検査体に沿って移動したときの渦電流を示す。
Next, the eddy current of the eddy current flaw detection probe of FIG. 1 will be described with reference to FIG.
2A shows the positional relationship between the excitation coil, the detection coil, and the flaw on the thickness surface of the object to be inspected. FIGS. 2B-1 to 2B-4 and FIG. An eddy current when the flaw detection probe is moved along the inspection object is shown.

図2(a)において、被検査体1の厚み面11のキズFは、渦電流探傷プローブの励磁コイルCe、検出コイルCd1,Cd2から離れた位置にあり、検出コイルCd1,Cd2のコイル軸と直交する方向に長いキズでる。この状態において、励磁コイルCeに励磁信号を印加すると、図2(b−1)のように、励磁コイルCeの巻き線に沿って流れる円形の渦電流Iが発生する。検出コイルCd1,Cd2には、その渦電流Iの検出コイルCd1,Cd2の巻き線と平行する方向の成分によって起電力が誘起する。渦電流Iは、検出コイルCd1側と検出コイルCd2側で方向が逆になるから、両検出コイルの起電力は、大きさが同じで方向が逆(逆極性)になり、かつ両励磁コイルは差動接続してあるから、打消し合い、検出信号(キズ信号)は発生しない。   In FIG. 2A, the flaw F on the thickness surface 11 of the inspection object 1 is located away from the excitation coil Ce and the detection coils Cd1 and Cd2 of the eddy current flaw detection probe, and the coil axis of the detection coils Cd1 and Cd2 Long scratches in the orthogonal direction. When an excitation signal is applied to the excitation coil Ce in this state, a circular eddy current I that flows along the winding of the excitation coil Ce is generated as shown in FIG. In the detection coils Cd1 and Cd2, an electromotive force is induced by a component of the eddy current I in a direction parallel to the winding of the detection coils Cd1 and Cd2. Since the direction of the eddy current I is reversed on the detection coil Cd1 side and the detection coil Cd2 side, the electromotive forces of both detection coils are the same in magnitude and in opposite directions (reverse polarity). Since they are differentially connected, they cancel each other and no detection signal (scratch signal) is generated.

渦電流探傷プローブを図2(b−1)の位置から矢印Y方向へ移動して、図2(b−2)の位置、即ちキズFが検出コイルCd2を通過した直後の位置へ移動すると、渦電流Iは、キズFにより局部的に一様性が崩れて、一部はキズFに沿って流れ、渦電流i1,i2が発生する。検出コイルCd1,Cd2には、渦電流I,i1,i2によって起電力が誘起するが、キズFは、検出コイルCd1,Cd2の中間から検出コイルCd2側へ偏っているから、両検出コイルに誘起する起電力は、大きさが相違する。したがって検出信号が発生する。   When the eddy current flaw detection probe is moved from the position of FIG. 2 (b-1) in the direction of the arrow Y and moved to the position of FIG. 2 (b-2), that is, the position immediately after the scratch F passes through the detection coil Cd2, The uniformity of the eddy current I is locally broken by the scratch F, and part of the eddy current I flows along the scratch F, and eddy currents i1 and i2 are generated. An electromotive force is induced in the detection coils Cd1 and Cd2 by the eddy currents I, i1 and i2, but the scratch F is biased from the middle of the detection coils Cd1 and Cd2 to the detection coil Cd2 side. The electromotive forces to be produced are different in size. Therefore, a detection signal is generated.

渦電流探傷プローブを図2(b−2)の位置から図2(b−3)の位置、即ちキズFが検出コイルCd1と検出コイルCd2の中間(中央)、即ち励磁コイルCeの真下の位置へ移動すると、検出コイルCd1,Cd2の起電力は、大きさが同じになるから打消し合い、検出信号は発生しない。
渦電流探傷プローブを図2(b−3)の位置から図2(b−4)の位置、即ちキズFが検出コイルCd1の直前の位置へ移動すると、キズFは、検出コイルCd1,Cd2の中間から検出コイルCd1側へ偏っているから、両検出コイルに誘起する起電力は、大きさが相違する。したがって検出信号が発生する。
The position of the eddy current flaw probe from FIG. 2 (b-2) to the position of FIG. 2 (b-3), that is, the scratch F is in the middle (center) between the detection coil Cd1 and the detection coil Cd2, that is, the position just below the excitation coil Ce. Since the magnitudes of the electromotive forces of the detection coils Cd1 and Cd2 are the same, they cancel each other and no detection signal is generated.
When the eddy current flaw detection probe is moved from the position of FIG. 2 (b-3) to the position of FIG. 2 (b-4), that is, the scratch F is moved to a position immediately before the detection coil Cd1, the scratch F is detected by the detection coils Cd1 and Cd2. Since it is biased from the middle toward the detection coil Cd1, the magnitudes of the electromotive forces induced in the two detection coils are different. Therefore, a detection signal is generated.

図2(c)は、キズFが検出コイルCd1,Cd2のコイル軸方向に長いキズの例で、キズFは、検出コイルCd1と検出コイルCd2の中間、即ち励磁コイルCeの真下の位置にある。図2(c)の場合には、渦電流Iの一部は、キズFに沿って流れるとともに、キズFの端を渦電流i3,i4が流れるから、その渦電流i3,i4により検出コイルCd1,Cd2に起電力を誘起するが、キズFは、検出コイルCd1,Cd2の中間にあるから、両検出コイルの起電力は、大きさが同じで方向が逆(逆極性)になるため打消し合い、検出信号は発生しない。渦電流探傷プローブを、図2(c)の位置から移動して、キズFが検出コイルCd1側或いは検出Cd2側へ偏ると、渦電流i3,i4は大きさが相違するから、両検出コイルの起電力は、大きさが相違する。したがって検出信号が発生する。   FIG. 2C shows an example in which the scratch F is long in the direction of the coil axis of the detection coils Cd1 and Cd2, and the scratch F is in the middle of the detection coil Cd1 and the detection coil Cd2, that is, directly below the excitation coil Ce. . In the case of FIG. 2C, part of the eddy current I flows along the scratch F, and the eddy currents i3 and i4 flow through the end of the scratch F. Therefore, the detection coil Cd1 is generated by the eddy currents i3 and i4. , Cd2 is induced, but scratch F is in the middle of the detection coils Cd1 and Cd2, so the electromotive forces of both detection coils are the same in magnitude and reverse in direction (reverse polarity). Therefore, no detection signal is generated. When the eddy current flaw detection probe is moved from the position shown in FIG. 2 (c) and the scratch F is biased toward the detection coil Cd1 or the detection Cd2, the eddy currents i3 and i4 have different sizes. The electromotive force is different in magnitude. Therefore, a detection signal is generated.

以上のように渦電流探傷プローブを被検査体1に沿って移動すると、被検査体1の厚み面11にキズFがあるときは、そのキズFを検出することができる。また検出コイルCd1,Cd2は、差動接続して厚み面11(検査面に)にキズFがないときは検出信号を発生しないように構成してあるから、探傷の際、渦電流探傷プローブと被検査体1の距離(リフトオフ)が変化しても、リフトオフ雑音は発生しない。   As described above, when the eddy current flaw detection probe is moved along the inspected object 1, if there is a flaw F on the thickness surface 11 of the inspected object 1, the flaw F can be detected. The detection coils Cd1 and Cd2 are configured to be differentially connected so that no detection signal is generated when there is no flaw F on the thickness surface 11 (on the inspection surface). Even if the distance (lift-off) of the device under test 1 changes, lift-off noise does not occur.

図3は、励磁コイルを2つの厚み面に配置した例である。
図3(a)は、被検査体が貫通している渦電流探傷プローブの側面図を示し、図3(b)は、被検査体1の展開平面図を示す。
図3(a)の渦電流探傷プローブPbは、基本的構成は図1と同じであるが、被検査体1の厚み面11に対向する励磁コイルCeaを配置するとともに、厚み面13に対向する励磁コイルCebを配置した点が図1の渦電流探傷プローブと相違している。
FIG. 3 shows an example in which excitation coils are arranged on two thickness surfaces.
FIG. 3A shows a side view of the eddy current flaw detection probe through which the inspection object passes, and FIG. 3B shows a developed plan view of the inspection object 1.
The basic configuration of the eddy current flaw detection probe Pb in FIG. 3A is the same as that in FIG. 1, but an excitation coil Cea that opposes the thickness surface 11 of the device 1 to be inspected is disposed and the thickness surface 13 is opposed. The difference between the exciting coil Ceb and the eddy current flaw detection probe shown in FIG.

励磁コイルCea、励磁コイルCebに励磁信号を印加すると、図3(b)のように被検査体1の厚み面11に渦電流Iaが発生し、厚み面13に渦電流Ibが発生する。
被検査体1の厚み面11、厚み面13双方の面に、或いはいずれか一方の面にキズがあると、検出コイルCd1,Cd2に起電力が誘起し、検出信号が発生する。したがって図3(a)の渦電流探傷プローブPbは、被検査体1の厚み面11と厚み面13のキズを同時に探傷することができる。なお検出されたキズが、厚み面11、厚み面13のいずれの面のキズかを判別する必要があるときは、被検査体1の検出信号(キズ信号)が発生した位置について、励磁コイルCea、励磁コイルCebのいずれか一方にのみ励磁信号を印加して、再度探傷することにより判別することができる。
When an excitation signal is applied to the excitation coil Cea and the excitation coil Ceb, an eddy current Ia is generated on the thickness surface 11 of the device under test 1 and an eddy current Ib is generated on the thickness surface 13 as shown in FIG.
If there is a scratch on both the thickness surface 11 and the thickness surface 13 of the device under test 1 or one of the surfaces, an electromotive force is induced in the detection coils Cd1 and Cd2, and a detection signal is generated. Accordingly, the eddy current flaw detection probe Pb shown in FIG. 3A can simultaneously detect flaws on the thickness surface 11 and the thickness surface 13 of the inspection object 1. When it is necessary to determine whether the detected flaw is a flaw on the thick surface 11 or the thick surface 13, the exciting coil Cea at the position where the detection signal (flaw signal) of the device under test 1 is generated. This can be determined by applying an excitation signal only to one of the excitation coils Ceb and performing flaw detection again.

図4、図5は、図1の渦電流探傷プローブにおいて、励磁コイルとして四角形のコイルを用い、その励磁コイルのコイル面が被検査体の厚み面(検査面)と直交するように(コイル軸が検査面と平行になるように)配置してある。即ち図4、図5は、励磁コイルとして、いわゆるタンジェンシャルコイルを用いた渦電流探傷プローブの例である。なお励磁コイルは、四角形に限らず、円形、三角形であってもよい。   4 and 5 show a case where a square coil is used as the exciting coil in the eddy current flaw detection probe shown in FIG. 1, and the coil surface of the exciting coil is orthogonal to the thickness surface (inspected surface) of the object to be inspected (coil axis). Is arranged parallel to the inspection surface). 4 and 5 show examples of eddy current flaw detection probes using so-called tangential coils as exciting coils. The excitation coil is not limited to a quadrangle, and may be a circle or a triangle.

まず図4について説明する。
図4(a)は、被検査体の厚み面における励磁コイル、検出コイルとキズの位置関係を示し、図4(b)は、励磁コイルの側面図を示す。また図4(c−1)〜(c−4)は、図4(a)において、渦電流探傷プローブを被検査体に沿って移動したときに発生する渦電流を示す。
First, FIG. 4 will be described.
FIG. 4A shows the positional relationship between the excitation coil, the detection coil, and the scratch on the thickness surface of the object to be inspected, and FIG. 4B shows a side view of the excitation coil. 4 (c-1) to 4 (c-4) show eddy currents generated when the eddy current flaw detection probe is moved along the inspection object in FIG. 4 (a).

図4(a)において、励磁コイルCeは、そのコイル軸が検出コイルCd1,Cd2のコイル軸と平行する方向(或いは励磁コイルの巻き線が検出コイルの巻き線と平行になる方向)に配置してあり、キズFは、検出コイルCd1,Cd2のコイル軸と直交する方向に長いキズである。検出コイルCd1,Cd2は、励磁コイルCeの発生する渦電流に対して差動接続してある。即ち検出コイルCd1,Cd2は、巻き数が同じで巻き方向が異なるものを用い、一方の検出コイルの巻き終わりと他方の検出コイルの巻き始めを接続してある。なお検出コイルCd1,Cd2は、巻き線方向が同じ場合には、両検出コイルの巻き終わり同士又は巻き始め同士を接続する。励磁コイルCeは、図4(b)のように四角形のコイルである。   In FIG. 4A, the exciting coil Ce is arranged in a direction in which the coil axis is parallel to the coil axis of the detection coils Cd1 and Cd2 (or in a direction in which the winding of the excitation coil is parallel to the winding of the detection coil). The scratch F is a scratch that is long in the direction orthogonal to the coil axes of the detection coils Cd1 and Cd2. The detection coils Cd1 and Cd2 are differentially connected to the eddy current generated by the exciting coil Ce. That is, the detection coils Cd1 and Cd2 have the same number of turns and different winding directions, and the winding end of one detection coil and the winding start of the other detection coil are connected. The detection coils Cd1 and Cd2 connect the winding ends of the two detection coils or the winding starts when the winding directions are the same. The exciting coil Ce is a square coil as shown in FIG.

図4(a)において、励磁コイルCeに励磁信号を印加すると、図4(c−1)のように、励磁コイルCeの近傍ではその巻き線に沿って流れる一様の渦電流Iが発生し、その渦電流により検出コイルCd1,Cd2に起電力が誘起する。検出コイルCd1,Cd2は、巻き方向が異なるから、両検出コイルの起電力は、大きさが同じで方向が逆(逆極性)になり、かつ両検出コイルは差動接続してあるから、打消し合い、検出信号(キズ信号)は発生しない。   In FIG. 4A, when an excitation signal is applied to the excitation coil Ce, a uniform eddy current I flowing along the winding is generated in the vicinity of the excitation coil Ce as shown in FIG. 4C-1. The eddy current induces an electromotive force in the detection coils Cd1 and Cd2. Since the detection coils Cd1 and Cd2 have different winding directions, the electromotive forces of the two detection coils are the same in magnitude and in opposite directions (reverse polarity), and the two detection coils are differentially connected. However, no detection signal (scratch signal) is generated.

図4(c−1)において、渦電流探傷プローブを矢印Y方向へ移動して図4(c−2)の位置へ移動すると、渦電流IはキズFにより局部的に一様性が崩れてその一部はキズFに沿って流れ、渦電流i5が発生する。そしてキズFは、検出コイルCd2側へ偏っているから、検出コイルCd1,Cd2の起電力は、大きさが相違する。したがって検出信号が発生する。
渦電流探傷プローブを図4(c−2)の位置から図4(c−3)の位置、即ちキズFが検出コイルCd1,Cd2の中間(励磁コイルCeの真下)の位置へ移動すると、両検出コイルの起電力は、大きさが同じになるから打消し合い、検出信号は発生しない。
渦電流探傷プローブを図4(c−3)の位置から図4(c−4)の位置へ移動すると、キズFは、検出コイルCd1側へ偏るから、検出コイルCd1,Cd2の起電力は、大きさが相違する。したがって検出信号が発生する。
In FIG. 4 (c-1), when the eddy current flaw detection probe is moved in the direction of arrow Y and moved to the position of FIG. 4 (c-2), the eddy current I is locally ununiform due to scratch F. Part of it flows along the scratch F, and an eddy current i5 is generated. Since the scratch F is biased toward the detection coil Cd2, the magnitudes of the electromotive forces of the detection coils Cd1 and Cd2 are different. Therefore, a detection signal is generated.
When the eddy current flaw detection probe is moved from the position shown in FIG. 4 (c-2) to the position shown in FIG. 4 (c-3), that is, when the scratch F is located between the detection coils Cd1 and Cd2 (below the excitation coil Ce), The electromotive forces of the detection coils cancel each other because they have the same magnitude, and no detection signal is generated.
When the eddy current flaw detection probe is moved from the position shown in FIG. 4 (c-3) to the position shown in FIG. 4 (c-4), the scratch F is biased toward the detection coil Cd1, so the electromotive forces of the detection coils Cd1 and Cd2 are The size is different. Therefore, a detection signal is generated.

図4の場合励磁コイルCeは、タンジェンシャルコイルを用い、その巻き線が検出コイルCd1,Cd2の巻き線と並行する方向に配置してあるから、両検出コイルのコイル軸方向の間隔を小さくすることができる。   In the case of FIG. 4, the exciting coil Ce uses a tangential coil, and its winding is arranged in a direction parallel to the windings of the detection coils Cd1 and Cd2, so that the interval in the coil axis direction of both detection coils is reduced. be able to.

次に図5について説明する。
図5(a)は、被検査体の厚み面における励磁コイル、検出コイルとキズの位置関係を示し、図5(b−1)〜(b−4)は、図5(a)において、渦電流探傷プローブを被検査体に沿って移動したときに発生する渦電流を示す。
図5(a)において、2個の励磁コイルCec,Cedは、それらのコイル軸が検出コイルCd1,Cd2のコイル軸と直交する方向(或いは励磁コイルの巻き線が検出コイルの巻き線と直交する方向)に配置してあり、キズFは、検出コイルCd1,Cd2のコイル軸と直交する方向に長いキズである。検出コイルCd1,Cd2は、巻き数及び巻き方向が同じものを用い、励磁コイルCec,Cedの発生する渦電流に対して差動接続してある。即ち一方の検出コイルの巻き終わりと他方の検出コイルの巻き始めを接続してある。なお検出コイルCd1,Cd2は、巻き方向が異なる場合には、両検出コイルの巻き終わり同士又は巻き始め同士を接続する。
Next, FIG. 5 will be described.
FIG. 5A shows the positional relationship between the exciting coil, the detection coil, and the flaw on the thickness surface of the object to be inspected. FIGS. 5B-1 to 5B-4 are vortices in FIG. The eddy current which generate | occur | produces when an electric current flaw detection probe moves along to-be-inspected object is shown.
In FIG. 5A, two excitation coils Cec and Ced have their coil axes orthogonal to the coil axes of the detection coils Cd1 and Cd2 (or the excitation coil windings are orthogonal to the detection coil windings). The scratch F is a scratch long in the direction orthogonal to the coil axes of the detection coils Cd1 and Cd2. The detection coils Cd1 and Cd2 have the same number of turns and the same winding direction, and are differentially connected to the eddy current generated by the excitation coils Cec and Ced. That is, the winding end of one detection coil and the winding start of the other detection coil are connected. When the winding directions of the detection coils Cd1 and Cd2 are different, the winding ends of the detection coils or the winding starts are connected to each other.

2個の励磁コイルCec,Cedは、巻き数が同じで巻き方向が異なるものを用い、一方の検出コイルの巻き終わりと他方の検出コイルの巻き始めを接続してある。励磁信号源は、励磁コイルCec,Cedに共通のものを1個用いる。なお励磁コイルCec,Cedは、巻き方向が同じ場合には、両検出コイルの巻き終わり同士又は巻き始め同士を接続する。
図5(a)において、励磁コイルCec,Cedに励磁信号を印加すると、図5(b−1)のように、励磁コイルCec,Cedの近傍ではその巻き線に沿って逆方向に流れる一様の渦電流Ic,Idが発生する。渦電流Ic,Idによって検出コイルCd1,Cd2に誘起する起電力は方向が逆になるから打消し合い、検出信号(キズ信号)は発生しない。
The two exciting coils Cec and Ced have the same number of turns and different winding directions, and connect the winding end of one detection coil and the winding start of the other detection coil. One excitation signal source is common to the excitation coils Cec and Ced. When the winding directions of the exciting coils Cec and Ced are the same, the winding ends of the two detection coils are connected to each other.
In FIG. 5A, when an excitation signal is applied to the excitation coils Cec and Ced, as shown in FIG. 5B-1, the uniform current flows in the reverse direction along the winding in the vicinity of the excitation coils Cec and Ced. Eddy currents Ic and Id are generated. Since the electromotive forces induced in the detection coils Cd1 and Cd2 by the eddy currents Ic and Id are reversed in direction, they cancel each other and no detection signal (scratch signal) is generated.

図5(b−1)において、渦電流探傷プローブを矢印Y方向へ移動して図5(b−2)の位置へ移動すると、渦電流Ic,Idは、キズFにより局部的に一様性が崩れ、その一部はキズFに沿って流れ、渦電流i6,i7が発生する。そしてキズFは、検出コイルCd2側へ偏っているから、検出コイルCd1,Cd2の起電力は、大きさが相違する。したがって検出信号が発生する。   5 (b-1), when the eddy current flaw detection probe is moved in the direction of arrow Y and moved to the position of FIG. 5 (b-2), the eddy currents Ic and Id are locally uniform due to the scratch F. Collapses, part of which flows along the scratch F, and eddy currents i6 and i7 are generated. Since the scratch F is biased toward the detection coil Cd2, the magnitudes of the electromotive forces of the detection coils Cd1 and Cd2 are different. Therefore, a detection signal is generated.

渦電流探傷プローブを図5(b−2)の位置から図5(b−3)の位置、即ちキズFが検出コイルCd1,Cd2の中間(励磁コイルCec,Cedの真下)の位置へ移動すると、キズFは、検出コイルCd1,Cd2の中間に位置するから、両検出コイルには大きさの同じ起電力が発生する。したがって検出コイルCd1,Cd2の起電力は打消し合い、検出信号は発生しない。
渦電流プローブを図5(b−3)の位置から図5(b−4)の位置へ移動すると、渦電流Ic,Idは、キズFにより局部的に一様性が崩れ、その一部はキズFに沿って流れ、渦電流i6,i7が発生する。そしてキズFは、検出コイルCd1側へ偏っているから、検出コイルCd1,Cd2の起電力は、大きさが相違する。したがって検出信号が発生する。
When the eddy current flaw detection probe is moved from the position of FIG. 5 (b-2) to the position of FIG. 5 (b-3), that is, the scratch F is in the middle of the detection coils Cd1 and Cd2 (below the excitation coils Cec and Ced). Since the scratch F is located in the middle of the detection coils Cd1 and Cd2, electromotive forces having the same magnitude are generated in both the detection coils. Therefore, the electromotive forces of the detection coils Cd1 and Cd2 cancel each other and no detection signal is generated.
When the eddy current probe is moved from the position shown in FIG. 5 (b-3) to the position shown in FIG. 5 (b-4), the eddy currents Ic and Id are locally uneven due to the scratch F, and a part of them is It flows along the scratch F, and eddy currents i6 and i7 are generated. Since the scratch F is biased toward the detection coil Cd1, the magnitudes of the electromotive forces of the detection coils Cd1 and Cd2 are different. Therefore, a detection signal is generated.

前記実施例の渦電流探傷プローブは、励磁コイルを、そのコイル軸が被検査体の探傷面に直交するように配置することもできるし、タンジェンシャルコイルを用いてそのコイル面が被検査体の探傷面に直交するように配置することもできる。したがって前記実施例の渦電流探傷プローブは、励磁コイルと検出コイルを種々の形態で組合せることができ、種々の分布パターンの渦電流を発生することができる。また前記実施例の渦電流探傷プローブは、検出コイルとして2個のコイルを用い、巻き方向が同じコイル又は巻き方向が異なるコイルの接続の仕方を変えることにより、渦電流の分布パターンに対応した差動接続を実現できる。   In the eddy current flaw detection probe of the above embodiment, the excitation coil can be arranged so that its coil axis is orthogonal to the flaw detection surface of the object to be inspected. It can also be arranged so as to be orthogonal to the flaw detection surface. Therefore, the eddy current flaw detection probe of the above embodiment can combine the exciting coil and the detection coil in various forms, and can generate eddy currents having various distribution patterns. Further, the eddy current flaw detection probe of the above embodiment uses two coils as detection coils, and changes the connection method of coils having the same winding direction or different winding directions, so that the difference corresponding to the distribution pattern of the eddy current is obtained. Dynamic connection can be realized.

本願発明の実施例に係る渦電流探傷プローブの構成を示し、励磁コイルをそのコイル軸が検査面に直交するように配置した例を示す。1 shows a configuration of an eddy current flaw detection probe according to an embodiment of the present invention, and shows an example in which an exciting coil is arranged so that its coil axis is orthogonal to an inspection surface. 図1の渦電流探傷プローブの渦電流を示す。The eddy current of the eddy current flaw detection probe of FIG. 1 is shown. 図1の渦電流探傷プローブにおいて、励磁コイルを2個設けた例を示す。An example in which two exciting coils are provided in the eddy current flaw detection probe of FIG. 図1の渦電流探傷プローブにおいて、励磁コイルにタンジェンシャルコイルを用い、その巻き線が検出コイルの巻き線と平行するように配置した場合の渦電流を示す。The eddy current flaw probe shown in FIG. 1 shows an eddy current when a tangential coil is used as an exciting coil and the winding is arranged in parallel with the winding of a detection coil. 図1の渦電流探傷プローブにおいて、励磁コイルにタンジェンシャルコイルを用い、その巻き線が検出コイルの巻き線と直交するように配置した場合の渦電流を示す。1 shows an eddy current when a tangential coil is used as an exciting coil in the eddy current flaw detection probe of FIG. 1 and the winding is arranged so as to be orthogonal to the winding of the detection coil. 従来の渦電流探傷プローブの構成を示し、被検査体が円柱状の場合の例を示す。The structure of the conventional eddy current flaw detection probe is shown, and the example in case a to-be-inspected object is cylindrical shape is shown. 従来の渦電流探傷プローブの構成を示し、被検査体が板状の場合の例を示す。The structure of the conventional eddy current flaw detection probe is shown, and the example in case a to-be-inspected object is plate shape is shown.

符号の説明Explanation of symbols

1 被検査体
11〜14 被検査体の幅広面、厚み面
2 ボビン
Ce,Cea〜Ced 励磁コイル
Cd1,Cd2 検出コイル
F キズ
I,Ic,Id,i1〜i7 渦電流
Pb 渦電流探傷プローブ
S1、S2 隙間
DESCRIPTION OF SYMBOLS 1 Inspected object 11-14 Wide surface, thickness surface of to-be-inspected object 2 Bobbin Ce, Cea-Ced Excitation coil Cd1, Cd2 Detection coil F Scratches I, Ic, Id, i1-i7 Eddy current Pb Eddy current flaw probe S1, S2 gap

Claims (3)

被検査体が貫通する2個の検出コイルとその2個の検出コイルの中間に配置した上置型の励磁コイルからなり、その2個の検出コイルは差動接続してあり、被検査体は、断面が四角形で幅広面と厚み面を有する板状体又は帯状体であり、被検査体の検査面は厚み面であることを特徴とする渦電流探傷プローブ。 It consists of two detection coils that pass through the object to be inspected and an upper excitation coil disposed between the two detection coils, and the two detection coils are differentially connected . section is a plate-like body or a strip having a wide surface and thickness surface in square, the inspection surface of the inspection object is an eddy current flaw detection probe according to claim der thickness surface Rukoto. 請求項1に記載の渦電流探プローブにおいて、前記励磁コイルは、コイル軸が被検査体の前記検査面と直交する方向に配置してあることを特徴とする渦電流探傷プローブ。 In eddy current testing probe according to claim 1, wherein the exciting coil, an eddy current flaw detection probe, wherein the coil axis is arranged in a direction orthogonal to the inspection surface of the inspection object. 請求項1に記載の渦電流探プローブにおいて、前記励磁コイルは、コイル面が被検査体の前記検査面と直交する方向に配置してあることを特徴とする渦電流探傷プローブ。 In eddy current testing probe according to claim 1, wherein the exciting coil, an eddy current flaw detection probe, wherein the coil plane is disposed in a direction orthogonal to the inspection surface of the inspection object.
JP2005341292A 2005-11-26 2005-11-26 Eddy current testing probe Expired - Fee Related JP4982075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341292A JP4982075B2 (en) 2005-11-26 2005-11-26 Eddy current testing probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341292A JP4982075B2 (en) 2005-11-26 2005-11-26 Eddy current testing probe

Publications (2)

Publication Number Publication Date
JP2007147411A JP2007147411A (en) 2007-06-14
JP4982075B2 true JP4982075B2 (en) 2012-07-25

Family

ID=38208988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341292A Expired - Fee Related JP4982075B2 (en) 2005-11-26 2005-11-26 Eddy current testing probe

Country Status (1)

Country Link
JP (1) JP4982075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008697B2 (en) * 2009-07-06 2012-08-22 中国電力株式会社 Nondestructive inspection equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111785A (en) * 1976-03-17 1977-09-19 Toshiba Corp Flaw detector
US4808924A (en) * 1987-02-19 1989-02-28 Atomic Energy Of Canada Limited Circumferentially compensating eddy current probe with alternately polarized transmit coils and receiver coils
FR2693797B1 (en) * 1992-07-20 1994-10-21 Geophysique Cie Gle Pipeline control system, especially of bare or coated steel pipes.
JPH10170481A (en) * 1996-12-13 1998-06-26 Sumitomo Metal Ind Ltd Eddy current flaw detector
JP3979606B2 (en) * 2002-02-19 2007-09-19 学校法人日本大学 Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP3938886B2 (en) * 2002-05-27 2007-06-27 学校法人日本大学 Eddy current testing probe and eddy current testing equipment

Also Published As

Publication number Publication date
JP2007147411A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5129566B2 (en) Flexible electromagnetic acoustic transducer sensor
CN111398413B (en) Double-layer symmetrical differential plane eddy current detection sensor
US20090139335A1 (en) Device and Method for the Material Testing and/or Thickness Measurements of a Test Object That Contains at Least Fractions of Electrically Conductive and Ferromagnetic Material
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP2003215107A (en) Eddy current flaw detection probe
US9417212B2 (en) Defect inspection device of steel plate
US8970212B2 (en) Eddy current probe
WO2019155424A1 (en) Probe for eddy current non-destructive testing
JPWO2003091657A1 (en) Magnetic probe
JP4982075B2 (en) Eddy current testing probe
Marchand et al. Flexible and array eddy current probes for fast inspection of complex parts
JP2007298336A (en) Apparatus for measuring magnetic characteristics
JP4117645B2 (en) Eddy current testing probe and eddy current testing equipment for magnetic materials
JP5140214B2 (en) Rotating eddy current flaw detection probe
JP2006322860A (en) Eddy current flaw detection probe
JP3942165B2 (en) Eddy current testing probe
JP4484723B2 (en) Eddy current testing probe
JP2022087809A (en) Eddy current flaw detection probe, flaw detection method and eddy current flaw detection device
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP3727933B2 (en) Electromagnetic ultrasonic probe
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2006284506A (en) Probe for detecting eddy current flaw
JP2010266277A (en) Eddy-current flaw detection system
JP2016080596A (en) Eddy current flaw detection probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees